Science.gov

Sample records for marine phytoplankton final

  1. Why marine phytoplankton calcify.

    PubMed

    Monteiro, Fanny M; Bach, Lennart T; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E M; Poulton, Alex J; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-07-01

    Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming. PMID:27453937

  2. Why marine phytoplankton calcify

    PubMed Central

    Monteiro, Fanny M.; Bach, Lennart T.; Brownlee, Colin; Bown, Paul; Rickaby, Rosalind E. M.; Poulton, Alex J.; Tyrrell, Toby; Beaufort, Luc; Dutkiewicz, Stephanie; Gibbs, Samantha; Gutowska, Magdalena A.; Lee, Renee; Riebesell, Ulf; Young, Jeremy; Ridgwell, Andy

    2016-01-01

    Calcifying marine phytoplankton—coccolithophores— are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know “why” coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming. PMID:27453937

  3. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). PMID:26987085

  4. Production of isoprene by marine phytoplankton cultures

    SciTech Connect

    Moore, R.M.; Oram, D.E.; Penkett, S.A.

    1994-11-15

    The authors report experiments which demonstrate the production of light volatile hydrocarbons, including isoprene, by different marine phytoplankton cultures. This indicates that the ocean is a potential source of natural releases of isoprene to the atmosphere. Laboratory results do not allow extrapolation to atmospheric release rates.

  5. The dynamical landscape of marine phytoplankton diversity.

    PubMed

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J; d'Ovidio, Francesco

    2015-10-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10-100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  6. Infection of phytoplankton by aerosolized marine viruses.

    PubMed

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J; Bidle, Kay D; Ben-Dor, Shifra; Rudich, Yinon; Koren, Ilan; Vardi, Assaf

    2015-05-26

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  7. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  8. Acclimation of marine phytoplankton to ultraviolet radiation

    SciTech Connect

    Hazzard, C.E.

    1993-01-01

    The ability of marine phytoplankton to acclimate to ultraviolet radiation (UVR) was examined. Monocultures of a subtropical diatom, Chaetoceros gracilis, were maintained under photosynthetically available radiation (PAR-only) and PAR plus UVR (PAR + UVR) for a 48 h exposure period. By 24 h, and for the remainder of the 48 h exposure period, growth rate, pigment concentrations, Rubisco activity and carbon fixation capability were not affected by PAR + UVR. After 48 h of UVR exposure turnover rates of the putative D1 protein of photosystem II (PSII) and Chlorophyll (Chl) a were higher than controls, suggesting continual damage by UVR. Maximum rate of oxygen evolution and the efficiency of PSII increased following acclimation to UVR. The maximum rate of carbon fixation was not affected on a per cell basis and decreased on a per Chl a basis following UVR acclimation. Chlorophyll a specific photosynthesis over a 5 h exposure period was equal between the two acclimation treatments (PAR-only and PAR + UV). Transfer of PAR-only acclimated cells to PAR + UVR for the same 5 h period lead to a reduction in Chl a specific photosynthesis, indicating acute inhibition of photosynthesis by UVR. Chlorophyll a specific photosynthesis of cells acclimated to PAR + UVR and transferred to PAR-only was 24% higher than cells maintained in PAR + UVR during the determination of photosynthesis, indicating enhancement of productivity following the removal of UVR. Effect of ambient subtropical UVR on natural phytoplankton populations was examined. Rates of primary production by assemblages Natural phytoplankton assemblages from Hawaii, exposed to PAR-only and PAR + UVR were equal. Assemblages acclimated to PAR + UVR and then transferred to PAR-only fixed 67% more carbon per Chl a than assemblages acclimated to PAR + UVR and maintained in PAR + UVR. Acclimation to ambient PAR + UVR resulted in a 171% increase in Chl a concentration compared to assemblages maintained under PAR-only conditions.

  9. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  10. Toxicity of atmospheric aerosols on marine phytoplankton.

    PubMed

    Paytan, Adina; Mackey, Katherine R M; Chen, Ying; Lima, Ivan D; Doney, Scott C; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F

    2009-03-24

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  11. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  12. Marine biogeochemistry: Phytoplankton in a witch's brew

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael

    2016-03-01

    Natural seafloor hydrocarbon seeps are responsible for roughly half of the oil released into the ocean. As these oils and gases rise to the surface, they transport nutrients upwards, benefiting phytoplankton in the upper sunlit layer.

  13. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    PubMed Central

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  14. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    PubMed

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans. PMID:26963515

  15. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  16. Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton.

    PubMed

    Kim, Hyunji; Van Duong, Hieu; Kim, Eunhee; Lee, Byeong-Gweon; Han, Seunghee

    2014-08-01

    In the current study, the effects of phytoplankton cell size and methylmercury (MeHg) speciation on the bioaccumulation of MeHg by marine phytoplankton were investigated. Volume concentration factors (VCFs) of MeHg were determined in relation to the surface area to volume ratio of the cells for four species of diatom and a cyanobacteria species cultured in unenriched seawater. The VCFs of MeHg, ranging from 7.3 × 10(4) to 1.6 × 10(6) , increased linearly as the cell surface area-to-volume ratio increased. It suggests that pico- and nano-dominated phytoplankton communities may lead to larger MeHg accumulation than the one dominated by microphytoplankton. MeHg VCFs increased with increasing chloride concentration from 0.47 to 470 mM, indicating that MeHg bioaccumulation is enhanced under conditions that facilitate membrane permeability by the formation of neutral MeHgCl species. Overall results suggest that the size distributions of the planktonic community as well as the seawater chemistry affect MeHg bioaccumulation by marine phytoplankton. PMID:23065924

  17. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Quigg, Antonietta; Finkel, Zoe V.; Irwin, Andrew J.; Rosenthal, Yair; Ho, Tung-Yuan; Reinfelder, John R.; Schofield, Oscar; Morel, Francois M. M.; Falkowski, Paul G.

    2003-09-01

    Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.

  18. Light utilization and photoinhibition of photosynthesis in marine phytoplankton

    SciTech Connect

    Falkowski, P.G., Greene, R., Kolber, Z.

    1993-12-31

    Introduction to Phytoplankton. Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 {times} l0{sup 9} years ago in the form of marine single celled, planktonic procaryotes (Riding, 1992; Sarmiento and Bender, 1993). In the intervening eons, phytoplankton have evolved and diversified; presently they represent at least 11 classes of procaryotic and euacaryotic photoautotrophs. While the carbon of these organisms cumulatively amounts to only 1 to 2% of the global plant biomass, they fix between 35 and 50 gigatonnes ({times} 10{sup 9} metric tons) of carbon annually, about 40% of the global total (Falkowski and Woodhead, 1992). On average, each gram of phytoplankton chlorophyll converts about 6% of the photosynthetically active radiation (440 to 700 nm) incident on the sea surface to photochemical energy (Morel, 1978). Despite a great deal of variability in ocean environments, this photosynthetic conversion efficiency is relatively constant for integrated water column production (Morel, 1978; Falkowski, 1981; Platt, 1986; Morel, 1991). Here we review the factors determining light utilization efficiency of phytoplankton in the oceans, and the physiological acclimations which have evolved to optimize light utilization efficiency.

  19. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  20. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  1. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  2. A prospective study of marine phytoplankton and reported illness among recreational beachgoers in Puerto Rico, 2009

    EPA Science Inventory

    BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.OBJECTIVE: We ...

  3. Paleolatitudinal Gradients in Marine Phytoplankton Composition and Cell Size

    NASA Astrophysics Data System (ADS)

    Henderiks, J.; Bordiga, M.; Bartol, M.; Šupraha, L.

    2014-12-01

    Coccolithophores, a prominent group of marine calcifying unicellular algae, are widely studied in context of current and past climate change. We know that marine phytoplankton are sensitive to climatic changes, but the complex interplay of several processes such as warming, changes in nutrient content, and ocean acidification, makes future scenarios difficult to predict. Some taxa may be more susceptible to environmental perturbations than others, as evidenced by significantly different species-specific sensitivities observed in laboratory experiments. However, short-term plastic responses may not translate into longer-term climatic adaptation, nor should we readily extrapolate the behavior of single strains in the laboratory to natural, multi-species assemblages and their interactions in the ocean. The extensive fossil record of coccolithophores (in the form of coccoliths) reveals high morphological and taxonomic diversity and allows reconstructing the cell size of individual taxonomic groups. In a suite of deep-sea drilling sites from the Atlantic Ocean, we document distinct latitudinal gradients in phytoplankton composition and cell size across major climate transitions of the late Eocene - earliest Oligocene, and the middle - late Miocene. With these data we test hypotheses of species migration, phenotypic evolution, as well as the rates of species extinction and speciation in relation to concurrent paleoenvironmental changes during the Cenozoic.

  4. Chromium uptake and adsorption in cultured marine phytoplankton - implications for the marine Cr cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, D.; Maldonado, M. T.; Jaccard, S.

    2015-12-01

    While chromium (Cr) is a known carcinogen and pervasive industrial contaminant, little is known about the processes that affect the distribution and speciation of Cr in uncontaminated seawater. Given the recent development and application of the stable Cr isotope system in the marine environment, a full account of the sources, sinks, and internal processes affecting the modern marine Cr cycle is prudent. Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) both adsorbed to and was internalized by the cells ~20x faster than Cr(VI). This suggests that Cr(III) is the dominant oxidation state associated with phytoplankton cells. Cellular Cr:C ratios (<0.5 µmol Cr mol C-1) of the nine phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios of sinking particulate organic matter (~500 µmol Cr mol C-1). Thus, Cr accumulates in sinking particles- likely as Cr(III) - as it travels to the seafloor. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr associated with exported phytoplankton may be enriched in lighter Cr isotopes. These data will assist investigators using stable Cr isotopes to examine past and present Cr biogeochemical cycles.

  5. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  6. Effects of ultraviolet-B radiation on marine phytoplankton

    SciTech Connect

    Behrenfeld, M.J.

    1993-01-01

    Losses in the ozone layer increase ultraviolet B radiation at the earth's surface. Effects of UVBR on phytoplankton carbon fixation were determined from open ocean exposure studies conducted off the coast of Washington state. Photoinhibition of carbon fixation was a linear function of cumulative UVBR dose weighted by an exponential action spectrum. Comparison of the dose-response for UVBR inhibition of carbon uptake with results of earlier research indicates that a common, short-term photoinhibition response to UVBR may occur. Short-term photoinhibition was also measured for nitrogen uptake by natural plankton assemblages from the North Pacific. Ammonium uptake was inhibited by UVBR exposure to a greater extent than nitrate uptake. The action spectrum for ammonium uptake inhibition had a lower slope and greater relative contribution from wavelengths >320 nm to total biologically effective dose than the action spectrum for total UVR (290-347 nm) inhibition of carbon fixation. Inhibition of ammonium uptake was a linear function of biologically effective UVR dose. Comparison between dose-responses and action spectra for ammonium and carbon uptake suggest deeper water-column penetration of UVR effects on ammonium uptake than carbon uptake. Influence of nutritional status on the photoinhibitory effects of UVBR on phytoplankton growth rates and biomass were investigated using monocultures of the marine diatom Phaeodactylum tricornutum. Specific growth rates and biomass were inhibited from 2% to 16% by UVBR during nutrient-replete growth. However, no effect of UVBR was detectable when inhibition of growth rate and biomass by nutrient limitation exceeded the potential for inhibition by UVBR. Results suggest that phytoplankton in nutrient-rich areas of the ocean may be most susceptible to UVBR inhibition of growth and biomass, while these parameters may not be appropriate for measuring UVBR stress in regions of nutrient limitation.

  7. Cell-associated proteolytic enzymes from marine phytoplankton

    SciTech Connect

    Berges, J.A.; Falkowski, P.G.

    1996-08-01

    Despite their central importance in cell metabolism, little is known about proteases in marine phytoplankton. Caseinolytic and leucine aminopeptidase (LAP) activities was surveyed in log-phase cultures of the chlorophyte Dunaliella tertiolecta Butcher, the diatom Thalassiosira weissflogii Fryxell et Hasle, the chrysophyte Isochrysis galbana Parke, the coccolithophorid Emiliania huxleyi Hay et Mohler, and the cyanobacterium Synechococcus sp. LAP activity was very low at pH < 6 and peaked between pH 7.5 and 8.5 in all species, whereas caseinolytic activity in most species showed only minor peaks in the pH 4-5 range and broad maxima above pH 8. Acidic vacuolar proteases apparently represented only a small fraction of total protease activity. Attempts to classify protease using selective inhibitors were inconclusive. Caserinolytic activities were remarkably stable. Casein zymograms were used to identify >200-and <20-kDa proteases in homogenates of log-phase T. weissflogii; only the smaller protease was found in D. tertiolecta. Antibodies in the ATPase subunit (C) of the conserved, chloroplastic Clp protease from Pisum cross-reacted with proteins in Synechococcus, D. tertiolecta, and I. galbana, but no cross-reactions were found for any species with antibodies against the ClpP subunit from either E. coli or Nicotiana. Our results show that phytoplankton contain a diverse complement of proteases with novel characteristics. 46 refs., 6 figs., 1 tab.

  8. [Biooptical properties of marine phytoplankton as they apply to satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, Charles S.

    1992-01-01

    This final report covers research performed over a period of 10 years from 1982 to 1992. During this time, Grant #NAGW410 was funded under three titles through a series of Supplements. The original proposal was entitled 'Photoecology, optical properties and remote sensing of warm core rings'; the second and major portion was entitled 'Continuation of studies of biooptical properties of phytoplankton and the study of mesoscale and submesoscale features using fluorescence and colorimetry'; with the final portion named 'Studies of biooptical properties of phytoplankton, with reference to identification of spectral types associated with meso- and submesoscale features in the ocean'. The focus of these projects was to try to expand our knowledge of the biooptical properties of marine phytoplankton as they apply to satellite remote sensing. We used a variety of techniques, new and old, to better measure these optical properties at appropriate scales, in some cases at the level of individual cells. We also exploited the specialized oceanic conditions that occur within certain regions and features of the ocean around the world in order to explain the tremendous variability one sees in a single remote sensing image. This document strives to provide as complete a summary as possible for this large body of work, including the pertinent publications supported by this funding.

  9. Chromium uptake and adsorption in marine phytoplankton - Implications for the marine chromium cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, David M.; Maldonado, Maria T.; Jaccard, Samuel L.

    2016-07-01

    Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C-1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10-300 μmol Cr mol C-1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary δ53Cr record.

  10. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    PubMed

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. PMID:26781957

  11. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    PubMed Central

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-01-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

  12. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  13. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria

    PubMed Central

    Smriga, Steven; Fernandez, Vicente I.; Mitchell, James G.; Stocker, Roman

    2016-01-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These “phycospheres” may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  14. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates.

    PubMed

    Romera-Castillo, Cristina; Sarmento, Hugo; Alvarez-Salgado, Xosé Antón; Gasol, Josep M; Marrasé, Celia

    2011-11-01

    An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton and bacteria. The induced fluorescent emission of CDOM produced by prokaryotes was an order of magnitude higher than that of CDOM produced by eukaryotes. We have also examined the final compositions of the bacterial communities growing on the exudates, which differed markedly depending on the phytoplankton species of origin. Alteromonas and Roseobacter were dominant during all the incubations on Chaetoceros sp. and Prorocentrum minimum exudates, respectively. Alteromonas was the dominant group growing on Skeletonema costatum exudates during the exponential growth phase, but it was replaced by Roseobacter afterwards. On Micromonas pusilla exudates, Roseobacter was replaced by Bacteroidetes after the exponential growth phase. Our work shows that fluorescence excitation-emission matrices of CDOM can be a helpful tool for the identification of microbial sources of DOM in the marine environment, but further studies are necessary to explore the association of particular bacterial groups with specific fluorophores. PMID:21742918

  15. Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates▿

    PubMed Central

    Romera-Castillo, Cristina; Sarmento, Hugo; Álvarez-Salgado, Xosé Antón; Gasol, Josep M.; Marrasé, Celia

    2011-01-01

    An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton and bacteria. The induced fluorescent emission of CDOM produced by prokaryotes was an order of magnitude higher than that of CDOM produced by eukaryotes. We have also examined the final compositions of the bacterial communities growing on the exudates, which differed markedly depending on the phytoplankton species of origin. Alteromonas and Roseobacter were dominant during all the incubations on Chaetoceros sp. and Prorocentrum minimum exudates, respectively. Alteromonas was the dominant group growing on Skeletonema costatum exudates during the exponential growth phase, but it was replaced by Roseobacter afterwards. On Micromonas pusilla exudates, Roseobacter was replaced by Bacteroidetes after the exponential growth phase. Our work shows that fluorescence excitation-emission matrices of CDOM can be a helpful tool for the identification of microbial sources of DOM in the marine environment, but further studies are necessary to explore the association of particular bacterial groups with specific fluorophores. PMID:21742918

  16. The interaction of light with phytoplankton in the marine environment

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Collins, Donald J.; Perry, Mary Jane; Clark, H. Lawrence; Mesias, Jorge M.

    1986-01-01

    In many regions of the ocean, the phytoplankton population dominates both the attenuation and scattering of light. In other regions, non-phytoplankton contributions to the absorption and scattering may change the remote sensing reflectance and thus affect the ability to interpret remotely sensed ocean color. Hence, variations in the composition of both the phytoplankton population and of the non-phytoplankton material in the water can affect the optical properties of the sea. The effects of these contributions to the remote sensing reflectance and the submarine light field are modeled using scattering and absorption measurements of phytoplankton cultures obtained at the Friday Harbor Laboratory of the University of Washington. These measurements are used to develop regional chlorophyll algorithms specific to the summer waters of Puget Sound for the Coastal Zone Color Scanner, Thematic Mapper and future Ocean Color Imager, and their accuracies are compared for high chlorophyll waters with little or no Gelbstoff, but with variable detrital and suspended material.

  17. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    PubMed

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  18. Decoding Size Distribution Patterns in Marine and Transitional Water Phytoplankton: From Community to Species Level

    PubMed Central

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  19. Insights into eukaryotic phytoplankton and CO2 uptake in the marine biosphere

    NASA Astrophysics Data System (ADS)

    Worden, A. Z.

    2014-12-01

    Approximately half of global photosynthetic fixation of CO2 occurs in the marine biosphere. Development of more predictive mechanistic carbon cycle models is currently limited by the lack of understanding of physiological growth controls and quantitative information on the forces of mortality that act on the phytoplankton responsible for this CO2 uptake. A complication for research in this area is the fact that phytoplankton are exceptionally diverse. Primary productivity is not only partitioned between cyanobacterial and eukaryotic phytoplankton, but groups within the latter also have very different evolutionary histories and only some are represented in culture. Here, we will explore the advances and challenges in studying eukaryotic phytoplankton and factors that limit their growth in nature. Specifically, we will discuss ecosystems biology approaches that involve iteration between the lab and field and are proving most successful for gaining insight to environmental parameters that structure phytoplankton communities and growth.

  20. Assignment of photosynthetic parameters in estimation of marine phytoplankton production from remote sensing of ocean colour

    NASA Astrophysics Data System (ADS)

    Forget, Marie-Helene

    2007-12-01

    Photosynthesis (primary production) is the fundamental process by which solar photons are transformed into organic matter that is the source of energy for the entire food web. The first chapter of this thesis reviews the concepts that underpin models of marine primary production as well as the relevant parameters and their variation according to phytoplankton functional type. The application of the models to compute primary production from remotely-sensed images of ocean colour is then reviewed. The different approaches for assignment of the photosynthetic parameters in the model are presented and the advantages and disadvantages of each one of them are discussed. Particular emphasis is given to understanding the variability in photosynthesis-irradiance ( P -- E) parameters, which is the focus of the thesis. In Chapter 2 and 4, new measurements of P -- E are presented for two ecologically-different regions of the North Atlantic: the tropical Caribbean waters and the temperate North-West Atlantic. The issues that have to be addressed for regional computations of primary production are examined, and results are presented for primary production in the two regions using remotely-sensed data on ocean colour. Chapter 3 presents a new method for extraction of the photosynthesis-response parameters from profiles of in situ phytoplankton production. The procedure, previously proposed but hitherto untested, is here implemented in various aquatic systems and a protocol is established for its use. The major conclusions and recommendations for future work are presented in the fifth and final chapter.

  1. Effect of ultraviolet radiation on marine phytoplankton community in Akkeshi Bay, Japan

    SciTech Connect

    Taguchi, S.; Saito, H.; Kasai, H. )

    1992-01-01

    Effect of ultraviolet radiation on marine phytoplankton community was determined during a spring and fall bloom in a boreal embayment, Akkeshi Bay, Japan, which was located at 43[degrees]N, 144[degrees]50[prime]E. A time-series of observation was made every 6 h for 24 hours. Exposure to ultraviolet radiation always caused a depression of photosynthetic activity was observed at the end of day light period in both blooms. During a nigh period a degree of depression was decreased by 50% at least. The results of the present study may suggest that the effect of ultraviolet radiation on photosynthesis of marine phytoplankton is significantly large even in the boreal sea region and marine phytoplankton community has a capability to recover more than 40% from a damage by ultraviolet radiation during a night period.

  2. A Prospective Study of Marine Phytoplankton and Reported Illness Among Recreational Beachgoers in Puerto Rico, 2009

    PubMed Central

    Lin, Cynthia J.; Wade, Timothy J.; Sams, Elizabeth A.; Dufour, Alfred P.; Chapman, Andrew D.; Hilborn, Elizabeth D.

    2015-01-01

    Background: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted. Objective: We evaluated the association between phytoplankton cell counts and subsequent illness among recreational beachgoers. Methods: We recruited beachgoers at Boquerón Beach, Puerto Rico, during the summer of 2009. We conducted interviews at three time points to assess baseline health, water activities, and subsequent illness. Daily water samples were quantitatively assayed for phytoplankton cell count. Logistic regression models, adjusted for age and sex, were used to assess the association between exposure to three categories of phytoplankton concentration and subsequent illness. Results: During 26 study days, 15,726 individuals successfully completed all three interviews. Daily total phytoplankton cell counts ranged from 346 to 2,012 cells/mL (median, 712 cells/mL). The category with the highest (≥ 75th percentile) total phytoplankton cell count was associated with eye irritation [adjusted odds ratio (OR) = 1.30; 95% confidence interval (CI): 1.01, 1.66], rash (OR = 1.27; 95% CI: 1.02, 1.57), and earache (OR = 1.25; 95% CI: 0.88, 1.77). In phytoplankton group-specific analyses, the category with the highest Cyanobacteria counts was associated with respiratory illness (OR = 1.37; 95% CI: 1.12, 1.67), rash (OR = 1.32; 95% CI: 1.05, 1.66), eye irritation (OR = 1.25; 95% CI: 0.97, 1.62), and earache (OR = 1.35; 95% CI: 0.95, 1.93). Conclusions: We found associations between recreational exposure to marine phytoplankton and reports of eye irritation, respiratory illness, and rash. We also found that associations varied by phytoplankton group, with Cyanobacteria having the strongest and most consistent associations. Citation: Lin CJ, Wade TJ, Sams EA, Dufour AP, Chapman AD, Hilborn ED. 2016. A

  3. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth.

    PubMed

    Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara

    2014-01-01

    The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945

  4. The impact of temperature on marine phytoplankton resource allocation and metabolism

    NASA Astrophysics Data System (ADS)

    Toseland, A.; Daines, S. J.; Clark, J. R.; Kirkham, A.; Strauss, J.; Uhlig, C.; Lenton, T. M.; Valentin, K.; Pearson, G. A.; Moulton, V.; Mock, T.

    2013-11-01

    Marine phytoplankton are responsible for ~50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex environment-biome interactions have not been studied on a larger scale. Here we use a set of integrative approaches that combine metatranscriptomes, biochemical data, cellular physiology and emergent phytoplankton growth strategies in a global ecosystems model, to show that temperature significantly affects eukaryotic phytoplankton metabolism with consequences for biogeochemical cycling under global warming. In particular, the rate of protein synthesis strongly increases under high temperatures even though the numbers of ribosomes and their associated rRNAs decreases. Thus, at higher temperatures, eukaryotic phytoplankton seem to require a lower density of ribosomes to produce the required amounts of cellular protein. The reduction of phosphate-rich ribosomes in warmer oceans will tend to produce higher organismal nitrogen (N) to phosphate (P) ratios, in turn increasing demand for N with consequences for the marine carbon cycle due to shifts towards N-limitation. Our integrative approach suggests that temperature plays a previously unrecognized, critical role in resource allocation and marine phytoplankton stoichiometry, with implications for the biogeochemical cycles that they drive.

  5. Associations between marine phytoplankton and symptoms of illness among recreational beachgoers in Puerto Rico, 2009

    EPA Science Inventory

    While phytoplankton generally have crucial roles in marine ecosystems, a small subset can release toxins and produce harmful algal blooms (HABs). HABs can be a threat to human health as symptoms from exposure range from neurological impairment to gastrointestinal (GI), dermal, a...

  6. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.

    PubMed

    Eggers, Sarah L; Lewandowska, Aleksandra M; Barcelos E Ramos, Joana; Blanco-Ameijeiras, Sonia; Gallo, Francesca; Matthiessen, Birte

    2014-03-01

    Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans. PMID:24115206

  7. Competition among marine phytoplankton for different chelated iron species

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Witter, Amy E.; Butler, Alison; Luther, George W.

    1999-08-01

    Dissolved-iron availability plays a critical role in controlling phytoplankton growth in the oceans,. The dissolved iron is overwhelmingly (~99%) bound to organic ligands with a very high affinity for iron, but the origin, chemical identity and biological availability of this organically complexed Fe is largely unknown. The release into sea water of complexes that strongly chelate iron could result from the inducible iron-uptake systems of prokaryotes (siderophore complexes) or by processes such as zooplankton-mediated degradation and release of intracellular material (porphyrin complexes). Here we compare the uptake of siderophore- and porphyrin-complexed 55Fe by phytoplankton, using both cultured organisms and natural assemblages. Eukaryotic phytoplankton efficiently assimilate porphyrin-complexed iron, but this iron source is relatively unavailable to prokaryotic picoplankton (cyanobacteria). In contrast, iron bound to a variety of siderophores is relatively more available to cyanobacteria than to eukaryotes, suggesting that the two plankton groups exhibit fundamentally different iron-uptake strategies. Prokaryotes utilize iron complexed to either endogenous or exogenous siderophores, whereas eukaryotes may rely on a ferrireductase system, that preferentially accesses iron chelated by tetradentate porphyrins, rather than by hexadentate siderophores. Competition between prokaryotes and eukaryotes for organically-bound iron may therefore depend on the chemical nature of available iron complexes, with consequences for ecological niche separation, plankton community size-structure and carbon export in low-iron waters.

  8. Effect of CO2 concentration on the carbon acquisition of bloom-forming marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Rost, B.; Sültemeyer, D.; Riebesell, U.

    2003-04-01

    In the framework of global change one of the prominent anthropogenic perturbations is the progressive increase in atmospheric CO2 partial pressure (pCO2). The corresponding changes in surface ocean carbonate chemistry are bound to affect marine phytoplankton, in particular their carbon acquisition. Phytoplankton cells have to invest considerable resources in carbon acquisition to ensure high rates of photosynthesis. This constraint is mainly due to the 'imperfection' of their primary carboxylating enzyme RubisCO, which requires high CO2 concentrations for optimal performance. To overcome the low substrate affinity of RubisCO, most phytoplankton species have developed mechanisms to enhance their intracellular CO2 concentration. These CO2 concentrating mechanisms (CCMs) involve active uptake of CO2 and/or HCO3-, as well as the conversion of HCO3- to CO2 catalyzed by carbonic anhydrase (CA). The efficiency and regulation of CCMs appear to differ strongly between major phytoplankton groups, which gives rise to the possibility that increasing CO2 concentrations affect phytoplankton species differently. To assess the effect of CO2 supply on carbon acquisition of phytoplankton we have measured in vivo activities of extracellular CA, photosynthetic O2 evolution, CO2 and HCO3- uptake rates in three bloom-forming phytoplankton species acclimated to different pCO2 levels. The diatom Skeletonema costatum, the flagellate Phaeocystis globosa, and the coccolithophore Emiliania huxleyi, are representatives of main phytoplankton 'functional groups', which each serve a distinct role in marine ecosystem regulation and biogeochemical cycling. Large differences were obtained between the investigated species both with regard to their efficiency to achieve carbon-saturation in photosynthesis and their capability to regulate their CCM as a function of CO2 supply. The observed taxon-specific differences in CO2-sensitivity, if representative for the natural environment, suggest that changes

  9. Phytoplankton lysis predicts dissolved organic carbon release in marine plankton communities

    NASA Astrophysics Data System (ADS)

    Agustí, S.; Duarte, C. M.

    2013-03-01

    The relationship between the percent extracellular carbon release (PER) and the specific lysis rates of phytoplankton was examined across a range of communities spanning from highly oligotrophic ones in the subtropical Atlantic Ocean to productive ones in the N. African upwelling and the Southern Ocean. Communities in oligotrophic waters supported high phytoplankton cell lysis rates and low particulate primary production rates but high dissolved primary production and PER. The percent extracellular carbon released increased with increasing lysis rates to reach an asymptote at about 80% PER with specific lysis rates > 1.5 d-1, observed in the most oligotrophic conditions tested. These results confirm that high phytoplankton mortality in the oligotrophic ocean leads to high PER, accounting for the large fraction of the photosynthetic carbon channelled through bacteria characteristic of oligotrophic marine communities.

  10. Climate regulation by marine phytoplankton. : A test by anthropogenic SO/sub 2/ emissions

    SciTech Connect

    Schwartz, S.E.

    1989-05-01

    The potential sensitivity of global mean albedo and temperature to N prompted a novel suggestion consistent with the Gaia hypothesis for regulation of global climate by marine phytoplankton. Certain species of coccolithophores excrete dimethylsulfide (DMS), and this DMS is arguably the principal source of reduced sulfur gases in the global atmosphere and, in the absence of anthropogenic SO/sub 2/, the principal source of atmospheric gaseous sulfur species. Such gaseous sulfur species are oxidized in the atmosphere to form sulfuric acid, which rapidly forms an aerosol. Since sulfate-containing AP are highly efficient CCN, it is argued that an increase in DMS production by marine phytoplankton would yield increased concentrations of CCN, resulting in increased cloud albedo, decreased surface insolation, and decreased planetary temperature. It is further hypothesized that such decreased insolation or temperature might result in decreased production of DMS by marine phytoplankton, i.e., that the process might constitute a negative feedback loop for regulation of planetary climate by marine microorganisms. 18 refs., 3 figs., 1 tab.

  11. Controls on marine carbon fluxes via phytoplankton-microzooplankton interactions in continental shelf waters. Progress report

    SciTech Connect

    Not Available

    1994-05-01

    The project is an in-depth evaluation of the phytoplankton-microzooplankton trophic link. The principal goals of the project remain as originally proposed: (1) Impact of grazing by phagotrophic microzooplankton on phytoplankton, particularly on phototrophic cells <5 {mu}m in size, which are not effectively grazed by macrozooplankton. (2) Impact of grazing by phagotrophic microzooplankton on bacterioplankton. (3) Taxon-specific growth rates of phytoplankton in situ, particularly of <5 {mu}m sized cells, as they are affected by phagotrophy rates. The authors are developing protocols for making quantitative estimates of grazing by phagotrophic protists on ultraphytoplankton, and for determining the intrinsic reproductive rates of phytoplankton species. They have also begun a series of experiments, testing and utilizing these methods, evaluating the grazing impact of flagellates and ciliates on phytoplankton species of different sizes and taxonomic affinities. A series of preliminary experiments in coastal waters adjacent to the Oregon Institute of Marine Biology have provided a coastal benchmark. They participated in a preliminary cruise in May, 1993 to the OMP field site off Cape Hatteras. Their purpose was to obtain background information on heterotrophic microbial distributional patterns in this region and to measure rates of protist bacterivory.

  12. RubisCO is not a major fraction of total protein in marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Losh, J.; Young, J. N.; Morel, F. M.

    2012-12-01

    Ribulose 1,5 bisphosphate carboxylase oxygnenase (Rubisco) concentrations were quantified as a proportion of total protein in diatoms to determine whether Rubisco is as abundant in phytoplankton as previously thought. This enzyme has been assumed to be a major fraction of total protein in phytoplankton, as has been demonstrated in plants, potentially constituting a large sink for cellular nitrogen (N). Marine diatoms were grown in batch cultures, and in N-limited continuous cultures at various carbon dioxide (CO2) levels. Quantitative western blots were performed using commercially available global antibodies and protein standards. Field incubations with natural populations of organisms from the coast of California were conducted under both N-limited and N-replete incubations with varying CO2. In all experiments, Rubisco represented less than 5% of total protein. Within exponentially growing batch cultures, concentrations ranged from 2-4%, while in N-limited laboratory and field cultures, concentrations were less than 1%. In some experiments under N-limiting conditions, Rubisco concentrations decreased with decreasing growth rates or with increasing CO2. These results were used as a basis of a theoretical calculation of maximum Rubisco activity and suggest that phytoplankton contain the minimum amount of Rubisco necessary to operate. Unlike plants, Rubisco is not a major sink of cellular N in phytoplankton. This has implications for phytoplankton's response to increasing CO2 under N-limitation.

  13. A database of marine phytoplankton abundance, biomass and species composition in Australian waters.

    PubMed

    Davies, Claire H; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W; Uribe-Palomino, Julian; Waite, Anya M; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  14. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    PubMed Central

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  15. Protective function of nitric oxide on marine phytoplankton under abiotic stresses.

    PubMed

    Li, Peifeng; Liu, Chun-Ying; Liu, Huanhuan; Zhang, Qiang; Wang, Lili

    2013-09-01

    As an important signaling molecule, nitric oxide (NO) plays diverse physiological functions in plants, which has gained particular attention in recent years. We investigated the roles of NO in the growth of marine phytoplankton Platymonas subcordiforms and Skeletonema costatum under abiotic stresses. The growth of these two microalgae was obviously inhibited under non-metal stress (sodium selenium, Na2SeO3), heavy metal stress (lead nitrate, Pb(NO3)2), pesticide stress (methomyl) and UV radiation stress. After the addition of different low concentrations of exogenous NO (10(-10)-10(-8) mol L(-1)) twice each day during cultivation, the growth of these two microalgae was obviously promoted. Results showed that NO could relieve the oxidative stresses to protect the growth of the two microalgae. For different environmental stress, there is a different optimum NO concentration for marine phytoplankton. It is speculated that the protective effect of NO is related to its antioxidant ability. PMID:23810732

  16. Molecular Mechanisms by Which Marine Phytoplankton Respond to Their Dynamic Chemical Environment

    NASA Astrophysics Data System (ADS)

    Palenik, Brian

    2015-01-01

    Marine scientists have long been interested in the interactions of marine phytoplankton with their chemical environments. Nutrient availability clearly controls carbon fixation on a global scale, but the interactions between phytoplankton and nutrients are complex and include both short-term responses (seconds to minutes) and longer-term evolutionary adaptations. This review outlines how genomics and functional genomics approaches are providing a better understanding of these complex interactions, especially for cyanobacteria and diatoms, for which the genome sequences of multiple model organisms are available. Transporters and related genes are emerging as the most likely candidates for biomarkers in stress-specific studies, but other genes are also possible candidates. One surprise has been the important role of horizontal gene transfer in mediating chemical-biological interactions.

  17. Turbulent unmixing: how marine turbulence drives patchy distributions of motile phytoplankton

    NASA Astrophysics Data System (ADS)

    Durham, William; Climent, Eric; Barry, Michael; de Lillo, Filippo; Boffetta, Guido; Cencini, Massimo; Stocker, Roman

    2013-11-01

    Centimeter-scale patchiness in the distribution of phytoplankton increases the efficacy of many important ecological interactions in the marine food web. We show that turbulent fluid motion, usually synonymous with mixing, instead triggers intense small-scale patchiness in the distribution of motile phytoplankton. We use a suite of experiments, direct numerical simulations of turbulence, and analytical tools to show that turbulent shear and acceleration directs the motility of cells towards well-defined regions of flow, increasing local cell concentrations more than ten fold. This motility-driven `unmixing' offers an explanation for why motile cells are often more patchily distributed than non-motile cells and provides a mechanistic framework to understand how turbulence, whose strength varies profoundly in marine environments, impacts ocean productivity.

  18. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake.

    PubMed

    Morrissey, Joe; Sutak, Robert; Paz-Yepes, Javier; Tanaka, Atsuko; Moustafa, Ahmed; Veluchamy, Alaguraj; Thomas, Yann; Botebol, Hugo; Bouget, François-Yves; McQuaid, Jeffrey B; Tirichine, Leila; Allen, Andrew E; Lesuisse, Emmanuel; Bowler, Chris

    2015-02-01

    Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton. Mesoscale iron fertilization experiments often result in blooms dominated by diatoms [2], indicating that diatoms have adaptations that allow survival in iron-limited waters and rapid multiplication when iron becomes available. Yet the genetic and molecular bases are unclear, as very few iron uptake genes have been functionally characterized from marine eukaryotic phytoplankton, and large portions of diatom iron starvation transcriptomes are genes encoding unknown functions [3-5]. Here we show that the marine diatom Phaeodactylum tricornutum utilizes ISIP2a to concentrate Fe(III) at the cell surface as part of a novel, copper-independent and thermodynamically controlled iron uptake system. ISIP2a is expressed in response to iron limitation several days prior to the induction of ferrireductase activity, and it facilitates significant Fe(III) uptake during the initial response to Fe limitation. ISIP2a is able to directly bind Fe(III) and increase iron uptake when heterologously expressed, whereas knockdown of ISIP2a in P. tricornutum decreases iron uptake, resulting in impaired growth and chlorosis during iron limitation. ISIP2a is expressed by diverse marine phytoplankton, indicating that it is an ecologically significant adaptation to the unique nutrient composition of marine environments. PMID:25557662

  19. Methyl mercury uptake by diverse marine phytoplankton and trophic transfer to zooplankton

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Fisher, N. S.

    2014-12-01

    While it is well known that methylmercury (MeHg) biomagnifies in aquatic food chains, few studies have quantified its bioaccumulation in marine phytoplankton from seawater, even though that is overwhelmingly the largest bioaccumulation step. Aquatic animals acquire MeHg mainly from dietary exposure and it is important to evaluate the bioaccumulation of this compound in planktonic organisms that form the base of marine food webs. We used a gamma-emitting radioisotope, 203Hg, to assess the rate and extent of MeHg uptake in marine diatoms, dinoflagellates, coccolithophores, cryptophytes chlorophytes, and cyanobacteria held in unialgal cultures under varying temperature and light conditions. For experimental conditions in which the dissolved MeHg was at 300 pM, the uptake rates in all species ranged from 0.004 to 0.75 amol Hg μm-3 cell volume d-1 and reached steady state within 2 d. Volume concentration factors (VCFs) ranged from 0.4 to 60 x 105 for the different species. Temperature and light conditions had no direct effect on cellular MeHg uptake but ultimately affected growth of the cells, resulting in greater suspended particulate matter and associated MeHg. VCFs strongly correlated with cell surface area to volume ratios in all species. Assimilation efficiencies of MeHg from phytoplankton food (Thalassiosira pseudonana, Dunaliella tertiolecta and Rhodomonas salina) in a marine copepod grazer (Acartia tonsa) ranged from 74 to 92%, directly proportional to the cytoplasmic partitioning of MeHg in the phytoplankton cells. MeHg uptake in copepods from the aqueous phase was low and modeling shows that nearly all the MeHg acquired by this zooplankter is from diet. Herbivorous zooplankton can be an important link from phytoplankton at the base of the food web to fish higher in the food chain.

  20. LIGHT UTILIZATION AND PHOTOINHIBITION OF PHOTOSYNTHESIS IN MARINE PHYTOPLANKTON

    EPA Science Inventory

    Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 x 10 9 years ago in the form of marine single-celled, planktonic prokaryotes (Riding, 1992; Sarmiento and Bender, 1994) (planktonic was derived from the Greek plan...

  1. Uptake of {sup 64}Cu-oxine by marine phytoplankton

    SciTech Connect

    Croot, P.L.; Karson, B.; Elteren, J.T. van; Kroon, J.J.

    1999-10-15

    Short-term uptake experiments using fie phytoplankton species (Synechococcus clone DC2, Amphidinium carterae, Chrysochromulina polylepis, Ditylum brightwelli, and Prorocentrum micans) demonstrated rapid uptake of the lipophilic complex {sup 64}Cu-oxine, presumably by diffusion of the complex across the plasma membrane. This passive uptake mechanism was extremely rapid and significantly faster than facilitated uptake by the free metal ion. Measured values of the observed permeability, P{sub obs}, ranged from 0.55 to 18.6 x 10{sup {minus}4} cm s{sup {minus}1}, showing only small differences between the various algal species. Removal rate constants, k{sup bio}, varied much more widely, 0.009--570 x 10{sup {minus}9} L cell{sup {minus}1} h{sup {minus} 1}, between the algae, indicating the influence of surface area on the uptake kinetics. Maximum internal Cu levels were reached after approximately 2 h, showing that a major limiting factor in the uptake of Cu from Cu-oxine is the concentration of intracellular Cu binding sites.

  2. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    NASA Astrophysics Data System (ADS)

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-02-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations.

  3. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    PubMed Central

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  4. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny.

    PubMed

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world's largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  5. Photoadaptation in marine phytoplankton: changes in spectral absorption and excitation of chlorophyll a fluorescence

    SciTech Connect

    Neori, A.; Holm-Hansen, O.; Mitchell, B.G.; Kiefer, D.A.

    1984-10-01

    The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations. 30 references, 6 figures.

  6. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton.

    PubMed

    Lavoie, Michel; Raven, John A; Levasseur, Maurice

    2016-04-01

    Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. PMID:27037589

  7. Carbon dioxide limitation of marine phytoplankton growth rates

    NASA Astrophysics Data System (ADS)

    Riebesell, U.; Wolf-Gladrow, D. A.; Smetacek, V.

    1993-01-01

    THE supply of dissolved inorganic carbon (DIC) is not considered to limit oceanic primary productivity1, as its concentration in sea water exceeds that of other plant macronutrients such as nitrate and phosphate by two and three orders of magnitude, respectively. But the bulk of oceanic new production2 and a major fraction of vertical carbon flux is mediated by a few diatom genera whose ability to use DIG components other than CO2, which comprises < 1% of total DIC3, is unknown4. Here we show that under optimal light and nutrient conditions, diatom growth rate can in fact be limited by the supply of CO2. The doubling in surface water pCO2 levels since the last glaciation from 180 to 355 p.p.m.5,6 could therefore have stimulated marine productivity, thereby increasing oceanic carbon sequestration by the biological pump.

  8. The growth behavior of three marine phytoplankton species in the presence of commercial cypermethrin.

    PubMed

    Wang, Zhao-Hui; Yang, Yu-feng; Yue, Wen-Jie; Kang, Wei; Liang, Wen-Jun; Li, Wei-Jie

    2010-09-01

    Toxicity of commercial cypermethrin on the growth of three marine microalgal species, Skeletonema costatum (Bacillariophyceae), Scrippsiella trochoidea (Dinophyceae) and Chattonella marina (Raphidophyceae) was separately investigated by 96 h and 24 d growth tests. The growth was stimulated at low concentrations and inhibited under high concentrations; however, overcompensation was observed at the late period of exposure under high concentrations in 24 d growth tests. The highest stimulation rates were obtained at concentration of 5 microg/L. The 24 h SC10 values were 0.91, 4.17 and 20.4 microg/L for S. costatum, S. trochoidea and C. marina, respectively. The 96 h IC50 values were 75.3, 227 and 114 microg/L for the three species, respectively. Results suggest that cypermethrin level used for sea lice controlling exert a stimulative effect on phytoplankton growth, and might result in the succession of phytoplankton community structure due to different sensitivity of species. PMID:20117836

  9. The effect of nitric oxide on the growth of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Zhengbin, Zhang; Cai, Lin; Chunying, Liu; Mingyi, Sun; Haibing, Ding

    2003-10-01

    The incubation experiments of Skeletonema costatum, Dicrateria zhanjiangensis nov. sp., and Platymonas subcordiformis, and those of Emiliania huxleyi were carried out in the Marine Physical Chemistry Laboratory in Ocean University of China and in the Marine Organic Geochemistry Laboratory in the University of Georgia respectively. Nitric oxide was added into the media when these marine microalgae were growing. We found the growth of these four microalgae were promoted or inhibited when nitric oxide of different concentrations was added one or two times each day during the cultivation process. The results are consistent with the influence of nitric oxide on the growth of high plants. The results show that nitric oxide may be a new factor of regulation and control for the phytoplankton growth in seawater.

  10. In situ microparticle analysis of marine phytoplankton cells with infrared laser-based optical tweezers

    NASA Astrophysics Data System (ADS)

    Sonek, G. J.; Liu, Y.; Iturriaga, R. H.

    1995-11-01

    We describe the application of infrared optical tweezers to the in situ microparticle analysis of marine phytoplankton cells. A Nd:YAG laser (lambda=3D 1064 nm) trap is used to confine and manipulate single Nannochloris and Synechococcus cells in an enriched seawater medium while spectral fluorescence and Lorenz-Mie backscatter signals are simultaneously acquired under a variety of excitation and trapping conditions. Variations in the measured fluorescence intensities of chlorophyll a (Chl a) and phycoerythrin pigments in phytoplankton cells are observed. These variations are related, in part, to basic intrasample variability, but they also indicate that increasing ultraviolet-exposure time and infrared trapping power may have short-term effects on cellular physiology that are related to Chl a photobleaching and laser-induced heating, respectively. The use of optical tweezers to study the factors that affect marine cell physiology and the processes of absorption, scattering, and attenuation by individual cells, organisms, and particulate matter that contribute to optical closure on a microscopic scale are also described. (c)1995 Optical Society of America

  11. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    SciTech Connect

    Frischer, Marc E.; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  12. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.

    PubMed

    Ribalet, François; Berges, John A; Ianora, Adrianna; Casotti, Raffaella

    2007-12-15

    Several marine diatoms produce polyunsaturated aldehydes (PUAs) that have been shown to be toxic to a wide variety of model organisms, from bacteria to invertebrates. However, very little information is available on their effect on phytoplankton. Here, we expand previous studies to six species of marine phytoplankton, belonging to different taxonomic groups that are well represented in marine plankton. The effect of three PUAs, 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, was assessed on growth, cell membrane permeability, flow cytometric properties and morphology. A concentration-dependent reduction in the growth rate was observed for all cultures exposed to PUAs with longer-chained aldehydes having stronger effects on growth than shorter-chained aldehydes. Clear differences were observed among the different species. The prymnesiophyte Isochrysis galbana was the most sensitive species to PUA exposure with a lower threshold for an observed effect triggered by mean concentrations of 0.10 micromol L(-1) for 2E,4E-decadienal, 1.86 micromol L(-1) for 2E,4E-octadienal and 3.06 micromol L(-1) for 2E,4E-heptadienal, and a 50% growth inhibition (EC(50)) with respect to the control at 0.99, 2.25 and 5.90 micromol L(-1) for the three PUAs, respectively. Alternatively, the chlorophyte Tetraselmis suecica and the diatom Skeletonema marinoi (formerly S. costatum) were the most resistant species with 50% growth inhibition occurring at concentrations at least two to three times higher than I. galbana. In all species, the three PUAs caused changes in flow cytometric measures of cell size and cell granulosity and increased membrane permeability, assessed using the viability stain SYTOX Green. For example, after 48 h 51.6+/-2.6% of I. galbana cells and 15.0+/-1.8% of S. marinoi cells were not viable. Chromatin fragmentation was observed in the dinoflagellate Amphidinium carterae while clear DNA degradation was observed in the chlorophyte Dunaliella tertiolecta

  13. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community.

    PubMed

    Yoon, Tae-Ho; Kang, Hye-Eun; Kang, Chang-Keun; Lee, Sang Heon; Ahn, Do-Hwan; Park, Hyun; Kim, Hyun-Woo

    2016-01-01

    We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404-411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of

  14. Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms

    NASA Astrophysics Data System (ADS)

    González, J.; Figueiras, F. G.; Aranguren-Gassis, M.; Crespo, B. G.; Fernández, E.; Morán, X. A. G.; Nieto-Cid, M.

    2009-07-01

    Two microcosm experiments were carried out to simulate the effect of sporadic oil spills derived from tanker accidents on oceanic and coastal marine phytoplankton assemblages. Treatments were designed to reproduce the spill from the Prestige, which took place in Galician coastal waters (NW Iberia) in November 2002. Two different concentrations of the water soluble fraction of oil were used: low (8.6 ± 0.7 μg l -1 of chrysene equivalents) and high (23 ± 5 μg l -1 of chrysene equivalents l -1). Photosynthetic activity and chlorophyll a concentration decreased in both assemblages after 24-72 h of exposure to the two oil concentrations, even though the effect was more severe on the oceanic assemblage. These variables progressively recovered up to values close or higher than those in the controls, but the short-term negative effect of oil, which was generally stronger at the high concentration, also induced changes in the structure of the plankton community. While the biomass of nanoflagellates increased in both assemblages, oceanic picophytoplankton was drastically reduced by the addition of oil. Effects on diatoms were also observed, particularly in the coastal assemblage. The response of coastal diatoms to oil addition showed a clear dependence on size. Small diatoms (<20 μm) were apparently stimulated by oil, whereas diatoms >20 μm were only negatively affected by the high oil concentration. These differences, which could be partially due to indirect trophic interactions, might also be related to different sensitivity of species to PAHs. These results, in agreement with previous observations, additionally show that the negative effect of the water soluble fraction of oil on oceanic phytoplankton was stronger than on coastal phytoplankton.

  15. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community

    PubMed Central

    Yoon, Tae-Ho; Kang, Hye-Eun; Kang, Chang-Keun; Lee, Sang Heon; Ahn, Do-Hwan

    2016-01-01

    We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404–411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of

  16. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1989-01-01

    The organic and mineralized remains of planktonic algae provide a rich record of microplankton evolution extending over nearly half of the preserved geological record. In general, Phanerozoic patterns of phytoplankton radiation and extinction parallel those documented for skeletonized marine invertebrates, both augmenting and constraining thought about evolution in the oceans. Rapidly increasing knowledge of Proterozoic plankton is making possible the recognition of additional episodes of diversification and extinction that antedate the Ediacaran radiation of macroscopic animals. In contrast to earlier phytoplankton history, the late Mesozoic and Cainozoic record is documented in sufficient detail to constrain theories of mass extinction in more than a general way. Broad patterns of diversity change in planktonic algae show similarities across the Cretaceous-Tertiary and Eocene-Oligocene boundaries, but detailed comparisons of origination and extinction rates in calcareous nannoplankton, as well as other algae and skeletonized protozoans, suggest that the two episodes were quite distinct. Common causation appears unlikely, casting doubt on monolithic theories of mass extinction, whether periodic or not. Studies of mass extinction highlight a broader class of insights that paleontologists can contribute to evolutionary biology: the evaluation of evolutionary change in the context of evolving Earth-surface environments.

  17. Impact of sea ice on the marine iron cycle and phytoplankton productivity

    NASA Astrophysics Data System (ADS)

    Wang, S.; Bailey, D.; Lindsay, K.; Moore, J. K.; Holland, M.

    2014-09-01

    Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to the dynamics of sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. In order to adequately study the effect of sea ice on the polar iron cycle, sea ice bearing iron was incorporated in the Community Earth System Model (CESM). Sea ice acts as a reservoir for iron during winter and releases the trace metal to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations in regions where iron concentrations are relatively low. The maximum iron concentrations simulated in Arctic and Antarctic sea ice are much lower than observed, which is likely due to underestimation of iron inputs to sea ice or missing mechanisms. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month-1 in the Arctic and 4.1 × 106 mol Fe month-1 in the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. The impact of ice to ocean iron fluxes on marine ecosystems is negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will decrease with declining sea

  18. Phytoplankton Biomass Distribution and Identification of Productive Habitats Within the Galapagos Marine Reserve by MODIS, a Surface Acquisition System, and In-Situ Measurements

    EPA Science Inventory

    The Galapagos Marine Reserve (GMR) is one of the most diverse ecosystems in the world. Phytoplankton are the base of the ecosystem food chain for many higher trophic organisms, so identifying phytoplankton biomass distribution is the first step in understanding the dynamic envir...

  19. Transparent Exopolymer Particles (TEP) production by marine phytoplankton in response to increasing CO2 : laboratory and field mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Engel, A.; Heemann, C.; Schartau, M.; Schneider, U.; Thoms, S.; Delille, B.; Jacquet, S.; Riebesell, U.; Zondervan, I.

    2003-04-01

    The export of organic carbon to the deep ocean is mediated by sinking of large particles, such as marine snow, the formation of which is enhanced in the presence of transparent exopolymer particles (TEP) . TEP form from dissolved and colloidal polysaccharides by aggregation processes. Especially when running into nutrient limitation phytoplankton organisms are a source of TEP in pelagic ecosystems as the cells release a significant amount of the assimilated carbon in the form of polysaccharides. Because CO_2 concentration influences carbon assimilation rates, we hypothesized that polysaccharide exudation and aggregation into TEP is related to CO_2 concentration under nutrient limiting conditions. We tested this hypothesis in several lab and outdoor experiments with natural populations and cultures of phytoplankton exposed to various levels of CO_2 concentrations. Our results indicate that TEP production increases with CO_2 concentration and provides an enhanced sink for carbon during phytoplankton blooms.

  20. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    PubMed

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Facchini, Maria Cristina; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-01-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray's water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts. PMID:26464099

  1. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    PubMed Central

    O’Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell’Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-01-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts. PMID:26464099

  2. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    NASA Astrophysics Data System (ADS)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-10-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  3. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases

    PubMed Central

    Lin, Xin; Wang, Lu; Shi, Xinguo; Lin, Senjie

    2015-01-01

    Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment. PMID:26379645

  4. Spatio-temporal distribution of net-collected phytoplankton community and its response to marine exploitation in Xiangshan Bay

    NASA Astrophysics Data System (ADS)

    Jiang, Zhibing; Zhu, Xuyu; Gao, Yu; Chen, Quanzhen; Zeng, Jiangning; Zhu, Genhai

    2013-07-01

    To explore the spatial-temporal distribution of the phytoplankton community and evaluate the combined effects of marine resource exploitation, net-collected phytoplankton and physical-chemical parameters were investigated in the Xiangshan Bay during the four seasons of 2010. A total of eight phyla, 97 genera, and 310 species were found, including 232 diatom species, 45 dinoflagellate species and 33 other taxa. The phytoplankton abundances presented a significant ( P<0.001) seasonal difference with the average of 60.66×104 cells/m3. Diatoms (mainly consisting of Coscinodiscus jonesianus, Cerataulina pelagica, Skeleto n ema costatum, and genus Chaetoceros) dominated the phytoplankton assemblage in all seasons. We found great spatio-temporal variation in community composition based on the multidimensional scaling and similarity analysis. Canonical correspondence analysis show that temperature, nutrition, illumination, and salinity were the main variables associated with microalgal assemblage. Compared with the previous studies, an increase in phytoplankton abundance and change in the dominant species coincided with increased exploitation activities in this bay (e.g. operation of coastal power plants, intensive mariculture, tidal flat reclamation, and industrial and agricultural development). The present findings suggest that the government should exercise caution when deciding upon developmental patterns in the sea-related economy.

  5. Toxicological effects of cypermethrin to marine phytoplankton in a co-culture system under laboratory conditions.

    PubMed

    Wang, Zhao-Hui; Nie, Xiang-Ping; Yue, Wen-Jie

    2011-08-01

    The growth of three marine phytoplankton species Skeletonema costatum, Scrippsiella trochoidea and Chattonella marina and the response of the antioxidant defense system have been investigated on exposure to commercial cypermethrin for 96 h and 32 days in a co-culture system. Growth of the three species was generally comparable over 96 h with an inoculation of 1:3:6.5 (C. marina:S. trochoidea:S. costatum), with stimulation at 5 μg l(-1) and inhibition under higher concentrations (50, 100 μg l(-1)). However, when inoculating at ratios of 1:1:1 during a 32 day test, S. costatum became the most sensitive species and was significantly inhibited in all test groups under the dual stresses of cypermethrin and interspecies competition. The growth of C. marina was significantly inhibited at the concentrations higher than 5 μg l(-1), while the growth of S. trochoidea was significantly promoted at low concentrations. Superoxide dismutase (SOD) activities significantly increased during 6-12 h exposure periods in test treatments at low concentrations, and enhanced in the control as well due to interspecies competition. The lipid peroxidation product malondialdehyde was enhanced at high concentrations, but did not increase in control and low concentration cultures with high SOD activities, indicating that algal cells activated the antioxidant enzymes promptly to protect the cells from lipid membrane damage. Results from this study suggested that cypermethrin pollution in maricultural sea waters might lead to a shift in phytoplankton community structure from diatom to harmful dinoflagellate species, and thus potentially stimulatory for harmful algal blooms. PMID:21499869

  6. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges.

    PubMed

    Monier, Adam; Welsh, Rory M; Gentemann, Chelle; Weinstock, George; Sodergren, Erica; Armbrust, E Virginia; Eisen, Jonathan A; Worden, Alexandra Z

    2012-01-01

    Phosphate (PO(4)) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO(4) using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO(4) transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO(4) uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO(4) -availability may not serve as a simple bottom-up control of marine phytoplankton. PMID:21914098

  7. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges

    PubMed Central

    Monier, Adam; Welsh, Rory M; Gentemann, Chelle; Weinstock, George; Sodergren, Erica; Armbrust, E Virginia; Eisen, Jonathan A; Worden, Alexandra Z

    2012-01-01

    Phosphate (PO4) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO4 using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO4 transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO4 uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO4-availability may not serve as a simple bottom-up control of marine phytoplankton. PMID:21914098

  8. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic.

    PubMed

    Finkel, Z V; Sebbo, J; Feist-Burkhardt, S; Irwin, A J; Katz, M E; Schofield, O M E; Young, J R; Falkowski, P G

    2007-12-18

    The size structure of phytoplankton assemblages strongly influences energy transfer through the food web and carbon cycling in the ocean. We determined the macroevolutionary trajectory in the median size of dinoflagellate cysts to compare with the macroevolutionary size change in other plankton groups. We found the median size of the dinoflagellate cysts generally decreases through the Cenozoic. Diatoms exhibit an extremely similar pattern in their median size over time, even though species diversity of the two groups has opposing trends, indicating that the macroevolutionary size change is an active response to selection pressure rather than a passive response to changes in diversity. The changes in the median size of dinoflagellate cysts are highly correlated with both deep ocean temperatures and the thermal gradient between the surface and deep waters, indicating the magnitude and frequency of nutrient availability may have acted as a selective factor in the macroevolution of cell size in the plankton. Our results suggest that climate, because it affects stratification in the ocean, is a universal abiotic driver that has been responsible for macroevolutionary changes in the size structure of marine planktonic communities over the past 65 million years of Earth's history. PMID:18077334

  9. Controls on marine carbon fluxes via phytoplankton-mesoplankton interactions in continental shelf waters

    SciTech Connect

    Shapiro, L.; Sherr, B.F.; Sherr, E.B.

    1992-01-01

    The project is an in-depth evaluation of the phytoplankton [yields] phagotrophic protist trophic link. The principal goals of the first year are to develop methods for the second phase of the Ocean Margins Program: investigations in the field. Our project is focused on: impact of grazing by phagotrophic protists on phytoplankton; impact of grazing by phagotrophic protists on bacterioplankton; taxon-specific growth rates of phytoplankton in situ, as they are affected by phagotrophy rates.

  10. Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms.

    PubMed

    Halac, S R; Villafañe, V E; Gonçalves, R J; Helbling, E W

    2014-12-01

    We carried out experiments using long-term (5-7 days) exposure of marine phytoplankton species to solar radiation, in order to assess the joint effects of ultraviolet radiation (UVR) and temperature on the photochemical responses and photoprotective mechanisms. In the experiments, carried out at Atlantic coast of Patagonia (43°18.7'S; 65°2.5'W) in spring-summer 2011, we used three species as model organisms: the dinoflagellate Prorocentrum micans, the chlorophyte Dunaliella salina and the haptophyte Isochrysis galbana. They were exposed under: (1) two radiation quality treatments (by using different filters): P (PAR, >400 nm) and PAB (PAR+UV-A+UV-B, >280 nm); (2) two radiation intensities (100% and 50%) and (3) two experimental temperatures: 18 °C and 23 °C during summer and 15 °C and 20 °C in spring experiments, simulating a 5 °C increase under a scenario of climate change. In addition, short-term (4h) artificial radiation exposure experiments were implemented to study vertical migration of cells pre- and non-acclimated to solar radiation. We observed species-specific responses: P. micans displayed a better photochemical performance and a lower inhibition induced by UVR than D. salina and I. galbana. In accordance, P. micans was the only species that showed a synthesis of UV-absorbing compounds (UVACs) during the experiment. On the other hand, non-photochemical quenching (NPQ) was activated in D. salina at noon throughout the exposure, while I. galbana did not show a regular NPQ pattern. This mechanism was almost absent in P. micans. Regarding vertical migration, I. galbana showed the most pronounced displacement to deepest layers since the first two hours of exposure in pre- and non-acclimated cells, while only non-acclimated D. salina cells moved to depth at the end of the experiment. Finally, temperature partially counteracted solar radiation inhibition in D. salina and I. galbana, whereas no effect was observed upon P. micans. In particular, significant

  11. Competition of bloom-forming marine phytoplankton at low nutrient concentrations.

    PubMed

    Hu, Hanhua; Zhang, Jun; Chen, Weidong

    2011-01-01

    Competition of three bloom-forming marine phytoplankton (diatom Skeletonema costatum, and dinoflagellates Prorocentrum minimum and Alexandrium tamarense) was studied through a series of multispecies cultures with different nitrate (NaNO3) and phosphate (NaH2PO4) levels and excess silicate to interpret red tide algae succession. S. costatum outgrew the other two dinoflagellates in nitrate and phosphate replete cultures with 10 micromol/L Na2SiO3. Under nitrate limited (8.82 micromol/L NaNO3) conditions, the growth of S. costatum was also dominant when phosphate concentrations were from 3.6 to 108 micromol/L. Cell density of the two dinoflagellates only increased slightly, to less than 400 and 600 cells/mL, respectively. Cell density of S. costatum decreased with time before day 12, and then increased to 4000 cells/mL (1.5 mg/L dry biomass) at NaNO3 concentrations between 88.2 and 882 micromol/L with limited phosphate (0.36 micromol/L NaH2PO4) levels. In addition, P. minimum grew well with a maximal cell density of 1690-2100 cells/mL (0.5-0.6 mg/L dry biomass). Although S. costatum initially grew fast, its cell density decreased quickly with time later in the growth phase and the two dinoflagellates were dominant under the nitrate-limited and high nitrate conditions with limited phosphate. These results indicated that the diatom was a poor competitor compared to the two dinoflagellates under limited phosphate; however, it grew well under limited nitrate when growth of the dinoflagellates was near detection limits. PMID:21793409

  12. Effects of environmental stresses on the species composition of phytoplankton populations. Final report, 1 March 1979-15 July 1980

    SciTech Connect

    Ryther, J. H.; Sanders, J. G.

    1980-07-01

    Studies concerned with the impact of anthropogenic stress associated with coastally located power plants on the species composition of marine phytoplankton assemblages have been underway under this Contract for 24 months. The impact of three pollutants associated with power plant cooling water systems has been studied: copper, chlorine, and thermal elevation. The primary goal has been to determine whether chronic addition of these pollutants at sublethal levels can affect the species composition and the succession of dominant species in natural phytoplankton assemblages. Stresses have been studied both singly and in combination. In conjunction with these primary objectives, a number of related problems imvolving phytoplankton response to pollutants and to zooplankton grazing have been studied. These experiments have been performed both in the large volume enclosures outdoors, and in laboratory cultures under constant conditions.

  13. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer

    SciTech Connect

    Copping, A.E.; Lorenzen, C.J.

    1980-09-01

    Adult female and stage V Calanus pacificus were fed /sup 14/C-labeled phytoplankton in the laboratory in the form of monospecific cultures and natural populations. A carbon budget was constructed by following the /sup 14/C activity and the specific activity, over 48 h, in the phytoplankton, copepod, dissolved organic, dissolved inorganic, and fecal carbon compartments. The average incorporation of carbon into the copepod's body was 45% of the phytoplankton carbon available. Of the phytoplankton carbon, 27% appeared as dissolved organic carbon, 24% as dissolved inorganic carbon, and 3 to 4% in the form of fecal pellets. All of the tracer was recovered at the end of the experiments. The specific activity of the phytoplankton compartment was constant throughout each experiment. The other compartments had initial specific activities of zero, or close to zero, and increased throughout the experiment. In most experiments, the copepod specific activity equalled that of the phytoplankton at the end of 48 h, while the dissolved organic carbon, dissolved inorganic carbon, and fecal specific activities remained well below that of the phytoplankton.

  14. Impact of phytoplankton community structure and function on marine particulate optical properties

    NASA Astrophysics Data System (ADS)

    McFarland, Malcolm Neil

    Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural

  15. Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO[sub 2] concentration, pH, temperature, and species

    SciTech Connect

    Hinga, K.R.; Arthur, M.A.; Pilson, M.E.Q.; Whitaker, D. )

    1994-03-01

    Carbon isotopes are fractionated during many biological and geological processes and often one can infer the nature of the conditions and processes by looking at the isotopic ratios. This study investigates how dissolved carbon dioxide concentrations, temperature, pH, and phytoplankton species affect the fractionation of carbon isotopes during the growth of marine phytoplankton using single species cultures. 49 refs., 4 figs., 2 tabs.

  16. Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Nichols, Peter D; Whitman, William B; Aitken, Michael D

    2012-02-01

    A marine bacterium, designated strain MCTG13d, was isolated from a laboratory culture of the dinoflagellate Lingulodinium polyedrum CCAP1121/2 by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Porticoccus litoralis IMCC2115(T) (96.5%) and to members of the genera Microbulbifer (91.4 to 93.7%) and Marinimicrobium (90.4 to 92.0%). Phylogenetic trees showed that the strain clustered in a distinct phyletic line in the class Gammaproteobacteria for which P. litoralis is presently the sole cultured representative. The strain was strictly aerobic, rod shaped, Gram negative, and halophilic. Notably, it was able to utilize hydrocarbons as sole sources of carbon and energy, whereas sugars did not serve as growth substrates. The predominant isoprenoid quinone of strain MCTG13d was Q-8, and the dominant fatty acids were C(16:1ω7c), C(18:1ω7c), and C(16:0). DNA G+C content for the isolate was 54.9 ± 0.42 mol%. Quantitative PCR primers targeting the 16S rRNA gene of this strain showed that this organism was common in other laboratory cultures of marine phytoplankton. On the basis of phenotypic and genotypic characteristics, strain MCTG13d represents a novel species of Porticoccus, for which the name Porticoccus hydrocarbonoclasticus sp. nov. is proposed. The discovery of this highly specialized hydrocarbon-degrading bacterium living in association with marine phytoplankton suggests that phytoplankton represent a previously unrecognized biotope of novel bacterial taxa that degrade hydrocarbons in the ocean. PMID:22139001

  17. Porticoccus hydrocarbonoclasticus sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium Identified in Laboratory Cultures of Marine Phytoplankton

    PubMed Central

    Nichols, Peter D.; Whitman, William B.; Aitken, Michael D.

    2012-01-01

    A marine bacterium, designated strain MCTG13d, was isolated from a laboratory culture of the dinoflagellate Lingulodinium polyedrum CCAP1121/2 by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Porticoccus litoralis IMCC2115T (96.5%) and to members of the genera Microbulbifer (91.4 to 93.7%) and Marinimicrobium (90.4 to 92.0%). Phylogenetic trees showed that the strain clustered in a distinct phyletic line in the class Gammaproteobacteria for which P. litoralis is presently the sole cultured representative. The strain was strictly aerobic, rod shaped, Gram negative, and halophilic. Notably, it was able to utilize hydrocarbons as sole sources of carbon and energy, whereas sugars did not serve as growth substrates. The predominant isoprenoid quinone of strain MCTG13d was Q-8, and the dominant fatty acids were C16:1ω7c, C18:1ω7c, and C16:0. DNA G+C content for the isolate was 54.9 ± 0.42 mol%. Quantitative PCR primers targeting the 16S rRNA gene of this strain showed that this organism was common in other laboratory cultures of marine phytoplankton. On the basis of phenotypic and genotypic characteristics, strain MCTG13d represents a novel species of Porticoccus, for which the name Porticoccus hydrocarbonoclasticus sp. nov. is proposed. The discovery of this highly specialized hydrocarbon-degrading bacterium living in association with marine phytoplankton suggests that phytoplankton represent a previously unrecognized biotope of novel bacterial taxa that degrade hydrocarbons in the ocean. PMID:22139001

  18. Controls on marine carbon fluxes via phytoplankton-mesoplankton interactions in continental shelf waters

    SciTech Connect

    Shapiro, L.; Sherr, B.F.; Sherr, E.B.

    1992-01-01

    The principal goals of our projects were to develop methods for the second phase of the Ocean Margins Program: investigations in the field. Our project is focused on: (1) Impact of grazing by phagotrophic protists on phytoplankton, particularly on phototrophic cells < 5 [mu]m in size which are not effectively grazed by metazooplankton; the impact of grazing by phagotrophic protists on bacterioplankton; and the taxon-specific growth rates of phytoplankton in situ, as they are affected by phagotrophy rates.

  19. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.

    PubMed

    Lin, Junfang; Cao, Wenxi; Wang, Guifeng; Hu, Shuibo

    2013-06-20

    Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data. PMID:23842167

  20. Does the 14C method estimate net photosynthesis? II. Implications from cyclostat studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2014-09-01

    Two species of marine phytoplankton, Isochrysis galbana and Chlorella kessleri, were grown in a continuous culture system on a 12-h:12-h light:dark cycle of illumination under nitrate-limited growth conditions. At growth rates of ~1 d-1, production rates estimated from 14C uptake were not significantly different from production rates estimated from changes in particulate organic carbon (POC) and total organic carbon (TOC). At growth rates of ~0.35 d-1, however, production rates based on uptake of 14C significantly (p<0.05) overestimated production rates based on changes in POC and TOC in all cases for C. kessleri and after 24 h for I. galbana. The ratio of production based on 14C uptake to production based on changes in POC and TOC concentrations was in all cases higher after 24 h than after 12 h. The extent of overestimation after a 24-h incubation at ~0.35 d-1 was about 23 and 40% in the cases of I. galbana and C. kessleri, respectively. Dark respiration rates estimated from changes in 14C activity during the dark period were lower than the rates estimated from changes of POC and TOC concentrations during the 12 h of darkness because only about 73% of the carbon respired during the dark period had been fixed during the previous 12-h photoperiod. The fact that the 14C method tends to overestimate net carbon assimilation by a greater percentage at low growth rates than at high growth rates probably reflects the greater efficiency of intracellular recycling of respired CO2 at high growth rates. The fact that the extent of overestimation is greater when cells are grown on a light:dark cycle probably reflects the fact that not all carbon respired in the dark was fixed during the previous photoperiod and that intracellular recycling of respired CO2 during the photoperiod is inefficient during some phases of the synchronized growth that tends to be entrained by light:dark cycles.

  1. Marine phytoplankton temperature versus growth responses from polar to tropical waters--outcome of a scientific community-wide study.

    PubMed

    Boyd, Philip W; Rynearson, Tatiana A; Armstrong, Evelyn A; Fu, Feixue; Hayashi, Kendra; Hu, Zhangxi; Hutchins, David A; Kudela, Raphael M; Litchman, Elena; Mulholland, Margaret R; Passow, Uta; Strzepek, Robert F; Whittaker, Kerry A; Yu, Elizabeth; Thomas, Mridul K

    2013-01-01

    "It takes a village to finish (marine) science these days" Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling

  2. Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study

    PubMed Central

    Boyd, Philip W.; Rynearson, Tatiana A.; Armstrong, Evelyn A.; Fu, Feixue; Hayashi, Kendra; Hu, Zhangxi; Hutchins, David A.; Kudela, Raphael M.; Litchman, Elena; Mulholland, Margaret R.; Passow, Uta; Strzepek, Robert F.; Whittaker, Kerry A.; Yu, Elizabeth; Thomas, Mridul K.

    2013-01-01

    “It takes a village to finish (marine) science these days” Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling

  3. Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry.

    PubMed

    Miao, Ai-Jun; Wang, Wen-Xiong; Juneau, Philippe

    2005-10-01

    The toxic effects of Cd, Cu, and Zn on four different marine phytoplankton, Dunaliella tertiolecta, Prorocentrum minimum, Synechococcus sp., and Thalassiosira weissflogii, were examined by comparing the cell-specific growth rate, pulse-amplitude-modulated (PAM) parameters (maximum photosystem II quantum yield phiM and operational quantum yield phi'M, chlorophyll a content, and cellular metal concentration, over a 96-h period. The calculated no-observed-effect concentration (NOEC) based on both cell-specific growth rate and two PAM parameters (phiM and phi'M) were mostly identical. Thus, these PAM parameters and cell-specific growth rate were comparable in their sensitivities as the biomarkers for trace metal toxicity to marine phytoplankton. The cyanobacteria Synechococcus sp. was the most sensitive species among the four algal species tested because of its higher cell surface to volume ratio. The toxicity of the three tested metals followed the order of Cd > Cu > Zn based on the cellular metal concentration of the four algae at the NOEC. The cellular metal bioaccumulation followed the same Freundlich isotherm for each metal regardless of the algal species, indicating that the metal accumulation was a nonmetabolic process under high ambient metal concentrations and that the cell surface metal binding was comparable among the different species. For all the algae examined in our study, the bioaccumulation potentials of Cu and Zn were similar to each other, while the Cd bioaccumulation was much lower under environmentally realistic metal concentration. PMID:16268163

  4. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    PubMed Central

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  5. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton.

    PubMed

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-11-24

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  6. Astaxanthin production in marine pelagic copepods grazing on two different phytoplankton diets

    NASA Astrophysics Data System (ADS)

    Van Nieuwerburgh, Lies; Wänstrand, Ingrid; Liu, Jianguo; Snoeijs, Pauli

    2005-02-01

    The red carotenoid astaxanthin is a powerful natural antioxidant of great importance in aquatic food webs where it is abundant in eggs and body tissues of fish and crustaceans. Little is known about the impact of the phytoplankton diet on astaxanthin production in copepods, its major pelagic producers. We followed the transfer of carotenoids from phytoplankton to copepods in a mesocosm experiment on the northern Atlantic coast (Norway) and recorded the astaxanthin production in copepods. Wild copepods grazed on nutrient-manipulated phytoplankton blooms, which differed in community composition and nutrient status (nitrogen or silicate limitation). The copepod pigments consisted mainly of free astaxanthin and mono- and diesters of astaxanthin. We found no significant difference in astaxanthin production per copepod individual or per unit C depending on the phytoplankton community. However, in the mesocosms astaxanthin per unit C decreased compared with natural levels, probably through a lower demand for photoprotection by the copepods in the dense phytoplankton blooms. The total astaxanthin production per litre was higher in the silicate-limited mesocosms through increased copepod density. Pigment ratio comparisons suggested that the copepod diet here consisted more of diatoms than in the nitrogen-limited mesocosms. Silicate-saturated diatoms were less grazed, possibly because they could invest more in defence mechanisms against their predators. Our study suggests that the production of astaxanthin in aquatic systems can be affected by changes in nutrient dynamics mediated by phytoplankton community composition and copepod population growth. This bottom-up force may have implications for antioxidant protection at higher trophic levels in the food web.

  7. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    NASA Astrophysics Data System (ADS)

    Suffrian, K.; Simonelli, P.; Nejstgaard, J. C.; Putzeys, S.; Carotenuto, Y.; Antia, A. N.

    2008-01-01

    Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Phytoplankton and microzooplankton composition were determined by light microscopy. Despite a range up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. Thus, during the first 9 days of the experiment the algae community standing stock (SS), measured as chlorophyll a (Chl a), showed the highest instantaneous grow rates (0.02-0.99 d-1) and increased from ca 2-3 to 6-12 μg l-1, in all mesocosms. Afterwards the phytoplankton SS decreased in all mesocosms until the end of the experiment. The microzooplankton SS, that was mainly dinoflagellates and ciliates varied between 23 and 130 μg C l-1, peaking on day 13-15, apparently responding to the phytoplankton development. Instantaneous Chl a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (14-43% of the SS d-1) only in the pre-bloom phase when they were in low numbers and in the post-bloom phase when they were already limited by low nutrients and/or virus lysis. The cyanobacteria populations appeared more effected by microzooplankton grazing, generally removing 20-65% of the SS d-1.

  8. Rubisco is a small fraction of total protein in marine phytoplankton.

    PubMed

    Losh, Jenna L; Young, Jodi N; Morel, François M M

    2013-04-01

    Ribulose 1,5 bisphosphate carboxylase oxygenase (Rubisco) concentrations were quantified as a proportion of total protein in eight species of microalgae. This enzyme has been assumed to be a major fraction of total protein in phytoplankton, as has been demonstrated in plants, potentially constituting a large sink for cellular nitrogen. Representative microalgae were grown in batch and continuous cultures under nutrient-replete, nitrogen (N)-limited, or phosphorus (P)-limited conditions with varying CO(2). Quantitative Western blots were performed using commercially available global antibodies and protein standards. Field incubations with natural populations of organisms from the coast of California were conducted under both nutrient-replete and N-limited conditions with varying CO(2). In all experiments, Rubisco represented < 6% of total protein. In nutrient-replete exponentially growing batch cultures, concentrations ranged from 2% to 6%, while in nutrient-limited laboratory and field cultures, concentrations were < 2.5%. Rubisco generally decreased with increasing CO(2) and with decreasing growth rates. Based on a calculation of maximum Rubisco activity, these results suggest that phytoplankton contain the minimum concentration of enzyme necessary to support observed growth rates. Unlike in plants, Rubisco does not account for a major fraction of cellular N in phytoplankton. PMID:23343368

  9. Repercussions of salinity changes and osmotic stress in marine phytoplankton species

    NASA Astrophysics Data System (ADS)

    D'ors, A.; Bartolomé, M. C.; Sánchez-Fortún, S.

    2016-06-01

    The short-term effect of low salinity was studied using laboratory protocols on some coastal phytoplankton species such as chlorophycea Tetraselmis suecica, among diatom the strain Nitzschia N1c1 and dinoflagellates Alexandrium minutum and Prorocentrum lima. All of cultures were exposed to low salinities, and cell growth rate, photosynthetic quantum yield (ΦPSII), and gross photosynthesis (Pg) were analyzed. Growth rate inhibition was similar in all species, and all of them also tolerate short-term exposures to salinities in the range 5-35. There were no significant differences between ΦPSII and Pg endpoints from Tetraselmis suecica and Nitzschia sp., while Alexandrium minutum and Prorocentrum lima displayed a higher affectation rate on Pg than on ΦPSII activity. The influence of low salinity was higher on respiration in T. suecica, while both dinoflagellates had higher net photosynthesis. Nitzschia sp. exhibited similar involvement of the two photosynthetic parameters. Therefore, although the four phytoplankton monocultures studied are able to survive in internal areas of estuaries under low salinity conditions, the photosynthetic activity is more affected than the growth rate in all phytoplankton communities studied except in chlorophycea T. suecica, which has increased tolerance for this salinity decrease.

  10. Interrelated influence of iron, light and cell size on marine phytoplankton growth

    NASA Astrophysics Data System (ADS)

    Sunda, William G.; Huntsman, Susan A.

    1997-11-01

    The sub-optimal growth of phytoplankton and the resulting persistence of unutilized plant nutrients (nitrate and phosphate) in the surface waters of certain ocean regions has been a long-standing puzzle,. Of these regions, the Southern Ocean seems to play the greatest role in the global carbon cycle,, but controversy exists as to the dominant controls on net algal production. Limitation by iron deficiency,, light availability,, and grazing by zooplankton have been proposed. Here we present the results from culture experiments showing that the amount of cellular iron needed to support growth is higher under lower light intensities, owing to a greater requirement for photosynthetic iron-based redox proteins by low-light acclimatized algae. Moreover, algal iron uptake varies with cell surface area, such that the growth of small cells is favoured under iron limitation, as predicted theoretically. Phytoplankton growth can therefore be simultaneously limited by the availability of both iron and light. Such a co-limitation may be experienced by phytoplankton in iron-poor regions in which the surface mixed layer extends below the euphotic zone-as often occurs in the Southern Ocean,-or near the bottom of the euphotic zone in more stratified waters. By favouring the growth of smaller cells, iron/light co-limitation should increase grazing by microzooplankton, and thus minimize the loss of fixed carbon and nitrogen from surface waters in settling particles,.

  11. Calculated quantum yield of photosynthesis of phytoplankton in the Marine Light-Mixed Layers (59 deg N, 21 deg W)

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.

    1995-01-01

    The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.

  12. Ammonium Production off Central Chile (36°S) by Photodegradation of Phytoplankton-Derived and Marine Dissolved Organic Matter

    PubMed Central

    Rain-Franco, Angel; Muñoz, Claudia; Fernandez, Camila

    2014-01-01

    We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36°S). The mean penetration of solar radiation (Z1%) between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400–700 nm), UV-A (320–400 nm) and UV-B (280–320 nm), respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule) as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L−1 h−1 and a maximum rate of 1.49 µmol L−1 h−1. Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L−1 h−1. We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4+ assimilation, while rates obtained from natural samples could contribute to 50–178% of spring-summer phytoplankton NH4+ requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight. PMID:24968138

  13. Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO2 concentration, pH, temperature, and species

    NASA Astrophysics Data System (ADS)

    Hinga, Kenneth R.; Arthur, Michael A.; Pilson, Michael E. Q.; Whitaker, Dania

    1994-03-01

    Closed cultures of marine phytoplankton were established under variable conditions of CO2 concentration, temperature, growth rate (by light limitation), and pH (but with nearly identical [CO2aq]) in order to assess the relative influence of these variables on the extent of carbon isotope fractionation relative to dissolved inorganic carbon sources. Culture biomass was not allowed to increase beyond levels that would significantly affect the dissolved carbon system in the closed cultures. In experiments with Skeletonema costatum and Emiliania huxleyi, increasing CO2 concentrations led to increased carbon isotope discrimination (resulting in organic matter progressively depleted in δ13C, i.e., a greater, more negative ɛp). ɛp values for E. huxleyi were 8-10‰ less than for S. costatum under identical conditions. For the S. costatum cultures, there was nearly a 20 ‰ range in [CO2aq]-dependent ɛp. The effect was nonlinear with a leveling off at high [CO2aq]. Over a pH range of 7.5-8.3 but at a constant [CO2aq] there was a variation in carbon isotope fractionation by S. costatum of about 9 ‰ with a minimum at pH 7.8-7.9. There was a temperature effect of ˜8‰ on fractionation even after equilibrium temperature dependency of δ13C of CO2aq was taken into account. No growth rate effect was found for S. costatum over a modest range of growth rates. Culture experiments used to determine the carbon isotope fractionation by phytoplankton species must be conducted under well-defined conditions of temperature, pH, and CO2 concentrations. Hindcasts of ancient atmospheric pCO2 from measurements of δ13C of organic carbon in marine sediments will require careful calibration because of the variety of possible factors that influence δ13Corg.

  14. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    NASA Astrophysics Data System (ADS)

    Suffrian, K.; Simonelli, P.; Nejstgaard, J. C.; Putzeys, S.; Carotenuto, Y.; Antia, A. N.

    2008-08-01

    Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3 9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37 0.99 d-1) and increased from ca. 2 3 to 6 12 μg l-1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l-1 (corresponding to 1.9 and 10.8 μmol C l-1), peaking on day 13 15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12 43% of the standing stock d-1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20 65% of the standing stock per day.

  15. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes. PMID:23087039

  16. Polycyclovorans algicola gen. nov., sp. nov., an Aromatic-Hydrocarbon-Degrading Marine Bacterium Found Associated with Laboratory Cultures of Marine Phytoplankton

    PubMed Central

    Green, David H.; Nichols, Peter D.; Whitman, William B.; Semple, Kirk T.; Aitken, Michael D.

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C16:0, C16:1 ω7c, and C18:1 ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes. PMID:23087039

  17. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    PubMed Central

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  18. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    PubMed

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  19. MARINER 9 SPACE PROBE UNDERGOES FINAL CHECKS PRIOR TO ENCAPSULATION

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technicians make final checks of the Mariner I spacecraft prior to its encapsulation. The Mars- bound spacecraft lifted off aboard an Atlas-Centaur rocket from Cape Kennedy at 6:23 p.m. EDT, May 30, 1971. Following a flight of nearly six months, the spacecraft, designated Mariner 9, will enter orbit and transmit data about the Red Planet's surface and atmosphere.

  20. Genome Sequence of Polycyclovorans algicola Strain TG408, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton

    PubMed Central

    Thompson, Haydn F.; Angelova, Angelina; Whitman, William B.; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N.; Woyke, Tanja

    2015-01-01

    Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%. PMID:25814607

  1. Genome Sequence of Polycyclovorans algicola Strain TG408, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton.

    PubMed

    Gutierrez, Tony; Thompson, Haydn F; Angelova, Angelina; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2015-01-01

    Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%. PMID:25814607

  2. Genome Sequence of Porticoccus hydrocarbonoclasticus Strain MCTG13d, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton.

    PubMed

    Gutierrez, Tony; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2015-01-01

    Porticoccus hydrocarbonoclasticus strain MCTG13d is a recently discovered bacterium that is associated with marine eukaryotic phytoplankton and that almost exclusively utilizes polycyclic aromatic hydrocarbons (PAHs) as the sole source of carbon and energy. Here, we present the genome sequence of this strain, which is 2,474,654 bp with 2,385 genes and has an average G+C content of 53.1%. PMID:26089431

  3. Toxic and harmful marine phytoplankton and microalgae (HABs) in Mexican Coasts.

    PubMed

    Hernández-Becerril, David U; Alonso-Rodríguez, Rosalba; Alvarez-Góngora, Cynthia; Barón-Campis, Sofia A; Ceballos-Corona, Gerardo; Herrera-Silveira, Jorge; Meave Del Castillo, María E; Juárez-Ruíz, Norma; Merino-Virgilio, Fanny; Morales-Blake, Alejandro; Ochoa, José L; Orellana-Cepeda, Elizabeth; Ramírez-Camarena, Casimiro; Rodríguez-Salvador, Raciel

    2007-08-01

    Harmful Algal Blooms (HABs) are becoming an increasing problem to human health and environment (including effects on natural and cultured resources, tourism and ecosystems) all over the world. In Mexico a number of human fatalities and important economic losses have occurred in the last 30 years because of these events. There are about 70 species of planktonic and non-planktonic microalgae considered harmful in Mexican coasts. The most important toxin-producing species are the dinoflagellates Gymnodinium catenatum and Pyrodinium bahamense var. compressum, in the Mexican Pacific, and Karenia brevis in the Gulf of Mexico, and consequently the poisonings documented in Mexico are Paralytic Shellfish Poisoning (PSP) and Neurotoxic Shellfish Poisoning (NSP). Although there is evidence that Amnesic Shellfish Poisoning (ASP), Diarrhetic Shellfish Poisoning (DSP) and Ciguatera Fish Poisoning (CFP) also occur in Mexico, these problems are reported less frequently. The type of phytoplankton and epiphytic microalgae, their toxins and harmful effects as well as current methodology used to study these phenomena are presented in this paper. As an experienced group of workers, we include descriptions of monitoring and mitigation programs, our proposals for collaborative projects and perspectives on future research. PMID:17680474

  4. Exploring the ammonium and nitrate transport of marine phytoplankton with nutrient analogues

    SciTech Connect

    Balch, W.M.

    1985-01-01

    Radiolabelled methylamine, an ammonium analogue and chlorate, a nitrate analogue, were transported constitutely by laboratory and field populations of phytoplakton. There was no effect of light on the transport of methylamine or chlorate which is contrary to similar measurements made with /sup 15/N-NH/sub 4//sup +/ and /sup 15/N-NO/sub 3//sup -/. The discrepancy appears to result from the fact that the analogues are only transported, while /sup 15/N-NH/sub 4/ and /sup 15/N-NO/sub 3//sup -/ are both transported and assimilated. Transport of ammonium and nitrate appeared to be active; it was against typical values of algal electrochemical gradients. Influx and efflux rates of methylamine and chlorate were measured in pulse-chase experiments; efflux rates increased as intracellular pools filled and net uptake slowed after approximately one to six hours. The pulse-chase experiments indicated that methylamine and chlorate (hence ammonium and nitrate) were stored in two intracellular compartments of diatoms, probably the vacuole and cytoplasm. Laboratory and field experiments demonstrated that chlorate transport by phytoplankton was inhibited when ambient ammonium or nitrite concentrations were high.

  5. Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea.

    PubMed

    Hahnke, Richard L; Bennke, Christin M; Fuchs, Bernhard M; Mann, Alexander J; Rhiel, Erhard; Teeling, Hanno; Amann, Rudolf; Harder, Jens

    2015-10-01

    The roles of individual bacterioplankton species in the re-mineralization of algal biomass are poorly understood. Evidence from molecular data had indicated that a spring diatom bloom in the German Bight of the North Sea in 2009 was followed by a rapid succession of uncultivated bacterioplankton species, including members of the genera Ulvibacter, Formosa, Polaribacter (class Flavobacteria) and Reinekea (class Gammaproteobacteria). We isolated strains from the same site during the diatom bloom in spring 2010 using dilution cultivation in an artificial seawater medium with micromolar substrate and nutrient concentrations. Flow cytometry demonstrated growth from single cells to densities of 10(4) -10(6) cells ml(-1) and a culturability of 35%. Novel Formosa, Polaribacter and Reinekea strains were isolated and had 16S rRNA gene sequence identities of > 99.8% with bacterioplankton in spring or summer 2009. Genomes of selected isolates were draft sequenced and used for read recruitment of metagenomes from bacterioplankton in 2009. Metagenome reads covered 93% of a Formosa clade B, 91% of a Reinekea and 74% of a Formosa clade A genome, applying a ≥ 94.5% nucleotide identity threshold. These novel strains represent abundant bacterioplankton species thriving on coastal phytoplankton blooms in the North Sea. PMID:24725270

  6. Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton

    PubMed Central

    Flynn, K. J.; Fasham, M. J. R.; Hipkin, C. R.

    1997-01-01

    An empirically based mathematical model is presented which can simulate the major features of the interactions between ammonium and nitrate transport and assimilation in phytoplankton. The model (ammonium-nitrate interaction model), which is configured to simulate a generic microalga rather than a specified species, is constructed on simplified biochemical bases. A major requirement for parametrization is that the N:C ratio of the algae must be known and that transport and internal pool sizes need to be expressed per unit of cell C. The model uses the size of an internal pool of an early organic product of N assimilation (glutamine) to regulate rapid responses in ammonium-nitrate interactions. The synthesis of enzymes for the reduction of nitrate through to ammonium is induced by the size of the internal nitrate pool and repressed by the size of the glutamine pool. The assimilation of intracellular ammonium (into glutamine) is considered to be a constitutive process subjected to regulation by the size of the glutamine pool. Longer term responses have been linked to the nutrient history of the cell using the N:C cell quota. N assimilation in darkness is made a function of the amount of surplus C present and thus only occurs at low values of N:C. The model can simulate both qualitative and quantitative temporal shifts in the ammonium-nitrate interaction, while inclusion of a derivation of the standard quota model enables a concurrent simulation of cell growth and changes in nutrient status.

  7. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay.

    PubMed

    Ahner, B A; Price, N M; Morel, F M

    1994-08-30

    Phytochelatins are small metal-binding polypeptides synthesized by algae in response to high metal concentrations. Using a very sensitive HPLC method, we have quantified phytochelatins from phytoplankton in laboratory cultures at environmentally relevant metal concentrations and in marine field samples. Intracellular concentrations of phytochelatin, in the diatom Thalassiosira weissflogii, exhibit a distinct dose-response relation with free Cd2+ concentration in the medium--not with total Cd(2+)--and are detectable even when the free Cd2+ concentration is less than 1 pM. In Massachusetts Bay, phytochelatin levels (normalized to chlorophyll a) in the particulate fraction are similar to those measured in laboratory cultures exposed to picomolar free Cd2+ concentrations and exhibit a decreasing seaward trend. Incubations of natural samples with added Cd2+ confirmed the induction of the peptides by this metal. Ambient phytochelatin concentrations thus appear to provide a measure of the metal stress resulting from the complex mixture of trace metals and chelators in natural waters. PMID:8078899

  8. Controls on marine carbon fluxes via phytoplankton-mesoplankton interactions in continental shelf waters. Six month progress report

    SciTech Connect

    Shapiro, L.; Sherr, B.F.; Sherr, E.B.

    1992-12-31

    The project is an in-depth evaluation of the phytoplankton {yields} phagotrophic protist trophic link. The principal goals of the first year are to develop methods for the second phase of the Ocean Margins Program: investigations in the field. Our project is focused on: impact of grazing by phagotrophic protists on phytoplankton; impact of grazing by phagotrophic protists on bacterioplankton; taxon-specific growth rates of phytoplankton in situ, as they are affected by phagotrophy rates.

  9. Response of phytoplankton and dissolved oxygen and related marine ecological parameters to typhoon tropical cyclone in the oceans

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    from the Western Pacific to the SCS via the intrusion of Kuroshio waters. After a series studies, taking full advantage of remote sensing technology and multiple satellite data, we proposed the theoretical system of “wind driven upper ocean- phytoplankton blooms -enhancing primary production”, and suggest an interdisciplinary “Remote Sensing Marine Ecology. Related paper can be fund from http://lingzis.51.net/journal%20article.htm.

  10. Characterization of a nitrogen-regulated protein identified by cell surface biotinylation of a marine phytoplankton

    SciTech Connect

    Palenik, B.; Koke, J.A.

    1995-09-01

    The biotinylating reagent succinimidyl 6-(biotinamido) hexanoate was used to label the cell surfaces of the cosmopolitan, marine, eukaryotic microorganism Emiliania huxleyi under different growth conditions. Proteins characteristic of different nutrient conditions could be identified. In particular, a nitrogen-regulated protein, nrp1, has an 82-kDa subunit that is present under nitrogen limitation and during growth on urea. It is absent under phosphate limitation or during exponential growth on nitrate or ammonia. nrp1 is the major membrane or wall protein in nitrogen-limited cells and is found in several strains of E. huxleyi. It may be a useful biomarker for examining the physiological state of E. huxleyi cells in their environment. 35 refs., 4 figs.

  11. Beam-folding ultraviolet-visible Fourier transform spectrometry and underwater cytometry for in situ measurement of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Wang, Xuzhu

    itself insensitive to these fluctuations. In addition, an attempt on fast-scanning visible IFTS based on the improved beam-folding technique was done. Preliminary experimental results demonstrated the feasibility of the fast-scanning visible IFTS based on the improved beam-folding technique. In part two, an underwater cytometer for in situ measurement of marine phytoplankton using a combining technique of laser-induced fluorescence (LIF) and laser differential Doppler velocimetry (LDDV) was developed. The advancement compared to the previous work done in the laboratory is to realize an in situ underwater measurement system by means of improving the optical design. The experimental results in June and August 2004 in the coastal area of Hong Kong demonstrated that the new cytometer can be used for in situ measurement of marine phytoplankton. The mean concentration detected by this instrument agreed closely with the experimental data measured by the traditional cell counting under a microscope. With an underwater optical sensing unit that does not rely on an electrical power source, the sensing unit can stay submerged underwater for long periods, making a long-term real-time monitoring system possible.

  12. [Simultaneous determination and screening of five pigments in marine phytoplanktons by high performance liquid chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zheng, Liyang; Chen, Juanjuan; Xu, Jilin; Zhou, Chengxu; Yan, Xiaojun

    2014-09-01

    A quantitative method based on high performance liquid chromatography coupled with electrospray ionization tandem triple-quadrupole mass spectrometry (HPLC-ESI-QqQ-MS) has been established for five pigments in marine phytoplanktons. The HPLC method used ternary solvent systems and a reversed-phase C16-amide column. In addition, methanol, acetonitrile and aqueous ammonium acetate were used as mobile phases. Five pigments (chlorophyll a, chlorophyll b, β, β-carotene, lutein and fucoxanthin) were quantified in selective reaction mode. As results, good linear relationships were achieved between the concentrations and the peak areas of the five pigment standards. And their correlation coefficients (r2) were higher than 0.996. The recoveries of the pigment standards were between 82.77% and 99.83%. The inter-day and intra-day precisions were lower than 5% (n = 5). The detection limits of the pigments for this method were between 0.02 and 0.16 μg/L and the quantification limits were in the range from 0.06 to 0.54 μg/L. According to the above method, eleven algae (Heterosigma akashiwo (NMBRah03-2), Heterosigma akashiwo (NMBRah03-2-2), Karlodinium veneficum (NMBjah047-1), Prorocentrum minimum ( NMBjah042), Nannochloropsis oceanic (NMBluh014), Chlorella pyrenoidosa (NMBluh015-1), Pleurochrysis sp. (NMBjih026-1), Prymnesium sp. (NMBjih029), Skeletonema costatum (NMBguh004-1), Thalassiosira weiss- flogii (NMBguh021) and Thalassiosira pseudonana) (NMBguh005)) have been investigated for comparing the pigment distributions. The method is sensitive, accurate, reproducible, and useful for the study of alga compositions. PMID:25752094

  13. Cadmium: A toxin and a nutrient for marine phytoplankton. Doctoral thesis

    SciTech Connect

    Lee, J.G.

    1995-06-01

    Although cadmium is known to be very toxic, it exhibits nutrient-like vertical concentration profiles in the open ocean. Cadmium enhances the growth of the marine diatom Thalassiosira weissflogii, a chlorophyte and some prymnesiophytes at inorganic zinc and cadmium concentrations typical of surface seawater. Detailed studies of T. weissflogii show that cadmium is also regulated like a nutrient over a wide range of external inorganic cadmium (5-500pM) and inorganic zinc (2-16pM) concentrations. The cellular cadmium concentration is maintained at relatively constant levels both through uptake and, at high inorganic cadmium concentrations (5nM), export of cadmium, most likely complexed to the metal-binding polypeptide phytochelatin. Cadmium may play an essential role in carbon uptake under conditions of zinc limitation. The same low level of inorganic cadmium that enhances the growth of T. weissflogii restores the activity of carbonic anhydrase, thought to be the key enzyme limiting growth at low zinc. Cadmium coelutes with a least one of the multiple isoforms of carbonic anhydrase produced by T. weissfiogii and covaries with activity of this isoform. The substitution of cadmium for zinc in carbonic anhydrase links the geochemical cycle of cadmium to those of zinc and carbon.

  14. Analysis of sea ice and phytoplankton biomarkers in marine sediments from the Nordic Seas - a calibration study

    NASA Astrophysics Data System (ADS)

    Navarro Rodriguez, A.; Cabedo Sanz, P.; Belt, S.; Brown, T.; Knies, J.; Husum, K.; Giraudeau, J.

    2012-04-01

    The work presented here is part of the Changing Arctic and SubArctic Environment program (EU CASE) which is an Initial Training Network (ITN) on climate change and marine environment and is an interdisciplinary project focussing on biological proxies. One of these proxies is the sea ice diatom biomarker IP25 which is a highly branched isoprenoid (HBI) alkene synthesised by some Arctic sea-ice diatoms and has been shown to be a specific, stable and sensitive proxy measure of Arctic sea ice when detected in underlying sediments (Belt et al., 2007). The current study focuses on two key elements: (1) An analytical calibration of IP25 isolated from marine sediments and purified using a range of chromatographic methods was conducted in order to improve the quantification of this biomarker in sediment extracts. (2) Analysis of >30 near-surface sediments from the Nordic Seas was carried out to quantify biomarkers previously suggested as indicators of open-water phytoplankton (brassicasterol) (Müller et al., 2011) and sea-ice (IP25) conditions (Belt et al., 2010). The outcomes of the biomarker analyses were used to make comparisons between proxy data and known sea ice conditions in the study area derived from satellite record over the last 20 years. The results of this study should inform longer timescale reconstructions of sea ice conditions in the Nordic sea in the future. Belt, S.T., Massé, G., Rowland. S.J., Poulin. M., Michel. C., LeBlanc. B., (2007). A novel chemical fossil of palaeo sea ice : IP25 . Organic Geochemistry 38 (16-27). Belt, S. T., Vare, L. L., Massé, G., Manners, H. R., Price, J. C., MacLachlan, S. E., Andrews, J. T. & Schmidt, S. (2010) 'Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years', Quaternary Science Reviews, 29 (25-26), pp. 3489-3504. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., & Lohmann, G. (2011). Towards quantitative sea ice

  15. Control of trace element toxicity in Chesapeake Bay by dominant phytoplankton. Final report

    SciTech Connect

    Sanders, J.G.; Riedel, G.F.; Connell, D.B.; Ferrier, D.P.

    1992-02-01

    Copper (Cu) and arsenic (As), but not chromium (Cr), underwent large changes in chemical form during the development and senescence of natural phytoplankton blooms. In general, the percentage of organically-associated Cu was lowest during periods of rapid cell growth and highest during periods of cell decline or periods of dominance by red tide-forming dinoflagellates, a pattern tied to periods of release of organic compounds during either bloom senescence or during unusual algal blooms. Chromium, in contrast, was unreactive. The end result of biological mediation of both As and Cu was to increase the proportion of the element present in a less toxic form, at least to phytoplankton, thus affecting the potential toxicity of either element to a natural ecosystem. The results of the project provide a framework for the construction of general predictive models of likely trace element behavior in productive ecosystems and provide a conceptual theory of how such toxic contaminants may affect ecosystem structure and food webs within Chesapeake Bay. Predictive models of ecosystem impact will require further experimentation with multi-trophic level food chains.

  16. Controls on marine carbon fluxes via phytoplankton-mesoplankton interactions in continental shelf waters. Progress report, December 1992

    SciTech Connect

    Shapiro, L.; Sherr, B.F.; Sherr, E.B.

    1992-12-31

    The principal goals of our projects were to develop methods for the second phase of the Ocean Margins Program: investigations in the field. Our project is focused on: (1) Impact of grazing by phagotrophic protists on phytoplankton, particularly on phototrophic cells < 5 {mu}m in size which are not effectively grazed by metazooplankton; the impact of grazing by phagotrophic protists on bacterioplankton; and the taxon-specific growth rates of phytoplankton in situ, as they are affected by phagotrophy rates.

  17. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2013-12-01

    We carried out batch culture studies with seven species of marine phytoplankton and chemostat studies with two of the seven species to determine whether and to what extent 14C uptake approximated net photosynthesis. In two of seven cases, Isochrysis galbana and Dunaliella tertiolecta, cells uniformly labeled with 14C lost no activity when they were transferred to a 14C-free medium and allowed to grow in the light. In similar experiments with four other species, uniformly labeled cells lost activity when incubated in the light, but the loss rates were only a few percent per day. Thus these six species appear to respire primarily recently fixed carbon. In the case of the remaining species, Chlorella kessleri, loss rates of 14C in the light from uniformly labeled cells were about 29% per day, the apparent ratio of respiration to net photosynthesis being 0.4. Follow-up chemostat studies with I. galbana and C. kessleri grown under both light- and nitrate-limited conditions produced results consistent with the implications of the batch culture work: uptake of 14C by I. galbana after incubations of 24 h yielded estimates of photosynthetic carbon fixation equal to the product of the chemostat dilution rate and the concentration of organic carbon in the growth chamber. Similar experiments with C. kessleri produced 14C-based estimates of photosynthetic carbon fixation that exceeded the net rates of organic carbon production in the growth chamber by roughly 55%. Time-course studies with both species indicated that at high growth rates recently fixed carbon began to enter the respiratory substrate pool after a time lag of several hours, a result consistent with previous work with D. tertiolecta. The lag time appeared to be much shorter at low growth rates. The results with C. kessleri are similar to results previously reported for Chlorella pyrenoidosa and Amphidium carteri. Collectively these results suggest that 14C uptake by species with relatively high ratios of

  18. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey.

    PubMed

    McGinn, Patrick J; Morel, François M M

    2008-05-01

    BLAST searches of expressed sequence tag libraries have revealed putative homologs of the archetypal diatom delta-carbonic anhydrase (CA) TWCA1 (for Thalassiosira weissflogii CA) in a broad range of eukaryotic phytoplankton including haptophytes, prasinophytes and dinoflagellates. Four putative homologs of TWCA1 are also reported and described from a search of the genomic sequence of Thalassiosira pseudonana and designated TWCA(Tp1-4). The delta-CA class is therefore more widely distributed in marine phytoplankton than previously thought. In particular, it is not restricted to the diatoms like the cadmium-containing enzyme, CDCA, seems to be (zeta-CA class). Zinc status strongly influences growth rate in marine diatoms. We observed a decrease in the specific growth rate of T. pseudonana from 2.1 to 1.3 day(-1) when the unchelated Zn concentration (Zn') was lowered from 20 to 5 pM. In the same cultures, we detected a drop in whole-cell CA activity of about 50% in the most Zn-limited cells that occurred simultaneously with a large downregulation of TWCA(Tp1), TWCA(Tp2) and CDCA(Tp) gene transcripts and protein. These three genes were also found to be strongly upregulated by low pCO(2) in a manner typical of many algal CA enzymes. We have also conducted field experiments in diatom-dominated natural phytoplankton assemblages sampled from Great Bay of the coast of New Jersey. We observed increased total CA activity in parallel with increased expression of homologous twca and cdca gene transcripts in water incubated at increasingly higher pH values. Immunoblot and transcript expression analyses demonstrated a clear upregulation of CDCA transcript and protein as incubation pH increased both in the lab and in the field indicating that this CA is expressed under a broad range of environmental conditions and not restricted to low pCO(2) and low Zn. PMID:18405334

  19. The effects of prolonged darkness on temperate and tropical marine phytoplankton, and their implications for ballast water risk management.

    PubMed

    Carney, K J; Delany, J E; Sawant, S; Mesbahi, E

    2011-06-01

    Phytoplankton assemblages from tropical (Goa) and temperate (UK) locations were exposed to a 28 day dark period, followed by a period of re-exposure to light. During this time phytoplankton survival and changes in nutrient concentrations were mapped. The tropical plankton water samples showed high nutrient levels after the dark period which were utilised by cells during the re-exposure period. UK experiments looked at the effect of three different water types on population recovery after the 28 day dark period, and differences due to seasonal effects. The population growth observed during the re-exposure period in the tropical population was comparable to that of the temperate population. Water type affected recovery and of the three tested media fresh seawater promoted the highest levels of growth. Seasonality had a significant influence on species survival. Understanding the effects of all these factors can aid the development of effective risk assessments in ballast water management. PMID:21489565

  20. Multidecadal Field Data Support Intimate Links between Phytoplankton Dynamics and PCB Concentrations in Marine Sediments and Biota.

    PubMed

    Everaert, Gert; De Laender, Frederik; Goethals, Peter L M; Janssen, Colin R

    2015-07-21

    We analyzed three decades of field observations in the North Sea with additive models to infer spatiotemporal trends of chlorophyll a concentration, sediment organic carbon content, and polychlorinated biphenyls (PCBs) concentrations in mussels and sediments. By doing so, we separated long-term changes in PCB concentrations from seasonal variability. Using the inferred seasonal variability, we demonstrated that phytoplankton blooms in spring and autumn correspond to the annual maxima of the organic carbon content (r = 0.56; p = 0.004) and the PCB concentrations in sediments (r = 0.57; p = 0.004). Furthermore, we found a negative correlation between the PCB concentrations in sediments and in blue mussels (Mytilus edulis; r = -0.33, p = 0.012), which is probably related to the cleansing of the dissolved PCB phase driven by sinking organic matter during phytoplankton blooms and the filter-feeding behavior of the blue mussel. The present research demonstrates the role of seasonal phytoplankton dynamics in the environmental fate of PCBs at large spatiotemporal scales. PMID:26079074

  1. Phytoplankton excretion revisited: healthy cells may not do it, but how many cells are healthy? Final report

    SciTech Connect

    Wood, A.M.

    1996-08-06

    The goal of this project was to develop fluorescent probes that could be used on a individual cell basis to determine the physiological condition of phytoplankton cells in the field. Progress gained and problems encounter are described.

  2. Photosynthetic response to temperature of marine phytoplankton along a latitudinal gradient (16°N to 74°N)

    NASA Astrophysics Data System (ADS)

    Li, W. K. W.

    1985-11-01

    Photosynthesis-temperature relationships for natural phytoplankton assemblages were established by measuring the uptake of H 14CO 3 in freshly collected seawater samples incubated for 2 h across a shipboard laboratory temperature gradient. The minimum, optimum and maximum temperatures for photosynthesis, as well as the extent of photosynthetic change per unit temperature change in the suboptimal range, all decreased from low to high latitude. The empirical mathematical model of RATKOWSKYet al. (1983, Journal of Bacteriology, 154, 1222-1226) provided a good fit to the data.

  3. The Carolina conference on marine biotechnology: Final technical report

    SciTech Connect

    Frankenberg, D.

    1985-01-01

    This report summarizes proceedings of a Carolina Conference on Marine Biotechnology held March 24-26, 1985, at the University of North Carolina at Chapel Hill. This report consists of the responders' summary of each topic discussed. The topics presented were General Prospects for Marine Biotechnology, Bioactive Substances from Marine Organisms, Fundamental Processes in Marine Organisms as Guides for Biotechnology Development, Genetic Manipulation of Potential Use to Mariculture, Organisms Interactions with Marine Surfaces: Marine Glues, and Biomolecular Engineering Materials Applications.

  4. Phytoplankton assemblages and lipid biomarkers indicate sea-surface warming and sea-ice decline in the Ross Sea during Marine Isotope sub-Stage 5e

    NASA Astrophysics Data System (ADS)

    Hartman, Julian D.; Sangiorgi, Francesca; Peterse, Francien; Barcena, Maria A.; Albertazzi, Sonia; Asioli, Alessandra; Giglio, Federico; Langone, Leonardo; Tateo, Fabio; Trincardi, Fabio

    2016-04-01

    The Marine Isotope sub-Stage 5e (~ 125 - 119 kyrs BP), the last interglacial period before the present, is believed to have been globally warmer (~ 2°C) than today. Studying this time interval might therefore provide insights into near future climate state given the ongoing climate change and global temperature increase. Of particular interest are the expected changes in polar ice cover. One important aspect of the cryosphere is sea-ice, which influences albedo, deep and surface water currents, and phytoplankton production, and thus affects the global climate system. To investigate whether changes in sea-ice cover occurred in the Southern Ocean close to Antarctica during Marine Isotope sub-Stage 5e dinoflagellate and diatom assemblages have been analyzed in core AS05-10, drilled in the continental slope off the Drygalski basin (Ross Sea) at a water depth of 2377 m. The core was drilled within the frame of the PNRA 2009/A2.01 project, an Italian project with a multidisciplinary approach, and covers the interval from Present to Marine Isotope Stage (MIS) 7. The core stratigraphy is based on diatom bioevents and on the climate cyclicity provided by the variations of the diatom assemblages. For this study we focused on the interval from MIS7 to MIS5. A strong reduction of sea-ice-loving diatom taxa with respect to open water-loving diatom taxa is observed during MIS5. In general the production of phytoplankton increases at the base of MIS5 and then slowly decreases. Dinoflagellate cysts, particularly heterotrophic species, are abundant during MIS5e only. The sea surface temperature reconstruction based on the TEX86L, a proxy based on lipid biomarkers produced by Thaumarcheota, shows a 4°C temperature increase from MIS6 to MIS5e. A slightly smaller temperature increase is observed at the onset of MIS7, but this stage is barren of heterotrophic dinoflagellates. All proxies together seem to indicate that the retreat of the summer sea-ice in the Ross Sea during MIS5e was

  5. Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

    SciTech Connect

    Wilde, E.W.; Johnson, M.A.; Cody, W.C.

    1996-12-31

    This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics.

  6. Natural resource response guide: Marine mammals. Final report

    SciTech Connect

    Not Available

    1989-01-01

    The Natural Resource Response Guides were developed for use by responders to oil and hazardous materials spills to determine the seasonal presence and activities of potential resources at risk and then to evaluate the probability and types of expected impacts to these resources. The set includes guides for Marine Fish, Marine Birds, Marine Mammals, and Marine Shellfish.

  7. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  8. State of Climate 2011 - Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; Yoder, J. A.

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  9. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms

    PubMed Central

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-01-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a “business-as-usual” emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m3 each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments. PMID:26601292

  10. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    PubMed

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments. PMID:26601292

  11. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: does cell size really matter?

    PubMed

    Ben Othman, Hiba; Leboulanger, Christophe; Le Floc'h, Emilie; Mabrouk, Hassine Hadj; Hlaili, Asma Sakka

    2012-12-01

    The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L(-1). The short-term (24h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 μg L(-1), respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 μg L(-1) for the picophytoplankton Picochlorum sp. to 418 μg L(-1) for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when there is a lack of ecotoxicological data on hazardous chemicals, especially in marine microorganisms. PMID:23122731

  12. Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass.

    PubMed

    Sarà, G; Lo Martire, M; Sanfilippo, M; Pulicanò, G; Cortese, G; Mazzola, A; Manganaro, A; Pusceddu, A

    2011-06-01

    While several studies point at off-shore aquaculture as a possible source of impacts on the local marine environment, very few have analysed its effects at large scales such as at the bay, gulf or basin levels. Similar analyses are hampered by the multiple sources of disturbance that may concomitantly affect a given area. The present paper addresses these issues taking the Gulf of Castellammare (Southern Tyrrhenian Sea) as an example. Nitrogen (N) and phosphorous (P) loads were calculated for the period 1970-2007, and compared to chlorophyll-a concentration as measured inside and outside the Gulf over the same period. Results indicate that N and P catchment loading has constantly decreased because of improved environmental management. Nevertheless, nutrient concentration in the Gulf has steadily increased since the establishment of aquaculture facilities in 1999. Chlorophyll-a concentration followed this trend, showing a marked increase from 2001 onwards. In the same period, chlorophyll-a concentrations measured inside and outside the Gulf have significantly diverged. As all the other possible causes can be ruled out, aquaculture remains the sole explanation for the observed situation. This paper demonstrates for the first time ever that off-shore aquaculture may affect the marine ecosystem well beyond the local scale and provides an additional element of concern to be kept into consideration when allocating oceans' space for new fish-farming activities. PMID:21427008

  13. Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels

    NASA Astrophysics Data System (ADS)

    Larsen, J. B.; Larsen, A.; Thyrhaug, R.; Bratbak, G.; Sandaa, R.-A.

    2008-04-01

    During the PeECE III mesocosm experiment in 2005 we investigated how the virioplankton community responded to increased levels of nutrients (N and P) and CO2. We applied a combination of flow cytometry, Pulsed Field Gel Electrophoresis and degenerate PCR primers to categorize and quantify individual viral populations, and to investigate their temporal dynamics. Species specific and degenerate primers enabled us to identify two specific large dsDNA viruses, EhV and CeV, infecting the haptophytes Emiliania huxleyi and Crysochromulina ericina, respectively. Some of the viral populations detected and enumerated by flow cytometry did not respond to altered CO2-levels, but the abundance of EhV and an unidentified dsDNA virus decreased with increasing CO2 levels. Our results thus indicate that CO2 conditions, or the related change in pH, may affect the marine pelagic food web at the viral level. Our results also demonstrate that in order to unravel ecological problems as how CO2 and nutrient levels affect the relationship between marine algal viruses and their hosts, we need to continue the effort to develop molecular markers used to identify both hosts and viruses.

  14. Marine viral populations detected during a nutrient induced phytoplankton bloom at elevated pCO2 levels

    NASA Astrophysics Data System (ADS)

    Larsen, J. B.; Larsen, A.; Thyrhaug, R.; Bratbak, G.; Sandaa, R.-A.

    2007-11-01

    During the PEeCE III mesocosm experiment in 2005 we investigated how the virioplankton community responded to increased levels of nutrients (N and P) and CO2. We applied a combination of flow cytometry, Pulsed Field Gel Electrophoresis and degenerated PCR primers to categorize and quantify individual viral populations, and to investigate their temporal dynamics. Species specific and degenerated primers enabled us to identify two specific large dsDNA viruses, EhV and CeV, infecting the haptophytes Emiliania huxleyi and Crysochromulina ericina, respectively. Some of the viral populations detected and enumerated by flow cytometry did not respond to altered CO2-levels, but the abundance of EhV and an unidentified dsDNA virus decreased with increasing CO2 levels. Our results thus indicate that CO2 conditions may affect the marine pelagic food web at the viral level. Our results also demonstrate that in order to unravel ecological problems as how CO2 and nutrient levels affect the relationship between marine algal viruses and their hosts, we need to continue the effort to develop molecular markers used to identify both hosts and viruses.

  15. Effects of noise on marine mammals: Executive Summary. Final report

    SciTech Connect

    Richardson, W.J.

    1991-02-01

    The report entitled 'Effects of Noise on Marine Mammals' by W.J. Richardson, C.R. Greene Jr., C.I. Malme and D.H. Thomson (OCS Study MMS 90-0093, LGL Report TA834-1), is a review of published and unpublished literature concerning the effects of manmade noise on marine mammals. Emphasis is given to underwater sounds, but airborne sounds are considered as well. Special attention is given to noise-emitting activities associated, directly or indirectly, with offshore hydrocarbon exploration and development, since that is a dominant interest of the U.S. Minerals Management Service, sponsor of the review. However, reactions of marine mammals to noise from all types of human activities are considered. Special attention is given to species of marine mammals and types of human activities that occur in waters around the United States. However, relevant literature from elsewhere is reviewed.

  16. MARINER 9 SPACE PROBE UNDERGOES FINAL CHECKS PRIOR TO ENCAPSULATION

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A technician checks the Mariner I spacecraft prior to its encapsulation for launch to Mars. An Atlas-Centaur rocket successfully launched the mars-bound spacecraft from Cape Kennedy at 6:23 p.m. EDT, May 30, 1971. Designated Mariner 9 following launch, the probe will arrive at Mars in mid-November. It will transmit scientific data about that planet's surface and atmosphere.

  17. High production of nitrous oxide (N2O), methane (CH4) and dimethylsulphoniopropionate (DMSP) in a massive marine phytoplankton culture

    NASA Astrophysics Data System (ADS)

    Florez-Leiva, L.; Tarifeño, E.; Cornejo, M.; Kiene, R.; Farías, L.

    2010-09-01

    The production of large amounts of algal biomass for different purposes such as aquaculture or biofuels, may cause impacts on the marine environment. One such impact is the production of radiatively active trace gases and aerosols with climate cooling (dimethyl sulfide DMS and its precursor DMSP) and warming (N2O and CH4) effects. Total and dissolved DMSP, N2O and CH4, together with other environmental variables were monitored daily for 46 days within a massive microalgae monoculture of Nannochloris (Chlorophyceae) in an open pond system. The growth of this green microalgae was stimulated by the addition of N- and P-rich salts, resulting in exponential growth (growth phase) during the first 17 days observed by cell abundance (1 × 106 to 4.4 × 106 cell mL-1) and Chl-a levels (from 1.4 to 96 mg Chl-a m-3) followed by a decrease in both Chl-a and cell abundance (senescence phase). Total DMSP (from 6.3 to 142 μmol m-3), dissolved DMSP i.e. 5.8 to 137 μmol m-3 and N2O (from 8 to 600 μmol m-3) abruptly peaked during the senescence phase, whereas CH4 steadily increased between 2 and 10 μmol m-3 during the growth phase. Different ratios between tracers and Chl-a during both phases reveal different biochemical processes involved in the cycling of these gases and tracers. Our results show that despite the consumption of large quantities of CO2 by the massive algal culture, a minor amount of DMS and huge amounts of greenhouse gases were produced, in particular N2O, which has a greater radiative effect per molecule than CO2. These findings have important implications for biogeochemical studies and for environmental management of aquaculture activities.

  18. An Improved DNA Extraction Method for Efficient and Quantitative Recovery of Phytoplankton Diversity in Natural Assemblages

    PubMed Central

    Yuan, Jian; Li, Meizhen; Lin, Senjie

    2015-01-01

    Marine phytoplankton are highly diverse with different species possessing different cell coverings, posing challenges for thoroughly breaking the cells in DNA extraction yet preserving DNA integrity. While quantitative molecular techniques have been increasingly used in phytoplankton research, an effective and simple method broadly applicable to different lineages and natural assemblages is still lacking. In this study, we developed a bead-beating protocol based on our previous experience and tested it against 9 species of phytoplankton representing different lineages and different cell covering rigidities. We found the bead-beating method enhanced the final yield of DNA (highest as 2 folds) in comparison with the non-bead-beating method, while also preserving the DNA integrity. When our method was applied to a field sample collected at a subtropical bay located in Xiamen, China, the resultant ITS clone library revealed a highly diverse assemblage of phytoplankton and other micro-eukaryotes, including Archaea, Amoebozoa, Chlorophyta, Ciliphora, Bacillariophyta, Dinophyta, Fungi, Metazoa, etc. The appearance of thecate dinoflagellates, thin-walled phytoplankton and “naked” unicellular organisms indicates that our method could obtain the intact DNA of organisms with different cell coverings. All the results demonstrate that our method is useful for DNA extraction of phytoplankton and environmental surveys of their diversity and abundance. PMID:26218575

  19. Techniques for Quantifying Phytoplankton Biodiversity

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Martiny, Adam C.

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools—such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization—have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  20. Commercial marine vessel contributions to emission inventories. Final report

    SciTech Connect

    Not Available

    1991-10-07

    The Clean Air Act Amendments of 1990 require the US Environmental Protection Agency (EPA) to conduct a survey of emissions from combustion engines associates with non-road vehicles and stationary sources. Among the emission source categories under scrutiny of the EPA are commercial marine vessels. This group of sources includes revenue vessels operated on US ports and waterways in such diverse pursuits as international and domestic trade, port and ship service, offshore and coastal industry, and passenger transport. For the purposes of the study, EPA is assessing commercial marine vessel operations at selected ports around the country which are characterized by a high level of commercial marine vessel activity. Booz-Allen has been retained by the EPA to assist in developing emission inventories from marine vessels for up to six ports, based on vessel arrival/departure data, are believed to exhibit high levels of marine generated emissions. Booz-Allen developed a listing of the top 20 major ports in terms of total vessel activity (as measured by annual tonnage of cargo and annual vessel calls).

  1. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol - Part 1: Source fluxes

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G.

    2010-10-01

    The effect of biogenic dissolved and colloidal organic matter on the production of submicron primary sea-spray aerosol was investigated via the simulation of bubble bursting in seawater enriched with phytoplankton-released organics. Seawater samples collected along a transect off the West African coast during the RHaMBLe cruise (RRS Discovery cruise D319), conducted as part of the SOLAS UK program, were analysed in order to identify the dominant oceanic algal species in a region of high biological activity. Cultures of microalgal strains representative of the species found in the collected seawater were grown in order to produce natural bioexudate. Colloidal plus dissolved organic fraction in this material remaining after <0.2 μm filtration was employed to prepare organic-enriched seawater proxies for the laboratory production of marine aerosol using a plunging-waterjet system as an aerosol generator. Submicron size distributions of aerosols generated from different organic monolayers and seawater proxies enriched with biogenic exudate were measured and compared with blanks performed with artificial seawater devoid of marine organics. A shift of the aerosol submicron size distribution toward smaller sizes and an increase in the production of particles with dry diameter (Dp0)<100 nm was repeatedly observed with increasing amounts of diatomaceous bioexudate in the seawater proxies used for aerosol generation. The effect was found to be sensitive to the organic carbon concentration in seawater and the algal exudate type. Diatomaceous exudate with organic carbon concentration (OC<0.2 μm) >175 μM was required to observe a significant impact on the size distribution, which implies that effects are expected to be substantial only in high biological activity areas abundant with diatom algal populations. The laboratory findings were in agreement with analogous bubble-bursting experiments conducted with unfiltered oceanic seawater collected during the RHaMBLe cruise

  2. Marine Education: Guidelines for Curriculum Development. Final Report.

    ERIC Educational Resources Information Center

    Olympus Research Corp., Boston, MA.

    This report describes the status of marine career education in the United States as of July 1975. The objectives of this work are: (1) to assess the current and future manpower needs, (2) to determine the extent of curriculum offerings, (3) to report the availability of relevant materials, (4) to describe the need for new program offerings, (5) to…

  3. The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Yuan, Sanling; Zhang, Tonghua

    2016-08-01

    The effect of toxin-producing phytoplankton and environmental stochasticity are interesting problems in marine plankton ecology. In this paper, we develop and analyze a stochastic phytoplankton allelopathy model, which takes both white and colored noises into account. We first prove the existence of the global positive solution of the model. And then by using the stochastic Lyapunov functions, we investigate the positive recurrence and ergodic property of the model, which implies the existence of a stationary distribution of the solution. Moreover, we obtain the mean and variance of the stationary distribution. Our results show that both the two kinds of environmental noises and toxic substances have great impacts on the evolution of the phytoplankton populations. Finally, numerical simulations are carried out to illustrate our theoretical results.

  4. Reticulate Evolution and Marine Organisms: The Final Frontier?

    PubMed Central

    Arnold, Michael L.; Fogarty, Nicole D.

    2009-01-01

    The role that reticulate evolution (i.e., via lateral transfer, viral recombination and/or introgressive hybridization) has played in the origin and adaptation of individual taxa and even entire clades continues to be tested for all domains of life. Though falsified for some groups, the hypothesis of divergence in the face of gene flow is becoming accepted as a major facilitator of evolutionary change for many microorganisms, plants and animals. Yet, the effect of reticulate evolutionary change in certain assemblages has been doubted, either due to an actual dearth of genetic exchange among the lineages belonging to these clades or because of a lack of appropriate data to test alternative hypotheses. Marine organisms represent such an assemblage. In the past half-century, some evolutionary biologists interested in the origin and trajectory of marine organisms, particularly animals, have posited that horizontal transfer, introgression and hybrid speciation have been rare. In this review, we provide examples of such genetic exchange that have come to light largely as a result of analyses of molecular markers. Comparisons among these markers and between these loci and morphological characters have provided numerous examples of marine microorganisms, plants and animals that possess the signature of mosaic genomes. PMID:19865522

  5. Phytoplankton niche generation by interspecific stoichiometric variation

    NASA Astrophysics Data System (ADS)

    GöThlich, L.; Oschlies, A.

    2012-06-01

    For marine biogeochemical models used in simulations of climate change scenarios, the ability to account for adaptability of marine ecosystems to environmental change becomes a concern. The potential for adaptation is expected to be larger for a diverse ecosystem compared to a monoculture of a single type of (model) algae, such as typically included in biogeochemical models. Recent attempts to simulate phytoplankton diversity in global marine ecosystem models display remarkable qualitative agreement with observed patterns of species distributions. However, modeled species diversity tends to be systematically lower than observed and, in many regions, is smaller than the number of potentially limiting nutrients. According to resource competition theory, the maximum number of coexisting species at equilibrium equals the number of limiting resources. By simulating phytoplankton communities in a chemostat model and in a global circulation model, we show here that a systematic underestimate of phytoplankton diversity may result from the standard modeling assumption of identical stoichiometry for the different phytoplankton types. Implementing stoichiometric variation among the different marine algae types in the models allows species to generate different resource supply niches via their own ecological impact. This is shown to increase the level of phytoplankton coexistence both in a chemostat model and in a global self-assembling ecosystem model.

  6. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  7. Fire safety of LPG in marine transportation. Final report

    SciTech Connect

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-06-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  8. Measuring Phytoplankton From Satellites

    NASA Technical Reports Server (NTRS)

    Davis, C. O.

    1989-01-01

    Present and future methods examined. Report reviews methods of calculating concentration of phytoplankton from satellite measurements of color of ocean and using such calculations to estimate productivity of phytoplankton.

  9. Phytoplankton and cloudiness in the Southern Ocean.

    PubMed

    Meskhidze, Nicholas; Nenes, Athanasios

    2006-12-01

    The effect of ocean biological productivity on marine clouds is explored over a large phytoplankton bloom in the Southern Ocean with the use of remotely sensed data. Cloud droplet number concentration over the bloom was twice what it was away from the bloom, and cloud effective radius was reduced by 30%. The resulting change in the short-wave radiative flux at the top of the atmosphere was -15 watts per square meter, comparable to the aerosol indirect effect over highly polluted regions. This observed impact of phytoplankton on clouds is attributed to changes in the size distribution and chemical composition of cloud condensation nuclei. We propose that secondary organic aerosol, formed from the oxidation of phytoplankton-produced isoprene, can affect chemical composition of marine cloud condensation nuclei and influence cloud droplet number. Model simulations support this hypothesis, indicating that 100% of the observed changes in cloud properties can be attributed to the isoprene secondary organic aerosol. PMID:17082422

  10. Research on the marine food chain. Final technical report

    SciTech Connect

    Eppley, R.W.

    1985-01-01

    This final report includes summaries of the Food Chain Research Group's extensive basic research in Southern California Bight waters and on planktonic organisms which are important components of the bight's pelagic food web. Additionally, the report conveys much of the information resulting from biological, chemical and physical oceanographic research by others active in the study of the pelagic realm of the Bight, especially that conducted during the last several decades. Hence, the book is intended to be a comprehensive description and analysis of the pelagic food web form and function in the Bight and of interactions between food web components and the environmental parameters affecting these. It is presented in a style intended to be informative to the layman as well as the scientist interested in the important coastal resources represented by the Southern California Bight.

  11. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis.

    PubMed

    Pichard, Scott L; Paul, John H

    1991-06-01

    A simple method that combines guanidinium isothiocyanate RNA extraction and probing with antisense and sense RNA probes is described for analysis of microbial gene expression in planktonic populations. Probing of RNA sample extracts with sense-strand RNA probes was used as a control for nonspecific hybridization or contamination of mRNA with target DNA. This method enabled detection of expression of a plasmid-encoded neomycin phosphotransferase gene (nptII) in as few as 10Vibrio cells per ml in 100 ml of seawater. We have used this method to detect expression of the ribulose-1,5-bisphosphate carboxylase large-subunit gene (rbcL) in Synechococcus cultures and natural phytoplankton populations in the Dry Tortugas, Florida. During a 36-h diel study, rbcL expression of the indigenous phytoplankton was greatest in the day, least at night (1100, 0300, and 0100 h), and variable at dawn or dusk (0700 and 1900 h). These results are the first report of gene expression in natural populations by mRNA isolation and probing. This methodology should be useful for the study of gene expression in microorganisms released into the environment for agricultural or bioremediation purposes and indigenous populations containing highly conserved target gene sequences. PMID:16348507

  12. Mix and match: how climate selects phytoplankton.

    PubMed

    Falkowski, Paul G; Oliver, Matthew J

    2007-10-01

    Climate strongly influences the distribution and diversity of animals and plants, but its affect on microbial communities is poorly understood. By using resource competition theory, fundamental physical principles and the fossil record we review how climate selects marine eukaryotic phytoplankton taxa. We suggest that climate determines the equator-to-pole and continent-to-land thermal gradients that provide energy for the wind-driven turbulent mixing in the upper ocean. This mixing, in turn, controls the nutrient fluxes that determine cell size and taxa-level distributions. Understanding this chain of linked processes will allow informed predictions to be made about how phytoplankton communities will change in the future. PMID:17853908

  13. Production of volatile organohalogens by phytoplankton cultures

    SciTech Connect

    Tokarczyk, R.; Moore, R.M. )

    1994-02-15

    The authors report on laboratory experiments which have demonstrated that types of unialgal cultures of marine phytoplankton can produce a range of halocarbons, including CHBr[sub 3], CHBr[sub 2]Cl, CH[sub 2]Br[sub 2]. In the laboratory environment the production rate is shown to be dependent upon the species of phytoplankton, and the development stage. Such volatile halocarbons, coming from natural sources in the seas, are thought to be important sources of reactive halogens in the troposphere, and perhaps even in the stratosphere, if the compounds are stable enough.

  14. Temperature effects on phytoplankton diversity - The zooplankton link

    NASA Astrophysics Data System (ADS)

    Lewandowska, Aleksandra M.; Hillebrand, Helmut; Lengfellner, Kathrin; Sommer, Ulrich

    2014-01-01

    Recent climate warming is expected to affect phytoplankton biomass and diversity in marine ecosystems. Temperature can act directly on phytoplankton (e.g. rendering physiological processes) or indirectly due to changes in zooplankton grazing activity. We tested experimentally the impact of increased temperature on natural phytoplankton and zooplankton communities using indoor mesocosms and combined the results from different experimental years applying a meta-analytic approach. We divided our analysis into three bloom phases to define the strength of temperature and zooplankton impacts on phytoplankton in different stages of bloom development. Within the constraints of an experiment, our results suggest that increased temperature and zooplankton grazing have similar effects on phytoplankton diversity, which are most apparent in the post-bloom phase, when zooplankton abundances reach the highest values. Moreover, we observed changes in zooplankton composition in response to warming and initial conditions, which can additionally affect phytoplankton diversity, because changing feeding preferences of zooplankton can affect phytoplankton community structure. We conclude that phytoplankton diversity is indirectly affected by temperature in the post-bloom phase through changing zooplankton composition and grazing activities. Before and during the bloom, however, these effects seem to be overruled by temperature enhanced bottom-up processes such as phytoplankton nutrient uptake.

  15. Microflow Cytometer for optical analysis of phytoplankton.

    PubMed

    Hashemi, Nastaran; Erickson, Jeffrey S; Golden, Joel P; Jackson, Kirsten M; Ligler, Frances S

    2011-07-15

    Analysis of the intrinsic fluorescence profiles of individual marine algae can be used in general classification of organisms based on cell size and fluorescence properties. We describe the design and fabrication of a Microflow Cytometer on a chip for characterization of phytoplankton. The Microflow Cytometer measured distinct side scatter and fluorescence properties of Synechococcus sp., Nitzschia d., and Thalassiosira p.; measurements were confirmed using the benchtop Accuri C6 flow cytometer. The Microflow Cytometer proved sensitive enough to detect and characterize picoplankton with diameter approximately 1 μm and larger phytoplankton of up to 80 μm in length. The wide range in size discrimination coupled with detection of intrinsic fluorescent pigments suggests that this Microflow Cytometer will be able to distinguish different populations of phytoplankton on unmanned underwater vehicles. PMID:21601442

  16. Evolutionary inheritance of elemental stoichiometry in phytoplankton

    PubMed Central

    Quigg, Antonietta; Irwin, Andrew J.; Finkel, Zoe V.

    2011-01-01

    The elemental composition of phytoplankton is a fusion of the evolutionary history of the host and plastid, resulting in differences in genetic constraints and selection pressures associated with environmental conditions. The evolutionary inheritance hypothesis predicts similarities in elemental composition within related taxonomic lineages of phytoplankton. To test this hypothesis, we measured the elemental composition (C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd and Mo) of 14 phytoplankton species and combined these with published data from 15 more species from both marine and freshwater environments grown under nutrient-replete conditions. The largest differences in the elemental profiles of the species distinguish between the prokaryotic Cyanophyta and primary endosymbiotic events that resulted in the green and red plastid lineages. Smaller differences in trace element stoichiometry within the red and green plastid lineages are consistent with changes in trace elemental stoichiometry owing to the processes associated with secondary endosymbioses and inheritance by descent with modification. PMID:20826483

  17. The evolution of modern eukaryotic phytoplankton.

    PubMed

    Falkowski, Paul G; Katz, Miriam E; Knoll, Andrew H; Quigg, Antonietta; Raven, John A; Schofield, Oscar; Taylor, F J R

    2004-07-16

    The community structure and ecological function of contemporary marine ecosystems are critically dependent on eukaryotic phytoplankton. Although numerically inferior to cyanobacteria, these organisms are responsible for the majority of the flux of organic matter to higher trophic levels and the ocean interior. Photosynthetic eukaryotes evolved more than 1.5 billion years ago in the Proterozoic oceans. However, it was not until the Mesozoic Era (251 to 65 million years ago) that the three principal phytoplankton clades that would come to dominate the modern seas rose to ecological prominence. In contrast to their pioneering predecessors, the dinoflagellates, coccolithophores, and diatoms all contain plastids derived from an ancestral red alga by secondary symbiosis. Here we examine the geological, geochemical, and biological processes that contributed to the rise of these three, distantly related, phytoplankton groups. PMID:15256663

  18. Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes.

    PubMed

    Roy, Suzanne; Mohovic, Bruna; Gianesella, Sônia M F; Schloss, Irene; Ferrario, Martha; Demers, Serge

    2006-01-01

    A series of three outdoor mesocosm experiments was undertaken in Rimouski (Canada), Ubatuba (Brazil) and Ushuaia (southern Argentina) to examine the effects of lamp-enhanced UV-B (280-320 nm) on phytoplankton communities isolated from seawater at each site. Detailed pigment composition was used to identify these communities. Each experiment compared three replicated UV-B treatments, consisting of natural sunlight conditions (NUVB), low-level UV-B enhancement corresponding to local 30% ozone depletion (LUVB) and high-level enhancement corresponding to 60% ozone depletion (HUVB). Each mesocosm (ca 2 m deep) was mixed continuously (turnover time, ca 1.3 h) and samples were obtained daily over 7-10 days. In Rimouski a large diatom bloom occurred during the first week. Repeated-measures analysis of variance (RM-ANOVA), with time as the repeated factor, showed slight but statistically significant increases in the chlorophyll (Chl) a level with the HUVB treatment, which were especially obvious over the last 3 days of the experiment. A large decrease in grazers (ciliates) that was observed concurrently with this treatment is the most likely explanation for the increase in Chl a level. The lack of negative effect on algal biomass by enhanced UV-B is attributed to the mixing inside the mesocosms and to the relatively low UV-B penetration. In Ubatuba levels of most pigments decreased over time, particularly fucoxanthin, Chl c3 and alloxanthin. The RM-ANOVA showed no effect of the UV-B treatments, except for Chl c3, which had significantly lower concentrations under natural UVB conditions, indicating that enhanced UV-B directly or indirectly favored Chl c3 algae (likely prymnesiophytes). Although particulate organic carbon concentration was significantly larger during HUVB treatment than during the other treatments, Chl a was unaffected, suggesting that enhanced UV-B favored heterotrophs. Lack of algal growth during this experiment was attributed to low nutrient concentrations

  19. Assessment of chronic toxicity of petroleum and produced water components to marine organisms. Final technical summary

    SciTech Connect

    Cherr, G.N.; Higashi, R.M.; Shenker, J.M.

    1993-05-31

    The objectives of the report were: (1) to determine the effects of produced water exposure in early life stages of marine plants and animals, at the cellular, subcellular, and physiological levels; (2) to determine the effects of produced water exposure on reproduction in marine organisms; and (3) to develop non-invasive approaches for assessing reproductive impairment. The effects of produced water (PW) was assessed on development in three ecologically and economically important species, the purple sea urchin (Strongylocentrotus purpuratus), the giant kelp (macrocystis pyrifera), and tsahe California mussel (Mytilus califonrnianus). To determine the basis for effects of PW on these developing organisms, some fundamental studies were prerequisite. Furthermore, eggs and embryos from adults which were outplanted near the discharge were also studied. Finally, the biochemical response of embryos to PW was also defined.

  20. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.

    PubMed

    Le Faucheur, Séverine; Campbell, Peter G C; Fortin, Claude; Slaveykova, Vera I

    2014-06-01

    The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems. PMID:24127330

  1. Environmental effects of marine energy development around the world. Annex IV Final Report

    SciTech Connect

    Copping, Andrea; Hanna, Luke; Whiting, Johnathan; Geerlofs, Simon; Grear, Molly; Blake, Kara ); Coffey, Anna; Massaua, Meghan; Brown-Saracino, Jocelyn; Battey, Hoyt )

    2013-01-15

    Annex IV is an international collaborative project to examine the environmental effects of marine energy devices among countries through the International Energy Agency’s Ocean Energy Systems Initiative (OES). The U.S. Department of Energy (DOE) serves as the Operating Agent for the Annex, in partnership with the Bureau of Ocean Energy Management (BOEM; formerly the Minerals Management Service), the Federal Energy Regulatory Commission (FERC), and National Oceanographic and Atmospheric Administration (NOAA). Numerous ocean energy technologies and devices are being developed around the world, and the few data that exist about the environmental effects of these technologies are dispersed among countries and developers. The purpose of Annex IV is to facilitate efficient government oversight of the development of ocean energy systems by compiling and disseminating information about the potential environmental effects of marine energy technologies and to identify methods of monitoring for these effects. Beginning in 2010, this three-year effort produced a publicly available searchable online database of environmental effects information (Tethys). It houses scientific literature pertaining to the environmental effects of marine energy systems, as well as metadata on international ocean energy projects and research studies. Two experts’ workshops were held in Dublin, Ireland (September 2010 and October 2012) to engage with international researchers, developers, and regulators on the scope and outcomes of the Annex IV project. Metadata and information stored in the Tethys database and feedback obtained from the two experts’ workshops were used as resources in the development of this report. This Annex IV final report contains three case studies of specific interactions of marine energy devices with the marine environment that survey, compile, and analyze the best available information in one coherent location. These case studies address 1) the physical interactions

  2. Sea Soup: Phytoplankton.

    ERIC Educational Resources Information Center

    Cerullo, Mary M.

    This guide, designed for students in grades 3-7, answers intriguing questions about phytoplankton, tiny drifters that have shaped our world. Invisible to the naked eye, phytoplankton are the source of our atmosphere, our climate, our ocean food chain, much of our oil supply, and more. They're also food for zooplankton. Photomicroscopy serves up…

  3. Phytoplankton Bloom in North Sea off Scotland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The northern and western highlands of Scotland were still winter-brown and even dusted with snow in places, but the waters of the North Sea were blooming with phytoplankton on May 8, 2008, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite passed over the region and captured this image. The tiny, plant-like organisms swirled in the waters off the country's east coast, coloring the shallow coastal waters shades of bright blue and green. Phytoplankton are tiny organisms--many are just a single cell--that use chlorophyll and other pigments to capture light for photosynthesis. Because these pigments absorb sunlight, they change the color of the light reflected from the sea surface back to the satellite. Scientists have used observations of 'ocean color' from satellites for more than 20 years to track worldwide patterns in phytoplankton blooms. Phytoplankton are important to the Earth system for a host of reasons, including their status as the base of the ocean food web. In the North Sea, they are the base of the food web that supports Scotland's commercial fisheries, including monkfish and herring. As photosynthesizers, they also play a crucial role in the carbon cycle, removing carbon dioxide from the atmosphere. Some oceanographers are concerned that rising ocean temperatures will slow phytoplankton growth rates, harming marine ecosystems and causing carbon dioxide to accumulate more rapidly in the atmosphere.

  4. Global phytoplankton decline over the past century.

    PubMed

    Boyce, Daniel G; Lewis, Marlon R; Worm, Boris

    2010-07-29

    In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for approximately half the production of organic matter on Earth. Analyses of satellite-derived phytoplankton concentration (available since 1979) have suggested decadal-scale fluctuations linked to climate forcing, but the length of this record is insufficient to resolve longer-term trends. Here we combine available ocean transparency measurements and in situ chlorophyll observations to estimate the time dependence of phytoplankton biomass at local, regional and global scales since 1899. We observe declines in eight out of ten ocean regions, and estimate a global rate of decline of approximately 1% of the global median per year. Our analyses further reveal interannual to decadal phytoplankton fluctuations superimposed on long-term trends. These fluctuations are strongly correlated with basin-scale climate indices, whereas long-term declining trends are related to increasing sea surface temperatures. We conclude that global phytoplankton concentration has declined over the past century; this decline will need to be considered in future studies of marine ecosystems, geochemical cycling, ocean circulation and fisheries. PMID:20671703

  5. Nutrient limitation of phytoplankton growth in Georgia nearshore waters

    SciTech Connect

    Bishop, S.S.; Emmanuele, K.A.; Yoder, J.A.

    1984-12-01

    Nutrient enrichment experiments were conducted to investigate the utilization of dissolved organic (DON) and inorganic nitrogen (DIN) by marine phytoplankton in Georgia coastal waters. Natural populations of marine phytoplankton, enriched with different concentrations of ammonium chloride and other plant nutrients, were grown under controlled temperature and irradiance conditions until the populations reached ''stationary phase.'' Results showed that (1) phytoplankton are limited by DIN up to ca. 20 ..mu..M, when another nutrient (phosphate or silicate) becomes limiting, (2) very little naturally-occuring DON is directly utilized for growth, (3) very little DON is indirectly made available for growth over time periods of days to ca. 1 week, and (4) trace metals and vitamins do not significantly limit phytoplankton growth.

  6. Phytoplankton and sediments in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Affected both by terrestrial factors like agriculture, deforestation, and erosion, and by marine factors like salinity levels, ocean temperature and water pollution, coastal environments are the dynamic interface between land and sea. In this MODIS image from January 15, 2002, the Gulf of Mexico is awash in a mixture of phytoplankton and sediment. Tan-colored sediment is flowing out into the Gulf from the Mississippi River, whose floodplain cuts a pale, wide swath to the right of center in the image, and also from numerous smaller rivers along the Louisiana coast (center). Mixing with the sediment are the multi-colored blue and green swirls that reveal the presence of large populations of marine plants called phytoplankton. Phytoplankton populations bloom and then fade, and these cycles affect fish and mammals-including humans-higher up the food chain. Certain phytoplankton are toxic to both fish and humans, and coastal health departments must monitor ecosystems carefully, often restricting fishing or harvesting of shellfish until the blooms have subsided.

  7. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-12-31

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  8. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-01-01

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  9. Phytoplankton and Climate

    NASA Technical Reports Server (NTRS)

    Moisan, John R.

    2009-01-01

    Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.

  10. National Data Program for the Marine Environment. Final Report, Volume One.

    ERIC Educational Resources Information Center

    System Development Corp., Santa Monica, CA.

    A national data program for the marine environment is recommended. Volume 1 includes: (1) description of the current marine data network, (2) analysis of current and future requirements, (3) delineation of priority marine data and products, (4) requirements and impact of technological change on marine data management, (5) evaluation of…

  11. Environmental Effects of Marine Energy Development Around the World. Annex IV Final Report

    SciTech Connect

    Copping, Andrea; Hanna, L.; Whiting, J.; Geerlofs, S.; Grear, M.; Blake, K.; Coffey, A.; Massaua, M.; Brown-Saracino, J.; Battey, H.

    2013-01-01

    This Annex IV report contains three case studies of specific interactions of marine energy devices with the marine environment addressing the physical interactions between animals and tidal turbines, the acoustic impact of marine energy devices on marine animals, and the effects of energy removal on physical systems.

  12. Andreas Acrivos Dissertation Prize Lecture: Phytoplankton in Flow

    NASA Astrophysics Data System (ADS)

    Durham, William M.

    2012-11-01

    Phytoplankton are small, unicellular organisms that form the base of the marine food web and are cumulatively responsible for half the global oxygen production. While phytoplankton live in an environment characterized by ubiquitous fluid flow, the impact of hydrodynamic conditions on their ecology remain poorly understood. In this talk, I report on two novel biophysical mechanisms based on the interaction between phytoplankton motility and fluid shear. First, I will consider ``thin phytoplankton layers,'' important hotspots of ecological activity that are found meters beneath the ocean surface and contain cell concentrations up to two orders of magnitude above ambient. Using a combination of experiments, individual-based simulations, and continuum modeling, we have shown that layers can form when the vertical migration of phytoplankton is disrupted by hydrodynamic shear. This mechanism which we call ``gyrotactic trapping'' is capable of triggering thin phytoplankton layers under hydrodynamic conditions typical of the environments that often harbor thin layers. Second, I will discuss the potential for turbulent shear to produce patchiness in the spatial distribution of motile phytoplankton. Field measurements have revealed that motile phytoplankton form aggregations at the Kolmogorov scale, whereas non-motile cells do not. We propose a new mechanism for the formation of this small-scale patchiness based on the interplay of gyrotactic motility and turbulent shear. Using laboratory experiments, an analytical model of vortical flow, and isotropic turbulence generated via Direct Numerical Simulations, we found that motile phytoplankton rapidly aggregate, whereas non-motile cells remain randomly distributed. Taken together, these two mechanisms demonstrate that the interaction of cell motility with flow plays a fundamental role in phytoplankton ecology and, as a consequence, can contribute to shape macroscale characteristics of the ocean.

  13. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    PubMed

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. PMID:26247379

  14. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  15. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  16. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  17. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples.

    PubMed

    Marie, Dominique; Rigaut-Jalabert, Fabienne; Vaulot, Daniel

    2014-11-01

    Preservation of cells, choice of fixative, storage, and thawing conditions are recurrent issues for the analysis of phytoplankton by flow cytometry. We examined the effects of addition of the surfactant Pluronic F68 to glutaraldehyde-fixed photosynthetic organisms in cultures and natural samples. In particular, we examined cell losses and modifications of side scatter (a proxy of cell size) and fluorescence of natural pigments. We found that different marine phytoplankton species react differently to the action of Pluronic F68. In particular, photosynthetic prokaryotes are less sensitive than eukaryotes. Observed cell losses may result from cell lysis or from cell adhesion to the walls of plastic tubes that are commonly used for flow cytometry analysis. The addition of the surfactant, Pluronic F68, has a positive effect on cells for long-term storage. We recommend to modify current protocols for preservation of natural marine planktonic samples, by fixing them with glutaraldehyde 0.25% (final concentration) and adding Pluronic F68 at a final concentration of 0.01% in the samples before preservation. Pluronic F68 also appears effective for preserving samples without fixation for subsequent sorting, e.g. for molecular biology analyses. © 2014 International Society for Advancement of Cytometry. PMID:25155102

  18. Satellite Observations: Oil Spills Impact on Phytoplankton in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Tang, Danling; Wang, Sufen; Pan, Gang

    2014-11-01

    This study discussed ecological responses to the Penglai oil spills in the Bohai Sea, occurring on June 4, 2011, using MODIS Chlorophyll-a data. After time intervals of 20 days, 12 months and 14 months, phytoplankton blooms appeared at three locations in the surrounding and distant regions of the oil spills in the Bohai Sea. A bloom with high Chlorophyll-a (13.66 mg m-3) spread over an area of 800 km2 on June 18-25, 2011, about 56 km northeast from the location of the oil spills. A pronounced increase in the monthly Chlorophyll-a concentration (6.40 mg m-3) indicating phytoplankton bloom was observed in the Bohai Sea in June 2012. Phytoplankton blooms depend on the amount and composition of oil, toxicity of petroleum hydrocarbons, micro-organisms, and sea ice. The oil spills impact phytoplankton for a long duration, which impacts the marine ecosystem.

  19. Fluid dynamical niches of phytoplankton types.

    PubMed

    d'Ovidio, Francesco; De Monte, Silvia; Alvain, Séverine; Dandonneau, Yves; Lévy, Marina

    2010-10-26

    The biogeochemical role of phytoplanktonic organisms strongly varies from one plankton type to another, and their relative abundance and distribution have fundamental consequences at the global and climatological scales. In situ observations find dominant types often associated to specific physical and chemical water properties. However, the mechanisms and spatiotemporal scales by which marine ecosystems are organized are largely not known. Here we investigate the spatiotemporal organization of phytoplankton communities by combining multisatellite data, notably high-resolution ocean-color maps of dominant types and altimetry-derived Lagrangian diagnostics of the surface transport. We find that the phytoplanktonic landscape is organized in (sub-)mesoscale patches (10-100 km) of dominant types separated by physical fronts induced by horizontal stirring. These physical fronts delimit niches supported by water masses of similar history and whose lifetimes are comparable with the timescale of the bloom onset (few weeks). The resonance between biological activity and physical processes suggest that the spatiotemporal (sub-)mesoscales associated to stirring are determinant in the observation and modeling of marine ecosystems. PMID:20974927

  20. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    SciTech Connect

    Avery, L.W.; Hunt, S.T.; Savage, S.F. ); McLaughlin, P.D.; Shepdard, A.P.; Worl, J.C. )

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landing Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.

  1. 76 FR 56973 - Office of National Marine Sanctuaries Final Policy and Permit Guidance for Submarine Cable Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... Policy and Permit Guidance for Submarine Cable Projects AGENCY: Office of National Marine Sanctuaries...) has developed final policy and permitting guidance for submarine cable projects proposed in national... install and maintain submarine cables in sanctuaries are reviewed consistently and in a manner...

  2. Phytoplankton bloom off the coast of Ireland

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Irish Sea (right) is full of phytoplankton in this true-color image from January 15, 2002. The Irish Sea separates Ireland (center) from the United Kingdom (right). In this image the water of both the Irish and Celtic (lower right) Seas appears quite turbid, being a milky blue-green compared to the clearer waters of the open Atlantic (left). This milky appearance is likely due to the growth of marine plants called phytoplankton. Despite the fact that Ireland is at the same latitude as southern Hudson Bay, Canada, it remains green year round, thanks to the moderating effect on temperatures of the Atlantic Ocean. The Gulf Stream bring warmer waters up from the tropics, and southwesterly winds bring warmer air to the country, thus moderating seasonal temperature extremes.

  3. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2013-01-01

    Phytoplankton are free-floating algae that grow in the euphotic zone of the upper ocean, converting carbon dioxide, sunlight, and available nutrients into organic carbon through photosynthesis. Despite their microscopic size, these photoautotrophs are responsible for roughly half the net primary production on Earth (NPP; gross primary production minus respiration), fixing atmospheric CO2 into food that fuels our global ocean ecosystems. Phytoplankton thus play a critical role in the global carbon cycle, and their growth patterns are highly sensitive to environmental changes such as increased ocean temperatures that stratify the water column and prohibit the transfer of cold, nutrient richwaters to the upper ocean euphotic zone.

  4. High-Resolution Fluorometer for Mapping Microscale Phytoplankton Distributions

    PubMed Central

    Doubell, Mark J.; Seuront, Laurent; Seymour, Justin R.; Patten, Nicole L.; Mitchell, James G.

    2006-01-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  5. High-resolution fluorometer for mapping microscale phytoplankton distributions.

    PubMed

    Doubell, Mark J; Seuront, Laurent; Seymour, Justin R; Patten, Nicole L; Mitchell, James G

    2006-06-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  6. Regulation of phytoplankton dynamics by vitamin B12

    NASA Astrophysics Data System (ADS)

    Sañudo-Wilhelmy, S. A.; Gobler, C. J.; Okbamichael, M.; Taylor, G. T.

    2006-02-01

    Despite the biological necessity of vitamin B12 (cobalamin), its importance in phytoplankton ecology has been ignored for nearly three decades. Here we report strong and selective responses of phytoplankton communities to varying low levels (5-87 pM) of dissolved B12 in several coastal embayments. The ecological importance of this vitamin is inferred from observed declines in dissolved B12 levels as field populations of large (>5 μm) phytoplankton increased. In contrast, biomass of small (<5 μm) phytoplankton varied independently of B12 concentrations. These observations were corroborated by field-based nutrient amendment experiments, in which B12 additions stimulated growth of large phytoplankton taxa 6-fold over unamended controls. In contrast, small taxa (<5 μm) were largely unaffected. This study provides the first evidence of vitamin B12's influence on phytoplankton field population dynamics based on direct chemical measurements of cobalamin, and implicates B12 as an important organic regulator of photoautotrophic fertility in marine systems.

  7. National Data Program for the Marine Environment Technical Development Plan. Final Report, Volume Two.

    ERIC Educational Resources Information Center

    System Development Corp., Santa Monica, CA.

    A national data program for the marine environment is recommended. Volume 2 includes: (1) objectives, scope, and methodology; (2) summary of the technical development plan; (3) agency development plans - Great Lakes and coastal development and (4) marine data network development plans. (Author)

  8. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect

    Polagye, B. L.; Copping, A. E.; Brown-Saracino, J.; Suryan, R.; Kramer, S.; Smith, C.

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  9. Phytoplankton Succession in Recurrently Fluctuating Environments

    PubMed Central

    Roelke, Daniel L.; Spatharis, Sofie

    2015-01-01

    Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species’ niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from

  10. Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean.

    PubMed

    Lin, Hanzhi; Kuzminov, Fedor I; Park, Jisoo; Lee, SangHoon; Falkowski, Paul G; Gorbunov, Maxim Y

    2016-01-15

    Solar radiation absorbed by marine phytoplankton can follow three possible paths. By simultaneously measuring the quantum yields of photochemistry and chlorophyll fluorescence in situ, we calculate that, on average, ~60% of absorbed photons are converted to heat, only 35% are directed toward photochemical water splitting, and the rest are reemitted as fluorescence. The spatial pattern of fluorescence yields and lifetimes strongly suggests that photochemical energy conversion is physiologically limited by nutrients. Comparison of in situ fluorescence lifetimes with satellite retrievals of solar-induced fluorescence yields suggests that the mean values of the latter are generally representative of the photophysiological state of phytoplankton; however, the signal-to-noise ratio is unacceptably low in extremely oligotrophic regions, which constitute 30% of the open ocean. PMID:26743625

  11. Exploring the Link between Micronutrients and Phytoplankton in the Southern Ocean during the 2007 Austral Summer

    PubMed Central

    Hassler, Christel S.; Sinoir, Marie; Clementson, Lesley A.; Butler, Edward C. V.

    2012-01-01

    Bottle assays and large-scale fertilization experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients) required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study, investigates whether micronutrients other than iron (Zn, Co, Cu, Cd, Ni) need to be considered as parameters for controlling the phytoplankton growth from the Australian Subantarctic to the Polar Frontal Zones during the austral summer 2007. Analysis of nutrient disappearance ratios, suggested differential zones in phytoplankton growth control in the study region with a most intense phytoplankton growth limitation between 49 and 50°S. Comparison of micronutrient disappearance ratios, metal distribution, and biomarker pigments used to identify dominating phytoplankton groups, demonstrated that a complex interaction between Fe, Zn, and Co might exist in the study region. Although iron remains the pivotal micronutrient for phytoplankton growth and community structure, Zn and Co are also important for the nutrition and the growth of most of the dominating phytoplankton groups in the Subantarctic Zone region. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle. PMID:22787456

  12. 75 FR 36064 - Stellwagen Bank National Marine Sanctuary Final Revised Management Plan: Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ....noaa.gov . For a hard copy or data CD of the plan contact the sanctuary office at the contact number... FURTHER INFORMATION CONTACT: Anne Smrcina, Stellwagen Bank National Marine Sanctuary, 175 Edward...

  13. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013

    NASA Astrophysics Data System (ADS)

    Li, Junlei; Sun, Xiaoxia; Zheng, Shan

    2016-08-01

    In situ studies on photosynthetic characteristics of phytoplankton were important for the analysis of changes in community structure and for the prediction and control of algal blooms, but such studies of phytoplankton in offshore China were few. In this study, the detailed distribution of photosynthetic characteristics of phytoplankton in the summer of 2013 in the Yellow Sea and East China Sea was measured using Phyto-PAM (Pulse Amplitude Modulation). The phytoplankton community structure and the environmental parameters were also investigated to estimate the relationship between the distribution of the photochemical competence of phytoplankton and ecological factors. The total average Fv/Fm (the potential maximum quantum yield) value of phytoplankton in the Yellow Sea and East China Sea in summer 2013 was less than 0.5, reflecting that the photosynthetic activity of phytoplankton was relatively low. Fv/Fm of phytoplankton in summer was significantly positively associated with nitrate content (NO2-), which reflects relationship between metabolism and photosynthesis of phytoplankton: accompanied by NO2- metabolism, photosynthesis and photosynthetic capacity may be enhanced simultaneously, so the Fv/Fm value would increase with the NO2- released by phytoplankton. Through the in situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea, we come to the conclusion that photosynthetic characteristics and activity of phytoplankton are influenced by its biological characteristics and surrounding ecological factors, such as irradiance, nutrients and phytoplankton community. Meanwhile, the thermally stratified structure and the movement of water masses, such as the Yangtze River diluted water, the Yellow Sea cold water mass and other different water system, also have an important impact on phytoplankton photosynthetic activity and characteristics. Greater understanding of the detailed photosynthetic characteristics of phytoplankton

  14. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  15. Phytoplankton Bloom Off Portugal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Turquoise and greenish swirls marked the presence of a large phytoplankton bloom off the coast of Portugal on April 23, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. There are also several fires burning in northwest Spain, near the port city of A Coruna. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.

  16. Controls on phytoplankton cell size distributions in contrasting physical environments

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Daines, S. J.; Lenton, T. M.

    2012-04-01

    A key challenge for marine ecosystem and biogeochemical models is to capture the multiple ecological and evolutionary processes driving the adaptation of diverse communities to changed environmental conditions over different spatial and temporal scales. These range from short-term acclimation in individuals, to population-level selection, immigration and ecological succession on intermediate scales, to shifts in the global biogeochemical cycling of key elements. As part of the "EVE" project, we have been working toward improving the representation of ecological and evolutionary processes in models, with a focus on understanding the role of marine ecosystems in the past, present, and future Earth system. Our approach is to develop a mechanistic understanding of trade-offs between different functional traits through the explicit representation of resource investment in sub-cellular components controlled by a synthetic genome. Trait expression (including size, metabolic strategies on a continuum from autotrophy to heterotrophy, and predation strategies) and adaptation to the environment are then emergent properties of the model, following from natural selection operating in the model environment. Here we show results relating to controls on phytoplankton cell size - a key phytoplankton trait which is inextricably linked to the structuring and functioning of marine ecosystems. Coupled to the MIT OGCM, we use the model to derive dynamic optimal size-class distributions at representative oligotrophic and high-latitude time series sites, which are then compared with in situ data. Particular attention is given to the relative importance of top-down vs bottom-up drivers for phytoplankton cell size, and their influence on global patterns in phytoplankton cell size, as well as changes in the cell size distribution during phytoplankton bloom periods.

  17. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    SciTech Connect

    Saracino-Brown, Jocelyn; Smith, Courtney; Gilman, Patrick

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. The workshop was planned by Federal agency, academic, and private partners to promote collaboration between ongoing offshore ecological survey efforts, and to promote the collaborative development of complementary predictive models and compatible databases. The meeting primarily focused on efforts to establish and predict marine mammal, seabird, and sea turtle abundance, density, and distributions extending from the shoreline to the edge of the Exclusive Economic Zone between Nantucket Sound, Massachusetts and Cape Hatteras, North Carolina.

  18. Bicarbonate uptake by Southern Ocean phytoplankton

    NASA Astrophysics Data System (ADS)

    Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.

    2004-06-01

    Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the

  19. Commercial Contract Training, Marine Corps Area VOTEC Support Center (AVSC) Guidelines. Final Report.

    ERIC Educational Resources Information Center

    Copeland, D. R.; And Others

    The report provides a description of the Phase II findings of a two-phase study to determine if certain Marine Corps skill training requirements could be satisfied through contract with qualified commercial sources. It demonstrates the utility of the commercial contract training concept and contains information useful to Area VOTEC…

  20. Vocational Exploration and Skill Building in Marine and Related Occupations. Final Report, 1979-1980.

    ERIC Educational Resources Information Center

    Schaefer, Larry; And Others

    The first year of a project to train high school aged handicapped and/or disadvantaged youth for employment in marine and related trades was considered successful. Specific areas of training included motor mechanics, electrical, woodworking, refinishing, restoration, fiberglass work, and blueprint reading under the direction of skilled…

  1. Impact of ocean acidification on the structure of future phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Stephanie; Morris, J. Jeffrey; Follows, Michael J.; Scott, Jeffery; Levitan, Orly; Dyhrman, Sonya T.; Berman-Frank, Ilana

    2015-11-01

    Phytoplankton form the foundation of the marine food web and regulate key biogeochemical processes. These organisms face multiple environmental changes, including the decline in ocean pH (ocean acidification) caused by rising atmospheric pCO2 (ref. ). A meta-analysis of published experimental data assessing growth rates of different phytoplankton taxa under both ambient and elevated pCO2 conditions revealed a significant range of responses. This effect of ocean acidification was incorporated into a global marine ecosystem model to explore how marine phytoplankton communities might be impacted over the course of a hypothetical twenty-first century. Results emphasized that the differing responses to elevated pCO2 caused sufficient changes in competitive fitness between phytoplankton types to significantly alter community structure. At the level of ecological function of the phytoplankton community, acidification had a greater impact than warming or reduced nutrient supply. The model suggested that longer timescales of competition- and transport-mediated adjustments are essential for predicting changes to phytoplankton community structure.

  2. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    PubMed

    Needham, David M; Fuhrman, Jed A

    2016-01-01

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates. PMID:27572439

  3. AUV Measured Variability in Phytoplankton Fluorescence within the ETM of the Columbia River during Summer 2013

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T. M.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B. C.; Peterson, T. D.; Prahl, F. G.; Cravo, A.

    2014-12-01

    We present highly resolved observations of fluorescence and optical backscatter taken in the estuarine turbidity maxima (ETM) of the North Channel of the Columbia River estuary (USA) during summer 2013. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs) equipped with ECO Puck triplets. Concentrations of three phytoplankton pigments were measured by fluorescence emission at wavelengths of 695 nm for chlorophyll, 570 nm for phycoerythrin, and 680 nm for phycocyanin. We use phycocyanin to indicate the presence of freshwater phytoplankton. Optical backscatter at wavelengths of 700 nm and 880 nm are used to characterize turbidity. During flood tide, high phycocyanin concentrations were associated with a strong ETM event which had relatively low salinity waters of approximately 6 psu. These data indicate that this low salinity ETM event contained large concentrations of freshwater phytoplankton. Since freshwater phytoplankton are known to lyse in saltwater, the brackish ETM event may have formed by the accumulation of lysed freshwater phytoplankton that settled out from the river as it mixed in the lower estuary. As the flood tide proceeded, it brought high concentrations of marine phytoplankton into the north channel at mid-depth as indicated by high chlorophyll levels with significantly lower phycoerythrin concentrations in high salinity waters of approximately 30 psu. The data set highlights the potential for large variability in phytoplankton species composition and concentrations within the ETM depending on mixing rates and phytoplankton bloom dynamics. Visualization of the 4-D data is aided by generating interpolated data movies.

  4. Controls on temporal patterns in phytoplankton community structure in the Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Anderson, Clarissa R.; Siegel, David A.; Brzezinski, Mark A.; Guillocheau, Nathalie

    2008-04-01

    Characterizing phytoplankton succession in the context of physical and chemical processes is important for understanding the mechanisms driving phytoplankton species composition and succession. An understanding of these processes ultimately influences the ability to predict the contribution of phytoplankton to carbon cycling, the initiation and persistence of harmful algal blooms, and the ability to use satellites for the remote sensing of specific phytoplankton taxa important for biogeochemistry. A statistical analysis of 5 years (1998-2003) of phytoplankton pigment concentrations from the Santa Barbara Channel using empirical orthogonal functions reveals four dominant modes of variability that explain 80% of the variance in the pigment data set. The annual cycle is characterized by a switching from a mixed-phytoplankton assemblage mode to modes dominated by either diatoms, dinoflagellates, or a combination of nano- and pico-phytoplankton. The dominant two modes correspond to a prebloom condition that precedes upwelling conditions, with all identified phytoplankton groups present in low abundance and a diatom-dominated upwelling state that develops following spring upwelling. In 2001, the EOF analysis indicated a transition toward more intense diatom blooms in spring and summer and fewer, large dinoflagellate blooms. This trend was corroborated by analyses of diagnostic pigments and CHEMTAX analysis and may be linked to an increase in local upwelling intensity between 2001 and 2003. Both spring diatom blooms occurring after 2001 were dominated by toxic Pseudo-nitzschia species and led to significant marine mammal deaths in the channel in 2003.

  5. Phytoplankton's motion in turbulent ocean

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Leshansky, Alexander

    2015-07-01

    We study the influence of turbulence on upward motion of phytoplankton. Interaction with the flow is described by the Pedley-Kessler model considering spherical microorganisms. We find a range of parameters when the upward drift is only weakly perturbed or when turbulence completely randomizes the drift direction. When the perturbation is small, the drift is either determined by the local vorticity or is Gaussian. We find a range of parameters where the phytoplankton interaction with the flow can be described consistently as diffusion of orientation in effective potential. By solving the corresponding Fokker-Planck equation we find exponential steady-state distribution of phytoplankton's propulsion orientation. We further identify the range of parameters where phytoplankton's drift velocity with respect to the flow is determined uniquely by its position. In this case, one can describe phytoplankton's motion by a smooth flow and phytoplankton concentrates on fractal. We find fractal dimensions and demonstrate that phytoplankton forms vertical stripes in space with a nonisotropic pair-correlation function of concentration increased in the vertical direction. The probability density function of the distance between two particles obeys power law with the negative exponent given by the ratio of integrals of the turbulent energy spectrum. We find the regime of strong clustering where the exponent is of order one so that turbulence increases the rate of collisions by a large factor. The predictions hold for Navier-Stokes turbulence and stand for testing.

  6. Phytoplankton's motion in turbulent ocean.

    PubMed

    Fouxon, Itzhak; Leshansky, Alexander

    2015-07-01

    We study the influence of turbulence on upward motion of phytoplankton. Interaction with the flow is described by the Pedley-Kessler model considering spherical microorganisms. We find a range of parameters when the upward drift is only weakly perturbed or when turbulence completely randomizes the drift direction. When the perturbation is small, the drift is either determined by the local vorticity or is Gaussian. We find a range of parameters where the phytoplankton interaction with the flow can be described consistently as diffusion of orientation in effective potential. By solving the corresponding Fokker-Planck equation we find exponential steady-state distribution of phytoplankton's propulsion orientation. We further identify the range of parameters where phytoplankton's drift velocity with respect to the flow is determined uniquely by its position. In this case, one can describe phytoplankton's motion by a smooth flow and phytoplankton concentrates on fractal. We find fractal dimensions and demonstrate that phytoplankton forms vertical stripes in space with a nonisotropic pair-correlation function of concentration increased in the vertical direction. The probability density function of the distance between two particles obeys power law with the negative exponent given by the ratio of integrals of the turbulent energy spectrum. We find the regime of strong clustering where the exponent is of order one so that turbulence increases the rate of collisions by a large factor. The predictions hold for Navier-Stokes turbulence and stand for testing. PMID:26274279

  7. The Turbulent Life of Phytoplankton

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Rogers, M.; Wray, A.

    2000-01-01

    Phytoplankton is a generic name for photosynthesizing microscopic organisms that inhabit the upper sunlit layer (euphotic zone) of almost all oceans and bodies of freshwater. They are agents for "primary production," the incorporation of carbon from the environment into living organisms, a process that, sustains the aquatic food web. It is estimated that phytoplankton contribute about half of the global primary production, the other half being due to terrestrial plants. By sustaining the aquatic food web and controlling the biogeochemical cycles through primary production, phytoplankton exert a dominant influence on life on earth. Turbulence influences this process in three very important ways. First, essential mineral nutrients are transported from the deeper layers to the euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton in the euphotic zone since in still water, the phytoplankton, especially the larger species, tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from the surface to the dark sterile waters, and this is an important mechanism of loss. Thus, stable phytoplankton populations are maintained through a delicate dynamic balance between the processes of turbulence, reproduction, and sinking. The first quantitative model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an attempt to extend their efforts through a combination of analysis and computer simulation in order to better understand the principal qualitative aspects of the physical/biological coupling of this natural system.

  8. Phytoplankton bloom all along the coast of Southeast United States

    NASA Technical Reports Server (NTRS)

    2002-01-01

    All along the eastern and southern coasts of the United States, marine plants seem impervious to the onslaught of winter weather further north. In this true-color image from January 9, 2002, phytoplankton can be seen growing in the nation's coastal waters; their characteristic blue-green swirls are especially visible off the west coast of Florida. Fire locations are marked with red dots. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  9. Final Report: Transport and its regulation in Marine Microorganisms: A Genomic Based Approach

    SciTech Connect

    Brian Palenik; Bianca Brahamsha; Ian Paulsen

    2009-09-03

    This grant funded the analysis and annotation of the genomes of Synechococcus and Ostreococcus, major marine primary producers. Particular attention was paid to the analysis of transporters using state of the art bioinformatics analyses. During the analysis of the Synechococcus genome, some of the components of the unique bacterial swimming apparatus of one species of Synechococcus (Clade III, strain WH8102) were determined and these included transporters, novel giant proteins and glycosyltransferases. This grant funded the analysis of gene expression in Synechococcus using whole genome microarrays. These analyses revealed the strategies by which marine cyanobacteria respond to environmental conditions such as the absence of phosphorus, a common limiting nutrient, and the interaction of Synechococcus with other microbes. These analyses will help develop models of gene regulation in cyanobacteria and thus help predict their responses to changes in environmental conditions.

  10. Field test of ultra-low head hydropower package based on marine thrusters. Final report

    SciTech Connect

    Not Available

    1983-12-01

    The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

  11. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  12. Offshore Texas and Louisiana marine ecosystems data synthesis. Volume 1: Executive Summary. Final report

    SciTech Connect

    Phillips, N.W.; James, B.M.

    1988-11-01

    This study provided a synthesis of available environmental information for the continental shelf from the shallow sublittoral to a depth of 500 m for the area between Corpus Christi Bay, Texas and the Mississippi River Delta. Results of the study are given in three volumes: Executive Summary (Volume I), Synthesis Report (Volume II), and Annotated Bibliography (Volume III). The Synthesis Report consists of separate chapters devoted to marine geology, physical oceanography and meteorology, marine chemistry, marine biology, socioeconomics, and conceptual modeling of the area's major ecosystems with emphasis on the environmental effects of oil and gas operations. There is a summary of data gaps and information needs and suggestions for future field studies. The annotated bibliography, which contains 1,535 references, was compiled through a combination of computer searches, telephone contacts, library visits, and submissions from chapter authors. The bibliographic data set is presented in hard copy and on IBM-compatible floppy disks that have been indexed with a computer program (FYI 3000 Plus) to allow searching by author, date, topic and geographic keywords, or words in the title, source, or annotation.

  13. Risk analysis model for marine mammals and seabirds: a southern California bight scenario. Final report

    SciTech Connect

    Ford, R.G.

    1985-05-01

    The objective of this study was to model the risks to selected species of marine mammal and seabird populations in the Southern California Bight from oil spills during OCS oil and gas development and operations. Risk analysis is a procedure designed to investigate the possible negative effects of projects and activities. The conventional approach to analyzing oil and gas reserves is through the use of the MMS Oil Spill Risk Analysis Model (OSRAM). OSRAM was developed to aid in estimating the environmental hazards of developing oil resources in OCS lease areas. Two other computer models were used in these analyses. They are: (2) the short-term oil response model, STORM and (3) the oil-spill population response model, OSPREY. In the report, a methodology for describing the range of consequences which oil spills might have on Southern California Bight seabird and marine mammal populations and the likelihood of those effects were developed. Two general categories of spill consequences were examined: (1) the immediate mortality to a population caused by a spill from a given source, and (2) the long term marine mammal and seabird populations effects of the projected Southern California Bight OCS development.

  14. The physiology of dimethylsulfoniopropionate (DMSP) production in phytoplankton

    SciTech Connect

    Keller, M.D.; Bellows, W.K. )

    1990-06-01

    Dimethylsulfoniopropionate (DMSP) is the precursor of dimethyl sulfide (DMS), the primary volatile organic sulfur compound released from the world's oceans. DMS flux from the oceans is estimated currently at {approximately}1.2 Tmol S.y{sup {minus}1}, or about half the amount of sulfur resulting from anthroprogenic activities, and has been implicated in important global atmospheric processes. Significant production of DMSP is confined to a few classes of marine phytoplankton, primarily the Dinophyceae and Prymnesiophyceae. In these groups, DMSP can account for up to 80% of total organic sulfur. DMSP remains intracellular and fairly constant over the growth cycle until late stationary phase when extracellular levels begin to rise, suggesting leakage. We have examined the effects of a number of environmental variables on DMSP production and release in several marine phytoplankton. In particular the effects of perturbations in light, temperature and nutrient status have been determined. These results will be discussed in relation to marine sulfur chemistry, with ancillary comments on freshwater phytoplankton.

  15. Sinking rates of phytoplankton in the Changjiang (Yangtze River) estuary: A comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom

    NASA Astrophysics Data System (ADS)

    Guo, Shujin; Sun, Jun; Zhao, Qibiao; Feng, Yuanyuan; Huang, Daji; Liu, Sumei

    2016-02-01

    Sinking rates of phytoplankton community with variable taxonomic composition in the offshore Changjiang (Yangtze River) estuary were measured during two cruises in spring and summer, 2011. A homogenous-sample method SETCOL was used to determine the sinking rates. Phytoplankton community was dominated by dinoflagellates in spring and diatoms in summer, and two species Prorocentrum dentatum and Skeletonema dorhnii formed algal blooms in the survey area during the two cruises, respectively. Phytoplankton sinking rates ranged from 0.13 to 1.04 m day- 1 (average = 0.61 ± 0.24 m day- 1) in spring and 0.28 to 1.71 m day- 1 (average = 0.80 ± 0.34 m day- 1) in summer. In the surface layer, phytoplankton sinking rates at the P. dentatum bloom stations in spring were lower than that at the S. dorhnii bloom stations in summer. No significant correlation was found between phytoplankton sinking rates and most of the environmental parameters during the two cruises, except for temperature and nitrite concentration in summer. A significant correlation was observed between phytoplankton sinking rates and phytoplankton community structure in the surface layers: the higher dominance of diatom in the phytoplankton community corresponded to higher phytoplankton sinking rate. Therefore, the phytoplankton community structure other than the environmental parameters, is the important factor to affect the sinking rates greatly. The consequent carbon flux caused by phytoplankton sinking was estimated, and results suggested that the carbon flux to bottom water during the S. dorhnii bloom (average = 63.13 ± 48.16 mg C m- 2 day- 1) in summer was about 2.4 fold of that during the P. dentatum bloom (average = 26.10 ± 26.25 mg C m- 2 day- 1) in spring. These findings provide us some insight in understanding the carbon export contributed by marine phytoplankton in the coastal sea, where frequent phytoplankton blooms and high following carbon export occur.

  16. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  17. 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011

    SciTech Connect

    Li, Y.; Reed, M.; Smith, B.

    2011-10-01

    This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

  18. Phytoplankton bloom in the Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Brightly colored waters in the Black Sea give evidence of the growth of tiny marine plants called phytoplankton, which contain chlorophyll and other pigments that reflect light different ways, producing the colorful displays. The very bright blue waters could be an organism called a coccolithophores, which has a highly reflective calcium carbonate coating that appears bright blue (or sometimes white) in true-color (visible) imagery. However, other organisms, such as cyanobacteria can also appear that color, and so often scientists will compare the ratios of reflectance at one wavelength of light to another to decide what organisms might be present. This series of images shows a bloom occurring in the Black Sea from May 11, 2002, to May 18.

  19. Growth-irradiance relationships in phytoplankton

    SciTech Connect

    Falkowski, P.G.; Dubinsky, Z.; Wyman, K.

    1985-03-01

    The steady state growth rates of three species of marine phytoplankton, Thalassiosira weisflogii, Isochrysis galbana, and Prorocentrum micans, were followed in turbidostat culture. At each growth irradiance, photosynthesis and respiration were measured by following changes in oxygen. Together with measurements of optical absorption cross sections, cellular chlorophyll, carbon and nitrogen, and excretion rates as well as knowledge of the quantum flux, the quantum requirement for growth and photosynthesis were calculated. Our results suggest that variations in growth rate caused by changes in irradiance may be related to changes in respiration rates relative to growth as well as changes in optical absorption cross sections for a given species. Interspecific differences in growth rate at a given irradiance are not related to changes in respiration however, but are primarily attributable to differences in optical absorption cross sections normalized to chlorophyll and differences in chlorophyll:carbon ratios.

  20. Phytoplankton-Fluorescence-Lifetime Vertical Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest

    2004-01-01

    A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the

  1. Using bio-optical parameters as a tool for detecting changes in the phytoplankton community (SW Portugal)

    NASA Astrophysics Data System (ADS)

    Goela, Priscila C.; Icely, John; Cristina, Sónia; Danchenko, Sergei; Angel DelValls, T.; Newton, Alice

    2015-12-01

    Upwelling events off the Southwest coast of Portugal can trigger phytoplankton blooms that are important for the fisheries and aquaculture sectors in this region. However, climate change scenarios forecast fluctuations in the intensity and frequency of upwelling events, thereby potentially impacting these sectors. Shifts in the phytoplankton community were analysed from the end of 2008 until the beginning of 2012 by examining the bio-optical properties of the water column, namely the absorption coefficients for phytoplankton, non-algal particles and coloured dissolved organic matter (CDOM). The phytoplankton community was assessed by microscopy, with counts from an inverted microscope, and by chemotaxonomic methodologies, using pigment concentrations determined by High-Performance Liquid Chromatography (HPLC). Results both from microscopy and from chemotaxonomic methods showed a shift from diatom dominance related to bloom conditions matching upwelling events, to small flagellate dominance related to no-bloom conditions matching relaxation of upwelling. During bloom conditions, light absorption from phytoplankton increased markedly, while non-algal particles and CDOM absorption remained relatively constant. The dynamics of CDOM in the study area was attributed to coastal influences rather than from phytoplankton origin. Changes in phytoplankton biomass and consequent alterations in phytoplankton absorption coefficients were attributed to upwelling regimes in the area. Bio-optical parameters can contribute to environmental monitoring of coastal and oceanic waters, which in the case of the European Union, involves the implementation of the Water Framework, Marine Strategy Framework and Marine Spatial Planning Directives.

  2. Plastics removal in a marine environment (PRIME) an overview. Final report, October 1988-September 1992

    SciTech Connect

    Wall, J.

    1993-09-01

    Plastic Removal in a Marine Environment (PRIME) is a response by the U.S. Navy to comply with the International Convention for the Prevention of Pollution from Ships and Public Law 100-220, the Marine Plastic Pollution Research and Control Act. The Navy is charged with complete elimination of the discharge of plastics into the oceans and waterways. This project was conducted to explore alternative methods to comply with the prohibition. The project focused on food service operations. Areas examined included biodegradables application, densifying equipment, microbiological considerations, recycling, source reduction, and specifications. The methods of evaluation included shipboard and shoreside personnel surveys. A wide range of groups were involved, including Defense, industry, and academia. The Navy is complying primarily by onboard storage of waste plastic until it can be off-loaded to a shore facility. The shortage of shipboard stowage space is partially alleviated through the reduction of the amount of plastic used. New plastic waste-processing equipment now being developed will further alleviate the problem through a high densification process while reducing sanitation concerns.

  3. Predator-Induced Fleeing Behaviors in Phytoplankton: A New Mechanism for Harmful Algal Bloom Formation?

    PubMed Central

    Harvey, Elizabeth L.; Menden-Deuer, Susanne

    2012-01-01

    In the plankton, heterotrophic microbes encounter and ingest phytoplankton prey, which effectively removes >50% of daily phytoplankton production in the ocean and influences global primary production and biochemical cycling rates. Factors such as size, shape, nutritional value, and presence of chemical deterrents are known to affect predation pressure. Effects of movement behaviors of either predator or prey on predation pressure, and particularly fleeing behaviors in phytoplankton are thus far unknown. Here, we quantified individual 3D movements, population distributions, and survival rates of the toxic phytoplankton species, Heterosigma akashiwo in response to a ciliate predator and predator-derived cues. We observed predator-induced defense behaviors previously unknown for phytoplankton. Modulation of individual phytoplankton movements during and after predator exposure resulted in an effective separation of predator and prey species. The strongest avoidance behaviors were observed when H. akashiwo co-occurred with an actively grazing predator. Predator-induced changes in phytoplankton movements resulted in a reduction in encounter rate and a 3-fold increase in net algal population growth rate. A spatially explicit population model predicted rapid phytoplankton bloom formation only when fleeing behaviors were incorporated. These model predictions reflected field observations of rapid H. akashiwo harmful algal bloom (HAB) formation in the coastal ocean. Our results document a novel behavior in phytoplankton that can significantly reduce predation pressure and suggests a new mechanism for HAB formation. Phytoplankton behaviors that minimize predatory losses, maximize resource acquisition, and alter community composition and distribution patterns could have major implications for our understanding and predictive capacity of marine primary production and biochemical cycling rates. PMID:23029518

  4. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  5. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  6. DNA Analyses of Phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Gonzalez, M. F.; Bench, S.

    2014-12-01

    The Western Antarctic Peninsula (WAP) is experiencing the fastest climate warming of any marine environment on Earth, with a 6°C rise in mean winter temperature over the past 60 years (Vaughan et al., 2003). Though poorly understood, these changes may have profound effects on local Antarctic ecosystems. This research project aims to identify these changes through the compositional analysis of Antarctic phytoplankton using DNA sequencing supported by fluorescent microscopy. During the 2013 and 2014 blooming seasons, December to March, water samples were obtained from Palmer Station (located on the WAP) and filtered through 3 μm/0.8 μm filters. DNA was extracted from the water samples using the Qiagen Plant Kit, quantified through use of both Nanodrop and Picogreen technology, quality-checked by gel electrophoresis, and sent to be sequenced. Additionally, major phytoplankton species were identified through microscope imaging and preliminary counts were made for four important dates, two located at the peaks of phytoplankton blooms. From these four samples alone, it appeared that cryptomonads dominated the primary bloom whereas diatoms, both centric and pennate, were more abundant during the second bloom. In the future, these results will be tested against sequencing data. Through continued year-by-year analysis of Antarctic phytoplankton abundance levels, it will be possible to identify trends that may be crucial to understanding the dynamic Antarctic ecosystem.

  7. Self-sedimentation of fossil phytoplankton blooms, laminated hemipelagic sediments and the oceanic carbon cycle

    SciTech Connect

    Grimm, K.A.; Lange, C.B.

    1996-12-31

    The flux of phytoplankton-derived organic carbon from the surface ocean to the deep sea and underlying sediments is a nonuniform process that significantly impacts biogeochemical cycles, atmospheric pCO{sub 2} / O{sub 2} and organic carbon enrichment in marine sediments. Some marine phytoplankton actively drive the sedimentation process by the formation of sticky transparent gels which facilitate aggregation, rapid sinking and efficient export flux. Here we present fossil evidence of unfragmented, low-diversity phytoplankton assemblages preserved as sedimentary laminations and as preserved aggregates that are attributable to a similar phytoplankton-driven sedimentary mechanism, here termed {open_quotes}self-sedimentation{close_quotes}. Heterogeneities in the texture and/or composition of sediment supply are necessary for the production of laminatedhemipelagic sediments; the absence of hydraulic and biological reworking permits preservation of these sedimentary laminae. Distinctly-laminated core intervals are characterized by large compositional contrasts between adjacent laminae; many such high-bimodality couplets are attributable to self-sedimentation of phytoplankton blooms. Self-sedimentation propels the formation of some conspicuous hemipelagic sedimentary laminations and results in efficient carbon and opal flux to the sediments. These records suggest that phytoplankton-mediated changes in the efficiency of the biological carbon pump may govern many accumulations of organic-rich hydrocarbon source rock as well as many abrupt changes in atmospheric pCO{sub 2} and climate.

  8. Self-sedimentation of fossil phytoplankton blooms, laminated hemipelagic sediments and the oceanic carbon cycle

    SciTech Connect

    Grimm, K.A. ); Lange, C.B. )

    1996-01-01

    The flux of phytoplankton-derived organic carbon from the surface ocean to the deep sea and underlying sediments is a nonuniform process that significantly impacts biogeochemical cycles, atmospheric pCO[sub 2] / O[sub 2] and organic carbon enrichment in marine sediments. Some marine phytoplankton actively drive the sedimentation process by the formation of sticky transparent gels which facilitate aggregation, rapid sinking and efficient export flux. Here we present fossil evidence of unfragmented, low-diversity phytoplankton assemblages preserved as sedimentary laminations and as preserved aggregates that are attributable to a similar phytoplankton-driven sedimentary mechanism, here termed [open quotes]self-sedimentation[close quotes]. Heterogeneities in the texture and/or composition of sediment supply are necessary for the production of laminatedhemipelagic sediments; the absence of hydraulic and biological reworking permits preservation of these sedimentary laminae. Distinctly-laminated core intervals are characterized by large compositional contrasts between adjacent laminae; many such high-bimodality couplets are attributable to self-sedimentation of phytoplankton blooms. Self-sedimentation propels the formation of some conspicuous hemipelagic sedimentary laminations and results in efficient carbon and opal flux to the sediments. These records suggest that phytoplankton-mediated changes in the efficiency of the biological carbon pump may govern many accumulations of organic-rich hydrocarbon source rock as well as many abrupt changes in atmospheric pCO[sub 2] and climate.

  9. Multiwell Experiment: I, The marine interval of the Mesaverde Formation: Final report

    SciTech Connect

    Not Available

    1987-04-01

    The Department of Energy's Multiwell Experiment is a field laboratory in the Piceance Basin of Colorado which has two overall objectives: to characterize the low permeability gas reservoirs in the Mesaverde Formation and to develop technology for their production. Different depositional environments have created distinctly different reservoirs in the Mesaverde, and MWX has addressed each of these in turn. This report presents a comprehensive summary of results from the lowermost interval: the marine interval which lies between 7450 and 8250 ft at the MWX site. Separate sections of this report are background and summary; site description and operations; geology; log analysis; core analysis; in situ stress; well testing, analysis and reservoir evaluation; and a bibliography. Additional detailed data, results, and data file references are given on microfiche in several appendices.

  10. Disassembling Iron Availability to Phytoplankton

    PubMed Central

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability – the acquisition of Fe-substrate by phytoplankton – and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute “all or nothing.” We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species. PMID:22529839