Science.gov

Sample records for marine sediments overlain

  1. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters

    SciTech Connect

    Ingall, E.; Jahnki, R.

    1994-06-01

    Phosphorus regeneration and burial fluxes determined from in situ benthic flux chamber and solid phase measurements at sites on the Californian continental margin, Peruvian continental slope, North Carolina continental slope, and from the Santa Monica basin, California are reported. Comparison of these sites indicates that O{sub 2}-depleted bottomwaters enhance P regeneration from sediments, diminishing overall phosphorus burial efficiency. Based on these observations, a positive feedback, linking ocean anoxia, enhanced benthic phosphorus regeneration, and marine productivity is proposed. On shorter timescales, these results also suggest that O{sub 2} depletion in coastal regions caused by eutrophication may enhance P regeneration from sediments, thereby providing additional P necessary for increased biological productivity. 42 refs., 2 figs., 2 tabs.

  2. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    USGS Publications Warehouse

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  3. Asteroid impact ejecta units overlain by iron-rich sediments in 3.5 2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause effect relationships?

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2006-06-01

    The significance of temporal and spatial associations between asteroid/comet impact ejecta units and overlying iron-rich sediments, including banded iron-formation (BIF), jaspilite and ferruginous shale, observed in the Pilbara Craton, Western Australia and the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, is considered. Such associations include (1) 3470.1 ± 1.9 Ma impact spherule units and tsunami-type breccia overlain by jaspilite in the Antarctic Chert Member, central Pilbara Craton; (2) 3258 ± 3 Ma impact spherule unit (S2) in the BGB overlain by BIF, jaspilite and ferruginous shale; (3) 3243 ± 4 Ma impact unit (S3) in the BGB overlain by iron-rich sediments (Ulundi Formation); (4) two formations of BIF and ferruginous shale at the base (Nimmingarra Iron Formation) and lower part (Paddy Market Formation) of the Gorge Creek Group, central Pilbara Craton, which overlie 3235 ± 3 Ma felsic volcanics along a boundary correlated with the BGB-S3 unit; (5) 2629 ± 5 Ma impact spherule unit and tsunami-type deposit overlain by BIF and ferruginous shale (Marra Mamba Iron Formation), central Pilbara Craton; (5) 2481 ± 4 Ma spherule unit intercalated at the lower part of the Dales Gorge Iron Member of the Brockman Iron Formation, Hamersley Basin, and possible equivalents in the Kuruman Formation, western Transvaal. No significant thicknesses of iron-rich sediments are known to overlie carbonate-hosted impact ejecta units, including the Bee Gorge Member (BGM) of the Wittenoom Formation (2561 ± 8 Ma), Carawine Dolomite (eastern Hamersley Basin, Pilbara Craton), Monteville Formation and Reivilo Formation (Griqualand West Basin, Transvaal Group), or the Graensco-Vallen spherule occurrence (southwest Greenland). The juxtaposition between impact ejecta units and overlying BIF and jaspilite may be accidental or purely related to preservation of these units in below-wave-base environments. Alternatively, this association may hint at enrichment of seawater

  4. Sulfur diagenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Goldhaber, M.

    1985-01-01

    Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.

  5. Marine sediments in the classroom

    NASA Astrophysics Data System (ADS)

    Van Toer, Aurelie; Le Divenah, Claudie

    2013-04-01

    In the present context of global climatic change, studies of the past natural climate variability is critical for the knowledge of the Earth climate mechanism. One of the major climatic reservoir is the ocean which covers more than 70% of the surface of the earth. It exchanges moisture and heat with the atmosphere and plays an important role in the climatic changes at different latitudes. The marine sediments are therefore archives of the past oceanographic/climatic changes. These marine sediments are collected as long cores penetrating into the sediment and therefore giving access to the progressive climatic changes with time. Marine sediments are classically composed of skeleton of micro-organisms and of terrigenous fraction. The main micro-organisms used as tracers of paleoclimatic changes are foraminifera. Their species change with the properties of the water mass in which they live (in particular temperature and salinity). With the aim of showing the students in a classroom how to recognize these species and to reconstruct the past oceanographic changes, "real" sediment has been taken during different cruises in different oceanic basins. We will present here the type of sediments available and the type of analysis/observation which can be made in a class. We will show how to perform the preparation of the samples and what are the possible observations through a binocular microscope. The students will then be able to extract information from their own observation about climate: its variations over time and through the differences between the areas of coring operations. In order to allow this activity to be introduced into your class, a program of distribution of these marine sediments will be proposed and will be presented. A registration form will be available. A limited number of proposals will be accepted and a report of their activity in the classroom will be mandatory a few months after the distribution of samples.

  6. Priming effects in marine sediments

    NASA Astrophysics Data System (ADS)

    Gontikaki, Evina; Thornton, Barry; Witte, Ursula

    2013-04-01

    Continental margin sediments (<2000 m) cover merely 15 % of the ocean's seafloor but are responsible for more than 70 % of the global benthic mineralization. Understanding when these systems act as a source or sink of carbon (C) is thus of primary importance if we are to produce reliable global C budgets and predict the effects of future perturbations on the global C cycle. The chemical nature of organic matter (OM) is thought to be one of the major controls on the degradation/preservation balance in sediments; labile and refractory OM pools degrade at different rates but not independently. Priming effects (PE), i.e. changes in the decomposition of refractory organic matter following inputs of labile OM, have the potential to alter the C budget in sediments but have been largely ignored by marine scientists. Climate-driven changes in primary production, and land erosion and run-off are likely to change the quantity and composition of organic matter inputs in marine ecosystems and influence the magnitude and direction of PEs in seawater and sediments. Here, we attempt to evaluate the importance of priming effects on C cycling in marine sediments by use of labelled substrates of different quantity and quality in stable isotope tracer experiments and argue that PEs need to be incorporated in global change models.

  7. PHOXOCEPHALID AMPHIPOD BIOASSAY FOR MARINE SEDIMENT TOXICITY

    EPA Science Inventory

    The relative toxicity of marine sediment can be accurately determined through acute, static bioassays with the phoxocepalid amphipod Repoxynius abronius. Mortality and sublethal effects on emergence from sediment and reburial behavior are determined after ten day exposure in 1-L ...

  8. HARBOR ISLAND REMEDIAL INVESTIGATION, MARINE SEDIMENT

    EPA Science Inventory

    The data set contains marine sediment data from a remedial investigation of Harbor Island, a National Priority List (NPL) Superfund site in Washington State. Both surface and subsurface marine sediments were collected. A station data set contain sampling station location and desc...

  9. Isolation of cellulolytic actinomycetes from marine sediments

    SciTech Connect

    Veiga, M.; Esparis, A.; Fabregas, J.

    1983-07-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity. 13 references.

  10. Trace metals in marine sediments of Kuwait

    SciTech Connect

    Anderlini, V.C.; Mohammad, O.S.; Zarba, M.A.; Fowler, S.W.; Miramand, P.

    1982-01-01

    The report presents the results of analyses for ten trace metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) in marine surface sediments from Kuwait and discusses the effect of grain size and total organic content on the observed concentrations of these metals. (JMT)

  11. Magnesium Isotopic Composition of Subducting Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  12. Modeling sediment deposition from marine outfall jets.

    PubMed

    Terfous, Abdelali; Chiban, Samia; Ghenaim, Abdellah

    2016-08-01

    This paper presents a two-dimensional model to study the sediment deposition from marine outfall jets. The introduced unidirectional coupling (fluid-sediment) is an appropriate choice in the case of low-concentrated particle-laden jets such as municipal wastewater discharge, where the concentration of particles is small enough and does not affect the hydrodynamic development of the jet in the nearfield. The sedimentation model takes advantage of the preferential concentration phenomenon. The deposition criterion states that the deposition of sediments begins when the vertical component of the entrainment velocity becomes smaller than the settling velocity. Once the deposition process begins, it is controlled by the settling velocity, entrainment velocity, volume flux, and sediment concentration. The deposition along the jet trajectory is expressed by an ordinary differential equation coupled with the liquid phase equations. Experiments of Lane-Serff and Moran [Sedimentation from Buoyant jets. J Hyd Eng. 2005;131(3):166-174], Cuthbertson and Davies [Deposition from particle-laden, round, turbulent, horizontal, buoyant jets in stationary and coflowing receiving fluids. J Hydr Eng. 2008;134(4):390-402], and Lee [Mixing of horizontal sediment laden jets [dissertation]. Hong Kong: University of Hong Kong; 2010], chosen from bibliography, are used to validate the model. These experiments cover the cases of horizontal and inclined buoyant jets in stationary ambient, horizontal buoyant jets in co-flow current and nonbuoyant horizontal jets in stationary ambient. Good agreement between the experiments and the obtained simulations is revealed. PMID:26732467

  13. Carotenoid diagenesis in a marine sediment

    NASA Technical Reports Server (NTRS)

    Watts, C. D.; Maxwell, J. R.

    1977-01-01

    The major carotenoids at three levels (3, 40, and 175 m below the sediment-water interface) in a core from a marine sediment (Cariaco Trench, off Venezuela) have been examined. Mass and electronic spectral data have provided evidence for the onset of a progressive reduction of carotenoids in the geological column. The time scale of the process appears to depend on the particular carotenoid. Reduction of up to two double bonds is observed for the diol, zeaxanthin, in the oldest sediment (about 340,000 years old) but no reduction is observed in the younger samples (about 5000 and 56,000 years old). The diketone, canthaxanthin, shows evidence of reduction of up to two double bonds in the 56,000-yr sample and up to five double bonds in the oldest sample. No reduction of beta-carotene was observed in any of the samples.

  14. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  15. Sediment Burial Intolerance of Marine Macroinvertebrates.

    PubMed

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  16. Sediment Burial Intolerance of Marine Macroinvertebrates

    PubMed Central

    Hendrick, Vicki J.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  17. Analysis of marine bivalves and sediments

    SciTech Connect

    Zeisler, R.; Stone, S.F.

    1986-01-01

    Recently, environmental monitoring has been complemented by programs for systematic and controlled long-term storage of environmental samples; i.e., environmental specimen banking (ESB). In the US a pilot ESB program is currently expanding to become past of several environmental and human health monitoring projects. The National Status and Trends (NS and T) program on the marine environment, administrated by the National Oceanic and Atmospheric Administration (NOAA), is one of these projects and has initialized new investigations within the ESB research program. This research includes all steps of the ESB operation, with special emphasis on quality assurance in the selection, collection, preparation, storage, and analysis of marine samples according to validated procedures. A unique sequence of instrumental analytical methods involving x-ray fluorescence and neutron activation analysis procedures has been employed for the determination of 44 elements in marine bivalves. The individual procedures are an x-ray fluorescence method based on backscatter with fundamental parameter corrections, prompt gamma activation analysis, and neutron activation analysis with instrumental and radiochemical procedures. This analytical approach has been expanded to include the analysis of sediments and fish tissues.

  18. Factors controlling bacterial production in marine and freshwater sediments.

    PubMed

    Sander, B C; Kalff, J

    1993-09-01

    We collected benthic bacterial production data measured by (3)H thymidine incorporation (TTI) (25 studies), frequency of dividing cells (FDC) (3 studies), dark-C02 assimilation (1 study) and (3)H-adenine uptake (2 studies) from the literature, which included 18 marine, 6 river, and 2 lake studies. In all of the studies that used the TTI method, (3)H-DNA was isolated and incubations were carried out at in situ temperatures. Most of the researchers also determined (3)H-DNA extraction efficiencies and isotope dilution, thus interpretable estimates of bacterial production were used in the analysis. In marine sediments, bacterial production rates were linked to bacterial biomass, bacterial abundance, sediment organic matter, temperature, and sediment chlorophyll a, with these variables explaining between 40% and 68% of the variation in production rates. Simple relationships between production and bacterial biomass or bacterial abundance, or between production and sediment organic matter, were improved by also including temperature in the analysis of marine sediments. Sediment organic matter explained an appreciable fraction (58%) of the observed production in freshwater sediments. Temperature was the most powerful predictor of the observed variability in specific growth rates (r (2) = 0.48 and r (2) = 0.58) in marine and freshwater sediments, respectively. Thus, bacterial production and specific growth rates are most closely linked to substrate supply and temperature in marine and freshwater sediments. PMID:24190006

  19. Dissolution and analysis of amorphous silica in marine sediments.

    USGS Publications Warehouse

    Eggimann, D.W.; Manheim, F. T.; Betzer, P.R.

    1980-01-01

    The analytical estimation of amorphous silica in selected Atlantic and Antarctic Ocean sediments, the U.S.G.S. standard marine mud (MAG-1), A.A.P.G. clays, and samples from cultures of a marine diatom, Hemidiscus, has been examined. Our values for amorphous silica-rich circum-Antarctic sediments are equal to or greater than literature values, whereas our values for a set of amorphous silica-poor sediments from a transect of the N. Atlantic at 11oN, after appropriate correction for silica released from clays, are significantly lower than previous estimates from the same region. -from Authors

  20. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect

    Brown, B. |

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  1. Sulfate reduction and methanogenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  2. Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Ogrinc, N.; Faganeli, J.

    2006-05-01

    According to bioassay studies and high dissolved nutrient N/P ratios in the seawater column, phosphorus (P) is thought to control marine productivity in the northern Adriatic Sea. P in near-shore marine sediments of the Gulf of Trieste, the northernmost part of the Adriatic Sea, was investigated using pore water P distributions, and benthic P flux studies under oxic and anoxic conditions. The data show that P regeneration is up to three-fold more extensive in sediments overlain by oxygen-depleted waters and proceeds in parallel with Fe and Mn enhanced benthic fluxes. It appears from the incubation experiments that degradation of sedimentary organic matter is the main contribution to the flux of P at the sediment-water interface, while the release of phosphate adsorbed on the iron oxide surface is of minor importance. It appears that about 50% of P in the Gulf of Trieste is retained within in the sediments, probably bonded to clay minerals and carbonate grains or precipitated as fluoroapatite. In these sediments total P (P tot) is preserved preferentially over organic C (C org). P regenerated from surficial sediments contributes about 1/3 of the P that is assimilated by benthic microalgae. The phytoplankton P requirement should be entirely supplied from fresh-water sources. These results suggest that oxygen depletion in coastal areas caused by eutrophication enhances P regeneration from sediments, providing the additional P necessary for increased biological productivity. The development of anoxic bottom waters in coastal areas enhances the recycling of P, exacerbating the nutrient requirement in the area. A geochemical record of P burial in a longer sedimentary sequence revealed an increasing trend of P tot and organic P (P org) contents occurring approximately 50 years BP (after 1950), probably due to increasing use of inorganic fertilizers and detergents in the area.

  3. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.

    2004-12-01

    Much of the methane in natural gas hydrates in marine sediments is made by methanogens. Current models used to predict hydrate distribution and concentration in these sediments require estimates of microbial methane production rates. However, accurate estimates are difficult to achieve because of the bias introduced by sampling and because methanogen activities in these sediments are low and not easily detected. To derive useful methane production rates for marine sediments we have measured the methanogen biomass in samples taken from different depths in Hydrate Ridge (HR) sediments off the coast of Oregon and, separately, the minimal rates of activity for a methanogen in a laboratory reactor. For methanogen biomass, we used a polymerase chain reaction assay in real time to target the methanogen-specific mcr gene. Using this method we found that a majority of the samples collected from boreholes at HR show no evidence of methanogens (detection limit: less than 100 methanogens per g of sediment). Most of the samples with detectable numbers of methanogens were from shallow sediments (less than 10 meters below seafloor [mbsf]) although a few samples with apparently high numbers of methanogens (greater than 10,000 methanogens per g) were from as deep as 230 mbsf and were associated with notable geological features (e.g., the bottom-simulating reflector and an ash-bearing zone with high fluid movement). Laboratory studies with Methanoculleus submarinus (isolated from a hydrate zone at the Nankai Trough) maintained in a biomass recycle reactor showed that when this methanogen is merely surviving, as is likely the case in deep marine sediments, it produces approximately 0.06 fmol methane per cell per day. This is far lower than rates reported for methanogens in other environments. By combining this estimate of specific methanogenic rates and an extrapolation from the numbers of methanogens at selected depths in the sediment column at HR sites we have derived a maximum

  4. Sorption behavior of bisphenol A on marine sediments.

    PubMed

    Xu, Xiangrong; Wang, Yuexing; Li, Xiaoyan

    2008-02-15

    Bisphenol A (BPA) is a known endocrine disrupting chemical (EDC) that has been widely used for the production of polycarbonate plastics and epoxy resins. In this experimental study, the sorption behavior of BPA on the marine sediments sampled from 6 different sites in the Mai Po Nature Reserve in Hong Kong was investigated. BPA sorption on the sediments can be well described by a linear sorption isotherm, suggesting a partition of BPA between the aqueous solution and the organic matter of the sediments. The BPA partition coefficient, K(d), for the raw sediment samples varied from 4.43 to 8.54 L/kg (R(2): 0.91-0.96) in nearly proportion to the organic content of the sediments. After the treatment of H(2)O(2) oxidation for organic removal, the sediments had the K(d) value reduced by more than 50%. However, the organic residue or black carbon of the sediments after the H(2)O(2) treatment had a much greater sorption capacity than the natural organic matter on the sediment which was oxidized by H(2)O(2). The organic normalized partition coefficients (K(oc)) averaged around 1355 L/kg for the H(2)O(2)-treated sediment, which was more than three times greater than the K(oc) value of 447 L/kg for the raw organic matter of the sediments. In addition to the organic content of the sediment, BPA sorption also was affected by a number of environmental factors. A pH drop, a temperature decrease and a reduction in salinity would increase the sorption of BPA on the sediment. The research findings are of significance to the description and assessment of the fate and transport of BPA and other similar EDCs in marine water-sediment systems. PMID:18205054

  5. Measuring biogenic silica in marine sediments and suspended matter

    NASA Astrophysics Data System (ADS)

    DeMaster, David J.

    Measuring the biogenic silica content of marine sediments and suspended matter is essential for a variety of geochemical, biological, and sedimentological studies. Biota forming siliceous skeletal material account for as much as one third of the primary productivity in the ocean [Lisitzin, 1972] and a significant portion (2 to 70% by weight) of open-ocean sediments. Biogenic silica measurements reveal important information concerning the bulk chemistry of suspended material or sediment and are essential in any type of silica flux study in the water column or seabed. Analyses of this biogenic phase in marine plankton are useful in characterizing the basic types of biota present and in comparing the distributions of particulate and dissolved silicate when evaluating nutrient dynamics [Nelson and Smith, 1986]. In the marine environment, diatoms, radiolaria, sponges, and silicoflagellates are the common types of siliceous biota.

  6. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin.

    PubMed

    Langenheder, Silke; Comte, Jérôme; Zha, Yinghua; Samad, Md Sainur; Sinclair, Lucas; Eiler, Alexander; Lindström, Eva S

    2016-08-01

    Some bacteria can be preserved over time in deep sediments where they persist either in dormant or slow-growing vegetative stages. Here, we hypothesized that such cells can be revived when exposed to environmental conditions similar to those before they were buried in the sediments. To test this hypothesis, we collected bacteria from sediment samples of different ages (140-8500 calibrated years before present, cal BP) from three lakes that differed in the timing of their physical isolation from the Baltic Sea following postglacial uplift. After these bacterial communities were grown in sterile water from the Baltic Sea, we determined the proportion of 16S rRNA sequence reads associated with marine habitats by extracting the environment descriptive terms of homologous sequences retrieved from public databases. We found that the proportion of reads associated with marine descriptive term was significantly higher in cultures inoculated with sediment layers formed under Baltic conditions and where salinities were expected to be similar to current levels. Moreover, a similar pattern was found in the original sediment layers. Our study, therefore, suggests that remnants of marine bacterial communities can be preserved in sediments over thousands of years and can be revived from deep sediments in lakes of marine origin. PMID:26929161

  7. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths

    PubMed Central

    Tenzer, R.; Gladkikh, V.

    2014-01-01

    We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686

  8. Meiofauna increases bacterial denitrification in marine sediments

    PubMed Central

    Bonaglia, S.; Nascimento, F. J. A; Bartoli, M.; Klawonn, I.; Brüchert, V.

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  9. Marine clathrate mining and sediment separation

    DOEpatents

    Borns, David J.; Hinkebein, Thomas E.; Lynch, Richard W.; Northrop, David A.

    2001-01-01

    A method and apparatus for mining of hydrocarbons from a hydrocarbon-containing clathrate such as is found on the ocean floor. The hydrocarbon containing clathrate is disaggregated from sediment by first disrupting clathrate-containing strata using continuous mining means such as a rotary tilling drum, a fluid injector, or a drill. The clathrate-rich portion of sediment thus disrupted from the sea floor strata are carried through the apparatus to regions of relative lower pressure and/or relative higher temperature where the clathrate further dissociates into component hydrocarbons and water. The hydrocarbon is recovered with the assistance of a gas that is injected and buoys the hydrocarbon containing clathrate helping it to rise to regions of lower pressure and temperature where hydrocarbon is released. The sediment separated from the hydrocarbon returns to the ocean floor.

  10. Meiofauna increases bacterial denitrification in marine sediments.

    PubMed

    Bonaglia, S; Nascimento, F J A; Bartoli, M; Klawonn, I; Brüchert, V

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  11. The lipid geochemistry of interstitial waters of recent marine sediments

    SciTech Connect

    Saliot, A.; Brault, M.; Boussuge, C. )

    1988-04-01

    To elucidate the nature of biogeochemical processes occurring at the water-sediment interface, the authors have analyzed fatty acids, n-alkanes and sterols contained in interstitial waters collected from oxic and anoxic marine sediments in the eastern and western intertropical Atlantic Ocean and in the Arabian Sea. Lipid concentrations in interstitial waters vary widely and are generally much higher than concentrations encountered in the overlying sea water. Higher concentrations in interstitial water are observed in environments favorable for organic input and preservation of the organic matter in the water column and in the surficial sediment. The analysis of biogeochemical markers in the various media of occurrence of the organic matter such as sea water, suspended particles, settling particles and sediment is discussed in terms of differences existing between these media and bio-transformations of the organic matter at the water-sediment interface.

  12. MARINE SEDIMENT DATA - CERCLA NPL SITES - USEPA REGION 10

    EPA Science Inventory

    The following information has been compiled for a subgroup of the National Priority List (NPL) Superfund sites located in Region 10. A description of each NPL Site marine sediment data file is available here as well as a link to the compressed (Pkzip) DBF format data file. The da...

  13. Stratified Communities of Active Archaea in Deep Marine Subsurface Sediments

    PubMed Central

    Sørensen, Ketil B.; Teske, Andreas

    2006-01-01

    Archaeal 16S rRNA was extracted from samples of deep marine subsurface sediments from Peru Margin site 1227, Ocean Drilling Program leg 201. The amounts of archaeal 16S rRNA in each extract were quantified by serial dilution and reverse transcription (RT)-PCR. The results indicated a 1,000-fold variation in rRNA content with depth in the sediment, with the highest concentrations found near the sediment surface and in the sulfate-methane transition zone (SMTZ). The phylogenetic composition of the active archaeal population revealed by cloning and sequencing of RT-PCR products changed with depth. Several phylotypes affiliated with marine benthic group B (MBGB) dominated clone libraries from the upper part of the SMTZ and were detected only in this layer. Members of the miscellaneous crenarchaeotal group (MCG) dominated clone libraries from the other layers. These results demonstrate that archaeal communities change in activity and community composition over short distances in geochemically distinct zones of deep subseafloor sediments and that these changes are traceable in the rRNA pool. It was shown for the first time that members of both the MCG and MBGB Archaea are more active in the SMTZ than in layers above and below. This indicates that they benefit either directly or indirectly from the anaerobic oxidation of methane. They also appear to be ecophysiologically flexible, as they have been retrieved from a wide range of marine sediments of various geochemical properties. PMID:16820449

  14. Ocean currents shape the microbiome of Arctic marine sediments

    PubMed Central

    Hamdan, Leila J; Coffin, Richard B; Sikaroodi, Masoumeh; Greinert, Jens; Treude, Tina; Gillevet, Patrick M

    2013-01-01

    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane. PMID:23190727

  15. Mineralogical Signatures in Electrically Coupled Marine Sediments

    NASA Astrophysics Data System (ADS)

    Bauermeister, A.; Gorby, Y. A.; Schramm, J.

    2014-12-01

    'Electric cable bacteria' are organisms of the family Desulfobulbaceaethat exhibit a novel method of electron transport. Cells form conductive filaments that function like electric wires, transferring electrons over distances of more than 1 cm from deep sulfidic sediments to oxygen or other electron acceptors near the soil/water interface. The rate of electron transfer across redox boundaries far exceeds that of diffusion limited processes and generates pH gradients that can significantly influence geochemical reactions, leading to the formation of distinct mineralogical profiles unlikely to be created by abiotic means. Electrically coupled sediments are characterized by carbonate and iron sulfide dissolution reactions occurring at depth and formation of carbonate and metal oxide crusts at the surface, exhibiting a reverse pattern compared to conventional sediment geochemistry. Our research seeks to address the following questions: How prevalent are electric cable bacteria in diverse environments? How do biogeochemical conditions such as ion concentration influence mineral formation? Do biogenic minerals participate in charge transfer? What is the importance of electric charge transfer in the subsurface or other low energy habitats? Can mineral banding patterns caused by cable bacteria activity be preserved in the geologic record? With this research we hope to further elucidate the impact of biologically-induced electric fields on the mineralogy of sediments.

  16. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation

    PubMed Central

    Hill, T. M.; Kennett, J. P.; Valentine, D. L.; Yang, Z.; Reddy, C. M.; Nelson, R. K.; Behl, R. J.; Robert, C.; Beaufort, L.

    2006-01-01

    Marine hydrocarbon seepage emits oil and gas, including methane (≈30 Tg of CH4 per year), to the ocean and atmosphere. Sediments from the California margin contain preserved tar, primarily formed through hydrocarbon weathering at the sea surface. We present a record of variation in the abundance of tar in sediments for the past 32,000 years, providing evidence for increases in hydrocarbon emissions before and during Termination IA [16,000 years ago (16 ka) to 14 ka] and again over Termination IB (11–10 ka). Our study provides direct evidence for increased hydrocarbon seepage associated with deglacial warming through tar abundance in marine sediments, independent of previous geochemical proxies. Climate-sensitive gas hydrates may modulate thermogenic hydrocarbon seepage during deglaciation. PMID:16945904

  17. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  18. Evaluating Sediment Stability at Offshore Marine Hydrokinetic Energy Facilities

    NASA Astrophysics Data System (ADS)

    Jones, C. A.; Magalen, J.; Roberts, J.; Chang, G.

    2014-12-01

    Development of offshore alternative energy production methods through the deployment of Marine Hydrokinetic (MHK) devices (e.g. wave, tidal, and wind generators) in the United States continues at a rapid pace, with significant public and private investment in recent years. The installation of offshore MHK systems includes cabling to the shoreline and some combination of bottom foundation (e.g., piles, gravity bases, suction buckets) or anchored floating structure. Installation of any of this infrastructure at the seabed may affect coastal sediment dynamics. It is, therefore, necessary to evaluate the interrelationships between hydrodynamics and seabed dynamics and the effects of MHK foundations and cables on sediment transport. If sufficient information is known about the physical processes and sediment characteristics of a region, hydrodynamic and sediment transport models may be developed to evaluate near and far-field sediment transport. The ultimate goal of these models and methods is to quantitatively evaluate changes to the baseline seabed stability due to the installation of MHK farms in the water. The objective of the present study is to evaluate and validate wave, current, and sediment transport models (i.e., a site analysis) that may be used to estimate risk of sediment mobilization and transport. While the methodology and examples have been presented in a draft guidance document (Roberts et al., 2013), the current report presents an overall strategy for model validation, specifically for a case study in the Santa Cruz Bight, Monterey Bay, CA. Innovative techniques to quantify the risk of sediment mobility has been developed to support these investigations. Public domain numerical models are utilized to estimate the near-shore wave climate (SWAN: Simulating Waves Near-shore) and circulation and sediment transport (EFDC: Environmental Fluid Dynamics Code) regimes. The models were validated with field hydrodynamic data. Sediment size information was

  19. Glacial-marine and glacial-lacustrine sedimentation in Sebago Lake, Maine: Locating the marine limit

    SciTech Connect

    Johnston, R.A.; Kelley, J.T. ); Belknap, D. . Dept. of Geological Sciences)

    1993-03-01

    The marine limit in Maine marks a sea-level highstand at approximately 13 ka. It was inferred to cross Sebago Lake near Frye Island by Thompson and Borns (1985) on the Surficial Geological Map of Maine, dividing the lake into a northern glacial-lacustrine basin and a southern glacial-marine basin. This study examined the accuracy of the mapped marine limit in the lake and the nature of glacial-lacustrine and glacial-marine facies in Maine. Recognition of the marine limit is usually based on mapped shorelines, glacial-marine deltas, and contacts with glacial-marine sediments. This study, in Maine's second largest lake, collected 100 kilometers of side-scan sonar images, 100 kilometers of seismic reflection profiles, and one core. Side-scan sonar records show coarse sand and gravel and extensive boulder fields at an inferred grounding-line position near Frye Island, where the marine limit was drawn. ORE Geopulse seismic reflection profiles reveal a basal draping unit similar to glacial-marine units identified offshore. Later channels cut more than 30 m into the basal stratified unit. In addition, till and a possible glacial-tectonic grounding-line feature were identified. Slumps and possible spring disruptions are found in several locations. The top unit is an onlapping ponded Holocene lacustrine unit. Total sediment is much thicker in the southern basin; the northern basin, >97 m deep, north of the marine limit appears to have been occupied by an ice block. Retrieved sediments include 12 meters of rhythmites. Microfossil identifications and dating will resolve the environments and time of deposition in this core.

  20. Detoxification of hazardous dust with marine sediment.

    PubMed

    Wei, Yu-Ling; Lin, Chang-Yuan; Wang, H Paul

    2014-08-30

    Hazardous electric arc furnace dust containing dioxins/furans and heavy metals is blended with harbor sediment, fired at 950-1100 °C to prepare lightweight aggregates. Dust addition can lower the sintering temperature by about 100 °C, as compared to a typical industrial process. After firing at 950 °C and 1050 °C, more than 99.85% of dioxins/furans originally present in the dust have been removed and/or destructed in the mix containing a dust/sediment ratio of 50:100. The heavy metals leached from all fired mixes are far below Taiwan EPA legal limits. The particle density of the lightweight aggregates always decreases with increasing firing temperature. Greater addition of the dust results in a considerably lower particle density (mostly <2.0 g cm(-3)) fired at 1050 °C and 1100 °C. However, firing at temperatures lower than 1050 °C produces no successful bloating, leading to a denser particle density (>2.0 g cm(-3)) that is typical of bricks. PMID:24461694

  1. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    NASA Astrophysics Data System (ADS)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar and Rose Bengal) prepared with sea water and added with antibiotics. The inoculated dishes were incubated at 20°C in the dark for 28 days. Every week fungal growth was monitored counting the number of colonies. Later, the colonies were isolated in axenic culture for further molecular analysis. The mycodiversity evaluate on the basis of Colony Forming Units (CFU) and microfungal-morphotype characterised by macro-and micro-morphology. Until now on the 72 Petri dishes inoculated 112 CFU of filamentous fungi were counted, among these about 50 morphotypes were characterized. The quantitative results show a mean value of 4

  2. The use of marine sediments as a pavement base material.

    PubMed

    Dubois, Vincent; Abriak, Nor Edine; Zentar, Rachid; Ballivy, Gérard

    2009-02-01

    The management of marine sediments after dredging has become increasingly complex. In the context of sustainable development, traditional solutions such as immersion will be increasingly regulated. More than ever, with the shortage of aggregates from quarries, dredged material could constitute a new source of materials. In this study of the potential of using dredged marine sediments in road construction, the first objective is to determine the physical and mechanical characteristics of fine sediments dredged from a harbour in the north of France. The impacts of these materials on the environment are also explored. In the second stage, the characteristics of the fine sediment are enhanced for use as a road material. At this stage, the treatment used is compatible with industrial constraints. To decrease the water content of the fine sediments, natural decantation is employed; in addition, dredged sand is added to enhance the granular distribution and to reinforce the granular skeleton. Finally, the characteristics of the mix are enhanced by incorporating binders (cement and/or lime). The mechanical characteristics measured on the mixes are compatible with their use as a base course material. Moreover, the obtained results demonstrate the effectiveness of lime in the mixes. In terms of environmental impacts, on the basis of leaching tests and according to available thresholds developed for the use of municipal solid waste incineration (MSWI) bottom ash in road construction, the designed dredged mixes satisfy the prescribed thresholds. PMID:18640020

  3. In situ tensile fracture toughness of surficial cohesive marine sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce D.; Barry, Mark A.; Boudreau, Bernard P.; Jumars, Peter A.; Dorgan, Kelly M.

    2012-02-01

    This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter's clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23-50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.

  4. Heterotrophic potential of Atribacteria from deep marine Antarctic sediment

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Orcutt, B.; Mandernack, K. W.; Spear, J. R.

    2015-12-01

    Bacteria belonging to the newly classified candidate phylum "Atribacteria" (formerly referred to as "OP9" and "JS1") are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. This study observed a steady increase of Atribacteria-related sequences with increasing sediment depth throughout the methane-rich zone of the Adélie Basin, Antarctica (according to a 16S rRNA gene survey). To explore the functional potential of Atribacteria in this basin, samples from various depths (14, 25 and 97 meters below seafloor), were subjected to metagenomic sequencing. Additionally, individual cells were separated from frozen, unpreserved sediment for whole genome amplification. The successful isolation and sequencing of a single-amplified Atribacteria genome from these unpreserved sediments demonstrates a future use of single cell techniques with previously collected and frozen sediments. Our resulting single-cell amplified genome, combined with metagenomic interpretations, provides our first insights to the functional potential of Atribacteria in deep subsurface settings. As observed for non-marine Atribacteria, genomic analyses suggest a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments.

  5. Pigment preservation and remineralization in oxic coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Carpenter, Roy

    1988-01-01

    Complex mixtures of sedimentary chlorophyll degradation products were measured using high performance liquid chromatography (HPLC) in 210Pb dated box- and piston-core sediments. Sediments were collected from Dabob Bay, Washington, a coastal marine fjord conducive to studies yielding an understanding of the remineralization and diagenesis of organic carbon. Greater than 99% of the pheopigment flux out of the water column does not accumulate in the top 2 cm of sediment. Surface sediment pigment profiles indicate that pheophorbides are the dominant pheopigments observed, with concentrations decreasing rapidly with depth. Concentrations of chlorophyll c derivatives also decrease rapidly, but ratios of a/c pheopigments remain within ranges reported for natural and cultured phytoplankton. Sharp pheopigment concentration decreases within the bioturbated surface sediments (as defined by 210Pb activities) were modeled using a one dimensional mixing model. The in situ pheopigment decomposition rate, corrected for bioturbation and sediment accumulation, corresponds to an approximate half-life of 40 days. Sedimentary humic acid, fulvic acid, and residual humin associated pheopigments in sediments which had been previously acetone extracted to remove the lipophilic pheopigment fraction were typed by chromic acid oxidation and release of pyrrole derived maleimides. This humic associated pyrrole derived nitrogen, while a small fraction of total sedimentary or humic nitrogen, accounted for 16-75% of the total sedimentary pheopigment accumulation, and may be significant in understanding the diagenetic fate and transformation of pheopigments to petroporphyrins.

  6. Monitoring of biofilm growth in marine sediment by metal electrodes

    NASA Astrophysics Data System (ADS)

    Cristiani, P.; Guandalini, R.; Del Negro, P.; Cataletto, B.

    2009-04-01

    Electrochemical monitoring of biofilm growing in marine sediments is evaluating in laboratory experiments, still in progress. The interesting preliminary results obtained during six month experiments are presented in this paper. A concept of electrochemically active bacteria has recently pointed out by several studies, showing that bacteria forming biofilms on conductive materials can achieve a direct electrochemical connection with the substrate using it as electron exchanger, also without the aid of additional mediators [1]. The electric current generated by bacteria is more than enough as signal for bio-sensors. Thanks to the developing of bio-sensors based on electrochemical probes and able to monitoring the biofilm growth on metal surfaces, this "bio-electricity" has been already exploited with success for the biofilm monitoring in industrial equipment exposed to natural waters [2]. The same, very simple, electrochemical biofilm probes, in which electrical signal is proportional to biofilm growth, already successfully used for aerobic environments, have been here tested in the anaerobic environment of marine sediments. A laboratory microcosm has been prepared by filling a large polycarbonate cylinder about one-third full with organic-rich coastal marine sediment collected in the Gulf of Trieste (Northern Adriatic Sea). The sediment was packed tightly in the container to avoid entrapping air and then covered with O2 depleted seawater. Three identical electrochemical sensors were buried in the sediment of microcosm. The cylinder was placed in the dark under controlled temperature and anaerobic conditions. During the six months of monitoring, bacterial communities developing at the water-sediment interface were periodically sampled by inserting a long thin pipette into the column and removing some coloured mud or water. The microrganisms were used to inoculate enriched media and to extract bulk DNA. The results pointed out the possibility of set up simple device

  7. Metatranscriptomic insights into polyphosphate metabolism in marine sediments.

    PubMed

    Jones, Daniel S; Flood, Beverly E; Bailey, Jake V

    2016-04-01

    Microorganisms can influence inorganic phosphate (Pi) in pore waters, and thus the saturation state of phosphatic minerals, by accumulating and hydrolyzing intracellular polyphosphate (poly-P). Here we used comparative metatranscriptomics to explore microbial poly-P utilization in marine sediments. Sulfidic marine sediments from methane seeps near Barbados and from the Santa Barbara Basin (SBB) oxygen minimum zone were incubated under oxic and anoxic sulfidic conditions. Pi was sequestered under oxic conditions and liberated under anoxic conditions. Transcripts homologous to poly-P kinase type 2 (ppk2) were 6-22 × more abundant in metatranscriptomes from the anoxic incubations, suggesting that reversible poly-P degradation by Ppk2 may be an important metabolic response to anoxia by marine microorganisms. Overall, diverse taxa differentially expressed homologues of genes for poly-P degradation (ppk2 and exopolyphosphatase) under different incubation conditions. Sulfur-oxidizing microorganisms appeared to preferentially express genes for poly-P degradation under anoxic conditions, which may impact phosphorus cycling in a wide range of oxygen-depleted marine settings. PMID:26381585

  8. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  9. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    USGS Publications Warehouse

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  10. Pigment preservation and remineralization in oxic coastal marine sediments

    SciTech Connect

    Furlong, E.T.; Carpenter, R.

    1988-01-01

    Complex mixtures of sedimentary chlorophyll degradation products were measured using high performance liquid chromatography (HPLC) in /sup 210/Pb dated box- and piston-core sediments. Sediments were collected from Dabob Bay, Washington, a coastal marine fjord conducive to studies yielding an understanding of the remineralization and diagenesis of organic carbon. Greater than 99% of the pheopigment flux out of the water column does not accumulate in the top 2 cm of sediment. Surface sediment pigment profiles indicate that pheophoribides are the dominant pheopigments observed, with concentrations decreasing rapidly with depth. Concentrations of chlorophyll c derivatives also decrease rapidly, but ratios of a/c pheopigments remain within ranges reported for natural and cultured phytoplankton. Sharp pheopigment concentrations decreases within the bioturbated surface sediments were modeled using a one dimensional mixing model. Sedimentary humic acid, fulvic acid, and residual humin associated pheopigments in sediments which had been previously acetone extracted to remove the lipophilic pheopigment fraction were typed by chromic acid oxidation and release of pyrrole derived maleimides. This humic associated pyrrole derived nitrogen, while a small fraction of total sedimentary or humic nitrogen, accounted for 16-75% of the total sedimentary pheopigment accumulation, and may be significant in understanding the diagenetic fate and transformation of pheopigments to petroporphyrins.

  11. Depositional environments and processes in Upper Cretaceous nonmarine and marine sediments, Ocean Point dinosaur locality, North Slope, Alaska

    USGS Publications Warehouse

    Phillips, R.L.

    2003-01-01

    representing interdistributary bay deposits overlie the nonmarine beds and comprise about 15 m of section. Extensive vegetated sand flats, shoals, and shallow channels overlain by shallow bay deposits (less than 7 m deep), containing storm-generated strata characterize the marginal marine beds. Abundant bioturbation and roots characterize the stratigraphic lowest bay deposits; bioturbated sediment, pelecypods, barnacles, and benthic microfossils are found in the overlying bay storm deposits. The sediments abruptly change upward from hummocky cross-stratified bay deposits to a muddy marsh deposit containing shallow organic-rich channels to prograding nonmarine to marginal marine beds. Transgressive, abundantly fossiliferous shallow-marine strata more than 13 m thick comprise the uppermost exposures at Ocean Point. The marine beds overlie nonmarine and bay strata and represent an environment dominated episodically by storms. The age of the marginal marine and marine beds is late Maastrichtian based on pollen. ?? 2003 Elsevier Ltd. All rights reserved.

  12. The chromium isotope composition of reducing and oxic marine sediments

    NASA Astrophysics Data System (ADS)

    Gueguen, Bleuenn; Reinhard, Christopher T.; Algeo, Thomas J.; Peterson, Larry C.; Nielsen, Sune G.; Wang, Xiangli; Rowe, Harry; Planavsky, Noah J.

    2016-07-01

    The chromium (Cr) isotope composition of marine sediments has the potential to provide new insights into the evolution of Earth-surface redox conditions. There are significant but poorly constrained isotope fractionations associated with oxidative subaerial weathering and riverine transport, the major source of seawater Cr, and with partial Cr reduction during burial in marine sediments, the major sink for seawater Cr. A more comprehensive understanding of these processes is needed to establish global Cr isotope mass balance and to gauge the utility of Cr isotopes as a paleoredox proxy. For these purposes, we investigated the Cr isotope composition of reducing sediments from the upwelling zone of the Peru Margin and the deep Cariaco Basin. Chromium is present in marine sediments in both detrital and authigenic phases, and to estimate the isotopic composition of the authigenic fraction, we measured δ53Cr on a weakly acid-leached fraction in addition to the bulk sediment. In an effort to examine potential variability in the Cr isotope composition of the detrital fraction, we also measured δ53Cr on a variety of oxic marine sediments that contain minimal authigenic Cr. The average δ53Cr value of the oxic sediments examined here is -0.05 ± 0.10‰ (2σ, n = 25), which is within the range of δ53Cr values characteristic of the bulk silicate Earth. This implies that uncertainty in estimates of authigenic δ53Cr values based on bulk sediment analyses is mainly linked to estimation of the ratio of Cr in detrital versus authigenic phases, rather than to the Cr-isotopic composition of the detrital pool. Leaches of Cariaco Basin sediments have an average δ53Cr value of +0.38 ± 0.10‰ (2σ, n = 7), which shows no dependency on sample location within the basin and is close to that of Atlantic deepwater Cr (∼+0.5‰). This suggests that authigenic Cr in anoxic sediments may reliably reflect the first-order Cr isotope composition of deepwaters. For Peru Margin samples

  13. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  14. Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments

    SciTech Connect

    Reed, David William; Fujita, Yoshiko; Delwiche, Mark Edmond; Blackwelder, David Bradley; Colwell, Frederick Scott; Uchida, T.

    2002-08-01

    Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35°C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.

  15. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  16. Pyritization of trace metals in anoxic marine sediments

    NASA Astrophysics Data System (ADS)

    Huerta-Diaz, Miguel A.; Morse, John W.

    1992-07-01

    The pyritization of reactive trace elements in different anoxic marine sediments was investigated to determine the importance of factors such as ∑H 2S, reactive-Fe, pyrite content and salinity in controlling this process. The areas studied included anoxic-sulfidic sediments (Baffin Bay, a hypersaline coastal lagoon from Texas and Green Canyon, a hemipelagic oil seepage area), anoxic-nonsulfidic sediments with high sedimentation rates (Atchafalaya Bay-Mississippi Delta system), hemipelagic anoxic-nonsulfidic sediments with low sedimentation rates (Gulf of Mexico shelf and slope and Orca Basin, an euxinic hypersaline basin) and organic-rich marsh sediments (Atchafalaya Bay). Results indicate that the degree of trace metal pyritization (DTMP) of all trace metals, except Cd, increased with increasing degree of pyritization (DOP), irrespective of the type of sedimentary environment involved. However, for As, Hg and Mo, the DTMP/DOP values were generally above the 1:1 ratio line, whereas the transition metals Co, Cu, Mn and Ni displayed a close to linear increase in DTMP with DOP and moderate incorporation into pyrite. Chromium and the class B metals Pb and Zn were also gradually incorporated into the pyrite phase but without reaching the DTMP levels exhibited by the transition metals. Cadmium was not incorporated to a significant extent. These results are consistent with the chemical attributes of these different classes of trace elements. Availability of dissolved trace metals and organic matter content are apparently important factors controlling the incorporation of Co, Cr, Cu and Ni into pyrite in anoxicsulfidic (Fe-poor and H 2S-rich) environments.

  17. Bacterial activities driving arsenic speciation and solubility in marine sediments

    NASA Astrophysics Data System (ADS)

    Battaglia-Brunet, F.; Seby, F.; Crouzet, C.; Joulian, C.; Mamindy-Pajany, Y.; Guezennec, A. G.; Hurel, C.; Marmier, N.; Bataillard, P.

    2012-04-01

    Harbour and marina sediments represent particular environments, with high concentrations in organic carbon and pollutants. Over 50 million m3 of marine sediments are dredged every year in French maritime and commercial ports, to maintain the water depth suitable for navigation, and the most part of them is discharged in deeper sea zones. The present study aimed to elucidate, using a range of complementary approaches, the influence of bacterial activity on arsenic speciation and mobility in marina sediments. Two sites were considered: L'Estaque, impacted by metallurgical activities and by the commercial port of Marseille, and St-Mandrier, less polluted, affected by classical chemical pollutants associated to professional and recreational boating. Arsenic concentration was noticeably higher in l'Estaque sediment (200-350 mg/kg) than in St-Mandrier sediment (15-50 mg/kg). In the solid phases, As(III) was the dominant species in L'Estaque sediment, whereas As(V) was the main form in St Mandrier sediment. At both sites, arsenic was the major trace element detected in interstitial water. Free sulfide and thio-arsenic complexes were detected in the interstitial water of l'Estaque sediment, suggesting a role of sulfate-reduction bacterial activity on arsenic solubility. Anaerobic microcosm experiments confirmed this hypothesis, as stimulation of sulfate-reduction induced a dramatic increase of arsenic concentration in the liquid phase, linked to the formation of soluble thio-arsenic complexes. Nevertheless, microcosms performed in aerobic conditions showed that bacterial activity globally decreased the transfer of arsenic from the sediment toward the overlying water. A red-brown fine layer developed at the sediment-water interface. Altogether, these results suggest that the sediment-water interface zone and the close transition area between aerobic and anaerobic conditions host intense biogeochemical reactions involving As, Fe and S species. These reactions most probably

  18. Estimating soil organic carbon input to marine sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Weijers, J.; Schouten, S.; Schefuss, E.; Schneider, R. R.; Sinninghe Damsté, J. S.

    2009-12-01

    Estimating (past) input of terrestrial organic carbon (OC) in marine sediments is complicated due to the heterogeneity of the OC. Two end member mixing models based on different parameters often give different results. This is in part due to the fact that terrestrial OC is only represented by one end member (often representing plant OC) where it in fact consists of two OC pools, i.e., plant and soil OC. The branched vs. isoprenoid tetraether (BIT) index is a new proxy for soil OC input, with the branched tetraether membrane lipids being derived from bacteria living in soils and peat bogs [1]. We have now applied this molecular proxy in a three end member mixing model, in conjunction with d13C and C/N values of total organic matter, in a marine sediment core from the Congo deep sea fan to estimate inputs of marine, soil and plant OC to this location over the last deglaciation. Results indicate an average of 45% of the OC being of soil origin, pointing to the importance of soil OC and the need for proper characterization of this fraction. [1] Hopmans et al. (2004) EPSL 224, 107-116. Figure 1: Composition of the organic carbon input to the Congo deep sea fan over the last 20 thousand years. YD = Younger Dryas; LGM = Last Glacial Maximum

  19. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    PubMed

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry. PMID:27418075

  20. Diversity and novelty of actinobacteria in Arctic marine sediments.

    PubMed

    Zhang, Gaiyun; Cao, Tingfeng; Ying, Jianxi; Yang, Yanliu; Ma, Lingqi

    2014-04-01

    The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (<95 %), this study confirms that Arctic marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species. PMID:24519808

  1. MARINE SEDIMENT TOXICITY IDNETIFICATION EVALUATION METHODS FOR THE ANIONIC METALS ARSENIC AND CHROMIUM

    EPA Science Inventory

    Marine sediments accumulate a diversity of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity Identification Evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole sedimen...

  2. IMPORTANCE OF INTERSTITIAL, OVERLYING WATER AND WHOLE SEDIMENT EXPOSURES TO BIOACCUMUALTION BY MARINE BIVALVES

    EPA Science Inventory

    During the performance of contaminated sediment studies using nonpolar pollutants, like polyclorinated biphenyls (PCBs), with marine organisms, the routes of exposure can include whole sediment, overlying waters and interstitial waters (assuming no feeding). These routes can be f...

  3. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  4. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  5. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  6. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  7. Idealized model of nitrogen recycling in marine sediments

    SciTech Connect

    Billen, G.

    1982-04-01

    A model of the interdependent processes involved in nitrogen mineralization in marine sediments is presented, based on data collected in the sandy sediments of the North Sea. It relates the flux of organic material deposited in the sediments to the release of dissolved nitrogen to the overlying water, given the mixing conditions undergone by the solid and interstitial phases of the sediment under the action of physical or biological processes. Although idealized, the model can be useful in predicting the trends of variation in the relative importance of ammonification, nitrification, and denitrification, as a result of variations in the organic matter input to the bottom. It shows that, at low input of organic matter, most nitrogen release occurs as nitrate, whereas, at higher input, ammonium release prevails. Denitrification reaches a plateau above a certain input of organic material. It can involve an appreciable proportion (more than about 30 percent of the flux) of remineralized nitrogen only at high organic input and when a high nitrate concentration exists in the overlying water.

  8. Characterizing solid phase ammonia toxicity in marine sediments

    SciTech Connect

    Ho, K.T.; Burgess, R.M.; Kuhn, A.

    1994-12-31

    The presence and toxicity of ammonia in sediments represents an interesting scientific and regulatory concern. From a scientific perspective, ammonia toxicity is largely pH dependent and easily detected under special exposure conditions. Regulating the concentration of ammonia is difficult because ammonia concentrations may be elevated by naturally occurring anaerobic sediment bacteria; however, these bacteria may be enhanced by excessive carbon inputs into a system. This presentation will demonstrate progress toward characterizing ammonia toxicity.in solid phase exposure. Toxicity tests were conducted using the mysid (Mysidopsis bahia) and the amphipod (Ampelisca abdita). Results from ammonia spiked and ammonia induced whole marine sediments demonstrate pH dependent toxicity under a graduated pH (7, 8 and 9) testing regime. Several metals (Cd, Cu, Ni, Pb and Zn) tested under the graduated pH testing regime showed varying toxicity patterns also as a function of pH. Other compounds, the toxicity of which are pH dependent will be discussed. In addition the results of testing with complex environmental sediments containing high ammonia concentrations and other contaminants will be reported.

  9. Distribution of subsurface hydrocarbon seepage in near surface marine sediments

    SciTech Connect

    Abrams, M.A. )

    1993-02-01

    Hydrocarbon seeps in surficial marine sediments are of two types: ACTIVE: Where gas bubbles, pockmarks, or bright spots are visible on seismic records and/or the presence of chemosynthetic communities in conjunction with large concentrations of migrated-hydrocarbons. Generally in areas where generation and migration of hydrocarbons from the source rock is ongoing today (i.e., maximum burial) and/or where significant migration pathways have developed from tectonic activity. PASSIVE: Where concentrations of migrated hydrocarbons are so low that few or no geophysical anomalies are seen. Typically in areas where generation and expulsion is relict (no longer at maximum burial) and/or regional seals prevent significant vertical migration. The type of seep strongly controls the distribution of migrated hydrocarbons in the near surface sediments and should dictate the sampling equipment and approach required to detect seeps. Active seeps or macroseeps, usually can be detected near the water-sediment interface, within the water column, and at relatively large distances from major leak points. Most conventional sediment and water samplers will capture active seeps, Precise location of sampling is typically not critical to detect active seeps. The Gulf of Mexico, Santa Barbara Channel, and parts of the North Sea have active hydrocarbon seeps.

  10. Magnet-Facilitated Selection of Electrogenic Bacteria from Marine Sediment

    PubMed Central

    Kiseleva, Larisa; Briliute, Justina; Khilyas, Irina V.; Simpson, David J. W.; Fedorovich, Viacheslav; Cohen, M.; Goryanin, Igor

    2015-01-01

    Some bacteria can carry out anaerobic respiration by depositing electrons on external materials, such as electrodes, thereby creating an electrical current. Into the anode chamber of microbial fuel cells (MFCs) having abiotic air-cathodes we inoculated microorganisms cultured from a magnetic particle-enriched portion of a marine tidal sediment, reasoning that since some external electron acceptors are ferromagnetic, electrogenic bacteria should be found in their vicinity. Two MFCs, one inoculated with a mixed bacterial culture and the other with an axenic culture of a helical bacterium isolated from the magnetic particle enrichment, termed strain HJ, were operated for 65 d. Both MFCs produced power, with production from the mixed culture MFC exceeding that of strain HJ. Strain HJ was identified as a Thalassospira sp. by transmission electron microscopic analysis and 16S rRNA gene comparisons. An MFC inoculated with strain HJ and operated in open circuit produced 47% and 57% of the maximal power produced from MFCs inoculated with the known electrogen Geobacter daltonii and the magnetotactic bacterium Desulfamplus magnetomortis, respectively. Further investigation will be needed to determine whether bacterial populations associated with magnetic particles within marine sediments are enriched for electrogens. PMID:26504814

  11. Phytoremediation of dredged marine sediment: monitoring of chemical and biochemical processes contributing to sediment reclamation.

    PubMed

    Masciandaro, G; Di Biase, A; Macci, C; Peruzzi, E; Iannelli, R; Doni, S

    2014-02-15

    In this study, a pilot phytoremediation experiment was performed to treat about 80 m(3) of silty saline sediments contaminated by heavy metals and organic compounds. After preliminary mixing with a sandy soil and green compost application, three different plant treatments [Paspalum vaginatum (P); P. vaginatum + Spartium junceum (P + S); P. vaginatum + Tamarix gallica (P + T)] were compared to each other and to an unplanted control (C) in order to evaluate the plant efficiency in remediating and ameliorating agronomical and functional sediment properties. The experiment was monitored for one year after planting by taking sediment samples at two depths and performing several chemical and biochemical analyses. After one year, the increase in hydrolytic enzyme and dehydrogenase activities indicated the stimulation of sediment functionality. Additionally, the availability of energy sources derived from organic matter application and plant-root activity promoted the formation of a stable organic matter fraction. Finally, P + S and P + T were also effective in decontaminating polluted marine sediments from both organic (total petroleum hydrocarbons, TPH) and inorganic (heavy metal) pollutants. PMID:24486533

  12. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession. PMID:25847440

  13. Sulfonates: A novel class of organic sulfur compounds in marine sediments

    NASA Astrophysics Data System (ADS)

    Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard

    1994-11-01

    X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.

  14. Estimating rates of authigenic carbonate precipitation in modern marine sediments

    NASA Astrophysics Data System (ADS)

    Mitnick, E. H.; Lammers, L. N.; DePaolo, D. J.

    2015-12-01

    The formation of authigenic carbonate (AC) in marine sediments provides a plausible explanation for large, long-lasting marine δ13C excursions that does not require extreme swings in atmospheric O2 or CO2. AC precipitation during diagenesis is driven by alkalinity production during anaerobic organic matter oxidation and is coupled to sulfate reduction. To evaluate the extent to which this process contributes to global carbon cycling, we need to relate AC production to the geochemical and geomicrobiological processes and ocean chemical conditions that control it. We present a method to estimate modern rates of AC precipitation using an inversion approach based on the diffusion-advection-reaction equation and sediment pore fluid chemistry profiles as a function of depth. SEM images and semi-quantitative elemental map analyses provide further constraints. Our initial focus is on ODP sites 807 and 1082. We sum the diffusive, advective, and reactive terms that describe changes in pore fluid Ca and Mg concentrations due to precipitation of secondary carbonate. We calculate the advective and diffusive terms from the first and second derivatives of the Ca and Mg pore fluid concentrations using a spline fit to the data. Assuming steady-state behavior we derive net AC precipitation rates of up to 8 x 10-4 mmol m-2 y-1 for Site 807 and 0.6 mmol m-2 y-1 for Site 1082. Site 1082 sediments contain pyrite, which increases in amount down-section towards the estimated peak carbonate precipitation rate, consistent with sulfate-reduction-induced AC precipitation. However, the presence of gypsum and barite throughout the sediment column implies incomplete sulfate reduction and merits further investigation of the biogeochemical reactions controlling authigenesis. Further adjustments to our method could account for the small but non-negligible fraction of groundmass with a CaSO4 signature. Our estimates demonstrate that AC formation may represent a sizeable flux in the modern global

  15. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. PMID:26178383

  16. Assessment of sediment toxicity to marine benthos. (Chapter 9). Book chapter

    SciTech Connect

    Lamberson, J.O.; DeWitt, T.H.; Swartz, R.C.

    1992-01-01

    Most chemical contaminants entering the marine environment eventually accumulate in sediments and, thereby, potentially render the sediments toxic to benthic and demersal organisms. Through deposition, adsorption, diffusion, resuspension, and emigration, sediments serve as both a sink and source for toxic contaminants in the marine environment. The relationship between the concentrations of chemicals in sediments and in the tissues of benthic biota is well established. Although the linkage between bioaccumulation and toxicological responses is poorly documented, logic indicates a strong association. Chemical contaminants in sediments have been implicated as the cause of the abnormal pathology observed in benthic and demersal organisms and the alterations in the structure of benthic invertebrate populations and communities.

  17. Relative role of pore water versus ingested sediment in bioavailability of organic contaminants in marine sediments

    SciTech Connect

    Forbes, T.L.; Hansen, R.; Kure, L.K.; Forbes, V.E.; Giessing, A. |

    1998-12-01

    Experimental data for fluoranthene and feeding selectivity in combination with reaction-diffusion modeling suggest that ingestion of contaminated sediment may often be the dominant uptake pathway for deposit-feeding invertebrates in sediments. A dietary absorption efficiency of 56% and accompanying forage ratio of 2.4 were measured using natural sediment that had been dual-labeled ({sup 14}C:{sup 51}Cr) with fluoranthene and fed to the marine deposit-feeding polychaete Capitella species I. Only 3 to 4% of the total absorption could be accounted for by desorption during gut passage. These data were then used as input into a reaction-diffusion model to calculate the importance of uptake from ingested sediment relative to pore-water exposure. The calculations predict a fluoranthene dietary uptake flux that is 20 to 30 times greater than that due to pore water. Factors that act to modify or control the formation of local chemical gradients, boundary layers, or dietary absorption rates including particle selection or burrow construction will be important in determining the relative importance of potential exposure pathways. From a chemical perspective, the kinetics of the adsorption and desorption process are especially important as they will strongly influence the boundary layer immediately surrounding burrowing animals or irrigated tubes. The most important biological factors likely include irrigation behavior and burrow density and size.

  18. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems. PMID:26773654

  19. Succession of cable bacteria and electric currents in marine sediment.

    PubMed

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-06-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these 'cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm(-2). Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4-1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption. PMID:24451206

  20. Succession of cable bacteria and electric currents in marine sediment

    PubMed Central

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these ‘cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm−2. Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4–1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption. PMID:24451206

  1. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  2. Paleomagnetic Studies of Marine Sediments for Evaluation of Sedimentation Rates on the Mendeleev Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Elkina, D.

    2014-12-01

    Nowadays the Arctic Ocean is an area of higher scientific interest. Investigation of composition, genesis, sources and source areas of marine sediments is necessary for a gain of geological knowledge and geo-engineering development of the region. One should note that the dating issue in the Arctic Ocean is a challenge by itself. However, magnetostratigraphy can offer a powerful stratigraphic tool applying to marine sediments here. The 6-meters length core was retrieved from the Mendeleev Ridge in 2012 and subjected to paleomagnetic studies. The examined core was revealed to dominate by normal polarity up to 123 cm below seafloor (cmbsf) and assigned there to the Brunhes polarity chron of the geomagnetic field (0.78 Ma). Then prevalence of reverse polarity persists up to 394-397 cmbsf, assigned to Matuyama age, and short positive intervals are believed to be subchrons of normal polarity. Change from reverse to normal polarity at 394-397 cmbsf is considered as the Matuyama - Gauss (2.58 Ma) boundary and is traced up to 530-531 cmbsf including one short reversal. After this depth a drop back to reverse polarity is ascribed to the beginning of the Gilbert polarity chron (3.58 Ma). The resultant magnetostratigraphy is presented on Figure 1. The stepwise alternating field demagnetization and demagnetization by heating were performed to remove viscous overprints and then to define component magnetization directions. Spikes of natural remanent magnetization intensity and magnetic susceptibility are discovered near almost all assigned chron boundaries, and it may act as an independent factor for determination of polarity boundaries. Anisotropy of magnetic susceptibility is also considered in order to find out additional peculiarities of the sedimentation. The relative abundance of shallow inclinations at least implies the existence of secondary processes, which may have altered the paleomagnetic record. The mean sedimentation rates on the Mendeleev Ridge do not exceed 1

  3. Comparison of test specific sediment effect concentrations with marine sediment quality assessment guidelines

    SciTech Connect

    Carr, R.S.; Biedenbach, J.M.; Long, E.R.; MacDonald, D.D.

    1995-12-31

    As part of NOAA`s National Status and Trends (NS and T) Bioeffects Assessment program and studies conducted by the National Biological Service, numerous sediment quality assessment surveys have recently been conducted along the Atlantic and Gulf coasts of the US using the sea urchin (Arbacia punctulata) fertilization and embryological development tests with pore water. Additional toxicity tests were also conducted in conjunction with most of these studies. The areas that have been sampled include Boston harbor, Massachusetts; Charleston Harbor, Winyah Bay, and Savannah River, South Carolina; St. Simon Sound, Georgia; Biscayne Bay, Tampa Bay, Choctawhatchee Bay, Apalachicola Bay, St. Andrew Bay, and Pensacola Bay, Florida; Galveston Bay, Lavaca Bay, and Sabine Lake, Texas, and 200 stations in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico. Sufficient data are now available from this series of surveys to calculate test specific sediment effect concentrations (SECs). Based on these recent studies, SECs were developed for the sea urchin porewater and amphipod tests and compared with existing marine sediment quality assessment guidelines.

  4. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  5. Diversity and characterization of culturable fungi from marine sediment collected from St. Helena Bay, South Africa.

    PubMed

    Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2012-08-01

    Marine fungi are known to originate from a wide variety of habitats within the marine environment. Marine sediment represents one environmental niche, with most fungi occurring in these sediments being facultative marine fungi with terrestrial origins. It has not been proven whether these fungi merely survive the harsh environmental conditions presented by the ocean sediment, as opposed to playing an active role in this ecological niche. During this study, marine sediment was collected from St. Helena Bay, on the west coast of the Western Cape, South Africa. Using dilution, enrichment, and repetitive culturing techniques, 59 fungal isolates were obtained from marine sediments and identified to at least genus level using morphological and molecular methods. Moreover, a series of tests were performed to characterize the physical and physicochemical attributes of the isolates. Results showed that the isolates not only survived but also had the potential to grow in the natural conditions present in this environment. Extracellular cellulase was produced by the filamentous fungal isolates indicating their probable role in detrital decay processes and therefore the carbon cycle on the ocean bed. Also, denitrification patterns were observed when isolates were grown in liquid media amended with NaNO(2), NaNO(3), and (NH(4))SO(4), implicating that these fungi have the potential to play an active role in denitrification, co-denitrification, and ammonification phases of nitrogen cycles occurring in the marine sediments. PMID:22430506

  6. ACCUMULATION OF POLYCHLORINATED ORGANIC CONTAMINANTS FROM SEDIMENT BY THREE BENTHIC MARINE SPECIES

    EPA Science Inventory

    A laboratory experiment was conducted to measure the accumulation of selected polychlorinated compounds by marine benthos exposed to environmentally contaminated sediment. andworms (Nereis virens), clams (Macoma nasuta), and grass shrimp (Palaemonetes pugio) were exposed to sedim...

  7. Degradation of Dead Microbial Biomass in a Marine Sediment

    PubMed Central

    Novitsky, James A.

    1986-01-01

    The availability of dead microbial biomass in a marine beach sand to degradation and mineralization was examined. Microbial sand populations were labeled with [14C]glutamic acid, [3H]adenine, or [3H]thymidine and killed with chloroform. Live sand or seawater (or both) was added to the sterile labeled sand, and biochemical components of the populations were monitored for 10 days. Labeled RNA was degraded more quickly than labeled DNA, but both nucleic acids were degraded to approximately the same extent (60 to 70%). 3H2O was a major acid-soluble breakdown product. RNA (and possibly DNA) breakdown products were reincorporated into DNA (and possibly RNA) during the incubation period. In addition to metabolite salvage, 32% of the total macromolecular 14C was respired in the 10-day period regardless of whether sand or seawater was used as the inoculum. Respiration was essentially complete in 3 days, whereas nucleic acid degradation continued throughout the 10-day incubation. The results indicate that dead microbial biomass is a labile component of the sediment ecosystem. PMID:16347148

  8. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment.

    PubMed

    Pan, Jie; Sun, Cong; Zhang, Xin-Qi; Huo, Ying-Yi; Zhu, Xu-Fen; Wu, Min

    2014-08-01

    Strain CMB17(T) was a short rod-shaped bacterium isolated from marine sediment of the Pacific Ocean. Cells were Gram-stain-negative and non-motile. Optimal growth occurred at 25-30 °C, pH 6.5-7 and 0.5-1% (w/v) NaCl. The major fatty acid was C(18 : 1)ω7c (87.59%), and ubiquinone-10 was detected as the only isoprenoid quinone. The DNA G+C content of the genomic DNA was 62.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CMB17(T) is most closely related to Paracoccus stylophorae KTW-16(T) (96.7%), P. solventivorans DSM 6637(T) (96.4%) and P. saliphilus YIM 90738(T) (96.4%). Based on phenotypic, genotypic and phylogenetic characteristics, strain CMB17(T) is proposed to represent a novel species, denominated Paracoccus sediminis sp. nov. (type strain CMB17(T) = JCM 18467(T) = DSM 26170(T) = CGMCC 1.12681(T)). PMID:24812365

  9. Saccharicrinis marinus sp. nov., isolated from marine sediment.

    PubMed

    Liu, Qian-Qian; Li, Juan; Xiao, Di; Lu, Jin-Xing; Chen, Guan-Jun; Du, Zong-Jun

    2015-10-01

    A novel bacterial strain, designated Y11T, was isolated from marine sediment at Weihai in China. Comparative analysis of 16S rRNA gene sequences demonstrated that the novel isolate showed highest similarity to Saccharicrinis fermentans DSM 9555T (94.0 %) and Saccharicrinis carchari SS12T (92.7 %). Strain Y11T was a Gram-stain-negative, rod-shaped, non-endospore-forming, yellow-pigmented bacterium and was able to hydrolyse agar weakly. It was catalase-negative, oxidase-positive, facultatively anaerobic and motile by gliding. Optimal growth occurred at 28-30 °C, at pH 7.0-7.5 and in the presence of 2-3 % (w/v) NaCl. The DNA G+C content was 34.4 mol%. The strain contained MK-7 as the prevalent menaquinone. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C15 : 1ω6c. The predominant polar lipids were phosphatidylethanolamine and two unknown lipids. Data from the present polyphasic taxonomic study clearly place the strain as representing a novel species within the genus Saccharicrinis, for which the name Saccharicrinis marinus sp. nov. is proposed. The type strain is Y11T ( = CICC10837T = KCTC42400T). PMID:26297337

  10. Microbes of deep marine sediments as viewed by metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  11. Deposition of zinc and cadmium by marine bacteria in estuarine sediments

    USGS Publications Warehouse

    McLerran, C.J.; Holmes, Charles W.

    1974-01-01

    Mixed cultures of marine bacteria isolated from the sediments of Corpus Christi Harbor were examined for their ability to assimilate or precipitate radioactive zinc and cadmium from solution. Test data indicate that during summer, when bacterial activity is at a maximum, the bacteria and their metabolic byproducts play a significant role in the removal of zinc and cadmium from seawater and their subsequent deposition in marine sediments.

  12. Experimental investigation on consistency limits of cement and lime-stabilized marine sediments.

    PubMed

    Wang, DongXing; Zentar, Rachid; Abriak, Nor Edine; Xu, WeiYa

    2012-06-01

    This paper presents the effects of treatments with cement and lime on the consistency limits of marine sediments dredged from Dunkirk port. The Casagrande percussion test and the fall cone test were used to determine the liquid limits of raw sediments and treated marine sediments. For the evaluation of the plastic limits, the results of the fall cone test were compared with those obtained by the rolling test method. The relationship between the water contents and the penetration depths for the determination of the liquid limit and the plastic limit was explored. Liquid limits at 15.5 mm and plastic limits at 1.55 mm seem to be a more appropriate choice for the studied marine sediments compared with the limits determined by other used prediction methods. Finally, the effect of cement treatment and lime treatment on the Casagrande classification of the studied sediments was investigated according to the different prediction results. PMID:22856290

  13. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  14. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments

    SciTech Connect

    Geiselbrecht, A.D.; Herwig, R.P.; Deming, J.W.; Staley, J.T.

    1996-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily released into the environment through anthropomorphic sources. PAH degradation has been known to occur in marine sediments. This paper describes the enumeration, isolation, and preliminary characterization of PAH-degrading strains from Puget Sound sediments. 38 refs., 3 figs., 3 tabs.

  15. INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING AMPHIPOD AMPELISCA ABDITA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison wa...

  16. Thermal alteration of organic matter in recent marine sediments. 2: Isoprenoids. [Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    A series of isoprenoid compounds were isolated from a heat treated marine sediment (from Tanner Basin) which were not present in the original sediment. Among the compounds identified were: phytol, dihydrophytol, c-18-isoprenoid ketone, phytanic and pristanic acids, c-19 and c-20-monoolefines, and the alkanes pristane and phytane. The significance and possible routes leading to these compounds is discussed.

  17. Molecular Approaches to Understanding C & N Dynamics in MArine Sediments

    SciTech Connect

    Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol

    2007-05-16

    Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non

  18. Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys.

    PubMed

    Choi, Heebok; Koh, Hyeon-Woo; Kim, Hongik; Chae, Jong-Chan; Park, Soo-Je

    2016-05-28

    Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments. PMID:26869600

  19. Kocuria sediminis sp. nov., isolated from a marine sediment sample.

    PubMed

    Bala, Monu; Kaur, Chandandeep; Kaur, Ishwinder; Khan, Fazlurrahman; Mayilraj, Shanmugam

    2012-03-01

    A Gram-positive, pinkish-orange pigmented, coccoid strain, FCS-11(T) was isolated from a marine sediment sample taken from Kochi fort area, Kerala, India and subjected to polyphasic taxonomic study. The 16S rRNA gene sequence of the strain was determined and the results of 16S rRNA gene sequence analysis showed that the strain FCS-11(T) should be assigned to the genus Kocuria. The chemotaxonomic data supported this taxonomic placement i.e. menaquinones MK-7(H(2)), MK-8(H(2)) and MK-9(H(2)); major fatty acids anteiso C15:0 and iso-C15:0 and phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) as major polar lipids. Further phylogenetic analysis of the 16S rRNA gene sequence confirmed that the strain FCS-11(T) belonged to the genus Kocuria and is closely related to Kocuria turfanensis MTCC 10790(T) (99.4%) followed by Kocuria polaris MTCC 3702(T) (98.2%), Kocuria rosea MTCC 2522(T) (98.2%), Kocuria flava MTCC 10971(T) (98.2%), Kocuria aegyptia MTCC 10791(T) (98.0%), Kocuria himachalensis MTCC 7020(T) (97.5%) and Kocuria atrinae MTCC 10972(T) (97.1%). However, the DNA-DNA hybridisation values obtained between strain FCS-11(T) and other related strains were well below the threshold that is required for the proposal of a novel species. The G+C content of the genomic DNA was 60.7 mol%. The phenotypic and genotypic data showed that the strain FCS-11(T) merits the recognition as a representative of a novel species of the genus Kocuria. It is proposed that the isolate should be classified in the genus Kocuria as a novel species, Kocuria sediminis sp. nov. The type strain is FCS-11(T) (= MTCC 10969(T) = JCM 17929(T)). PMID:22012251

  20. Deinococcus enclensis sp. nov., isolated from a marine sediment sample.

    PubMed

    Thorat, Meghana N; Mawlankar, Rahul; Sonalkar, Vidya V; Venkata Ramana, V; Joseph, Neetha; Shouche, Yogesh S; Dastager, Syed G

    2015-01-01

    A novel pale-pink coloured strain, designated NIO-1023(T), was isolated from a marine sediment sample from Chorao Island, Goa, India. The taxonomic position of strain NIO-1023(T) was investigated by using a polyphasic approach. The cells were observed to be Gram-stain positive, coccal shaped and non-spore forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. The strain NIO-1023(T) showed highest 16S rRNA gene sequence similarities with Deinococcus ficus (97.8 %), whereas other Deinococcus species showed less than 95 % sequence similarity. The DNA-DNA relatedness with respect to D. ficus CC-FR2-10(T) was 23.9 %. Chemotaxonomic data revealed that strain NIO-1023(T) contains only menaquinone MK-8 as the respiratory quinone and a complex polar lipid profile consisting of different unidentified glycolipids and polar lipids, two unknown phospholipids and three unknown phosphoglycolipids. As in other deinococci, one of these phosphoglycolipids was predominant in the profile. The predominant fatty acids were identified as C17:1 w8c, C16:1 w6c/w7c, C15:1 w6c and C17:1 w9c. The genomic DNA G + C content of strain NIO-1023(T) was determined to be 67.2 mol%. The biochemical and chemotaxonomic properties demonstrate that strain NIO-1023(T) represents a novel species, for which the name Deinococcus enclensis sp. nov. is proposed. The type strain is NIO-1023(T) (=DSM 25127(T) = NCIM 5456(T)). PMID:25344421

  1. Radiolytic dechlorination of polychlorinated biphenyls in transformer oil and in marine sediment

    NASA Astrophysics Data System (ADS)

    Chaychian, Mahnaz; Jones, Cynthia; Poster, Dianne; Silverman, Joseph; Neta, Pedatsur; Huie, Robert; Al-Sheikhly, Mohamad

    2002-11-01

    Radiolytic dechlorination of polychlorinated biphenyls (PCBs) in transformer oil and in marine sediments has been studied. At low PCB concentrations, complete degradation of the PCBs in transformer oil was achieved without degradation of the oil. Addition of an organic base, triethylamine, enhances the radiolytic dechlorination yield. The mechanism of dechlorination has been shown to involve electron transfer to PCBs from various aromatic radical anions formed in the irradiated oil. At high PCB concentrations, large amounts of triethylamine were necessary to achieve complete radiolytic dechlorination. Preliminary results on PCB-contaminated marine sediments demonstrate that addition of 2-propanol to the sediment/water slurry increases the effectiveness of the electron beam treatment.

  2. Studies of the DOM aqueous extracts from coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Sakellariadou, F.

    2012-04-01

    Dissolved organic matter (DOM) represents a major exchangeable organic pool playing an outstanding role in the ocean carbon cycle. It has a complex chemical structure made up of a wide range of organic molecules. The composition of DOM depends on the sources proximity and the exposure to any sort of degradation mechanism. The coloured (or chromophoric) dissolved organic matter (CDOM), representing the optically active fraction of DOM, consists of aromatic rings able to absorb light in the visible and UV regions (Kirk, 1994) and fluorophoric molecules that emit light. The main fluorophoric moieties of CDOM are humic material with a blue fluorescence and protein material with an ultraviolet (UV) fluorescence (Mopper and Schultz, 1993). Dissolved organic matter interacts with pollutants either by enhancing their bioavailability or by influencing their transportation to the soluble phase. In addition, DOM affects the remineralisation of carbon and its preservation in marine sediments. Referring to its origin, it can be terrestrial, freshwater or marine one. Fluorescence spectroscopy is a technique widely applied for the identification and characterization of organic matter, being fast, simple, non-destructive and sensitive. In addition, the fluorescence analysis for the physico-chemical characterization of organic matter requires a small amount of aqueous sample at a low concentration, in comparison with the large sample volumes needed for conventional techniques. At the present study coastal sediment samples were collected from Messiniakos gulf in the south western Peloponnese in South Greece. Messiniakos gulf has a seabed dominated by very abrupt inclinations reaching depths of more than 1000m. All samples, according to their grain size, are classified as fine clayey silt. Dissolved organic matter was extracted under gentle extraction conditions (4 mM CaCl2 solution). The various classes of organic components present at the DOM aqueous extracts were characterised by

  3. The remedial investigation of marine sediment at the United Heckathorn Superfund site

    SciTech Connect

    White, P.J.; Kohn, N.P.; Gardiner, W.W.; Word, J.Q.

    1994-02-01

    The former United Heckathom site in Richmond, California, was used to process and package chlorinated pesticides from the 1940s to the mid-1960s. These activities resulted in the contamination of upland soils and marine sediment in the adjacent waterways. Battelle/Marine Sciences Laboratory (MSL) was requested by USEPA to conduct a remedial investigation and feasibility study (RI/FS). of the marine portion of the site. The objectives of this RI are to determine the extent of pesticide contamination in inner Richmond Harbor, estimate the total volume of contaminated sediment, characterize the subsurface geology; characterize the biological effects of contaminated sediment; and characterize the quality of effluent derived from dewatered sediment through treatability testing. Sediment cores were collected from 53 stations. Vertical subsamples from each sediment core were analyzed for chlorinated pesticides. Sediment from selected cores was also analyzed for other contaminants. Younger Bay Mud (YBM) sediment from multiple stations was mixed to form composite samples representing various segments of the study area. These composites were used for solid-phase toxicity and bioaccumulation tests, and the preparation of liquid-phase samples for treatability testing. The probable quality of effluent produced by dewatering sediment was evaluated by chemical and toxicological testing of suspended-particulate-phase (SPP) and elutriate samples.

  4. IDENTIFICATION OF TOXICANTS IN WHOLE MARINE SEDIMENTS: METHODS AND RESULTS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways. Information from stressor identification can be useful in designing effective sediment remediation methods, assessing options for sediment disposal, allowing m...

  5. Transfer of lipids through marine water columns to sediments - insights from stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; McNichol, A. P.

    2014-06-01

    Compound-specific 13C and 14C compositions of diverse lipid biomarkers (fatty acids, alkenones, hydrocarbons, sterols, and fatty alcohols) were measured in sinking particulate matter collected in sediment traps and from underlying surface sediments in the Black Sea, the Arabian Sea and the Ross Sea. The goal was to develop a multi-parameter approach to constrain relative inputs of organic carbon (OC) from marine biomass, terrigenous vascular plant, and relict sources. Marine biomass in sediment trap material from the Black Sea and Arabian Sea accounted for 66-100% of OC, with lower terrigenous (3-8%) and relict (4-16%) contributions. Marine biomarkers in sediments constituted lower proportions of OC (66-90%), with consequentially higher proportions of terrigenous and relict carbon (3-17% and 7-13%, respectively). Ross Sea data were insufficient to allow similar mass balance calculations. It is apparent that whereas particulate organic carbon is overwhelmingly marine in origin, there are also significant proportions of pre-aged terrigenous and relict OC that become proportionally more important in sediments. These results indicate that pre-aged OC is better preserved during vertical transport to and burial at the seafloor and/or it reaches the sediment by lateral advection rather than only by the vertical sinking/biological pump that affects the upper ocean-derived marine POC.

  6. Polarity and Excursion Transitions: Can they be Adequately Recorded in High-Sedimentation-Rate Marine Sediments?

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2014-12-01

    Polarity transitions and magnetic excursions have durations of a few thousand years, or less. Transition/excursion records in volcanic sequences are, at best, partial snap-shots of the transition/excursion field. Records from high-sedimentation-rate marine sediments may be more continuous but they are always smoothed by progressive acquisition of detrital remanent magnetization (DRM), and by sampling/measurement limitations. North Atlantic records of the Matuyama-Brunhes (M-B) polarity transition are compared with records of the Iceland Basin excursion (190 ka). Virtual geomagnetic polar (VGP) paths are used to map characteristic magnetization directions during the transition/excursion. Relative paleointensity (RPI) proxies indicate partial recovery of field intensity during the transition/excursion, with RPI minima coinciding with abrupt VGP shifts at the onset and end of the transition/excursion. Discrepancies in VGP paths among holes at the same site, among sites, and a comparison of u-channel and discrete sample measurements, reveal limitations in resolution of the transition/excursion fields. During the M-B polarity transition, VGP clusters appear in the NW Pacific, NE Asia and in the South Atlantic. Similarities in VGP clustering for the M-B boundary and the Iceland Basin excursion imply that the polarity transition and excursion fields had common characteristics. Similarities with the modern non-axial dipole (NAD) field imply that polarity transitions and excursions involve the demise of the Earth's axial dipole relative to the NAD field, and that the NAD field has long-lasting features locked in place by the lowermost mantle.

  7. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.

  8. EXPLORATORY ANALYSIS OF THE EFFECTS OF PARTICULATE CHARACTERISTICS ON THE VARIATION IN PARTITIONING OF NONPOLAR ORGANIC CONTAMINANTS TO MARINE SEDIMENTS

    EPA Science Inventory

    The partitioning of nonpolar organic contaminants to marine sediments is considered to be controlled by the amount of organic carbon present. However, several studies propose that other characteristics of sediments may affect the partitioning of contaminants. For this exploratory...

  9. Evaluation of the Polyethylene Reverse Sampler as a Dosing System in Marine Phase II Whole Sediment Toxicity Identification Evaluations (TIEs)

    EPA Science Inventory

    Contaminated marine sediments can cause acute and chronic impairments to benthic organisms. Nonionic organic contaminants (NOCs) are often a primary cause of impairment. Toxicity Identification Evaluations (TIEs) are used to identify chemicals causing toxicity in sediments. Ph...

  10. Alkalimarinus sediminis gen. nov., sp. nov., isolated from marine sediment.

    PubMed

    Zhao, Jin-Xin; Liu, Qian-Qian; Zhou, Yan-Xia; Chen, Guan-Jun; Du, Zong-Jun

    2015-10-01

    Strain FA028T, a beige-pigmented, facultatively anaerobic, heterotrophic, catalase-negative and oxidase-positive, Gram-stain-negative bacterium, was isolated from marine sediment of the coast of Weihai, China. Cells of strain FA028T were rod-shaped, 1–3 μm in length and 0.5 μm in width. The strain was able to grow at 13–37 °C, at pH 7.0–9.5 and in the presence of 1.0–4.0 % (w/v) NaCl. Optimal growth was observed at 28 °C, with 3.0 % NaCl and at pH 7.5–8.0. Nitrate was not reduced. The G+C content of the DNA was 43.4 mol%. The isoprenoid quinone was Q-9 and the main cellular fatty acids (>10 %) were C16 : 0, C16 : 1ω9c and iso-C15 : 0 2-OH/C16 : 1ω7c. The major polar lipids in strain FA028T were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol; phospholipid was present in moderate to minor amounts in the polar lipid profile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FA028T was affiliated with the phylum Proteobacteria. 16S rRNA gene sequence comparisons showed that this isolate is unique, sharing < 93 % similarity with species of the families Alteromonadaceae and Oceanospirillaceae. On the basis of the phenotypic and phylogenetic data, strain FA028T should be classified as representing a novel species of a new genus within the family Alteromonadaceae, for which the name Alkalimarinus sediminis gen. nov., sp. nov. is proposed. The type strain of Alkalimarinus sediminis is FA028T ( = CICC 10906T = KCTC 42258T). PMID:26297022

  11. Natural Organobromine in Marine Sediments: New Evidence of Biogeochemical Br Cycling

    SciTech Connect

    A Leri; J Hakala; M Marcus; A Lanzirotti; C Reddy; S Myneni

    2011-12-31

    Organobromine (Br{sub org}) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Br{sub org} molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (C{sub org}) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Br{sub inorg}), which is widely presumed conservative in marine systems. To investigate the scope of natural Br{sub org} production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Br{sub org} is ubiquitous throughout diverse sedimentary environments, occurring in correlation with C{sub org} and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Br{sub org} observed in sediments to biologically produced Br{sub org} compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with Corg in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems.

  12. Transformation of marine sediment to paddy soil: Primary marine, lacustrine, and land plant lipids

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    More than fifty percent of the world's population feeds on rice. The continuous population increase and urban sprawl leads to an ever-increasing demand for new rice cultivation area, in particular China. For centuries suitable coastal areas in China have been exploited for land reclamation, i.e. conversion of coastal marine and lacustrine marshlands into rice paddy fields. Flooded rice paddies are considered one of the major biogenic sources of methane into the atmospheric. Methane is thought to be about 30 times more efficient as greenhouse gas, when compared to carbon dioxide. Overall, rice fields are assumed to contribute app. 10-25% to global CH4 production. It is thus paramount importance to study the effects of increasing rice cultivation and land reclamation in China. For global carbon cycle investigation, it is crucial whether paddy soils, due to their large extent and higher carbon turnover, serve as carbon (CO2) sinks or sources. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. Two end members of natural sediments subjected to land reclamation, a marine tidal mudflat in the Yangtze delta and a coastal lake, represent the substrate on which the paddy soil evolution started. Dike systems were constructed 2000, 1000, 700, 300, 100, and 50 years before present. We are thus able to follow the evolution of rice paddy soils developed on marine sediments using eight well defined tie-points. This chronosequence is then used for assessing the relative proportion of primary marine or lacustrine organic matter preserved in present day soils and to identify the amount and composition of organic matter added since cultivation started. Paddy soil management introduces rice plants debris and exudates as well as rice-associated microbial biomass (covered in a

  13. Natural thorium isotopes in marine sediment core off Labuan port

    SciTech Connect

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.; Mohamed, C. A. R.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. The sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.

  14. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  15. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments

    PubMed Central

    2014-01-01

    Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range

  16. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. PMID:26194408

  17. Chronic effects of organochlorine exposure in sediment to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Murdoch, M.H.; Chapman, P.M.; Johns, D.M.; Paine, M.D.

    1997-07-01

    Organisms exposed to organochlorinated compounds in sediments are likely to suffer chronic rather than acute effects. Thus, acute toxicity tests are unlikely to truly assess their potential impact. A 120-d toxicity test was designed to assess the impact of polychlorinated biphenyl on the marine polychaete Neanthes arenacedodentata. A two-tiered approach was used: Tier 1 involved reference sediment spiked with a range of concentrations of the organochlorine bracketing the concentrations found in natural sediments, and tier 2 involved field sediments collected from a coastal area contaminated with high concentrations of the same organochlorine. Testing measured a number of endpoints, including survival, growth, and reproduction. Survival and growth were unaffected in either tier by any of the test sediments. Reproductive endpoints, however, were depressed in both tiers relative to the reference sediment.

  18. Isotope fractionation and isotope decoupling during nitrate reduction in marine sediments

    NASA Astrophysics Data System (ADS)

    Dähnke, Kirstin; Thamdrup, Bo

    2015-04-01

    In summer 2010, we sampled marine sediments in the Skagerrak, covering a gradient of reactivity, oxygen consumption, and manganese concentration in the sediment. Along this gradient, we aimed to evaluate links between nitrogen cycling and sediment properties. The focus of the study was the interplay of nitrate and nitrite reduction rates and concomitant nitrate and nitrite isotope changes in sediment incubations. As expected, nitrate reduction was fastest in sediments with highest sediment reactivity and oxygen consumption. At the shallower sampling sites, denitrification was the main removal pathway of nitrate and nitrite, but acetylene inhibition experiments pointed towards significant importance of anammox at the deepest site in the Skagerrak. The N-isotope of denitrification effect varied with depth, with stronger N-isotope fractionation at deeper, and less reactive, sites, and ranged from -12 to -16o. At the deepest site in the Skagerrak, anammox was the dominant N2 production pathway. For this site, we calculated the intrinsic isotope effect of anammox in marine sediments, and found that it is ~-15o, which is in accordance with recent culture studies. The isotope effect of oxygen, however, was not consistent pattern along the gradient of sediment reactivity. The oxygen isotope effect of nitrate reduction was entirely decoupled from the nitrogen isotope effect. Surprisingly, this variability in oxygen isotope fractionation was not linked to the occurrence of anammox, but rather to intermediate nitrite accumulation in the anoxic incubations. Consequently, the ratio of 18ɛ / 15ɛ was highly variable in all sediments we investigated. We presume that such decoupling of oxygen and nitrogen isotopes is due to anoxic nitrite oxidation, which rises in turn with nitrite accumulation in the sediment incubations. These findings suggest that the ratio of 18ɛ / 15ɛ in marine environments is highly flexible, and might, especially in regions with considerable nitrite

  19. Development of marine sediment toxicity identification evaluation methods using Strongylocentrotus purpuratus, Mytilus edulis, and Eohaustorius estuarius

    SciTech Connect

    Wortham, G.; Cotsifas, J.S.; Taberski, K.; Hansen, S.R.

    1994-12-31

    Widespread sediment toxicity, including ``clean`` reference sites, dictates that the causes of toxicity in sediments be determined. Toxicity Identification Evaluations (TIE) are useful tools in characterizing compounds responsible for toxicity, but were unavailable for sediment samples. TIE methods were developed for sediment porewater and included the following components: determination of an appropriate porewater extraction process; control TIE tests using marine water and porewater evaluating species sensitivities to the fractionation procedures; validation experiments investigating the removal efficiencies of organics using C18 solid phase extraction, and metals chelation using EDTA and STS; spiking experiments to determine the effectiveness of the TIE procedure in identifying multiple toxicants. The authors determined that fractionation procedures could be applied to both marine water and porewater using S. purpuratus, M. edulis and E. estuarius as biological detectors.

  20. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  1. Microbial degradation of 13C-labeled 9-methylphenanthren in marine sediment

    SciTech Connect

    Nanny, M.A.; Bortiatynski, J.M.; Hatcher, P.G.; Selifonov, S.A.

    1996-12-31

    Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) may serve as a natural means of mitigation for contaminated soils and sediments. In order for natural biodegradation to be a feasible remediation strategy, it is important to know the extent of degradation, the identity of degradation products, and their fate. It is also important to identify and characterize the portion of parent pollutant that becomes incorporated into the unextractable, insoluble fraction of soil or sediment. Does this fraction consist of the parent pollutant trapped within soil or sediments pores and in turn may be released slowly over time, or is it covalently bound with insoluble organic matter, or has it been converted into insoluble biomass? These are difficult questions to answer analytically, but they must be understood if microbial degradation is to be used as an effective remediation method. This paper presents results of biodegradation studies of carbon 13 labelled methyl phenanthrene by marine microbes in a contaminated marine sediment.

  2. Development and application of a marine sediment porewater toxicity test using algal spores

    SciTech Connect

    Hooten, R.; Carr, R.S.

    1995-12-31

    An acute pore water toxicity test protocol using germination and growth of marine macroalgae as endpoints was developed to indicate the presence of toxic compounds in marine/estuarine and sediment porewater samples. Zoospores collected from Ulva fasciata and U. lactuca were used as test organisms. Preliminary results with sodium dodecyl sulfate (SDS, a reference toxicant) indicate that zoospores germination and growth of embryonic gametophytes are as sensitive as the sea urchin fertilization and embryological development toxicity tests. Algal germination and growth data for copper, mercury and other metals will be presented. The results of tests utilizing this algal assay with sediment pore water from contaminated sediments will be compared with more traditional sediment toxicity test methods.

  3. Evaluation of the InSTEC's EDXRF assembly for Marine Sediment Pollution Studies

    SciTech Connect

    Arado, O. Diaz; Rizo, O. Diaz; Lopez-Pino, N.; D'Alessandro, K.; Olivares, S.; Gelen, A.; Casanova, O. A.; Padilla, F.; Corrales, Y.; Maidana, N. L.

    2009-06-03

    The determination of some heavy elements in marine sediments using the InSTEC's EDXRF assembly was evaluated. The spectrometer's main analytical characteristics were performed using {sup 109}Cd and {sup 238}Pu excitation sources. The system capabilities are tested by the analysis of the Certified Reference Material (CRM) IAEA-356. The results show that the K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Zr and Pb elemental concentrations can be determined in marine sediments with an excellent accuracy and Co, Ni, Sr and Mo concentrations with an acceptable accuracy.

  4. Interaction of marine and fluvial clastic sedimentation, central Italy, Tyrrhenian coast

    SciTech Connect

    Evangelista, S.; Full, W.E.; Tortora, P.

    1989-03-01

    An integrated approach was used to study the interaction of fluvial, beach, and marine processes on sedimentation at the west-central coast of Italy along the Tyrrhenian Sea. The study area, 120 km northwest of Rome, is bounded on the north by Mt. Argentario, on the east by Pleistocene volcanics, on the south by the St. Augustine River, and on the west by the 50-mn bathymetric isopleth. The primary tools used included field work, textural analysis, high-resolution marine seismic, SEM, and Fourier shape analysis. Field work revealed incised streams, potentially relict beach ridges and lagoons, and relatively steep nearshore marine slopes in the northern portions of the study area. The result of the shape analysis performed on 56 samples was the definition of four end members. Each end member reflects a sedimentation process. Three end members were directly associated with fluvial sedimentation, and the fourth reflected marine processes. The seismic data along with the SEM analysis strongly supported the interpretation of four processes that dominate the recent sedimentation history. The sand interpreted to be associated with marine processes was found to represent the smoothest end member. SEM analysis suggests that the smoothing is not due to abrasion but to plastering associated with biologic processes (digestion.) and/or with silica precipitation associated with clay alteration at the freshwater/saltwater interface.

  5. The Effect of Sediment Disturbance on the Carbon and Nitrogen Cycles Within Coastal Marine Lakes

    NASA Astrophysics Data System (ADS)

    Mills, A. R.; Wilson, S. R.; Jolley, D. F.

    2006-12-01

    A system allowing the ex situ quantification of the nitrogen cycle and various carbonaceous species (Organic Carbon, carbon dioxide, methane) in the air, water and sediment has been developed and used to monitor the effects of sediment disturbance on the nitrogen and carbon cycles. Measurements are made using standard wet chemical techniques for the sediment and water phases, and FTIR spectroscopy for the real-time monitoring of gas concentrations. Sediment collected from two temperate marine lakes on the eastern coast of Australia has been examined. In the laboratory it was found that the methane flux peaked three days after the initial disturbance; nitrous oxide flux peaked after 12 days while carbon dioxide flux varied throughout the experiment. Nitrite and nitrate concentrations in the overlying water peaked at the end of the second and third weeks, respectively. The total quantity of nitrogen within the system increased by ~ 35%. Sediment disturbance led to an initial release of nitrogenous nutrients from the sediment to the overlying water that were rapidly readsorbed to sediment particles and sequestered back into the sediment phase. The same technology was also adapted to allow this research to be undertaken in the field and used to study three new temperate marine sites within Lake Illawarra, New South Wales, Australia.

  6. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  7. Sulfur reduction in sediments of marine and evaporite environments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.; Boston, P.; Francois, R.; Gyure, R. A.; Javor, B.; Tribble, G.; Vairavamurthy, A.

    1985-01-01

    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity.

  8. DETECTION OF HORIZONTAL GENE TRANSFER BY NATURAL TRANSFORMATION IN NATIVE AND INTRODUCED SPECIES OF BACTERIA IN MARINE AND SYNTHETIC SEDIMENTS

    EPA Science Inventory

    Both naturally occurring marine sediments and artificial sediment were used as supports for natural transformation of marine bacteria. hile transformation was not detected in cells of Pseudomonas stutzeri strain ZoBell suspended in artificial seawater, when recipient cells and ri...

  9. Ecotoxicological sediment evaluations in marine aquaculture areas of Chile.

    PubMed

    Rudolph, Anny; Medina, Paulina; Urrutia, Carolina; Ahumada, Ramón

    2009-08-01

    Given its geographic characteristics, the southern Chilean fjord area is subjected to growing environmental pressure from the development of diverse forms of aquaculture (i.e., fish, algae, shellfish). The sediments accumulate substances as a natural sink, and ecotoxicology assays offer a reliable and robust proxy for sediment quality analyses. This study's objective was to establish a mid-range toxicity base line for the sediments in the region by applying a battery of non-specific ecotoxicological assays. Sediment samples (28) were collected in the channels and fjords studied during the CIMAR-Fiordos 11 cruise (July 2005). The sediments were evaluated using different species endemic to the eastern Pacific as targets: Ampelisca araucana, Tisbe longicornis, Arbacia spatuligera, and Dunaliella tertiolecta. The conditions for each assay were reported previously. Of the four species used as ecotoxicological tools, only D. tertiolecta differed significantly from the control group (negative) in terms of its growth. This difference could be attributed to nutrient enrichment. In general, we concluded that, although local changes occurred in the sediments, the mesoscale magnitude of the ecotoxicological alterations was small. Nonetheless, a surveillance program should be implemented that would allow us to follow-up and analyze the changes that are taking place in the systems on broader scales of time and space. PMID:18633720

  10. Magnetic fingerprint in marine sediments: clues from cultivated Magnetovibrio blakemorei and recent cores from Brazilian Coast

    NASA Astrophysics Data System (ADS)

    Jovane, L.; Florindo, F.; Bazylinski, D. A.; Pellizari, V. H.; Brandini, F. P.; de Almeida, L. A.; Carneiro, F. R.; Braga, E. D.; Lins, U.

    2013-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei strain MV-1, a marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a 'magnetic fingerprint' for a specific magnetotactic bacterium. The technique used to determine this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We focused on studying the environmental conditions that allow for the presence of magnetotactic bacteria and magnetosomes in sediments including determining magnetotactic bacterial populations in marine settings, measuring crucial nutrient availability in the water column and in sediments, and examining particulate delivery to the seafloor.

  11. Investigations into methods of removing from marine sediments that toxicity attributable to organic contaminants

    SciTech Connect

    Huckins, J.N.; Lebo, J.A.; Petty, J.D.; Orazio, C.E.; Gibson, V.L.; Ho, K.

    1995-12-31

    Sediments from contaminated estuaries such as New York/New Jersey Harbor are toxic due to the presence of a diversity of contaminants, e.g., heavy metals, ammonia, and organics such as PCBs, PAHs, PCDDs and PCDFs. To facilitate Toxicity Identification Evaluation (TIE) studies of whole sediments, the authors have developed a strategy for selectively reducing or removing organic contaminant residues with minimal disruption of the dynamics of other classes of contaminants that contribute to whole sediment toxicity. The strategy consists of an optional prewash of the sediment slurry with a nonpolar volatile solvent to remove globular and crystalline contaminant phases, turbation of sediment slurry (elevated temperature may be required) in the presence of polyethylene strips (PE) or charcoal-impregnated PE strips and triolein-containing semipermeable membrane devices (SPMDs), and finally addition of small amounts of fine-grained activated carbon (shown to be nontoxic) to the test sediment. Replicate (n = 2) samples of a marine sediment spiked and aged with 500 {micro}g/g dieldrin were successfully detoxified using these procedures, as 48 h bioassays (Mysidopsis bahia and Ampelisca abdita) showed no toxicity, while untreated sediment and SPMD dialysates were toxic. Gas chromatographic analysis of the treated sediment samples showed that 97 and > 99 percent of the dieldrin had been removed. Detoxification of other sediments with naturally incurred high-K{sub oc} organic pollutants may be more problematic.

  12. Variations in sediment texture on the northern Monterey Bay National Marine Sanctuary continental shelf

    USGS Publications Warehouse

    Edwards, B.D.

    2002-01-01

    The storm-protected continental shelf of Monterey Bay, part of the Monterey Bay National Marine Sanctuary, north-central California, is subject to abundant, episodic sediment input from fluvial sources. North of Monterey Bay, conditions of reduced sediment supply combined with the exposed nature of the shelf provide an effective laboratory for studying the contrasting effects of storm- versus fluvial-dominated conditions on modern sedimentation. Textural analyses performed on surface sediment samples collected from more than 380 box cores and MultiCores??? document the existence of a clearly defined mud belt occupying the mid-shelf throughout the region. Inshore sands combined with these mid-shelf muds represent deposits from modern sedimentation processes. In Monterey Bay, where episodic fluvial input from winter storms dominates sedimentation, the mid-shelf mud belt extends across the shelf to the shelf break. North of Monterey Bay, where sediment loads are reduced and both oceanographic and storm processes dominate, the mid-shelf mud belt is bordered by relict sediments occupying the outer shelf. In the study area, mass accumulation rates established by radiochemical studies support the contention that storm-induced along-shelf processes result in northward transport of sediment within the mud belt. The continuity of transport, however, is interrupted by topographic highs which are barriers or inhibitors to sediment transport created by wrench-style tectonics associated with the San Andreas fault system.

  13. Statistical Approaches for Estimating Actinobacterial Diversity in Marine Sediments

    PubMed Central

    Stach, James E. M.; Maldonado, Luis A.; Masson, Douglas G.; Ward, Alan C.; Goodfellow, Michael; Bull, Alan T.

    2003-01-01

    Bacterial diversity in a deep-sea sediment was investigated by constructing actinobacterium-specific 16S ribosomal DNA (rDNA) clone libraries from sediment sections taken 5 to 12, 15 to 18, and 43 to 46 cm below the sea floor at a depth of 3,814 m. Clones were placed into operational taxonomic unit (OTU) groups with ≥99% 16S rDNA sequence similarity; the cutoff value for an OTU was derived by comparing 16S rRNA homology with DNA-DNA reassociation values for members of the class Actinobacteria. Diversity statistics were used to determine how the level of dominance, species richness, and genetic diversity varied with sediment depth. The reciprocal of Simpson's index (1/D) indicated that the pattern of diversity shifted toward dominance from uniformity with increasing sediment depth. Nonparametric estimation of the species richness in the 5- to 12-, 15- to 18-, and 43- to 46-cm sediment sections revealed a trend of decreasing species number with depth, 1,406, 308, and 212 OTUs, respectively. Application of the LIBSHUFF program indicated that the 5- to 12-cm clone library was composed of OTUs significantly (P = 0.001) different from those of the 15- to 18- and 43- to 46-cm libraries. FST and phylogenetic grouping of taxa (P tests) were both significant (P < 0.00001 and P < 0.001, respectively), indicating that genetic diversity decreased with sediment depth and that each sediment community harbored unique phylogenetic lineages. It was also shown that even nonconservative OTU definitions result in severe underestimation of species richness; unique phylogenetic clades detected in one OTU group suggest that OTUs do not correspond to real ecological groups sensu Palys (T. Palys, L. K. Nakamura, and F. M. Cohan, Int. J. Syst. Bacteriol. 47:1145-1156, 1997). Mechanisms responsible for diversity and their implications are discussed. PMID:14532080

  14. Concurrent low- and high-affinity sulfate reduction kinetics in marine sediment

    NASA Astrophysics Data System (ADS)

    Harder Tarpgaard, Irene; Røy, Hans; Jørgensen, Bo Barker

    Bacterial sulfate reduction in marine sediments generally occurs in the presence of high millimolar concentrations of sulfate. Published data indicate that low sulfate concentrations may limit sulfate reduction rates below 0.2-2 mM. Yet, high sulfate reduction rates occur in the 1-100 μM range in freshwater sediments and at the sulfate-methane transition in marine sediments. Through a combination of 35S-tracer experiments, including initial velocity experiments and time course experiments, we searched for different sulfate affinities in the mixed community of sulfate reducers in a marine sediment. We supported the radiotracer experiments with a highly sensitive ion chromatographic technique for sulfate with a detection limit of 0.15 μM SO 42- in marine pore water. Our results showed that high and low affinities for sulfate co-occur and that the applied experimental approach may determine the observed apparent half saturation constant, Km. Our experimental and model data both show that sulfate reduction in the studied marine sediment could be explained by two dominating affinities for sulfate: a low affinity with a mean half saturation constant, Km, of 430 μM SO 42- and a high affinity with a mean Km of 2.6 μM SO 42-. The high-affinity sulfate reduction was thermodynamically un-constrained down to <1 μM SO 42-, both in our experiments and under in situ conditions. The reduction of radio-labeled sulfate was partly reversible due to concurrent re-oxidation of sulfide by Fe(III) and possibly due to a reversibility of the enzymatic pathway of sulfate reduction. A literature survey of apparent Km values for sediments and pure cultures is presented and discussed.

  15. The diagenesis of phosphorus in a nearshore marine sediment

    NASA Astrophysics Data System (ADS)

    Krom, Michael D.; Berner, Robert A.

    1981-02-01

    Chemical analyses have been made for total inorganic phosphorus, total organic phosphorus, and organic carbon in plankton and in anoxic sediments from Long Island Sound, U.S.A. When combined with laboratory experiments, the measurements of other studies on the same sediments, and mathematical modelling, the results indicate that: (1) A large proportion of dissolved phosphate in the upper ~10 cm of sediment (zone of bioturbation) is provided by the release of adsorbed phosphate during the reduction of ferric oxyhydroxides; (2) Below the zone of bioturbation phosphate is liberated to solution solely via organic matter decomposition and the release is stoichiometrically coupled to bacterial sulfate reduction and ammonia formation, (3) A steady state diagenetic model can be used to predict the profile of organic phosphorus from that of dissolved phosphate at depths below the zone of bioturbation; (4) The flux of dissolved phosphate out of the sediment must arise largely from phosphate liberation occurring very close (< 1 cm) to the sediment-water interface; (5) There is a large preferential loss of phosphorus relative to carbon from organic matter at the time of or prior to burial, whereas after burial phosphorus is not lost preferentially at this location.

  16. Denitrification, anammox, and N₂ production in marine sediments.

    PubMed

    Devol, Allan H

    2015-01-01

    Fixed nitrogen limits primary productivity in many parts of the global ocean, and it consequently plays a role in controlling the carbon dioxide content of the atmosphere. The concentration of fixed nitrogen is determined by the balance between two processes: the fixation of nitrogen gas into organic forms by diazotrophs, and the reconversion of fixed nitrogen to nitrogen gas by denitrifying organisms. However, current sedimentary denitrification rates are poorly constrained, especially in permeable sediments, which cover the majority of the continental margin. Also, anammox has recently been shown to be an additional pathway for the loss of fixed nitrogen in sediments. This article briefly reviews sedimentary fixed nitrogen loss by sedimentary denitrification and anammox, including in sediments in contact with oxygen-deficient zones. A simple extrapolation of existing rate measurements to the global sedimentary denitrification rate yields a value smaller than many existing measurement-based estimates but still larger than the rate of water column denitrification. PMID:25560607

  17. Denitrification, Anammox, and N2 Production in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Devol, Allan H.

    2015-01-01

    Fixed nitrogen limits primary productivity in many parts of the global ocean, and it consequently plays a role in controlling the carbon dioxide content of the atmosphere. The concentration of fixed nitrogen is determined by the balance between two processes: the fixation of nitrogen gas into organic forms by diazotrophs, and the reconversion of fixed nitrogen to nitrogen gas by denitrifying organisms. However, current sedimentary denitrification rates are poorly constrained, especially in permeable sediments, which cover the majority of the continental margin. Also, anammox has recently been shown to be an additional pathway for the loss of fixed nitrogen in sediments. This article briefly reviews sedimentary fixed nitrogen loss by sedimentary denitrification and anammox, including in sediments in contact with oxygen-deficient zones. A simple extrapolation of existing rate measurements to the global sedimentary denitrification rate yields a value smaller than many existing measurement-based estimates but still larger than the rate of water column denitrification.

  18. REMOVAL OF AMMONIA TOXCITY IN MARINE SEDIMENT TIES: A COMPARISON OF ULVA LACTUCA, ZEOLITE AND AREATION METHODS

    EPA Science Inventory

    Ammonia is suspected of causing some of the toxicity observed in marine sediment toxicity tests because it is sometimes found at elevated concentrations in marine interstitial waters. In marine waters, ammonia exists as un-ionized ammonia (NH3) and ammonium (NH4+) which combine ...

  19. Accumulation of polychlorinated organic contaminants from sediment by three benthic marine species

    SciTech Connect

    Pruell, R.J.; Rubinstein, N.I.; Taplin, B.K.; LiVolsi, J.A.; Bowen, R.D.

    1993-01-01

    A laboratory experiment was conducted to measure the accumulation of selected polychlorinated compounds by marine benthos exposed to environmentally contaminated sediment. Sandworms (Nereis virens), clams (Macoma nasuta), and grass shrimp (Palaemonetes pugio) were exposed to sediment collected from the Passaic River, New Jersey. All three species accumulated 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and polychlorinated biphenyls (PCBs) from the sediment. In addition, a recently identified sulfur containing analog of tetrachlorinated dibenzofurans. The objectives of the study were to determine the relative bioavailability of 2,3,7,8-TCDD, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and selected PCB congeners from bottom sediments as well as to examine the relationship between contaminant concentrations in sediments and biota.

  20. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle.

    PubMed

    Kerrick, D M; Connolly, J A

    2001-05-17

    Volatiles, most notably CO2, are recycled back into the Earth's interior at subduction zones. The amount of CO2 emitted from arc volcanism appears to be less than that subducted, which implies that a significant amount of CO2 either is released before reaching the depth at which arc magmas are generated or is subducted to deeper depths. Few high-pressure experimental studies have addressed this problem and therefore metamorphic decarbonation in subduction zones remains largely unquantified, despite its importance to arc magmatism, palaeoatmospheric CO2 concentrations and the global carbon cycle. Here we present computed phase equilibria to quantify the evolution of CO2 and H2O through the subduction-zone metamorphism of carbonate-bearing marine sediments (which are considered to be a major source for CO2 released by arc volcanoes). Our analysis indicates that siliceous limestones undergo negligible devolatilization under subduction-zone conditions. Along high-temperature geotherms clay-rich marls completely devolatilize before reaching the depths at which arc magmatism is generated, but along low-temperature geotherms, they undergo virtually no devolatilization. And from 80 to 180 km depth, little devolatilization occurs for all carbonate-bearing marine sediments. Infiltration of H2O-rich fluids therefore seems essential to promote subarc decarbonation of most marine sediments. In the absence of such infiltration, volatiles retained within marine sediments may explain the apparent discrepancy between subducted and volcanic volatile fluxes and represent a mechanism for return of carbon to the Earth's mantle. PMID:11357128

  1. USE OF ULVA LACTUTA TO IDENTIFY AMMONIA TOXICITY IN MARINE AND ESTUARINE SEDIMENTS

    EPA Science Inventory

    Toxicity identification evaluation(TIE) methods are being developed for use with whole sediments. Although a phase I TIE method has been developed to characterize ammonia toxicity in aqueous samples using the marine macroalga Ulva lactuca, the relationship between amphipod and my...

  2. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  3. Sorption behaviors of a persistent toxaphene congener on marine sediments under different physicochemical conditions.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Gouteux, Bruno; Nikiforov, Vladimir; Awaleh, Mohamed Osman

    2014-11-01

    Sorptive processes are important parameters affecting the mobility, availability and fate of persistent organic pollutants (POPs), such as toxaphene, in aquatic systems. The sorption and desorption behaviors of the B7-1450, a stable toxaphene congener in environment, on marine sediment was studied under different temperature and salinity conditions to better understand the B-1450 distribution in estuarine systems. The data were fitted to different sorption models to characterize sorption behaviors by evaluating sorption coefficients and sequestrated fraction of B7-1450 on sediments. High carbon-normalized sorption coefficients (Koc) of the B7-1450 were observed with values ranging from 3.2×104 to 6.0×104 mL g(-1) under experimental conditions. The data showed an increase of B7-1450 sorption coefficients with the salinity and a decrease with temperature. These investigations indicate that B7-1450 is three times more sequestred on sediments in cold (2°C, 30 psu) than in warm marine conditions (20°C, 30 psu). These results suggest that the mobility and bioavailable of B7-1450 or other POPs from the sediments could be less important in cold marine comparatively in warm marine and warm freshwater media. As a result of climate changes, the warming of mid and high latitudes coastal waters could enhance the mobility of POPs. PMID:25113217

  4. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  5. Molybdenum Accumulation in Marine Sediments as an Indicator of Hypoxic Water Conditions (NACAETAC)

    EPA Science Inventory

    Direct monitoring of hypoxic water column conditions over large spatial and temporal extents is difficult due to the substantial logistical and financial investment required. Recent studies have indicated that concentrations of molybdenum (Mo) in marine sediments may serve as a u...

  6. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

    PubMed

    Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban

    2015-10-01

    Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date. PMID:26119494

  7. Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments

    NASA Astrophysics Data System (ADS)

    Rush, Darci; Sinninghe Damsté, Jaap S.; Poulton, Simon W.; Thamdrup, Bo; Garside, A. Leigh; Acuña González, Jenaro; Schouten, Stefan; Jetten, Mike S. M.; Talbot, Helen M.

    2014-09-01

    Bacterially-derived bacteriohopanepolyols (BHPs) are abundant, well preserved lipids in modern and paleo-environments. Bacteriohopanetetrol (BHT) is a ubiquitously produced BHP while its less common stereoisomer (BHT isomer) has previously been associated with anoxic environments; however, its biological source remained unknown. We investigated the occurrence of BHPs in Golfo Dulce, an anoxic marine fjord-like enclosure located in Costa Rica. The distribution of BHT isomer in four sediment cores and a surface sediment transect closely followed the distribution of ladderane fatty acids, unique biomarkers for bacteria performing anaerobic ammonium oxidation (anammox). This suggests that BHT isomer and ladderane lipids likely shared the same biological source in Golfo Dulce. This was supported by examining the BHP lipid compositions of two enrichment cultures of a marine anammox species (‘Candidatus Scalindua profunda’), which were found to contain both BHT and BHT isomer. Remarkably, the BHT isomer was present in higher relative abundance than BHT. However, a non-marine anammox enrichment contained only BHT, which explains the infrequence of BHT isomer observations in terrestrial settings, and indicates that marine anammox bacteria are likely responsible for at least part of the environmentally-observed marine BHT isomer occurrences. Given the substantially greater residence time of BHPs in sediments, compared to ladderanes, BHT isomer is a potential biomarker for past anammox activity.

  8. usSEABED: Database Efforts in Marine Surficial Sediments of the US EEZ

    NASA Astrophysics Data System (ADS)

    Reid, J. A.; Jenkins, C. J.; Field, M. E.; Gardner, J. V.; Zimmermann, M.; Box, C. E.; Kneeshaw, T. A.

    2001-12-01

    The USGS, in partnership with the University of Sydney, Australia and National Marine Fisheries Service, Seattle is constructing a unique marine surficial sediment database, usSEABED, for the United States EEZ. usSEABED maximizes the knowledge of the seafloor by combining sedimentological and biological information, verbal sample and photographic descriptions (through fuzzy set theory), chemical, and acoustic data, along with other seabed geologic characteristics, into a single standardized format. In this way, usSEABED is more than a compilation of known quantitative surficial sediment data but rather provides an integrated view of the seabed. Decades of marine sediment research by federal, state, local, academic, and private institutions has provided temporal and spatial snapshots of the ocean floor, either as focused, tightly gridded sampling efforts, or in the earliest days, more widely scattered efforts. As is, these datasets had disparate purposes with dissimilar sampling parameters, statistics, and data types. usSEABED filters these datasets, providing uniform parameters for quantitative sediment textural data, parsed verbal data (using fuzzy set theory), modeled data, and both geologic and biologic compositional parameters. Access to our efforts is through our website, available in the fall of 2001, which includes an explanation of the processing involved, sample maps, an interactive GIS site, and a data-download site. usSEABED is held in a comma-delimited, field-defined, tree-d structure that can be brought into most COTS relational databases or GIS. Focussed originally on the U.S. Pacific margin, recent work is widening the coverage to areas in Hawaii, Alaska, the Gulf of Mexico, the Great Lakes, and the U.S. Atlantic margin. usSEABED is an ongoing project, with expanding data inclusions and new data-filtering modules available, such as sediment true-color displays and marine mineral locations. We invite the additions of new sedimentological, biological

  9. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens.

    PubMed

    Klosterhaus, Susan L; Dreis, Erin; Baker, Joel E

    2011-05-01

    Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that have become ubiquitous environmental contaminants. Polybrominated diphenyl ether no-uptake rates from estuarine or marine sediments to deposit-feeding organisms have not yet been reported. In the present study, the marine polychaete worm Nereis virens was exposed to field-contaminated and spiked sediments containing the penta- and deca-BDE commercial mixtures in a 28-d experiment to characterize the relative bioavailability of PBDE congeners from estuarine sediments. A time series sampling regimen was conducted to estimate uptake rate constants. In both field-collected and laboratory-spiked sediment exposures, worms selectively accumulated congeners in the penta-BDE mixture over BDE 209 and other components of the deca-BDE mixture, supporting the prevalence of these congeners in higher trophic level species. Brominated diphenyl ether 209 was not bioavailable to N. virens from field sediment and was only minimally detected in worms exposed to spiked sediments in which bioavailability was maximized. Chemical hydrophobicity was not a good predictor of bioavailability for congeners in the penta-BDE mixture. Direct comparison of bioavailability from the spiked and field sediments for the predominant congeners in the penta-BDE mixture was confounded by the considerable difference in exposure concentration between treatments. Biota-sediment accumulation factors (BSAFs) for N. virens after 28 d of exposure to the field sediment were lower than the BSAFs for Nereis succinea collected from the field site, indicating that 28-d bioaccumulation tests using N. virens may underestimate the in situ concentration of PBDEs in deposit-feeding species. The bioavailability of PBDEs to N. virens indicates that these chemicals can be remobilized from estuarine sediments and transferred to aquatic food webs. PMID:21337608

  10. Coastal Marsh Sediments from Bodega Harbor: Archives of Environmental Changes at the Terrestrial-Marine Interface

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Rong, Y.; Hill, T. M.; Hiromoto, C.; Fisher, A.

    2010-12-01

    Coastal marsh sediments provide an important archive of environmental changes at the terrestrial-marine interface. Over the last century, humans have significantly altered the coastal environment near Bodega Bay, California, through changes in hydrology, sediment sources, and the dominant ecosystem. Previous investigations of recent coastal marsh sediments (< 50 years) suggest that physical barriers, such as roads, which limit the connection between Bodega Bay and the marshes, alters biogeochemical cycling (including carbon storage) in the coastal environment. The present study extends the record of changes in biogeochemical cycling in the coastal marshes back more than 100 years (approximately 90 cm) through the use of grain size analysis, C and N isotopes, and age dating. Sediments were analyzed for grain size distribution, the amount of carbon and nitrogen, and the stable isotopes of carbon and nitrogen in 1 cm intervals throughout the core. In addition, a subset of eight samples was analyzed for sediment age using a combination of Pb-210 and Cs-137 techniques. Sediments from >40 cm and <55 cm depth have a higher percentage of fine-grained sediment (>2%). In addition, these sediments also contain higher levels of total organic carbon and nitrogen, higher C:N ratios, we well as heavier carbon and nitrogen isotopic signatures. The sediments likely correspond to a pre-1900 depositional environment based on Pb-210 dates, when development in the region was increasing. These results suggest a stronger influence of the marine environment during that time. Interestingly, smaller transitions in sediment properties toward what appears to reflect a more marine environment also occur near the top of the core (<10 cm depth) and near the bottom of the core (>75 cm depth). Although these transitions are less pronounced, the significant shift in sediment properties suggests a less stable environment with greater communication between the terrestrial and marine environments

  11. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.

    PubMed

    Fonti, Viviana; Beolchini, Francesca; Rocchetti, Laura; Dell'Anno, Antonio

    2015-01-01

    Bioremediation strategies applied to contaminated marine sediments can induce important changes in the mobility and bioavailability of metals with potential detrimental consequences on ecosystem health. In this study we investigated changes of bacterial abundance and diversity (by a combination of molecular fingerprinting and next generation sequencing analyses) during biostimulation experiments carried out on anoxic marine sediments characterized by high metal content. We provide evidence that the addition of organic (lactose and/or acetate) and/or inorganic compounds to contaminated sediments determines a significant increase of bacterial growth coupled with changes in bacterial diversity and assemblage composition. Experimental systems supplied only with organic substrates were characterized by an increase of the relative importance of sulfate reducing bacteria belonging to the families Desulfobacteraceae and Desulfobulbaceae with a concomitant decrease of taxa affiliated with Flavobacteriaceae. An opposite effect was observed in the experimental treatments supplied also with inorganic nutrients. The increase of bacterial metabolism coupled with the increase of bacterial taxa affiliated with Flavobacteriaceae were reflected in a significant decrease of Cd and Zn associated with sedimentary organic matter and Pb and As associated with the residual fraction of the sediment. However, independently from the experimental conditions investigated no dissolution of metals occurred, suggesting a role of bacterial assemblages in controlling metal solubilization processes. Overall results of this study have allowed to identify key biogeochemical interactions influencing the metal behavior and provide new insights for a better understanding of the potential consequences of bio-treatments on the metal fate in contaminated marine sediments. PMID:25462769

  12. Interlaboratory comparison of standardized sediment toxicity test methods using estuarine and marine amphipods

    SciTech Connect

    Schlekat, C.E.; Scott, J.; Armitage, T.M.; Swartz, R.C.

    1994-12-31

    USEPA`s Office of Science and Technology has developed standardized sediment toxicity test methods that use four estuarine and marine amphipod species. An interlaboratory comparison was conducted to evaluate the precision of these methods. This comparison included three species, Ampelisca abdita, Eohaustorius estuarius, and Leptocheirus plumulosus. A similar study with the fourth species, Rhepoxynius abronius, has already been conducted. A matrix of ten participating laboratories, including both government and contract laboratories, ensure that each species was tested by at least six laboratories. Each species was exposed for 10 d under static, non-renewal conditions to four sediment treatments using standardized, species-specific test protocols. Sediment treatments were selected for each species to include one negative control sediment and three contaminated sediments. Highly contaminated sediment from Black Rock Harbor, CT, was diluted with species-specific, non-contaminated control sediment, creating test sediments that ranged in relative contamination from low to high. Each laboratory also conducted 4-d water-only reference toxicant tests with Cd. Independent suppliers distributed amphipods to each laboratory. Results of sediment exposures were analyzed to evaluate (1) the magnitude of variability for each treatment among laboratories, (2) differences in mean survival for each species among laboratories, and (3) differences in rank survival for each species among laboratories.

  13. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  14. Development and Evaluation of Polychaete Reverse Samplers for Marine Phase II Whole Sediment Toxicitiy Identification Evaluations (TIE)

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to m...

  15. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  16. Energetic constraints on life in deep marine sediments

    NASA Astrophysics Data System (ADS)

    Amend, J.; LaRowe, D.

    2013-12-01

    Microorganisms are abundant in deep-sea sediments, but what percentage of cells is active, how fast do they grow, and what factors control their diversity and population size? Geochemical modelling of redox reaction energetics can help in answering these questions. Calculations of Gibbs energies reveal which reactions are thermodynamically possible, but they also highlight which geochemical variables (e.g., temperature, pressure, pH, composition) may control microbial activity and how the amount and type of biomass are affected by energy limitations. We will discuss recent results from sediment cores collected at the Peru Margin (active continental shelf with high primary productivity and significant organic matter accumulation), the South Pacific Gyre (ultra-slow sedimentation rate and low organic carbon content), and the Juan de Fuca Ridge flank (high rate of sedimentation influenced by hydrothermal circulation). However, this approach to evaluating bioenergetic potential and predicting microbial activity can be applied to any environment where the geochemistry is well characterized, even if microbiology data have not been collected. When Gibbs energies are calculated on a basis of per mole of electrons transferred (as is commonly done), aerobic oxidation of hydrogen and organic matter in South Pacific Gyre sediments is the most exergonic. Based on this, one might posit that the fastest catabolic rates and the largest biomass would be found there. However, cell counts at Juan de Fuca and the Peru Margin are several orders of magnitude higher. When recast as energy densities (in J per cm3 of sediment), we observe far more energy available in sediments at Juan de Fuca and the Peru Margin than at those in the South Pacific Gyre. We also note that the identity of the most exergonic reaction changes with depth, suggesting corresponding changes in the microbial community structure. The thermodynamic approach used here for energy supply can also be used for energy

  17. Optimization of hard clams, polychaetes, physical disturbance and denitrifying bacteria of removing nutrients in marine sediment.

    PubMed

    Shen, Hui; Thrush, Simon F; Wan, Xihe; Li, Hui; Qiao, Yi; Jiang, Ge; Sun, Ruijian; Wang, LiBao; He, Peimin

    2016-09-15

    Marine organisms are known to play important roles in transforming nutrients in sediments, however, guidelines to optimize sediment restoration are not available. We conducted a laboratory mesocosm experiment to investigate the role of hard clams, polychaetes, the degree of physical disturbance and denitrifying bacterial concentrations in removing total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in marine sediments. Response surface methodology was employed to analyze the results of initial experiments and in a subsequent experiment identified optimal combinations of parameters. Balancing the TN, TP, TOC removal efficiency, our model predicted 39% TN removal, 33% TP removal, and 42% TOC removal for a 14-day laboratory bioremediation trial using hard clams biomass of 1.2kgm(-2), physical disturbance depth of 16.4cm, bacterial density of 0.18Lm(-2), and polychaetes biomass of 0.16kgm(-2), respectively. These results emphasize the value of combining different species in field-based bioremediation. PMID:27371956

  18. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  19. Occurrences and fates of hydroxylated polybrominated diphenyl ethers in marine sediments in relation to trophodynamics.

    PubMed

    Zhang, Kun; Wan, Yi; Jones, Paul D; Wiseman, Steve; Giesy, John P; Hu, Jianying

    2012-02-21

    While occurrences and origins of hydroxylated (OH-) polybrominated diphenyl ethers (PBDEs) in organisms have been reported, the fates of these compounds in abiotic matrixes and related trophodynamics are unclear. The present study measured concentrations of nine OH-PBDEs, twelve methoxylated (MeO-) PBDEs, and eleven PBDEs in marine sediments and explored the trophodynamics of OH-PBDEs in five invertebrates, eight fish, and two species of birds from Liaodong Bay, north China. While concentrations of PBDEs were less than the limit of quantification in sediments, concentrations of ΣOH-PBDEs and ΣMeO-PBDEs were 3.2-116 pg/g dry weight (dw) and 3.8-56 pg/g dw, respectively. When the detected compounds were incubated in native marine sediments the interconversion between 6-OH-BDE47 and 6-MeO-BDE47 was observed. This result is consistent with the similar spatial distributions and significant correlation between the concentrations of these naturally occurring compounds. 6-OH-BDE47 and 2'-OH-BDE68 were detected as the two major congeners in organisms collected from Liaodong Bay, and concentrations were 0.24 ± 0.005 ng/g lw (lipid weight) and 0.088 ± 0.006 ng/g lw, respectively. Biota-sediment accumulation factors (BSAFs) for invertebrates of 6-OH-BDE47 and 2'-OH-BDE68 were 0.017-0.96 and 0.19-1.5 (except for short-necked clam: 6.3), respectively. Lipid-normalized concentrations of 6-OH-BDE47 and 2'-OH-BDE68 decreased significantly with trophic level with TMFs of 0.21 and 0.15, respectively. The fates of OH-PBDEs in sediment together with their trophodynamics in marine food webs suggested that OH-PBDEs are partitioned into sediment and undergo biodilution in the marine food web. PMID:22296595

  20. Food quality determines sediment community responses to marine vs. terrigenous organic matter in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Jamieson, A.; Huvenne, V. A. I.; Witte, U.

    2012-08-01

    The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard canyon testing short term (3-7 day) responses of sediment communities to deposition of nitrogen-rich marine (Thallassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest, in the western branch of the Whittard canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0-1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal-bacterial interactions influence benthic C cycling in the Whittard canyon, resulting in differential fates for marine and terrigenous OM.

  1. Detection of recycled marine sediment components in crater lake fluids using 129I

    NASA Astrophysics Data System (ADS)

    Fehn, U.; Snyder, G. T.; Varekamp, J. C.

    2002-06-01

    Crater lakes provide time-integrated samples of volcanic fluids, which may carry information on source components. We tested under what circumstances 129I concentrations can be used for the detection of a signal derived from the recycling of marine sediments in subduction zone magmatism. The 129I system has been successfully used to determine origin and pathways in other volcanic fluids, but the application of this system to crater lakes is complicated by the presence of anthropogenic 129I, related to recent nuclear activities. Results are reported from four crater lakes, associated with subducting crust varying in age between 23 and 98 Ma. The 129I/I ratios determined for Copahue, Argentina, ( 129I/I=700×10 -15) and White Island, New Zealand, ( 129I/I=284×10 -15) demonstrate the presence of iodine in the crater lakes that was derived from recycled marine sediments. A comparison to the ages of the subducted sediments in these two cases indicates that the ratios likely reflect iodine remobilization from the entire sediment column that was undergoing subduction. While the 129I signals in Poás and Rincón de la Vieja, Costa Rica also demonstrate the presence of recycled iodine, the relatively high percentage of meteoric water in these lakes prevents a reliable determination of source ages. The observed high concentrations of iodine and 129I/I ratios substantially below current surface values strongly argue for the presence of recycled marine components in the arc magmas of all four cases. Components from subducted marine sediments can be quantified and related to specific parts of the sediment column in cases where the iodine concentration in the lake waters exceeds 5 μM.

  2. Sediment community responses to marine vs. terrigenous organic matter in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Jamieson, A.; Huvenne, V. A. I.; Witte, U.

    2013-01-01

    The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3-7 days) responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest in the western branch of the Whittard Canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0-1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal-bacterial interactions influence benthic C cycling in the Whittard Canyon, resulting in differential fates for marine and terrigenous OM.

  3. Recent sediment remolding on a deep shelf, Ross Sea: implications for radiocarbon dating of Antarctic marine sediments

    NASA Astrophysics Data System (ADS)

    Domack, Eugene W.; Taviani, Marco; Rodriguez, Anthonio

    1999-11-01

    Coarse, bioclastic rich sands have been widely reported from the banks of the Antarctic continental shelf but their origin is still poorly known. We report on a suite of coarse sediments recovered from the top of the Mawson Bank in the northwestern Ross Sea. Radiocarbon ages of biogenic calcite, for modern and apparently late Pleistocene deposits, range from 1085±45 to 20,895±250 yr B.P.. Discovery of soft tissue (Ascidian) preserved as an incrustation on a pebble at 2 m depth indicates aggregation of the sediment within several months or a year of core recovery. Radiocarbon ages of acid insoluble organic matter (aiom) are less than those of the foraminifera calcite. The aiom ages are also reversed in sequence, indicating reworking of the sediment during deposition. These observations and a review of recently published literature suggest that much of the bank top sediment in Antarctica is presently undergoing remobilization, under the influence of strong currents and/or icebergs even under interglacical (high-stand) sea levels. These observations point out the need for careful, integrated studies on high latitude marine sediment cores before resultant "ages" alone are used as the foundation for paleoglacial reconstructions.

  4. Sequential Sediment Budgets in an Ungauged Watershed: Redwood Creek, Marin County, California

    NASA Astrophysics Data System (ADS)

    Downs, P. W.; Stallman, J.

    2005-12-01

    Sediment budgets provide an organizing framework in fluvial geomorphology and have enormous potential in environmental management. A sediment budget approach assisted in developing strategies for restoring Big Lagoon, the wetland ecosystem at the terminus of the 22.7 km2 Redwood Creek watershed in Marin County, California. Persistence of a restored lagoon largely depends on the current sediment yield relative to the reference yield prior to European settlement. Process-based, distributed sediment budgets were constructed for several historical time periods to account for accelerated sediment production from contemporary land management practices and legacy factors stemming from past resource exploitation. Sediment production, storage, and transfer were investigated using digital terrain modeling, field reconnaissance to ascertain and validate hillslope processes, mainstem channel surveys and dendrochronology to assess trends in alluvial sediment storage, application of published process rate estimates, use of short-term and prorated stream gauging records, and sediment transport modeling to validate sediment yields into Big Lagoon. Evidence suggests that the Redwood Creek valley bottom aggraded from at least 3,500 B.P., with floodplain wetlands acting as sediment sinks (average annual sediment yield of 34 t km2 yr-1). Channel incision rapidly followed European settlement and intensive hillslope disturbances beginning around 1840 (peak yield 1921-1982 of 324 t km2 yr-1). Mainstem and large tributary valley bottoms became major sediment sources during this time and remain sources despite progressive retirement of most agricultural land use (yield 1981-2000 of 198 t km2 yr-1). Numerous issues related to data availability and resolution limited quantification of some sediment sources and resulted in potential uncertainties in estimates of yield to Big Lagoon. Historical sediment budgets, however, require more than adequate data sources, they require accurate conceptual

  5. Luminescence Dating of Marine Terrace Sediments Between Trabzon and Rize, Eastern Black Sea Basin: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Softa, Mustafa; Spencer, Joel Q. G.; Emre, Tahir; Sözbilir, Hasan; Turan, Mehmet

    2016-04-01

    Quaternary marine terraces in the coastal region of Pontides in Northeastern Turkey are valuable archives of past sea level change. Until recently, dates of raised marine terraces undeciphered in the coastal region between Trabzon and Rize because of chronologic limitations. In this paper was to determine ages of the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz minerals from extracted marine terraces. Several samples were collected from three orders of Quaternary marine terraces which are reproducible at all sampling location in between cities of Trabzon and Rize, Turkey, coastal of Eastern Pontides, at the front of the thrust system. The terrace deposits mainly consist of clays, silts, sands and gravels. The sediments in these deposits are mainly derived from basaltic, andesitic, and limestone geology, and have elipsoid, square and flat shapes. The terrace deposits have heights ranging from 1 to 17 meters and increases in height and thickness from west to east. Initial OSL results from 1 mm and 3 mm quartz aliquots demonstrate good luminescence characteristics. Preliminary equivalent dose analysis results ranging from 17.6 Gy to 79.6 Gy have been calculated using the Central Age Model (CAM) and Minimum Age Model (MAM). According to ages obtained from three separate terrace is ~8 ka, ~42 ka and ~78 ka, respectively. Results of marine terrace sediments indicate this region has three sedimentation periods and coastal region of Pontides has been remarkably tectonically active since latest Pleistocene to earlier Holocene. This study will present preliminary OSL dating results obtained from samples of Quaternary marine terrace formation. Keywords: optically stimulated luminescence (OSL) dating, single grain, marine terraces, Eastern Pontides.

  6. Study of photocatalytic degradation of tributyltin, dibutylin and monobutyltin in water and marine sediments.

    PubMed

    Brosillon, Stephan; Bancon-Montigny, Chrystelle; Mendret, Julie

    2014-08-01

    This study reports on the first assessment of the treatment of sediments contaminated by organotin compounds using heterogeneous photocatalysis. Photocatalysis of organotins in water was carried out under realistic concentration conditions (μgL(-1)). Degradation compounds were analyzed by GC-ICP-MS; a quasi-complete degradation of tributyltin (TBT) in water (99.8%) was achieved after 30min of photocatalytic treatment. The degradation by photolysis was about (10%) in the same conditions. For the first time decontamination of highly polluted marine sediments (certified reference material and harbor sediments) by photocatalysis proves that the use of UV and the production of hydroxyl radicals are an efficient way to treat organotins adsorbed onto marine sediment despite the complexity of the matrix. In sediment, TBT degradation yield ranged from 32% to 37% after only 2h of irradiation (TiO2-UV) and the by-products: dibutyltin (DBT) and monobutyltin (MBT) were degraded very rapidly in comparison with TBT. It was shown that during photocatalysis of organotins in sediments, the hydroxyl radical attack and photolysis are the two ways for the degradation of adsorbed TBT. PMID:24613444

  7. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin

    SciTech Connect

    F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  8. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin.

    PubMed

    Colwell, F S; Boyd, S; Delwiche, M E; Reed, D W; Phelps, T J; Newby, D T

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle. PMID:18344348

  9. The Growth and Decay of Hydrate Anomalies in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Irizarry, J. T.; Rempel, A. W.

    2014-12-01

    Natural gas hydrates, stored in huge quantities beneath permafrost, and in submarine sediments on the continental shelf, have the potential to become a vital clean-burning energy source. However, clear evidence is recorded in coastal sediments worldwide that past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. Arctic permafrost is thawing, and environmental changes can alter ocean circulation to warm the seafloor, causing hydrates to dissociate or dissolve in the sediments beneath. Decades of focused research provide a firm understanding of laboratory conditions under which hydrates become unstable and dissociate, and how hydrate reserves form when microbes convert organic material into methane, which can also dissolve and be carried by pore waters into the hydrate stability zone. Despite these advances, many key questions that concern both the resource potential of hydrates and their role in causing environmental geohazards, are intimately tied to the more poorly understood behavior of hydrate anomalies, which tend to be concentrated in the large pores of sand layers and form segregated lenses and nodules in muds. We present simple models designed to unravel the importance of the diverse physical interactions (i.e. flow focusing, free-gas infiltration, and pore-scale solubility effects) that help control how hydrate anomalies form. Predicted hydrate distributions are qualitatively different when accumulation in anomalies is supplied primarily by: 1. aqueous flow through sediments with enhanced permeability, 2. free-gas transport high above the three-phase stability boundary, or 3. diffusive transport along solubility gradients associated with pore-scale effects. We discuss examples that illustrate each of these distinct generation

  10. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  11. Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments.

    PubMed

    Ndungu, Kuria; Schaanning, Morten; Braaten, Hans Fredrik Veiteberg

    2016-10-15

    In situ subaqueous capping (ISC) of contaminated marine sediments is frequently proposed as a feasible and effective mitigation option. However, though effective in isolating mercury species migration into overlying water, capping can also alter the location and extent of biogeochemical zones and potentially enhance methylmercury (MeHg) formation in Hg-contaminated marine sediments. We carried out a boxcosm study to investigate whether the addition of organic carbon (OC) to Hg-contaminated marine sediments beneath an in situ cap would initiate and/or enhance MeHg formation of the inorganic Hg present. The study was motivated by ongoing efforts to remediate ca. 30,000 m(2) of Hg-contaminated seabed sediments from a Hg spill from the U864 WWII submarine wreck. By the time of sinking, the submarine is assumed to have been holding a cargo of ca. 65 tons of liquid Hg. Natural organic matter and petroleum hydrocarbons from fuels and lubricants in the wreck are potential sources of organic carbon that could potentially fuel MeHg formation beneath a future cap. The results of our study clearly demonstrated that introduction of algae OC to Hg-contaminated sediments, triggered high rates of MeHg production as long a there was sufficient OC. Thus, MeHg production was limited by the amount of organic carbon available. The study results also confirmed that, within the six-month duration of the study and in the absence of bioturbating fauna, a 3-cm sediment clay cap could effectively reduce fluxes of Hg species to the overlying water and isolate the Hg-contaminated sediments from direct surficial deposition of organic matter that could potentially fuel methylation. PMID:27494695

  12. Using marine bioassays to classify the toxicity of Dutch harbor sediments.

    PubMed

    Stronkhorst, Joost; Schipper, Cor; Brils, Jos; Dubbeldam, Marco; Postma, Jaap; van de Hoeven, Nelly

    2003-07-01

    A procedure was developed to assess contaminated marine sediments from Dutch harbors for possible adverse biological effects using three laboratory bioassays: A 10-d survival test with the amphipod Corophium volutator, a 14-d survival test with the heart urchin Echinocardium cordatum (adults), and the bioluminescence inhibition test with the bacterium Vibrio fischeri (Microtox solid phase test LSP]). Microtox results were mathematically corrected for the modifying influence of fine sediment particles. After a validation procedure on test performance and modifying factors, respectively, 81%, 99%, and 90% of the amphipod, heart urchin, and Microtox results were approved. Lower and upper threshold limits for biological effects were set at respectively 24 and 30% mortality for C. volutator, 27 and 35% mortality for E. cordatum, and 24 and 48 toxic units for the Microtox SP based on significant differences with control sediment and the performance of reference sediments. The bioassays clearly distinguished harbor sediments that give rise to acute effects and those that do not. Threshold limits for the amphipods, heart urchins, and bacteria were exceeded in, respectively, 9 to 17%, 33 to 40%, and 23 to 50% of the sediment samples. Highest effects were observed in sediments from the northerly harbors; there was significantly less response in sediments from the Delta Region and the port of Rotterdam (The Netherlands). The procedure outlined in this paper can be used for routine screening of contaminated dredged material that is proposed for open water disposal. PMID:12836979

  13. Nucleic acid based quantitative microbial community analysis in different marine and terrestrial sediments

    NASA Astrophysics Data System (ADS)

    Schippers, A.; Blazejak, A.; Köweker, G.

    2009-12-01

    Sub-seafloor sediments harbour over half of all prokaryotic cells on Earth. This immense cell number is calculated from numerous microscopic cell counts (AODC) in ODP sediment cores. Since AODC can not differentiate between living or dead cells, the population size of living microorganisms and the abundance of different prokaryotic groups are unknown. Recent molecular nucleic acid and biomarker analyses showed that a high proportion of the cells are alive and that the microbial communities of deep marine sediments harbour members of distinct, uncultured bacterial and archaeal lineages. The main objective of our project is the quantification of living prokaryotes in various sediments. Deep sediment samples from the Pacific and the Atlantic Oceans (ODP Legs 201 and 207, IODP Exp. 307 and 308), sediments from the Indian Ocean (RV Sonne 189-2) and the Black Sea (RV Meteor 51/4) as well as terrestrial Chesapeake Bay Sediments (ICDP) were analyzed using Catalyzed Reporter Deposition - Fluorescence In Situ Hybridisation (CARD - FISH) and quantitative, real-time PCR (Q-PCR), targeting either the 16S rRNA gene or the functional genes dsrA, mcrA and aprA to quantify microorganisms of various phylogenetic or physiological groups (e.g. JS1 cluster and Chloroflexi). At all sediment sites, cell numbers decreased with depth, however, the abundance of particular microbial groups varied at different sites and depths. The results indicate that global estimates of the deep biosphere should be reconsidered.

  14. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park

    PubMed Central

    Sim, Vivian X. Y.; Dafforn, Katherine A.; Simpson, Stuart L.; Kelaher, Brendan P.; Johnston, Emma L.

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  15. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    PubMed

    Sim, Vivian X Y; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Johnston, Emma L

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  16. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    SciTech Connect

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables.

  17. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review

    NASA Astrophysics Data System (ADS)

    Murray, John M. H.; Meadows, Azra; Meadows, Peter S.

    2002-09-01

    At the foundations of biogeomorphological processes in the sea lie interactions between the activities of marine benthic animals and the geotechnical properties of their sedimentary environments. The potential significance of these interactions, which take place at a microscale level of millimetres to metres, for the large-scale geomorphology of the seabed has rarely been appreciated. In the context of this review, large-scale is defined as greater than 50 m to hundreds of kilometres. The present review addresses this link, drawing examples from a wide range of marine environments, including estuaries, the intertidal zone, continental shelves and slopes, and the deep sea. It firstly considers sediment stabilisation, slope failure, sediment mixing, biodeposition, sediment compaction, and hydrodynamic effects. This is followed by a consideration of two extremes of the ecological pyramid—the effects of marine meiofauna and marine vertebrates. The final section draws attention to the central role of faunal mucus and extracellular polymeric material (ECPM) in many of the microscale interactions that we describe. The implications of these microscale biological processes and features are discussed in terms of their influence on and control of the large-scale geomorphology of the seabed.

  18. A Structural Modelling Study on Marine Sediments Toxicity

    PubMed Central

    Jäntschi, Lorentz; Bolboacã, Sorana D.

    2008-01-01

    Quantitative structure-activity relationship models were obtained by applying the Molecular Descriptor Family approach to eight ordnance compounds with different toxicity on five marine species (arbacia punctulata, dinophilus gyrociliatus, sciaenops ocellatus, opossum shrimp, and ulva fasciata). The selection of the best among molecular descriptors generated and calculated from the ordnance compounds structures lead to accurate monovariate models. The resulting models obtained for six endpoints proved to be accurate in estimation (the squared correlation coefficient varied from 0.8186 to 0.9997) and prediction (the correlation coefficient obtained in leave-one-out analysis varied from 0.7263 to 0.9984). PMID:18728732

  19. The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.; Westrich, Joseph T.

    1984-12-01

    The effect of dissolved sulfate concentration on the rate of bacterial sulfate reduction in marine sediment from Long Island Sound was examined using a radio-sulfur technique. The experimental results show that the rate is independent of the dissolved sulfate concentration until low levels are reached (<3 mM), and that, when interpreted using a Monod-type rate law, a saturation constant, Ks, of 1.62 ± 0.16 M results. This weak dependence implies that the dissolved sulfate exerts only a limited influence on the rate of sulfate reduction in marine sediments. Given such a weak dependence, dissolved sulfate profiles in marine sediments must resemble profiles generated by models with sulfate independent kinetics. Initially, this would suggest that currently used sulfate-independent diagenetic models are appropriate in modelling sulfate profiles. However, comparison of these models with those containing weak sulfate-dependent kinetic terms shows that there exists considerable disagreement between these models when the parameter grouping (D sk) 1/2/w is larger than ~0.2 and smaller than ~3.0. (Here Ds is the SO ; 4 diffusion coefficient, k the organic matter decay constant and w the sediment burial velocity.) When the currently used models are corrected by employing physically meaningful boundary conditions, this divergence disappears. The modelling results, therefore, confirm the conclusion that any sulfate dependence inherent to the reduction kinetics does not appreciably affect sulfate pore water profiles, and that previous diagenetic studies using strong sulfate dependent models are erroneous.

  20. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea.

    PubMed

    Lai, Xintian; Cao, Lixiang; Tan, Hongming; Fang, Shu; Huang, Yali; Zhou, Shining

    2007-12-01

    To elucidate fungal diversity in methane hydrate-bearing deep-sea marine sediments in the South China Sea, internal transcribed spacer (ITS) regions of rRNA genes from five different sediment DNA samples were amplified and phylogenetically analyzed. Total five ITS libraries were constructed and 413 clones selected randomly were grouped into 24 restriction patterns by Amplified Ribosomal DNA Restriction Analysis (ARDRA). ITS sequences of 44 representative clones were determined and compared with the GenBank database using gapped-BLAST. The phylogenetic analysis showed that the ITS sequences (71-97% similarity) were similar to those of Phoma, Lodderomyces, Malassezia, Cryptococcus, Cylindrocarpon, Hortaea, Pichia, Aspergillus and Candida. The remaining sequences were not associated to any known fungi or fungal sequences in the public database. The results suggested that methane hydrate-bearing deep-sea marine sediments harbor diverse fungi. This is the first report on fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. PMID:18059498

  1. Origin, dynamics, and implications of extracellular DNA pools in marine sediments.

    PubMed

    Torti, Andrea; Lever, Mark Alexander; Jørgensen, Bo Barker

    2015-12-01

    In marine sediments, DNA occurs both inside and outside living organisms. DNA not enclosed in living cells may account for the largest fraction of total DNA, and include molecules locked within dead cells, organic and inorganic aggregates, adsorbed onto mineral matrices, and viral DNA. This DNA comprises genetic material released in situ from sediment microbial communities, as well as DNA of pelagic and terrestrial origin deposited to the seafloor. DNA not enclosed in living cells undermines the assumption of a direct link between the overall DNA pool and the local, currently living microbial assemblages, in terms of both microbial cell abundance and diversity. At the same time, the extracellular DNA may provide an integrated view of the biodiversity and ecological processes occurring on land, in marine water columns, and sediments themselves, thereby acting as an archive of genetic information which can be used to reconstruct past changes in source environments. In this review, we identify and discuss DNA pools in marine sediments, with special focus on DNA not enclosed in living cells, its origin, dynamics, and ecological and methodological implications. Achievements in deciphering the genetic information held within each DNA pool are presented along with still-standing challenges and major gaps in current knowledge. PMID:26452301

  2. A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments.

    PubMed

    Lee, Byung Joon; Toorman, Erik; Molz, Fred J; Wang, Jian

    2011-02-01

    Bimodal flocculation of marine and estuarine sediments describes the aggregation and breakage process in which dense microflocs and floppy macroflocs change their relative mass fraction and develop a bimodal floc size distribution. To simulate bimodal flocculation of such sediments, a Two-Class Population Balance Equation (TCPBE), which includes both size-fixed microflocs and size-varying macroflocs, was developed. The new TCPBE was tested by a model-data fitting analysis with experimental data from 1-D column tests, in comparison with the simple Single-Class PBE (SCPBE) and the elaborate Multi-Class PBE (MCPBE). Results showed that the TCPBE was the simplest model that is capable of simulating the major aspects of the bimodal flocculation of marine and estuarine sediments. Therefore, the TCPBE can be implemented in a large-scale multi-dimensional flocculation model with least computational cost and used as a prototypic model for researchers to investigate complicated cohesive sediment transport in marine and estuarine environments. Incorporating additional biological and physicochemical aspects into the TCPBE flocculation process is straight-forward also. PMID:21239034

  3. Physical chemical analysis of marine sediment cementation from the Gulf of Guinea

    NASA Astrophysics Data System (ADS)

    Liu, Xianfeng; Hammad, Tammam; Saiyouri, Nadia; Hattab, Mahdia

    2012-09-01

    This study aims at investigating the cementation of marine sediments from the Gulf of Guinea by using physicochemical analysis. In order to highlight the presence of cementation in the sediments, three conventional consolidation tests were conducted on intact and remoulded samples. Mercury intrusion porosimetry analyses were then carried out on the specimens taken from samples after consolidation tests. Several physicochemical experimental techniques were used to analyze these cementations, such as cation exchange capacity analysis, batch test, scanning electron microscope imaging coupled with EDS chemical analysis, and thermal analysis. The results seem to indicate that the cementation of these sediments is predominated by the presence of smectite gel between clay aggregates (clusters). Finally, a conceptual sediment microstructural model is proposed to describe the cementation.

  4. Development of a chronic sediment toxicity test for marine benthic amphipods

    SciTech Connect

    DeWitt, T.H.; Redmond, M.S.; Sewall, J.E.; Swartz, R.C.

    1992-12-01

    The results of the research effort culminated in the development of a research method for assessing the chronic toxicity of contaminated marine and estuarine sediments using the benthic amphipod, Leptocheirus plumulosus. The first chapter describes the efforts at collecting, handling, and culturing four estuarine amphipods from Chesapeake Bay, including L. plumulosus. This chapter includes maps of the distribution and abundance of these amphipods within Chesapeake Bay and methodologies for establishing cultures of amphipods which could be readily adopted by other laboratories. The second chapter reports the development of acute and chronic sediment toxicity test methods for L. plumulosus, its sensitivity to non-contaminant environmental variables, cadmium, two polynuclear aromatic hydrocarbons, and contaminated sediment from Baltimore Harbor, MD. The third chapter reports the authors attempts to develop a chronic sediment toxicity test with Ampelisca abdita.

  5. Magnetic mineral distribution in coastal marine sediments collected from off the southwestern Chile.

    NASA Astrophysics Data System (ADS)

    Kawamura, Noriko; Ishikawa, Naoto; Kurasawa, Atsushi

    2013-04-01

    In order to reveal magnetic mineral distributions in coastal marine sediments taken from off the southwestern Chile, we studied rock magnetic characteristics of surface sediments and performed chemical analysis in bottom water. The samples analyzed were unlithified terrigenous and calcareous sediments recovered by a multiple corer at five stations. Results show that rock magnetic parameters of sediments change with iron and oxygen concentrations in bottom water. Magnetite (Fe3O4) and goethite (αFeOOH) were common in the samples, whereas (titeno)maghemite (rFe2O3) and hematite (αFe2O3) were recognized at the oxic stations. Results also indicate a general change in mean grain size of magnetic minerals with iron and oxygen concentrations in bottom water. Fine grained magnetic minerals are distributed under anoxic condition. It is suggested that preferential dissolution of magnetic mineral grains occurred.

  6. Constraining magnesium cycling in marine sediments using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Schrag, D. P.

    2010-09-01

    Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid δ 26Mg values increase with depth by as much as 2‰. Because carbonates preferentially incorporate 24Mg (low δ 26Mg), the increase in pore-fluid δ 26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid δ 26Mg values decrease with depth by up to 2‰. The decline in pore-fluid δ 26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured δ 26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7‰ depleted in δ 26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the

  7. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments.

    PubMed

    Singh, Arvind K; Sherry, Angela; Gray, Neil D; Jones, D Martin; Bowler, Bernard F J; Head, Ian M

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P

  8. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments

    PubMed Central

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, D. Martin; Bowler, Bernard F. J.; Head, Ian M.

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P

  9. Geochemical composition of Trondheimsfjord surface sediments: Sources and spatial variability of marine and terrigenous components

    NASA Astrophysics Data System (ADS)

    Faust, Johan C.; Knies, Jochen; Slagstad, Trond; Vogt, Christoph; Milzer, Gesa; Giraudeau, Jacques

    2014-10-01

    High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (δ13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.

  10. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  11. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  12. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  13. Biodegradation of Free Phytol by Bacterial Communities Isolated from Marine Sediments under Aerobic and Denitrifying Conditions

    PubMed Central

    Rontani, Jean-François; Bonin, Patricia C.; Volkman, John K.

    1999-01-01

    Biodegradation of (E)-phytol [3,7,11,15-tetramethylhexadec-2(E)-en-1-ol] by two bacterial communities isolated from recent marine sediments under aerobic and denitrifying conditions was studied at 20°C. This isoprenoid alcohol is metabolized efficiently by these two bacterial communities via 6,10,14-trimethylpentadecan-2-one and (E)-phytenic acid. The first step in both aerobic and anaerobic bacterial degradation of (E)-phytol involves the transient production of (E)-phytenal, which in turn can be abiotically converted to 6,10,14-trimethylpentadecan-2-one. Most of the isoprenoid metabolites identified in vitro could be detected in a fresh sediment core collected at the same site as the sediments used for the incubations. Since (E)-phytenal is less sensitive to abiotic degradation at the temperature of the sediments (15°C), the major part of (E)-phytol appeared to be biodegraded in situ via (E)-phytenic acid. (Z)- and (E)-phytenic acids are present in particularly large quantities in the upper section of the core, and their concentrations quickly decrease with depth in the core. This degradation (which takes place without significant production of phytanic acid) is attributed to the involvement of alternating β-decarboxymethylation and β-oxidation reaction sequences induced by denitrifiers. Despite the low nitrate concentration of marine sediments, denitrifying bacteria seem to play a significant role in the mineralization of (E)-phytol. PMID:10584007

  14. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    NASA Astrophysics Data System (ADS)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  15. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish.

    PubMed

    Mackey, Benjamin H; Roering, Joshua J; Lamb, Michael P

    2011-11-22

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km(3) lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore. PMID:22084068

  16. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish

    PubMed Central

    Mackey, Benjamin H.; Roering, Joshua J.; Lamb, Michael P.

    2011-01-01

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km3 lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore. PMID:22084068

  17. Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles.

    PubMed

    Leighton, T G; Robb, G B N

    2008-11-01

    Bubbles of gas (usually methane) in marine sediments affect the load-bearing properties of the seabed and act as a natural reservoir of "greenhouse" gas. This paper describes a simple method which can be applied to historical and future subbottom profiles to infer bubble void fractions and map the vertical and horizontal distributions of gassy sediments, and the associated sound speed perturbations, even with single-frequency insonification. It operates by identifying horizontal features in the geology and interpreting any perceived change of depth in these as a bubble-mediated change in sound speed. PMID:19045684

  18. Comparison of four chronic sediment toxicity tests using selected marine/estuarine tests species

    SciTech Connect

    Sims, I.; Fleming, R.

    1995-12-31

    Several draft standard guidelines exist for acute marine/estuarine sediment bioassays which measure lethality over a 4 to 14 day exposure period. Although these are very useful tools for certain applications, such tests may not be useful for discriminating between sediments with the low levels of contaminants most likely to be found in UK estuaries. For this application, chronic sediment bioassays are required which allow the measurement of both lethal and sublethal effects (growth, development and reproduction). Some chronic bioassays are currently being developed for estuarine sediments by workers in Europe, America and Canada. The objectives of the study presented here were to compare four bioassays, currently in development, in terms of their sensitivity to sediment-bound lindane and to differences in particle size. The test species selected for the study were Corophium volutator, Arenicola marina, Macoma Balthica and Neanthes arenaceodentata. Three sediment types were used: high, medium and low percentage of fine material, These were achieved using mixtures of silica sand and a fine, natural, estuarine sediment, and spiked with lindane using a spiking protocol developed at WRc. The results of the study will be presented.

  19. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica

    PubMed Central

    Carr, Stephanie A.; Orcutt, Beth N.; Mandernack, Kevin W.; Spear, John R.

    2015-01-01

    Bacteria belonging to the newly classified candidate phylum “Atribacteria” (formerly referred to as “OP9” and “JS1”) are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. In this study of deep sediment from Antarctica’s Adélie Basin, collected during Expedition 318 of the Integrated Ocean Drilling Program (IODP), Atribacteria-related sequences of the 16S rRNA gene were abundant (up to 51% of the sequences) and steadily increased in relative abundance with depth throughout the methane-rich zones. To better understand the metabolic potential of Atribacteria within this environment, and to compare with phylogenetically distinct Atribacteria from non-deep-sea environments, individual cells were sorted for single cell genomics from sediment collected from 97.41 m below the seafloor from IODP Hole U1357C. As observed for non-marine Atribacteria, a partial single cell genome suggests a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol, and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments. This first report of a single cell genome from deep sediment broadens the known diversity within the Atribacteria phylum and highlights the potential role of Atribacteria in carbon cycling in deep sediment. PMID:26379647

  20. Comparison of marine gas hydrates in sediments of an active and passive continental margin

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll-1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ??CO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments. ?? 1984.

  1. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems. PMID:26313755

  2. A global survey of the distribution of free gas in marine sediments

    NASA Astrophysics Data System (ADS)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  3. A note on the relationships between organic matter and some geotechnical properties of a marine sediment

    USGS Publications Warehouse

    1986-01-01

    Comparing the results of regression analyses from this and several similar studies shows that although there is good qualitative agreement, there are quantitative inconsistencies. In particular there is considerable overall variability in the regression coefficients. Among studies on marine sediments the inconsistencies are less pronounced, yet still evident. The increase in liquid limit as organic carbon increased by 1 % sediment dry weight ranged from 9 to 28% water content; in the plastic limit the range was from 4 to 18%. However, in these marine studies regression coefficients are relatively close in value in some cases, levels of significance of the regressions are high in most cases, and in all cases the relationships appear to be linear over the range of organic carbon percentage studied. Finally, we believe that a relatively clear relationship between plasticity and organic carbon begins to emerge when the latter exceeds a value of 2%.

  4. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis

    NASA Technical Reports Server (NTRS)

    Ishiwatari, R.; Ishiwatari, M.; Rohrback, B. G.; Kaplan, I. R.

    1977-01-01

    Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5-116 hr) and temperatures (150-410 C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid less than 1%. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2-C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.

  5. Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.

    PubMed

    Mantouka, A; Dogan, H; White, P R; Leighton, T G

    2016-07-01

    A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152

  6. Hydrocarbons in recent sediment of the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.W.; Lorenson, T.D.; Castle, W.T.; Sugarman, S.

    2002-01-01

    A complex mixture of hydrocarbons is present in the recent sediment of the Monterey Bay National Marine Sanctuary. Eighteen samples from the continental shelf between San Francisco and Monterey contain aliphatic and aromatic hydrocarbons showing biological contributions from both marine and terrigenous sources, with the terrigenous indicators more pronounced near Monterey. Of particular interest, however, is a low-level background of petroleum-related compounds, including 28,30-bisnorhopane and 18??+??(H)-oleanane, which are characteristic of many crude oils from the Monterey Formation of California. Thus, the sediments are overprinted by a regional chemical signature which may be derived from eroded Monterey Formation rocks and from onshore and offshore seeps releasing petroleum from Monterey Formation source rocks. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. METAL-COLLOID PARTITIONING IN ARTIFICIAL INTERSTITIAL WATERS OF MARINE SEDIMENTS: INFLUENCES OF SALINITY, PH AND COLLOIDAL ORGANIC CARBON CONCENTRATION

    EPA Science Inventory

    For decades, heavy metals have been deposited into marine sediments as a result of anthropogenic activities. Depending on their bioavailability, these metals may represent a risk to benthic organisms. Dissolved interstitial water metal concentrations have been shown to be better ...

  8. Archaea in Organic-Lean and Organic-Rich Marine Subsurface Sediments: An Environmental Gradient Reflected in Distinct Phylogenetic Lineages

    PubMed Central

    Durbin, Alan M.; Teske, Andreas

    2012-01-01

    Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218

  9. IMPORTANCE OF BLACK CARBON IN DISTRIBUTION AND BIOACCUMULATION MODELS OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...

  10. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  11. Stereochemistry of amino acids in surface samples of a marine sediment

    USGS Publications Warehouse

    Pollock, G.E.; Kvenvolden, K.A.

    1978-01-01

    In two surface samples of marine sediment, the percentages of d-alanine and d-aspartic acid are significantly higher than the other d-amino acids and are similar to the range found in soils. The percentage of d-glutamic acid is also higher than the other amino acids but less than d-alanine and d-aspartic acid. These d-amino acids may come mainly from bacteria. ?? 1978.

  12. Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa

    NASA Astrophysics Data System (ADS)

    Dupont, Lydie M.; Wyputta, Ulrike

    2003-02-01

    The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

  13. Seismic peak amplitude as a predictor of TOC content in shallow marine sediments

    NASA Astrophysics Data System (ADS)

    Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés

    2016-04-01

    Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity (V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln(x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.

  14. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes.

    PubMed

    Matturro, B; Presta, E; Rossetti, S

    2016-03-01

    Chlorinated compounds pose environmental concerns due to their toxicity and wide distribution in several matrices. Microorganisms specialized in leading anaerobic reductive dechlorination (RD) processes, including Dehalococcoides mccartyi (Dhc), are able to reduce chlorinated compounds to harmless products or to less toxic forms. Here we report the first detailed study dealing with the RD potential of heavy polluted marine sediment by evaluating the biodegradation kinetics together with the composition, dynamics and activity of indigenous microbial population. A microcosm study was conducted under strictly anaerobic conditions on marine sediment collected near the marine coast of Sarno river mouth, one of the most polluted river in Europe. Tetrachloroethene (PCE), used as model pollutant, was completely converted to ethene within 150 days at reductive dechlorination rate equal to 0.016 meq L(-1) d(-1). Consecutive spikes of PCE allowed increasing the degradation kinetics up to 0.1 meq L(-1)d(-1) within 20 days. Strictly anaerobiosis and repeated spikes of PCE stimulated the growth of indigenous Dhc cells (growth yield of ~7.0 E + 07 Dhc cells per μM Cl(-1) released). Dhc strains carrying the reductive dehalogenase genes tceA and vcrA were detected in the original marine sediment and their number increased during the treatment as demonstrated by the high level of tceA expression at the end of the microcosm study (2.41 E + 05 tceA gene transcripts g(-1)). Notably, the structure of the microbial communities was fully described by Catalysed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) as wells as the dynamics of the dechlorinating bacteria during the microcosms operation. Interestingly, a direct role of Dhc cells was ascertained suggesting the existence of strains adapted at salinity conditions. Additionally, non-Dhc Chloroflexi were retrieved in the original sediment and were kept stable over time suggesting their likely flanking role of the RD

  15. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  16. Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments

    PubMed Central

    Rédou, Vanessa; Navarri, Marion; Meslet-Cladière, Laurence; Barbier, Georges

    2015-01-01

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi. PMID:25769836

  17. Uranium-series dating of sediments from Searles Lake: Differences between continental and marine climate records

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.; Smith, G.I.

    1985-01-01

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial ??18O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 ?? 106 years. Uranium-series dates on the salt beds range from 35 ?? 103 to 231 ?? 103 years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  18. Uranium-series dating of sediments from searles lake: differences between continental and marine climate records.

    PubMed

    Bischoff, J L; Rosenbauer, R J; Smith, G I

    1985-03-01

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial delta(18)O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 x 10(6) years. Uraniumseries dates on the salt beds range from 35 x 10(3) to 231x 10(3) years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record. PMID:17757864

  19. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  20. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    PubMed Central

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition

  1. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Taillefert, Martial

    2014-05-01

    The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.

  2. [Experimental study of vibrio parahaemolyticus (biotype 2) transfer from water and sediments to benthic marine food chain organisms].

    PubMed

    Gauthier, M J; Clement, R

    1979-04-01

    Transfer of Vibrio parahaemolyticus (biotype 2) from sediments to water and from water to benthic marine organisms was studied experimentally using a streptomycin-resistant strain. Transmission by trophic pathways was also studied using reconstituted marine food chains (Mytilus edulis, Nereis diversicolor, Carcinus maenas, Scorpaena porcus, Mus musculus). Water colonization by sediments could be observed only at temperatures above 16 degrees C. Sediments could well constitute a disseminating reservoir for these germs, their cycle in water being dependent of the cycle followed in the sediments. Contamination of animal organisms is essentially effected by a direct mean, either water or sediments; transfer by trophic pathways being negligible. Infection of land consumers (mice) is linked quantitatively to the nature of the last marine organism of the food chain since bacteria can flourish in the digestive tract of certain animals (Carcinus maenas). PMID:487292

  3. Loktanella sediminum sp. nov., isolated from marine surface sediment.

    PubMed

    Liang, Jing; Zhang, Zenghu; Liu, Yan; Wang, Min; Zhang, Xiao-Hua

    2015-02-01

    A Gram-staining-negative, strictly aerobic and short rod-shaped bacterium, designated strain S3B03(T), was isolated from the sediment of the northern Okinawa Trough. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S3B03(T) belonged to the genus Loktanella (family Rhodobacteraceae) and showed the highest sequence similarity with Loktanella litorea KCTC 23883(T) (96.16 %) and 92.99-95.90 % 16S rRNA gene sequence similarity to other members of the genus Loktanella. Optimal growth occurred in the presence of 2-5 % (w/v) NaCl at pH 7.0-8.0 and 28-32 °C. Ubiquinone-10 (Q-10) was the predominant respiratory quinone. The major fatty acids (>10 % of the total fatty acids) were C18 : 1ω7c and/or C18 : 1ω6c. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and two unidentified polar lipids. The DNA G+C content of strain S3B03(T) was 57.6 mol%. On the basis of polyphasic analysis, strain S3B03(T) is considered to represent a novel species of the genus Loktanella, for which the name Loktanella sediminum sp. nov. is proposed. The type strain is S3B03(T) ( = JCM 30120(T) = DSM 28715(T) = MCCC 1K00257(T)). PMID:25428418

  4. Loktanella maritima sp. nov. isolated from shallow marine sediments.

    PubMed

    Tanaka, Naoto; Romanenko, Lyudmila A; Kurilenko, Valeriya V; Svetashev, Vassilii I; Kalinovskaya, Natalia I; Mikhailov, Valery V

    2014-07-01

    An aerobic, Gram-stain-negative, non-motile bacterium, KMM 9530(T), was isolated from a sediment sample collected from the Sea of Japan seashore. Comparative 16S rRNA gene sequence analysis positioned novel strain KMM 9530(T) in the genus Loktanella as a separate line adjacent to Loktanella sediminilitoris KCTC 32383(T), Loktanella tamlensis JCM 14020(T) and Loktanella maricola JCM 14564(T) with 98.5-98.2% sequence similarity. Strain KMM 9530(T) was characterized by its weak hydrolytic capacity and inability to assimilate most organic substrates. The major isoprenoid quinone was Q-10, polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unknown phospholipid, an unknown aminolipid and unknown lipids, and the major fatty acid was C18 : 1ω7c. On the basis of phylogenetic analysis, DNA-DNA hybridization and phenotypic characterization, it can be concluded that the novel strain KMM 9530(T) represents a novel species in the genus Loktanella, for which the name Loktanella maritima sp. nov. is proposed. The type strain of the species is KMM 9530(T) ( = NRIC 0919(T) = JCM 19807(T)). PMID:24744019

  5. Distinct iron isotopic signatures and supply from marine sediment dissolution

    PubMed Central

    Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399

  6. Watershed-Marine Linkages: Monitoring how Terrigenous Runoff and Wave-Induced Resuspension Affect Marine Sediment Dynamics in Bays with Coral Reefs, St. John, USVI

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Gray, S. C.; Whinney, J.; Ramos-Scharron, C. E.; Campbell, S.; LaFevor, M. C.

    2015-12-01

    In the USVI, land-based sedimentation in coastal marine environments has increased due to watershed development and is a major cause of coral reef degradation. Watershed runoff and wave/current-induced resuspension of benthic sediment contribute to turbidity/sedimentation. Our objectives are to characterize the spatial and temporal variability of marine sediment dynamics in response to runoff and resuspension in shoreline and reef areas of St. John, USVI, and directly compare the efficacy of time-integrated vs. high-resolution sediment monitoring approaches. To complement a six-year sediment trap study of sedimentation, nephelometers (10-min resolution) were deployed alongside sediment traps (26 day resolution) at four ephemeral stream outfalls and three reefs sites below comparable developed and minimally developed catchments. Watershed runoff was monitored using stream (10-min resolution) and peak crest (2-week resolution) gauges. Mean turbidity/deposition were 4/5 times greater at shore compared to reef sites, 5/6 times greater below developed compared to minimally developed catchments, 2/4 times greater during runoff compared to non-runoff periods, and 100/500 times background levels (time series median) following the largest runoff event of the 5-month time series. Turbidity values due to resuspension during non-runoff periods were primarily controlled by wave height (71% of the variability), tides, and the presence of finer sediment grains. However, the relative contribution to total sedimentation of resuspension vs. watershed runoff varied spatially between sites due to variations in bay geography, benthic sediment grain size, and catchment characteristics. Sediment traps and nephelometers recorded generally consistent temporal patterns of sedimentation at most sites. Though our study confirmed that watershed development increases turbidity and deposition in bays with coral reefs, multiple processes govern sediment dynamics and the distribution of sediments

  7. The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 to 5.5 ka ago. The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. Here we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface. We simulate the mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations. In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the increase in dust accumulation in marine cores is directly linked to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone.

  8. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas. PMID:26821329

  9. Sorption and competition of two persistent organic pesticides onto marine sediments: Relevance to their distribution in aquatic system.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Nikiforov, Vladimir; Gouteux, Bruno; Osman, Awaleh Mohamed

    2015-07-01

    Sorption is a key process in the distribution of substances between environmental compartments in marine ecosystems. Two persistent organic pesticides, also known as toxaphene congeners, namely B8-1413 (P26) and B9-1679 (P50), are of special interest because they are not detected in sediments while relatively concentrated in marine mammals. Sorption-desorption, entrapment and competition behaviors of these pesticides onto marine sediments were studied to explain their environmental distribution. Data obtained under marine experimental conditions were fitted to sorption models to evaluate sorption coefficients and to assess the degree of B8-1413/B9-1679 entrapment of the two toxaphene congeners in sediments. Carbon normalized sorption coefficients (Koc) of both congeners were similar under in cold (2°C) marine (30 psu) conditions with high values ranging from 1.53×10(5) to 3.28×10(5) mL g(-1)indicative of a strong affinity to marine sediments However, the sorption-desorption investigations indicate that B8-1413/B9-1679 were on average 2.5 times less entrapped in sediments compared to B7-1450, a toxaphene congener known to accumulate predominantly in sediments. These results suggest that the low entrapment of B8-1413 and B9-1679 favor their availability and transfer to biological matrices. PMID:25765263

  10. Anaerobic degradation of alcohol ethoxylates and polyethylene glycols in marine sediments.

    PubMed

    Traverso-Soto, Juan M; Rojas-Ojeda, Patricia; Sanz, José Luis; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2016-02-15

    This research is focused on alcohol polyethoxylates (AEOs), nonionic surfactants used in a wide variety of products such as household cleaners and detergents. Our main objective in this work was to study the anaerobic degradation of these compounds and their main aerobic degradation products and precursors (polyethylene glycols, PEGs, which are also used for many other applications) in marine sediments, providing the first data available on this topic. First, we observed that average AEO sediment-water partition coefficients (Kd) increased towards those homologs having longer alkyl chains (from 257 L/kg for C12 to 5772 L/kg for C18),which were less susceptible to undergo biodegradation. Overall, AEO and PEG removal percentages reached up to 99.7 and 93%, respectively, after 169 days of incubation using anaerobic conditions in sediments ([O2] = 0 ppm, Eh = -170 to -380 mV and T = 30 °C). Average half-life was estimated to be in a range from 10 to 15 days for AEO homologs (C12AEO8-C18AEO8), and 18 days for PEGEO8.Methanogenic activity proved to be intense during the experiment, confirming the occurrence of anaerobic conditions. This is the first study showing that AEOs and PEGs can be degraded in absence of oxygen in marine sediments, so this new information should be taken into account for future environmental risk assessments on these chemicals. PMID:26657255

  11. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia.

    PubMed

    Prokopenko, M G; Hirst, M B; De Brabandere, L; Lawrence, D J P; Berelson, W M; Granger, J; Chang, B X; Dawson, S; Crane, E J; Chong, L; Thamdrup, B; Townsend-Small, A; Sigman, D M

    2013-08-01

    Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles. PMID:23925243

  12. Sulfide tolerance of four marine bioassay test species used to evaluate sediment toxicity

    SciTech Connect

    Knezovich, J.P.; Jelinski, J.A.; Anderson, S.L.; Steichen, D.J.

    1994-12-31

    Hydrogen sulfide is a potential positive interference associated with marine sediment toxicity tests. It is necessary, therefore, to evaluate the possible contribution of sulfides to sediment toxicity before toxicity attributed to anthropogenic contaminants can be determined. The sulfide tolerances of several marine bioassay test species (R. abronius, E. estuaris, M. edulis and S. purpuratus) commonly used in bulk sediment and porewater toxicity tests have not been reported. The authors used a flow-through exposure system to expose these organisms to constant concentrations of sulfide during 48-h exposure periods. Significant abnormalities occurred at 3 to 5 micromoles total sulfide per liter ({mu}M/L) in M. edulis embryos, and at 6{mu}M/L in S. purpuratus embryos. Survivorship of amphipods was significantly reduced at total sulfide concentrations of 45 and 126 {mu}M/L for R. abronius and E estuaris, respectively. These tolerances provide guidelines for evaluating the potential for sulfide toxicity prior to the initiation of toxicity tests. Because sulfide concentrations in bulk sediment and pore-water may exceed these values, care must be taken to ensure that sulfide toxicity is not contributing to toxicity observed when using these test organisms.

  13. Bacillus encimensis sp. nov. isolated from marine sediment.

    PubMed

    Dastager, Syed G; Mawlankar, Rahul; Mual, Poonam; Verma, Ashish; Krishnamurthi, Srinivasan; Joseph, Neetha; Shouche, Yogesh S

    2015-05-01

    A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterium designated SGD-V-25(T) was isolated from Veraval sediment sample, India. Strain SGD-V-25(T) was capable of growing at 25-50 °C (optimum 37 °C), pH 6-12 (optimum pH 7.0) and with 0-5% (w/v) NaCl. The taxonomic position of this strain was deduced using a polyphasic approach and the 16S rRNA gene sequence analysis showed that the isolate belongs to the phylum Firmicutes , forming the cluster with Bacillus badius MTCC 1548(T), with which it shares highest similarity of 99.1% with 13 nt differences. Other type strains of the genus Bacillus showed less than 96% similarity. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. The polar lipid profile of strain SGD-V-25(T) showed the presence of diphosphatidylglycerol, phosphatidylglycerol, phsophoglycolipid and two aminophospholipids. The predominant isoprenoid quinone was MK-7. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0, C16 : 1ω11c and C16 : 0. The genomic DNA G+C content of strain SGD-V-25(T) was 37.6 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA hybridization, strain SGD-V-25(T) could be clearly distinguished from closely related members of the genus Bacillus , and the name Bacillus encimensis sp. nov., is proposed to accommodate this strain. The type strain is SGD-V-25(T) ( =NCIM 5513(T) =DSM 28241(T)). PMID:25678682

  14. Micromonospora fluostatini sp. nov., isolated from marine sediment.

    PubMed

    Phongsopitanun, Wongsakorn; Kudo, Takuji; Mori, Mihoko; Shiomi, Kazuro; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon

    2015-12-01

    The novel actinomycete strain PWB-003T, which produced fluostatins B and C antibiotics, was isolated from nearshore sediment collected from Panwa Cape, Phuket Province, Thailand. Data from the present polyphasic study indicated that strain PWB-003T represented a member of the genus Micromonospora. It produced single spores on substrate mycelia and contained meso-diaminopimelic acid in the cell-wall peptidoglycan. Whole-cell hydrolysate contained ribose, xylose, arabinose, mannose and glucose. The predominant menaquinone was MK-10 (H4). Cellular fatty acids comprised C18 : 1ω9c, iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. On the basis of 16S rRNA gene sequence similarity analysis, the novel strain was closely related to Micromonospora eburnea LK2-10T (99.38 %), Micromonospora chaiyaphumensis MC5-1T (99.16 %), Micromonospora yangpuensis FXJ6.011T (98.97 %), Micromonospora echinaurantiaca DSM 43904T (98.97 %), Micromonospora pallida DSM 43817T (98.97 %), Micromonospora sagamiensis DSM 43912T and Micromonospora auratinigra JCM 12357T (both 98.97 %). The G+C content of the DNA was 74.5 mol%. DNA-DNA relatedness values among strain PWB-003T and related type strains ranged from 11.3 ± 1.3 to 38.8 ± 1.1 %. On the basis of these observations, strain PWB-003T could be distinguished from its closely related type strains and is considered to represent a novel species of the genus Micromonospora, for which the name Micromonospora fluostatini sp. nov. (type strain PWB-003T = JCM 30529T = PCU 341T = TISTR 2345T) is proposed. PMID:26358439

  15. The effect of temperature on organic carbon degradation in marine sediments

    NASA Astrophysics Data System (ADS)

    Malinverno, Alberto; Martinez, Ernesto A.

    2015-12-01

    The degradation of sedimentary particulate organic carbon (POC) is a key carbon cycle process that fuels the deep subseafloor biosphere. The reactivity of POC is expected to decrease with increasing sediment age, severely restricting the energy available to microorganisms. Conversely, increasing temperatures during burial have been proposed to stimulate POC degradation, possibly supplying significant energy to the deep biosphere. To test the importance of temperature, we assembled POC measurements in two global sets of drill sites where sediments underwent either relatively low or high temperatures during burial, which should have resulted in different rates of POC degradation. For ages 5-10 Ma, the decrease of the average POC content with burial is clearly more pronounced in the sites with high temperature histories. Our results support the hypothesis that temperature is one of the fundamental controls on the rate of POC degradation within deeply buried marine sediments.

  16. Sediment characteristics and benthic ecological status in contrasting marine environments of subtropical Hong Kong.

    PubMed

    Chan, Alice K Y; Xu, Wen-Zhe; Liu, Xiao-Shou; Cheung, Siu Gin; Shin, Paul K S

    2016-02-15

    Sediment characteristics and benthic communities on a finer sampling scale in four contrasting environments in subtropical Hong Kong were analyzed in summer and winter 2012. In two harbour habitats which suffered from historic sewage pollution or hypoxic events, organic carbon, nutrient and trace metal content in the sediment were significantly higher than that in an offshore area and a marine reserve. The relatively low organic and nutrient content in the offshore habitat could be resulted from enhanced resuspension of such materials from the seabed owing to intense water mixing and disturbance caused by bottom trawling. The biotic indices AMBI and M-AMBI were shown to be useful in assessing the benthic ecological status of these habitats. Such indices can also be more sensitive than sediment physico-chemical parameters in differentiating the response of macrofauna to seasonal changes in the benthic environment. PMID:26749224

  17. The effect of temperature on organic carbon degradation in marine sediments

    PubMed Central

    Malinverno, Alberto; Martinez, Ernesto A.

    2015-01-01

    The degradation of sedimentary particulate organic carbon (POC) is a key carbon cycle process that fuels the deep subseafloor biosphere. The reactivity of POC is expected to decrease with increasing sediment age, severely restricting the energy available to microorganisms. Conversely, increasing temperatures during burial have been proposed to stimulate POC degradation, possibly supplying significant energy to the deep biosphere. To test the importance of temperature, we assembled POC measurements in two global sets of drill sites where sediments underwent either relatively low or high temperatures during burial, which should have resulted in different rates of POC degradation. For ages 5–10 Ma, the decrease of the average POC content with burial is clearly more pronounced in the sites with high temperature histories. Our results support the hypothesis that temperature is one of the fundamental controls on the rate of POC degradation within deeply buried marine sediments. PMID:26640172

  18. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments.

    PubMed

    Moreno, Beatriz; Cañizares, Rosa; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Benitez, Emilio

    2015-12-30

    A meso-scale pilot plant was set up to test the efficiency of a bioremediation scheme applied to marine sediments contaminated by heavy metals and hydrocarbons. The experiment was implemented for three years in two stages using two remediation agents: plants (Paspalum vaginatum and Tamarix gallica) and earthworms (Eisenia fetida). DNA and RNA-based methodologies were applied to elucidate the dynamics of the bacterial population and were related to improving biological and chemical conditions of the sediments. Bioremediation strategies were successful in removing pollutants from the contaminated sediments and specialization within the bacterial community related to the type of contamination present was detected in the different stages of the process. The highest response of Gram-positive PAH-degraders to the contamination was detected at the beginning and after the first stage of the experiment, corresponding to the uppermost values of degradation. PMID:26223013

  19. Barite in Marine Sediments: new Insights From a Quantitative SEM/EDS Technique

    NASA Astrophysics Data System (ADS)

    Robin, E.; Rabouille, C.; Martinez, G.; Lefevre, I.; Reyss, J.; Van Beek, P.; Jeandel, C.

    2001-12-01

    Barite (BaSO4) in marine sediments appears to be related to biological activity in surface ocean waters. Two formation mechanisms have been proposed including abiotic precipitation in sulfate-rich microenvironments within decaying organic matter and biotic precipitation by living microorganisms. Barite is thus considered as a proxy of export production and is widely used for paleo-productivity reconstruction. Direct barite determination is not achieved by currently used methods which rely on the measurement of total barium by inductively coupled plasma - mass spectrometry (ICP-MS) or instrumental neutron activation analysis (INAA) and correction of the detrital barium contribution. Due to the relatively large and variable barium concentration of the different detrital phases involved, these methods introduce large uncertainties on the determination of bio-Ba, especially in clay-rich and barite-poor sediments. We have developed a new technique based on the direct counting of individual barite crystals using a scanning electron microscope (SEM) coupled to an automated X-ray microanalysis system (EDS) which allows the measurement of the absolute concentration of bio-Ba over a wide range of concentrations without matrix correction. The technique was applied to the determination of bio-Ba in surface sediments and trap samples from low-to-medium productivity regions in the North Atlantic Tropical ocean (EUMELI cruise), in surface sediments from the Southern Indian ocean (ANTARES cruise) and in a piston core from the Central North Pacific ocean (LL44-GPC3). A comparison with bio-Ba estimates obtained by the two classical methods, INAA and ICP-MS, demonstrates the interest of the SEM/EDS technique for the determination of bio-Ba in marine sediments. Furthermore, barite abundance and size distribution between trap samples and surface sediments at the EUMELI sites suggest contrasted barite preservations.

  20. Assessment of radionuclides and heavy metals in marine sediments along the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Khuntong, S.; Phaophang, C.; Sudprasert, W.

    2015-05-01

    Due to the Fukushima Daiichi nuclear disaster in 2011 and the development of nuclear power plant in neighboring countries such as Vietnam in the near future, radionuclide assessment in marine sediment during 2010 - 2011 may be useful as background levels for radiation protection in Thailand. Marine sediments (10 samples) were collected approximately 1 km away from the coastline along Chonburi to Pattaya, Chonburi Province. The sediments were ground and sieved through 2-mm test sieve after air drying. Radionuclides were measured with a gamma spectrometer equipped with a well-calibrated HPGe detector. The samples were prepared in the same geometry as the reference material. The optimal counting time was 60,000 - 80,000 s for statistical evaluation and uncertainties. No contamination of 137Cs as an artificial radionuclide was found. Naturally-occurring radionuclides including 238U, 232Th and 40K were found. The mean specific activities of 238U, 232Th and 40K were 44 ± 10, 59 ± 17 and 463 ± 94 Bq/kg in the rainy season (2010); 41 ± 6, 50 ± 9 and 484 ± 83 Bq/kg in the winter (2010), and 39 ± 6, 41 ± 7 and 472 ± 81 Bq/kg in the summer (2011), respectively. The mean specific activities were higher than the values in the UNSCEAR report of 35, 30 and 400 Bq/kg for 238U, 232Th and 40K, respectively. From the measured specific activities, the absorbed dose rate, radium equivalent activity, external hazard index and annual external effective dose rate were calculated in order to assess the health risk. No radiation hazards related to the radioactivity in the sediment were expected. The accumulation of radionuclides varied with the particle size and the organic matter content in the sediment. The accumulation of heavy metals showed similar results to that of the radionuclides in the sediment.

  1. A comparison of the accumulation of phenanthrene by marine amphipods in water versus sediment

    SciTech Connect

    Fusi, T.; Weber, L.J.

    1995-12-31

    The objective of this research is to compare the accumulation of the polycyclic aromatic hydrocarbon phenanthrene by marine amphipods from sediment and interstitial water versus from a water only exposure system. The equilibrium partitioning theory assumes that the exposure and response of benthic invertebrates are the same when exposed to the same contaminant concentration in water and interstitial water. In this series of experiments, three infaunal marine amphipod species; Eohaustorius estuarius (non tube-forming, burrowing amphipod), Leptocheirus plumulosus (burrow-building amphipod) and Grandidierella japonica (tube-building amphipod), were exposed to {sup 14}C-phenanthrene under three experimental conditions: (1) sediment spiked at a concentration resulting in an interstitial water concentration of 2.5 {micro}g/l phenanthrene; (2) sediment spiked at a concentration resulting in interstitial water concentration of 2.5 {micro}g/l and the overlying water spiked at 2.5 {micro}g/l phenanthrene; (3) a water only exposure with the water at a concentration of 2.5 {micro}g/l phenanthrene, The exposures were conducted in a static renewal system with the overlying and exposure water being replaced every 8 hours. The bioaccumulation of phenanthrene was followed over 72 hours. In all three species of amphipods, the accumulation of phenanthrene was significantly greater in the water only exposure than in the two sediment exposures. At 72 hours, the amphipod body burdens of phenanthrene in the water only exposures were, depending on the species, 7 to 24 times that of the sediment only exposures. The results suggest that water only exposures may overestimate sediment or interstitial exposure to phenanthrene and other nonionic, lipophilic compounds.

  2. Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica.

    PubMed

    Carr, S A; Vogel, S W; Dunbar, R B; Brandes, J; Spear, J R; Levy, R; Naish, T R; Powell, R D; Wakeham, S G; Mandernack, K W

    2013-07-01

    Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153-cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 10⁷ cells mL⁻¹ in the top ten centimeters of sediments. These densities are lower than those calculated for most near-shore sites but consistent with deep-sea locations with comparable sedimentation rates. The δ¹³C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ¹³C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from -2.5‰ to -3.7‰, while δ¹³C values for the corresponding sedimentary particulate OC (POC) varied from -26.2‰ to -23.1‰. The δ¹³C values of PLFAs ranged between -29‰ and -35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β-, δ-, and γ-Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ¹³CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ¹³CDIC and δ¹³CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment. PMID:23682649

  3. SHORT-EXPOSURE, SUBLETHAL, SEDIMENT TOXICITY TEST USING THE MARINE BIVALVE MULINIA LATERALIS: STATISTICAL DESIGN AND COMPARATIVE SENSITIVITY

    EPA Science Inventory

    Over the last 10 years a great deal of research effort has concentrated on determining the effects of contaminated sediments on aquatic organisms. or marine systems, this effort has emphasized acute sediment toxicity tests using amphipods, although a variety of other end points a...

  4. The influence of permeability on compressional wave velocity in marine sediments

    SciTech Connect

    Hamdi, F.; Smith, D.T.

    1982-10-01

    To investigate the effect of permeability on the propagation of seismo-acoustic waves through marine sediments, a theoretical model based on Biot's equations is established which relates the compressional wave velocity measured at a fixed frequency to computed velocities at zero and infinite frequencies in terms of sediment porosity and permeability. The model is examined experimentally in a standard soil mechanics consolidation test (itself dependent, among other things, on sediment porosity and permeability) which has been modified to include measurements of compressional wave velocity at l MHz and shear-wave velocity at 5 kHz. This test allows the elastic modulus of the sediment frame to be assessed under different load conditions simultaneous with the velocity determinations. From a number of tests on different samples, five samples are chosen to typify the range of sediment sizes. The results show that the difference between the measured velocity at l MHz and the model-derived velocity at zero frequency increases with increasing particle size (from clays to fine sand), with decreasing porosity, and with increasing permeability. For sediments coarser than fine sand, the simple model breaks down, possibly because of the dominance of scattering/diffraction effects at the high frequency of the experiment. Within this limitation the model seems satisfactory to offer a capability of predicting the permeability of a sea floor sediment to an order of magnitude by the in situ measurement of seismic velocities over a wide range of frequencies; the prediction process requires a good in situ determination of sediment porosity such as that offered by electrical formation factor measurements.

  5. Chemoautotrophic Carbon Fixation Rates and Active Bacterial Communities in Intertidal Marine Sediments

    PubMed Central

    Boschker, Henricus T. S.; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W. C.; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, the Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m−2 d−1. Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)−1, which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  6. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  7. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  8. Phosphate oxygen isotope ratio proxy for specific microbial activity in marine sediments (Peru Margin)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2005-12-01

    Oxygen (O) isotope ratios of biogenic apatites have been widely used as paleotemperature and environmental geochemical proxies. With improved knowledge of the phosphate O isotope effects of different P cycling pathways, the δ18O value of inorganic phosphate (δ18OP) has been proposed as a useful proxy and tracer of biological reactions and P cycling in natural environments[1,2,3,4]. Being the only way of removing P from oceanic water, sedimentary P burial is one of the most important processes during biogeochemical cycling of P. The high concentrations of organic matter and pronounced microbial activity at ODP Site 1230 along the Peru Margin result in unusually high interstitial water phosphate concentrations, which provides a unique opportunity to use δ18OP to investigate inorganic phosphate (Pi) regeneration and P cycling pathways in marine sediments. The isotopic measurements of both dissolved inorganic phosphate (DIP) and bulk sediment Pi show that DIP δ18OP values are affected by three different processes, which are all induced by specific microbial activities present in the sediments. In sediments at ~ 65 to 120 mbsf, porewater DIP is derived from dissolved organophosphorus compounds (DOP) through enzymatic degradation pathways, evidenced by both DIP δ18OP values and interstitial water chemistry. Measured porewater DIP δ18OP values also suggest that 4 to 8% of interstitial water DIP reflects regeneration of Pi from Porg by microbially-synthesized enzymes. Throughout the sediment column and especially at ~ 120 to 150 mbsf, DIP is released from the sediments by microbially-induced reductive dissolution of Fe-oxides, which contributes to the overall high DIP concentrations at Site 1230. The third and dominant process controlling measured DIP δ18OP values is microbial turnover of regenerated Pi. The presence of high microbial activities in organic-rich Site 1230 sediments promotes the remobilization of P and affects marine P cycling by potentially enhancing

  9. Hf and Nd isotopes in marine sediments: Constraints on global silicate weathering

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Burton, K. W.; Soulet, G.; Vigier, N.; Dennielou, B.; Etoubleau, J.; Ponzevera, E.; German, C. R.; Nesbitt, R. W.

    2009-01-01

    The combined use of Lu-Hf and Sm-Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf-Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (ɛ Nd ~ - 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by ɛ Hf values (from - 1.1 to + 1.3) far more radiogenic than associated sediments (from - 7.1 to - 12.0) and turbidite sands (from - 27.2 to - 31.6). ɛ Hf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between ɛ Hf of secondary clay minerals and chemical weathering intensity. These results combined with data from the literature have global implications for understanding the Hf-Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the 'seawater array' (i.e. the correlation defined by deep-sea Fe-Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous

  10. Inversion of marine multifrequency electromagnetic profiling data: a new approach to resolve surficial sediment stratification

    NASA Astrophysics Data System (ADS)

    Baasch, B.; Müller, H.; Oberle, F. K. J.; von Dobeneck, T.

    2014-01-01

    Electromagnetic induction (EMI) methods are widely used on land to map electric conductivity and/or magnetic susceptibility distributions of surficial sediments. In contrast, the application of these methods in marine environments is relatively novel. Based on the recently developed electromagnetic benthic profiler MARUM-NERIDIS III we investigate the potential of concentric-loop EMI methods to recover conductivity and susceptibility of layered marine sediments. Sensitivity analyses based on a data and model normalized Jacobian matrix were performed to compare the influence of conductivity and susceptibility to in-phase and quadrature components at different frequencies. Both parameters substantially affect the EM response. However, the influence of susceptibility decreases more with depth and offers lower depth resolution than that of conductivity. A 1-D inversion algorithm to reconstruct vertical conductivity distributions was developed from existing non-linear inversion methods using apparent conductivity and apparent susceptibility recovered from simultaneous half-space inversion as a priori information. This algorithm was tested on synthetic and real marine EM data from a commercial multifrequency concentric loop EMI system (GEM-3). The results indicate that our inversion algorithm yields meaningful results down to approximately 3 m depth under typical shallow marine conditions. The comparison of inversion results recovered with 1-D and 2-D constraints showed that combining lateral with vertical constraints substantially improves the resolution of the inversion outputs. Field data from the NW Iberian shelf was calibrated according to a processing flow specifically designed for underwater conditions and analysed. Inversion outputs are in good agreement with ground-truthing stratigraphic investigations and deliver relevant clues on past and present sediment dynamics.

  11. Spatial, temporal, and source variations of hydrocarbons in marine sediments from Baffin Bay, Eastern Canadian Arctic.

    PubMed

    Foster, Karen L; Stern, Gary A; Carrie, Jesse; Bailey, Joscelyn N-L; Outridge, Peter M; Sanei, Hamed; Macdonald, Robie W

    2015-02-15

    With declining sea ice conditions in Arctic regions owing to changing climate, the large prospective reservoirs of oil and gas in Baffin Bay and Davis Strait are increasingly accessible, and the interest in offshore exploration and shipping through these regions has increased. Both of these activities are associated with the risk of hydrocarbon releases into the marine ecosystem. However, hydrocarbons are also present naturally in marine environments, in some cases deriving from oil seeps. We have analyzed hydrocarbon concentrations in eleven sediment cores collected from northern Baffin Bay during 2008 and 2009 Amundsen expeditions and have examined the hydrocarbon compositions in both pre- and post-industrial periods (i.e., before and after 1900) to assess the sources of hydrocarbons, and their temporal and spatial variabilities. Concentrations of ΣPAHs ranged from 341 to 2693 ng g(-1) dw, with concentrations in cores from sites within the North Water (NOW) Polynya generally higher. Individual PAH concentrations did not exceed concentrations of concern for marine aquatic life, with one exception found in a core collected within the NOW (one of the seven sediment core samples). Hydrocarbon biomarkers, including alkane profiles, OEP (odd-to-even preference), and TAR (terrigenous/aquatic ratios) values indicated that organic carbon at all sites is derived from both terrigenous higher plants and marine algae, the former being of greater significance at coastal sites, and the latter at the deepest sites at the southern boundary of the NOW. Biomarker ratios and chemical profiles indicate that petrogenic sources dominate over combustion sources, and thus long-range atmospheric transport is less significant than inputs from weathering. Present-day and historic pre-1900 hydrocarbon concentrations exhibited less than an order of magnitude difference for most compounds at all sites. The dataset presented here provides a baseline record of hydrocarbon concentrations in

  12. Microbial processes and organic priority substances in marine coastal sediments (Adriatic Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Dellisanti, Walter; Lungarini, Silvia; Miserocchi, Stefano; Patrolecco, Luisa; Langone, Leonardo

    2015-04-01

    PERSEUS EU FP7 Project aims to identify the interacting patterns of natural and human-derived pressures to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. In the frame of this Project (subtask 1.3.3 ADREX: Adriatic and Ionian Seas Experiment), monitoring surveys were conducted in the Adriatic Sea (Italy) in order to study the variation of structural and functional characteristics of native bacterial communities and the occurrence of selected classes of organic priority substances in sediments. The study area represents a good natural laboratory sensitive to climate variability and human pressure, owing to the semi-enclosed nature of the Adriatic Sea and to the increasing trend of human activities in the coastal regions. During the cruise ADRI-13 (November 2013) and ADRI-14 (October 2014) we sampled several coastal sites from the mouth of the Po River to the Otranto strait. Surface sediments were collected in all areas, while sediment cores were sampled in selected sites. Microbes associated with marine sediments play an important role in the C-flux being responsible for the transformation of organic detritus (autochthonous and allochthonous) into biomass. The sediment bacterial abundance was determined by epifluorescence microscopy and the rate of bacterial carbon production by measuring the 3H-leucine uptake rates. The community respiration rate was estimated by the measurement of the electron transport system (ETS) activity. The sediment contamination level was determined by measuring the concentration of contaminants included in the list of organic priority substances: PAHs, bisphenol A (BPA), alkylphenols (APs). The extraction/clean-up of PAHs, BPA and APs was performed by ultrasonic bath with the appropriate solvents, followed by analytical determination with

  13. Glacial marine sediments in the precambrian Gowganda formation at Whitefish Falls, Ontario (Canada)

    USGS Publications Warehouse

    Lindsey, D.A.

    1971-01-01

    Study of a well-exposed section of the Gowganda Formation at Whitefish Falls, Ontario, suggests criteria for the recognition of glacial marine sediments. Thickness of hundreds of feet, lateral continuity, faint internal stratification, sorted lenses of sandstone and conglomerate, and dropstones characterize much of the tillite. Thickness of hundreds of feet, lateral continuity, and marked development of irregular and lenticular laminae instead of varve structure characterize much of the argillite. These characteristics, together with evidence for a nearshore, marine-to-deltaic environment for the overlying beds, suggest a glacial marine interpretation even though no fossil evidence is available. Massive tillite, tillite containing faint stratification and lenses of sorted conglomerate and sandstone, and dropstone-bearing argillite, all of which interfinger, suggest a glacial marine environment composed of: (1) a subglacial facies; (2) a periglacial facies; and (3) a facies of marine ice rafting, respectively. Separation of the two tillite-bearing members by as much as 700 ft. of argillite containing no dropstones suggests two distinct ice ages during Gowganda time. ?? 1971.

  14. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Regnier, P.; Dale, A. W.; Arndt, S.; LaRowe, D. E.; Mogollón, J.; Van Cappellen, P.

    2011-05-01

    Recent developments in the quantitative modeling of methane dynamics and anaerobic oxidation of methane (AOM) in marine sediments are critically reviewed. The first part of the review begins with a comparison of alternative kinetic models for AOM. The roles of bioenergetic limitations, intermediate compounds and biomass growth are highlighted. Next, the key transport mechanisms in multi-phase sedimentary environments affecting AOM and methane fluxes are briefly treated, while attention is also given to additional controls on methane and sulfate turnover, including organic matter mineralization, sulfur cycling and methane phase transitions. In the second part of the review, the structure, forcing functions and parameterization of published models of AOM in sediments are analyzed. The six-orders-of-magnitude range in rate constants reported for the widely used bimolecular rate law for AOM emphasizes the limited transferability of this simple kinetic model and, hence, the need for more comprehensive descriptions of the AOM reaction system. The derivation and implementation of more complete reaction models, however, are limited by the availability of observational data. In this context, we attempt to rank the relative benefits of potential experimental measurements that should help to better constrain AOM models. The last part of the review presents a compilation of reported depth-integrated AOM rates (ΣAOM). These rates reveal the extreme variability of ΣAOM in marine sediments. The model results are further used to derive quantitative relationships between ΣAOM and the magnitude of externally impressed fluid flow, as well as between ΣAOM and the depth of the sulfate-methane transition zone (SMTZ). This review contributes to an improved understanding of the global significance of the AOM process, and helps identify outstanding questions and future directions in the modeling of methane cycling and AOM in marine sediments.

  15. Sediment Mediated Marine-derived Nutrient Transfers in Watersheds: the Dirt on Salmon Decay Products

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen; Albers, Sam

    2014-05-01

    The conveyance of nutrients and contaminants through aquatic systems is typically mediated by inorganic fine sediment. Its influence on the transfer of marine-derived nutrients through watersheds, however, is less well acknowledged. The ecological impact of the annual pulse of marine-derived nutrients (MDN) moved upstream into interior river systems via migrating salmon is thought to be significant as both local spawning reaches and the downstream nursery lakes have evidenced increased productivity following this nutrient pulse. The relationship between the number of upstream spawners and productivity in downstream nursery lakes is poorly defined as the conveyance of MDN between the two points of interest is influenced spatially and temporally by both channel and lake processes. A research project that specifically investigates the association between salmon decay products and sediment mediated transfers of these marine-derived nutrients downstream to the nursery lake is underway in the Horsefly River in British Columbia, an important sockeye river tributary to Quesnel Lake in the Canada's Fraser River watershed. Results from sampling freshet delivery to the lake in 2011 and 2012 will be presented as they represent two end members of the four year spawning cycle - snowmelt flushing following a high and low spawner return year. A continuous flow centrifuge was used to collect bulk suspended sediment 1) at points along the river, downstream of the spawning grounds, 2) along a transect from the river mouth where it enters Horsefly Bay and 3) at several other locations in the river plume during spring freshet. Stable isotopes (13C and 15N) were used to detect the MDN and chlorophyll a was analyzed to represent water column primary production. The relationships between sediment loads, nutrient delivery to the lake and primary productivity during this period will be presented in the context of upstream spawner biomass for both years.

  16. Geochemistry of volcanogenic clayey marine sediments from the Hazar-Maden Basin (Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Akkoca, Dicle Bal; Kürüm, Sevcan; Huff, Warren D.

    2013-12-01

    The Hazar-Madeıı Basin sediments were deposited along the southern branch of the Neotethys Ocean margin during Late Maastrichtian-Middle Eocene times. X-ray powder diffraction (XRD), ICP-AES, ICP-MS and scanning electron microscopy (SEM) were performed on samples of the Upper Maastrichtian-Middle Eocene Hazar Group and the Middle Eocene Maden Complex from the Hazar-Maden Basin to investigate the main effects of depositional envi- ronmental parameters in three sections belonging to deeper marine (slope), proximal arc volcanic (Mastarhill and Yukaribag sections) and shallow platform marine (Sebken section) settings. Marine sediments contain clay minerals (smectite, smectite/chlorite, chlorite, illite, interstratified illite/smectite, illite/chlorite, palygorskite), clinoptilolite, quartz, feldspar, calcite, dolomite, opal-CT and hematite. The clays are dominated by iron-rich smectites. La, Zr and Th concentrations are high in the shallow marginal Sebken section where the terrestrial detrital contribution is significant, while Sc and Co are more dominant in the deeper marine (slope) Yukaribag section, which is represented by basic-type volcanism and a higher contribution of hydrothermal phases. In a chondrite-normalized REE diagram, the negative Eu anomaly in samples from Sebken, the section which was deposited in a shallow marine environment, is less significant than that of the other two sections indicating the presence of a high terrestrial contribution in that part of the basin. A decrease in LREE v/HREEiV and Lajv/Ybv, LaiV/Sin v ratios from Sebken to Mastarhill and the Yukaribag sections indi- cates deepening of the basin and an increasing contribution of volcanism in that direction.

  17. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity. PMID:26496620

  18. Effects of global climate change and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Valdemarsen, T.; Holmer, M.

    2015-01-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems, where sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios especially when the interactions among drivers may not be just additive. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, and increased linearly with temperature and were significantly higher under organic pollution than under non-polluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and was significantly higher in organic polluted compared to non-polluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible of this behaviour. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at temperature rise >6 ° could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  19. Effects of temperature and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lazaro, C.; Valdemarsen, T.; Holmer, M.

    2015-08-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  20. Mercury concentrations in marine sediments near a former mercury cell chlor-alkali plant in eastern Canada.

    PubMed

    Walker, Tony R

    2016-06-15

    Concentrations of total mercury (THg) were measured in coastal marine sediments near a former chlor-alkali plant in Chaleur Bay, New Brunswick. The chlor-alkali plant has been a local point source of THg since operation began in 1963. Historical THg contamination of marine sediments and biota has been widely reported. No baseline assessment has been conducted following plant closure in 2008. Surface (0-2cm) oxidized marine sediments were sampled along a single 5.2km transect radiating from the former plant and analysed for THg. THg concentrations ranged from 0.04-0.28μgg(-1). Some localised THg concentrations exceeded Canadian marine sediment quality guidelines (n=4), but all samples (n=14) were significantly lower than previous studies conducted during plant operation. Plant closure (source control) and natural sediment recovery likely responsible for attenuating THg concentrations, but burial in deeper anoxic sediments may increase bioavilability of Hg that could pose ecological risks to marine biota. PMID:27016328

  1. Redox effects on the microbial degradation of refractory organic matter in marine sediments

    NASA Astrophysics Data System (ADS)

    Reimers, Clare E.; Alleau, Yvan; Bauer, James E.; Delaney, Jennifer; Girguis, Peter R.; Schrader, Paul S.; Stecher, Hilmar A.

    2013-11-01

    Microbially mediated reduction-oxidation (redox) reactions are often invoked as being the mechanisms by which redox state influences the degradation of sedimentary organic matter (OM) in the marine environment. To evaluate the effects of elevated, oscillating and reduced redox potentials on the fate of primarily aged, mineral-adsorbed OM contained in continental shelf sediments, we used microbial fuel cells to control redox state within and around marine sediments, without amending the sediments with reducing or oxidizing substances. We subsequently followed electron fluxes in the redox elevated and redox oscillating treatments, and related sediment chemical, isotopic and bacterial community changes to redox conditions over a 748-day experimental period. The electron fluxes of the elevated and oscillating redox cells were consistent with models of organic carbon (OC) oxidation with time-dependent first-order rate constants declining from 0.023 to 0.005 y-1, in agreement with rate constants derived from typical OC profiles and down core ages of offshore sediments, or from sulfate reduction rate measurements in similar sediments. Moreover, although cumulative electron fluxes were higher in the continuously elevated redox treatment, incremental rates of electron harvesting in the two treatments converged over the 2 year experiment. These similar rates were reflected in chemical indicators of OM metabolism such as dissolved OC and ammonia, and particulate OC concentrations, which were not significantly different among all treatments and controls over the experimental time-scale. In contrast, products of carbonate and opal dissolution and metal mobilization showed greater enrichments in sediments with elevated and oscillating redox states. Microbial community composition in anode biofilms and surrounding sediments was assessed via high-throughput 16S rRNA gene sequencing, and these analyses revealed that the elevated and oscillatory redox treatments led to the

  2. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes.

    PubMed

    Thompson, Belinda A W; Davies, Noel W; Goldsworthy, Paul M; Riddle, Martin J; Snape, Ian; Stark, Jonathan S

    2006-02-01

    A large-scale, in situ experiment was set up near the Bailey Peninsula area (Casey Station, East Antarctica) to monitor the natural attenuation of synthetic lubricants in marine sediments over five years. Here, we report the short-term changes after 5 and 56 weeks. The lubricants tested were an unused and used Mobil lubricant (0W/40; Exxon Mobil, Irving, TX, USA) and a biodegradable alternative (0W/20; Fuchs Lubricants, Harvey, IL, USA). Clean sediment was collected, contaminated with the lubricants, and deployed by divers onto the seabed in a randomized block design. The sampled sediments were analyzed by gas chromatography-flame-ionization detector and gas chromatography-mass spectrometry with selective ion monitoring. The base fluid of all lubricant treatments did not decrease significantly after 56 weeks in situ. Alkanoate esters of 1,1,1-tris(hydroxymethyl)propane in the biodegradable and unused lubricants were degraded extensively in situ; however, these esters constituted only a minor proportion of the lubricant volume. The additives, alkylated naphthalenes and substituted diphenylamines, were fairly resistant to degradation, which is of environmental concern because of their toxicity. The biodegradable lubricant did not break down to recognized biodegradable thresholds and, as such, should not be classified as biodegradable under Antarctic marine conditions. A separate experiment was conducted to determine the influence of sediment preparation and deployment on compound ratios within the lubricants, and we found that preparation and deployment of the contaminated sediments had only a minor effect on compound recovery. Further monitoring of this in situ experiment will provide much needed information about the long-term natural attenuation of lubricants. PMID:16519295

  3. Control of organic matter on the magnetic properties of surficial marine sediments. A simple kinetic model

    NASA Astrophysics Data System (ADS)

    Mohamed Falcon, K. J.; Andrade, A.; Rey, D.; Rubio, B.

    2014-12-01

    Magnetic properties of marine sediments in the Galician Rias, in NW Spain, have shown that in these shallow marine settings the magnetic mineral assemblage, and its bulk magnetic properties, is controlled by grain size, wave climate, and organic matter content. The grain size effect is explained by concentration of diamagnetic biogenic carbonates in the coarse fraction, which dilutes the concentration-dependent magnetic properties. Furthermore, this effect is enhanced by the hydrodynamic sorting of the heavy minerals, like magnetite, that become concentrated in the finer fractions. Waves on the other hand concentrate the coarser bioclasts in the shallower areas along the coastal margins of the rias, and consequently these areas show the lowest magnetic mineral concentrations. Magnetic minerals are therefore more abundant in the deeper central axis and towards the external, more oceanic, areas of the rias. Another effect of waves is periodic resuspension of fine sediments, which allows them to be reoxigenated preventing the onset of reductive diagenesis. This effect is best seen in sediment cores, where organic matter remineralization promotes dissolution of magnetic iron oxides and oxyhydroxides. Areas where resuspension is frequent and/or deeper areas where sediments stay in the water column for longer have lower degrees of reductive early diagenesis. In addition to its downcore effect, organic matter also controls the magnetic properties of surficial sediments. Our results in the Ria de Muros, at the north of our study area, have shown that a simple kinetic model is enough to quantify the effect of organic matter content on the dissolution of magnetite. We have found that a Total Organic Carbon increase of 0.35% reduces magnetite concentration of surface samples by half. These effects observed in the Ria de Muros have also been confirmed for published results in the southern Rias Baixas previously studied by our research group.

  4. Development of marine sediment bioassays and toxicity tests for monitoring and regulation in Europe

    SciTech Connect

    Thain, J.; Matthiessen, P.

    1995-12-31

    There is a need in Europe and elsewhere for a broad suite of whole-sediment bioassays and toxicity tests which can be used for routine monitoring and assessment of the marine environment and for evaluating the toxic effects of chemicals which may find their way into sediments. Until recently, few European species had been incorporated into such tests but the availability of suitable methodologies is now increasing rapidly. Perhaps the most important recent activity in this area consisted of an international ring test of acute sediment toxicity test methods which was organized by the Oslo and Paris Commissions in 1993, using up to 4 offshore chemicals as test materials. It evaluated the performance of 4 acute (5--10 day) tests involving: the sea urchin Echinocardium cordatum, the bivalve mollusc Abra alba, the amphipod crustacean Corophium volutator, and the polychaete worm Arenicola marina. The ring test concluded that the C. volutator test was the most appropriate for evaluating offshore chemicals, but all these methods are now widely used in Europe, both as toxicity tests and as bioassays. For example, the A. marina procedure (which has both lethal and sublethal endpoints), in combination with the C. volutator method, is now routinely used in the UK for monitoring the toxicity of estuarine sediments. Further activities are in progress. Perhaps the most important is the development of chronic marine sediment tests and bioassays which can be used to assess the long-term effects of the many sedimentary contaminants which are able to persist in this type of habitat and possibly cause delayed effects on the growth and reproduction, etc. of benthic fauna.

  5. Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities.

    PubMed

    Matturro, Bruna; Ubaldi, Carla; Grenni, Paola; Caracciolo, Anna Barra; Rossetti, Simona

    2016-07-01

    Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g(-1) sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed. PMID:26162439

  6. A budget of marine and terrigenous sediments, Hanalei Bay, Kauai, Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Calhoun, R. Scott; Fletcher, Charles H.; Harney, Jodi N.

    2002-06-01

    The sediment budget of Hanalei Bay on the north shore of Kauai was calculated using sedimentological and geophysical methods. The calculations of the budget subsequently allowed an interpretation of the Holocene history of the bay. The bay sediments are easily separated into marine (carbonate) and terrigenous (siliciclastic) grains. Surficial sediments are dominated by carbonate grains (˜70%) of coralline algae, coral, and mollusc fragments as well as foraminifera, Halimeda, bryozoa, and echinoderm tests. However, siliciclastic grains (e.g. olivine, plagioclase, volcanic lithics) from the Hanalei River watershed draining shield volcanic highlands are the most common individual grain type (˜27%) and form a zone of high concentration from the mouth of the Hanalei River into the center of the bay. Flooding in the bay by the post-glacial sea-level rise began soon after 11.7 kyears. The resulting marine environment caused the net deposition of 45.5±1.5×10 6 m 3 of sediment in the bay and approximately 33.7±11.2×10 6 m 3 of sediment on the Hanalei coastal plain. The total volume of carbonate sediment stored in the bay and coastal plain is greater than the volume likely to have been produced exclusively within the bay during the same time. Calculations indicate that approximately 2490 m 3 year -1 have been imported into the bay or coastal plain and deposited since 11,700 years ago. The majority of this sediment influx is likely delivered from the east by the strong tradewind-driven littoral currents that characterize Kauai's north shore. Net carbonate sediment deposition in Hanalei Bay peaked at a rate of 15,500 m 3 year -1 between 5000 and 3000 years ago (when sea level may have been 2 m above present) diminishing to 3890 m 3 year -1 from 1000 years ago to the present. This influx is likely to have played a significant role in the mid to late Holocene progradation of the Hanalei shoreline.

  7. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site

  8. A budget of marine and terrigenous sediments, Hanalei Bay, Kauai, Hawaiian Islands

    USGS Publications Warehouse

    Calhoun, R.S.; Fletcher, C.H.; Harney, J.N.

    2002-01-01

    The sediment budget of Hanalei Bay on the north shore of Kauai was calculated using sedimentological and geophysical methods. The calculations of the budget subsequently allowed an interpretation of the Holocene history of the bay. The bay sediments are easily separated into marine (carbonate) and terrigenous (siliciclastic) grains. Surficial sediments are dominated by carbonate grains ( ??? 70%) of coralline algae, coral, and mollusc fragments as well as foraminifera, Halimeda, bryozoa, and echinoderm tests. However, siliciclastic grains (e.g. olivine, plagioclase, volcanic lithics) from the Hanalei River watershed draining shield volcanic highlands are the most common individual grain type ( ??? 27%) and form a zone of high concentration from the mouth of the Hanalei River into the center of the bay. Flooding in the bay by the post-glacial sea-level rise began soon after 11.7 kyears. The resulting marine environment caused the net deposition of 45.5 ?? 1.5 ?? 106 m3 of sediment in the bay and approximately 33.7 ?? 11.2 ?? 106 m3 of sediment on the Hanalei coastal plain. The total volume of carbonate sediment stored in the bay and coastal plain is greater than the volume likely to have been produced exclusively within the bay during the same time. Calculations indicate that approximately 2490 m3 year-1 have been imported into the bay or coastal plain and deposited since 11,700 years ago. The majority of this sediment influx is likely delivered from the east by the strong tradewind-driven littoral currents that characterize Kauai's north shore. Net carbonate sediment deposition in Hanalei Bay peaked at a rate of 15,500 m3 year-1 between 5000 and 3000 years ago (when sea level may have been 2 m above present) diminishing to 3890 m3 year-1 from 1000 years ago to the present. This influx is likely to have played a significant role in the mid to late Holocene progradation of the Hanalei shoreline. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.

    1989-03-01

    The quantitative distributions of loliolide and the major phytoplankton carotenoids: fucoxanthin, diadinochrome, diatoxanthin, and β-carotene in two cores of anoxic marine sediment recovered from the Peru continental shelf are reported. Our results demonstrate that the rapid degradation of carotenoids in sediments is not a result of their high degree of unsaturation as has been previously suggested. Instead, carotenoids exhibit a wide range of degradation rates that are proportional to the ability of specific pigments to form unstable bicyclic furanoxides. Carotenoid furanoxides undergo subsequent fragmentation to loliolide, isololiolide, dihydroactinidiolide and other, as yet undetermined, low molecular weight products. This degradation pathway accounts for the relative rates of removal for specific carotenoids (fucoxanthin = fucoxanthinol > diadinoxanthin > diatoxanthin = carotene), the distribution of carotenoids reported by Wpatts and Maxwell (1977) and C ARDOSOet al. (1978) in ancient sediments, the occurrence of novel carotenoid transformation products in surface sediments reported by r pidout et al. (1984), and the distribution of loliolides in recent sediments recovered from the Namibian shelf reported by k plok et al. (1984a,b). We predict that loliolide and isololiolide will inherit a specific stereochemistry from their carotenoid precursors, but that dihydroactinidiolide will be racemic. For every μmole of fucoxanthin degraded in Peru sediments, 0.7-1.1 μmole of loliolide is produced. Summation of fucoxanthin and loliolide at each subsurface horizon yields an estimate of the total deposition of fucoxanthin at t = 0. Throughout the 0-20 cm depth of our samples, this parameter is remarkably constant to ±16%. Individual horizons exhibit excursions which may reflect changes in surface productivity. Extrapolation of our measurements to deeper sediments may therefore be of some value in deciphering questions on environmental conditions of deposition and

  10. Effects of biogenic silica on acoustic and physical properties of clay-rich marine sediments

    SciTech Connect

    Tribble, J.S.; Mackenzie, F.T.; Urmos, J.; O'Brien, D.K.; Manghnani, M.H. )

    1992-06-01

    The physical properties of marine sediments are influenced by compaction and diagenesis during burial. Changes in mineralogy, chemistry, density, porosity, and microfabric all affect a sediment's acoustic and electrical properties. Sediments from the Japan Trench illustrate the dependence of physical properties on biogenic silica content. Increased opal-A content is correlated with increased porosity and decreased grain density and compressional velocity. Variations with depth in opal-A concentration are therefore reflected in highly variable and, at times, inverse velocity-depth gradients. The diagenetic conversion of opal-A to opal-CT and finally to quartz was investigated at a site in the San Miguel Gap, California. Distinct changes in microfabric, particularly in the porosity distribution, accompany the diagenetic reactions and contribute to a sharp velocity discontinuity at the depth of the opal-A to opal-CT conversion. Evaluation of this reaction at several sites indicates a systematic dependence on temperature and age in clay-rich and moderately siliceous sediments. In ocean margin regions, sediments are buried rapidly, and opal-A may be converted to opal-CT in less than 10 m.y. Temperatures of conversion range from 30{degree} to 50{degree}C. Much longer times (>40 m.y.) are required to complete the conversion in open ocean deposits which are exposed to temperatures less than 15{degree}C. In the absence of silica diagenesis, velocity-depth gradients of most clay-rich and moderately siliceous sediments fall in the narrow range of 0.15 to 0.25 km/s/km which brackets the gradient (0.18 km/s/km) determined for a type pelagic clay section. Relationships such as these can be useful in unraveling the history of a sediment sequence, including the evolution with time of reservoir properties and seismic signatures.

  11. Disentangling the fossil world from the deep biosphere in marine sediment

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. B.; Walsh, E. A.; D'Hondt, S.

    2015-12-01

    DNA in marine sediment contains both detrital sequences and sequences from organisms native to the sediment. The demarcation between these two pools and their rates of respective turnover as sediment ages are generally unknown. Here we address these issues by quantifying the total extractable DNA pool and comparing it to the fraction of sequenced chloroplast DNA (cpDNA) in sediment from two sites in the Bering Sea. Sediment at both of these sites is initially oxic, but transitions to suboxic and anoxic within approximately hundred years. In our samples, cpDNA as a tracer of detrital DNA is dominated by identifiable phylotypes that match specific siliceous microfossil taxa. The fraction of sequences comprised by cpDNA decreases with increasing sediment age over hundreds of thousands of years (kyr) to 1.4 million years (Ma), but does not reach zero at either site. When we take into account the overall shrinkage of the DNA pool, this cpDNA fraction follows a power-law function, suggesting that the residual cpDNA becomes increasingly recalcitrant with age. This increasing recalcitrance can be explained by biological activity decreasing with sediment age and / or by preferential long-term survival of only the most thoroughly protected DNA. In either case, this trend suggests that DNA persisting beyond an initial period (ca. 100 - 200 kyr at our sites) has an increased chance of preservation at depth. The association of sequenced cpDNA reads with specific siliceous microfossil taxa suggests that microfossils may help to preserve DNA; DNA from such taxa may be useful for studies of paleoenvironmental conditions and biological evolution on timescales that approach or exceed one million years.

  12. Origin of fine-grained Holocene shallow marine carbonate sediment on the Florida-Bahama Platform

    SciTech Connect

    Steinen, R. ); Tennet, P. )

    1990-05-01

    Fine-grained sediments present in Florida Bay, the inner reef tract of Florida, and the Great Bahama Bank are formed by three processes. The sediments differ primarily in the amount of 4-{mu}m-long aragonite needles that comprise the sediment, but also in the amount of aragonite. Florida Bay muds are composed primarily of equant 1 {mu}m grains; less than 20% are needles. The fine-grained fraction from the inner reef tract of Florida contains more aragonite needles than Florida Bay muds. Some samples contain nearly 90% needles, whereas samples, from adjacent localities contain only 50%. Sediment from both areas is deposited and mixed by bioturbation on the deltas at tidal passes through the Florida Keys. The amount of needle sediment diminishes rapidly away from the tidal passes in Florida Bay. The fine-grained fraction on the Great Bahama Bank is dominated by 4-{mu}m-long needles of aragonite but may contain fragments and whole tests of foraminifers. In general, the more abundant the aragonite-needle content is in any of the sediment, the greater the aragonite content of that sediment. The three main processes responsible for mud production on the Florida-Bahama Platform are (1) disintegration of skeletal encrustations, mainly red algae and spirobid worm tubules, on Thalassia grass blades; (2) postmortem disaggregation of aragonite needles from green algae; and (3) direct precipitation of aragonite and Mg-calcite from supersaturated marine waters. Where sufficient nutrients exist in the water column, such as in Florida Bay, mud production is dominated by the epibionts on the Thalassia grass community. Less nutrients in the water column of the inner reef tract results in fewer encrustations.

  13. Marine Snow and Gels: Hot Spots of Biogeochemical Cycling, Biological Activity, and Sedimentation in the Sea

    NASA Astrophysics Data System (ADS)

    Alldredge, A. L.

    2004-12-01

    Much of the organic carbon sequestered in the deep sea and ocean bottom sediments as relatively rare, large detrital particles generically known as marine snow. Because they are enriched in organic matter, microbes, and nutrients, these large particles also serve as hot spots for biological and chemical process in the water column. Recent evidence reveals that abundant carbohydrate gel particles in the ocean, formed from the dissolved exudates of phytoplankton and bacteria, are intricately involved in the formation of marine snow. These discoveries are changing the way we conceptualize the pelagic zone on small scales. We no longer imagine seawater as a relatively homogeneous fluid in which float a spectrum of dispersed molecules, particles, and organisms, but instead see it as a rich hydrated matrix of transparent organic gels, detritus, and cob-web like surfaces which provide microscale physical, chemical, and biological structure. This talk will focus on the origins, fate, and significance of marine snow and gels in the sea, including their role in carbon cycling, sedimentation and carbon flux , food webs, and chemical and biological transformation.

  14. Isolation and identification of Perkinsus olseni from feces and marine sediment using immunological and molecular techniques.

    PubMed

    Park, Kyung-Il; Yang, Hyun-Sung; Kang, Hyun-Sil; Cho, Moonjae; Park, Kwang-Jae; Choi, Kwang-Sik

    2010-11-01

    Molecular and immunological probes were used to identify various life stages of Perkinsus olseni, a protozoan parasite of the Manila clam Ruditapes philippinarum, from a marine environment and decomposing clam tissue. Western blotting revealed that the antigenic determinants of the rabbit anti-P. olseni antibody developed in this study were peptides with molecular masses of 55.9, 24.0, and 19.2kDa. Immunofluorescent assay indicated that the rabbit anti-P. olseni IgG was specific to all life stages, including the prezoosporangium, trophozoite, and zoospore. Perkinsus olseni prezoosporangium-like cells were successfully isolated from marine sediment collected from Hwangdo on the west coast of Korea, where P. olseni-associated clam mortality has recurred for the past decade. Purified cells were positively stained with the rabbit anti-P. olseni antibody in an immunofluorescence assay, confirming for the first time the presence of P. olseni in marine sediment. Actively replicating zoospores inside the prezoosporangia were observed in the decomposing clam tissue collected from Hwangdo. P. olseni was also isolated from the feces and pseudofeces of infected clams and confirmed by PCR. The clams released 1-2 prezoosporangia per day through feces. The data suggested that the fecal discharge and decomposition of the infected clam tissue could be the two major P. olseni transmission routes. PMID:20691188

  15. Experimental Constraints on Microbial Liberation of Structural Iron from Common Clay Minerals in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S. W.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2013-12-01

    Iron is a limiting nutrient in many marine settings. The marine Fe-cycle is complex because Fe may be used as an electron donor or acceptor and cycled many times before ultimate burial in sediments. Thus, the availability of iron plays a large role in the marine carbon cycle, influencing not only the extent of primary productivity but also the oxidation of organic matter in sediments. The primary constituents of marine sediments are clay minerals, which commonly contain lattice-bound Fe in octahedral sites. In marine settings, the pool of Fe bound within silicate mineral lattices has long been considered reactive only over long timescales, and thus non-bioavailable. In vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe (III) from the crystal lattice of nontronite, an uncommon but particularly Fe-rich (> 12 wt.%) smectite. Importantly, this process is capable of liberating Fe (II) to solution, where it is available to biotic processes as an electron donor. In order to constrain the capacity of naturally-occurring marine bacteria to liberate structurally-coordinated Fe from the lattices of common clay minerals, we exposed a suite of 16 different clay minerals (0.8-13.9 wt.% Fe) to lab cultures of known Fe-reducer S. onenidensis MR-1 and to a natural consortium of Fe-reducing microbes from the San Pedro and Santa Monica Basins over timescales ranging from 7-120 days. Clay minerals were treated with Na-dithionite to extract surface-bound Fe prior to exposure. Crystallographic data and direct measurements of Fe in solution demonstrate the release of structural Fe from all clay minerals analyzed. Neoformation of illite and amorphous quartz were observed. The array of clay minerals and microbes used in this experiment complement past findings and suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly

  16. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  17. Effect of salinity on methanogenic propionate degradation by acclimated marine sediment-derived culture.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-12-01

    Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl. PMID:26364311

  18. Ecological and isotopic insights to the origin of archaeal tetraethers in marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Hurley, S. J.

    2012-12-01

    Thaumarchaeota, formerly known as Marine Group I Crenarchaeota, are believed to be the primary source of the isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs) found in the environment. Enrichment mesocosms and empirical correlations for marine sediments (TEX86) show a positive relationship between environmental temperature and the number of cyclopentyl or cyclohexyl rings contained within the GDGT structure. The TEX86 paleotemperature proxy has been applied across a large temporal range of geologic events and to sediments of widely varying depositional and diagenetic history. TEX86 assumes a direct correlation between the preserved GDGT ratios and SST. A number of fundamental assumptions underlie this correlation, including that: (1) GDGTs transported to the sediments reflect biomass of surface origin, (2) GDGTs produced by Archaea deeper in the water column should reflect deep temperatures and are not exported, and (3) community variations - including the potential contribution of GDGTs by Group II Euryarchaeota - do not appreciably affect the overall TEX86-SST relationship. Here we discuss evidence that questions all three of these assumptions and propose strategies for further understanding how GDGTs record paleoenvironments. These new approaches include greater application of physiological and culture studies; concurrent measurements of δ13C, Δ14C and D/H ratios of GDGTs; and cross-correlations with other paleotemperature proxies.

  19. Thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis

    NASA Technical Reports Server (NTRS)

    Baedecker, M. J.; Ikan, R.; Ishiwatari, R.; Kaplan, I. R.

    1977-01-01

    The fate of naturally occurring lipids and pigments in a marine sediment exposed to elevated temperatures was studied. Samples of a young marine sediment from Tanner Basin, California, were heated to a series of temperatures (65-200 C) for varying periods of time (7-64 days). The sediment was analyzed prior to and after heating for pigments, isoprenoid compounds, alcohols, fatty acids, and hydrocarbons. Structural changes caused by heating unextractable organic material (kerogen) were also studied, and the significance of the results for understanding petroleum genesis is considered. Among other results, fatty acids and hydrocarbons increased in abundance although there appeared to be no obvious precursor-to-product relationship via simple decarboxylation reactions. Chlorins were partially converted into porphyrins. The phytyl side chain of pheophytin was initially preserved intact by reduction of the phytyl double bond, but later converted to a variety of isoprenoid compounds including alkanes. Thermal grafting of components onto kerogen occurred as well as structural changes caused by heat.

  20. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  1. The Surface of Venus is Saturated With Ancient Impact Structures, and its Plains are Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2009-05-01

    Conventional interpretations of Venus are forced to fit dubious pre-Magellan conjectures that the planet is as active internally as Earth and preserves no ancient surface features. Plate tectonics obviously does not operate, so it is commonly assumed that the surface must record other endogenic processes, mostly unique to Venus. Imaginative systems of hundreds of tiny to huge rising and sinking plumes and diapirs are invoked. That much of the surface in fact is saturated with overlapping large circular depressions with the morphology of impact structures is obscured by postulating plume origins for selected structures and disregarding the rest. Typical structures are rimmed circular depressions, often multiring, with lobate debris aprons; central peaks are common. Marine-sedimentation features are overlooked because dogma deems the plains to be basalt flows despite their lack of source volcanoes and fissures. The unearthly close correlation between geoid and topography at long to moderate wavelengths requires, in conventional terms, dynamic maintenance of topography by up and down plumes of long-sustained precise shapes and buoyancy. A venusian upper mantle much stronger than that of Earth, because it is cooler or poorer in volatiles, is not considered. (The unearthly large so-called volcanoes and tessera plateaus often are related to rimmed circular depressions and likely are products of impact fluidization and melting.) Plains-saturating impact structures (mostly more obvious in altimetry than backscatter) with diameters of hundreds of km are superimposed as cookie-cutter bites, are variably smoothed and smeared by apparent submarine impact and erosion, and are differentially buried by sediments compacted into them. Marine- sedimentation evidence includes this compaction; long sinuous channels and distributaries with turbidite- channel characteristics and turbidite-like lobate flows (Jones and Pickering, JGSL 2003); radar-smooth surfaces and laminated aspect in

  2. INFLUENCE OF SOOT CARBON ON THE BIOACCULUMATION OF SEDIMENT-BOUND POLYCYCLIC AROMATIC HYDROCARBONS BY MARINE BENTHIC INVERTEBRATES: AN INTERSPECIES COMPARISON

    EPA Science Inventory

    The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens,...

  3. Evaluation of metals in marine and freshwater surficial sediments from the Environmental Monitoring and Assessment Program relative to proposed sediment quality criteria for metals

    SciTech Connect

    Leonard, E.N.; Ankley, G.T.; Hoke, R.A.

    1996-12-01

    Surficial sediments collected from Lake Michigan and the Virginian Province of the east coast of the US by the Environmental Monitoring and Assessment Program (EMPA) of the US Environmental Protection Agency (EPA) were evaluated relative to a proposed approach to sediment quality criteria (SQC) for five metals (copper, cadmium, zinc, nickel, and lead). Concentrations of acid-volatile sulfide (AVS), simultaneously extracted metals (SEM) from the AVS extraction, total metals, and total organic carbon were measured in the sediments. Interstitial pore-water concentrations of the five metals also were measured in the freshwater sediment samples. Overall, 91% of 131 surficial marine sediments and 50% of 46 surficial freshwater sediments contained detectable AVS. In 93 of the marine sediments the concentrations of AVS were greater than total SEM (molar sum of copper, cadmium, zinc, nickel, and lead) indicating a low probability of bioavailable metal. In contrast, 91% of the surficial freshwater samples contained greater concentrations of total SEM than AVS. However, pore-water concentrations of the five metals in the freshwater samples were uniformly low and never exceeded 0.3 toxic units based on an additive toxicity model that utilized final chronic values from EPA water quality criteria documents for the five metals. These predictions of minimal metal bioavailability in the EMAP samples were consistent with a general lack of toxicity in laboratory assays with the sediments and with the fact that they had been collected predominantly from ostensibly uncontaminated sites.

  4. Integrated ecotoxicological assessment of marine sediments affected by land-based marine fish farm effluents: physicochemical, acute toxicity and benthic community analyses.

    PubMed

    Silva, C; Yáñez, E; Martín-Díaz, M L; Riba, I; DelValls, T A

    2013-08-01

    An integrated ecotoxicological assessment of marine sediments affected by land-based marine fish farm effluents was developed using physicochemical and benthic community structure analyses and standardised laboratory bioassays with bacteria (Vibrio fischeri), amphipods (Ampelisca brevicornis) and sea urchin larvae (Paracentrotus lividus). Intertidal sediment samples were collected at five sites of the Rio San Pedro (RSP) creek, from the aquaculture effluent to a clean site. The effective concentration (EC50) from bacterial bioluminescence and A. brevicornis survival on whole sediments and P. lividus larval developmental success on sediment elutriates were assessed. Numbers of species, abundance and Shannon diversity were the biodiversity indicators measured in benthic fauna of sediment samples. In parallel, redox potential, pH, organic matter and metal levels (Cd, Cu, Ni, Pb and Zn) in the sediment and dissolved oxygen in the interstitial water were measured in situ. Water and sediment physicochemical analysis revealed the exhibition of a spatial gradient in the RSP, evidenced by hypoxia/anoxia, reduced and acidic conditions, high organic enrichment and metal concentrations at the most contaminated sites. Whereas, the benthic fauna biodiversity decreased the bioassays depicted decreases in EC50, A. brevicornis survival, P. lividus larval success at sampling sites closer to the studied fish farms. This study demonstrates that the sediments polluted by fish farm effluents may lead to alterations of the biodiversity of the exposed organisms. PMID:23681739

  5. EVALUATION OF A FIRST-ORDER MODEL FOR THE PREDICTION OF THE BIOACCUMULATION OF PCBS AND DDT FROM SEDIMENT INTO THE MARINE DEPOSIT-FEEDING CLAM MACOMA NASUTA

    EPA Science Inventory

    A first-order model for predicting contaminant bioaccumulation from sediments into benthic invertebrates was validated using a marine deposit-feeding clam, Macoma nasuta, exposed to polychlorobiphenyl (PCB)-spiked and dichlorodiphenyltrichloroethane (DDT)-contaminated sediments. ...

  6. Geographical distribution of shear wave anisotropy within marine sediments in the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Fukao, Yoshio; Fujie, Gou; Takemura, Shunsuke; Takahashi, Tsutomu; Kodaira, Shuichi

    2015-12-01

    In the northwestern Pacific, the elastic properties of marine sediments, including P-wave velocities ( Vp) and S wave velocities ( Vs), have recently been constrained by active seismic surveys. However, information on S anisotropy associated with the alignments of fractures and fabric remains elusive. To obtain such information, we used ambient noise records observed by ocean-bottom seismometers at 254 sites in the northwestern Pacific to calculate the auto-correlation functions for the S reflection retrieval from the top of the basement. For these S reflections, we measured differential travel times and polarized directions to reveal the potential geographical systematic distribution of S anisotropy. As a result, the observed differential times between fast and slow axes were at most 0.05 s. The fast polarization axes tend to align in the trench-parallel direction in the outer rise region. In particular, their directions changed systematically in accordance with the direction of the trench axis, which changes sharply across the junction of the Kuril and Japan trenches. We consider that a contributing factor for the obtained S anisotropy within marine sediments in the outer rise region is primarily aligned fractures due to the tensional stresses associated with the bending of the Pacific Plate. Moreover, numerical simulations conducted by using the three-dimensional (3D) finite difference method for isotropic and anisotropic media indicates that the successful extraction of S anisotropic information from the S reflection observed in this study is obtained from near-vertically propagating S waves due to extremely low Vs within marine sediments. In addition, we conducted an additional numerical simulation with a realistic velocity model to confirm whether S reflections below the basement can be extracted or not. The resultant auto-correlation function shows only S reflections from the top of the basement. It appears that such near-vertically propagating S waves

  7. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment.

    PubMed

    Laich, Federico; Vaca, Inmaculada; Chávez, Renato

    2013-10-01

    During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T)  = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica. PMID:23934251

  8. New procedure for recovering extra- and intracellular DNA from marine sediment samples

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Kallmeyer, J.

    2012-12-01

    Extracellular DNA (eDNA) is a ubiquitous biological compound in aquatic sediment and soil. Despite major methodological advances, analysis of DNA from sediment is still technically challenging, not just because of the co-elution of inhibitory substances, but also due to co-elution of extracellular DNA, which potentially leads to an overestimate of the actual diversity. Previous studies suggested that eDNA might play an important role in biogeochemical element cycling, horizontal gene transfer and stabilization of biofilm structures. Several protocols based on the precipitation of eDNA e.g. with CTAB and ethanol have already been published. However, using these methods we did not succeed in quantifying very low amounts of eDNA (e.g. <1μg eDNA/g dry wt) in marine sediment even when using DNA carriers like glycogen. Since the recovery of eDNA by precipitation strongly depends on its concentration, these previously published procedures are not adequate for deep biosphere sediment due to the low eDNA content. We have focused on the question whether eDNA could be a source of nitrogen and phosphorus for microbes in the subseafloor biosphere. Therefore we developed a new method for the (semi)-quantitative extraction of eDNA from sediment. The new extraction procedure is based on sequential washing of the sediment to remove simultaneously eDNA and microbial cells without lysing them. After separation of the cells by centrifugation, the eDNA was extracted from the supernatant and purified by adsorption onto a solid phase, followed by removal of the solids and subsequent elution of the pure eDNA. Intracellular DNA (iDNA) was extracted and purified from the cell pellet using a commercial DNA extraction kit. Additional to a very low detection limit and reproducible quantification, this new method allows separation and purification of both extracellular and intracellular DNA to an extent that inhibitors are removed and downstream applications like PCR can be performed. To

  9. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  10. Search for Supernova-Produced {sup 60}Fe in a Marine Sediment

    SciTech Connect

    Fitoussi, C.; Raisbeck, G. M.; Lunney, D.; Korschinek, G.; Faestermann, T.; Poutivtsev, M.; Rugel, G.; Goriely, S.; Waelbroeck, C.; Wallner, A.

    2008-09-19

    An {sup 60}Fe peak in a deep-sea FeMn crust has been interpreted as due to the signature left by the ejecta of a supernova explosion close to the solar system 2.8{+-}0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. In an attempt to confirm this interpretation with better time resolution and obtain a more direct flux estimate, we measured {sup 60}Fe concentrations along a dated marine sediment. We find no {sup 60}Fe peak at the expected level from 1.7 to 3.2 Myr ago. Possible causes for the discrepancy are discussed.

  11. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia

    PubMed Central

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2011-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition – fluorescence in situ hybridization (CARD–FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 109 to 1010 cells/mL at the sediment surface to 107–109 cells/mL below one meter depth. Based on CARD–FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea. PMID:22319518

  12. Late Cretaceous to early Tertiary deltaic to marine sedimentation, North Slope, Alaska

    SciTech Connect

    Phillips, R.L.

    1987-05-01

    Along the lower Colville River near Ocean Point, Alaska, Late Cretaceous to early Tertiary sediments (Colville Group and the Sagavanirktok Formation) record depositional environments from delta plain to prograding delta to shallow marine shelf. The unit hosts the northernmost known dinosaur remains and is less than 100 m thick with numerous tephra deposits in its lower sections. Furthermore, it is characterized by cyclic, relatively fine-grained sediments indicating mostly depositional and few erosional events. The major depositional elements of the delta plain are 3.5 to 5.45-m thick tabular fining-upward cycles that are cut by sand-filled fluvial channels (up to 10 m thick). The cyclic sediments contain abundant roots and grade upward from small-scale cross-beds to laminated and then structureless silt and clay terminating in organic-rich layers. The channel-fill sequences fine upward and change vertically from large to small-scale cross-beds. Over-bank flooding as well as lateral migration of small meandering fluvial channels formed the cyclically interbedded deposits, meandering rivers deposited the thick cross-bedded sands, and soil development or marsh deposits formed the organic-rich horizons that cap each cycle. Plant debris, nonmarine invertebrates, and vertebrate fossils are locally concentrated in the delta plain sediments. Subsidence related to compaction of the deltaic sediments along with possible delta lobe switching resulted in repeated progradation of the delta front over the delta plain. Delta front sediments are 3 to 10-m thick tabular deposits of large and small-scale cross-bedded sands and silt bounded by organic-rich beds. Also, there are abundant roots, rare channels and invertebrate fossils that suggest a transitional environment from sand-flats to estuarine or bay.

  13. Marine Isotope Stage 3 recorded in palaeolake sediments in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Starnberger, Reinhard; Rodnight, Helena; Reitner, Jürgen M.; Reimer, Paula J.; Spötl, Christoph

    2010-05-01

    Greenland ice core data indicate that the last glaciation in the Northern Hemisphere was characterized by relatively short and rapid warmings followed by gradual coolings (Greenland Interstadials or Dansgaard-Oeschger (D/O) cycles). While the Last Glacial Maximum (LGM) and the following Late Glacial are well documented in the Eastern Alps, continuous records of the time period preceding the LGM are only known from stalagmites. Although most of sediment which filled the Alpine valleys before the LGM was eroded and redeposited during the LGM, thick successions have been locally preserved along the sides of margins of longitudinal valley-forming distinct terraces. The Inn valley in Tyrol (Austria) offers the most striking examples of such river terraces which are known to be mostly composed of Upper Pleistocene sediments in the Eastern Alps. During the past 15 years a large number of continuously-cored drill cores was obtained during a tunnelling project in the lower Inn valley, offering the unique possibility to study these sediments in great detail. This study focuses on the Unterangerberg terrace near Wörgl, where drill cores penetrated lacustrine sediments underlying LGM gravel and till. Radiocarbon and infrared stimulated luminescence (IRSL) dating show that these sediments were deposited during Marine Isotope Stage (MIS) 3 and reach back into MIS 4. The sediments show cyclic changes in grain size coinciding with the abundance of biogenic material (charophyta, plant macro-remains, mollusc shells, etc.). In some cores 1-2 m organic-rich (lignite) layers are also present. Ongoing work aims at establishing a reliable internal chronostratigraphy using radiocarbon and luminescence in order to link proxy data series (grain size, loss on ignition, pollen data) to the pattern of D/O events known from Greenland and other regional archives.

  14. Transfer of organic carbon through marine water columns to sediments - insights from stable and radiocarbon isotopes of lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; McNichol, A. P.

    2014-12-01

    Compound-specific 13C and 14C compositions of diverse lipid biomarkers (fatty acids, alkenones, hydrocarbons, sterols and fatty alcohols) were measured in sinking particulate matter collected in sediment traps and from underlying surface sediments in the Black Sea, the Arabian Sea and the Ross Sea. The goal was to develop a multiparameter approach to constrain relative inputs of organic carbon (OC) from marine biomass, terrigenous vascular-plant and relict-kerogen sources. Using an isotope mass balance, we calculate that marine biomass in sediment trap material from the Black Sea and Arabian Sea accounted for 66-100% of OC, with lower terrigenous (3-8%) and relict (4-16%) contributions. Marine biomass in sediments constituted lower proportions of OC (66-90%), with consequentially higher proportions of terrigenous and relict carbon (3-17 and 7-13%, respectively). Ross Sea data were insufficient to allow similar mass balance calculations. These results suggest that, whereas particulate organic carbon is overwhelmingly marine in origin, pre-aged allochthonous terrigenous and relict OC become proportionally more important in sediments, consistent with pre-aged OC being better preserved during vertical transport to and burial at the seafloor than the upper-ocean-derived marine OC.

  15. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia

    PubMed Central

    Lozada, Mariana; Riva Mercadal, Juan P; Guerrero, Leandro D; Di Marzio, Walter D; Ferrero, Marcela A; Dionisi, Hebe M

    2008-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. Results Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. Conclusion These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information

  16. Accumulation of copper, zinc, cadmium and lead from two contaminated sediments by three marine invertebrates: a laboratory study

    SciTech Connect

    Ray, S.; McLeese, D.W.; Peterson, M.R.

    1981-03-01

    Animals from areas with contaminated sediments have been shown in some cases to contain high levels of trace metals. In other cases, the tissue levels of contaminants were relatively constant regardless of the metal contents of the sediments. The availability of sediment-bound metals to bottom-dwelling organisms has been the subject of a few studies. This study describes the uptake of copper, zinc, cadmium and lead from natural, highly contaminated sediments by three marine invertebrates: Nereis virens, Macoma balthica and Crangon septemspinosa.

  17. Simulating the modern δ30Si distribution in the oceans and in marine sediments

    NASA Astrophysics Data System (ADS)

    Gao, S.; Wolf-Gladrow, D. A.; Völker, C.

    2016-02-01

    The δ30Si of biogenic silica (δ30SiBSi) in marine sediments is a promising proxy for the reconstruction of silicic acid utilization by diatoms in the geological past. The application of this proxy, however, requires an understanding of the modern δ30Si distributions and their controlling mechanisms. Here we present results from a modern climate simulation with a coupled ocean-sediment model that includes a prognostic formulation of biogenic silica production with concurrent silicon isotopic fractionation. In agreement with previous studies, biological fractionation combined with physical transport and mixing determines the oceanic distribution of simulated δ30Si. A new finding is a distinct seasonal cycle of δ30Si in the surface ocean, which is inversely related to that of silicic acid concentration and mixed layer depth. We also provide the first simulation results of sedimentary δ30Si, which reveal that (1) the δ30SiBSi distribution in the surface sediment reflects the exported δ30SiBSi signal from the euphotic zone and (2) the dissolution of biogenic silica in the sediment acts as a source of relatively light δ30Si into the bottom waters of the polar oceans, while it is a source of heavier δ30Si to the subtropical South Atlantic and South Pacific.

  18. Numerical simulation of sealing effect of gas hydrate for CO2 leakage in marine sediment

    NASA Astrophysics Data System (ADS)

    Sato, T.; Yu, T.; Oyama, H.; Yoshida, T.; Nakashima, T.; Kamada, K.

    2015-12-01

    Although carbon dioxide capture and storage in subsea geological structure is regarded as one of the promising mitigation technologies against the global warming, there is a risk of CO2 leakage and it is required to develop numerical models to predict how the CO2 migrate in the marine sediments. It is said that there are CO2-trap mechanisms in the geological formations, such as capillary trap, dissolution trap, and mineral trap. In this study, we focus on another trap mechanism: namely, hydrate trap. If the water is deep in the ocean, say more than 250 m, CO2 hydrate forms near the sea floor, at which temperature and pressure conditions can stabilise CO2 hydrate. To predict the gas productivity, it is important to know permeability damage in hydrate bearing sediments. Although hydrate saturation is the same, the permeability is different depending on its spatial distribution within the pore of sand sediment. Here, to know where hydrate is formed in the pore of porous media, we propose a numerical model for estimating the microscopic distribution of CO2 hydrate in sand sediment using a classical nucleation theory and the phase-field model.

  19. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable. PMID:26490900

  20. Method of estimating the amount of in situ gas hydrates in deep marine sediments

    USGS Publications Warehouse

    Lee, M.W.; Hutchinson, D.R.; Dillon, William P.; Miller, J.J.; Agena, W.F.; Swift, B.A.

    1993-01-01

    The bulk volume of gas hydrates in marine sediments can be estimated by measuring interval velocities and amplitude blanking of hydrated zones from true amplitude processed multichannel seismic reflection data. In general, neither velocity nor amplitude information is adequate to independently estimate hydrate concentration. A method is proposed that uses amplitude blanking calibrated by interval velocity information to quantify hydrate concentrations in the Blake Ridge area of the US Atlantic continental margin. On the Blake Ridge, blanking occurs in conjunction with relatively low interval velocities. The model that best explains this relation linearly mixes two end-member sediments: hydrated and unhydrated sediment. Hydrate concentration in the hydrate end-member can be calculated from a weighted equation that uses velocity estimated from the seismic data, known properties of the pure hydrate, and porosity inferred from a velocity-porosity relationship. Amplitude blanking can be predicted as the proportions of hydrated and unhydrated sediment change across a reflection boundary. Our analysis of a small area near DSDP 533 indicates that the amount of gas hydrates is about 6% in total volume when the interval velocity is used as a criterion and about 9.5% when amplitude information is used. This compares with a calculated value of about 8% derived from the only available measurement in DSDP 533. ?? 1993.

  1. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments

    NASA Astrophysics Data System (ADS)

    Long, Edward R.; MacDonald, Donald D.; Smith, Sherri L.; Calder, Fred D.

    1995-01-01

    Matching biological and chemical data were compiled from numerous modeling, laboratory, and field studies performed in marine and estuarine sediments. Using these data, two guideline values (an effects range-low and an effects range-median) were determined for nine trace metals, total PCBs, two pesticides, 13 polynuclear aromatic hydrocarbons (PAHs), and three classes of PAHs. The two values defined concentration ranges that were: (1) rarely, (2) occasionally, or (3) frequently associated with adverse effects. The values generally agreed within a factor of 3 or less with those developed with the same methods applied to other data and to those developed with other effects-based methods. The incidence of adverse effects was quantified within each of the three concentration ranges as the number of cases in which effects were observed divided by the total number of observations. The incidence of effects increased markedly with increasing concentrations of all of the individual PAHs, the three classes of PAHs, and most of the trace metals. Relatively poor relationships were observed between the incidence of effects and the concentrations of mercury, nickel, total PCB, total DDT and p,p'-DDE. Based upon this evaluation, the approach provided reliable guidelines for use in sediment quality assessments. This method is being used as a basis for developing National sediment quality guidelines for Canada and informal, sediment quality guidelines for Florida.

  2. Analysis of marine sediment, water and biota for selected organic pollutants

    SciTech Connect

    Murray, H.E.; Ray, L.E.; Giam, C.S.

    1981-12-01

    The concentrations of various organic pollutants (benzo(a)pyrene (BaP), hexachlorobenzene (HCB) and pentachlorophenol (PCP) were determined in samples of water, sediment and biota (flounder, killifish, shrimp, crabs, and squid) from San Luis Pass, Texas. Sediment was also analyzed for polychlorinated biphenyls (PCBs), phthalic acid esters (PAEs) and various pesticides. Only PCP was detectable in water. In sediment, the relative concentrations were PAEs >> BaP > (PCBs approx. HCB) > PCP. In biota, BaP was not detectable in any animal; HCB was highest in crabs and PCP was highest in all others (flounder, killifish, shrimp and squid). The relative concentrations of HCB and PCP were different in the different organisms. The differences between the relative concentrations in the biota and in sediment are discussed. The results of this study are compared to values measured at other sites. This study is part of a larger effort to identify and quantitate pollutants in various Texas estuaries and to serve as a basis for monitoring marine pollution.

  3. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-01-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  4. Oil effect in freshly spiked marine sediment on Vibrio fischeri, Corophium volutator, and Echinocardium cordatum.

    PubMed

    Brils, Jos M; Huwer, Sherri L; Kater, Belinda J; Schout, Peter G; Harmsen, Joop; Delvigne, Gerard A L; Scholten, Martin C Th

    2002-10-01

    The purpose of this study was to provide data to be used in The Netherlands for development of ecotoxicologically based quality criteria for oil-contaminated sediments and dredged material. In addition, the relation of toxicity to specific oil boiling-point fraction ranges was explored. Natural marine sediment, with a moisture, organic carbon, and silt content of approximately 80, 1.8, and 33% of the dry weight, respectively, was artificially spiked using a spiking method developed in this project. Aliquots of one part of the sediment were spiked to several concentrations of Gulf distillate marine grade A (DMA) gasoil (containing 64% C10-19) and aliquots of the other part to several concentrations of Gulf high viscosity grade 46 (HV46) hydraulic oil (containing 99.2% C19-40). Thus, for each individual oil type, a concentration series was created. Vibrio fischeri (endpoint: bioluminescence inhibition), Corophium volutator (endpoint:mortality), and Echinocardium cordatum (endpoint:mortality) were exposed to these spiked sediments for 10 min, 10 d and 14 d, respectively. Based on the test results, the effective concentration on 50% of the test animals was statistically estimated. For DMA gasoil and HV46 hydraulic oil, respectively, the effective concentrations were 43.7 and 2,682 mg/kg dry weight for V. fischeri, 100 and 9,138 mg/kg dry weight for C. volutator, 190, and 1064 mg/kg dry weight for E. cordatum. This study shows that the toxicity is strongly correlated with the lower boiling-point fractions and especially to those within the C10-C19 range. PMID:12371504

  5. Correction of sound velocity depending on the temperature for unconsolidated marine sediment

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Choul

    2016-04-01

    laboratory sound velocity measurements with systematic temperature change on unconsolidated marine sediment have been performed to establish the precise correction curves between temperature and the sound velocity. Piston and box core samples recovered from the East Sea and the South Sea of Korea were used for the measurement. The core samples were cooled (at temperature of nearly 0℃) and the temperature was gradually increased (from 0℃ to 30℃) to measure sound velocity depending on the changes in temperature. The sediment texture and physical properties (porosity, water content, and bulk density) were measured separately at the same depth. The rate of velocity increase for muddy, silty, and sandy sediment are about 2.63 m/s/℃, 2.74 m/s/℃, and 2.96 m/s/℃, respectively. This is similar to the velocity change rate, 2.97 m/s/℃ presented by Del Grosso (1952). The samples used in this research, however, have relatively higher porosity than those of Del Grosso (1952). Thus, the possibility of discrepancy is differences in water content which affect the sound velocity and measurement system. We used recently developed digital velocity measurement system using PXI based on LabVIEW. We suggest to employ this correction for the accurate in situ geoacoustic property from laboratory data particularly for the deep cold water sample such as the East Sea sediment that has very low bottom water temperature about 0℃. Keywords : in situ geoacoustic property, temperature correction, East Sea Acknowledgements: This research was supported by the Agency for Defense Development (UD14003DD) and by "Marine geological and geophysical mapping of the Korean seas" of the Korea Institute of Geoscience and Mineral Resources (KIGAM).

  6. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  7. In-situ Phytoremediation of PAH and PCB Contaminated Marine Sediments with Eelgrass (Zostera marina)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.; Thom, Ronald M.; Cullinan, Valerie I.

    2009-10-01

    In view of the fact that there are presently no cost-effective in-situ treatment technologies for contaminated sediments, a 60 week long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60 week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls

  8. Iron Cycling in Marine Sediments - New Insights from Isotope Analysis on Sequentially Extracted Fe Fractions

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.

    2014-12-01

    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine

  9. Late Miocene fossils from shallow marine sediments in Brunei Darussalam: systematics, palaeoenvironment and ecology.

    NASA Astrophysics Data System (ADS)

    Roslim, Amajida; Briguglio, Antonino; Kocsis, László; Ćorić, Stjepan; Razak, Hazirah

    2016-04-01

    The geology of Brunei Darussalam is fascinating but difficult to approach: rainforests and heavy precipitation tend to erode and smoothen the landscape limiting rocks exposure, whereas abundant constructions sites and active quarries allow the creation of short time available outcrop, which have to be immediately sampled. The stratigraphy of Brunei Darussalam comprises mainly Neogene sediments deposited in a wave to tide dominated shallow marine environment in a pure siliciclastic system. Thick and heavily bioturbated sandstone layers alternate to claystone beds which occasionally yield an extraordinary abundance and diversity of fossils. The sandstones, when not bioturbated, are commonly characterized by a large variety of sedimentary structures (e.g., ripple marks, planar laminations and cross beddings). In this study, we investigate the sediments and the fossil assemblages to record the palaeoenvironmental evolution of the shallow marine environment during the late Miocene, in terms of sea level change, chemostratigraphy and sedimentation rate. The study area is one of the best in terms of accessibility, extension, abundance and preservation of fossils; it is located in the region -'Bukit Ambug' (Ambug Hill), Tutong District. The fossils fauna collected encompasses mollusks, decapods, otoliths, shark and ray teeth, amber, foraminifera and coccolithophorids. In this investigation, sediment samples were taken along a section which measures 62.5 meters. A thick clay layer of 9 meters was sampled each 30 cm to investigate microfossils occurrences. Each sample was treated in peroxide and then sieved trough 63 μm, 150μm, 250μm, 450μm, 600μm, 1mm and 2mm sieves. Results point on the changes in biodiversity of foraminifera along the different horizons collected reflecting sea level changes and sediment production. The most abundant taxa identified are Pseoudorotalia schroeteriana, Ampistegina lessonii, Elphidium advenum, Quinqueloculina sp., Bolivina sp

  10. Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2015-12-01

    Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.

  11. Recognition of Sediments from Marine High Resolution Seismic Reflection (Chirp) Data

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Song, G.

    2012-12-01

    Chirp sonar echo sounder is based on the frequency conversion of the transmission of electrical impulses, and it`s signal transmission frequency was gradually increased from the received signal being tackled by the original emitted signal to do each other comparison (correlation), to obtain high-resolution seabed sonar echo profile, use the amplitude and frequency conversion of the chirp features observed wave energy changes, shoot out and reflected wave energy to do comparison, get the change of the reflected energy change, different substrate will produce a different pass depletion, when a sound wave incident in the sea water to the seabed, the acoustic energy through the interface and transmitted by pressure waves and shear waves in the sea-bed, so different acoustic properties of the bottom material will produce different pass, the use of this nature to identify the substrate. the conditions in the water are quite large impact for acoustic detection, specifically, by the sound pass depletion performance, sound transfer loss will be affected by the hydrological environment, sediment characteristics, seabed topography, surface roughness and other factors, so chirp sonar data is the more complete the more accurate the more able to grasp the actual situation of the underwater acoustic transmission, and thus a comprehensive understanding of the actual situation of the background texture for the marine environment. Collect sediment data in two ways, one for the core sampling for sediment acoustic parameters of operational difficulties and only a little bit of information, and the second anti-algorithm, in theory, the chirp signal bandwidth is very wide, has a high SNR penetration ratio and substrate have different reactions for each frequency of the broadband rectifiable more accurate sediment attenuation coefficient (k) , In contrast, core sampling unable to obtain a wide range of information, and the sampling data is not enough depth, data variables and the results

  12. Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments.

    PubMed

    Bongiorni, Lucia

    2012-01-01

    Decomposition of organic matter in marine sediments is a critical step influencing oxygen and carbon fluxes. In addition to heterotrophic bacteria and fungi, osmoheterotrophic protists may contribute to this process, but the extent of their role as decomposers is still unknown. Among saprophytic protists, the thraustochytrids have been isolated from different habitats and substrates. Recently, they have been reported to be particularly abundant in marine sediments characterized by the presence of recalcitrant organic matter such as seagrass and mangrove detritus where they can reach biomass comparable to those of other protists and bacteria. In addition, their capacity to produce a wide spectrum of enzymes suggests a substantial role of thraustochytrids in sedimentary organic decomposition. Moreover, thraustochytrids may represent a food source for several benthic microorganisms and animals and may be involved in the upgrading of nutrient-poor organic detritus. This chapter presents an overview on studies of thraustochytrids in benthic ecosystems and discusses future prospectives and possible methods to quantify their role in benthic food webs. PMID:22222824

  13. Determination of polycyclic aromatic hydrocarbons in marine sediments using a new ASE-SFE extraction technique.

    PubMed

    Notar, M; Leskovsek, H

    2000-04-01

    In order to determine PAHs in marine sediment samples by GC/MS(SIM) a new extraction approach of ASE-SFE was evaluated using combined accelerated solvent extraction (ASE, dynamic and static mode) and supercritical fluid extraction (SFE, dynamic mode) without further purification of the sample. The solvents used for ASE-SFE were methylene chloride and carbon dioxide. The recovery data, precision and accuracy of the whole method were evaluated statistically. The average recoveries of PAHs, based on deuterated internal standards were 77% for 2-3-ring PAHs, 85% for 4-ring PAHs, 88% for 5-ring PAHs and 97% for 6-ring PAHs. The extraction time required for the ASE-SFE technique was 30 min, which is longer than in the case of independent use of ASE and shorter compared to SFE. ASE-SFE recoveries of PAHs from SRM marine sediment are comparable for (2-3-ring, 4-ring PAHs) or higher (5-ring, 6-ring PAHs) than reported for the conventional extraction methods of ASE and SFE. Method detection limits of (MDL) were statistically estimated. MDL values obtained for 15 PAHs compounds vary between 0.06 ngg(-1) and 3.54 ngg(-1). PMID:11227420

  14. A new method for estimating shear-wave velocity in marine sediments from radiation impedance measurements

    NASA Astrophysics Data System (ADS)

    Kimura, Masao

    2005-11-01

    Shear-wave velocity is one of the important parameters that characterize the physical properties of marine sediments. In this study, a new method is proposed for measuring shear-wave velocity in marine sediments by using radiation impedance. Shear-wave velocities for three kinds of urethane rubber with different Japanese Industrial Standards hardness values were obtained by radiation impedance and time-of-flight measurement techniques. It was shown that the values of the shear-wave velocity measured by the radiation impedance method were consistent with those of time-of-flight measurements. It was then shown that the shear-wave velocities for air- and water-saturated beach sands are different. It was also found that the indicated shear-wave velocity is dependent on the vibrating plate radius because the instrument measures an average shear-wave velocity within a depth window beneath the plate; the larger the plate radius, the deeper the averaging window. Finally, measurements were made on two-layered media in which air-saturated beach sand or urethane rubber was covered with air-saturated clay, and the relationship between the thickness of the clay layer and the indicated shear-wave velocity was investigated.

  15. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  16. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    PubMed Central

    Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

    2015-01-01

    The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 μm. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

  17. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  18. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment

    PubMed Central

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils

    2014-01-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  19. Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2015-07-01

    This study provides an insight into the lithotectonic evolution of the N-S trending Indo-Burma Range (IBR), constituting the southern flank of the Himalayan syntaxis. Paleogene flyschoid sediments (Disang-Barail) that represent a shallow marine to deltaic environment mainly comprise the west-central sector of IBR, possibly resting upon a continental base. On the east, these sequences are tectonically flanked by the Eocene olistostromal facies of the Disang, which developed through accretion of trench sediments during the subduction. The shelf and trench facies sequences of the Disang underwent overthrusting from the east, giving rise to two ophiolite suites ( Naga Hills Lower Ophiolite ( NHLO) and Victoria Hills Upper Ophiolite ( VHUO), but with different accretion history. The ophiolite and ophiolite cover rock package were subsequently overthrusted by the Proterozoic metamorphic sequence, originated from the Burmese continent. The NHLO suite of Late Jurassic to Early Eocene age is unconformably overlain by mid-Eocene shallow marine ophiolite-derived clastics. On the south, the VHUO of Mesozoic age is structurally underlain by continental metamorphic rocks. The entire package in Victoria Hills is unconformably overlain by shallow marine Late Albian sediments. Both the ophiolite suites and the sandwiched continental metamorphic rocks are thrust westward over the Paleogene shelf sediments. These dismembered ophiolites and continental metamorphic rocks suggest thin-skinned tectonic detachment processes in IBR, as reflected from the presence of klippe of continental metamorphic rocks over the NHLO and the flyschoid Disang floor sediments and half windows exposing the Disang beneath the NHLO.

  20. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments.

    PubMed

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the "Oil-Spill Snorkel": a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The "Oil-Spill Snorkel" consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the "Oil-Spill Snorkel" potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable

  1. Paleo- and environmental magnetic record of Holocene marine sediments from West Greenland

    NASA Astrophysics Data System (ADS)

    Hatfield, R. G.; Stoner, J. S.; Jennings, A. E.

    2013-12-01

    High resolution records of paleosecular variation (PSV) and relative paleointensity (RPI) are useful relative dating tools and provide opportunities to understand patterns in the apparently stochastic behavior of the earth's geodynamo. The quality of these records is dependent upon sedimentological and environmental conditions that permit the complex, and still poorly understood, sediment magnetic acquisition process; changes to these conditions potentially impacts the fidelity of these records and our interpretation of the paleogeomagnetic field. To understand the potential influence of these effects we measured the paleo- and environmental-magnetic properties of a 12kyr marine record from Disko Bugt, West Greenland which experiences large sedimentological changes related to deglaciation and retreat of the Greenland ice sheet. Proximity of the ice margin to the core site during the early Holocene provided abundant terrigenous fine-grained sediment, resulting in high sedimentation rate, high magnetic susceptibility (MS) and coercivity typical of PSD size magnetite. Maximum angular deviation (MAD) values <1° indicate that the paleomagnetic record is well defined, and PSV and RPI records agree well with well-established regional analogues (e.g. MD99-2269 and MD99-2322) and field models (e.g. CALS10k). Ice-sheet retreat during the mid-late Holocene reduced the flux of terrigenous sediment resulting in lower values of MS and coercivity and consistently higher MAD values (ranging from 2-14°) indicating possible sediment source changes and a less well defined paleomagnetic record. While both PSV and RPI are affected by environmental changes the PSV record appears more resilient, maintaining relatively strong coherence to regional analogues, whereas the RPI record becomes less well defined. These results highlight the dependence of the paleomagnetic record on the environmental regime in which it was deposited, the sensitivity of PSV, and particularly RPI to these

  2. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    SciTech Connect

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.; Cole, F.A.; Ozretich, R.J.; Boese, B.L.; Schults, D.W.; Behrenfeld, M.; Ankley, G.T.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC), 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.

  3. Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6-11

    NASA Astrophysics Data System (ADS)

    Minyuk, P. S.; Borkhodoev, V. Y.; Wennrich, V.

    2014-03-01

    Geochemical analyses were performed on sediments recovered by deep drilling at Lake El'gygytgyn in central Chukotka, northeastern Russia (67°30' N; 172°05' E). Major and rare element concentrations were determined using X-ray fluorescence spectroscopy (XRF) on the < 250 μm fraction from 617 samples dated to ca. 440 and 125 ka, which approximates marine isotope stages (MIS) 11 to 6. The inorganic geochemistry indicates significant variations in elemental composition between glaciations and interglaciations. Interglacial sediments are characterized by high contents of SiO2, Na2O, CaO, K2O, and Sr and are depleted in Al2O3, Fe2O3, TiO2, and MgO. An extreme SiO2 enrichment during MIS 11.3 and 9.3 was caused by an enhanced flux of biogenic silica (BSi). The geochemical structure of MIS 11 shows similar characteristics as seen in MIS 11 records from Lake Baikal (southeastern Siberia) and Antarctic ice cores, thereby arguing for the influence of global forcings on these records. High sediment content of TiO2, Fe2O3, MgO, Al2O3, LOI, Ni, Cr, and Zr typifies glacial stages, with the most marked increases during MIS 7.4 and 6.6. Reducing conditions during glacial times are indicated by peaks in the Fe2O3 content and coinciding low Fe2O3/MnO ratios. This conclusion also is supported by P2O5 and MnO enrichment, indicating an increased abundance of authigenic, fine-grained vivianite. Elemental ratios (CIA, CIW, PIA, and Rb/Sr) indicate that glacial sediments are depleted in mobile elements, like Na, Ca, K and Sr. This depletion was caused by changes in the sedimentation regime and thus reflects environmental changes.

  4. Coupled LBM-DEM Three-phase Simulation on Gas Flux Seeping from Marine Sediment

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Sato, T.

    2014-12-01

    One of the main issues of the geological storage of CO2 under the seabed is a risk of CO2 leakage. Once CO2seeps into the ocean, it rises in water column dissolving into seawater, which results in the acidification of seawater and/or returning to the air. Its behaviour significantly depends on flow rate and bubble size (Kano et al., 2009; Dewar et al., 2013). As for porous media, bubble size is generally predicted through simple force balance based on flow rate, surface tension and channel size which is estimated by porosity and grain size. However, in shallow marine sediments, grains could be mobilised and displaced by buoyant gas flow, which causes distinctive phenomena such as blow-out or formation of gas flow conduit. As a result, effective gas flux into seawater can be intermissive, and/or concentrated in narrow area (QICS, 2012; Kawada, 2013). Bubble size is also affected by these phenomena. To predict effective gas flux and bubble size into seawater, three-phase behaviour of gas-water-sediment grains should be revealed. In this presentation, we will report the results of gas-liquid-solid three-phase simulations and their comparisons with experimental and observation data. Size of solid particles is based on grain size composing marine sediments at some CCS project sites. Fluid-particle interactions are solved using the lattice Boltzmann method (LBM), while the particle-particle interactions are treated by coupling with the Discrete Element method (DEM). References: Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Small-scale modelling of the physiochemical impacts of CO2leaked from sub-seabed reservoirs or pipelines within the North Sea and surrounding waters. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Model prediction on the rise of pCO2 in uniform flows by leakage of CO2purposefully stored under the seabed. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kawada, R. 2014. A study on the

  5. Morphology and Sediment Transport Dynamics of a Trough-Blowout Dune, Bodega Marine Reserve, Northern California

    NASA Astrophysics Data System (ADS)

    Jorgenson, D.; Dunleavy, C. J.; Smith, M. E.

    2014-12-01

    Blowout dunes are a primary mechanism for transporting sand within vegetated coastal dune systems. Understanding the fine-scale variation in sediment transport within these systems is critical to predicting their formation and migration. Previous investigations of a coastal dune system located at the Bodega Marine Reserve, on the Sonoma Coast of Northern California have indicated that aeolian sand flux in unvegetated sand is ~450x greater than in vegetated areas. To better understand sand flux and its relationship with wind speed, direction and precipitation, we deployed an array of 12 sand traps within a single blowout area adjacent to the BOON marine climatology station. The blowout is trough- shaped, approximately 50 meters long and 15 meters wide. Its main 'fairway' is 5-10 meters below the surrounding beach grass (Ammophila)-covered land surface. Surface sediment within the blowout is fine-grained to granule-sized lithic to sub-lithic sand, and is coarsest in the center. Dune sediment in the Bodega Marine Reserve has been transported by aeolian processes from Salmon Creek Beach to the NW. Within the blowout, typical bedforms include 15-25 cm-wavelength, ~10 cm high sinuous to lingoid ripples arranged perpendicularly to the dominant wind direction (~280 degrees). An 8-10 meter-high mound at the downwind end has accumulated due to the trapping of sand flux by vegetation. Sediment flux across the studied blowout was sampled monthly over a 10-month period of 2013-2014. Sand traps were constructed using modified PVC cylinders, and are 0.5 meter high and 0.3 meter in diameter, with a 0.74-micron mesh screen. Based on measured sand flux, the sites can be categorized into three groups-axial, medial, and peripheral. Rates increase downwind within the blowout. Inter-site sand flux variability within unvegetated locations of the blowout is greater than two orders of magnitude. Axial sites, which experience the greatest sand flux, occur on the edge of the blowout adjacent

  6. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    Over time, Norwegian fjords and harbour areas have received contaminants from industrial activities and urban run-off, and measures to remediate contaminated marine sediments are therefore needed. Stabilization/solidification (S/S) technology, in which the contaminated marine sediments are mixed with cement and other binding agents, has been shown to be a promising remediation technology. This paper summarizes a study of the environmental effect of stabilization, highlighting the importance of sulphide binding governing the leaching of heavy metals from the S/S of contaminated marine sediments. The study is a part of a research project focusing on developing effective methods for S/S of contaminated seabed sediments for use in new construction areas. Four cementitious binders were tested on sediments from six different locations: Bergen, Gilhus, Grenland, Hammerfest, Sandvika and Trondheim. The sediments differed with respect to properties such as concentration of contaminants, water content, organic content and grain size distribution. Portland cement, Portland cement with fly ash, industry cement, and sulphate resistant cement, were tested as binders. The leaching from the S/S sediments after 28 days of curing was measured by using a standard leaching batch test (EN 12457-2: 2003), with seawater as leaching agent. The eluate was analysed for pH and redox, as well as content of heavy metals and organic contaminants. Available volatile sulphide (AVS) and simultaneously extractable metals (SEM) were also measured in the sediments. This paper focuses on the leaching of lead (Pb) and copper (Cu). A reduced leaching of Pb after stabilization was observed for the mixtures, whereas the leaching of Cu from Hammerfest sediments increased substantially after stabilization for all cementitious additions. Experiments show that Hammerfest samples had lower values of AVS than the other sediments. This was confirmed by the SEM/AVS analysis, highlighting the importance of

  7. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment.

    PubMed

    Smit, Mathijs G D; Holthaus, Karlijn I E; Trannum, Hilde C; Neff, Jerry M; Kjeilen-Eilertsen, Grete; Jak, Robbert G; Singsaas, Ivar; Huijbregts, Mark A J; Hendriks, A Jan

    2008-04-01

    Assessment of the environmental risk of discharges, containing both chemicals and suspended solids (e.g., drilling discharges to the marine environment), requires an evaluation of the effects of both toxic and nontoxic pollutants. To date, a structured evaluation scheme that can be used for prognostic risk assessments for nontoxic stress is lacking. In the present study we challenge this lack of information by the development of marine species sensitivity distributions (SSDs) for three nontoxic stressors: suspended clays, burial by sediment, and change in sediment grain size. Through a literature study, effect levels were obtained for suspended clays, as well as for burial of biota. Information on the species preference range for median grain size was used to assess the sensitivity of marine species to changes in grain size. The 50% hazardous concentrations (HC50) for suspended barite and bentonite based on 50% effect concentrations (EC50s) were 3,010 and 1,830 mg/L, respectively. For burial the 50% hazardous level (HL50) was 5.4 cm. For change in median grain size, two SSDs were constructed; one for reducing and one for increasing the median grain size. The HL50 for reducing the median grain size was 17.8 mum. For increasing the median grain size this value was 305 mum. The SSDs have been constructed by using information related to offshore oil- and gas-related activities. Nevertheless, the results of the present study may have broader implications. The hypothesis of the present study is that the SSD methodology developed for the evaluation of toxic stress can also be applied to evaluate nontoxic stressors, facilitating the incorporation of nontoxic stressors in prognostic risk assessment tools. PMID:18333685

  8. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    PubMed

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA. PMID:24798206

  9. Fulvibacter tottoriensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from marine sediment.

    PubMed

    Khan, Shams Tabrez; Nakagawa, Yasuyoshi; Harayama, Shigeaki

    2008-07-01

    A novel bacterium, MTT-39(T), was isolated from a sample of marine sediment collected at Tottori on the coast of the Sea of Japan. Cells were Gram-negative, rod-shaped and non-motile. The bacterium formed yellowish brown colonies on marine agar 2216. Although the 16S rRNA gene sequence of strain MTT-39(T) classified this strain as a member of the family Flavobacteriaceae, the maximum sequence similarity obtained was only 91.5 % (with Kordia algicida OT-1(T)). In the maximum-likelihood tree based on 16S rRNA gene sequences, the novel bacterium clustered with the type strains of Kordia algicida, Lutibacter litoralis, Tenacibaculum maritimum and Polaribacter filamentus. The novel strain exhibited the following characteristics: the predominant fatty acids in cells grown on artificial seawater-based tryptic soya agar were iso-C(15 : 1), iso-C(15 : 0) and iso-C(15 : 0) 3-OH, the major respiratory quinone was MK-6 and the DNA G+C content was 35 mol%. On the basis of its distinct phenotypic traits and the phylogenetic distance between this marine isolate and other recognized taxa, strain MTT-39(T) represents a novel genus and species of the family Flavobacteriaceae, for which the name Fulvibacter tottoriensis gen. nov., sp. nov. is proposed. The type strain of the type species is MTT-39(T) (=NBRC 102624(T)=KCTC 22214(T)=CGMCC 1.7058(T)). PMID:18599714

  10. The role of sulfur in the formation of humic polymers in marine sediments

    SciTech Connect

    Vairavamurthy, M.A.

    1996-12-31

    In anoxic marine sediments, hydrogen sulfide formed from bacterial sulfate reduction significantly impacts the diagenesis and preservation of organic matter through incorporating sulfur into the latter; however, the underlying geochemical mechanisms are still unclear. We used XANES spectroscopy to investigate whether di- and poly-sulfide linkages are involved in the formation of humic polymers in anaerobic marine sediments. The approach was to treat the humic acids with tributyl phosphine, that cleaves di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and poly-sulfide compounds (benzyl disulfide and trisulfide), the shape of the XANES spectra changed when treated with tributyl phosphine because of the formation of sulfhydryl groups. A similar effect was observed for sedimentary humic acids isolated from a salt marsh in Shelter Island, suggesting that di- and poly-sulfide linkages are indeed involved in forming humic polymers. We determined by liquid chromatography, two major low-molecular-weight thiols, 3-mercatopropionate and methane thiol, among the compounds released from tributyl phosphine treated humics. These thiols can be easily degraded by sedimentary bacteria when they are present in solution. However, both thiols were present as components of the humic substances throughout the sediment column, down to the 22-cm depth sampled, suggesting that incorporation into humic polymers, in fact, provides a mechanism for preventing mineralization of the bound organic matter. In general, humic polymers resist microbial degradation because of their randomly polymerized structure.

  11. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments

    PubMed Central

    Gontikaki, Evangelia; Thornton, Barry; Cornulier, Thomas; Witte, Ursula

    2015-01-01

    More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as “priming effect”, but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14–28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited. PMID:26633175

  12. Radiocarbon calibration-comparison records based on marine sediments from the Pakistan and Iberian Margins

    NASA Astrophysics Data System (ADS)

    Bard, E.; Ménot, G.; Licari, L.

    2009-04-01

    We present new results on the radiocarbon records based on planktonic foraminifera of core MD042876 from the Pakistan Margin and updated results for core MD952042 from the Iberian Margin (Bard et al. 2004, Science 303, 178; 2004, Quat. Res. 61, 204; 2004, Radiocarbon 46, 1189; Shackleton et al. 2004, QSR 23, 1513). Both cores exhibit high sedimentation rates on the order of 50 and 40 cm/kyr for the Pakistan and Iberian cores, respectively. For a calendar age scale, we matched climate records of both cores to the oxygen isotopic profile of the Hulu Cave stalagmites that have been accurately dated by U-Th (Wang et al. 2001, Science 294, 2345). Our new comparison data can be compared with the IntCal04 record (Reimer et al. 2004, Radiocarbon 46, 1029) and with individual records based on other archives: corals from Barbados (Fairbanks et al. 2005, QSR 24, 1781), marine sediments of the Cariaco Basin (Hughen et al. 2004, Science 303, 202; 2006, QSR 25, 3216), varves of Lake Suigetsu (Kitagawa & van der Plicht 1998, Science 279, 1187; 2000, Radiocarbon 42, 369), and speleothems from the Bahamas (Beck et al. 2001, Science 292, 2453). Up to 26,000 cal-yr-BP, the Pakistan and Iberian data can be used to validate the precision and accuracy of the marine sediment approach. In the interval between 26,000 and 50,000 cal-yr-B.P., the Pakistan and Iberian records agree closely with each other and with the Cariaco and Barbados data. This agreement clearly shows the feasibility of extending the IntCal04 14C calibration curve.

  13. Effects-directed analysis of sediments from polluted marine sites in Norway.

    PubMed

    Grung, Merete; Næs, Kristoffer; Fogelberg, Oscar; Nilsen, Anja Julie; Brack, Werner; Lübcke-von Varel, Urte; Thomas, Kevin V

    2011-01-01

    The environmental status of two polluted marine sites in Norway was investigated by a combination of target chemical analysis and effect-directed analysis (EDA). The two selected sites, the Grenland area and Oslo harbor, in addition to two reference sites, were classified according to the Norwegian environmental classification system based upon results of the target chemical analyses. The polluted sites were characterized by high levels of metals, polycyclic aromatic hydrocarbons (PAH), and polychlorinated biphenyls (PCB). High levels of organotin compounds were also detected in Oslo harbor. The aryl hydrocarbon receptor (AhR) agonist activity in extracts of sediments from marine sites close to Oslo, Oslo harbor, and Grenland were investigated using the CALUX (chemical-activated luciferase expression) assay, which showed elevated levels of activity. As expected from the history of dioxin release into the Grenland area, the results were highest in this area. The presence of estrogen receptor (ER) and androgen receptor (AR) antagonists was also detected in the sediment extracts. Following fractionation of the sediment extracts, EDA was used to tentatively identify the AhR agonists. The compounds responsible for AhR agonist activity in samples from Oslo harbor were isolated in fraction 13, and to a lesser extent in fractions 9-11. In Grenland, the main activity was found in the more polar fractions, namely fractions 14-18. The AhR agonists identified in Oslo harbor were mainly PAH, while in the Grenland area the compounds identified were mainly nitrogen/oxygen-containing polyaromatic compounds (N/O-PAC). PMID:21391090

  14. On the sources of PBDEs in coastal marine sediments off Baja California, Mexico.

    PubMed

    Macías-Zamora, J V; Ramírez-Álvarez, N; Hernández-Guzmán, F A; Mejía-Trejo, A

    2016-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely distributed compounds in all types of matrices. In the northern portion of the Southern California Bight (SCB), there were reports of some of the largest PBDE concentrations in marine mammals and mussels. Because of this, we decided to analyze the status of PBDEs in the southern part of the SCB. An analysis of 91 samples of marine surface sediment was carried out. All of the 91 samples contained measurable amounts of PBDEs, which is a manifestation of the widespread distribution of these chemical substances. However, the levels detected are between one and two orders of magnitude smaller than those reported in southern California. Currents appear to control the distribution of PBDEs along the coast and the sedimentation sites with largest concentrations are favored by local bathymetry. Maximum concentrations were located in the middle and deeper platforms ranging from 0.02 to 5.90 (with a median 0.71) ng·g(-1) d.w. Deca-BDE mixture is largely predominant in the sediments followed by the penta-BDE mixture. The mass balance for the latitudinal strata shows the largest concentrations in the north where the largest population centers are present and with a very clear southward gradient. The mass balance calculation values showed about 36kg of PBDEs for the north, 22kg for the center, and 10kg for the south strata. In terms of depth, the PBDEs are mainly located on the middle and deep platforms rather than near point discharges, which is different than that reported by other authors. PMID:27459254

  15. Optical Dating of Marine Sediment From ODP Core 658B - An Intercomparison With an Independent AMS 14C Chronology

    NASA Astrophysics Data System (ADS)

    Armitage, S. J.; Stokes, S.; Henderson, G.

    2004-12-01

    We demonstrate the potential of optical dating of detrital quartz silt from marine sediments via a chronological intercomparison for samples from ODP Site 658, which range in age from 0 to 140ka. ODP Site 658 is located off Cap Blanc, Mauritania. It has a high sedimentation rate (18 cm/ka), due to high regional surface productivity and large inputs of windblown Africa dust. This windblown dust provides both the substrate for optical dating and a proxy for North African aridity. The AMS 14C chronology is based on monospecific foraminiferal (Globigerinoides bulloides) samples. This is the first large-scale, systematic application of optical dating to marine sediment, and demonstrates that the technique has considerable potential for the age estimation of otherwise undateable deep-sea material. Optical dating techniques measure the total ionising radiation dose that a mineral grain has received since its last exposure to sunlight (i.e. during burial). The resulting optical age is essentially calibrated via a knowledge of the environmental dose rate, yielding the burial period. The environmental dose rate is derived from the decay of radioisotopes in the sediment (K, U and Th). In terrestrial sediments, the uranium and thorium decay chains can be assumed to be in equilibrium. In the marine realm this assumption is not valid, and unsupported uranium decay series exist on deposition. Consequently, the environmental dose rate changes with sample age. This problem was circumvented by quantifying U and Th decay series disequilibrium, using an MC-ICP-MS. The evolution of the environmental dose rate during burial was modelled, and ages for each sample calculated. The 14C and optical ages are generally in good agreement, indicating that the latter technique can provide equally robust chronologies for marine sediments. Although the maximum age attainable using optical dating is sample specific, the dose rate and luminescence characteristics of the samples analysed in this study

  16. Biogeochemical dynamics in 20 m deep coastal sediments: The transition between the shallow subsurface and the marine deep biosphere

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Riedel, Thomas; Graue, Jutta; Brumsack, Hans-Jürgen; Engelen, Bert

    2010-05-01

    At present a large tidal flat area extends along the coastline of the southern North Sea. On longer geological time scales this area has, however, transformed from a terrestrial- to a marine-dominated landscape owing to changes in sea level. Biogeochemistry and microbial abundance have been intensively studied in the present tidal-flat sediments, down to about 5 m depth. However, very little is known about biogeochemical and microbial processes in deeper sediment layers, which were deposited before the establishment of today's tidal flat area. To study whether the geological history of sediment accumulation and thus the paleo-environment has an impact on pore water biogeochemistry and microbial abundance, Quaternary coastal deposits were investigated down to 20 m depth. In the tidal flat area of Spiekeroog Island (NW Germany) two geological settings were selected which are located close to each other but differ in sediment age and paleo-environmental conditions: A paleo-channel filled with mainly Holocene sediments and a sedimentary succession with the oldest sediments deposited during the Saalian glaciation ca. 130,000 years ago. The interdisciplinary analysis clearly shows that microorganisms are more abundant in the Holocene sediments. Here, almost all Archaea appear to be methanogenic as indicated by the presence of the mcrA-gene. About 12% of the Bacteria harbor the key gene for sulfate reduction. In contrast, only 1% methanogens and 0.5% sulfate-reducing bacteria were found in the older sediments. Furthermore, this study supports the concept that certain biogeochemical and microbiological features show astonishing similarities between the upper 5 meters of tidal-flat sediments and the upper hundred meters of deep-sea sediments. In the investigated 20 m-long sediment cores, the microbiological and geochemical response to sedimentary settings is transitional between the shallow subsurface of tidal-flat sediments and the marine deep biosphere.

  17. Estimating superparamagnetism in marine sediments with the time dependency of coercivity of remanence

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei V.; Tarduno, John A.

    2001-01-01

    Superparamagnetic grains, ultrafine (<50 nm) particles that do not retain a magnetic remanence at room temperature, can form through several biogeochemical pathways in marine sediments. Knowing the distribution of such particles therefore provides a means of better understanding the past diagenetic history of sediments and evaluating their potential record of environmental change. Herein we employ magnetic hysteresis measurements in a new way to determine the abundance of superparamagnetic (SP) grains. We start with a phenomenological model that describes a dependency of coercivity of remanence (Hcr) with measurement time as a function of superparamagnetic grain content. Calculated time dependencies of Hcr agree with experimental data, suggesting that the model can be used to derive quantitative SP estimates. When applied to pelagic sediments of the western equatorial Pacific Ocean (Ocean Drilling Program Site 805C), the time dependencies of Hcr reveal a 25-30% SP increase starting just above the modern iron redox boundary (IRB). Next, we compare our approach with a previous method that detects SP grains through the thermal demagnetization of saturation remanence acquired at very low temperature (20 K). We find this method fails to record the SP changes detected using the time dependency of Hcr and suggest that the cause is a sensitivity of the low-temperature data to small differences in magnetic mineralogy that accompany diagenesis. Specifically, differential maghemitization causes varying suppression of the remanence changes associated with the Verwey transition at ˜120 K. The removal of maghemite shells on magnetic grains below the IRB results in greater remanence changes at the Verwey transition and a corresponding SP underestimate using the low-temperature method. In addition, some iron oxyhydroxides paramagnetic at room temperature can become ferromagnetic at very low temperatures, resulting in an SP overestimate in oxic sediments above the IRB. The

  18. The accumulation of radiocesium in coarse marine sediment: effects of mineralogy and organic matter.

    PubMed

    Kim, Yeongkyoo; Kim, Kangjoo; Kang, Hee-Dong; Kim, Wan; Doh, Si-Hong; Kim, Do-Sung; Kim, Byoung-Ki

    2007-09-01

    The controlling factors affecting the accumulation of (137)Cs in marine sediment have not been investigated in detail, especially in coarse grained sediment. Eighty eight coarse marine sediment samples near Wuljin, Korea, were characterized by quantitative X-ray-diffraction (XRD), gamma-ray, and total organic carbon (TOC) analysis. Those factors were then compared. The grain size was in the range of -0.48 to 3.6Mdphi corresponding to sand grains. TOC content was in the range of 0.06-1.75%, and the concentration of (137)Cs was sediment. The role of biotite in fixing (137)Cs becomes more important in sediment with coarser grains, containing little TOC. PMID:17663995

  19. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  20. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided

  1. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Kamari, Halimah Mohamed; Kong, Yap Chee; Hamzah, Mohd Suhaimi; Elias, Md Suhaimi

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. PMID:26405840

  2. The Empire Knight: Patterns of mercury contamination in sediment and biota at a marine site

    SciTech Connect

    Hoff, R.Z.

    1995-12-31

    The Empire Knight, a merchant ship carrying approximately 7.3 metric tons of elemental mercury in its cargo, sank in a storm off the Maine coast in 1 944. Unique attributes of the site include the deep water marine conditions (80 m) and mercury originally in elemental form. Recent evaluations of the site were undertaken to determine environmental risk of the remaining mercury and possible remedial actions. Data collected in 1993 for this risk evaluation included sediment core samples, and a variety of biota samples. Biota were analyzed for total and methylmercury, and the following patterns examined: percent methylmercury, variability between species groups, and spatial patterns related to sediment contamination. Sediment contamination was largely confined to the immediate area near the wreck, with levels decreasing to background within 60 m. Invertebrates within this area had elevated levels of mercury in tissue. Most contamination was in an inorganic form, with percentages of methyl to total mercury below 20%, except for crab and lobster. Most of the residual mercury appears to be largely unavailable to biota, with local invertebrates comprising the main biological receptors. Evidence of bioaccumulation of mercury in higher trophic level organisms was not found, thus mercury did not appear to be a source of contamination beyond the immediate area the wreck.

  3. Multiple microtektite horizons in upper Eocene marine sediments: No evidence for mass extinctions

    USGS Publications Warehouse

    Keller, G.; D'Hondt, S.; Vallier, T.L.

    1983-01-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  4. Steady-state model of biota sediment accumulation factor for metals in two marine bivalves

    SciTech Connect

    Thomann, R.V.; Mahony, J.D.; Mueller, R.

    1995-11-01

    A model of the biota sediment accumulation factor (BSAF) is developed to relate the ratio of metal concentrations in two marine bivalves (Crassostrea virginica and Mytilus edulis) to sediment metal concentration. A generalized metal BSAF can be approximated by a simple relationship that is a function of sediment to water column partitioning, the bioconcentration factor (BCF), the depuration rate, the metal assimilation efficiency from food, the bivalve feeding rate, and the growth rate. Analyses of Mussel Watch data indicate that the medium BSAF across stations varies by about three orders of magnitude from Zn, Cd, and Cu at the highest levels of BSAF = 1 to 10, while Cr has the lowest BSAF at 0.01. Total Hg is about 1.0 and Ni and Pb are approximately 0.1. Calibration of the model indicates that the food route of metal accumulation is significant for all metals but specially for Zn, Cd, Cu, and Hg where virtually all of the observed BSAF is calculated to be due to ingestion of metal from food in the overlying water. These results indicate a potential significance of the metal-binding protein metallothionein, which results in relatively high binding of metal and resulting low depuration rates.

  5. Uptake of PCBs contained in marine sediments by the green macroalga Ulva rigida.

    PubMed

    Cheney, Donald; Rajic, Ljiljana; Sly, Elizabeth; Meric, Dogus; Sheahan, Thomas

    2014-11-15

    The uptake of PCBs contained in marine sediments by the green macroalga Ulva rigida was investigated in both laboratory and field experiments. Under laboratory conditions, total PCBs (tPCBs) uptake was significantly greater in live vs dead plants. The concentration of tPCB taken up in live plants was greatest in the first 24h (1580 μg kg(-1) dry weight), and then increased at a lower rate from day 2 to 14. Dead plants had a significantly lower tPCB concentration after 24h (609 μg kg(-1) dry weight) and lower uptake rate through day 14. Lesser chlorinated PCB congeners (below 123) made up the majority of PCBs taken up. Congener composition in both laboratory and field experiments was correlated to congener logKow value and sediment content. Field experiments showed that Ulva plants could concentrate PCBs to 3.9 mg kg(-1) in 24h. Thus, U. rigida is capable of removing PCBs in sediments at a rapid rate. PMID:25261178

  6. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment

    PubMed Central

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term. PMID:26070156

  7. Autotrophic denitrification and its effect on metal speciation during marine sediment remediation.

    PubMed

    Shao, Mingfei; Zhang, Tong; Fang, Herbert H P

    2009-07-01

    Denitrification-based remediation has been proved as a cost-effective approach for organic removal in sediment. However, little attention has been drawn on the concomitant autotrophic denitrification process and its impacts during such treatment. In this study, a contaminated marine sediment sample was treated with nitrate in a series of experiments to characterize the autotrophic denitrification and its impacts on metal speciation. Through treatment, as the consequence of autotrophic denitrification which accounts for 73.9% of nitrate reduction, approximately 98.8% acid volatile sulfide (AVS) was oxidized to sulfate, causing changes of Zn, Cu and Pb speciation in the sediment. Their oxidizable fractions decreased by 71.7%, 13% and 71% respectively while the bound-to-carbonate fractions increased by 52.0%, >700% and >40%, and the reducible fractions also increased by 276%, >280% and 140%. Thus, the relatively stable oxidizable phase of Zn, Cu and Pb was generally transferred to the more mobile bound-to-carbonate and reducible phases. According to SEM (simultaneously extracted metal) analysis, most of extractable Zn and Pb were no longer present in the form of metal sulfides after denitrification. The (Zn+Pb)/AVS ratio increased from 0.030 to 3.1. Both sequential extraction and AVS-SEM suggested a possible increase of heavy metal mobility and, thus, toxicity. Two major species responsible for autotrophic denitrification were identified to be phylogenetically related with Sulfurimonas paralvinellae and Thiohalophilus thiocyanoxidans. PMID:19476962

  8. Interactions between Benthic Copepods, Bacteria and Diatoms Promote Nitrogen Retention in Intertidal Marine Sediments

    PubMed Central

    Stock, Willem; Heylen, Kim; Sabbe, Koen; Willems, Anne; De Troch, Marleen

    2014-01-01

    The present study aims at evaluating the impact of diatoms and copepods on microbial processes mediating nitrate removal in fine-grained intertidal sediments. More specifically, we studied the interactions between copepods, diatoms and bacteria in relation to their effects on nitrate reduction and denitrification. Microcosms containing defaunated marine sediments were subjected to different treatments: an excess of nitrate, copepods, diatoms (Navicula sp.), a combination of copepods and diatoms, and spent medium from copepods. The microcosms were incubated for seven and a half days, after which nutrient concentrations and denitrification potential were measured. Ammonium concentrations were highest in the treatments with copepods or their spent medium, whilst denitrification potential was lowest in these treatments, suggesting that copepods enhance dissimilatory nitrate reduction to ammonium over denitrification. We hypothesize that this is an indirect effect, by providing extra carbon for the bacterial community through the copepods' excretion products, thus changing the C/N ratio in favour of dissimilatory nitrate reduction. Diatoms alone had no effect on the nitrogen fluxes, but they did enhance the effect of copepods, possibly by influencing the quantity and quality of the copepods' excretion products. Our results show that small-scale biological interactions between bacteria, copepods and diatoms can have an important impact on denitrification and hence sediment nitrogen fluxes. PMID:25360602

  9. Experimental approaches to marine and meteoric dissolution-to-repreciptiation cycles of fine-grained marine carbonate sediments

    NASA Astrophysics Data System (ADS)

    Immenhauser, Adrian; Buhl, Dieter; Riechelmann, Sylvia; Kwiecien, Ola; Lokier, Stephen; Neuser, Rolf

    2016-04-01

    Fine-grained carbonate (carbonate ooze), or microcrystalline carbonate (micrite), its lithified counterpart, forms a main constituent of limestones throughout much of Earth's history. Fine-grained carbonates are deposited below the permanent fair-weather wave base in neritic lagoonal environments or below the storm-wave base in basinal settings. The origin of components forming these fine-grained carbonates often remains poorly understood and represents a major challenge in carbonate sedimentology, particularly when these materials are used as carbonate archives (bulk micrite geochemistry). Here we present a novel experimental approach exposing natural, fine-grained carbonate sediments to dissolution-reprecipitation cycles under non-sterile conditions that mimick earth-surface conditions. In a first stage, the experiment simulated subaerial exposure of an ooid (aragonite) shoal and leaching and carbonate dissolution under meteoric phreatic conditions. In a second stage, CO2 was added to the experimental fluid (natural rainwater) representing soil-zone activity. In a third stage, partly dissolved (micro-karstified) sediments were exposed to marine phreatic conditions simulating renewed flooding of the shoal carbonates. During the third stage, precipitation was induced by degassing the CO2 in the fluid with N2. Degassing induced nucleation and growth of a diagenetic inorganic aragonite (and subordinate calcite) phase upon the surface of carbonate particles. The outcome of these first experiments is promising. The CO2 concentration of the fluid and the air are low under atmospheric conditions and increase as expected due to adding CO2 to the experiment resulting in a lower pH. Carbonate dissolution increases conductivity, alkalinity, and calcium concentration reaching a plateau at the end of the first experimental phase. Small surficial damages to ooids represent zones of weakness and form the preferred sites of dissolution leading to a deepening and widening of these

  10. Time Matters: Increasing the Efficiency of Antarctic Marine Geology and Paleoceanography Expeditions by Providing Improved Sediment Chronology

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Domack, E. W.; Shevenell, A.; Subt, C.

    2015-12-01

    To maximize the areal extent of Antarctic sedimentary records of past deglaciation, it is necessary to ensure more sediment cores can be adequately dated. Antarctic margin sediment is challenging to date due to the lack of preserved calcium carbonate, but the records contained in these sediments readily recount the history of deglaciation. Recent and continued development of new chronological methods for Antarctic margin sediments have allowed better use of the efforts of marine geological coring expeditions to the region. The development of Ramped PyrOx radiocarbon dating has allowed us to 1. improve dates in deglacial sediments where no carbonate is preserved, 2. date glacial sediments lying below the tills marking the last glaciation, and 3. compile core chronologies into a regional framework of ice shelf collapse that has eluded many marine geology campaigns over the last few decades. These advances in a fundamental aspect of geological sciences will put the U.S. and international community on a better foothold to interpret the past as it relates to our warming future. We will present these advances in chronology as well as the science that is enabled by them, while arguing that the future of Antarctic marine science also depends on investments in shore-based technologies that come at a relatively low cost.

  11. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  12. Metal pollution and ecological risk assessment in marine sediments of Karachi Coast, Pakistan.

    PubMed

    Mashiatullah, Azhar; Chaudhary, Muhammad Zaman; Ahmad, Nasir; Javed, Tariq; Ghaffar, Abdul

    2013-02-01

    Concentrations of 12 metals (Fe, Mn, Cr, Mo, Ni, Pb, Se, Sr, U, V, Zn, and Zr) in surface sediments of Karachi Coast, Pakistan were determined to evaluate their distribution and pollution assessment. The measured metals in the sediments were found to be in the range of Fe, 0.84-6.96 %; Mn, 300-1,300 μg/g; Cr, 12.0-319.84 μg/g; Mo, 0.49-2.03 μg/g; Ni, 1.53-58.86 μg/g; Pb, 9.0-49.46 μg/g; Se, 0.25-.86 μg/g; Sr, 192-1185 μg/g; U, 0.19-1.66 μg/g; V, 15.80-118.20 μg/g; Zn, 15.60-666.28 μg/g; and Zr, 44.02-175.26 μg/g. The mean contents of the metal studied were: Fe, 3.07 %, Mn, 0.05 %; Cr, 96.75 μg/g; Mo, 1.34 μg/g; Ni, 31.39 μg/g; Pb, 23.24 μg/g; Se, 0.61 μg/g; Sr, 374.83 μg/g; U, 0.64 μg/g; V, 61.75 μg/g; Zn, 204.75 μg/g; and Zr:76.27 μg/g, and arrangement of the metals from higher to lower mean content in this area is: Fe > Zn > Mn > Sr > Zn > Cr > Zr > V > Ni > Pb > Mo > U > Se. There is no significant correlation among most of these metals, indicating different anthropogenic and natural sources. To assess ecotoxic potential of marine sediments, Numerical Sediment Quality Guidelines were also applied. The concentration of Pb in all the sediments except one was lower than the threshold effect concentration (TECs) showing that there are no harmful effects to marine life from Pb. On the other hand, the concentrations of Cr, Ni, and Zn exceeded TEC in three stations, indicating their potential risk. The degree of pollution in sediments for metals was assessed by calculating enrichment factor (EF) and pollution load index (PLI). The results indicated that sediments of Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are highly enriched with Cr and Zn (EF > 5). Sediments of Layari River Outfall Zone were moderately enriched with Ni and Pb (EF > 2). The pollution load index was found in the range of 0.98 to 1.34. Lower values of PLI (≤ 1) at most of sampling locations imply no appreciable input from anthropogenic sources. However

  13. Effects of pollution on the geochemical properties of marine sediments across the fringing reef of Aqaba, Red Sea.

    PubMed

    Al-Rousan, Saber; Al-Taani, Ahmed A; Rashdan, Maen

    2016-09-15

    The Gulf of Aqaba is of significant strategic and economic value to all gulf-bordering states, particularly to Jordan, where it provides Jordan with its only marine outlet. The Gulf is subject to a variety of impacts posing imminent ecological risk to its unique marine ecosystem. We attempted to investigate the status of metal pollution in the coastal sediments of the Jordanian Gulf of Aqaba. The distribution of Cd, Cr, Zn, Cu, Pb, Al, Fe, and Mn concentrations were determined in trapped and bottom-surface sediments at three selected sites at different depths. In addition, monthly sedimentation rates at varying water depths were also estimated at each sampling site using sediment traps. The high concentrations of Cd, Cr, Zn were recorded at the Phosphate Loading Birth (PLB) site followed by the Industrial Complex (IC) site indicating their dominant anthropogenic source (i.e., the contribution of industrial activities). However, Fe, Al, and Mn contents were related to inputs from the terrigenous (crustal) origin. Except for Al, Fe and Mn at the PLB site, the concentrations of metals exhibited a decreasing trend with increasing water depth (distance from the shoreline). The PLB site also showed the highest sedimentation rate which decreased with increasing water depth. The Enrichment factors (EFs) showed that Cd was the most enriched element in the sediment (indicating that Cd pollution is widespread), whereas the least enriched metal in sediments was Cu. EF values suggested that the coastal area is impacted by a combination of human and natural sources of metals, where the anthropogenic sources are intense in the PLB site (north of Gulf of Aqaba). The MSS area is potentially the least polluted, consistent with being a marine reserve. The IC sediments have been found to be impacted by human activities but less intensely compared to the PLB area. These results suggested that there are two sources of metals in sediments; the primary source is likely closer to PLB

  14. Growth and survival of three marine invertebrate species in sediments from the Hudson-Raritan estuary, New York

    SciTech Connect

    Rice, C.A.; Plesha, P.D.; Casillas, E.; Misitano, D.A.; Meador, J.P.

    1995-11-01

    Sediments in the Hudson-Raritan estuary are known to contain high concentrations of anthropogenic contaminants, and marine organisms from this region exhibit numerous contaminant-related effects. To assess the pattern of sediment toxicity in depositional areas of this region, and to compare lethal and sublethal end points for different bioassay organisms, three benthic marine invertebrate species were exposed to sediments from 17 sites in the Hudson-Raritan estuary. Growth and mortality of the polychaete Armandia brevis and the sand dollar Dendraster excentricus were measured in all 17 sediments, while mortality and reburial ability of the amphipod Rhepoxinius abronius were assessed in nine sediments. Growth of polychaetes was determined by measuring the difference in weight after a 20-d exposure, whereas growth of sand dollars was assessed by measuring the difference in length and weight after a 28-d exposure. Amphipod mortality and reburial tests were conducted using the standard 10-d sediment bioassay. Significant growth reduction of polychaetes and sand dollars occurred in 11 of 17, and 3 of 17 sediments, respectively. Polychaete weight and sand dollar length correlated inversely and significantly with total sediment concentration of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and some selected elements. In contrast, significant mortality of polychaetes and amphipods occurred in 1 of 17 and 2 of 9 sediments, respectively, and impaired reburial ability of amphipods was not observed. Results of this study demonstrate that sediment contamination at depositional sites with the Hudson-Raritan estuary has potential to cause deleterious biological effects in indigenous benthic organisms. In addition, sublethal growth bioassays using polychaetes and sand dollars appear to be more sensitive in measuring the effects of sediment contamination than does the mortality-based bioassay using the amphipod Rhepoxinius abronius.

  15. Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Baldi, Franco; Marchetto, Davide; Pini, Francesco; Fani, Renato; Michaud, Luigi; Lo Giudice, Angelina; Berto, Daniela; Giani, Michele

    2010-09-01

    Shallow marine sediments were collected from seven stations (three of which located at Gerlache Inlet, two at Tethys Bay, one at Adelie Cove and one just beneath the Italian Research Base) along the Terra Nova Bay coast (Ross Sea, Antarctica). Their chemical, biochemical and microbiological properties were studied in order to provide further insights in the knowledge of this Antarctic benthic ecosystem. Overall, the organic carbon (OC) represented the major fraction of total carbon (TC) and displayed concentrations similar to or slightly lower than those previously measured in Antarctic bottom sediments. The biopolymeric carbon within OC ranged from 4.1% to 19.9% and showed a wide trophic range (65-834 μg g -1 d.w.). Proteins (PRT) represented on average the main biochemical class contributing to labile organic carbon, followed by lipids (LIP) and carbohydrates (CHO). The activity of aminopeptidase, β- D-glucosidase, alkaline phosphatase and esterase was checked, giving the highest values at Tethys Bay and at the deepest water sediments. The principal component analysis, which was computed considering physical, chemical (elemental and biochemical sedimentary composition) and microbiological parameters (including bacterial abundance, ectoenzymatic activities, T-RFs richness and diversity indices), allowed to obtain two main clusters ("Tethys Bay" and "other stations"). Based on data obtained, two representative 16S rRNA clone libraries using samples from Tethys Bay and Gerlache Inlet were constructed. The sequences of 171 clones were compared to those available in public databases to determine their approximate phylogenetic affiliations. Both aerobic and anaerobic bacteria were disclosed, with the majority of them affiliated with the Gamma- and Deltaproteobacteria, Bacteroidetes and Acidobacteria. The occurrence of strictly anaerobic bacteria suggests that sediments might also undergo anoxic conditions that, in turn, could favor the accumulation of PRT in respect

  16. Dissolved methane profiles in marine sediments observed in situ differ greatly from analyses of recovered cores

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Brewer, P. G.; Hester, K.; Ussler, W.; Walz, P. M.; Peltzer, E. T.; Ripmeester, J.

    2009-12-01

    The flux of dissolved methane through continental margin sediments is of importance in marine geochemistry due to its role in massive hydrate formation with enigmatic climate consequences, and for the huge and complex microbial assemblage it supports. Yet the actual dissolved methane concentration driving this flux is poorly known since strong degassing during sample recovery from depth is commonplace. Thus, pore water analyses from high CH4 environments typically show values clustered around the one-atmosphere equilibrium value of 1-2 mM, erasing the original pore water profile and frustrating model calculations. We show that accurate measurement of pore water profiles of dissolved CH4, SO4, and H2S can be made rapidly in situ using a Raman-based probe. While Raman spectra were formerly believed to yield only qualitative data we show that by using a peak area ratio technique to known H2O bands and a form of Beer’s Law quantitative data may be readily obtained. Results from Hydrate Ridge, Oregon clearly show coherent profiles of all three species in this high flux environment, and while in situ Raman and conventional analyses of SO4 in recovered cores agree well, very large differences in CH4 are found. The in situ CH4 results show up to 35 mM in the upper 30cm of seafloor sediments and are inversely correlated with SO4. This is below the methane hydrate saturation value, yet disturbing the sediments clearly released hydrate fragments suggesting that true saturation values may exist only in the hydrate molecular boundary layer, and that lower values may typically characterize the bulk pore fluid of hydrate-hosting sediments. The in situ Raman measurement protocols developed take only a few minutes. Profiles obtained in situ showed minimal fluorescence while pore water samples from recovered cores quickly developed strong fluorescence making laboratory analyses using Raman spectroscopy challenging and raising questions over the reaction sequence responsible for

  17. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  18. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments.

    PubMed

    Bertics, Victoria J; Ziebis, Wiebke

    2010-11-01

    The effects of bioturbation in marine sediments are mainly associated with an increase in oxic and oxidized zones through an influx of oxygen-rich water deeper into the sediment and the rapid transport of particles between oxic and anoxic conditions. However, macrofaunal activity also can increase the occurrence of reduced microniches and anaerobic processes, such as sulfate reduction. Our goal was to determine the two-dimensional distribution of microniches associated with burrows of a ghost shrimp (Neotrypaea californiensis) and to determine microbial activities. In laboratory experiments, detailed measurements of sulfate reduction rates (SRR) were measured by injecting, in a 1 cm grid, radiolabelled sulfate directly into a narrow aquarium (40 cm × 30 cm × 3 cm) containing the complex burrow of an actively burrowing shrimp. Light-coloured oxidized burrow walls, along with black reduced microniches, were clearly visible through the aquarium walls. Direct injection of radiotracers allowed for whole-aquarium incubation to obtain two-dimensional documentation of sulfate reduction. Results indicated SRR were up to three orders of magnitude higher (140-790 nmol SO(4) (2-) cm(-3) day(-1) ) in reduced microniches associated with burrows when compared with the surrounding sediment. Additionally, some of the subsurface sulfate-reducing microniches associated with the burrow system appeared to be zones of dinitrogen fixation. Bioturbation may also lead to decreased sulfate reduction in other microniches and the sum of the activity in all microniches might not result in a total increase of sulfate reduction compared with non-bioturbated control sediments. PMID:20561019

  19. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  20. LA-ICP-MS as Tool for Provenance Analyses in Arctic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Wildau, Antje; Garbe-Schönberg, Dieter

    2015-04-01

    The hydraulic transport of sediments is a major geological process in terrestrial and marine systems and is responsible for the loss, redistribution and accumulation of minerals. Provenance analyses are a powerful tool for assessing the origin and dispersion of material in ancient and modern fluvial and marine sediments. Provenance-specific heavy minerals (e.g., zircon, rutile, tourmaline) can therefore be used to provide valuable information on the formation of ore deposits (placer deposits), and the reconstruction of paleogeography, hydrology, climate conditions and developments. The application of provenances analyses for the latter reason is of specific interest, since there is need for research on the progressing climate change, and heavy minerals represent good proxies for the evaluation of recent and past changes in the climate. The study of these fine particles provides information about potential regional or long distance transport paths, glacial / ice drift and current flows, freezing and melting events as well as depositional centers for the released sediments. Classic methods applied for provenance analyses are mapping of the presence / absence of diagnostic minerals, their grain size distribution, modal mineralogy and the analysis of variations in ratio of two or more heavy minerals. Electron microprobe has been established to discover changes in mineral chemistry of individual mineral phases, which can indicate fluctuations or differences in the provenance. All these methods bear the potential of high errors that lower the validity of the provenance analyses. These are for example the misclassification of mineral species due to undistinguishable optical properties or the limitations in the detection / variations of trace elements using the election microprobe. For this case study, marine sediments from the Arctic Ocean have been selected to test if LA-ICP-MS can be established as a key technique for precise and reliable provenance analyses. The Laptev

  1. Determination of typical lipophilic marine toxins in marine sediments from three coastal bays of China using liquid chromatography-tandem mass spectrometry after accelerated solvent extraction.

    PubMed

    Wang, Yanlong; Chen, Junhui; Li, Zhaoyong; Wang, Shuai; Shi, Qian; Cao, Wei; Zheng, Xiaoling; Sun, Chengjun; Wang, Xiaoru; Zheng, Li

    2015-12-30

    A method based on sample preparation by accelerated solvent extraction and analysis by liquid chromatography-tandem mass spectrometry was validated and used for determination of seven typical lipophilic marine toxins (LMTs) in marine sediment samples collected from three typical coastal bays in China. Satisfactory specificity, reproducibility (RSDs ≤ 14.76%), stability (RSDs ≤ 17.37%), recovery (78.0%-109.0%), and detection limit (3.440 pg/g-61.85 pg/g) of the developed method were achieved. The results obtained from the analysis of samples from Hangzhou Bay revealed okadaic acid as the predominant LMT with concentrations ranging from 186.0 to 280.7 pg/g. Pecenotoxin-2 was quantified in sediment samples from Laizhou Bay at the concentrations from 256.4 to 944.9 pg/g. These results suggested that the proposed method was reliable for determining the typical LMTs in marine sediments and that the sediments obtained from Hangzhou Bay, Laizhou Bay and Jiaozhou Bay were all contaminated by certain amounts of LMTs. PMID:26507511

  2. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  3. Paleomagnetic Study of Marine Sediment Core OR715-21 from Eastern Offshore of Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, T.; Wei, K.; Huh, C.

    2009-12-01

    This study presents paleomagnetic secular variation results of a marine sediment core, named as OR715-21, taken from eastern offshore of Taiwan (121.5°E, 22.7°N, water depth 760 m). The total recovered length is 1.87 meters. Sediments in the core mainly consist of gray clay and silt. Planktonic foraminiferal shells (>250 μm, >6 mg, Globigerinoides spp. and Orbulina universa) were picked from six levels of the core and subjected to AMS 14C dating for constructing the age model. The results indicated that this core could support the information for the last 7000 years. The averaged sedimentation rate is estimated to be of about 26.5 cm/kyr. Psuedo-single domain (PSD) magnetite is identified as the most important magnetic carrier. Alternating field (AF) demagnetization was applied to treat the u-channel samples of the core. The median destructive field of the samples distributed between 15~25 mT. The characteristic remanent magnetization could be resolved after 20 mT cleaning. The paleo-declinations of the samples varied about ±200 around their mean and their paleo-inclinations varied between 300 and 500 . The variation pattern of the paleo-declination is somehow similar to the pattern compiled by Hyoto et al. (1993) based on the lake and marine sediment records from Japan except the varied amplitude is less between 4000 and 5000 yrB.P. Using NRM/ARM after 20 mT cleaning to simulate the paleo-intensity secular variation, our record shows that an increased trend began from 6500 yrB.P. to 3000 yrB.P., but decreased after. Magnetic proxies of this core indicate that 4 stages of environmental changes has happened in the area studied: (1) high magnetite abundance with relative low oxidized magnetic mineral contents occurred during ~6900 to 6200 yrB.P.; (2) a relative low abundance of magnetite with relative high oxidized magnetic minerals during ~6200 to ~5400 yrB.P.; (3) an abnormal low HIRM with relative higher ARM/SIRM could be found during the time period of ~5400

  4. Biogeochemistry of Sulfur Intermediates in Marine Sediments - Insights from Laboratory and Field Studies

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Milucka, J.; Kuypers, M. M. M.; Berg, J.; Buckner, C.; Graf, J.; Holmkvist, L.; Jørgensen, B. B.; Kamyshny, A.; Piepgras, L.

    2014-12-01

    The sulfur cycle in marine sediments exerts a major control on the redox state of the ocean and atmosphere. The overall driver in the sulfur cycle is the microbial mediated sulfate reduction to sulfide (SR), In near-surface sediments, only a small fraction of the sulfide produced becomes permanently buried in the reduced form as pyrite (FeS2) Paradoxically, the deep, reduced, sulfidic zone of marine sediments is often characterized by the presence of zero-valent sulfur compounds, e.g. elemental sulfur and polysulfides [1,2,3]. The presence of oxidized iron and manganese has been suggested as the source of oxidizing power for the formation of elemental S and polysulfides in these deep, anoxic and sulfidic sediment environments, which often lie at or below the sulfate-methane transition [1,3]. The findings of Milucka et al. [4] suggest that anaerobic oxidation of methane coupled to sulfate reduction (AOM) may provide another source of zerovalent sulfur to such environments. AOM is thought to be mediated by a consortium of methanotrophic archaea (ANME) and sulfate-reducing Deltaproteobacteria. Milucka et al. [4] show that zero-valent sulfur compounds (S0) are formed during AOM-coupled SR and conclude that the S0 is a product of a novel pathway for sulfate reduction performed by the ANME. Thus, AOM may not be an obligately syntrophic process. Furthermore, the produced S0, in the form of hydrodisulfide, can serve as a substrate for disproportionation by the Deltaproteobacteria associated with the ANME, and that this disproptionation proceeds under sulfidic conditions. These observations may have significant implications for role of sulfur intermediates in our understanding of the biogeochemical carbon and sulfur cycle in modern and past environments. [1] Holmkvist et al. (2011) Geochim. Cosmochim. Acta 75, 3581-3599. [2] Lichtschlag et al. (2013) Geochim. Cosmochim. Acta 105, 130-145. [3] Holmkvist et al. (2014) Geochim. Cosmochim. Acta, accepted. [4] Milucka et al

  5. Marine sediment and interstitial water: Effects on bioavailability of cadmium to gills of the clam Protothaca staminea

    SciTech Connect

    Hardy, J.T.; Schmidt, R.L.; Apts, C.W.

    1981-12-01

    A study was made to determine first, the kinetics of cadmium sorption on a natural marine sediment and second, the degree to which this sorption as well as interstitial water might effect bioavailability of cadmium to gills of the clam Protothaca staminea. Surface sediment from Sequim Bay, Washington was labelled with Cd 109 and total cadmium concentration determined by radioassay. Gills were added to three types of exposures: 1) control (0.45 um filtered seawater, 2) sediment interstitial water and 3) washed sediment. Prepared samples of gills were counted in a liquid scintillation counter. Results show that addition of a small quantity of washed sediment to the exposure system reduced cadmium accumulation by gills to only 17% of the control. Interstitial water had no significant effect. 1 table, 3 figures (JMT)

  6. Feasibility studies for the treatment and reuse of contaminated marine sediments.

    PubMed

    Bonomoa, L; Careghini, A; Dastoli, S; De Propris, L; Ferrari, G; Gabellini, M; Saponaro, S

    2009-07-01

    This paper presents preliminary results of laboratory tests aimed at evaluating the easibility of the remediation of marine sediments, which are polluted by mercury and petroleum hydrocarbons, dredged at the bay of Augusta (SR, Italy). The treatment is composed of two sequential steps: in the first, a cement-based granular material is produced (based on a high performance concrete approach); then, the volatile and the semi-volatile compounds in the granular material are removed by a thermal desorption step. Treated materials could be reused or put into caissons, according to their mechanical properties and environmental compatibility. The experiments were focused on evaluating the effect of the process parameter values on: (i) the evolution of cement hydration reactions, (ii) thermal desorption removal efficiencies, (iii) leaching behaviour of the treated material. PMID:19705665

  7. Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26.

    PubMed

    Sun, Li; Li, Dongli; Tao, Meihua; Chen, Yuchan; Zhang, Qingbo; Dan, Feijun; Zhang, Weimin

    2013-01-01

    Two new polyketides, 7,8-dihydroxy-3,5,7-trimethyl-8,8a-dihydro-1H-isochromen-6(7H)-one (1) and 6-(hydroxymethyl)-2,2-dimethyl-3,4-dihydro-2H-chromene-3,4-diol (2), together with a known nitrogen-containing polyketide (cytochalasin-type of metabolites), [12]-cytochalasin (3), have been isolated from the fermentation broth of a marine sediment-derived fungus Eutypella scoparia FS26 obtained from the South China Sea. Their structures were elucidated by spectroscopic methods, mainly 1D and 2D NMR spectroscopic techniques. The absolute configurations of compound 1 were determined by NOESY analysis and the literature data were compared with circular dichroism (CD) spectroscopy. The cytotoxic effects on MCF-7, NCI-H460 and SF-268 cell lines of all compounds were evaluated by the sulforhodamine B method. PMID:23061665

  8. Secondary metabolites from Penicillium pinophilum SD-272, a marine sediment-derived fungus.

    PubMed

    Wang, Ming-Hui; Li, Xiao-Ming; Li, Chun-Shun; Ji, Nai-Yun; Wang, Bin-Gui

    2013-06-01

    Two new secondary metabolites, namely, pinodiketopiperazine A (1) and 6,7-dihydroxy-3-methoxy-3-methylphthalide (2), along with alternariol 2,4-dimethyl ether (3) and L-5-oxoproline methyl ester (4), which were isolated from a natural source for the first time but have been previously synthesized, were characterized from the marine sediment-derived fungus Penicillium pinophilum SD-272. In addition, six known metabolites (5-10) were also identified. Their structures were elucidated by analysis of the NMR and mass spectroscopic data. The absolute configuration of compound 1 was determined by experimental and calculated ECD spectra. Compound 2 displayed potent brine shrimp (Artemia salina) lethality with LD₅₀ 11.2 μM. PMID:23792827

  9. RETRACTED: Impacts of past climate variability on marine ecosystems: Lessons from sediment records

    NASA Astrophysics Data System (ADS)

    Emeis, Kay-Christian; Finney, Bruce P.; Ganeshram, Raja; Gutiérrez, Dimitri; Poulsen, Bo; Struck, Ulrich

    2010-02-01

    This article has been retracted at the request of the Editor-in-Chief and Author. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). Reason: Paragraph 3.3 of this article contains text (verbatim) that had already appeared in a book chapter "Variability from scales in marine sediments and other historical records" by David B. Field, Tim R. Baumgartner, Vicente Ferreira, Dimitri Gutierrez, Hector Lozano-Montes, Renato Salvatteci and Andy Soutar. The book is entitled "Climate Change and Small Pelagic Fish", 2009, edited by Dave Checkley, Claude Roy, Jurgen Alheit, and Yoshioki Oozeki (Cambridge University Press; 2009).The authors would like to apologize for this administrative error on their part.

  10. Marine protected areas and resilience to sedimentation in the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Halpern, B. S.; Selkoe, K. A.; White, C.; Albert, S.; Aswani, S.; Lauer, M.

    2013-03-01

    The ability of marine protected areas (MPAs) to provide protection from indirect stressors, via increased resilience afforded by decreased impact from direct stressors, remains an important and unresolved question about the role MPAs can play in broader conservation and resource management goals. Over a five-year period, we evaluated coral and fish community responses inside and outside three MPAs within the Roviana Lagoon system in Solomon Islands, where sedimentation pressure from upland logging is substantial. We found little evidence that MPAs decrease impact or improve conditions and instead found some potential declines in fish abundance. We also documented modest to high levels of poaching during this period. Where compliance with management is poor, and indirect stressors play a dominant role in determining ecosystem condition, as appears to be the case in Roviana Lagoon, MPAs may provide little management benefit.

  11. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  12. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    PubMed

    Genovese, Maria; Crisafi, Francesca; Denaro, Renata; Cappello, Simone; Russo, Daniela; Calogero, Rosario; Santisi, Santina; Catalfamo, Maurizio; Modica, Alfonso; Smedile, Francesco; Genovese, Lucrezia; Golyshin, Peter N; Giuliano, Laura; Yakimov, Michail M

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical-chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB. PMID:24782850

  13. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation

    PubMed Central

    Genovese, Maria; Crisafi, Francesca; Denaro, Renata; Cappello, Simone; Russo, Daniela; Calogero, Rosario; Santisi, Santina; Catalfamo, Maurizio; Modica, Alfonso; Smedile, Francesco; Genovese, Lucrezia; Golyshin, Peter N.; Giuliano, Laura; Yakimov, Michail M.

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical–chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB. PMID:24782850

  14. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments.

    PubMed

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A; Suárez-Suárez, Ana; Head, Ian M; Franzetti, Andrea; Rabaey, Korneel

    2016-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  15. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments

    PubMed Central

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  16. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill

    USGS Publications Warehouse

    Baedecker, M.J.; Back, W.

    1979-01-01

    Chemical reactions that occur in landfills are analogous to those reactions that occur in marine sediments. Lateral zonation of C, N, S, O, H, Fe and Mn species in landfills is similar to the vertical zonation of these species in marine sediments and results from the following reaction sequence: (1) oxidation of C, N and S species in the presence of dissolved free oxygen to HCO3-, NO3- and SO2-4; (2) after consumption of molecular oxygen, then NO3- is reduced, and Fe and Mn are solubilized; (3) SO2-4 is reduced to sulfide; and (4) organic compounds become the source of oxygen, and CH4 and NH4+ are formed as fermentation products. In a landfill in Delaware the oxidation potential increases downgradient and the redox zones in the reducing plume are characterized by: CH4, NH4+, Fe2+. Mn2+, HCO3- and NO3-. Lack of SO2-4 at that landfill eliminates the sulfide zone. Although it has not been observed at landfills, mineral alteration should result in precipitation of pyrite and/or siderite downgradient. Controls on the pH of leachate are the relative rates of production of HCO3-, NH4+ and CH4. Production of methane by fermentation at landfills results in 13C isotope fractionation and the accumulation of isotopically heavy ??CO2 (+10 to +18??? PDB). Isotope measurements may be useful to determine the extent of CO2 reduction in landfills and extent of dilution downgradient. The boundaries of reaction zones in stressed aquifers are determined by head distribution and flow velocity. Thus, if the groundwater flow is rapid relative to reaction rates, redox zones will develop downgradient. Where groundwater flow velocities are low the zones will overlap to the extent that they may be indeterminate. ?? 1979.

  17. Dispersed Ash in Marine Sediment: An Overview Towards Unraveling the 'Missing Volcanic Record'

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Scudder, R.; Kutterolf, S.; Schindlbeck, J.

    2013-12-01

    Volcanic ash occurs in marine sediment both as discrete layers as well as isolated grains and shards dispersed throughout the bulk sediment, and with highly variable grain sizes. The study of this dispersed component has lagged behind the sophisticated petrographic, sedimentologic, geochemical, and isotopic assessment of the ash layer record. For example, while decades of smear-slide studies of bulk sediment in volcanic-rich regimes have presented visual estimations of the abundance of 'volcanic glass', 'shards', and/or other components, the quantitative importance of the dispersed ash and/or the cryptotephra component remains largely unconstrained on local, regional, and global scales. Chemical and isotopic characterization of this dispersed component has remained elusive. Building on earlier work, research in the 1970s began documenting the importance of dispersed ash and its alteration products. This dispersed ash is the result of the bioturbation of pre-existing discrete layers, the settling of airborne ash, distribution from subaqueous eruptions, and other mechanisms. Compared to the often visually stunning ash layer records, which in certain settings can leave single layers with thicknesses of 10s of cm, the dispersed ash component and cryptotephra layers are unable to be visually differentiated from detrital clay. Furthermore, its extremely fine grain size is an additional hindrance to quantification of its abundance and the identification of source. More completely characterizing the total ash inventory (that is, the dispersed ash in addition to the ash layers) will contribute significantly to studies of marine and terrestrial volcanism at many scales, geochemical mass balances, arc evolution, hydration of marine sediment during alteration, atmospheric circulation, putative relationships between volcanism and climate, and other key components of the earth-ocean-atmosphere system. Beginning with work in the Caribbean Sea and progressing to the northwest

  18. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  19. Selected contributions from the 11th Gas in Marine Sediments International Conference of September 2012, Nice: an introduction

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Imbert, Patrice; Mascle, Jean

    2014-06-01

    This Introduction presents an overview of selected contributions from the 11th Gas in Marine Sediments International Conference held on the 4-7 September 2012 in Nice, France, and published in this special issue of Geo-Marine Letters under the guest editorship of Catherine Pierre, Patrice Imbert and Jean Mascle. These cover fluid seepage dynamics at widely varying spatiotemporal scales in a giant buried caldera of the Caspian Sea, mud volcanoes and pockmarks in the Mediterranean and adjoining Gulf of Cadiz, as well as Lake Baikal, pockmarks of shallower waters along the Atlantic French coast and in Baltic Sea lagoons, deepwater pockmarks and cold seeps on the Norwegian margin and the Hikurangi Margin of New Zealand, asphalt seepage sites offshore southern California, and the tectonically controlled southern Chile forearc. We look forward to meeting all again at the 12th Gas in Marine Sediments conference scheduled for 1-6 September 2014 in Taipei, Taiwan.

  20. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. PMID:26790603

  1. Radiocarbon ages of sedimentary lipids as tracers of organic carbon input to marine sediments

    SciTech Connect

    Eglinton, T.I.; Nelson, B.; McNichol, A.P.

    1996-10-01

    A novel analytical approach, Preparative Capillary Gas Chromatography (PCGC), has been used to isolate sufficient quantities of individual hydrocarbon lipids from two marine surface sediments (Black Sea, Arabian Sea) for radiocarbon dating by Accelerator Mass Spectrometry (AMS). {Delta}{sup 14}C values for bulk sedimentary organic carbon (OC) from the Black and Arabian Sea samples are -105 and -112{per_thousand} respectively. In the Black Sea, extended [higher plant] n-alkanes (n-C{sub 29}, n-C{sub 31}) are significantly enriched relative to bulk OC (ave -80{per_thousand}), indicating input of {open_quotes}fresh{close_quotes} terrestrial organic matter, while shorter chain homologues (n-C{sub 23}, n-C{sub 25}) exhibit depleted (ca. -160{per_thousand}) values, in keeping with the total hydrocarbon fraction (-150{per_thousand}). Arabian Sea hydrocarbons exhibit a much wider range of {Delta}{sup 14}C values (from -38 to -780{per_thousand}). Markers for diatoms (highly branched isoprenoid alkenes) show the youngest radiocarbon ages while saturated hydrocarbons display the oldest ages. We interpret these variations in terms of uptake of atmospheric CO{sub 2} and contributions from relic carbon sources. These and related data will be discussed in the context of organic carbon input and preservation in these marine systems.

  2. Genome sequence and emended description of Leisingera nanhaiensis strain DSM 24252T isolated from marine sediment

    PubMed Central

    Breider, Sven; Teshima, Hazuki; Petersen, Jörn; Chertkov, Olga; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Ivanova, Natalia; Lapidus, Alla; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Rohde, Manfred; Tindall, Brian J.; Kyrpides, Nikos C.; Woyke, Tanja; Simon, Meinhard; Göker, Markus; Klenk, Hans-Peter; Brinkhoff, Thorsten

    2014-01-01

    Leisingera nanhaiensis DSM 24252T is a Gram-negative, motile, rod-shaped marine Alphaproteobacterium, isolated from sandy marine sediments. Here we present the non-contiguous genome sequence and annotation together with a summary of the organism's phenotypic features. The 4,948,550 bp long genome with its 4,832 protein-coding and 64 RNA genes consists of one chromosome and six extrachromosomal elements with lengths of 236 kb, 92 kb, 61 kb, 58 kb, 56 kb, and 35 kb, respectively. The analysis of the genome showed that DSM 24252T possesses all genes necessary for dissimilatory nitrite reduction, and the strain was shown to be facultatively anaerobic, a deviation from the original description that calls for an emendation of the species. Also present in the genome are genes coding for a putative prophage, for gene-transfer agents and for the utilization of methylated amines. Phylogenetic analysis and intergenomic distances indicate that L. nanhaiensis might not belong to the genus Leisingera. PMID:25197454

  3. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    PubMed

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. PMID:26915591

  4. Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials.

    PubMed

    Lowy, Daniel A; Tender, Leonard M; Zeikus, J Gregory; Park, Doo Hyun; Lovley, Derek R

    2006-05-15

    Here, we report a comparative study on the kinetic activity of various anodes of a recently described microbial fuel cell consisting of an anode imbedded in marine sediment and a cathode in overlying seawater. Using plain graphite anodes, it was demonstrated that a significant portion of the anodic current results from oxidation of sediment organic matter catalyzed by microorganisms colonizing the anode and capable of directly reducing the anode without added exogenous electron-transfer mediators. Here, graphite anodes incorporating microbial oxidants are evaluated in the laboratory relative to plain graphite with the goal of increasing power density by increasing current density. Anodes evaluated include graphite modified by adsorption of anthraquinone-1,6-disulfonic acid (AQDS) or 1,4-naphthoquinone (NQ), a graphite-ceramic composite containing Mn2+ and Ni2+, and graphite modified with a graphite paste containing Fe3O4 or Fe3O4 and Ni2+. It was found that these anodes possess between 1.5- and 2.2-fold greater kinetic activity than plain graphite. Fuel cells were deployed in a coastal site near Tuckerton, NJ (USA) that utilized two of these anodes. These fuel cells generated ca. 5-fold greater current density than a previously characterized fuel cell equipped with a plain graphite anode, and operated at the same site. PMID:16574400

  5. Relative changes in eelgrass density following the capping of adjacent marine sediments

    SciTech Connect

    Duncan, P.B.; Karna, D.W.

    1994-12-31

    As part of a study to evaluate potential impacts from capping marine sediments in a harbor, eelgrass density was measured during both the early stages of capping and following completion of the cap. Three eelgrass beds were studied, a bed potentially subject to sedimentation from migrating cap materials (HS), a reference bed inside the harbor (HR), and a reference bed in an adjacent cove (CR). Initial mean densities in these beds in October/November were 8, 16, and 30 stalks/0.1 m{sup 2}, respectively, and these declined to 5, 10, and 28 stalks/0.1 M{sup 2} the following March. The declines were greatest within the harbor. Compared with the other two beds, bed HS had an increased incidence of patches devoid of eelgrass following capping. The strength of the association of these changes with capping activity relies on interpretation of ongoing studies to measure the movement of cap materials within the harbor and evaluation of other sources of stress to the harbor eelgrass beds.

  6. Equilibrium oxygen isotope behavior of sulfate in marine sediments: A new paradigm

    NASA Astrophysics Data System (ADS)

    Blake, R.; Boettcher, M.; Surkov, A.; Ferdelman, T.; Jorgensen, B.

    2006-05-01

    We have determined the oxygen (18O/16O) and sulfur (34S/32S) isotope ratios of porewater sulfate to depths of over 400 mbsf in sediments from open-ocean and upwelling sites in the Eastern Equatorial Pacific ocean. Sulfate δ18O ranges from near-normal seawater values (9.5 permil) at organic-poor open-ocean sites, to approximately 30 permil at sites with higher organic matter content and higher associated microbial activity. Depth-correlative trends of δ18O, δ34S, alkalinity, methane, ammonium and the presence of sulfide, indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations as well as anaerobic oxidation of methane. δ18O ?SO4 values at low-activity sites reveal the presence of significant microbial sulfur-cycling activity despite relatively flat sulfate concentration and δ34S profiles. This activity may include contributions from several processes including: enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon microbial sulfate reduction, sulfide oxidation, and bacterial disproportionation of sulfur intermediates. Positive correlation between water and sulfate δ18O values supports sulfate-water O isotope exchange as the dominant process controlling porewater sulfate δ18O values. Results of this study indicate that coupled measurements of S and O isotope ratios of porewater sulfate are essential for interpreting microbial sulfur cycling in marine sediments.

  7. Critical body residues in the marine amphipod Ampelisca abdita: Sediment exposures with nonionic organic contaminants

    SciTech Connect

    Fay, A.A.; Brownawell, B.J.; Elskus, A.A.; McElroy, A.E.

    2000-04-01

    Body residues associated with acute toxicity were determined in the marine amphipod Ampelisca abdita exposed to spiked sediments. Nonylphenol and 2,2{prime},4,4{prime}-tetrachlorobiphenyl critical body residues (CBRs, body residue of contaminant at 50% mortality) were 1.1 {micro}mol/g wet tissue and 0.57 {micro}mol/g wet tissue, respectively, values near the low end of the CBR range expected for compounds acting via narcosis. The polycyclic aromatic hydrocarbons tested, benzo[a]pyrene (BaP) and benz[a]anthracene (BaA), were not acutely toxic at exposure concentrations of up to 43 and 1,280 {micro}g/g dry sediment for BaA and BaP respectively, and body burdens up to 1.2 {micro}mol/g wet tissue (for BaP). Neither polycyclic aromatic hydrocarbon (PAH) was significantly metabolized by A. abdita. The microextraction technique employed here allowed residue analysis of samples containing as few as three amphipods (0.33 mg dry wt). The CBR approach avoids confounding factors such as variations in bioavailability and uptake kinetics and could be employed to assess the relative contribution of specific contaminants or contaminant classes in mixtures to effects observed in toxicity tests with Ampelisca and other organisms.

  8. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    SciTech Connect

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH{sub 3}) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH{sub 3} than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH{sub 3} concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH{sub 3} concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH{sub 3} and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH{sub 3}.

  9. 234Th analysis of marine sediments via extraction chromatography and liquid scintillation counting.

    PubMed

    Nour, Svetlana; Burnett, William C; Horwitz, E Philip

    2002-08-01

    234Th is widely used as a natural tracer for study of biological mixing and particle scavenging processes in the ocean. This naturally occurring nuclide serves this purpose due to its convenient half-life (24.1 days), constant rate of production from 238U dissolved in seawater, and its strong tendency to attach to particles in seawater. As a beta/gamma emitter, 234Th may be determined using low-level gas-flow proportional counting, gamma spectrometry, and liquid scintillation counting (LSC). We describe here a technique which combines Cerenkov counting to evaluate 234Th (via 234Pa) with LSC alpha counting of 230Th added to the samples as a yield tracer. Our separation approach is based on a sample preparation procedure for marine sediments using nitric acid leaching in a "hot block", and extraction chromatography (TEVA x Resin) for Th isolation. Samples are counted in plastic LSC vials, using Ultima Gold AB cocktail, in 1 M H3PO4 media. A series of sediment samples spiked with known amounts of 234Th yielded activities within a few percent of the anticipated values. PMID:12150283

  10. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3 than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  11. Capillary effects on gas hydrate three-phase stability in marine sediments

    NASA Astrophysics Data System (ADS)

    Liu, X.; Flemings, P. B.

    2013-12-01

    We study the three-phase (Liquid + Gas + Hydrate) stability of the methane hydrate system in marine sediments by considering the capillary effects on both hydrate and free gas phases. The aqueous CH4 solubilities required for forming hydrate (L+H) and free gas (L+G) in different pore sizes can be met in a three-phase zone. The top of the three-phase zone shifts upward in sediments as the water depth increases and the mean pore size decreases. The thickness of the three-phase zone increases as the pore size distribution widens. The top of the three-phase zone can either overlie the three-phase stability depth at deepwater Blake Ridge or underlie the three-phase stability depth at Hydrate Ridge in shallow water. Our model prediction is compatible with worldwide observations that the bottom-simulating reflector is systematically shifted upward relative to the bulk equilibrium depth as water depth (pressure) is increased. The gas hydrate and free gas saturations of the three-phase zone at Blake Ridge Comparison of the globally compiled BSR temperatures with the three-phase equilibrium curves for the systems of pure CH4 + 3.5 wt.% seawater (solid line) and pure CH4 + 2.0 wt.% seawater (dotted line). The discrepancies between the observed BSR temperature and the calculated three-phase temperature are systematically larger in deep water than in shallow water.

  12. MOSAIC: An organic geochemical and sedimentological database for marine surface sediments

    NASA Astrophysics Data System (ADS)

    Tavagna, Maria Luisa; Usman, Muhammed; De Avelar, Silvania; Eglinton, Timothy

    2015-04-01

    Modern ocean sediments serve as the interface between the biosphere and the geosphere, play a key role in biogeochemical cycles and provide a window on how contemporary processes are written into the sedimentary record. Research over past decades has resulted in a wealth of information on the content and composition of organic matter in marine sediments, with ever-more sophisticated techniques continuing to yield information of greater detail and as an accelerating pace. However, there has been no attempt to synthesize this wealth of information. We are establishing a new database that incorporates information relevant to local, regional and global-scale assessment of the content, source and fate of organic materials accumulating in contemporary marine sediments. In the MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon) database, particular emphasis is placed on molecular and isotopic information, coupled with relevant contextual information (e.g., sedimentological properties) relevant to elucidating factors that influence the efficiency and nature of organic matter burial. The main features of MOSAIC include: (i) Emphasis on continental margin sediments as major loci of carbon burial, and as the interface between terrestrial and oceanic realms; (ii) Bulk to molecular-level organic geochemical properties and parameters, including concentration and isotopic compositions; (iii) Inclusion of extensive contextual data regarding the depositional setting, in particular with respect to sedimentological and redox characteristics. The ultimate goal is to create an open-access instrument, available on the web, to be utilized for research and education by the international community who can both contribute to, and interrogate the database. The submission will be accomplished by means of a pre-configured table available on the MOSAIC webpage. The information on the filled tables will be checked and eventually imported, via the Structural Query Language (SQL), into

  13. Experimental research on the marine hydrodynamic action on the consolidation process of the sediments in the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Juan; Jia, Yong-Gang; Li, Xiang-Ran; Shan, Hong-Xian

    2011-03-01

    Based on the in-situ measurements, the impact of the marine hydrodynamics, such as wave and tide, in the rapidly deposited sediments consolidation process was studied. In the tide flat of Diaokou delta-lobe, one 2 m×1m×1 m test pit was excavated. The seabed soils were dug and dehydrated, and then the powder of the soil was mixed with seawater to be fluid sediments. And an iron plate covered part of the test pit to cut off the effect of the marine hydrodynamics. By field-testing methods, like static cone penetration test (SPT) and vane shear test (VST), the variation of strength is measured as a function of time, and the marine hydrodynamics impact on the consolidation process of the sediments in the Yellow River estuary was studied. It is shown that the self-consolidated sediments' strength linearly increases with the depth. In the consolidation process, in the initial, marine hydrodynamics play a decisive role, about 1.5 times as much as self-consolidated in raising the strength of the sea-bed soils, and with the extension of the depth the role of the hydrodynamics is reduced. In the continuation of the consolidation process, the trend of the surface sediments increased-strength gradually slows down under the water dynamics, while the sediments below 50 cm are in opposite ways. As a result, the rapidly deposited silt presents a nonuniform consolidation state, and the crust gradually forms. The results have been referenced in studying the role of the hydrodynamics in the soil consolidation process.

  14. Oleananes in oils and sediments: Evidence of marine influence during early diagenesis?

    NASA Astrophysics Data System (ADS)

    Murray, Andrew P.; Sosrowidjojo, Imam B.; Alexander, Robert; Kagi, Robert I.; Norgate, Carolyn M.; Summons, Roger E.

    1997-03-01

    The oleananes, as markers for the angiosperms, provide valuable source and age information when present in an oil. Nevertheless, they are not quantitatively related to the land plant input and indeed their presence reflects only a small leak in diagenetic processes leading primarily to aromatic oleanoids. Because they are minor products, the abundance of oleananes in terrigenous oils and sediments may be highly sensitive to changes in early diagenetic conditions. Here we present evidence that contact of plant matter with seawater during early diagenesis enhances the expression of oleananes in a mature sediment or oil. Oleananes are absent or present at very low concentrations in samples from the base of an Eocene coal seam affected by postdepositional seawater intrusion. However, their abundance increases toward the top of the seam in correlation with % organic sulphur, dibenzothiophene/phenanthrene, and the homohopane index. Similarly, in deltaic sediments from the South Sumatra Basin, oleanane/hopane is strongly correlated with indicators of marine influence such as C 27/C 29 steranes and the homohopane index. In each case, increasing oleanane abundance is accompanied by a reduction in the extent of aromatisation and, for the South Sumatra Basin, the proportion of A-ring contracted oleananes. An angiosperm-derived Miocene coal from the Philippines, deposited under freshwater conditions, shows abundant aromatic oleanoids but no oleananes. These results show that oleananes need to be used with caution as age and source markers in fluvio-deltaic and lacustrine petroleum systems. On the other hand, their sensitivity to early diagenetic conditions may make them useful in locating effective source rocks in such systems.

  15. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons

    PubMed Central

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100–2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  16. Multiple microtektite horizons in upper eocene marine sediments: no evidence for mass extinctions.

    PubMed

    Keller, G; D'Hondt, S; Vallier, T L

    1983-07-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time. PMID:17769212

  17. An optimal wavelet for the detection of surface waves in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Kritski, A.; Vincent, A. P.; Yuen, D. A.

    2004-12-01

    We study seismic surface wave propagation in stratified shallow marine sediments media. Our goal is to predict dynamic (shear velocity, attenuation) and physical properties (stiffness, density) of sediments from seismoacoustic records of surface waves propagating along the water-seabed interface. To estimate and invert propagational parameters of surface waves (group and phase velocity) into shear velocity as a function of distance and depth we are using a multiscale wavelet cross-correlation technique. Standard wavelet transform series has indeed proven very useful for imaging different surface waves modes. However, to achieve a better resolution of each mode imaging we need to develop a new wavelet transform that includes optimality and adaptivity, based on the seismic data itself. Our main tool to develop such an optimal wavelet is the Karhunen-Loeve decomposition of the data series. This requires two steps: first, we calculate set of covariance matrices from the pairs of time series. Second, we estimate the corresponding eigenvalues and eigenfunctions. The calculated eigenfunctions have to be further regularized to obtain a new wavelet series. This new eigenfunctions basis has an optimal convergence in the sense of the least squares. It is sufficient to take a small number of the above set of eigenfunctions. They are naturally adapted to surface waves modes propagation in terms of scales values: time and periods (frequencies). Our approach makes it possible to decompose highly correlated reference data series into eigenvectors and then to use it to decompose field data records in the frequency and time domains with significant improvement of the image quality. We have processed different seismic records with surface waves. The results were compared with the wavelet analysis using standard wavelet kernel ('Morlet', 'Gaussian', 'Mexican hat'). We show that our new developed adaptive wavelet discriminates better between different surface wave modes propagating

  18. Metal release from contaminated estuarine sediment under pH changes in the marine environment.

    PubMed

    Martín-Torre, M Camino; Payán, M Cruz; Verbinnen, Bram; Coz, Alberto; Ruiz, Gema; Vandecasteele, Carlo; Viguri, Javier R

    2015-04-01

    The contaminant release from estuarine sediment due to pH changes was investigated using a modified CEN/TS 14429 pH-dependence leaching test. The test is performed in the range of pH values of 0-14 using deionised water and seawater as leaching solutions. The experimental conditions mimic different circumstances of the marine environment due to the global acidification, carbon dioxide (CO2) leakages from carbon capture and sequestration technologies, and accidental chemical spills in seawater. Leaching test results using seawater as leaching solution show a better neutralisation capacity giving slightly lower metal leaching concentrations than when using deionised water. The contaminated sediment shows a low base-neutralisation capacity (BNCpH 12 = -0.44 eq/kg for deionised water and BNCpH 12 = -1.38 eq/kg for seawater) but a high acid-neutralisation capacity when using deionised water (ANCpH 4 = 3.58 eq/kg) and seawater (ANCpH 4 = 3.97 eq/kg). Experimental results are modelled with the Visual MINTEQ geochemical software to predict metal release from sediment using both leaching liquids. Surface adsorption to iron- and aluminium-(hydr)oxides was applied for all studied elements. The consideration of the metal-organic matter binding through the NICA-Donnan model and Stockholm Humic Model for lead and copper, respectively, improves the former metal release prediction. Modelled curves can be useful for the environmental impact assessment of seawater acidification due to its match with the experimental values. PMID:25680769

  19. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    PubMed

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  20. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  1. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing

  2. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea)

    PubMed Central

    Lipsewers, Yvonne A.; Bale, Nicole J.; Hopmans, Ellen C.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2014-01-01

    Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox) are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB) and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA) gene of AOA and AOB, and the hydrazine synthase (hzsA) gene of anammox bacteria. AOA, AOB, and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB, and anammox bacteria. PMID:25250020

  3. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin ▿ †

    PubMed Central

    Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.; Phelps, T. J.; Newby, D. T.

    2008-01-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle. PMID:18344348

  4. Marine Diagenesis of Shallow Marine Lime-Mud Sediments: Insights from dgrO18 and dgrC13 Data.

    PubMed

    Choquette, P W

    1968-09-13

    Shallow marine lime-mud sediments of the Ste. Genevieve Formation (Mississippian), in part of the Illinois Basin, underwent at least three diagenetic changes: (i) local dolomitization in seawater or a brine, producing dolostone having average deltaC(13) of +2.5 per mille and deltaO(18) of +1.9 per mille (versus PDB-1); (ii) more usually cementation of unreplaced CaCO(3), in intrasediment seawater, yielding isotopically marine lime mudstone mainly composed of calcite, 4-micron or finer, with deltaO(18) of from -1 to +1 per mille; (iii) later partial alteration of CaCO(3), in permeable dolomitic rocks, by isotopically "lighter" waters, to calcite with an estimated deltaO(18) of -10 per mille or less. Isotope data appraised by petrographic analysis thus suggest "submarine" cementation of these carbonates in shallow marine conditions. PMID:17812283

  5. Platinum-group elements (PGE) and Rhenium in Marine Sediments across the Cretaceous-Tertiary Boundary: Constraints on Re-PGE Transport in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    2003-01-01

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of approx. 1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by approx. 95% relative to chondritic Ir proportions. A similar depletion in Os (approx. 90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The approx. 1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over approx. 65 Ma, the effective diffusivities are approx. 10(exp -13)sq cm/s, much smaller than that of soluble cations in pore waters (approx. 10(exp -5) sq cm/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine

  6. Platinum-group elements (PGE) and rhenium in marine sediments across the Cretaceous-Tertiary boundary: constraints on Re-PGE transport in the marine environment

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ˜1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ˜95% relative to chondritic Ir proportions. A similar depletion in Os (˜90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ˜1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ˜65 Ma, the effective diffusivities are ˜10 -13 cm 2/s, much smaller than that of soluble cations in pore waters (˜10 -6 cm 2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic

  7. Correlation and Analysis of Volcanic Ash in Marine Sediments From the Peru Margin

    NASA Astrophysics Data System (ADS)

    Hart, D.; Miller, J.

    2005-05-01

    While land studies have identified the major volcanic centers of historic eruptions and active to recent volcanism within the Central Volcanic Zone (CVZ) of the Central Andes, the tephrachronologic records are disturbed by the high erosion rates of this arid region. However, volcanic material frequently occurs in marine sediment as discrete ash-fall layers and, or disseminated ash accumulations. Cores from three Peru Margin sites sites(1227, 1228, and 1229) drilled during Ocean Drilling Program (ODP) Leg 201 have been studied to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru shelf. The thickness of each ash layer and accumulations has been measured and the volumes calculated in order to decipher the episodicity of explosive volcanic activity in the North-Central Andes recorded in the off shore sediments. The geographic distribution of the sites (over 3 degrees of latitude and from 50 to 300 km offshore) and correlation of ash units between sites form the basis for minimal estimates of explosive volcanic activity in the region (only eruptions large enough to deposit ash in excess of 100 km from source are represented). Pouclet et al., (1990) estimated the minimum explosive activity along the Andean Arc from ash-bearing sediments and ash layers within cores from sites along the Peru margin collected during ODP Leg 112. As a result of better recovery (as much as ten times more core recovery in many intervals) and decreased disturbance in cores recovered during Leg 201, our documentation of ash content in cores from Leg 201 has led to a more complete record of the explosive volcanic activity along the Andean Arc. For example, Pouclet, et al., (1990) reports four ash layers from Sites 684, 680, and 681, whereas forty ash layers have been documented from cores recovered from the same locations (Sites 1227, 1228, and 1229 respectively). Our stratigraphic record agrees with Pouclet, et al., (1990), suggesting

  8. Volcanic ash in deep marine sediment: A comparison of dispersed ash and adjacent ash layers

    NASA Astrophysics Data System (ADS)

    Scudder, R. P.; Murray, R. W.; Kutterolf, S.; Schindlbeck, J. C.

    2012-12-01

    The presence of dispersed volcanic ash in pelagic marine sediment (as differentiated from ash found in discrete layers) has been known since the 1970's. Most previous studies have assessed the dispersed component through sedimentological and petrographic methods. As part of an effort to quantitatively determine the amount, and chemical composition, of dispersed ash in pelagic sediments, we are undertaking a systematic study of the western Pacific marine sediments. ODP Site 1149 (Leg 185), located immediately east of the Izu-Bonin Arc, consists of aluminosilicate clay and large amounts of volcanic ash (>75 ash layers described in units I and II). In addition to the ash layers, there is abundant dispersed ash (20 - 50% of the bulk). Using a multi-elemental geochemical and statistical approach we can characterize and quantify this dispersed ash component, and thus complement the original ash layer record by a novel dataset. At Site 1149, our previous work based on refractory trace element end members of potential sources (from the literature) indicate that Chinese Loess, Ryukyu Dacite (Japan), and an average of Izu-Bonin Front Arc material yield the best mixing to explain the bulk sedimentary composition (Scudder et al., 2009, EPSL, 284, 639-648). Contribution of a significant distal Ryukyu Arc component to the sediment eastward of Izu-Bonin (i.e., Site 1149) is surprising, yet is required by our chemical results, and is consistent with the previous work of Egeberg et al. (1992). While Scudder et al. (2009) was based on a small number of samples (~15 samples for complete major, trace, and REE analysis) and a modest element menu, we here present the results from an expansive suite of analyses (>80 samples) allowing us to test the effect of sample number on the statistical results and achieve additional quantitative resolution of volcanic and upper crustal sources (e.g., loess). This further improves our statistical ability to resolve temporal changes that may be

  9. Deposition of organic carbon-rich sediments in narrow marine basins and open-marine upwelling environments - New results from the ocean drilling program

    SciTech Connect

    Stein, R. )

    1988-08-01

    Detailed sedimentological and organic geochemical investigations have been performed on Neogene sediments from ODP site 645 (Baffin Bay), ODP site 658 (upwelling area of northwest Africa), and ODP site 679 (upwelling area off Peru). The study is mainly based on (1) data derived from total organic carbon and nitrogen analyses, Rock-Eval pyrolysis, and kerogen microscopy (2) sedimentation rates, and (3) x-ray diffraction analyses. The main objective of this study was to point out the most important factors controlling the accumulation of organic carbon in the different sedimentary environments, such as supply of terrigenous organic matter, productivity of marine organic matter, and preservation of organic matter. These new results from the investigation of ODP sediments are compared with DSDP data from the Mesozoic Atlantic Ocean to characterize the depositional environments of Mesozoic black shales.

  10. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  11. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Kwan, Billy K Y; Ng, Ka-Yan; Yamashita, Nobuyoshi; Taniyasu, Sachi; Lam, Paul K S; Murphy, Margaret B

    2015-07-15

    Organic ultraviolet (UV) filters are used widely in various personal care products and their ubiquitous occurrence in the aquatic environment has been reported in recent years. However, data on their fate and potential impacts in marine sediments is limited. This study reports the occurrence and risk assessment of eleven widely used organic UV filters in marine sediment collected in Hong Kong and Tokyo Bay. Seven of the 11 target UV filters were detected in all sediment samples (median concentrations: marine food web. However, more toxicity data for sediment organisms is necessary for better risk assessment of these compounds in benthic communities. PMID:25804793

  12. Application of silicone rubber passive samplers to investigate the bioaccumulation of PAHs by Nereis virens from marine sediments.

    PubMed

    Yates, Kyari; Pollard, Pat; Davies, Ian M; Webster, Lynda; Moffat, Colin F

    2011-12-01

    The availability of polycyclic aromatic hydrocarbons (PAHs) from marine sediments to the ragworm (Nereis virens) was studied. Concentrations of PAHs in pore waters were determined using silicone rubber passive samplers. Calculated bioconcentration factors confirmed that partitioning of PAHs between the lipid phase of the polychaetes and pore water is a passive process. Low biota-sediment accumulation factors (BSAF) calculated using total sediment concentration suggested a fraction of the total PAH burden in the sediment may be strongly sorbed to organic carbon and not available to the polychaete. Organic carbon normalised concentrations of the potentially exchangeable fractions of contaminants and freely dissolved concentrations (measured using silicone rubber samplers) provide a better description of the observed bioaccumulation by the ragworms. These data indicate that the concept of availability should be included in environmental risk assessments based upon equilibrium partitioning models, and that silicone rubber samplers can provide the necessary information for these models. PMID:21906858

  13. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    NASA Astrophysics Data System (ADS)

    Miesner, F.; Lechleiter, A.; Müller, C.

    2014-10-01

    Temperature fields in marine sediments are studied for various purposes. Often, the target of research is the steady state heat flow as a (possible) source of energy but there are also studies attempting to reconstruct bottom water temperature variations to understand more about climate history. The bottom water temperature propagates into the sediment to different depths, depending on the amplitude and period of the deviation. The steady state heat flow can only be determined when the bottom water temperature is constant while the bottom water temperature history can only be reconstructed when the deviation has an amplitude large enough or the measurements are taken in great depths. In this work, the aim is to reconstruct recent bottom water temperature history such as the last two years. To this end, measurements to depths of up to 6 m shall be adequate and amplitudes smaller than 1 K should be reconstructable. First, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature deviation in the last years and the thermal properties of the sediments, the forward model gives the sediment temperature field. Next, an inversion operator and two common inversion schemes are introduced. The analysis of the inversion operator and both algorithms is kept short, but sources for further reading are given. The algorithms are then tested for artificial data with different noise levels and for two example data sets, one from the German North Sea and one from the Davis Strait. Both algorithms show good and stable results for artificial data. The achieved results for measured data have low variances and match to the observed oceanographic settings. Lastly, the desired and obtained accuracy are discussed. For artificial data, the presented method yields satisfying results. However, for measured data the interpretation of the results is more difficult as the exact form of the bottom water deviation is not known. Nevertheless, the presented

  14. UK‧37 temperature estimates from Eemian marine sediments in the southern coast of Hainan Island, tropical China

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Zheng, Zhuo; Huang, Kangyou; Zong, Yongqiang; Liu, Zhonghui; Peng, Zhuolun; Shi, Suhua

    2016-09-01

    This study concerns high-resolution sea surface temperature (SST) changes for the Eemian interglacial period reconstructed from the southern coast of Hainan Island, China. The lower marine unit in the sediment core is composed of monotonous mud (31 m thick), dated to be from the Eemian interglacial period or lower part of marine isotope stage 5 (MIS 5), determined by optically stimulated luminescence (OSL). The high sedimentation rate and the richness of organic matter and marine fossils provide good opportunity for the study of palaeo-environments in the northern margin of the South China Sea (SCS). Sediment grain-size, foraminifer, sediment color index and long-chain alkenone were used to reveal the near-shore sedimentary environments and temperature at millennial-scale. Specifically, a high-resolution UK‧37-SST record was reconstructed for the Eemian interglacial period. The new evidence in northwestern margin of SCS shows that the maximum value of SST during the Eemian interglacial is approximately 29 °C and the lowest is 26.5 °C. The trend of decreasing SST from 29 °C throughout the marine sequence is consistent with the variations in sediment grain size, reflecting the cooling trend of SST and sea-level lowering tendency during the last interglacial period. This new Eemian SST result agrees with other records in the region of SCS, showing a coherent descending trend, but spatial heterogeneity exists in timing and amplitude. The insolation changes might be the main force for initiating the SST evolution during the penultimate interglacial period.

  15. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  16. MINIATURIZED SEDIMENT PROCEDURES FOR ASESSING TOXICITY USING MARINE AND FRESHWATER AMPHIPODS AND EMBRYO/LARVAL FISH

    EPA Science Inventory

    Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...

  17. Trace element concentrations in surface estuarine and marine sediments along the Mississippi Gulf Coast following Hurricane Katrina.

    PubMed

    Warren, Crystal; Duzgoren-Aydin, Nurdan S; Weston, James; Willett, Kristine L

    2012-01-01

    Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma-mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs' guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina. PMID:21494829

  18. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries.

    PubMed Central

    Bauer, J E; Capone, D G

    1988-01-01

    Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both. PMID:3415231

  19. Acoustics of marine sediment under compaction: binary grain-size model and viscoelastic extension of Biot's theory.

    PubMed

    Leurer, Klaus C; Brown, Colin

    2008-04-01

    This paper presents a model of acoustic wave propagation in unconsolidated marine sediment, including compaction, using a concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. Compressional- and shear-wave velocities and attenuation follow from a combination of Biot's model, used as the general framework, and two viscoelastic extensions resulting in complex grain and frame moduli, respectively. An effective-grain model accounts for the viscoelasticity arising from local fluid flow in expandable clay minerals in clay-bearing sediments. A viscoelastic-contact model describes local fluid flow at the grain contacts. Porosity, density, and the structural Biot parameters (permeability, pore size, structure factor) as a function of pressure follow from the binary model, so that the remaining input parameters to the acoustic model consist solely of the mass fractions and the known mechanical properties of each constituent (e.g., carbonates, sand, clay, and expandable clay) of the sediment, effective pressure, or depth, and the environmental parameters (water depth, salinity, temperature). Velocity and attenuation as a function of pressure from the model are in good agreement with data on coarse- and fine-grained unconsolidated marine sediments. PMID:18397002

  20. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  1. Provenance of Marine Sediment in the Gulf of Alaska, IODP Expedition 341: Links Between Sediment Derivation, Glacial Systems, and Exhumation of the Coastal Mountain Belts

    NASA Astrophysics Data System (ADS)

    Allen, W. K.; Dunn, C. A.; Enkelmann, E.; Ridgway, K.; Colliver, L.

    2015-12-01

    Provenance analysis of Neogene sand and diamict beds from marine boreholes drilled by the IODP Expedition 341 provides a marine sedimentary record of the interactions between tectonics, climate and sediment deposition along a glaciated convergent margin. The 341 boreholes represent a cross-margin transect that sampled the continental shelf, slope, and deep sea Surveyor Fan of the Gulf of Alaska. Our dataset currently consists of ~ 650 detrital zircons selected for double dating method utilizing both detrital zircon fission track (FT) and U-Pb analysis from sand and diamict beds, as well as zircon U-Pb geochronology and apatite FT from igneous and gneissic clasts. Detrital zircon U-Pb geochronology of sand records dominant peak ages of 53, 62, 70, and 98 Ma with minor populations of 117, 154, and 170 Ma. Most of these ages can be correlated to primary igneous sources in the Coast Plutonic Complex, the Chugach Metamorphic Complex, the plutonic rocks of Wrangellia, and the Sanak-Baranoff plutonic belt. All samples analyzed to date, covering a 10 Myr range, share nearly identical detrital zircon populations suggesting similar primary sediment sources and reworking of sediment in thrust belts and accretionary prisms along this convergent margin. Plutonic and gneissic clasts collected from the boreholes on the shelf have already been double dated. These clasts have general U-Pb zircon crystallization ages of 52-54 Ma and apatite fission track cooling ages of 10-12 Ma. These results, along with previous published studies, indicate that these clasts were derived from the Chugach Metamorphic Complex and were eroded and transported by the Bagley Ice Field and Bering Glacier. Future results using this approach should allow us to pinpoint which parts of the exhumed onshore ranges and which glacial systems provided sediment to marine environments in the Gulf of Alaska.

  2. Response of marine sedimentation to upper Holocene climate variability in Maxwell Bay, King George Island, West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wittenberg, Nina; Hass, Christian; Kuhn, Gerhard

    2013-04-01

    The Western Antarctic Peninsula experiences a temperature increase that is higher than in other parts of Antarctica. Within the last 50 years the tidewater glaciers in the tributary fjords of Maxwell Bay (King George Island) have retreated landwards with increasing speed. Meltwaters mobilize fine-grained sediments and transport those in plumes out of the coves into Maxwell Bay. Our hypothesis is that meltwater sediments characterize warmer climate periods of the Holocene. Marine sediment cores recovered along a profile of the eastern slope of Maxwell Bay were studied. The cores were taken in high-accumulation areas at the entrances of Collins Harbor, Marian and Potter coves. We measured the grain-size distribution in 1-cm steps in each core with a Laser diffraction particle analyzer (range 0.04-2500 µm) in order to resolve shifts in grain size compositions in very high resolution. We undertook different approaches for reliable age determination of the sediments. Since marine biogenic carbonate suitable for radiocarbon age determination is sparse, radiocarbon dating of the extracted humic acid fraction of the bulk sediment was included. Unfortunately, these age determinations turned out to be not reliable, likely because they are overprinted by an unknown older radiocarbon source. Preliminary results suggest that the cores cover approximately the last 2000 years. The magnetic susceptibility (MS) parameter fluctuates throughout the cores. It is negatively correlated to the amount of total organic carbon (TOC) and biogenic opal, suggesting dilution of the MS signal through higher input of organic material. Together with the bathymetry data, sub-bottom profiles reveal information on the interior of the topography and the geometry of the deposited sediments. The profiles obtained in Potter Cove show almost no sediment penetration suggesting either a very thin sediment cover and/or highly reworked unsorted sediments. The sub-bottom profiles from Maxwell Bay penetrate

  3. A method of measurement of (239)Pu, (240)Pu, (241)Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tazoe, Hirofumi; Tagami, Keiko; Uchida, Shigeo; Yamada, Masatoshi

    2014-01-01

    An accurate and precise analytical method is highly needed for the determination of Pu isotopes in marine sediments for the long-term marine environment monitoring that is being done since the Fukushima Dai-ichi Nuclear Power Plant accident. The elimination of uranium from the sediment samples needs to be carefully checked. We established an analytical method based on anion-exchange chromatography and SF-ICP-MS in this work. A uranium decontamination factor of 2 × 10(6) was achieved, and the U concentrations in the final sample solutions were typically below 4 pg mL(-1), thus no extra correction of (238)U interferences from the Pu spectra was needed. The method was suitable for the analysis of (241)Pu in marine sediments using large sample amounts (>10 g). We validated the method by measuring marine sediment reference materials and our results agreed well with the certified and the literature values. Surface sediments and one sediment core sample collected after the nuclear accident were analyzed. The characterization of (241)Pu/(239)Pu atom ratios in the surface sediments and the vertical distribution of Pu isotopes showed that there was no detectable Pu contamination from the nuclear accident in the marine sediments collected 30 km off the plant site. PMID:24328266

  4. Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria.

    PubMed

    Chikere, Chioma Blaise; Chikere, Blaise Ositadinma; Okpokwasili, Gideon Chijioke

    2012-03-01

    Crude oil-polluted marine sediment from Bonny River loading jetty Port Harcourt, Nigeria was treated in seven 2.5 l stirred-tank bioreactors designated BNPK, BNK5, BPD, BNO(3), BUNa, BAUT, and BUK over a 56-day period. Five bioreactors were biostimulated with either K(2)HPO(4), NH(4)NO(3), (NH(4))(2)SO(4), NPK, urea or poultry droppings while unamended (BUNa) and heat-killed (BAUT) treatments were controls. For each bioreactor, 1 kg (wet weight) sediment amended with 1 l seawater were spiked with 20 ml and 20 mg of crude oil and anthracene which gave a total petroleum hydrocarbons (TPH) range of 106.4-116 ppm on day 0. Polycyclic aromatic hydrocarbons (PAH) in all spiked sediment slurry ranged from 96.6 to 104.4 ppm. TPH in each treatment was ≤14.9 ppm while PAH was ≤6.8 ppm by day 56. Treatment BNO(3) recorded highest heterotrophic bacterial count (9.8 × 10(8) cfu/g) and hydrocarbon utilizers (1.15 × 10(8) cfu/g). By day 56, the percentages of biodegradation of PAHs, as measured with GC-FID were BNK5 (97.93%), BNPK (98.38%), BUK (98.82%), BUNa (98.13%), BAUT (93.08%), BPD (98.92%), and BNO(3) (98.02%). BPD gave the highest degradation rate for PAH. TPH degradation rates were as follows: BNK5 (94.50%), BNPK (94.77%), BUK (94.10%), BUNa (94.77%), BAUT (75.04%), BPD (95.35%), BNO(3) (95.54%). Fifty-six hydrocarbon utilizing bacterial isolates obtained were Micrococcus spp. 5 (9.62%), Staphylococcus spp. 3 (5.78%), Pseudomonas spp. 7 (13.46%), Citrobacter sp. 1 (1.92%), Klebsiella sp. 1 (1.92%), Corynebacterium spp. 5 (9.62%), Bacillus spp. 5 (9.62%), Rhodococcus spp. 7 (13.46%), Alcanivorax spp. 7 (13.46%), Alcaligenes sp. 1 (1.92%), Serratia spp. 2 (3.85%), Arthrobacter spp. 7 (13.46%), Nocardia spp. 2 (3.85%), Flavobacterium sp. 1 (1.92%), Escherichia sp. 1 (1.92%), Acinetobacter sp. 1 (1.92%), Proteus sp. 1 (1.92%) and unidentified bacteria 10 (17%). These results indicate that the marine sediment investigated is amenable to bioreactor

  5. Shifts in Microbial Community Structure with Changes in Cathodic Potential in Marine Sediment Microcosms

    NASA Astrophysics Data System (ADS)

    Lam, B. R.; Rowe, A. R.; Nealson, K. H.

    2014-12-01

    Microorganisms comprise more than 90% of the biomass of the ocean. Their ability to thrive and survive in a wide range of environments from oligotrophic waters to the deep subsurface stems from the great metabolic versatility that exists among them. This metabolic versatility has further expanded with the discovery of extracellular electron transport (EET). EET is the capability of microorganisms to transfer electrons to and from insoluble substrates outside of the cell. Much of what is known about EET comes from studies of model metal reducing microorganisms in the groups Shewanellaceae and Geobacteraceae. However, EET is not limited to these metal reducing microorganisms, and may play a large role in the biogeochemical cycling of several elements. We have developed an electrochemical culturing technique designed to target microorganisms with EET ability and tested these methods in marine sediments. The use of electrodes allows for greater control and quantification of electrons flowing to insoluble substrates as opposed to insoluble substrates such as minerals that are often difficult to measure. We have recently shown that poising electrodes at different redox potentials will enrich for different microbial groups and thus possible metabolisms. In marine sediment microcosms, triplicate electrodes were poised at different cathodic (electron donating) potentials (-300, -400, -500 and -600 mV) and incubated for eight weeks. Community analysis of the 16S rRNA revealed that at lower negative potentials (-500 and -600 mV), more sulfate reducing bacteria in the class Deltaproteobacteria were enriched in comparison to the communities at -300 and -400 mV being dominated by microorganisms within Alphaproteobacteria, Gammaproteobacteria, and Clostridia. This can be explained by sulfate (abundant in seawater) becoming a more energetically favorable electron acceptor with lower applied potentials. In addition, communities at higher potentials showed greater enrichment of the

  6. Magnetostratigraphy of Lutetian marine sediments in the External Sierras (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Pinto, A.; Pueyo, E. L.; Barnolas, A.; Pocovi, A.; Gil-Pena, I.; Villain, J. J.; Mochales, T.; Samso, J. M.

    2007-05-01

    Magnetostratigraphy has been extensively applied in the southern Pyrenees (Spain). At the moment there are more than 50 km of series most of them in continental and transitional facies and only a few in marine sediments. Seeing that Lutetian age has received very little attention and Ypresian - Lutetian transit in marine series has been rarely studied, in this work we present a composite Lutetian magnetostratigraphic study made of three sections of carbonate platform facies. The composite section has been calibrated with the available biostratigraphic studies (mostly benthonic faunas). The three sections are located in hanging wall of the Southwestern Pyrenean sole thrust (External Sierras). The SIV section (260 m and 105 samples), is located in the southeastern limb of the Balzez anticline, and comprises lower Guara Formation. The BZ profile (600 m and 285 samples) is located in the northwestern flank and cuts a progressive unconformity within the Guara formation. The ISU section (550 m and 237 samples) is located along the Isuela valley immediately south of the well-known Pico del Aguila anticline. In total more than 600 standard cores were sampled every 2 - 3 meters of section. Paleomagnetic analyses were conducted in the University of Burgos paleomagnetic laboratory. Detailed stepwise thermal demagnetization (every 25-50°C) and some AF demagnetizations were able to unravel the NRM components. IRM essays and the thermal demagnetization of three components IRM allowed controlling the magnetic mineralogy. A 2G magnetometer, an ASC TD-SC oven and a M2T-1 pulse magnetizer were utilized. Only one paleomagnetic component has been characterized between 200° - 250° and 450°C - 575°. This component represents a primary record of the Eocene magnetic field because it presents two antipodal directions and passes the fold test (Balzez data). Comparison with the global polarity time scale (GPTS) displays the following correlation; chrons C21 and C20 were unambiguously

  7. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    NASA Astrophysics Data System (ADS)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  8. Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes

    NASA Astrophysics Data System (ADS)

    Landolt, Marsha L.; Kocan, Richard M.

    1984-03-01

    The cost of conducting conventional chronic bioassays with every potentially toxic compound found in marine ecosystems is prohibitive; therefore short-term toxicity tests which can be used for rapid screening were developed. The tests employ cultured fish cells to measure lethal, sublethal or genotoxic effects of pure compounds and complex mixtures. The sensitivity of these tests has been proven under laboratory conditions; the following study used two of these tests, the anaphase aberration test and a cytotoxicity assay, under field conditions. Sediment was collected from 97 stations within Puget Sound, Washington. Serial washings of the sediment in methanol and dichloromethane yielded an organic extract which was dried, dissolved in DMSO and incubated as a series of dilutions with rainbow trout gonad (RTG-2) cells. The toxic effects of the extract were measured by examining the rate of cell proliferation and the percentage of damaged anaphase figures. Anaphase figures were considered to be abnormal if they exhibited non-disjunctions, chromosome fragments, or chromosome bridges. A second cell line (bluegill fry, BF-2) was also tested for cell proliferation and was included because, unlike the RTG-2 cell line, it contains little or no mixed function oxygenase activity. Of 97 stations tested, 35 showed no genotoxic activity, 42 showed high genotoxic activity (P≤.01) and the remainder were intermediate. Among the toxic sites were several deep water stations adjacent to municipal sewage outfalls and four urban waterways contaminated by industrial and municipal effluents. Extracts from areas that showed genotoxic effects also inhibited cell proliferation and were cytotoxic to RTG-2 cells. Few effects were noted in the MFO deficient BF-2 cells. Short term in vitro tests provide aquatic toxicologists with a versatile and cost effective tool for screening complex environments. Through these tests one can identify compounds or geographic regions that exhibit high

  9. Toward a parameterization of global-scale organic carbon mineralization kinetics in surface marine sediments

    NASA Astrophysics Data System (ADS)

    Stolpovsky, K.; Dale, A. W.; Wallmann, K.

    2015-06-01

    An empirical function is derived for predicting the rate-depth profile of particulate organic carbon (POC) degradation in surface marine sediments including the bioturbated layer. The rate takes the form of a power law analogous to the Middelburg function. The functional parameters were optimized by simulating measured benthic O2 and NO3- fluxes at 185 stations worldwide using a diagenetic model. The novelty of this work rests with the finding that the vertically resolved POC degradation rate in the bioturbated zone can be determined using a simple function where the POC rain rate is the governing variable. Although imperfect, the model is able to fit 71% of paired O2 and NO3- fluxes to within 50% of measured values. It further provides realistic geochemical concentration-depth profiles, NO3- penetration depths, and apparent first-order POC mineralization rate constants. The model performs less well on the continental shelf due to the high sediment heterogeneity there. When applied to globally resolved maps of rain rate, the model predicts a global denitrification rate of 182 ± 88 Tg yr-1 of N and a POC burial rate of 107 ± 52 Tg yr-1 of C with a mean carbon burial efficiency of 6.1%. These results are in very good agreement with published values. Our proposed function is conceptually simple, requires less parameterization than multi-G-type models, and is suitable for nonsteady state applications. It provides a basis for more accurately simulating benthic nutrient fluxes and carbonate dissolution rates in Earth system models.

  10. Sub-MIlankovitch millennial and decadal cyclicity in Middle Eocene deep-marine laminated sediments, Ainsa Basin, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Scotchman, J. I.; Pickering, K. T.; Robinson, S. A.

    2010-12-01

    James I. Scotchman1, Kevin T. Pickering1 & Stuart A. Robinson1 1Department of Earth Sciences, UCL (University College London), Gower Street, London, WC1E 6BT, U.K. Climate variability on the scale of millennia has become conspicuous within Quaternary records with far fewer such records existing within the pre-Pleistocene geological record. We identify millennial and decadal cyclicity in deep-marine siliciclastic (turbiditic and hemipelagic) sediments from a core in the middle Eocene Ainsa Basin, Spanish Pyrenees. Outcrop spectral gamma-ray data from laterally adjacent and age-equivalent strata to the core, together with a re-analysis of bioturbation data from the core, identifies the three main Milankovitch orbital periods. From this data, we derive a robust sediment accumulation rate for these sediments of 27.5 cm/kyr. Spectral analysis of data from high-resolution multi-element XRF scanning of a ~10 m-thick stratigraphic interval of fine-grained laminated sediments reveals the presence of various high-frequency cycles mainly above the 99% confidence level. Applying our derived sediment accumulation rate yields sub-Milankovitch millennial-scale cycles (~5,400, ~2,800, and ~1,000 yr) and decadal (~90, ~50, and ~30 yr) cycles split between allogenic and authigenic deposition. These cycles are manifest in the core as grain-size variations. The ~5,400 and ~2,800 yr cycles, recorded by elemental (Al, K, Ca and Fe) and element/Al ratios (Si/Al, Ca/Al and Zr/Al) are interpreted as representing climatically-driven variation in sediment supply to the deep-marine Ainsa basin. Higher-frequency decadal cycles are coincident with well-known Gleissberg solar cycles or possible multiples of the 11-year Schwabe cycle although how these cycles are expressed within these sediments remains unclear.

  11. Influence of chemical reactivities of lipids bound in different pools on their isotopic compositions during degradation in marine sediments

    NASA Astrophysics Data System (ADS)

    Sun, M.; Pan, H.; Culp, R.

    2013-05-01

    Lipid biomarkers and associated compound specific stable carbon isotope compositions have been widely applied to study biogeochemical cycling of organic matter in natural environments. This experimental study was specifically designed to examine the influence of chemical reactivities of lipid compounds bound in different pools on their isotopic composition during microbial degradation in marine sediments. 13C-labeled (labeling at different carbon positions of fatty acid chains) and unlabeled tripalmitins were spiked and incubated in natural oxic (top 1 cm) and anoxic (> 10 cm) marine sediments. In anoxic sediments, neither naturally-occurred fatty acids nor tripalmitin-derived 16:0 fatty acid were apparently degraded within two months and hence no significant variation in stable carbon isotopic composition of 16:0 fatty acid was observed. However, in oxic sediments, both naturally-occurred fatty acids and spiked tripalmitin-derived 16:0 fatty acid were degraded by 26% - 95% during incubation. For natural fatty acids such as 14:0, 16:1, 18:1, 20:5/20:4, and >C20:0, degradation rates varied according to the following order: polyunsaturated > monounsaturated > short chain saturated > long chain saturated fatty acids, which reflects variable reactivities of natural lipid compounds from different sources. Tripalmitin-derived 16:0 fatty acid degraded at an at least 2-3× faster rate compared to naturally-occurred 16:0 in sediments. Meanwhile, isotopic compositions of 16:0 fatty acid in the oxic sediments shifted negatively during incubation. It appears that the isotopic shifts are dependent on the amount of 13C-labeled compound spiked into the sediments but not related to the labeling position of 13C in the molecular structure. The results from this study provide direct evidence that the relative reactivities of lipid compounds from different sources (or different pools) can cause alterations in molecular isotopic composition during microbial degradation in natural

  12. Defining seascapes for marine unconsolidated shelf sediments in an eastern boundary upwelling region: The southern Benguela as a case study

    NASA Astrophysics Data System (ADS)

    Karenyi, Natasha; Sink, Kerry; Nel, Ronel

    2016-02-01

    Marine unconsolidated sediment habitats, the largest benthic ecosystem, are considered physically controlled ecosystems driven by a number of local physical processes. Depth and sediment type are recognised key drivers of these ecosystems. Seascape (i.e., marine landscape) habitat classifications are based solely on consistent geophysical features and provide an opportunity to define unconsolidated sediment habitats based on processes which may vary in distribution through space and time. This paper aimed to classify unconsolidated sediment seascapes and explore their diversity in an eastern boundary upwelling region at the macro-scale, using the South African west coast as a case study. Physical variables such as sediment grain size, depth and upwelling-related variables (i.e., maximum chlorophyll concentration, austral summer bottom oxygen concentration and sediment organic carbon content) were included in the analyses. These variables were directly measured through sampling, or collated from existing databases and the literature. These data were analysed using multivariate Cluster, Principal Components Ordination and SIMPER analyses (in PRIMER 6 + with PERMANOVA add-in package). There were four main findings; (i) eight seascapes were identified for the South African west coast based on depth, slope, sediment grain size and upwelling-related variables, (ii) three depth zones were distinguished (inner, middle and outer shelf), (iii) seascape diversity in the inner and middle shelves was greater than the outer shelf, and (iv) upwelling-related variables were responsible for the habitat diversity in both inner and middle shelves. This research demonstrates that the inclusion of productivity and its related variables, such as hypoxia and sedimentary organic carbon, in seascape classifications will enhance the ability to distinguish seascapes on continental shelves, where productivity is most variable.

  13. Biogenic habitat transitions influence facilitation in a marine soft-sediment ecosystem.

    PubMed

    Lohrer, Andrew M; Rodil, Iván F; Townsend, Michael; Chiaroni, Luca D; Hewitt, Judi E; Thrush, Simon F

    2013-01-01

    Habitats are often defined by the presence of key species and biogenic features. However, the ecological consequences of interactions among distinct habitat-forming species in transition zones where their habitats overlap remain poorly understood. We investigated transition zone interactions by conducting experiments at three locations in Mahurangi Harbour, New Zealand, where the abundance of two habitat-forming marine species naturally varied. The two key species differed in form and function: One was a sessile suspension-feeding bivalve that protruded from the sediment (Atrina zelandica; Pinnidae); the other was a mobile infaunal urchin that bioturbated sediment (Echinocardium cordatum; Spatangoida). The experimental treatments established at each site reflected the natural densities of the species across sites (Atrina only, Echinocardium only, Atrina and Echinocardium together, and plots with neither species present). We identified the individual and combined effects of the two key species on sediment characteristics and co-occurring macrofauna. After five months, we documented significant treatment effects, including the highest abundance of co-occurring macrofauna in the Atrina-only treatments. However, the facilitation of macrofauna by Atrina (relative to removal treatments) was entirely negated in the presence of Echinocardium at densities >10 individuals/m2. The transitional areas in Mahurangi Harbour composed of co-occurring Atrina and Echinocardium are currently widespread and are probably more common now than monospecific patches of either individual species, due to the thinning of dense Atrina patches into sparser mixed zones during the last 10-15 years. Thus, although some ecologists avoid ecotones and habitat edges when designing experiments, suspecting that it will skew the extrapolation of results, this study increased our understanding of benthic community dynamics across larger proportions of the seascape and provided insights into temporal

  14. Alkenone paleothermometry: Biological lessons from marine sediment records off western South America

    NASA Astrophysics Data System (ADS)

    Prahl, Fredrick G.; Mix, Alan C.; Sparrow, Margaret A.

    2006-01-01

    An empirical global core-top calibration that relates the alkenone unsaturation index U37K' to mean annual SST (maSST) is statistically the same as that defined for a subarctic Pacific strain of Emiliania huxleyi (CCMP1742) grown exponentially in batch culture under isothermal conditions. Although both equations have been applied widely for paleoSST reconstruction, uncertainty still stems from two key ecological factors: variability in the details of biosynthesis among genetically distinct alkenone-producing strains, and impacts of non-thermal physiological growth factors on U37K'. New batch culture experiments with CCMP1742 here reveal that U37K' diverge systematically from the core-top calibration in response to nutrient depletion and light deprivation, two physiological stresses experienced by phytoplankton populations in the real ocean. Other aspects of alkenone/alkenoate composition also respond to these stresses and may serve as signatures of such effects, providing an opportunity to detect, understand, and potentially correct for such impacts on the geologic record. A test case documents that sediments from the Southeast Pacific display the alkenone/alkenoate compositional signature characteristic of cells physiologically stressed by light deprivation. Such an observation could be explained if marine snow provided a major vector of sedimentation for these biomarkers. Late Pleistocene U37K' records in the Southeast Pacific yield plausible paleotemperature histories of ice-age cooling, but ice-age alkenone/alkenoate signatures fall outside the range of modern calibration samples of similar U37K'. They better match core-top samples deposited beneath waters characterized by much cooler maSST, suggesting key features of ice-age ecology for alkenone-producing haptophytes were different from today, and that the U37K' index taken alone may misgauge the total range of ice-age cooling at these locations. Analysis of the full spectrum of alkenone/alkenoate compositions

  15. Nuclear magnetic resonance properties of marine sediments from the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Daigle, H.

    2013-12-01

    We performed nuclear magnetic resonance (NMR) measurements of longitudinal (T1) and transverse (T2) relaxation times on samples from Integrated Ocean Drilling Program (IODP) Expedition 333 Sites C0011, C0012, and C0018. We compared these measurements with independent measurements of pore size distribution and permeability to develop methods for determining pore structure and permeability directly from NMR data. Geometric means of the T1 and T2 distributions ranged from 0.87 to 7.95 and 0.45 to 6.04 ms, respectively. We compared the T1 and T2 distributions to pore size distributions determined from Mercury Injection Capillary Pressure (MICP) measurements to determine the longitudinal and transverse surface relaxivities, which link relaxation time distribution to pore size. Longitudinal and transverse surface relaxivities ranged generally from 12.2 to 21.8 and 17.51 to 44.04 μm/s, respectively, with one outlier from the sediment-basement interface at Site C0012 having relaxivity values of 256.9 and 335.6 μm/s. Larger surface relaxivities were found to correlate with higher iron content in the sediments. The ratio of the geometric means of the relaxation time distributions (T1LM/T2LM) and the ratio of the surface relaxivities (ρ2/ρ1) both increase linearly with magnetic susceptibility, but magnetic susceptibility displays no relationship with the individual relaxation times or surface relaxivities. We additionally compared T2 values to measured permeabilities using the Schlumberger-Doll Research (SDR) equation. SDR equation coefficient A values were generally in the range of 7x10-18 to 8x10-17 m2/ms2 (0.007 to 0.080 mD/ms2). A is inversely correlated with clay-size particle fraction and specific surface, which suggests that A is mainly controlled by changes in pore or grain structure rather than mineralogy. Our results provide constraints for NMR determinations of pore size and permeability in marine sediments and illustrate the links between NMR properties

  16. Laboratory scale electrokinetic remediation and geophysical monitoring of metal-contaminated marine sediments

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Pazzi, Veronica; Losito, Gabriella

    2013-04-01

    Electrokinetic remediation is an emerging technology that can be used to remove contaminants from soils and sediments. This technique relies on the application of a low-intensity electric field to extract heavy metals, radionuclides and some organic compounds. When the electric field is applied three main transport processes occur in the porous medium: electromigration, electroosmosis and electrophoresis. Monitoring of electrokinetic processes in laboratory and field is usually conducted by means of point measurements and by collecting samples from discrete locations. Geophysical methods can be very effective in obtaining high spatial and temporal resolution mapping for an adequate control of the electrokinetic processes. This study investigates the suitability of electrokinetic remediation for extracting heavy metals from dredged marine sediments and the possibility of using geophysical methods to monitor the remediation process. Among the geophysical methods, the spectral induced polarization technique was selected because of its capability to provide valuable information about the physico-chemical characteristics of the porous medium. Electrokinetic remediation experiments in laboratory scale were made under different operating conditions, obtained by varying the strength of the applied electric field and the type of conditioning agent used at the electrode compartments in each experiment. Tap water, 0.1M citric acid and 0.1M ethylenediamine tetraacetic acid (EDTA) solutions were used respectively as processing fluids. Metal removal was relevant when EDTA was used as conditioning agent and the electric potential was increased, as these two factors promoted the electroosmotic flow which is considered to be the key transport mechanism. The removal efficiencies ranged from 9.5% to 27% depending on the contaminant concerned. These percentages are likely to be raised by a further increase of the applied electric field. Furthermore, spectral induced polarization

  17. Chronologies of marine sediment cores during the Last Interglacial: strengths and limitations of commonly used climato-stratigraphic alignments

    NASA Astrophysics Data System (ADS)

    Govin, Aline; Capron, Emilie

    2015-04-01

    The Last Interglacial (LIG, ~129-116 thousand of years, ka) is relatively well documented in marine sediment cores retrieved across the globe. However, these records exhibit very few absolute age markers such as magnetic events and dated tephra layers, which limits the definition of independent and precise LIG age models. As a result, age models of marine sediments are defined using various methods based on the (i) synchronisation or (ii) climato-stratigraphic alignment of marine records to dated "reference" records, assuming simultaneous regional changes for a given climate variable (e.g. foraminiferal δ18O, temperature). The use of different "reference" chronologies (e.g. LR04, speleothem or ice core chronologies) also limits a precise investigation of climatic sequences across the LIG. Here, we evaluate the underlying hypotheses, strengths and limitations, and age uncertainties of methods commonly used in marine sediments during the LIG: i.e. benthic δ18O alignment to the LR04 benthic δ18O stack, temperature alignment to ice core or to speleothem records. We compare the resulting age models using examples from the North Atlantic core MD95-2042 and the Southern Ocean core MD02-2488. We show a lack of remarkable tie-points within the LIG, which limits the study of the sub-millennial-scale climate variability. We also report age offsets up to 4 ka when different reference chronologies (e.g. ice cores vs. speleothems) or different types of aligned records (e.g. SST vs. planktonic δ18O) are used. These results highlight the need for careful estimates of age uncertainties when defining age models in marine sediments. They also emphasize the fact that LIG chronologies should be considered with care. A clear statement on the reference chronology, the method of alignment and the type of tracers that are used should be given when investigating the LIG sequence of climatic events from various sediment cores or when comparing LIG marine records and climate model

  18. Lethal effects on different marine organisms, associated with sediment-seawater acidification deriving from CO2 leakage.

    PubMed

    Basallote, M D; Rodríguez-Romero, A; Blasco, J; DelValls, A; Riba, I

    2011-08-01

    CO(2) leakages during carbon capture and storage in sub-seabed geological structures could produce potential impacts on the marine environment. To study lethal effects on marine organisms attributable to CO(2) seawater acidification, a bubbling CO(2) system was designed enabling a battery of different tests to be conducted, under laboratory conditions, employing various pH treatments (8.0, 7.5, 7.0, 6.5, 6.0, and 5.5). Assays were performed of three exposure routes (seawater, whole sediment, and sediment elutriate). Individuals of the clam (Ruditapes philippinarum) and early-life stages of the gilthead seabream, Sparus aurata, were exposed for 10 days and 72 h, respectively, to acidified clean seawater. S. aurata larvae were also exposed to acidified elutriate samples, and polychaete organisms of the specie Hediste diversicolor and clams R. philippinarum were also exposed for 10 days to estuarine whole sediment. In the fish larvae elutriate test, 100 % mortality was recorded at pH 6.0, after 48 h of exposure. Similar results were obtained in the clam sediment exposure test. In the other organisms, significant mortality (p < 0.05) was observed at pH values lower than 6.0. Very high lethal effects (calculating L[H(+)]50, defined as the H(+) concentration that causes lethal effects in 50 % of the population exposed) were detected in association with the lowest pH treatment for all the species. The implication of these results is that a severe decrease of seawater pH would cause high mortality in marine organisms of several different kinds and life stages. The study addresses the potential risks incurred due to CO(2) leakages in marine environments. PMID:22828884

  19. Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Atkins, Amy L.; Shaw, Samuel; Peacock, Caroline L.

    2016-09-01

    The phyllomanganate birnessite is the main Mn-bearing phase in oxic marine sediments where it exerts a primary control on the concentration of micronutrient trace metals in seawater. However, during sediment diagenesis and under mild hydrothermal conditions birnessite transforms into the tectomanganate todorokite. We have recently shown that the transformation of birnessite to todorokite proceeds via a four-stage nucleation and growth mechanism, beginning with todorokite nucleation, then crystal growth from solution to form todorokite primary particles, followed by their self-assembly and oriented growth via oriented attachment to form crystalline todorokite laths, culminating in traditional crystal ripening (Atkins et al., 2014). Here we determine the fate and mobility of Ni sorbed by birnessite during this transformation process. Specifically, in our recent work we predict that the presence of Ni within the phyllomanganate matrix will disrupt the formation of todorokite primary particles. As such, contrary to current understanding, we suggest that Ni sorbed by birnessite will slow the transformation of birnessite to todorokite and/or be released to marine porewaters during sediment diagenesis. Here we transform a synthetic, poorly crystalline, Ni-sorbed (∼1 wt% Ni) hexagonal birnessite, analogous to marine birnessite, into todorokite under a mild reflux procedure, developed to mimic marine diagenesis and mild hydrothermal conditions. We characterise our birnessite and reflux products as a time series, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy. In addition we determine Ni speciation and mineral phase associations in a suite of natural marine ferromanganese precipitates, containing intermixed phyllomanganate and todorokite. Our work shows for the first time that Ni significantly slows the transformation of birnessite to todorokite and reduces the

  20. Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments.

    PubMed

    Roca, Christophe; Lehmann, Mareen; Torres, Cristiana A V; Baptista, Sílvia; Gaudêncio, Susana P; Freitas, Filomena; Reis, Maria A M

    2016-06-25

    Exopolysaccharides (EPS) are polymers excreted by some microorganisms with interesting properties and used in many industrial applications. A new Pseudoalteromonas sp. strain, MD12-642, was isolated from marine sediments and cultivated in bioreactor in saline culture medium containing glucose as carbon source. Its ability to produce EPS under saline conditions wa