Science.gov

Sample records for marine snow formation

  1. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    PubMed

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. PMID:26781957

  2. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Passow, U.; Ziervogel, K.; Asper, V.; Diercks, A.

    2012-09-01

    The large marine snow formation event observed in oil-contaminated surface waters of the Gulf of Mexico (GoM) after the Deepwater Horizon accident possibly played a key role in the fate of the surface oil. We characterized the unusually large and mucus-rich marine snow that formed and conducted roller table experiments to investigate their formation mechanisms. Once marine snow lost its buoyancy, its sinking velocity, porosity and excess density were then similar to those of diatom or miscellaneous aggregates. The hydrated density of the component particles of the marine snow from the GoM was remarkably variable, suggesting a wide variety of component types. Our experiments suggest that the marine snow appearing at the surface after the oil spill was formed through the interaction of three mechanisms: (1) production of mucous webs through the activities of bacterial oil-degraders associated with the floating oil layer; (2) production of oily particulate matter through interactions of oil components with suspended matter and their coagulation; and (3) coagulation of phytoplankton with oil droplets incorporated into aggregates. Marine snow formed in some, but not all, experiments with water from the subsurface plume of dissolved hydrocarbons, emphasizing the complexity of the conditions leading to the formation of marine snow in oil-contaminated seawater at depth.

  3. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons.

    PubMed

    Fu, Jie; Gong, Yanyan; Zhao, Xiao; O'Reilly, S E; Zhao, Dongye

    2014-12-16

    This work explored the formation mechanism of marine oil snow (MOS) and the associated transport of oil hydrocarbons in the presence of a stereotype oil dispersant, Corexit EC9500A. Roller table experiments were carried out to simulate natural marine processes that lead to formation of marine snow. We found that both oil and the dispersant greatly promoted the formation of MOS, and MOS flocs as large as 1.6-2.1 mm (mean diameter) were developed within 3-6 days. Natural suspended solids and indigenous microorganisms play critical roles in the MOS formation. The addition of oil and the dispersant greatly enhanced the bacterial growth and extracellular polymeric substance (EPS) content, resulting in increased flocculation and formation of MOS. The dispersant not only enhanced dissolution of n-alkanes (C9-C40) from oil slicks into the aqueous phase, but facilitated sorption of more oil components onto MOS. The incorporation of oil droplets in MOS resulted in a two-way (rising and sinking) transport of the MOS particles. More lower-molecular-weight (LMW) n-alkanes (C9-C18) were partitioned in MOS than in the aqueous phase in the presence of the dispersant. The information can aid in our understanding of dispersant effects on MOS formation and oil transport following an oil spill event. PMID:25420231

  4. Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.

    2010-12-01

    The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (< 1cm diameter). Subsamples of the water surrounding the aggregates were taken throughout 21 days of the roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the

  5. Viral Lysis of Cells Influences The Concentration and Compostion of Dissolved Organic Matter and The Formation of Organic Aggregates (marine Snow)

    NASA Astrophysics Data System (ADS)

    Weinbauer, M. G.; Peduzzi, P.

    The effect of moderately (ca. 2.5 fold) increasing the concentration of the virus-size fraction (VSF) of seawater on the chemical composition of the dissolved organic mat- ter (DOM) pool during the formation of organic aggregates (marine snow) was tested experimentally with seawater samples collected in the Northern Adriatic Sea. The VSF enrichment did not significantly change the concentration of selected DOM com- pounds, whereas viral abundance was ca. 2-fold higher. During long-term experiments (40 - 200 hrs), bacterial abundance was on average 25% lower in the VSF amended than in the control incubations, and the frequency of visibly infected cells was stimu- lated by ca. 50%. VSF delayed the development of phytoplankton blooms (diatoms), but in the end of the experiments, Chl a concentrations in the VSF amended incuba- tions exceeded those in the control incubations. The VSF enrichment caused an enrich- ment of Serine and Threonine in the dissolved hydrolysable amino acid (AA) fraction indicative of viral lysis of diatoms. Bulk dissolved free AA acid and monomeric car- bohydrate (CHO) concentrations were repressed, whereas bulk dissolved hydrolysable AA and CHO concentrations were stimulated in the VSF enriched incubations. Viral lysis was likely the major reason for the stimulation of hydrolysable DOM. The for- mation of organic aggregates was repressed by the VSF enrichment, but the aggregates were larger and more persistent in the VSF amended than in the control incubations. Stimulation of hydrolysable DOM and sticky viral lysis products might be the reason for the larger and more persistent aggregates. This demonstrates that bioactive mate- rial in the VSF of seawater can have major implications for primary production and the cycling of organic carbon in the ocean.

  6. Prompt Planetesimal Formation beyond the Snow Line

    NASA Astrophysics Data System (ADS)

    Armitage, Philip J.; Eisner, Josh A.; Simon, Jacob B.

    2016-09-01

    We develop a simple model to predict the radial distribution of planetesimal formation. The model is based on the observed growth of dust to millimeter-sized particles, which drift radially, pile-up, and form planetesimals where the stopping time and dust-to-gas ratio intersect the allowed region for streaming instability-induced gravitational collapse. Using an approximate analytic treatment, we first show that drifting particles define a track in metallicity–stopping time space whose only substantial dependence is on the disk’s angular momentum transport efficiency. Prompt planetesimal formation is feasible for high particle accretion rates (relative to the gas, {\\dot{M}}p/\\dot{M}≳ 3× {10}-2 for α ={10}-2), which could only be sustained for a limited period of time. If it is possible, it would lead to the deposition of a broad and massive belt of planetesimals with a sharp outer edge. Numerically including turbulent diffusion and vapor condensation processes, we find that a modest enhancement of solids near the snow line occurs for centimeter-sized particles, but that this is largely immaterial for planetesimal formation. We note that radial drift couples planetesimal formation across radii in the disk, and suggest that considerations of planetesimal formation favor a model in which the initial deposition of material for giant planet cores occurs well beyond the snow line.

  7. Rapid Smothering of Coral Reef Organisms by Muddy Marine Snow

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Wolanski, E.

    2000-01-01

    Estuarine mud, when resuspended in nutrient-rich near-shore water, aggregates to marine snow, and within minutes to hours can exert detrimental or even lethal effects on small coral reef organisms. In a pilot study, estuarine mud was suspended in near-shore and off-shore waters of the Great Barrier Reef to a final concentration of 170 mg l -1. The short-term responses of a coral ( Acropora sp.) and coral-inhabiting barnacles (subfamily Pyrgomatidae), exposed to either near-shore or off-shore water, were microscopically observed and video recorded. In the off-shore water treatment, flocculation was minor, and aggregate sizes were c. 50 μm. The organisms were able to clean themselves from these small settling aggregates at low siltation (<0·5 mg cm -2), and struggled and produced mucus only at high siltation (4-5 mg cm -2). In contrast, in near-shore, nutrient-enriched waters, the suspended mud aggregated into large sticky flocs of marine snow (200-2000 μm diameter). The organisms responded to a thin coat of deposited flocs with vigorous cleaning by cirri and tentacle beating. After 5 min struggle, the barnacle stopped moving, calanoid copepods were entangled in the aggregates, and thick layers of mucus were exuded by the coral polyps. Both barnacle and copepods died after <1 h exposure; a short time compared with natural occurrences of marine snow deposition on coral reefs. Enhanced nutrient concentrations are known to contribute to enhance biologically mediated flocculation. This pilot study suggests that the concentration of suspended mud, and extent of stickiness and flocculation, can synergistically affect reef benthos organisms after short exposure. The enclosed macro video recordings clearly visualize these effects, and help convey the important implications for managers: that inshore reefs of the Great Barrier Reef cannot be sustainably managed without managing the adjacent land.

  8. Marine Snow and Gels: Hot Spots of Biogeochemical Cycling, Biological Activity, and Sedimentation in the Sea

    NASA Astrophysics Data System (ADS)

    Alldredge, A. L.

    2004-12-01

    Much of the organic carbon sequestered in the deep sea and ocean bottom sediments as relatively rare, large detrital particles generically known as marine snow. Because they are enriched in organic matter, microbes, and nutrients, these large particles also serve as hot spots for biological and chemical process in the water column. Recent evidence reveals that abundant carbohydrate gel particles in the ocean, formed from the dissolved exudates of phytoplankton and bacteria, are intricately involved in the formation of marine snow. These discoveries are changing the way we conceptualize the pelagic zone on small scales. We no longer imagine seawater as a relatively homogeneous fluid in which float a spectrum of dispersed molecules, particles, and organisms, but instead see it as a rich hydrated matrix of transparent organic gels, detritus, and cob-web like surfaces which provide microscale physical, chemical, and biological structure. This talk will focus on the origins, fate, and significance of marine snow and gels in the sea, including their role in carbon cycling, sedimentation and carbon flux , food webs, and chemical and biological transformation.

  9. Detection of ice crust formation on snow with satellite data

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Bulygina, Olga N.; Kumpula, Timo; Forbes, Bruce; Stammler, Florian

    2010-05-01

    Short term thawing of the snow surface and subsequent refreeze can lead to the formation of ice crusts. These events are related to specific meteorological conditions such us rain-on-snow events and/or temporary increase of air temperature above zero degree Celsius. The structure change in the snow pack has adverse effect especially on wild life and also the local community related to reindeer herding. Active microwave satellite data can be used to monitor changes of snow related to thawing. So far they have been mostly employed for spring thaw detection. Coarse spatial resolution sensors such as scatterometer feature short revisit intervals. Seawinds QuikScat (Ku-band, 25km, 1999-2009) acquired data several times per day at high latitudes. This allows precise detection of the timing of thaw events. Also the change of structure in the snow itself impacts the backscatter. Values increase significantly. A method has been developed to monitor these events at high latitudes (>60°N) on circumpolar scale. Validation is carried out based on air temperature records and snow course data over Northern Eurasia. Events during midwinter of the last nine years (November - February 2000/1 - 2008/9) have been frequent in northern Europe, European Russia and Alaska. They have occurred up to once a year in central Siberia, the Russian Far East and most of northern Canada. Monitoring is important as such events are discussed in relation to climate change especially over Northern Eurasia.

  10. Astrophysics: Variable snow lines affect planet formation

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda

    2016-07-01

    Observations of the disk of dust and gas around a nascent star reveal that the distance from the star at which water in the disk forms ice is variable. This variation might hinder the formation of planets. See Letter p.258

  11. Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations

    NASA Astrophysics Data System (ADS)

    Chen, Zeyuan; Chu, Liang; Galbavy, Edward S.; Ram, Keren; Anastasio, Cort

    2016-08-01

    While the hydroxyl radical (OH) in the snowpack is likely a dominant oxidant for organic species and bromide, little is known about the kinetics or steady-state concentrations of OH on/in snow and ice. Here we measure the formation rate, lifetime, and concentration of OH for illuminated polar snow samples studied in the laboratory and in the field. Laboratory studies show that OH kinetics and steady-state concentrations are essentially the same for a given sample studied as ice and liquid; this is in contrast to other photooxidants, which show a concentration enhancement in ice relative to solution as a result of kinetic differences in the two phases. The average production rate of OH in samples studied at Summit, Greenland, is 5 times lower than the average measured in the laboratory, while the average OH lifetime determined in the field is 5 times higher than in the laboratory. These differences indicate that the polar snows we studied in the laboratory are affected by contamination, despite significant efforts to prevent this; our results suggest similar contamination may be a widespread problem in laboratory studies of ice chemistry. Steady-state concentrations of OH in clean snow studied in the field at Summit, Greenland, range from (0.8 to 3) × 10-15 M, comparable to values reported for midlatitude cloud and fog drops, rain, and deliquesced marine particles, even though impurity concentrations in the snow samples are much lower. Partitioning of firn air OH to the snow grains will approximately double the steady-state concentration of snow-grain hydroxyl radical, leading to an average [OH] in near-surface, summer Summit snow of approximately 4 × 10-15 M. At this concentration, the OH-mediated lifetimes of organics and bromide in Summit snow grains are approximately 3 days and 7 h, respectively, suggesting that hydroxyl radical is a major

  12. Oil droplet collisions with marine snow: effect of manipulating droplet size

    NASA Astrophysics Data System (ADS)

    Lambert, R. A.; Variano, E. A.

    2013-12-01

    Solid particle aggregates in the ocean, such as marine snow, can scavenge oil droplets as they are transported in the ocean, resulting in the removal of oil from the water column. Often, chemical dispersant is applied to oil spills to manipulate the oil droplet size; we study how such manipulations affect the rate at which oil is removed from the water column by collision with marine snow. We model the collision process using the particle pair methodology. Three dominant collision mechanisms are considered for particle pairs in the ocean environment: turbulent shear, differential settling and Brownian motion. A comparison of the removal rate of oil from the water column for large and small droplets size is conducted at constant volume fraction. The results of the study show that, for a constant volume of oil, droplet size does alter the amount of oil removed from the water column during collisions with marine snow, and that a greater amount of oil is removed when the droplets are large. This finding holds regardless of which collision mechanism is considered. Of the three mechanisms, differential settling results in the largest constant-volume removal rate (since oil droplets rise while marine floc settle downward) while Brownian diffusion results in the lowest removal rate. These finding suggest that using chemical dispersant on deep-sea oil spills to reduce droplet size will reduce the total volume of oil that becomes attached to marine snow and reduce the amount removed from the water column by this mechanism.

  13. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.

    2015-01-01

    The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of

  14. Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Beine, Harry; Anastasio, Cort; Domine, Florent; Douglas, Thomas; Barret, Manuel; France, James; King, Martin; Hall, Sam; Ullmann, Kirk

    2012-07-01

    We measured light absorption in 42 marine snow, sea ice, seawater, brine, and frost flower samples collected during the OASIS field campaign between February 27 and April 15, 2009. Samples represented multiple sites between landfast ice and open pack ice in coastal areas approximately 5 km west of Barrow, Alaska. The chromophores that are most commonly measured in snow, H2O2, NO3-, and NO2-, on average account for less than 1% of sunlight absorption in our samples. Instead, light absorption is dominated by unidentified "residual" species, likely organic compounds. Light absorption coefficients for the frost flowers on first-year sea ice are, on average, 40 times larger than values for terrestrial snow samples at Barrow, suggesting very large rates of photochemical reactions in frost flowers. For our marine samples the calculated rates of sunlight absorption and OH production from known chromophores are (0.1-1.4) × 1014 (photons cm-3 s-1) and (5-70) × 10-12 (mol L-1 s-1), respectively. Our residual spectra are similar to spectra of marine chromophoric dissolved organic matter (CDOM), suggesting that CDOM is the dominant chromophore in our samples. Based on our light absorption measurements we estimate dissolved organic carbon (DOC) concentrations in Barrow seawater and frost flowers as approximately 130 and 360 μM C, respectively. We expect that CDOM is a major source of OH in our marine samples, and it is likely to have other significant photochemistry as well.

  15. Snow bedforms: A review, new data, and a formation model

    NASA Astrophysics Data System (ADS)

    Filhol, Simon; Sturm, Matthew

    2015-09-01

    Snow bedforms, like sand bedforms, consist of various shapes that form under the action of wind on mobile particles. Throughout a year, they can cover up to 11% of the Earth surface, concentrated toward the poles. These forms impact the local surface energy balance and the distribution of precipitation. Only a few studies have concentrated on their genesis. Their size ranges from 2 cm (ripple marks) to 2.5 m tall (whaleback dunes). We counted a total of seven forms that are widely recognized. Among them sastrugi, an erosional shape, is the most widespread. From laser scans, we compared scaling of snow versus sand barchan morphology. We found that both have proportionally the same footprint, but snow barchans are flatter. The key difference is that snow can sinter, immobilizing the bedform and creating an erodible material. Using a model, we investigated the effect of sintering on snow dune dynamics. We found that sintering limits their size because it progressively hardens the snow and requires an ever-increasing wind speed to maintain snow transport. From the literature and results from this model, we have reclassified snow bedforms based on two parameters: wind speed and snow surface conditions. The new data show that snow dune behavior mirrors that of sand dunes, with merging, calving, and collision. However, isolated snow barchans are rare, with most of the snow surfaces encountered in the field consisting of several superimposed bedforms formed sequentially during multiple weather events. Spatially variable snow properties and geometry can explain qualitatively these widespread compound snow surfaces.

  16. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  17. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic.

    PubMed

    Douglas, Thomas A; Sturm, Matthew; Simpson, William R; Blum, Joel D; Alvarez-Aviles, Laura; Keeler, Gerald J; Perovich, Donald K; Biswas, Abir; Johnson, Kelsey

    2008-03-01

    Mercury is deposited to the Polar Regions during springtime atmospheric mercury depletion events (AMDEs) but the relationship between snow and ice crystal formation and mercury deposition is not well understood. The objective of this investigation was to determine if mercury concentrations were related to the type and formation of snow and ice crystals. On the basis of almost three hundred analyses of samples collected in the Alaskan Arctic, we suggestthat kinetic crystals growing from the vapor phase, including surface hoar, frost flowers, and diamond dust, yield mercury concentrations that are typically 2-10 times higher than that reported for snow deposited during AMDEs (approximately 80 ng/L). Our results show that the crystal type and formation affect the mercury concentration in any given snow sample far more than the AMDE activity prior to snow collection. We present a conceptual model of how snow grain processes including deposition, condensation, reemission, sublimation, and turbulent diffusive uptake influence mercury concentrations in snow and ice. These processes are time dependent and operate collectively to affect the retention and fate of mercury in the cryosphere. The model highlights the importance of the formation and postdeposition crystallographic history of snow or ice crystals in determining the fate and concentration of mercury in the cryosphere. PMID:18441801

  18. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  19. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow.

    PubMed

    Thiele, Stefan; Fuchs, Bernhard M; Amann, Rudolf; Iversen, Morten H

    2015-02-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  20. Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow

    PubMed Central

    Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf

    2014-01-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  1. Numerical computations of faceted pattern formation in snow crystal growth.

    PubMed

    Barrett, John W; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model. PMID:23005427

  2. Numerical computations of faceted pattern formation in snow crystal growth

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model.

  3. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  4. Pyroclast/snow interactions and thermally driven slurry formation. Part 1: Theory for monodisperse grain beds

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.

  5. Surface formation of HONO over soil and snow during UBWS 2012, 2014

    NASA Astrophysics Data System (ADS)

    Tsai, J. Y.; Colosimo, S. F.; Spolaor, M.; Cheung, R.; Pikelnaya, O.; Zamora, R. J.; Williams, E. J.; Stutz, J.

    2014-12-01

    The release of HONO from snow in remote polar regions has been known for many years. HONO in the snow is likely formed through chemical processes initiated by the photolysis of nitrate in the snowpack. This source has recently also been invoked to explain high ozone levels observed at wintertime gas-drilling locations. The release of HONO from snowpack would be enhanced in oil and gas fields, where emissions of NOx are significant, thus serving as an important OH precursor and driver of ozone formation. Here we present observations of gradients of HONO mixing ratios using the UCLA LP-DOAS instrument during the Uintah Basin Winter Ozone Studies (UBWOS) in 2012 and 2014. HONO levels were measured at about 25, 45, and 65 m above the ground level. The lack of snow during UBWS 2012 compared to the snowy 2014 conditions allows us to directly study the influence of snow cover on HONO chemistry. Preliminary results show that HONO mixing ratios were comparable during both years, with nighttime hourly averages ranging from 60 ppt to 120ppt and daytime hourly averages close to 50ppt. However, during the snow covered year, we observed a significant peak of HONO (up to 100 ppt in the lowest light path) around 13:00 local time. During this time, a strong HONO vertical gradient was also observed. We will discuss the possible daytime HONO sources responsible for these observations and investigate the role of snow in HONO formation in a polluted environment

  6. The effect of vegetation cover on the formation of glide-snow avalanches

    NASA Astrophysics Data System (ADS)

    Feistl, Thomas; Bebi, Peter; Bartelt, Perry

    2014-05-01

    Glide snow avalanches release on steep, smooth slopes and can be prevented either by protection forests or by artificial defense structures. To minimize the risk for people and infrastructure, guidelines have been formulated concerning structure, height and distance between avalanche prevention bridges. These guidelines assure the major functions of the defense structures: first to prevent the release of avalanches and second to withstand the static and dynamic forces of the moving snow cover. The major functions of protection forests are generally similar and therefore guidelines on the maximum tolerable size of forest gaps exist in Switzerland. These guidelines are based on a static relationship between the pressure of the snow cover and the resistance of the defense structure and on empirical observations (forest). Whereas ground friction is only qualitatively taken into account, we assume it to play a crucial role in glide snow avalanche formation. To prove this assumption we collected data on the predominant vegetation cover of 67 release areas in the region of Davos, Switzerland. Our observations reveal a strong relationship between vegetation cover type, slope angle and slab length. We were able to quantify the Coulomb friction parameter μ by applying a physical model that accounts for the dynamic forces of the moving snow on the stauchwall, the fixed snow cover below the release area. The stauchwall resists the dynamic forces of the snow cover, until a critical strain rate is reached and then fails in brittle compression. This failure strongly depends on the friction between snow cover and soil. A typical value of μ for grassy slopes is 0.2. Snow characteristics like density are implemented in the model as constants. We compared the model results with the guidelines for defense structures and forest gap sizes and found accordance for certain friction parameter values. Forest gaps of 40 meter length and a 35° slope angle require friction values of 0

  7. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation. PMID:22466199

  8. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  9. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  10. Interactions Between Snow-Adapted Organisms, Minerals and Snow in a Mars-Analog Environment, and Implications for the Possible Formation of Mineral Biosignatures

    NASA Astrophysics Data System (ADS)

    Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.

    2015-12-01

    Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated

  11. Carbonaceous particles reduce marine microgel formation

    PubMed Central

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL−1 CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca2+ bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  12. Carbonaceous particles reduce marine microgel formation.

    PubMed

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL(-1) CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca(2+) bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  13. Laser-induced supersaturation and snow formation in a sub-saturated cloud chamber

    NASA Astrophysics Data System (ADS)

    Ju, Jingjing; Leisner, Tomas; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2014-12-01

    Calculation of the saturation ratio inside vortices formed below the filament in a sub-saturation zone in a cloud chamber was given. By mixing the air with a large temperature gradient, supersaturation was sustained inside the vortices. This led to precipitation and snow formation when strong filaments were created using short focal length lenses ( f = 20 and 30 cm). However, when longer filaments were formed with the same laser pulse energy but longer focal length lenses ( f = 50 and 80 cm), only condensation (mist) was observed. The lack of precipitation was attributed to the weaker air flow, which was not strong enough to form strong vortices below the filament to sustain precipitation.

  14. Yeah!!! A Snow Day!

    ERIC Educational Resources Information Center

    Cone, Theresa Purcell; Cone, Stephen L.

    2006-01-01

    As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…

  15. Pitted rock surfaces on Mars: A mechanism of formation by transient melting of snow and ice

    NASA Astrophysics Data System (ADS)

    Head, James W.; Kreslavsky, Mikhail A.; Marchant, David R.

    2011-09-01

    Pits in rocks on the surface of Mars have been observed at several locations. Similar pits are observed in rocks in the Mars-like hyperarid, hypothermal stable upland zone of the Antarctic Dry Valleys; these form by very localized chemical weathering due to transient melting of small amounts of snow on dark dolerite boulders preferentially heated above the melting point of water by sunlight. We examine the conditions under which a similar process might explain the pitted rocks seen on the surface of Mars (rock surface temperatures above the melting point; atmospheric pressure exceeding the triple point pressure of H2O; an available source of solid water to melt). We find that on Mars today each of these conditions is met locally and regionally, but that they do not occur together in such a way as to meet the stringent requirements for this process to operate. In the geological past, however, conditions favoring this process are highly likely to have been met. For example, increases in atmospheric water vapor content (due, for example, to the loss of the south perennial polar CO2 cap) could favor the deposition of snow, which if collected on rocks heated to above the melting temperature during favorable conditions (e.g., perihelion), could cause melting and the type of locally enhanced chemical weathering that can cause pits. Even when these conditions are met, however, the variation in heating of different rock facets under Martian conditions means that different parts of the rock may weather at different times, consistent with the very low weathering rates observed on Mars. Furthermore, as is the case in the stable upland zone of the Antarctic Dry Valleys, pit formation by transient melting of small amounts of snow readily occurs in the absence of subsurface active layer cryoturbation.

  16. Effect of Type and Concentration of Ballasting Particles on Sinking Rate of Marine Snow Produced by the Appendicularian Oikopleura dioica

    PubMed Central

    Lombard, Fabien; Guidi, Lionel; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d-1 increase in sinking speed for a 5×105 µm3 ml-1 increase in particle concentration, near independent on ballast type. We finally compare our observations to the literature and stress the need to generate aggregates similar to those in nature in order to get realistic estimates of the impact of ballast particles on sinking speeds. PMID:24086610

  17. The Winter Environment: Snow

    ERIC Educational Resources Information Center

    Murphy, James E.

    1974-01-01

    Discusses the structure and formation of snow crystals, outlines the history of snow removal, and describes techniques that can be used by students for studying snowflakes and relating their structure to the conditions under which they were formed. (JR)

  18. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    PubMed

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-01

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation. PMID:27137026

  19. Formation, distribution and variability in snow cover on the Asian territory of the USSR

    NASA Technical Reports Server (NTRS)

    Pupkov, V. N.

    1985-01-01

    A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.

  20. A Blowing Snow Model for Ice Shelf Rifts

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.; Tremblay, L.; Macayeal, D. R.

    2005-12-01

    Ice melange (a mixture of snow, marine ice, and ice talus) may play various roles in the rates of propagation of iceberg-calving rifts through Antarctic ice shelves. This modeling study examines the role of windblown snow in the formation and maintenance of ice melange in the "nascent rift" in the Ross Ice Shelf (78 08'S, 178 29'W). The rift axis is perpendicular to the regional wind direction, allowing us to employ a two-dimensional blowing snow model. The Piektuk-Tuvaq blowing snow model (Dery and Tremblay, 2004) adapted the Piektuk blowing snow model for use in sea ice environments by including parameterization for open-water leads within the sea ice. This version of the model was used to study the initial conditions of a freshly-opened rift, as the input of blowing snow into the seawater within the rift promotes marine ice formation by cooling and freshening the surface water. We adapted the Piektuk-Tuvaq model both for the local climatic conditions and to incorporate the geometry of the rift, which is 30m deep and 100m wide (far deeper than a lead). We present the evolution of the topography within the rift for two cases. The first is an ice melange composed exclusively of snow and marine ice, the second uses an initial topography including large chunks of ice talus.

  1. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10-3), the snow line produces a ringlike structure with a minimum at αmm ˜ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  2. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10‑3), the snow line produces a ringlike structure with a minimum at αmm ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  3. Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Lin, D. N. C.

    2007-07-01

    The first challenge in the formation of both terrestrial planets and the cores of gas giants is the retention of grains in protoplanetary disks. In most regions of these disks, gas attains sub-Keplerian speeds as a consequence of a negative pressure gradient. Hydrodynamic drag leads to orbital decay and depletion of the solid material in the disk, with characteristic timescales as short as only a few hundred years for meter-sized objects at 1 AU. In this Letter, we suggest a particle retention mechanism that promotes the accumulation of grains and the formation of planetesimals near the water sublimation front or ``snow line.'' This model is based on the assumption that, in the regions most interesting for planet formation, the viscous evolution of the disk is due to turbulence driven by the magnetorotational instability (MRI) in the surface layers of the disk. The depth to which MRI effectively generates turbulence is a strong function of grain size and abundance. A sharp increase in the grain-to-gas density ratio across the snow line reduces the column depth of the active layer. As the disk evolves toward a quasi-steady state, this change in the active layer creates a local maximum in radial distribution of the gas surface density and pressure, causing the gas to rotate at super-Keplerian speed and halting the inward migration of grains. This scenario presents a robust process for grain retention that may aid in the formation of proto-gas giant cores preferentially near the snow line.

  4. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features

  5. RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION

    SciTech Connect

    Okuzumi, Satoshi; Kobayashi, Hiroshi; Tanaka, Hidekazu; Wada, Koji

    2012-06-20

    Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm{sup -3}) even if collisional compression is taken into account. We also show that the high porosity triggers significant acceleration in collisional growth. This acceleration is a natural consequence of the particles' aerodynamical properties at low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy particles.

  6. Formation and diagenesis of modern marine calcified cyanobacteria.

    PubMed

    Planavsky, N; Reid, R P; Lyons, T W; Myshrall, K L; Visscher, P T

    2009-12-01

    Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a modern marine reef setting at Highborne Cay, Bahamas. Our observations and stable isotope data suggest that initial calcification occurs in living cyanobacteria and is photosynthetically induced. A single variety of cyanobacteria, Dichothrix sp., produces calcified filaments. Adjacent cyanobacterial mats form well-laminated stromatolites, rather than calcified filaments, indicating there can be a strong taxonomic control over the mechanism of microbial calcification. Petrographic analyses indicate that the calcified filaments are degraded during early diagenesis and are not present in well-lithified microbialites. The early diagenetic destruction of calcified filaments at Highborne Cay indicates that the absence of calcified cyanobacteria from periods of the Phanerozoic is likely to be caused by low preservation potential as well as inhibited formation. PMID:19796131

  7. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    PubMed

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems. PMID:26359115

  8. Appalachia Snow

    Atmospheric Science Data Center

    2014-05-15

    ... on December 4 and 5, 2002, also brought the season's first snow to parts of the south and southern Appalachia. The extent of snow cover over central Kentucky, eastern Tennessee, western North Carolina and ...

  9. Dining Dovekies Demand, "When, Where and What's for Dinner?" The Impact of Seasonal Changes in Snow Melt and the Development of the Arctic Marine Food Web on Seabirds.

    NASA Astrophysics Data System (ADS)

    Karnovsky, N. J.; Harding, A.; Welcker, J.; Brown, Z. W.; Kitaysky, A.; Kwasniewski, S.; Walkusz, W.; Gremillet, D.

    2011-12-01

    The Atlantic sector of the Arctic is undergoing widespread climate change with increases in air and sea temperatures which impact the timing of ice retreat, snow melt and the development of the marine food web. Dovekies (Alle alle) are small seabirds that migrate to the Atlantic Sector of the Arctic to feed in ice free waters that have abundant lipid-rich zooplankton. In the Greenland Sea, the dovekies are largely dependent on the advection of Calanus copepods into the area. We hypothesized that dovekies breeding adjacent to water masses which bring smaller, less energy-rich prey into the region (Calanus finmarchicus), work harder to find food and have higher stress levels. We tested this hypothesis by attaching time-depth recorders to provisioning dovekies at three colonies adjacent to different water masses (the West Spistbergen Current, the East Greenland Current, and the Sorkapp Current). We determined the length of time dovekies at different colonies spent at-sea collecting food for themselves and their chicks. We measured circulating corticosteroid hormone levels in their blood to assess stress levels. We collected chick meals to determine the energetic content of prey fed chicks at the different colonies. We found that dovekies are sensitive to the quality of prey available to them. Dovekies exposed to less profitable prey made longer foraging trips and worked harder while at-sea to collect prey for themselves and their chicks. Furthermore, over the past 50 years, dovekies breeding along the western shores of Spitsbergen have initiated breeding earlier in spring as their nest sites have become snow-free at earlier dates. We evaluate the impact of earlier breeding and the timing of the development of the marine food web within different currents which advect and/or support Calanus copepods into the Greenland Sea. Future possible declines in dovekies may impact terrestrial food webs which are highly influenced by the annual input of nitrogen rich guano on the

  10. Ice Formation Potential of Field-Collected Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Carrion-Matta, A.; Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    Marine biogenic particles composed mainly of sea salt and organic material aerosolized from a mesocosm in laboratory experiments have recently been found to act as ice nuclei. How these particles relate to those collected from sea spray under ambient conditions in the field is unknown. This study reports on the heterogeneous ice nucleation potential of particles collected during the marine aerosol characterization experiment (MACE) on the south shore of Long Island, New York. Ambient aerosol size distributions were measured and particles were collected on hydrophobically coated substrates and subsequently used for ice nucleation experiments using an ice nucleation cell coupled to an optical microscope. This technique allows detection of ice formation for temperatures between 200 and 273 K and for relative humidity with respect to ice (RHice) from 100% up to water saturation. Individual ice nucleating particles were identified for subsequent chemical and physical characterization using both X-ray and electron micro-spectroscopic techniques. Concentrations of bacteria, viruses, and transparent exopolymer particles (TEP) in the bulk seawater, sea-surface microlayer (SML), and in sea spray were determined using established methods and related to airborne sea spray particles and their ice nucleation potential. Onshore aerosol size distribution measurements taken at 5 m height and 10 m away from the breaking waves, revealed a peak maximum at 100 nm and Ntot = 6.8 x 10^2 cm^-3. Bacterial, viral, and TEP were found to be enriched in the SML. Ambient particles collected during MACE were found to nucleate ice efficiently, e. g. at 215 K, ice nucleation occurred on average at 125% RHice. Results of aerosol size distributions and ice nucleation efficiencies are compared to laboratory bubble bursting experiments in which natural seawater was used. The goal of this study is to understand the connection between sea spray aerosolization and atmospheric ice cloud formation and to

  11. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  12. Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms

    NASA Astrophysics Data System (ADS)

    Sellegri, K.; Pey, J.; Rose, C.; Culot, A.; DeWitt, H. L.; Mas, S.; Schwier, A. N.; Temime-Roussel, B.; Charriere, B.; Saiz-Lopez, A.; Mahajan, A. S.; Parin, D.; Kukui, A.; Sempere, R.; D'Anna, B.; Marchand, N.

    2016-06-01

    Earth, as a whole, can be considered as a living organism emitting gases and particles into its atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change by emitting particles that ultimately will influence cloud coverage. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We identify iodine-containing species as major precursors for new particle clusters' formation, while questioning the role of the commonly accepted dimethyl sulfide oxidation products, in forming new particle clusters in the region investigated and within a time scale on the order of an hour. We further show that amines would sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest that iodine-containing species and amines are correlated to different biological tracers. These observations, if generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions.

  13. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  14. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  15. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  16. Snow cover in the Siberian forest-steppe

    NASA Technical Reports Server (NTRS)

    Zykov, I. V.

    1985-01-01

    A study is made of the snow cover on an experimental agricultural station in Mariinsk in the winter of 1945 to 1946. Conditions of snow cover formation, and types and indicators of snow cover are discussed. Snow cover structure and conditions and nature of thawing are described.

  17. Ramp-style deposition of Oligocene Marine Vedder formation, San Joaquin Valley, California

    SciTech Connect

    Bloch, R.B.

    1986-04-01

    The Oligocene Vedder formation consists of well-sorted medium to fine-grained marine sand and shale in the subsurface of the eastern San Joaquin Valley. Updip, this formation interfingers with nonmarine/lagoonal facies known as the Walker Formation. This relationship appears to be transgressive because the marine Vedder generally overlies the Walker Formation. Downdip, the Vedder sands interfinger with middle to lower bathyal shale in a progradational manner, forming upward-coarsening patterns in well logs. Depositional water depths for the shale were determined from benthic foraminifera assemblages. The Vedder formation is approximately 750 ft thick along its updip part, and gradually thickens to 1500 ft downdip. Overall deposition geometry, determined from well-log correlations and seismic data, is generally parallel and downlapping. A prominent shelf-slope break is not evident. Rather, depositional surfaces are tabular or broadly lobate, with a depositional slope of 5/sup 0/-10/sup 0/. This geometry of constant slope between nonmarine and deep marine water depth is termed a ramp. The depositional style and geometry are similar to that of the Oligocene upper Pleito Formation, which crops out in the San Emigdio Mountains on the southern margin of the San Joaquin Valley. The Vedder formation was deposited subsequent to a period of rapid subsidence (about 50 cm/1000 years), as determined from geohistory analysis of well data on the Bakersfield arch. This rapid subsidence may have induced deposition in a ramp geometry, rather than a shelf-slope configuration.

  18. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end. PMID:24483507

  19. Anoxic marine lakes - an analogue environment for insular phosphorite formation

    SciTech Connect

    Burnett, W.C. )

    1990-06-01

    Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau, were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.

  20. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  1. Brine-Wetted Snow on the Surface of Sea Ice: A Potentially Vast and Overlooked Microbial Habitat

    NASA Astrophysics Data System (ADS)

    Deming, J. W.; Ewert, M.; Bowman, J. S.; Colangelo-Lillis, J.; Carpenter, S. D.

    2010-12-01

    On the hemispheric scale, snow on the surface of sea ice significantly impacts the exchange of mass and energy across the ocean-ice-atmosphere interface. The snow cover over Arctic sea ice plays a central role in Arctic photochemistry, including atmospheric depletion events at the onset of spring, and in ecosystem support, by determining the availability of photosynthetically active radiation for algal primary production at the bottom of the ice. Among the non-uniformities of snow relevant to its larger-scale roles is salt content. When snow is deposited on the surface of new sea ice, brine expelled onto the ice surface during ice formation wicks into the snow by capillary action, forming a brine-wetted or saline snow layer at the ice-snow interface. A typical salinity for this basal snow layer in the Arctic (measured on a 3-cm depth interval of melted snow) is about 20 (ppt by optical salinometer), with maxima approaching 30 ppt, thus higher than the salinity of melted surface sea ice (< 12 ppt). Although the physical-chemical properties of this brine-wetted layer have been examined in recent years, and the (assumed) air-derived microbial content of overlying low-salinity snow is known to be low in winter, basal saline snow is essentially unexplored as a microbial habitat. As part of an NSF-supported project on frost flowers, we investigated snow overlying coastal sea ice off Barrow, Alaska, in February 2010 (since snow buries frost flowers). Sterile (ethanol-rinsed) tools were used to open snow pits 60 cm wide, record temperature by thermoprobe at 3-cm depth intervals, and collect samples from newly exposed snow walls for salinity (3-cm intervals) and biological measurements (6-cm intervals). The latter included counts of bacterial abundance by epifluorescence microscopy and assays of extracellular polysaccharide substances (EPS). We also sampled snow on a larger scale to extract sufficient DNA to analyze microbial community composition (ongoing work), as well as

  2. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.

    PubMed

    You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing

    2007-10-01

    China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture. PMID:17624525

  3. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  4. Glacial marine sediments in the precambrian Gowganda formation at Whitefish Falls, Ontario (Canada)

    USGS Publications Warehouse

    Lindsey, D.A.

    1971-01-01

    Study of a well-exposed section of the Gowganda Formation at Whitefish Falls, Ontario, suggests criteria for the recognition of glacial marine sediments. Thickness of hundreds of feet, lateral continuity, faint internal stratification, sorted lenses of sandstone and conglomerate, and dropstones characterize much of the tillite. Thickness of hundreds of feet, lateral continuity, and marked development of irregular and lenticular laminae instead of varve structure characterize much of the argillite. These characteristics, together with evidence for a nearshore, marine-to-deltaic environment for the overlying beds, suggest a glacial marine interpretation even though no fossil evidence is available. Massive tillite, tillite containing faint stratification and lenses of sorted conglomerate and sandstone, and dropstone-bearing argillite, all of which interfinger, suggest a glacial marine environment composed of: (1) a subglacial facies; (2) a periglacial facies; and (3) a facies of marine ice rafting, respectively. Separation of the two tillite-bearing members by as much as 700 ft. of argillite containing no dropstones suggests two distinct ice ages during Gowganda time. ?? 1971.

  5. Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis

    PubMed Central

    Thibane, Vuyisile S.; Kock, Johan L. F.; Ells, Ruan; van Wyk, Pieter W. J.; Pohl, Carolina H.

    2010-01-01

    The effect of marine polyunsaturated fatty acids on biofilm formation by the human pathogens Candida albicans and Candida dubliniensis was investigated. It was found that stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3) have an inhibitory effect on mitochondrial metabolism of both C. albicans and C. dubliniensis and that the production of biofilm biomass by C. dubliniensis was more susceptible to these fatty acids than C. albicans. Ultrastructural differences, which may be due to increased oxidative stress, were observed between treated and untreated cells of C. albicans and C. dubliniensis with formation of rough cell walls by both species and fibrillar structures in C. dubliniensis. These results indicate that marine polyunsaturated fatty acids may be useful in the treatment and/or prevention of biofilms formed by these pathogenic yeasts. PMID:21116408

  6. Snow, Wind, Sun, and Time - How snow-driven processes control the Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Druckenmiller, M. L.; Perovich, D. K.

    2012-12-01

    Snowfall on Arctic sea ice is important for a number of reasons. The snowpack insulates sea ice from the cold winter atmosphere, redistribution of snow alters the surface roughness of the ice, light scattering in the snow increases ice albedo and reduces light transmission, and the weight of early season snow can result in ice surface flooding. An integrated set of field observations were collected to better understand how snowfall and, particularly, snow redistribution processes impact Arctic ice mass balance. Coincident measurements of snow depth and ice thickness on un-deformed first year ice indicate that snow dunes 'lock' in place early in the winter growth season, resulting in thinner ice beneath the dunes due to lower rates of energy loss. Coincident ground-based LiDAR measurements of surface topography and snow depth show that snow dune formation is largely responsible for the topographic relief of otherwise flat first year ice. Past work has shown that pond formation during the early melt season is strongly guided by the snow-controlled relative surface heights at a given site. Here multiple study sites are examined in an effort to better understand how differing patterns of snow redistribution can impact the overall extent of melt ponds, and therefore ice albedo. The results enhance basic knowledge of how snow processes control sea ice mass balance, and evoke several questions which must be answered in order to understand how changing precipitation regimes may affect sea ice in the Arctic.

  7. Snow economics and the NOHRSC Snow Information System (SNOW-INFO) for the United States

    NASA Astrophysics Data System (ADS)

    Carroll, T.; Cline, D.; Berkowitz, E.; Savage, D.

    2003-04-01

    .7 trillion (16%) of the Nation's GDP related to the water contained in seasonal snowpacks, reliable snow information is critical to the management of the U.S. economy. In addition to helping improve river and flood forecasts and water supply forecasts, NOHRSC snow information has the potential also to support better decision making and improved efficiency in manufacturing, mining, agriculture, and thermo- and hydroelectric power generation. A 0.1% improvement in revenue resulting from reliable snow information results in an economic benefit to the Nation of 1.7 billion each year (in 2002 dollars). In an effort to provide snow information to support hydrologic forecasting operations in the NWS as well as to enhance the national economy, the NOHRSC has developed and implemented a Snow Information System (SNOW-INFO) that generates and distributes a variety of snow cover products in a variety of formats for the coterminous U.S. SNOW-INFO provides several new products that include: modeled snowpack characteristics such as snow ripeness, melt rates, mean snowpack temperature, and sublimation losses in a variety of alphanumeric, gridded, map, and time-series representations. SNOW-INFO products and data sets are available in near real-time to end-users from the NOHRSC web site (www.nohrsc.nws.gov) and FTP. A variety of SNOW-INFO products and maps from the 2003 snow season depicting simulated and assimilated snow model state variables for the coterminous U.S. are presented.

  8. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China

    NASA Astrophysics Data System (ADS)

    Li, Chao; Love, Gordon D.; Lyons, Timothy W.; Scott, Clinton T.; Feng, Lianjun; Huang, Jing; Chang, Huajin; Zhang, Qirui; Chu, Xuelei

    2012-05-01

    Here, in an effort to explore Cryogenian seawater chemistry, we present chemostratigraphic results for iron, carbon, molybdenum, and sulfur for two outcrop sections for the ca. 663-654 Ma Datangpo Formation deposited between the two major Neoproterozoic glacial episodes (Sturtian and Marinoan) in the Nanhua Basin, South China. Paleogeographic reconstruction suggests that the interglacial Nanhua Basin was an emerging young ocean basin, which opened by rifting from ca. 820-630 Ma. Seawater exchange with the open ocean was restricted; such interglacial conditions may have been a common feature throughout the region and the world in association with widespread rifted margins during global sea-level lowstands. Geochemical profiles generated for the shallow water Yangjiaping and deeper water Minle sections demonstrate broadly consistent stratigraphic variations and generally point to anoxic (mostly euxinic) deep water deposition for the lower black shales but increasing oxygenation for the upper siltstones deposited in shallower water at both sections. Fluctuations in water chemistry recorded in the Datangpo Formation can be explained by a stratified redox model in which water column chemistry was strongly controlled by Fe availability and other nutrient fluxes, low dissolved marine sulfate concentrations, sea level variation, and varying inputs of marine organic carbon delivered via primary production. A compilation of new and published sulfur isotope data for the Datangpo Formation indicates that the extremely 34S-enriched pyrite (up to 69‰) in the basal carbonates and shales was formed mainly in the deep waters of the Nanhua Basin. The most likely explanation is a 34S-enriched deep marine sulfate pool generated, in part, during the Sturtian glaciation by bacterial sulfate reduction in combination with severely suppressed riverine sulfate inputs and restriction of the marginal basin during a dramatic drop in sea level. This study highlights the importance of both

  9. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces.

    PubMed

    Lee, Jin-Woo; Nam, Ji-Hyun; Kim, Yang-Hoon; Lee, Kyu-Ho; Lee, Dong-Hun

    2008-04-01

    Succession of bacterial communities during the first 36 h of biofilm formation in coastal water was investigated at 3 approximately 15 h intervals. Three kinds of surfaces (i.e., acryl, glass, and steel substratum) were submerged in situ at Sacheon harbor, Korea. Biofilms were harvested by scraping the surfaces, and the compositions of bacterial communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of 16S rRNA genes. While community structure based on T-RFLP analysis showed slight differences by substratum, dramatic changes were commonly observed for all substrata between 9 and 24 h. Identification of major populations by 16S rRNA gene sequences indicated that gamma-Proteobacteria (Pseudomonas, Acinetobacter, Alteromonas, and uncultured gamma-Proteobacteria) were predominant in the community during 0 approximately 9 h, while the ratio of alpha-Proteobacteria (Loktanella, Methylobacterium, Pelagibacter, and uncultured alpha-Proteobacteria) increased 2.6 approximately 4.8 folds during 24 approximately 36 h of the biofilm formation, emerging as the most predominant group. Previously, alpha-Proteobacteria were recognized as the pioneering organisms in marine biofilm formation. However, results of this study, which revealed the bacterial succession with finer temporal resolution, indicated some species of gamma-Proteobacteria were more important as the pioneering population. Measures to control pioneering activities of these species can be useful in prevention of marine biofilm formation. PMID:18545967

  10. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.

    PubMed

    Filippelli, Gabriel M

    2011-08-01

    The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand

  11. Snow particle speeds in drifting snow

    NASA Astrophysics Data System (ADS)

    Nishimura, Kouichi; Yokoyama, Chika; Ito, Yoichi; Nemoto, Masaki; Naaim-Bouvet, Florence; Bellot, Hervé; Fujita, Koji

    2014-08-01

    Knowledge of snow particle speeds is necessary for deepening our understanding of the internal structures of drifting snow. In this study, we utilized a snow particle counter (SPC) developed to observe snow particle size distributions and snow mass flux. Using high-frequency signals from the SPC transducer, we obtained the sizes of individual particles and their durations in the sampling area. Measurements were first conducted in the field, with more precise measurements being obtained in a boundary layer established in a cold wind tunnel. The obtained results were compared with the results of a numerical analysis. Data on snow particle speeds, vertical velocity profiles, and their dependence on wind speed obtained in the field and in the wind tunnel experiments were in good agreement: both snow particle speed and wind speed increased with height, and the former was always 1 to 2 m s-1 less than the latter below a height of 1 m. Thus, we succeeded in obtaining snow particle speeds in drifting snow, as well as revealing the dependence of particle speed on both grain size and wind speed. The results were verified by similar trends observed using random flight simulations. However, the difference between the particle speed and the wind speed in the simulations was much greater than that observed under real conditions. Snow transport by wind is an aeolian process. Thus, the findings presented here should be also applicable to other geophysical processes relating to the aeolian transport of particles, such as blown sand and soil.

  12. Toxic elements (As, Se, Cd, Hg, Pb) and their mineral and technogenic formations in the snow cover in the vicinity of the industrial enterprises of Tomsk

    NASA Astrophysics Data System (ADS)

    Talovskaya, A. V.; Filimonenko, E. A.; Osipova, N. A.; Lyapina, E. E.; azikov, E. G. Y.

    2014-08-01

    Snow samples were collected in four industrial areas of Tomsk where brickworks, factories for the production of reinforced concrete structures, machine repair industries and local boilers, petrochemical plant and thermal power station are located. Study of insoluble fraction of aerosols in snow and melted snow water was performed to determine the contents of the emissions from these facilities. The insoluble fraction of aerosols in snow is aerosol particles deposited on snow cover. As, Se, Cd, Hg, Pb concentration was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Mineral modes of the elements were determined by scanning electron microscope. It was found the snow cover is mainly polluted by As, Se, Cd, Hg, Pb in the thermal power station impact area, by As - in the brickworks impact area, by Se - in the impact area of densely located factories for the production of reinforced concrete structures, machine repair industries and local boilers. The research results show that the mineral modes of As are associated with arsenopyrite, of Pb - with galena in the insoluble fraction of aerosols in snow.

  13. Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments.

    PubMed

    Ndungu, Kuria; Schaanning, Morten; Braaten, Hans Fredrik Veiteberg

    2016-10-15

    In situ subaqueous capping (ISC) of contaminated marine sediments is frequently proposed as a feasible and effective mitigation option. However, though effective in isolating mercury species migration into overlying water, capping can also alter the location and extent of biogeochemical zones and potentially enhance methylmercury (MeHg) formation in Hg-contaminated marine sediments. We carried out a boxcosm study to investigate whether the addition of organic carbon (OC) to Hg-contaminated marine sediments beneath an in situ cap would initiate and/or enhance MeHg formation of the inorganic Hg present. The study was motivated by ongoing efforts to remediate ca. 30,000 m(2) of Hg-contaminated seabed sediments from a Hg spill from the U864 WWII submarine wreck. By the time of sinking, the submarine is assumed to have been holding a cargo of ca. 65 tons of liquid Hg. Natural organic matter and petroleum hydrocarbons from fuels and lubricants in the wreck are potential sources of organic carbon that could potentially fuel MeHg formation beneath a future cap. The results of our study clearly demonstrated that introduction of algae OC to Hg-contaminated sediments, triggered high rates of MeHg production as long a there was sufficient OC. Thus, MeHg production was limited by the amount of organic carbon available. The study results also confirmed that, within the six-month duration of the study and in the absence of bioturbating fauna, a 3-cm sediment clay cap could effectively reduce fluxes of Hg species to the overlying water and isolate the Hg-contaminated sediments from direct surficial deposition of organic matter that could potentially fuel methylation. PMID:27494695

  14. Scattering optics of snow.

    PubMed

    Kokhanovsky, Alexander A; Zege, Eleonora P

    2004-03-01

    Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by the snow cover. However, the presence of pollutants and the microstructure of snow (e.g., the size and shape of grains, which depend also on temperature and on the age of the snow) are also of importance in the variation of the snow's spectral albedo. The snow's spectral albedo and its bidirectional reflectance are studied theoretically. The albedo also determines the spectral absorptance of snow, which is of importance, e.g., in studies of the heating regime in snow. We investigate the influence of the nonspherical shape of grains and of close-packed effects on snow's reflectance in the visible and the near-infrared regions of the electromagnetic spectrum. The rate of the spectral transition from highly reflective snow in the visible to almost totally absorbing black snow in the infrared is governed largely by the snow's grain sizes and by the load of pollutants. Therefore both the characteristics of snow and its concentration of impurities can be monitored on a global scale by use of spectrometers and radiometers placed on orbiting satellites. PMID:15015542

  15. Snow Conditions Near Barrow in Spring 2012

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I.; Nghiem, S. V.; Sturm, M.; Kurtz, N. T.; Farrell, S. L.; Gleason, E.; Lieb-Lappen, R.; Saiet, E.

    2012-12-01

    Snow has a dual role in the growth and decay of Arctic sea ice. It provides insulation from colder air temperatures during the winter, which hinders sea ice formation. Snow is highly reflective and, as a result, it delays the surface ice melt during the spring. Summer snow melt influences the formation and location of melt ponds on sea ice, which further modifies heat transport into sea ice and the underlying ocean. Identifying snow thickness and extent is of key importance in understanding the surface heat budget, particularly during the early spring when the maximum snowfall has surpassed, and surface melt has not yet occurred. Regarding Arctic atmospheric chemical processes, snow may sustain or terminate halogen chemical recycling and distribution, depending on the state of the snow cover. Therefore, an accurate assessment of the snow cover state in the changing Arctic is important to identify subsequent impacts of snow change on both physical and chemical processes in the Arctic environment. In this study, we assess the springtime snow conditions near Barrow, Alaska using coordinated airborne and in situ measurements taken during the NASA Operation IceBridge and BRomine, Ozone, and Mercury EXperiment (BROMEX) field campaigns in March 2012, and compare these to climatological records. Operation IceBridge was conceived to bridge the gap between satellite retrievals ice thickness by ICESat which ceased operating in 2009 and ICESat-2 which is planned for launch in 2016. As part of the IceBridge mission, snow depth may be estimated by taking the difference between the snow/air surface and the snow/ice interface measured by University of Kansas's snow radar installed on a P-3 Orion and the measurements have an approximate spatial resolution of 40 m along-track and 16 m across-track. The in situ snow depth measurements were measured by an Automatic Snow Depth Probe (Magnaprobe), which has an accuracy of 0.5 cm. Samples were taken every one-to-two meters at two sites

  16. Comparative Taphonomy, Taphofacies, and Bonebeds of the Mio-Pliocene Purisima Formation, Central California: Strong Physical Control on Marine Vertebrate Preservation in Shallow Marine Settings

    PubMed Central

    Boessenecker, Robert W.; Perry, Frank A.; Schmitt, James G.

    2014-01-01

    Background Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. Methodology/Principal Findings Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. Conclusions/Significance Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the

  17. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1.

    PubMed

    Nithya, Chari; Begum, Mansur Farzana; Pandian, Shunmugiah Karutha

    2010-09-01

    According to the Centers for Disease Control and Prevention, biofilms cause 65% of infections in developed countries. Pseudomonas aeruginosa biofilm cause life threatening infections in cystic fibrosis infection and they are 1,000 times more tolerant to antibiotic than the planktonic cells. As quorum sensing, hydrophobicity index and extracellular polysaccharide play a crucial role in biofilm formation, extracts from 46 marine bacterial isolates were screened against these factors in P. aeruginosa. Eleven extracts showed antibiofilm activity. Extracts of S6-01 (Bacillus indicus = MTCC 5559) and S6-15 (Bacillus pumilus = MTCC 5560) inhibited the formation of PAO1 biofilm up to 95% in their Biofilm Inhibitory Concentration(BIC) of 50 and 60 microg/ml and 85% and 64% in the subinhibitory concentrations (1/4 and 1/8 of the BIC, respectively). Furthermore, the mature biofilm was disrupted to 70-74% in their BIC. The antibiofilm compound from S6-15 was partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Current study for the first time reveals the antibiofilm and antiquorum-sensing activity of B. pumilus, B. indicus, Bacillus arsenicus, Halobacillus trueperi, Ferrimonas balearica, and Marinobacter hydrocarbonoclasticus from marine habitat. PMID:20665017

  18. Spatiotemporal variations of monocarboxylic acids in snow layers along a transect from Zhongshan Station to Dome A, eastern Antarctica

    NASA Astrophysics Data System (ADS)

    Li, Chuanjin; Xiao, Cunde; Shi, Guitao; Ding, Minghu; Kang, Shichang; Zhang, Lulu; Hou, Shugui; Sun, Bo; Qin, Dahe; Ren, Jiawen

    2015-05-01

    The spatiotemporal distributions of formate and acetate in snow layers along a transect from Zhongshan Station to Dome A are presented here. The mean concentrations of mono-carboxylic acids in summer surface snow layers were 2.93 ± 1.72 ng g- 1 and 10.07 ± 5.87 ng g- 1 for formate and acetate, respectively. In the snow pit samples, the concentrations varied between 0.47 ± 0.14 ng g- 1 and 3.12 ± 4.24 ng g- 1 for formate and between 5.31 ± 1.55 ng g- 1 and 13.29 ± 4.64 ng g- 1 for acetate. Spatially, the concentrations of both acids featured negative trends with increasing elevation and distance inland for the initial 600 km of the transect, which implies that marine sources from the coastal oceans dominate the acid supply. Different distribution styles of the acids in the interior section (600-1248 km) suggest that different source region and transporting mechanism may be responsible for the acid deposition in the interior regions. Seasonal variations in the amounts of acid in a coastal snow pit (29-A) indicate higher values in the summer and lower amounts in the winter. An enlarged source region and intensified production and transport mechanisms were primarily responsible for the higher values in summer. Longer records from the interior snow pits (29-L and 29-M) indicate elevated values in the 1970s and lower values in the 1980s and early 1990s. The increases in the mono-carboxylic acids since 1999 in snow pit 29-L and since 2005 in snow pit 29-M were temporally coincident with Chinese expedition activities in the area, suggesting that human activities were responsible for the increases in the acid load during recent decades.

  19. Camping in the Snow.

    ERIC Educational Resources Information Center

    Brown, Constance

    1979-01-01

    Describes the experience of winter snow camping. Provides suggestions for shelter, snow kitchens, fires and stoves, cooking, latrines, sleeping warm, dehydration prevention, and clothing. Illustrated with full color photographs. (MA)

  20. Modelling snow properties in Kautokeino, Northern Norway

    NASA Astrophysics Data System (ADS)

    Vikhamar-Schuler, D.; Dish Mathiesen, S.; Hanssen-Bauer, I.

    2010-09-01

    Hard snow layers deteriorate the grazing situation for reindeers during winter. By modelling the snowpack evolution in Kautokeino over the period 1966-2009, we analyse the weather situations that favor the formation of high-density snow. This work is part of the IPY project EALAT (http://icr.arcticportal.org/en/ealat). We used daily meteorological observations to drive the Swiss multi-layer model SNOWPACK to simulate the evolution of snow cover stratigraphy in terms of density, temperature and grain size. Results are evaluated using direct snow pack observations made during the winter seasons 2007-2010. Furthermore, we compare the modelled snowpack 1966-2010 with historical records of difficult grazing conditions reported by reindeer herders. In particular, the considerable losses of animal lives during the winter 1967/68 was caused by the occurrence of ground ice in conjunction to the long snow cover duration. This unfavorable coincidence is well reproduced by our model results.

  1. Monitoring global snow cover

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard; Hardman, Molly

    1991-01-01

    A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.

  2. Remote sensing of snow

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.

    1987-01-01

    The snow parameters affecting sensor responses at different wavelengths are discussed. The effects of snow depth and background radiation on gamma ray sensors and of crystal size, contaminants, snow depth, liquid water, and surface roughness on visible and near-infrared sensors are considered. The influence of temperature, crystal size, and liquid water on thermal infrared sensors and of liquid water, crystal size, water equivalent depth, stratification, snow surface roughness, density, temperature, and soil condition on microwave sensors are addressed.

  3. Snow Bank Detectives

    ERIC Educational Resources Information Center

    Olson, Eric A.; Rule, Audrey C.; Dehm, Janet

    2005-01-01

    In the city where the authors live, located on the shore of Lake Ontario, children have ample opportunity to interact with snow. Water vapor rising from the relatively warm lake surface produces tremendous "lake effect" snowfalls when frigid winter winds blow. Snow piles along roadways after each passing storm, creating impressive snow banks. When…

  4. Laboratory investigations of marine impact events: Factors influencing crater formation and projectile survivability

    NASA Astrophysics Data System (ADS)

    Milner, D. J.; Baldwin, E. C.; Burchell, M. J.

    2008-12-01

    Given that the Earth’s surface is covered in around two-thirds water, the majority of impact events should have occurred in marine environments. However, with the presence of a water layer, crater formation may be prohibited. Indeed, formation is greatly controlled by the water depth to projectile diameter ratio, as discussed in this paper. Previous work has shown that the underlying target material also influences crater formation (e.g., Gault and Sonett 1982; Baldwin et al. 2007). In addition to the above parameters we also show the influence of impact angle, impact velocity and projectile density for a variety of water depths on crater formation and projectile survivability. The limiting ratio of water depth to projectile diameter on cratering represents the point at which the projectile is significantly slowed by transit through the water layer to reduce the impact energy to that which prohibits cratering. We therefore study the velocity decay produced by a water layer using laboratory, analytical and numerical modelling techniques, and determine the peak pressures endured by the projectile. For an impact into a water depth five times the projectile diameter, the velocity of the projectile is found to be reduced to 26-32% its original value. For deep water impacts we find that up to 60% of the original mass of the projectile survives in an oblique impact, where survivability is defined as the solid or melted mass fraction of the projectile that could be collected after impact.

  5. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  6. The Snows of Enceladus

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Schmidt, J.; White, O.

    2011-10-01

    The icy south polar plumes of Enceladus make for a spectacular effect in the Saturn system (e.g., the Ering), but also profoundly alter the surface of Enceladus itself. Recent models of the plume particle dynamics predict that the heavier particles will reaccrete, effectively "snowing" fine-grained debris back onto the surface in discrete patterns [1], depending on the actual distribution of ejection sites. The densest fallout pattern is dominated by two scytheshaped lobes extending northward from the South-Polar-Terrains along the 40 and 220W longitudes. Recent color mapping of Enceladus demonstrates that IR/UV color asymmetries across the surface match these predicted patterns astonishingly well [2]. Theory and observation therefore confirm the apparent formation of a blanket of very small particles covering most of the surface of Enceladus to different depths, depending on location and plume source changes.

  7. Multiwell Experiment: I, The marine interval of the Mesaverde Formation: Final report

    SciTech Connect

    Not Available

    1987-04-01

    The Department of Energy's Multiwell Experiment is a field laboratory in the Piceance Basin of Colorado which has two overall objectives: to characterize the low permeability gas reservoirs in the Mesaverde Formation and to develop technology for their production. Different depositional environments have created distinctly different reservoirs in the Mesaverde, and MWX has addressed each of these in turn. This report presents a comprehensive summary of results from the lowermost interval: the marine interval which lies between 7450 and 8250 ft at the MWX site. Separate sections of this report are background and summary; site description and operations; geology; log analysis; core analysis; in situ stress; well testing, analysis and reservoir evaluation; and a bibliography. Additional detailed data, results, and data file references are given on microfiche in several appendices.

  8. Conditioned water affects pair formation behaviour in the marine polychaete Neanthes (Nereis) acuminata.

    PubMed

    Storey, Ellen J; Reish, Don J; Hardege, Jörg D

    2013-01-01

    Assessing cues from conspecifics is paramount during mate choice decisions. Neanthes acuminata is a marine polychaete with a unique life cycle: pair formation, female death following reproduction, male parental care and male ability to mate again after egg care. Males completing such egg care are 'experienced'. Females have been shown to prefer experienced males over all others, including aggressively dominant males. As the female dies following reproduction, the reproductive success of her offspring depends upon successful parental care by the male. It is therefore vital that the female makes a good mate choice decision. This paper shows that the use of conditioned water from males caring for eggs and newly experienced males caused the female to alter her choice to a previously undesired male. However, conditioned water from males, which had reproduced but were isolated for 2 weeks, did not have the same effect on pairing behaviour. This indicates that the smell of experience is short lived. PMID:22941305

  9. Snow instability patterns at the scale of a small basin

    NASA Astrophysics Data System (ADS)

    Reuter, Benjamin; Richter, Bettina; Schweizer, Jürg

    2016-02-01

    Spatial and temporal variations are inherent characteristics of the alpine snow cover. Spatial heterogeneity is supposed to control the avalanche release probability by either hindering extensive crack propagation or facilitating localized failure initiation. Though a link between spatial snow instability variations and meteorological forcing is anticipated, it has not been quantitatively shown yet. We recorded snow penetration resistance profiles with the snow micropenetrometer at an alpine field site during five field campaigns in Eastern Switzerland. For each of about 150 vertical profiles sampled per day a failure initiation criterion and the critical crack length were calculated. For both criteria we analyzed their spatial structure and predicted snow instability in the basin by external drift kriging. The regression models were based on terrain and snow depth data. Slope aspect was the most prominent driver, but significant covariates varied depending on the situation. Residual autocorrelation ranges were shorter than the ones of the terrain suggesting external influences possibly due to meteorological forcing. To explore the causes of the instability patterns we repeated the geostatistical analysis with snow cover model output as covariate data for one case. The observed variations of snow instability were related to variations in slab layer properties which were caused by preferential deposition of precipitation and differences in energy input at the snow surface during the formation period of the slab layers. Our results suggest that 3-D snow cover modeling allows reproducing some of the snow property variations related to snow instability, but in future work all relevant micrometeorological spatial interactions should be considered.

  10. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  11. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  12. Snow surface roughness as a function of terrain parameters and snow depth distribution

    NASA Astrophysics Data System (ADS)

    Veitinger, J.; Sovilla, B.; Purves, R.

    2012-12-01

    During and after a snowfall, wind, snow gliding and avalanches redistribute snow and smooth the geomorphology of the terrain by filling irregularities. Terrain smoothing is believed to be an important factor in avalanche formation. In avalanche release zones, it influences fracture initiation and propagation as well as the resistance to slab motion and thus affects its location and extension. In avalanche paths, terrain smoothing changes the terrain-avalanche friction and thus has an impact on avalanche dynamics. Moreover, smoothing of terrain irregularities by snow also affects surface heat transfer and energy balance as well as snow depth distribution. Thus, understanding snow smoothing on topography is very important in avalanche hazard assessment, run-off modelling and water resource management. To characterize the smoothing effect of snow on terrain we use the concept of roughness. Roughness is calculated for several snow surfaces and its corresponding underlying terrain within two selected high alpine test sites in the Swiss Alps. High resolution snow depth measurements were performed by airborne and terrestrial LIDAR to produce the elevation models of the snow covered terrain. The difference in surface roughness between snow cover and terrain is modelled as a function of geomorphological parameters (terrain roughness and slope) and snow depth (mean and standard deviation) and ultimately validated against the experimental data. The model uses a multi-scale approach in assessing the different parameters and results for different scales are presented. Finally, we discuss to which extent snow depth distribution can be explained by terrain parameters and in particular by terrain roughness.

  13. The role of sulfur in the formation of humic polymers in marine sediments

    SciTech Connect

    Vairavamurthy, M.A.

    1996-12-31

    In anoxic marine sediments, hydrogen sulfide formed from bacterial sulfate reduction significantly impacts the diagenesis and preservation of organic matter through incorporating sulfur into the latter; however, the underlying geochemical mechanisms are still unclear. We used XANES spectroscopy to investigate whether di- and poly-sulfide linkages are involved in the formation of humic polymers in anaerobic marine sediments. The approach was to treat the humic acids with tributyl phosphine, that cleaves di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and poly-sulfide compounds (benzyl disulfide and trisulfide), the shape of the XANES spectra changed when treated with tributyl phosphine because of the formation of sulfhydryl groups. A similar effect was observed for sedimentary humic acids isolated from a salt marsh in Shelter Island, suggesting that di- and poly-sulfide linkages are indeed involved in forming humic polymers. We determined by liquid chromatography, two major low-molecular-weight thiols, 3-mercatopropionate and methane thiol, among the compounds released from tributyl phosphine treated humics. These thiols can be easily degraded by sedimentary bacteria when they are present in solution. However, both thiols were present as components of the humic substances throughout the sediment column, down to the 22-cm depth sampled, suggesting that incorporation into humic polymers, in fact, provides a mechanism for preventing mineralization of the bound organic matter. In general, humic polymers resist microbial degradation because of their randomly polymerized structure.

  14. Type 2 quorum sensing monitoring, inhibition and biofilm formation in marine microrganisms.

    PubMed

    Liaqat, Iram; Bachmann, Robert Thomas; Edyvean, Robert G J

    2014-03-01

    The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another. PMID:24166155

  15. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    were enhanced with time compared with larger sizes. In contrast, all particle sizes were equally enhanced when frits were used. Aerosolized particles were hygroscopic, a finding with significance for warm cloud formation and potential liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.

  16. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocities of macroscopic organic aggregates (marine snow)

    NASA Astrophysics Data System (ADS)

    Iversen, M. H.; Ploug, H.

    2010-05-01

    Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted), Skeletonema costatum aggregates (opal ballasted), and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted). Overall average carbon-specific respiration rate was ~0.13 d-1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregate of different composition and sources. Compiled carbon-specific respiration rates (including this study) vary between 0.08 d-1 and 0.20 d-1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The calculated carbon remineralization length scale due to microbial respiration and sinking velocity of mm-large marine aggregates was higher for calcite ballasted aggregates as compared to opal-ballasted aggregates. It varied between 0.0002 m-1 and 0.0030 m-1, and decreased with increasing aggregate size.

  17. Atmospheric new particle formation as source of CCN in the Eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-04-01

    While Cloud Condensation Nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the Eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (0.2-0.4 lower κ between the 60 and 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in afternoon, which was very likely due to the higher sulfate to organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneously to the formation of new particles during daytime, particles formed in the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range transported particles.

  18. Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-08-01

    While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of κ was lower by 0.2-0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.

  19. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  20. Spatial-temporal dynamics of chemical composition of surface snow in East Antarctic along the transect Station Progress-Station Vostok

    NASA Astrophysics Data System (ADS)

    Khodzher, T. V.; Golobokova, L. P.; Shibaev, Y. A.; Lipenkov, V. Y.; Petit, J. R.

    2013-05-01

    This paper presents data on chemical composition of the Antarctic snow sampled during the 53rd Russian Antarctic Expedition (RAE, 2008) along the first tractor traverse (TT) from Station Progress to Station Vostok (East Antarctica). Snow samples were obtained from the cores drilled at 55.3, 253, 337, 369, 403, 441, 480, 519, 560, 618, 819, and 1276 km from Station Progress. Data on horizontal and deep distribution of chemical components in the snow provide evidence of spatial and temporal variations of conditions for the snow cover formation along the transect under study. Sea salt was the main source for chemical composition of snow cover near the ice edge. Concentrations of marine-derived components decreased further inland. A hypothesis was put forward that some ions in the snow cover of the central part of East Antarctica were likely to be of continental origin. Elevated concentrations of sulphate ions of continental origin were recorded in some profiles of the transect at a depth of 130-150 cm which was attributed to buried signals of the Pinatubo volcano eruption (1991).

  1. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    NASA Astrophysics Data System (ADS)

    Iversen, M. H.; Ploug, H.

    2010-09-01

    Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted), Skeletonema costatum aggregates (opal ballasted), and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted). Overall average carbon-specific respiration rate was ~0.13 d-1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study) vary between 0.08 d-1 and 0.20 d-1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m-1 and 0.0030 m-1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  2. "Let It Snow, Let It Snow, Let It Snow!"

    ERIC Educational Resources Information Center

    Pangbourne, Laura

    2010-01-01

    Winter in the UK has, in recent years, brought a significant amount of snow and cold weather. This was the case while the author was a trainee teacher on placement at a rural primary school in Dartmoor early in 2010. The day started promisingly with the class looking at the weather forecast on the interactive whiteboard and having a short…

  3. Control of marine biofouling and medical biofilm formation with engineered topography

    NASA Astrophysics Data System (ADS)

    Schumacher, James Frederick

    Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally

  4. Secondary organic aerosol formation of relevance to the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal areas. The purpose of this dissertation is to test this hypothesis and quantify the SOA formation potentials of some representative biogenic and anthropogenic hydrocarbons when oxidized by Cl in laboratory chamber experiments. The chosen model compounds for biogenic and anthropogenic hydrocarbons in this study are three monoterpenes (alpha-pinene, beta-pinene, and d-limonene) and two aromatics (m-xylene and toluene), respectively. Results indicate that the oxidation of these monoterpenes and aromatics generates significant amounts of aerosol. The SOA yields of alpha-pinene, beta-pinene, and d-limonene obtained in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 mug m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. The SOA yields for m-xylene and toluene are found to be in the range of 0.035 to 0.12 for aerosol concentrations up to 19 mug m-3. For d-limonene and toluene, data indicate two yield curves that depend on the initial concentration ratios of Cl precursor to hydrocarbon hydrocarbon. Zero-dimensional calculations based on these yields show that SOA formation from the five model compounds when oxidized by Cl in the marine boundary layer could be a significant source of SOA in the early morning. In addition, the mechanistic reaction pathways for Cl oxidation of alpha-pinene, beta-pinene, d-limonene, and toluene with Cl have been developed within the framework of the Caltech Atmospheric Chemistry Mechanisms (CACM). Output from the developed mechanisms is combined with an absorptive partitioning model to predict precursor decay curves and time-dependent SOA concentrations in experiments. Model calculations are able to match (in general within general +/- 50

  5. A Distributed Snow Evolution Modeling System (SnowModel)

    NASA Astrophysics Data System (ADS)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  6. Loropetalum chinense 'Snow Panda'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new Loropetalum chinense, ‘Snow Panda’, developed at the U.S. National Arboretum is described. ‘Snow Panda’ (NA75507, PI660659) originated from seeds collected near Yan Chi He, Hubei, China in 1994 by the North America-China Plant Exploration Consortium (NACPEC). Several seedlings from this trip w...

  7. GulfSnow Peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GulfSnow peach is jointly released for grower trial by the U.S. Department of Agriculture, Agricultural Research Service (Byron, GA), Georgia Agricultural Experiment Station and Florida Agricultural Experiment Station. GulfSnow was previously tested as AP06-09W and originated from a cross of AP98-3...

  8. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  9. Make Your Own Snow Day!

    ERIC Educational Resources Information Center

    Robeck, Edward

    2011-01-01

    Children love snow days, even when they come during the warmest weather. In this lesson the snow isn't falling outside, it's in the classroom--thanks to "Snowflake Bentley" (Briggs Martin 1998) and several models of snowflakes. A lesson on snow demonstrates several principles of practice for using models in elementary science. Focusing on snow was…

  10. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    USGS Publications Warehouse

    Thompson, W.B.; Griggs, C.B.; Miller, N.G.; Nelson, R.E.; Weddle, T.K.; Kilian, T.M.

    2011-01-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907??31 to 11,650??5014C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520+95/??20calyr BP. Ages of shells juxtaposed with the logs are 12,850??6514C yr BP (Mytilus edulis) and 12,800??5514C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England. ?? 2011 University of Washington.

  11. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    NASA Astrophysics Data System (ADS)

    Thompson, Woodrow B.; Griggs, Carol B.; Miller, Norton G.; Nelson, Robert E.; Weddle, Thomas K.; Kilian, Taylor M.

    2011-05-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/-20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP ( Mytilus edulis) and 12,800 ± 55 14C yr BP ( Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.

  12. Metal content and toxicity of produced formation water (PFW): study of the possible effects of the discharge on marine environment.

    PubMed

    Manfra, L; Moltedo, G; Lamberti, C Virno; Maggi, C; Finoia, M G; Giuliani, S; Onorati, F; Gabellini, M; Di Mento, R; Cicero, A M

    2007-08-01

    A preliminary chemical and ecotoxicological assessment was performed on the produced formation water (PFW) and superficial sediment around a gas platform (Fratello Cluster), located in the Adriatic Sea (Italy), in order to evaluate the effects of PFW discharged from the installation. The ecotoxicological bioassays, with the marine bacterium Vibrio fischeri and the sea urchin Paracentrotus lividus, were associated with chemical data to estimate the possible effects on living organisms. PFW collected on the platform was toxic, but no significant effect was recorded on marine sediment. Only the sediment station nearest to the discharge point showed higher values of some contaminants (zinc and arsenic) in comparison to other sites and only some stations showed low toxicity. PMID:17549537

  13. Impact of LIP formation on marine productivity during early Aptian and latest Cenomanian Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Erba, E.; Duncan, R.

    2003-04-01

    Of all the Cretaceous Oceanic Anoxic Events (OAEs), the Early Aptian OAE1a and latest Cenomanian OAE2 are truly global in nature and typically represented by carbonate crisis and Corg-rich black shales. They correlate with onset and climax of the mid-Cretaceous greenhouse, a time of exceptional warmth with accelerated burial of organic matter, carbon and strontium isotope excursions, and major biotic changes. Extraordinary rates of volcanism during the formation of Ontong Java and Caribbean Plateaus are proposed to have introduced excess CO_2 in the ocean/atmosphere system, turning the climate into a super-greenhouse state. High-resolution multidisciplinary investigations of well-dated sections indicate that marine ecosystems reacted to higher fertility and pCO2 by reducing biomineralization and increasing production of organic matter. In particular, rates of calcitization and evolutionary changes of micrite-forming calcareous nannoplankton (the biological and carbonate pump) affected the organic and inorganic carbon cycle as well as diffusion of atmospheric CO_2 in the Cretaceous ocean. Increasing geological evidence suggests that OAE1a and OAE2 were mainly oceanic productivity events, directly or indirectly controlled by submarine volcanic eruptions. High levels of volcanogenic CO_2 in the atmosphere accelerated continental weathering and increased nutrient content in oceanic surface waters via river run-off. However, only coastal eutrophication can be triggered by river input, and this mechanism cannot explain enhanced primary productivity in remote parts of large oceans like those recorded in wide-spread sediments of OAE1a and OAE2. Conversely, global productivity can be stimulated by hydrothermal megaplumes that introduce in the oceans high concentrations of dissolved and particulate metals that are biolimiting (and toxic) and, consequently, can trigger large blooms (and deaths) of primary producers. We speculate that during OAE1a and OAE2, higher productivity

  14. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest

    PubMed Central

    Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  15. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  16. Organic geochemical characterisation of shallow marine Cretaceous formations from Yola Sub-basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Jauro, Aliyu; Adegoke, Adebanji Kayode

    2016-05-01

    The shallow marine shales of the Cretaceous formations namely Yolde, Dukul, Jessu, Sekuliye and Numanha ranging in age from Cenomanian to Coniacian within the Yola Sub-basin in the Northern Benue Trough, northeastern Nigeria were analysed to provide an overview on their hydrocarbon generation potential. This study is based on pyrolysis analysis, total organic carbon content (TOC), extractable organic matter (EOM), biomarker distributions and measured vitrinite reflectance. The present-day TOC contents range between 0.24 and 0.71 wt. % and Hydrogen Index (HI) values between 8.7 and 113 mg HC/g TOC with Type III/IV kerogens. Based on the present-day kerogen typing, the shale sediments are expected to generate mainly gas. Biomarker compositions indicates deposition in a marine environment under suboxic conditions with prevalent contribution of aquatic organic matter and a significant amount of terrigenous organic matter input. Organic matter that is dominated by marine components contains kerogens of Type II and Type II-III. This study shows that the organic matter has been affected by volcanic intrusion and consequently, have reached post-mature stage of oil generation. These higher thermal maturities levels are consistent with the vitrinite reflectance ranging from 0.85 to 2.35 Ro % and high Tmax (440-508 °C) values as supported by biomarker maturity ratios. Based on this study, a high prospect for major gas and minor oil generation potential is anticipated from the shallow marine Cretaceous formations from Yola Sub-basin.

  17. BOREAS HYD-3 Snow Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of snow depth, snow density in three cm intervals, an integrated snow pack density and snow water equivalent (SWE), and snow pack physical properties from snow pit evaluation taken in 1994 and 1996. The data were collected from several sites in both the southern study area (SSA) and the northern study area (NSA). A variety of standard tools were used to measure the snow pack properties, including a meter stick (snow depth), a 100 cc snow density cutter, a dial stem thermometer, and the Canadian snow sampler as used by HYD-4 to obtain a snow pack-integrated measure of SWE. This study was undertaken to predict spatial distributions of snow properties important to the hydrology, remote sensing signatures, and the transmissivity of gases through the snow. The data are available in tabular ASCII files. The snow measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

    PubMed Central

    Gross, Martin; Ramos, Maria Ines F.; Piller, Werner E.

    2016-01-01

    A huge wetland (the ‘Pebas system’) covered western Amazonia during the Miocene, hosting a highly diverse and endemic aquatic fauna. One of the most contentious issues concerns the existence, potential pathways and effects of marine incursions on this ecosystem. Palaeontological evidences (body fossils) are rare. The finding of a new, presumably marine ostracod species (Pellucistoma curupira sp. nov.) in the upper middle Miocene Solimões Formation initiated a taxonomic, ecological and biogeographical review of the genus Pellucistoma. We demonstrate that this marine (sublittoral, euhaline), subtropical–tropical taxon is biogeographically confined to the Americas. The biogeographical distribution of Pellucistoma largely depends on geographical, thermal and osmotic barriers (e.g. land bridges, deep and/or cold waters, sea currents, salinity). We assume an Oligocene/early Miocene, Caribbean origin for Pellucistoma and outline the dispersal of hitherto known species up to the Holocene. Pellucistoma curupira sp. nov. is dwarfed in comparison to all other species of this genus and extremely thin-shelled. This is probably related to poorly oxygenated waters and, in particular, to strongly reduced salinity. The associated ostracod fauna (dominated by the eurypotent Cyprideis and a few, also stunted ostracods of possibly marine ancestry) supports this claim. Geochemical analyses (δ18O, δ13C) on co-occurring ostracod valves (Cyprideis spp.) yielded very light values, indicative of a freshwater setting. These observations point to a successful adaptation of P. curupira sp. nov. to freshwater conditions and therefore do not signify the presence of marine water. Pellucistoma curupira sp. nov. shows closest affinities to Caribbean species. We hypothesize that Pellucistoma reached northern South America (Llanos Basin) during marine incursions in the early Miocene. While larger animals of marine origin (e.g. fishes, dolphins, manatees) migrated actively into the Pebas

  19. Early Miocene chondrichthyans from the Culebra Formation, Panama: A window into marine vertebrate faunas before closure the Central American Seaway

    NASA Astrophysics Data System (ADS)

    Pimiento, Catalina; Gonzalez-Barba, Gerardo; Hendy, Austin J. W.; Jaramillo, Carlos; MacFadden, Bruce J.; Montes, Camilo; Suarez, Sandra C.; Shippritt, Monica

    2013-03-01

    The newly described chondrichthyan fauna of the early Miocene Culebra Formation of Panama provides insight into the marine vertebrates occupying shallow seas adjacent to the Central American Seaway, prior to the rise of the Isthmus of Panama. This study takes advantage of a time-limited and unique opportunity to recover fossil from renewed excavations of the Panama Canal. The chondrichthyan fauna of the Culebra Formation is composed of teeth and vertebral centra representing 12 taxa. The species found possessed a cosmopolitan tropical and warm-temperate distribution during the early Neogene and are similar to other assemblages of the tropical eastern Pacific and southern Caribbean. The taxa described suggest a neritic environment, and is in contrast with other interpretations that proposed bathyal water depths for the upper member of the Culebra Formation. The wide depth range of the most common species, Carcharocles chubutensis, and the habitat preference of Pristis sp., suggests varied marine environments, from deep, to shallow waters, close to emerged areas of the evolving isthmus.

  20. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances. PMID:27362920

  1. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Wang, Jiasheng; Algeo, Thomas J.; Su, Pibo; Hu, Gaowei

    2016-09-01

    During the last decade, gypsum has been discovered widely in marine methane hydrate-bearing sediments. However, whether this gypsum is an in-situ authigenic precipitate remains controversial. The GMGS2 expedition carried out in 2013 by the Guangzhou Marine Geological Survey (GMGS) in the northern South China Sea provided an excellent opportunity for investigating the formation of authigenic minerals and, in particular, the relationship between gypsum and methane hydrate. In this contribution, we analyzed the morphology and sulfur isotope composition of gypsum and authigenic pyrite as well as the carbon and oxygen isotopic compositions of authigenic carbonate in a drillcore from Site GMGS2-08. These methane-derived carbonates have characteristic carbon and oxygen isotopic compositions (δ13C: -57.9‰ to -27.3‰ VPDB; δ18O: +1.0‰ to +3.8‰ VPDB) related to upward seepage of methane following dissociation of underlying methane hydrates since the Late Pleistocene. Our data suggest that gypsum in the sulfate-methane transition zone (SMTZ) of this core precipitated as in-situ authigenic mineral. Based on its sulfur isotopic composition, the gypsum sulfur is a mixture of sulfate derived from seawater and from partial oxidation of authigenic pyrite. Porewater Ca2+ ions for authigenic gypsum were likely generated from carbonate dissolution through acidification produced by oxidation of authigenic pyrite and ion exclusion during methane hydrate formation. This study thus links the formation mechanism of authigenic gypsum with the oxidation of authigenic pyrite and evolution of underlying methane hydrates. These findings suggest that authigenic gypsum may be a useful proxy for recognition of SMTZs and methane hydrate zones in modern and ancient marine methane hydrate geo-systems.

  2. FTS (Fog To Snow) Conversion Process During the SNOW-V10 Project

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Zhou, B.

    2012-05-01

    The objective of this work is to understand how winter fog which occurred on Whistler Mountain on 3-4 March 2010 developed into a snow event by the means of the FTS (Fog To Snow) process. This event was documented using data collected during the Science of Nowcasting Winter Weather for Vancouver 2010 (SNOW-V10) project that was supported by the Fog Remote Sensing and Modelling (FRAM) project. The FTS resulted in a snow event at about 1,850 m altitude where the RND (Roundhouse) meteorological station was located. For both days, there was no large scale system that affected local fog formation and its development into snow. Patchy fog occurred in the early hours of both days and was based below 1,500 m. Clear skies at night likely resulted in cooling, the valley temperature (T) was about -1°C in the early morning, and snow was on the ground. Winds were relatively calm (<1 m s-1). At the RND site, T was about -3°C. Weather at RND was clear and sunny till noon. When fog moved over the mountain peak/near RND, light snow started and lasted for about 4-5 h and was not detected by precipitation sensors except the Ground Cloud Imaging Probe (GCIP) and Laser Precipitation Sensor (LPM). In this work, the FTS process is conceptually summarized. Because clear weather conditions over the high mountain tops can become hazardous with low visibilities and significant snow amounts (<1.0 mm h-1), such events are important and need to be predicted.

  3. FTS (Fog To Snow) Conversion Process During The SNOW-V10 Project

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Isaac, G. A.

    2010-07-01

    The objective of this work is to understand how winter fog which occurred on Whistler Mountain on 3-4 March 2010 developed into a snow event by the means of the FTS (Fog_To_Snow) process. This event was documented using data collected during the Science of Nowcasting Winter Weather for Vancouver 2010 (SNOW-V10) project that was supported by the Fog Remote Sensing and Modeling (FRAM) project. The FTS resulted in a snow event at about 1850 m height where the RND (Roundhouse) meteorological station was located. For both days, there was no large scale system that affected local fog formation and its development into snow. The patchy fog occurred in the early hours of both days and was based below 1500 m. Clear skies at night likely resulted in cooling, the valley temperature (T) was about +3C in the early morning, and snow was on the ground. Winds were relatively calm (<1 m/s). At the RND site, T was about -3C. Weather at RND was clear and sunny till noon. When shortwave (SW) radiation provided additional heat at the low levels and sloping surfaces, fog started to lift up over a 3-4 hr time period gaining additional moisture from melting snow. Then, the fog layers were eventually converted to cumulus/altocumulus. Afternoon, at about 01:30 PM, the entire valley was filled up with a fog/cloud mixture. When fog moved over the mountain peak/near RND, light snow started and lasted for about 4-5 hrs and was not detected by precipitation sensors except the Ground Cloud Imaging Probe (GCIP) and Laser Precipitation Sensor (LPM). In the presentation, observations collected during the FTS process will be summarized, and it will be proposed as an important winter and forecasting event over high elevations.

  4. Recent research in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1987-01-01

    Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.

  5. Secrets of Snow Liveshot Recap

    NASA Video Gallery

    Research Physical Scientist and Deputy Project Scientist for GPM Gail Skofronick-Jackson answers questions about the importance of studying snow from space, the impact of not enough snow, and the f...

  6. Mollusks of the Upper Jurassic (upper Oxfordian-lower Kimmeridgian) shallow marine Minas Viejas Formation, northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Beckmann, Seija; Stinnesbeck, Wolfgang; Götte, Martin

    2015-10-01

    We present the first systematic description of Late Jurassic (late Oxfordian-early Kimmeridgian) invertebrates from the shallow marine Minas Viejas Formation of northeastern Mexico. The unit was generally considered to be extremely poor in fossils, due to an overall evaporitic character. The collection described here includes three taxa of ammonites, 10 taxa of bivalves and five taxa of gastropods. The fossils were discovered near Galeana and other localities in southern Nuevo León and northeastern San Luis Potosí, in thin-bedded marly limestones intercalated between gypsum units. Due to complex internal deformation of the sediments, fossils used for this study cannot be assigned to precise layers of origin. However, the taxa identified suggest a Late Jurassic (late Oxfordian-early Kimmeridgian) age for these fossil-bearing layers and allow us, for the first time, to assign a biostratigraphic age to Upper Jurassic strata in the region underlying the La Caja and La Casita formations.

  7. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Wu, Wenfang; Hao, Likai; Wuestner, Marina; Obst, Martin; Moran, Dawn; McIlvin, Matthew; Saito, Mak; Kappler, Andreas

    2015-10-01

    Evidence for Fe(II) oxidation and deposition of Fe(III)-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF). While the exact mechanisms of Fe(II) oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III) minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II)-rich) waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II) concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II) is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) are consistent with extracellular precipitation of Fe(III) (oxyhydr)oxide minerals, but that >10% of Fe(III) sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS) in Fe(II) toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II). These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  8. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  9. Principles of Snow Hydrology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow hydrology is a specialized field of hydrology that is of particular importance for high latitudes and mountainous terrain. In many parts of the world, river and groundwater supplies for domestic, irrigation, industrial and ecosystem needs are generated from snowmelt, and an in-depth understand...

  10. Improving WEPP snow simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow simulation is essential to reliable prediction of runoff and erosion, particularly in high-latitude areas in the northern tier of states and forested watersheds at high elevations. The Water Erosion Prediction Project (WEPP) model is one of a few including a component for winter hydrology simul...

  11. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2013-10-01

    Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and

  12. Snow surface temperature, radiative forcing and snow depth as determinants of snow density

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Painter, T. H.; Skiles, M.; Deems, J. S.

    2014-12-01

    Watershed scale observations of snow water equivalence (SWE) are becoming increasingly important globally as the quantity and timing of snowmelt has become less predictable. In the Colorado River watershed, where dust deposition can hasten snowmelt by several weeks, the need for these observations is critical. While advances in measuring snow depth and albedo from the NASA Airborne Snow Observatory have greatly improved our ability to constrain snow depth and radiative forcing, we have yet to develop a method for remotely observing snow density, which is required for calculating SWE. We evaluate measured and modeled variables of snow- infrared surface temperature, radiative forcing and snow depth as predictors of snow density. We use 10 seasons of in situ measured snow surface temperature, cumulative modeled dust in snow radiative forcing, snow depth and manually measured snow density from locations in the Rocky Mountains of southwestern Colorado. We also use measured snow depth and SWE from the 2013 and 2014 water years, from 23-35 locations stratified by modeled downwelling short wave radiation, and evaluate them as predictors of snow density. Our analysis shows that daily mean snow surface temperature (R2 0.61, p = <0.001) and cumulative radiative forcing (R2 0.54, p = <0.001) individually have significant coefficients of determination whereas snow depth alone was not significant. Multiple regression with all three variables (R2 0.84, p = <0.001) was the best predictor of density. Furthermore, when snowpack conditions were isothermal at 0° C, the diurnal coefficient of variation, of measured hourly surface temperature, exhibited consistently high variance. In 2013 we found significant correlations between spatially distributed measurements of snow density (R2 0.33, p = <0.001) and modeled downwelling short wave radiation. However, in 2014 the correlation was very low, supporting our hypothesis that seasonal differences in dust driven radiative forcing are also

  13. 'Snow Queen' Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This animation consists of two close-up images of 'Snow Queen,' taken several days apart, by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander.

    Snow Queen is the informal name for a patch of bright-toned material underneath the lander.

    Thruster exhaust blew away surface soil covering Snow Queen when Phoenix landed on May 25, 2008, exposing this hard layer comprising several smooth rounded cavities beneath the lander. The RAC images show how Snow Queen visibly changed between June 15, 2008, the 21st Martian day, or sol, of the mission and July 9, 2008, the 44th sol.

    Cracks as long as 10 centimeters (about four inches) appeared. One such crack is visible at the left third and the upper third of the Sol 44 image. A seven millimeter (one-third inch) pebble or clod appears just above and slightly to the right of the crack in the Sol 44 image. Cracks also appear in the lower part of the left third of the image. Other pieces noticeably shift, and some smooth texture has subtly roughened.

    The Phoenix team carefully positioned and focused RAC the same way in both images. Each image is about 60 centimeters, or about two feet, wide. The object protruding in from the top on the right half of the images is Phoenix's thermal and electrical conductivity probe.

    Snow Queen and other ice exposed by Phoenix landing and trenching operations on northern polar Mars is the first time scientists have been able to monitor Martian ice at a place where temperatures are cold enough that the ice doesn't immediately sublimate, or vaporize, away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Studies on Physical Properties of Snow Based on Multi Channel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.

    1985-01-01

    The analysis of the data observed over a snow field with a breadboard model of MSR (microwave scanning radiometer) to be installed in MOS-1 (Marine Observation Satellite-1) indicates that: (1) the influence of incident angle on brightness temperature is larger in horizontal polarization component than in vertical polarization component. The effect of incident angle depends upon the property of snow with larger value for dry snow; (2) the difference of snow surface configuration consisting of artifically made parallel ditches of 5 cm depth and 5 cm width with spacing of 10 and 30 cm respectively which are oriented normal to electrical axis do not affect brightness temperature significantly; and (3) there is high negative correlation between brightness temperature and snow depth up to the depth of 70 cm which suggests that the snow depth can be measured with a two channel microwave radiometer up to this depth.

  15. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    PubMed Central

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health. PMID:27162369

  16. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    PubMed

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health. PMID:27162369

  17. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    NASA Astrophysics Data System (ADS)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  18. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  19. 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'

    Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  1. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  2. Highstands during Marine Isotope Stage 5: evidence from the Ironshore Formation of Grand Cayman, British West Indies

    NASA Astrophysics Data System (ADS)

    Coyne, Morag K.; Jones, Brian; Ford, Derek

    2007-02-01

    The Ironshore Formation on Grand Cayman is formed of six unconformity-bounded packages (units A-F). Units A, B, C, and D, known from the subsurface in the northeastern part of Grand Cayman, formed during Marine Isotope Stages (MIS) 11(?), 9, 7, and 5e, respectively. Unconformities at the tops of units A, B, and C are highlighted by terra rossa and/or calcrete layers. Strata in core obtained from wells drilled in George Town Harbour and exposed on the west part of Grand Cayman belong to unit D, and the newly defined units E and F. Corals from unit E yielded Th/U ages of ˜104 ka whereas conch shells from unit F gave ages of ˜84 ka. Unit E equates to MIS 5c whereas unit F developed during MIS 5a. Th/U dating of corals and conchs from the Ironshore Formation on the western part of Grand Cayman shows that unit D formed during the MIS 5e highstand whereas units E and F developed in association with highstands at 95-110 ka (MIS 5c) and 73-87 ka (MIS 5a). Unit E, ˜5 m thick in the offshore cores, is poorly represented in onshore exposures. Unit F, which unconformably overlies unit D at most localities, is formed largely of fossil-poor, cross-bedded ooid grainstones. The unconformity at the top of unit D, a marine erosional surface with up to 2.5 m relief, is not characterized by terra rossa or calcrete in the offshore cores or onshore exposures. Unit D formed with a highstand of +6 m asl, whereas units E and F developed when sea level was +2 to +5 asl and +3 to +6 m asl, respectively. Thus, the highstands associated with MIS 5e, 5c, and 5a were at similar elevations.

  3. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish.

    PubMed

    Kurita, Yukihiro; Nakada, Tsutomu; Kato, Akira; Doi, Hiroyuki; Mistry, Abinash C; Chang, Min-Hwang; Romero, Michael F; Hirose, Shigehisa

    2008-04-01

    Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B). PMID:18216137

  4. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment

    NASA Astrophysics Data System (ADS)

    Loh, Andrew; Shim, Won Joon; Ha, Sung Yong; Yim, Un Hyuk

    2014-12-01

    Oil suspended particulate matter (SPM) aggregates (OSA) are naturally occurring phenomena where oil droplets and particles interact to form aggregates. This aggregation could aid cleanup processes of oil contaminated waters. When OSA is formed, it makes oil less sticky and would facilitate the dispersion of oil into the water column. Increased oil-water surface contact by OSA formation enhances biodegradation of oil. Its applicability as a natural oil clean-up mechanism has been effectively demonstrated over past decades. There are many factors affecting the formation of OSA and its stability in the natural environment that need to be understood. This review provides a current understanding of (1) types of OSA that could be formed in the natural environment; (2) controlling factors and environmental parameters for the formation of OSA; (3) environmental parameters; and (4) fate of OSA and its applicability for oil spill remediation processes.

  5. Interannual variability of snow and fluvial regimes in Andorra

    NASA Astrophysics Data System (ADS)

    Pesado, Cristina; Riba, Sergi; Pons, Marc; Lopez-Moreno, Juan Ignacio

    2016-04-01

    Highlands in Andorra are snow-dominated areas during all the winter and most of the spring season. Interannual snow variability in these areas has a strong and straight influence on the amount and seasonality of river regimes at the bottom of the valley where most of the population and water requirements are concentrated. The present study analyzes the temporal and spatial variability of the fluvial regimes in Andorra and seeks to understand the interplay of different topographic and climatic variables on this variability. For example, in mountainous regions temperature determines the state of precipitation and this state can significantly affect runoff formation. The interannual temporal and spatial variability of temperatures, pluviometry and different snow indices such as snow heights and days with snow on the ground has been studied for the last decade and correlated with the fluvial dynamics and its variability using discharge measurements. This study focus especially in the assessment of the role of snow and its seasonality in the fluvial regime dynamics and the influence in the torrential flows and flood hazard. Flood hazard, force to take protection measures, which need information about flood frequency and magnitude. For this, flow instrumental series are used, but usually they do not consider phenomena like snowmelt. This study contributes intends to better understand the interplay between snow and fluvial dynamics and improve the assessment of the availability of water resources as well as the requirements in terms of protection measures.

  6. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  7. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.

  8. MODIS Snow and Ice Production

    NASA Technical Reports Server (NTRS)

    Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)

    2002-01-01

    Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.

  9. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other

  10. Remote Sensing of Snow Cover. Section; Snow Extent

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.

    2012-01-01

    Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.

  11. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation

    NASA Astrophysics Data System (ADS)

    de la Rocha, Christina L.; Brzezinski, Mark A.; DeNiro, Michael J.

    1997-12-01

    The fractionation of silicon isotopes by three species of marine diatoms, Skeletonema costatum, Thalassiosira weissflogii, and Thalassiosira sp., grown in batch culture, is reported. Fractionation was observed for all species. The δ 30Si value of the diatom silica and that of the initial silicic acid in the culture medium were used to compute a fractionation factor (α). The values of a for the three species were nearly identical, averaging 0.9989 ± 0.0004 (s.d., n = 13), which corresponds to the production of diatom silica with a δ 30Si value that is 1.1‰ more negative than that of the dissolved silicon utilized for growth. The fractionation factor did not vary with temperature and the consequent change in growth rate (ANOVA, p =0.61; tested at 12°, 15°, and 22°C with Thalassiosira sp.). The observation of fractionation of silicon isotopes by diatoms is an essential step in establishing δ 30Si variations in biogenic silica as a potential oceanographic tracer.

  12. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  13. A multi-mineral natural product from red marine algae reduces colon polyp formation in C57BL/6 mice

    PubMed Central

    Aslam, Muhammad N.; Bergin, Ingrid; Naik, Madhav; Paruchuri, Tejaswi; Hampton, Anna; Rehman, Muneeb; Dame, Michael K; Rush, Howard; Varani, James

    2013-01-01

    The goal of this study was to determine if a multi-mineral natural product derived from red marine algae, could reduce colon polyp formation in mice on a high fat diet. C57BL/6 mice were maintained for up to 18 months either on a high-fat “Western-style” diet or on a low-fat diet (AIN 76A), with or without the multi-mineral-supplement. To summarize, colon polyps were detected in 22 of 70 mice (31%) on the high-fat diet, but in only 2 of 70 mice (3%) receiving the mineral-supplemented high-fat diet (p<0.0001). Colon polyps were detected in 16 of 70 mice (23%) in the low-fat group; not significantly different from high-fat group but significantly higher than the high-fat-supplemented group (p=0.0006). This was in spite of the fact that the calcium level in the low-fat diet was comparable to the level of calcium in the high-fat diet containing the multi-mineral-product. Supplementation of the low-fat diet reduced the incidence to 8 of 70 mice (11% incidence). Taken together, these findings demonstrate that a multi-mineral natural product can protect mice on a high-fat diet against adenomatous polyp formation in the colon. These data suggest that increased calcium alone is insufficient to explain the lower incidence of colon polyps. PMID:23035966

  14. Integrated Northern Hemisphere Terrestrial Snow Extent Climate Datasets

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Estilow, T. W.; Henderson, G.; Mote, T. L.; Hall, D. K.

    2011-12-01

    Multiple satellite-derived sources of snow cover extent (SCE), snow-cover fraction (SCF) and melting snow over Northern Hemisphere (NH) lands have been used to produce two integrated datasets. One dataset is long enough (over 30 years) to be considered a climate data record (CDR), a second has data of a quality suitable for a CDR but lacks the duration to be recognized as such. These datasets provide state-of-the-art NH snow information in multiple formats and on multiple time steps for the research community, decision-makers and stakeholders. To generate the CDR, a low-resolution, long-term SCE record available on a weekly timescale derived from a thorough reanalysis of NOAA satellite-derived maps of NH continental SCE dating back to the late 1966 was integrated with a newly generated 1979-present microwave SCE and melting snow product. A 100 km Equal-Area Scalable Earth version 2 grid (EASE2) developed at the National Snow and Ice Data Center is used for this CDR. The shorter-term integrated dataset has a higher spatial resolution (25km EASE2) and is daily. It was developed to assess the level of agreement between the NOAA Interactive Multisensor Snow and Ice Mapping System SCE, the previously mentioned microwave product and the MODIS cloud gap filled SCF product. The period of overlap for these three datasets spans from 2000-present. We will discuss methodologies of identifying SCE, melting snow and SCF amongst the contributing data sources, techniques of integrating these products into the CDR and 25km products and confidence assessments. We will also provide an overall evaluation of how these datasets improve regional to NH scale monitoring of snow cover.

  15. 'Snow White' in Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the trench dubbed 'Snow White,' after further digging on the 25th Martian day, or sol, of the mission (June 19, 2008). The lander's solar panel is casting a shadow over a portion of the trench.

    The trench is about 5 centimeters (2 inches) deep and 30 centimeters (12 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. On the evolution of the Snow Line in Protoplanetary Discs

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Livio, Mario

    2014-01-01

    We examine the evolution of the snow line in a protoplanetary disc. If the magneto-rotational instability (MRI) drives turbulence throughout the disc, there is a unique snow line outside of which the disc is icy. The snow line moves closer to the star as the infall accretion rate drops. Because the snow line moves inside the radius of the Earth's orbit, the formation of our water-devoid planet is difficult with this model. However, protoplanetary discs are not likely to be sufficiently ionised to be fully turbulent. A dead zone at the mid-plane slows the flow of material through the disc and a global steady state cannot be achieved. We model the evolution of the snow line also in a disc with a dead zone. As the mass is accumulating, the outer parts of the dead zone become self gravitating, heat the massive disc and thus the outer snow line does not come inside the radius of the Earth's orbit. With this model there is sufficient time and mass in the disc for the Earth to form from water-devoid planetesimals at a radius of 1AU. Furthermore, the additional inner icy region within the dead zone predicted by this model may allow for the formation of giant planets close to their host star without the need for much migration.

  17. Quantifying Snow Transport Using Snow Fences and Sonic Sensors

    NASA Astrophysics Data System (ADS)

    Sturm, M.; Berezovskaya, S.; Hiemstra, C.; Gelvin, A.

    2010-12-01

    Accurate assessment of snow transport (T) during wind events is a prerequisite to reliable estimation of snow loads on infrastructure and prediction of avalanche danger in the mountains. It is also a critical term in the winter water balance, affecting snow sublimation. To assess T we constructed two snow fences in northern Alaska and used an existing municipal fence near Barrow, Alaska to trap the wind-blown flux of snow. On the leeward side of each fence we installed a line of SR50 sonic ranging sensors that could be used to track the increase in snow height with time. We also installed web-cameras to monitor changes in drift shape. Periodic snow surface elevation surveys using a DGPS system provided more detailed drift profiles during the winter. Wind speed and direction were monitored near the fences. The sonic sensor results have been combined with the DGPS surveys to produce a time series of drift cross-section from which the flux has been computed. We have related this flux to individual wind events in an effort to identify the optimal conditions for blowing snow transport and to derive an empirical expression for T from weather measurements.

  18. SnowClim: Snow climate monitoring for Europe

    NASA Astrophysics Data System (ADS)

    Bissolli, P.; Maier, U.

    2009-09-01

    Snow cover, particularly its depth and its frequency, is a very essential climate element. It influences the earth's surface radiation budget considerably due to its reflectivity properties and also it has large impact on economy and daily life (e.g. traffic, tourism). Although a lot of research and many national activities of snow monitoring have been done, there are very few products describing an integrated snow monitoring for whole Europe. In the light of a foreseen future Regional Climate Centre on Climate Monitoring (RCC-CM), the German Meteorological Service (Deutscher Wetterdienst, DWD) has established some first operational snow climate monitoring activities for the WMO Region VI (Europe and the Middle East). First selected key elements are the number of snowdays with a snow cover > 1 cm, the mean and the maximum snow depth per month. Results are presented in form of monthly and climatological maps, tables and diagrams of time series starting in 1981. Data presently are taken from observations at synoptical stations, received by the Global Telecommunication System. A first quality control based on threshold tests has been developed. The snow climate monitoring products are currently under further development. New evaluations will be carried out also on a daily data basis, additional satellite data, and also the quality control procedure will be extended. Some operational SnowClim products are available on the DWD web site: www.dwd.de/snowclim

  19. High-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata: Examples from the Sunnyside Member of the Cretaceous Blackhawk Formation Book Cliffs eastern Utah

    SciTech Connect

    Davies, R.; Howell, J.; Boyd, R.; Flint, S.; Diessel, C.

    2006-07-15

    The Sunnyside Member of the Upper Cretaceous Blackhawk Formation in the Book Cliffs of eastern Utah provides an ideal opportunity to investigate high-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata in an area of outstanding outcrop exposure. The thick, laterally extensive coal seam that caps the Sunnyside Member is critical for correlating between its shallow-marine and terrestrial components. Petrographic analysis of 281 samples obtained from 7 vertical sections spanning more than 30 km (18 mi) of depositional dip enabled us to recognize a series of transgressive-regressive coal facies trends in the seam. On this basis, we were able to identify a high-resolution record of accommodation change throughout the deposition of the coal, as well as a series of key sequence-stratigraphic surfaces. The stratigraphic relationships between the coal and the siliciclastic components of the Sunnyside Member enable us to correlate this record with that identified in the time-equivalent shallow-marine strata and to demonstrate that the coal spans the formation of two marine parasequences and two high-frequency, fourth-order sequence boundaries. This study has important implications for improving the understanding of sequence-stratigraphic expression in terrestrial strata and for correlating between marine and terrestrial records of base-level change. It may also have implications for improving the predictability of vertical and lateral variations in coal composition for mining and coalbed methane projects.

  20. Microtomography of macroscopic snow samples

    NASA Astrophysics Data System (ADS)

    Matzl, M.; Schneebeli, M.; Steinfeld, D.; Steiner, S.; Heggli, M.

    2010-12-01

    During the last 10 years X-ray microtomography (micro-CT) has proved to be the first successful method to measure the true three-dimensional (3-D) structure of snow on the ground. Micro-CT is used to reconstruct 3-D microstructures as a source for numerical simulations, to conduct long-term observations of metamorphism or the behavior of snow under stress and to derive macroscopic parameters describing the microstructure of snow like specific surface area or density. However, micro-CT was confined to small samples with a typically evaluated size of 5 x 5 x 5 mm3. One reason for the small size was the limited computational power, the other the sample preparation. Based on the replica method for 3-D micro-CT samples introduced by Heggli et al. (2009), we are now able to visualize snow samples up to 70 mm height, and about 10 mm diameter, with a resolution of 10 μm. Because inclusion of small air bubbles during the casting process can not be avoided, we make two scans, one before and one after sublimation, the two scans are then registered and subtracted. After image segmentation and morphological image processing the replica can be analysed in the same way as direct snow measurements. Based on such samples, we imaged highly fragile snow samples, like new snow, buried surface hoar and other weak layers. The samples show a fascinating new image of how complex snow layers are. Most samples show strong density gradients within a structurally similar layer. We think that this technique will improve our understanding of snow metamorphism and snow properties. Heggli, M.; Frei, E.; Schneebeli, M., 2009: Instruments and Methods. Snow Replica method for three-dimensional X-ray microtomographic imaging. J. Glaciol. 55, 192: 631-639.

  1. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  2. Late albian kiowa-skull creek marine transgression, lower dakota formation, eastern margin of western interior seaway, U.S.A

    USGS Publications Warehouse

    Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.J.; Zawistoski, A.N.; Kvale, E.P.; Ravn, R.L.; Joeckel, R.M.

    2000-01-01

    An integrated geochemical-sedimentological project is studying the paleoclimatic and paleogeographic characteristics of the mid-Cretaceous greenhouse world of western North America. A critical part of this project, required to establish a temporal framework, is a stratigraphie study of depositional relationships between the AlbianCenomanian Dakota and the Upper Albian Kiowa formations of the eastern margin of the Western Interior Seaway (WIS). Palynostratigraphic and sedimentologic analyses provide criteria for the Dakota Formation to be divided into three sedimentary sequences bounded by unconformities (D0, D1, and D2) that are recognized from western Iowa to westernmost Kansas. The lowest of these sequences, defined by unconformities D0 and D1, is entirely Upper Albian, and includes the largely nonmarine basal Dakota (lower part of the Nishnabotna Member) strata in western Iowa and eastern Nebraska and the marine Kiowa Formation to the southwest in Kansas. The gravel-rich fluvial deposits of the basal part of the Nishnabotna Member of the Dakota Formation correlate with transgressive marine shales of the Kiowa Formation. This is a critical relationship to establish because of the need to correlate between marine and nonmarine strata that contain both geochronologic and paleoclimatic proxy data. The basal gravel facies (up to 40 m thick in western Iowa) aggraded in incised valleys during the Late Albian Kiowa-Skull Creek marine transgression. In southeastern Nebraska, basal gravels intertongue with carbonaceous mudrocks that contain diverse assemblages of Late Albian palynomorphs, including marine dinoflagellates and acritarchs. This palynomorph assemblage is characterized by occurrences of palynomorph taxa not known to range above the Albian Kiowa-Skull Creek depositional cycle elsewhere in the Western Interior, and correlates to the lowest of four generalized palynostratographic units that are comparable to other palynological sequences elsewhere in North

  3. The marine transgression in the Benue Trough (NE Nigeria): a palaeogeographic interpretation of the Gongila Formation

    NASA Astrophysics Data System (ADS)

    Rebelle, M.

    Upper Cretaceous Gongila Formation in Benue Trough (NE Nigeria) is investigated. Through a detailed sedimentologic study, a lithologic log is proposed with 22 different levels for a 20 m thick section. Both palaeontological and petrographical results are used to describe the diagenetic history of Gongila limestones. A sedimentologic interpretation is thus suggested, illustrating the close relationships between sedimentation and regional tectonics. Occurrence of a Trans-Saharan Seaway is finally discussed. The palaeontological affinities between Sahara and Nigerian faunas have to be supported by sedimentological observations in order to conclude with assurance on the existence of such a seaway during the Cenomanian and Lower Turonian.

  4. Application of snow models to snow removal operations on the Going-to-the-Sun Road, Glacier National Park

    USGS Publications Warehouse

    Fagre, Daniel B.; Klasner, Frederick L.

    2000-01-01

    Snow removal, and the attendant avalanche risk for road crews, is a major issue on mountain highways worldwide. The Going-to-the-Sun Road is the only road that crosses Glacier National Park, Montana. This 80-km highway ascends over 1200m along the wall of a glaciated basin and crosses the continental divide. The annual opening of the road is critical to the regional economy and there is public pressure to open the road as early as possible. Despite the 67-year history of snow removal activities, few stat on snow conditions at upper elevations were available to guide annual planning for the raod opening. We examined statistical relationships between the opening date and nearby SNOTEL data on snow water equivalence (WE) for 30 years. Early spring SWE (first Monday in April) accounted for only 33% of the variance in road opening dates. Because avalanche spotters, used to warn heavy equipment operators of danger, are ineffective during spring storms or low-visibility conditions, we incorporated the percentage of days with precipitation during plowing as a proxy for visibility. This improved the model's predictive power to 69%/ A mountain snow simulator (MTSNOW) was used to calculate the depth and density of snow at various points along the road and field data were collected for comparison. MTSNOW underestimated the observed snow conditions, in part because it does not yet account for wind redistribution of snow. The severe topography of the upper reaches of the road are subjected to extensive wind redistribution of snow as evidence by the formation of "The Big Drift" on the lee side of Logan Pass.

  5. Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Alexander, B.; Allman, D. J.; Amos, H. M.; Fairlie, T. D.; Dachs, J.; Hegg, Dean A.; Sletten, Ronald S.

    2012-03-01

    We use observations of the oxygen-17 excess of non-sea salt sulfate aerosol (Δ17O(nssSO42-)) collected from two ship cruises in the subtropical northeast Atlantic Ocean in August 2006 and February 2007 to quantify the formation pathways of sulfate in the marine boundary layer (MBL). The large observed Δ17O(nssSO42-) values up to 7.3‰ suggest a large role for sulfate formation via S(IV) oxidation by O3 in the MBL. Model simulations with the GEOS-Chem global chemical transport model suggest that in-cloud oxidation of S(IV) by O3 represents over one-third (36-37%) of total in-cloud sulfate production on average. A model parameterization accounting for the impacts of sea salt aerosol on cloud droplet chemical heterogeneity and resulting impacts on in-cloud sulfate production rates improves the model's agreement with the Δ17O(nssSO42-) observations in the MBL. Including this parameterization in the model had little impact on the global sulfur budget due to the dominant role of continental anthropogenic emissions for global sulfur emissions in the present-day. The large observed Δ17O(nssSO42-) argue against a significant role of hypobromous (HOBr) or hypochlorous (HOCl) acid for sulfate formation in the remote MBL of the wintertime subtropical northeast Atlantic, but S(IV) oxidation by HOBr/HOCl on the order of 20% of total sulfate abundance is consistent with the summertime Δ17O(nssSO42-) observations in the more polluted coastal region of the Iberian Peninsula. Additional measurements of Δ17O(nssSO42-) are needed to quantify sulfate production mechanisms in the MBL over larger spatial and temporal scales.

  6. Marine Boundary Layer Structure for the Sea Fog Formation off the West Coast of the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Yum, Seong Soo

    2012-05-01

    Marine boundary layer (MBL) structure for the formation of sea fogs off the west coast of the Korean Peninsula are examined for the investigation period from January 2002 to August 2006, using the meteorological data measured at a buoy and the vertical sounding data measured at an island in this region. There is the total of 3,294 vertical soundings during the investigation period. Based on these vertical soundings, the MBL structure is classified as convective boundary layer (CBL; when inversion exists aloft but at altitudes lower than 3 km, 1,618 soundings), stable boundary layer (SBL; when inversion base is at the surface, 655 soundings) or near-neutral boundary layer (NNBL; when there is no inversion or inversion base is higher than 3 km altitude, 1,021 soundings). Under the CBL condition, the most frequently formed lower level cloud is stratocumulus but fogs do form in spring and summer months mostly as warm sea fogs [TSST (=T-SST) < 0]. Under the SBL condition, stratus and cold sea fogs (TSST > 0) are the most frequently found lower level clouds. The effects of turbulence, advection and radiation on sea fog formation vary with turbulence strength, represented by bulk Richardson number, R b. For cold sea fog cases, in the highly turbulent regime ( R b < 0.03), strong turbulent cooling and drying are canceled out by equally strong or even stronger warm and moist advection, and thus the additional radiative cooling turns out to be critical in the successful formation of fog. In the weak turbulent and non-turbulent ( R b > 0.30) regimes, the effects of turbulence decrease dramatically and so do the advection effects but radiative cooling is still strong, again making it the crucial reason for the successful formation of cold sea fogs. On the other hand, the turbulent moisture supply from the warmer sea surface is the crucial factor for the formation of warm sea fogs while turbulent warming and radiative cooling largely cancel each other out and the advection

  7. The value of snow cover

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  8. ESA SnowLab project

    NASA Astrophysics Data System (ADS)

    Wiesmann, Andreas; Caduff, Rafael; Frey, Othmar; Werner, Charles

    2016-04-01

    Retrieval of the snow water equivalaent (SWE) from passive microwave observations dates back over three decades to initial studies made using the first operational radiometers in space. However, coarse spatial resolution (25 km) is an acknowledged limitation for the application of passive microwave measurements. The natural variability of snow cover itself is also notable; properties such as stratigraphy and snow microstructure change both spatially and over time, affecting the microwave signature. To overcome this deficit, the satellite mission COld REgions Hydrology High-resolution Observatory (CoReH2O) was proposed to the European Space Agency (ESA) in 2005 in response to the call for Earth Explorer 7 candidate missions. CoReH2O was a dual frequency (X- and Ku-band) SAR mission aimed to provide maps of SWE over land and snow accumulation on glaciers at a spatial resolution of 200 to 500 meters with an unprecedented accuracy. Within the frame of preparatory studies for CoReH2O Phase A, ESA undertook several research initiatives from 2009 to 2013 to study the mission concept and capabilities of the proposed sensor. These studies provided a wealth of information on emission and backscattering signatures of natural snow cover, which can be exploited to study new potential mission concepts for retrieval of snow cover properties and other elements of the cryosphere. Currently data related to multi-frequency, multi-polarisation, multitemporal of active and passive microwave measurements are still not available. In addition, new methods related to e.g. tomography are currently under development and need to be tested with real data. Also, the potential of interferometric and polarimetric measurements of the snow cover and its possible impact for novel mission/retrieval concepts must be assessed. . The objective of the SnowLab activity is to fill this gap and complement these datasets from earlier campaigns by acquiring a comprehensive multi-frequency, multi

  9. Snow reflectance from thematic mapper

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    Calculations of snow reflectance in all 6 TM reflective bands (i.e., 1,2,3,4,5, and 7) using a delta Eddington model show that snow reflectance in bands 4,5, and 7 is sensitive to grain size. Efforts to interpret the surface optical grain size for the spectral extension of albedo are described. Results show the TM data include spectral channels suitable for snow/cloud discrimination and for snow albedo measurements that can be extended throughout the solar spectrum. Except for band 1, the dynamic range is large enough that saturation occurs only occasionally. The finer resolution gives much better detail on the snowcovered area and might make it possible to use textural information instead of the snowline as an index to the amount of snow melt runoff.

  10. PERSPECTIVE: Snow matters in the polar regions

    NASA Astrophysics Data System (ADS)

    Sodeau, John

    2010-03-01

    Antarctica is not quite as chemically pristine as might sometimes be thought (Jones et al 2008). For example, as elsewhere, reduced sulfur species such as dimethylsulfide (DMS) are emitted from biogenic marine sources at the poles (Read et al 2008). Somewhat less well known is that inland (as opposed to coastal) field campaigns have also detected, within the Antarctic boundary layer (ABL), emissions containing unexpectedly high levels of diverse, oxidizing chemicals such as NOx, nitrate ions, formaldehyde, ozone and hydrogen peroxide (Honrath et al 1999, Hutterli et al 2004, Sumner and Shepson 1999). And then there are the halogen-containing compounds (Simpson et al 2007). The transformation of DMS to sulfate aerosols capable of acting as cloud condensation nuclei often proceeds via one main oxidized product of DMS, namely methanesulfonic acid (MSA). Two specific reactions have been well studied to date in this regard, namely DMS plus either OH or NO3 radicals. Corresponding reactions with halogen radicals, which also contribute to the oxidizing capacity of our atmosphere, have generally been considered to be of less importance. The reason for this view is that even though the reactivity of bromine- and iodine-containing radicals is much greater than that of OH, the halogens were thought to be relatively scarce in the polar atmosphere. However both BrO (and IO) have been detected in the Antarctic CHABLIS campaign, as discussed in depth in the Atmospheric Chemistry and Physics special issue of 2008, see Jones et al (2008). It was subsequently shown that calculated MSA production from the DMS/BrO reaction may be about an order of magnitude greater than when the OH radical was the oxidizing reactant. The recent analytical measurements by Antony et al (2010) of MSA, Br and NO3 found in snow along the Ingrid Christensen Coast of East Antarctica are important in the above field context. Hence it would appear that the concentrations of these ions in ice-cap sites are up

  11. Imaging the water snow-line during a protostellar outburst.

    PubMed

    Cieza, Lucas A; Casassus, Simon; Tobin, John; Bos, Steven P; Williams, Jonathan P; Perez, Sebastian; Zhu, Zhaohuan; Caceres, Claudio; Canovas, Hector; Dunham, Michael M; Hales, Antonio; Prieto, Jose L; Principe, David A; Schreiber, Matthias R; Ruiz-Rodriguez, Dary; Zurlo, Alice

    2016-07-14

    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation. PMID:27411631

  12. Imaging the water snow-line during a protostellar outburst

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Casassus, Simon; Tobin, John; Bos, Steven P.; Williams, Jonathan P.; Perez, Sebastian; Zhu, Zhaohuan; Caceres, Claudio; Canovas, Hector; Dunham, Michael M.; Hales, Antonio; Prieto, Jose L.; Principe, David A.; Schreiber, Matthias R.; Ruiz-Rodriguez, Dary; Zurlo, Alice

    2016-07-01

    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296 (refs 3, 10), at distances of about 30 astronomical units (AU) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 AU away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report images at 0.03-arcsec resolution (12 AU) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 AU, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.

  13. A probabilistic model for snow avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  14. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter.

    PubMed

    Zhu, Songming; Shen, Jiazheng; Ruan, Yunjie; Guo, Xishan; Ye, Zhangying; Deng, Yale; Shi, Mingming

    2016-07-01

    Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm. PMID:27068911

  15. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    PubMed

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. PMID:26617163

  16. Vertical profiles of specific surface area, thermal conductivity and density of mid-latitude, Arctic and Antarctic snow: relationships between snow physics and climat

    NASA Astrophysics Data System (ADS)

    Domine, F.; Arnaud, L.; Bock, J.; Carmagnola, C.; Champollion, N.; Gallet, J.; Lesaffre, B.; Morin, S.; Picard, G.

    2011-12-01

    We have measured vertical profiles of specific surface area (SSA), thermal conductivity (TC) and density in snow from 12 different climatic regions featuring seasonal snowpacks of maritime, Alpine, taiga and tundra types, on Arctic sea ice, and from ice caps in Greenland and Antarctica. We attempt to relate snow physical properties to climatic variables including precipitation, temperature and its yearly variation, wind speed and its short scale temporal variations. As expected, temperature is a key variable that determines snow properties, mostly by determining the metamorphic regime (temperature gradient or equi-temperature) in conjunction with precipitation. However, wind speed and wind speed distribution also seem to have an at least as important role. For example high wind speeds determine the formation of windpacks of high SSA and high TC instead of depth hoar with lower values of these variables. The distribution of wind speed also strongly affects properties, as for example frequent moderate winds result in frequent snow remobilization, producing snow with higher SSA and lower TC than regions with the same average wind speeds, but with less frequent and more intense wind episodes. These strong effects of climate on snow properties imply that climate change will greatly modify snow properties, which in turn will affect climate, as for example changes in snow SSA modify albedo and changes in TC affect permafrost and the release of greenhouse gases from thawing permafrost. Some of these climate-snow feedbacks will be discussed.

  17. On the Snow Line in Dusty Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Sasselov, D. D.; Lecar, M.

    2000-01-01

    C. Hayashi prescribed a ``minimum-mass solar nebula,'' which contained just enough material to make the planets. This prescription, which has been widely used in constructing scenarios for planet formation, proposed that ice will condense when the temperature falls below 170 K (the ``snow line''). In Hayashi's model, that occurred at 2.7 AU. It is usually assumed that the cores of the giant planets (e.g., Jupiter) form beyond the snow line. The snow line, in Hayashi's model, is where the temperature of a black body that absorbed direct sunlight and reradiated as much as it absorbed would be 170 K. Since Hayashi, there have been a series of more detailed models of the absorption by dust of the stellar radiation and of accretional heating, which alter the location of the snow line. We have attempted a ``self-consistent'' model of a T Tauri disk in the sense that we used dust properties and calculated surface temperatures that matched observed disks. We then calculated the midplane temperature for those disks, with no accretional heating or with small (<=10-8 Msolar yr-1) accretion rates. (Larger accretion rates can push the snow line out to beyond 4 AU but do not match the observed disks.) Our models bring the snow line in to the neighborhood of 1 AU--not far enough to explain the close planetary companions to other stars, but much closer than in recent starting lines for orbit migration scenarios.

  18. Snow metamorphism: A fractal approach.

    PubMed

    Carbone, Anna; Chiaia, Bernardino M; Frigo, Barbara; Türk, Christian

    2010-09-01

    Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level. PMID:21230135

  19. NASA’s Sense of Snow: the Airborne Snow Observatory

    NASA Video Gallery

    Water is a critical resource in the western U.S. NASA’s Airborne Snow Observatory is giving California water agencies the first complete measurements of the water available in the Sierra snowpack ...

  20. The Effect of Forest Structure on Snow Hydrology in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Pomeroy, J.; Ellis, C.; MacDonald, J.

    2008-12-01

    Mountain evergreen forests exert two primary effects on the formation and ablation of the seasonal snowcover. The first is the interception of snowfall in the forest canopy, resulting in sublimation, melt or unloading from the canopy. Snow interception can capture a very large percentage of the seasonal snowfall and in cold conditions this snow can be held for many days in the canopy. In the canopy snow is exposed to high rates of turbulent transfer and so can sublimate rapidly where unsaturated conditions prevail. Snow also metamorphoses in the canopy and some intercepted snow is unloaded to the surface, depending on the mechanics of slippage between branch and intercepted snow and the failure of intercepted snow clumps. The result of the snow interception, sublimation and unloading processes is that snow accumulation usually declines with increasing forest cover. This effect is most pronounced in cold, dry and windy conditions. The second primary effect of mountain forests is that snow on the ground is subjected to modified radiation regimes due to the extinction of shortwave radiation and emission of longwave radiation by the forest canopy. Some extinguished shortwave energy is also emitted as longwave energy. The result is to sometimes reduce and sometimes increase the incoming radiation available to the snowpack compared to open areas, the direction of change depending on cloudiness, solar angle, canopy structure, snow albedo, degree of slope and aspect. In cold continental mountain environments, net radiation available for snowmelt is generally reduced by increasing forest cover on level sites and south facing slopes but is enhanced by increasing forest cover on north facing slopes. The dramatic implications of the combined effects on snow hydrology of changing snow interception and radiation regimes as mountain forest cover is reduced from insect infestation, logging and burning are demonstrated and discussed.

  1. Contaminants in arctic snow collected over northwest Alaskan sea ice

    USGS Publications Warehouse

    Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.

    2002-01-01

    Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.

  2. The ringed seal's last refuge and the importance of snow cover

    NASA Astrophysics Data System (ADS)

    Kelly, B. P.; Bitz, C. M.

    2010-12-01

    Ringed seals are strongly adapted to inhabiting seasonal ice cover throughout the Arctic Ocean, marginal seas, and some freshwater lakes. Their distribution has expanded and contracted with northern hemisphere ice cover and is expected to mirror declining ice cover in coming decades. Ringed seals require snow cover to provide shelter from extreme cold and from predators, and the southern extent of their range corresponds to the latitudes to which snow cover—sufficient to form and maintain subnivean lairs—extends. The lairs are especially critical to the survival of pups born and nursed under the snow in late March through May. Snow drifts 50 cm or deeper are necessary for lair occupation, and field measurements indicate that such drifting occurs only where average snow depths (on flat ice) exceed 20 cm. When snow depths are less, ringed seal pups freeze in their lairs and are vulnerable to predation by carnivores and birds. As the climate warms, winter precipitation is expected to increase in the Arctic Ocean, potentially favoring formation and occupation of lairs. At the same time, increasingly late ice formation is expected to decrease the overall accumulation of snow, an effect exacerbated by the high fraction of annual snow fall that occurs in autumn. Early snow melts also contribute to pup mortality and are likely to increase as the climate warms. We forecast April snow depths on Arctic sea ice through the year 2100 in seven runs of CCSM3. Despite predicted increases in winter precipitation in the Arctic, the model forecasted that the accumulation of snow on sea ice will decrease by almost 50% in this century. The timing of the onset of snow melt changes little in the projections, but the shallower snow pack will melt more quickly in the warmer climate. In almost all portions of the range, average snow depths are expected to be less than 20 cm and inadequate for successful rearing of ringed seal young by the end of the century and—in many locations

  3. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  4. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2014-04-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for linking snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density (bulk density) climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.22 ± 0.05 g cm-3 over the study area. The maximum and minimum monthly mean snow density was about 0.33 g cm-3 in June, and 0.14 g cm-3 in October, respectively. Maritime and ephemeral snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, on the coast of Arctic Russia, and the Kamchatka Peninsula, while the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. There was a high correlation of snow density with elevation for tundra snow and snow density was highly correlated with latitude for prairie snow.

  5. Comprehensive Study of Carbonaceous Species in Arctic Snow: from Snow Type to Carbon Sources and Sinks in the Snowpack

    NASA Astrophysics Data System (ADS)

    Voisin, D.; Cozic, J.; Houdier, S.; Barret, M.; Jaffrezo, J. L.; King, M. D.; Beine, H. J.; Domine, F.

    2012-04-01

    . Total Carbon Content is highest in is highest in soil influenced indurated depth hoar layers and in diamond dust precipitation. It is found to decrease as snow ages, due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. A precise evaluation of this recycled fraction would need a more precise evaluation of the annual importance of diamond dust as a source of carbon to the snowpack. Organic Carbon in surface snows appears to have a very significant (~40%) insoluble fraction. HULIS, short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC+WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or an unknown source; a marine source is suggested.

  6. The Fallacy of Drifting Snow

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    2011-12-01

    A common parametrization over snow-covered surfaces that are undergoing saltation is that the aerodynamic roughness length for wind speed ( z 0) scales as {α u_ast^2/g}, where u * is the friction velocity, g is the acceleration of gravity, and α is an empirical constant. Data analyses seem to support this scaling: many published plots of z 0 measured over snow demonstrate proportionality to {u_ast^2 }. In fact, I show similar plots here that are based on two large eddy-covariance datasets: one collected over snow-covered Arctic sea ice; another collected over snow-covered Antarctic sea ice. But in these and in most such plots from the literature, the independent variable, u *, was used to compute z 0 in the first place; the plots thus suffer from fictitious correlation that causes z 0 to unavoidably increase with u * without any intervening physics. For these two datasets, when I plot z 0 against u * derived from a bulk flux algorithm—and thus minimize the fictitious correlation— z 0 is independent of u * in the drifting snow region, u * ≥ 0.30 ms-1. I conclude that the relation {z_0 = α u_ast^2/g} when snow is drifting is a fallacy fostered by analyses that suffer from fictitious correlation.

  7. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  8. The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): An analogue of future shallow-marine carbonate systems?

    NASA Astrophysics Data System (ADS)

    Payros, Aitor; Pujalte, Victoriano; Tosquella, Josep; Orue-Etxebarria, Xabier

    2010-07-01

    If the ongoing phenomenon of global warming prevails, three main consequences are expected in tropical seas: a higher sea level, a reduction in coral reefs and more intense cyclones. What will shallow-marine carbonate systems be like? Insights can be gained from the Pyrenean Urbasa-Andia Formation, a transgressive heterozoan-like foralgal (larger foraminiferal and red algal) ramp that formed in Middle Eocene times, a greenhouse interval characterized by high atmospheric CO 2 content. Firstly, the evolution of future tropical shallow-marine systems subject to a sea-level rise is very likely to be similar to that seen in the backstepping architecture of the Urbasa-Andia Formation. Secondly, Eocene larger foraminifers rose when the Paleocene-Eocene hyperthermal event caused a decline in corals in tropical seas. Coral reefs are again among the ecosystems that are likely to be particularly affected by current global warming. It is therefore probable that future shallow-marine tropical ecosystems will be devoid of platform margin coral reefs, heterozoan ramps being far more common. Thirdly, strong storm influence was common on the Urbasa-Andia carbonate ramp, the most distinctive feature being a distal dune field that was formed below storm wave base by high-energy return currents. Similar features also characterize other Eocene carbonate ramps. Furthermore, numerical simulations highlighted the effect of strong tropical cyclones during the equable climate of the Eocene. Together this information supports the hypothesis that tropical cyclone activity may increase under future greenhouse conditions. Taking everything into account, the transgressive storm-dominated foralgal ramp represented by the Urbasa-Andia Formation can be used as a virtual analogue of future shallow-marine carbonate sedimentary environments developed under greenhouse conditions.

  9. A consideration on the electric field formed by blowing snow particles

    NASA Astrophysics Data System (ADS)

    Omiya, Satoshi; Sato, Atsushi

    2013-04-01

    Fluctuations of the atmospheric electric field strength have been reported during blowing snow events. A primary factor of this phenomenon is the electrification of the blowing snow particles. Electric force applied to the blowing snow particles may be a contributing factor in the formation of snow drifts and snow cornices and changing particles' trajectory motion. These can cause natural disaster such as an avalanche and visibility deterioration. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The purpose of this study was to clarify the fluctuation characteristics of the electric field. In previous studies, some numerical models have been proposed; however, these models did not consider the dependency of the particle charges on the particle diameter or the height dependency of the horizontal mass flux. Taking into account those dependencies, we estimated the vertical electric field distribution. In this study, an experimental equation (Omiya et al., 2011), which can estimate the individual particle charge from the particle diameter and the air temperature, was used. In addition, the approximation equations of the vertical distribution of wind speed, the horizontal mass flux, and the average particle diameter were also used. A hot-wire anemometer was used to measure the wind speed. A snow particle counter (SPC) was used to measure the horizontal mass flux and the particle diameter distribution. This experiment was conducted in a cold wind tunnel (Ice and Snow Research Center, NIED, JAPAN) at an air temperature of -10 degree Celsius. In this calculation, for simplicity, some assumptions were considered; 1) The particle diameter and the particle number density are horizontally constant and uniform. (The electric field formed by the blowing snow particles is uniform horizontally.) 2) All the blowing snow particles are electrified negatively

  10. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  11. Politics of Snow

    NASA Astrophysics Data System (ADS)

    Burko, D.

    2012-12-01

    In a 2010 catalog introduction for my exhibition titled: POLITICS OF SNOW, Eileen Claussen, President of the Pew Center on Global Climate Change wrote the following: "Climate change has been taken over by politics…We are awash in talking points, briefing papers, scientific studies, and communiqués from national governments… Diane Burko's paintings remind us that all these words can often obscure or even obstruct our view of what is truly happening …..There is only so much you can do with words. People need to see that the world is changing before our eyes. When we look at Diane's images of the effects of climate change, we connect to something much deeper and more profound (and more moving) than the latest political pitch from one side or another in this debate…These paintings also connect us to something else. Even as Diane documents how things are changing, she also reminds us of the stunning beauty of nature - and, in turn, the urgency of doing everything in our power to protect it." The creation of this body of work was made possible because of the collaboration of many glacial geologists and scientists who continually share their visual data with me. Since 2006 I've been gathering repeats from people like Bruce Molnia (USGS) and Tad Pfeffer of Alaskan glaciers, from Daniel Fagre (USGS) of Glacier National Park and Lonnie Thompson and Jason Box (Ohio University's Byrd Polar Center) about Kilimanjaro, Qori Kalis and Petermann glaciers as well as from photographer David Breashears on the disappearing Himalayan glaciers. In my practice, I acknowledge the photographers, or archive agencies, such as USGS, NASA or Snow and Ice Center, in the title and all printed material. As a landscape painter and photographer my intent is to not reproduce those images but rather use them as inspiration. At first I used the documentary evidence in sets of diptychs or triptychs. Since 2010 I have incorporated geological charts of recessional lines, graphs, symbols and

  12. Detecting Falling Snow from Space

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Ben; Munchak, Joe

    2012-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earth's surface in order to fully capture the atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms includes determining the thresholds of detection for various active and passive sensor channel configurations, snow event cloud structures and microphysics, snowflake particle electromagnetic properties, and surface types. In this work, cloud resolving model simulations of a lake effect and synoptic snow event were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W -band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) Ku and Ka band, and the GPM Microwave Imager (GMI) channels from 10 to 183 plus or minus 7 GHz. Eleven different snowflake shapes were used to compute radar reflectivities and passive brightness temperatures. Notable results include: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, "the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with approximately 0.05 g per cubic meter detected at the surface, or an approximately 0.5-1 millimeter per hr. melted snow rate (equivalent to 0.5-2 centimeters per hr. solid fluffy snowflake rate). With detection levels of falling snow known, we can focus current and future retrieval efforts on detectable storms and concentrate advances on achievable results. We will also have an understanding of the light snowfall events missed by the sensors and not captured in the global estimates.

  13. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, L.; Kontu, A.; Hannula, H.-R.; Sjöblom, H.; Pulliainen, J.

    2015-12-01

    The manual snow survey program of the Arctic Research Centre of Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (SD) and snow water equivalent (SWE); however some older records of the snow and ice cover exists. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day measurements include observations of SD, SWE, temperature, density, horizontal layers of snow, grain size, specific surface area (SSA), and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  14. Wind tunnel observations of drifting snow

    NASA Astrophysics Data System (ADS)

    Paterna, Enrico; Crivelli, Philip; Lehning, Michael

    2016-04-01

    Drifting snow has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by drifting snow. Understanding the dynamic of snow saltation is crucial to the accurate description of the process. We applied digital shadowgraphy in a cold wind tunnel to measure drifting snow over natural snow covers. The acquisition and evaluation of time-resolved shadowgraphy images allowed us to resolve a large part of the saltation layer. The technique has been successfully compared to the measurements obtained from a Snow Particle Counter, considered the most robust technique for snow mass-flux measurements so far. The streamwise snow transport is dominated by large-scale events. The vertical snow transport has a more equal distribution of energy across the scales, similarly to what is observed for the flow turbulence velocities. It is hypothesized that the vertical snow transport is a quantity that reflects the local entrainment of the snow crystals into the saltation layer while the streamwise snow transport results from the streamwise development of the trajectories of the snow particles once entrained, and therefore is rather a non-local quantity.

  15. SnopViz, an interactive snow profile visualization tool

    NASA Astrophysics Data System (ADS)

    Fierz, Charles; Egger, Thomas; gerber, Matthias; Bavay, Mathias; Techel, Frank

    2016-04-01

    SnopViz is a visualization tool for both simulation outputs of the snow-cover model SNOWPACK and observed snow profiles. It has been designed to fulfil the needs of operational services (Swiss Avalanche Warning Service, Avalanche Canada) as well as offer the flexibility required to satisfy the specific needs of researchers. This JavaScript application runs on any modern browser and does not require an active Internet connection. The open source code is available for download from models.slf.ch where examples can also be run. Both the SnopViz library and the SnopViz User Interface will become a full replacement of the current research visualization tool SN_GUI for SNOWPACK. The SnopViz library is a stand-alone application that parses the provided input files, for example, a single snow profile (CAAML file format) or multiple snow profiles as output by SNOWPACK (PRO file format). A plugin architecture allows for handling JSON objects (JavaScript Object Notation) as well and plugins for other file formats may be added easily. The outputs are provided either as vector graphics (SVG) or JSON objects. The SnopViz User Interface (UI) is a browser based stand-alone interface. It runs in every modern browser, including IE, and allows user interaction with the graphs. SVG, the XML based standard for vector graphics, was chosen because of its easy interaction with JS and a good software support (Adobe Illustrator, Inkscape) to manipulate graphs outside SnopViz for publication purposes. SnopViz provides new visualization for SNOWPACK timeline output as well as time series input and output. The actual output format for SNOWPACK timelines was retained while time series are read from SMET files, a file format used in conjunction with the open source data handling code MeteoIO. Finally, SnopViz is able to render single snow profiles, either observed or modelled, that are provided as CAAML-file. This file format (caaml.org/Schemas/V5.0/Profiles/SnowProfileIACS) is an international

  16. BOREAS RSS-8 Snow Maps Derived from Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy; Chang, Alfred T. C.; Foster, James L.; Chien, Janeet Y. L.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-8 team utilized Landsat Thematic Mapper (TM) images to perform mapping of snow extent over the Southern Study Area (SSA). This data set consists of two Landsat TM images that were used to determine the snow-covered pixels over the BOREAS SSA on 18 Jan 1993 and on 06 Feb 1994. The data are stored in binary image format files. The RSS-08 snow map data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. Snow Micro-Structure Model

    Energy Science and Technology Software Center (ESTSC)

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  18. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  19. Peculiarities of hydrocarbon distribution in the snow-ice cover of different regions of the white sea

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.

    2014-03-01

    This paper presents data on the content of hydrocarbons (HCs) in the snow-ice cover of the coastal regions of the Dvina and Kandalaksha gulfs, White Sea, in 2008-2012 in comparison with the content of organic carbon, lipids, and the suspension. The accumulation of HCs in the snow-ice cover depends on the degree of pollution of the atmosphere, formation conditions of ice, and intensity of biogeochemical processes at the ice-water boundary. Thus, the highest concentrations in the water basin of Arkhangelsk are identified in snow and in the upper part of the ice. The peculiarities of formation of the snow-ice cover in Rugozero Bay of the Kandalaksha Gulf leads to the concentration of HCs in different snow and ice layers. The decreased HC content in the snow-ice cover of the White Sea, in comparison with previous studies, is caused by recession of industrial production in recent years.

  20. A bisphenol-A-based resin system that cures via triazole ring formation for marine composite applications

    NASA Astrophysics Data System (ADS)

    Gorman, Irene Elizabeth

    Large composite panels, such as those utilized in marine applications, cannot be economically cured in an autoclave. For these structures the elevated temperatures necessary to achieve high crosslink density must come from the curing reaction itself. We are developing a resin system that cures via triazole ring formation (cycloaddition reaction of azides with terminal alkynes) instead of the traditional oxirane/amine reaction. The high exothermicity of the azido/alkyne reaction is expected to yield higher extents of reaction under ambient-cure conditions, making the resin system potentially suitable for "out-of-autoclave" curing processes. This work was conducted through a multi-tiered approach involving synthesis, kinetic studies, thermal characterization, and mechanical analysis. The difunctional azide-terminated resin, di(3-azido-2 hydroxypropyl) ether of bisphenol-A (DAHP-BPA), was selected as the baseline diazide. A number of alkyne crosslinkers were synthesized and characterized, including propiolate esters of di- and trifunctional alcohols, propargyl esters of di- and trifunctional carboxylic acids, propargyl ethers of di- and trifunctional alcohols, and N,N,N',N'-tetrapropargyl derivatives of primary diamines. Commercially available tripropargylamine (TPA) was also studied. Curing energetics as a function of alkyne type and catalyst loading, investigated through a dynamic differential scanning calorimetry approach, displayed two distinct kinetic profiles when considering propiolate and propargyl type crosslinkers. Those systems employing a propiolate-based alkyne were found to be much more reactive towards the Huisgen 1,3-dipolar cycloaddition than the propargyl species. Additionally, the mechanical and thermal properties of resin systems, both un-catalyzed and catalyzed, composed of DAHP-BPA and tripropargyl amine were investigated by compression and rheological studies, differential scanning calorimetry, and thermogravametric analysis. The moduli of both

  1. Snow and Ice Crust Changes over Northern Eurasia since 1966

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.

    2009-12-01

    observations has substantially changed at that year. Therefore, this analysis includes only data of 585 Russian stations from 1966 to 2008 that have all years of data with a minimal number of missing observations. Surveys run separately along all types of environment typical for the site for 1 to 2 km, describing the current snow cover properties including characteristics of snow and ice crust. Joint analysis of these characteristics of crust together with a suite of synoptic information at the stations allows us to empirically assess the process of snow and ice crust formation and development throughout the cold season and outline major factors responsible for their dynamics. Finally, regional averaging and time series analysis of both, these factors and the crust characteristics themselves, answer the question about the regional climatic changes of snow and ice crusts over Northern Eurasia, including those crust characteristics that are of practical importance for reindeer husbandry. These results for the Russian Federation will be presented at the Meeting.

  2. Marine Ecomechanics

    NASA Astrophysics Data System (ADS)

    Denny, Mark W.; Gaylord, Brian

    2010-01-01

    The emerging field of marine ecomechanics provides an explicit physical framework for exploring interactions among marine organisms and between these organisms and their environments. It exhibits particular utility through its construction of predictive, mechanistic models, a number of which address responses to changing climatic conditions. Examples include predictions of (a) the change in relative abundance of corals as a function of colony morphology, ocean acidity, and storm intensity; (b) the rate of disturbance and patch formation in beds of mussels, a competitive dominant on many intertidal shores; (c) the dispersal and recruitment patterns of giant kelps, an important nearshore foundation species; (d) the effects of turbulence on external fertilization, a widespread method of reproduction in the sea; and (e) the long-term incidence of extreme ecological events. These diverse examples emphasize the breadth of marine ecomechanics. Indeed, its principles can be applied to any ecological system.

  3. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon. PMID:19569324

  4. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, Leena; Kontu, Anna; Hannula, Henna-Reetta; Sjöblom, Heidi; Pulliainen, Jouni

    2016-05-01

    The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  5. Radar spectral observations of snow

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Radar remote sensing experiments have been conducted at test sites in Kansas, Colorado, and South Dakota over the last six years to examine backscatter coefficient response to snowcovered terrain. Truck-mounted 1-35 GHz scatterometers were employed in conjunction with detailed ground-truth measurements. From these experiments and associated modeling efforts, most of the fundamental questions concerning backscatter behavior in response to important snow parameters have been, at least qualitatively, answered. The optimum angular range seems to be between 20 and 50 deg and, for these angles, the results indicate that the radar backscatter generally: (1) increases with increasing water equivalent, (2) decreases with increasing liquid water, (3) increases with increasing crystal size, (4) is insensitive to surface roughness for dry snow conditions, and (5) can be sensitive to soil state if the snowcover is dry. This paper gives a summary of these results, along with empirical and theoretical models for describing the backscatter from snow.

  6. Shallow marine event sedimentation in a volcanic arc-related setting: The Ordovician Suri Formation, Famatina range, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1996-01-01

    level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.

  7. New Insights into an Old Cycle: The Marine Phosphorus Cycle and the Formation of Critical Phosphate Rock Resources (Invited)

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.

    2010-12-01

    The cycling and geochemistry of phosphorus (P) in the marine environment is a critical component of biological productivity and of resource availability: P control the long-term carbon cycle via its role as a limiting nutrient, and the burial and concentration of P within marine sediments dictates the quality and availability of P as a fertilizer component from a resources standpoint. Given the projections of severe P fertilizer limitation over the next several centuries, understanding the controls on P geochemistry and concentration into a minable resource is critical in sustaining global populations. Several critical aspects of the marine P cycle have been uncovered over the past few decades which have clarified our understanding of P burial and concentration. First, the initial authigenic process of P mineralization within marine sediments, termed phosphogenesis, seems to occur regardless of marine setting. Phosphogenesis results from the release of P into sedimentary pore waters from organic and oxide-bound fractions, and the subsequent supersaturation with respect to carbonate fluorapatite. In sediment-starved basins with significant upwelling-driven productivity, the supply of P into sedimentary pore waters can be so high that visibly apparent layers of carbonate fluorapatite can be formed. Even in such environments, however, the mineral P content is too low to be of economic value unless it has undergone concentration via sediment reworking, a common occurrence in some dynamic continental margin environments. Thus, a combination of phosphogenesis in a high productivity setting plus sediment starvation plus condensation via reworking are necessary to produce phosphorites, sedimentary rocks with high P contents which are ideal as fertilizer-grade P resources. Given these special marine conditions, phosphorites are largely distributed along ancient marine environments (with the exception of the nearly-depleted atoll guano reserves). The largest currently

  8. Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth

    NASA Astrophysics Data System (ADS)

    Kongoli, Cezar; Grody, Norman C.; Ferraro, Ralph R.

    2004-12-01

    The objective of this paper is to interpret microwave scattering signatures over snow cover as observed by the Advanced Microwave Sounding Unit (AMSU) for the retrievals of snow water equivalent and snow depth. A case study involving seasonal snow cover over the U.S. Great Plains was analyzed in detail. Area-wide analysis of the relationship between snow depth and the AMSU scattering signatures in the 23-150 GHz window region showed weak correlation, deteriorated by the dependence of these signatures on snow metamorphism. The lower frequency scattering index, computed as the difference in the brightness temperature between 23 and 31 GHz channels, was low and insensitive to fresh snow predominant in December, but increased later in the season, and thus was more sensitive to snow depth for older snow cover. However, this seasonal increase in microwave scattering was observed for every snow depth range, suggesting a strong dependence on snow metamorphism. In contrast, the 89 GHz scattering index responded to relatively shallow snow cover in December, but was less sensitive to snow depth variability later in the season. A snow hydrology model was applied at specific locations to estimate snow water equivalent (other than snow depth) for comparisons with the AMSU measurements. Overall, the lower frequency index was the best predictor of snow water equivalent and snow depth. However, correlation was higher for snow density and snow water equivalent. This was attributed to the response of this scattering index to the grain size evolution with time, which correlated better with the snow density and water equivalent changes in the snow cover than snow depth. Correlation between the snow water equivalent and the lower frequency index for fresh snow cover was significantly improved by switching to the higher frequency index at 89 GHz as predictor when the lower frequency index at 31 GHz was less than the 5 K threshold. Correlation further improved for fresh snow cover

  9. Fish faunas from the Late Jurassic (Tithonian) Vaca Muerta Formation of Argentina: One of the most important Jurassic marine ichthyofaunas of Gondwana

    NASA Astrophysics Data System (ADS)

    Gouiric-Cavalli, Soledad; Cione, Alberto Luis

    2015-11-01

    The marine deposits of the Vaca Muerta Formation (Tithonian-Berriasian) houses one of the most diverse Late Jurassic ichthyofaunas of Gondwana. However, most of the specimens remain undescribed. Jurassic fishes have been recovered from several localities at Neuquén Province (i.e., Picún Leufú, Plaza Huincul, Cerro Lotena, Portada Las Lajas, Los Catutos, and Arroyo Covunco) but also from Mendoza Province (i.e., La Valenciana, Los Molles, and Arroyo del Cajón Grande). Presently, the fish fauna of Los Catutos, near Zapala city (Neuquén Province), has yielded the highest number of specimens, which are taxonomically and morphologically diverse. At Los Catutos locality, the Vaca Muerta Formation is represented by the Los Catutos Member, which is considered the only lithographic limestones known in the Southern Hemisphere. Here, we review the Tithonian fish faunas from the Vaca Muerta Formation. During Late Jurassic times, the actual Argentinian territory could have been a morphological diversification center, at least for some actinopterygian groups. The apparently lower species diversity recorded in marine Jurassic ichthyofaunas of Argentina (and some Gondwanan countries) in comparison with Chilean and European fish faunas could be related to the fish paleontological research history in Gondwana and the low number of detailed studies of most of specimens recorded.

  10. Snow wetness measurements for melt forecasting

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Clapp, F. D.; Meier, M. F.; Smith, J. L.

    1975-01-01

    A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow.

  11. Snow Hydrology in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-08-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas.The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snow pack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter.Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  12. Late Paleocene to Early Eocene marine vertebrates from the Uppermost Aruma Formation (northern Saudi Arabia): implications for the K-T transition

    NASA Astrophysics Data System (ADS)

    Thomas, Herbert; Roger, Jack; Halawani, Mohammed; Memesh, Abdallah; Lebret, Patrick; Bourdillon, Chantal; Buffetaut, Eric; Cappetta, Henri; Cavelier, Claude; Dutheil, Didier; Tonge, Haiyan; Vaslet, Denis

    1999-12-01

    A new assemblage of marine vertebrates from northern Saudi Arabia, east of the Nafud, leads us to reconsider the age of the top unit of the Aruma Formation, the Lina Member, hitherto referred to the Maastrichtian. This assemblage contains the remains of a dozen selachian and actinopterygian fishes, as well as those of a giant sea turtle representing a new dermochelyid taxon. It suggests a Late Paleocene to Early Eocene age for this unit. This new dating and a revision of the stratigraphic position of the Lina Member demonstrate the existence, on a regional scale, of an important hiatus at the K-T boundary.

  13. Microwave emission from an irregular snow layer

    NASA Technical Reports Server (NTRS)

    Eom, H. J.; Lee, K. K.; Fung, A. K.

    1983-01-01

    Emission from an irregular snow layer is modeled by a layer of Mie scatterers using the radiative transfer method. Comparisons are made with measurements showing snow wetness effects and rough air-snow boundary effects. For convenience of reference, theoretical model behavior is also illustrated.

  14. Elevation dependency of mountain snow depth

    NASA Astrophysics Data System (ADS)

    Grünewald, T.; Bühler, Y.; Lehning, M.

    2014-12-01

    Elevation strongly affects quantity and distribution patterns of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation-snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites near to the time of the maximum seasonal snow accumulation. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales: (i) the complete data sets (10 km scale), (ii) sub-catchments (km scale) and (iii) slope transects (100 m scale). We show that most elevation-snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore, we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks (if present).

  15. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  16. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  17. Cold, Ice, and Snow Safety (For Parents)

    MedlinePlus

    ... to Know About Zika & Pregnancy Cold, Ice, and Snow Safety KidsHealth > For Parents > Cold, Ice, and Snow Safety Print A A A Text Size What's ... a few. Plus, someone has to shovel the snow, right? Once outdoors, however, take precautions to keep ...

  18. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  19. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  20. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  1. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  2. Physiochemical characterization of insoluble residues in California Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Creamean, Jessie; Axson, Jessica; Bondy, Amy; Craig, Rebecca; May, Nathaniel; Shen, Hongru; Weber, Michael; Warner, Katy; Pratt, Kerri; Ault, Andrew

    2015-04-01

    The effects atmospheric aerosols have on cloud particle formation are dependent on both the aerosol physical and chemical characteristics. For instance, larger, irregular-shaped mineral dusts efficiently form cloud ice crystals, enhancing precipitation, whereas small, spherical pollution aerosols have the potential to form small cloud droplets that delay the autoconversion of cloudwater to precipitation. Thus, it is important to understand the physiochemical properties and sources of aerosols that influence cloud and precipitation formation. We present an in-depth analysis of the size, chemistry, and sources of soluble and insoluble residues found in snow collected at three locations in the California Sierra Nevada Mountains during the 2012/2013 winter season. For all sites, February snow samples contained high concentrations of regional pollutants such as ammonium nitrate and biomass burning species, while March snow samples were influenced by mineral dust. The snow at the lower elevation sites in closer proximity to the Central Valley of California were heavily influenced by agricultural and industrial emissions, whereas the highest elevation site was exposed to a mixture of Central Valley pollutants in addition to long-range transported dust from Asia and Africa. Further, air masses likely containing transported dust typically traveled over cloud top heights at the low elevation sites, but were incorporated into the cold (-28°C, on average) cloud tops more often at the highest elevation site, particularly in March, which we hypothesize led to enhanced ice crystal formation and thus the observation of dust in the snow collected at the ground. Overall, understanding the spatial and temporal dependence of aerosol sources is important for remote mountainous regions such as the Sierra Nevada where snowpack provides a steady, vital supply of water.

  3. Photopolarimetric Retrievals of Snow Properties

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  4. Photopolarimetric retrievals of snow properties

    NASA Astrophysics Data System (ADS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-10-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  5. Photopolarimetric retrievals of snow properties

    NASA Astrophysics Data System (ADS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-05-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on air- and space-borne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited dataset, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  6. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer

  7. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    NASA Astrophysics Data System (ADS)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); http://snow.engin.umich.edu) model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  8. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  9. The Effect of Black Carbon and Snow Grain Size on Snow Surface Albedo

    NASA Astrophysics Data System (ADS)

    Hadley, O. L.; Kirchstetter, T.; Flanner, M.

    2009-12-01

    Black carbon (BC) has been measured in snow and ice cores at levels that climate models predict are high enough to be the second leading cause in arctic ice melt and glacial retreat after greenhouse gas warming. BC deposited on snow reduces the snow surface albedo; however, in addition to BC content, snow albedo also depends on sky cover, solar angle, snow grain size and shape, surface roughness, and depth. Quantifying the albedo reduction due to BC separately from these other variables is difficult to achieve in field measurements. We are conducting laboratory experiments that isolate the effect of BC and snow grain size on snow albedo. Snow is made by spraying and freezing drops of water; BC contaminated snow is made from BC hydrosol. Snow albedo is measured with a spectrometer equipped with an integrating sphere over the entire visible spectrum (400-1000 nm). Snow grain size distribution and shape are characterized using a digital microscope to calculate the effective radius of the snow. Measured snow albedo is compared to that predicted using the Snow, Ice, and Aerosol Radiative Model. Preliminary results indicate good agreement between measured and modeled albedo for pure and BC contaminated snow.

  10. Snow complexity representation and GCM climate

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Viterbo, Pedro; Miranda, Pedro M. A.; Balsamo, Gianpaolo

    2010-05-01

    Accurate simulations of the snow cover strongly impact on the quality of weather and climate predictions as the solar radiation absorption at land-atmosphere interface is modified by a factor up to 4 in response to snow presence (albedo effect). In Northern latitudes and Mountainous regions snow acts also as an important energy and water reservoir and a correct representation of snow mass and snow density is crucial for temperature predictions at all time-scales, with direct consequences for soil hydrology (thermal insulation effect). Three different complexity snow schemes implemented in the ECMWF land surface scheme HTESSEL are tested within the EC-EARTH framework. The snow schemes are: 1) OLD, the original HTESSEL single bulk layer snow scheme (same as in the ERA-40 and ERA-Interim reanalysis); 2) OPER, a new snow scheme in operations since September 2009, with a liquid water reservoir and revised formulations of snow density, fractional cover and snow albedo; and 3) ML3, a multi-layer version of OPER. All three snow schemes in HTESSEL are energy- and mass- balance models. The multi-layer snow scheme, ML3, was validated in offline mode covering several spatial and temporal scales: (i) site simulations for several observation locations from the Snow Models intercomparison project-2 (SnowMip2) and (ii) global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and the ECMWF ERA-Interim re-analysis. On point locations ML3 improve snow mass simulations, while on a global scale the impacts are residual pointing to the need of coupled atmosphere simulations. The 3 schemes are compared in the framework of the atmospheric model of EC-EARTH, based on the current seasonal forecast system of ECMWF. The standard configuration runs at T159 horizontal spectral resolution with 62 vertical levels. Three member ensembles of 30 years (1979-2008) simulations, with prescribed SSTs and sea ice, were performed for each of the snow schemes

  11. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.

    PubMed

    Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre

    2014-12-01

    Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems. PMID:25318592

  12. Comparison of the Snow Simulations in Community Land Model Using Two Snow Cover Fraction Parameterizations

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong

    2016-04-01

    Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm

  13. Challenges in simulation of snow microstructure and implications for remote sensing of snow mass

    NASA Astrophysics Data System (ADS)

    Sandells, M. J.; Essery, R.; Leppänen, L.; Lemmetyinen, J.; Rutter, N.

    2014-12-01

    One of the greatest challenges for global measurement of snow mass is quantification of the snow microstructure. Radiative transfer models are more sensitive to the snow structure metrics used than to snow depth, so microstructure must be well quantified in order to retrieve snow mass from satellite observations. Principles of physics have been used to simulate microstructure in many years of avalanche and climate research, although these have different accuracy requirements to remote sensing applications. Growth of snow crystals is dependent primarily on the snow temperature gradient, but also the temperature and density of the snow. Forced with the same meteorological data, different models simulate different snow temperatures. Even with the same grain growth assumptions, this leads to different rates of microstructure evolution. This must be taken into consideration if snow models are to be used to give the necessary parameters for retrieval of snow water equivalent. The JULES Investigation Model snow model (JIM) has a highly configurable structure that allows different layering assumptions to be used. It incorporates all major components from existing snow models, which enables the simulation of an ensemble of 1701 members. JIM was used to quantify the impact of different model parameterizations such as snow compaction and thermal conductivity on simulated microstructure (previously referred to as 'grain size') for each of four different grain size parameterizations from the Crocus, MOSES, SNICAR and SNTHERM models. The Helsinki University of Technology snow microwave emission model was then used to demonstrate the impact of different snow model assumptions on the simulation of microwave brightness temperature. This paper discusses potential snow mass retrieval errors due to uncertainties in snow parameters from snow evolution models, and how these may be mitigated through techniques such as data assimilation.

  14. Elevation dependency of mountain snow depth

    NASA Astrophysics Data System (ADS)

    Grünewald, T.; Bühler, Y.; Lehning, M.

    2014-07-01

    Elevation strongly affects quantity and distribution of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation - snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales ranging from the complete data sets by km-scale sub-catchments to slope transects. We show that most elevation - snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks.

  15. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  16. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2013-02-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  17. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2012-08-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  18. Imaging of the CO snow line in a solar nebula analog.

    PubMed

    Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F

    2013-08-01

    Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets. PMID:23868917

  19. Microbes in High Arctic Snow and Implications for the Cold Biosphere ▿ †

    PubMed Central

    Harding, Tommy; Jungblut, Anne D.; Lovejoy, Connie; Vincent, Warwick F.

    2011-01-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83oN). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere. PMID:21460114

  20. Springtime peaks of trace metals in Antarctic snow.

    PubMed Central

    Ikegawa, M; Kimura, M; Honda, K; Makita, K; Fujii, Y; Itokawa, Y

    1997-01-01

    Drifting snow samples were collected at Asuka Station (71 degrees 32'S, 24 degrees 08'E, 930 m above sea level) over a period from July to December 1991; 36 elements (including Na, Mg, K, Ca, Fe, Al, Li, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Se, Rb, Sr, Cd, Pb, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Th) in snow were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) by direct sample introduction. Concentrations of Cl-, NO3-, and SO(4)2- in the snow were also determined by ion chromatography. In late September to early October, there was a pronounced peak concentration of most of the elements together with non-sea salt sulfate. Enrichment factor analyses suggest that Na, Mg, Ca, K, and Sr are of marine origin and Al, Fe, Mn, Rb, Cr, Ni, Ga, V, and all the rare earth elements are of crustal origins. Volcanic eruption of Mt. Pinatubo (June 1991) and Mt. Hudson (August 1991) could be the reason for the precipitation of Pb, Cd, Cu, Zn, and Se together with non-sea salt sulfates in the austral spring at Asuka Station. Images Figure 1. Figure 2. Figure 3. PMID:9288501

  1. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2014-12-01

    . These tests compare modeled and measured snow surface temperature, snow energy content, snow water equivalent, and snowmelt outflow. We found that with these refinements the model is able to better represent the snowpack energy balance and internal energy content while still retaining a parsimonious one layer format.

  2. Analysis and improvement of estimated snow water equivalent (SWE) using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    E Azar, A.; Ghedira, H.; Khanbilvardi, R.

    2005-12-01

    The goal of this study is to improve the retrieval of SWE/Snow depth in Great lakes area, United States using passive microwave images along with Normalized Difference Vegetation Index NDVI and Artificial Neural Networks (ANNs). Passive microwave images have been successfully used to estimate snow characteristics such as Snow Water Equivalent (SWE) and snow depth. Despite considerable progress, challenges still exist with respect to accuracy and reliability. In this study, Special Sensor Microwave Imager (SSM/I) channels which are available in Equal-Area Scalable Earth Grid (EASE-GRID) format are used. The study area is covered by a 28 by 35 grid of EASE-Grid pixels, 25km by 25km each. To have a comprehensive data set of brightness temperatures (Tb) of SSM/I channels, an assortment of pixels were selected based on latitude and land cover. A time series analysis was conducted for three winter seasons to assess the SSM/I capability to estimates snow depth and SWE for various land covers. Ground truth data' were obtained from the National Climate Data Center (NCDC) and the National Operational Hydrological Remote Sensing Center (NOHRSC). The NCDC provided daily snow depth measurements reported from various stations located in the study area. Measurements were recorded and projected to match EASE-GRID formatting. The NOHRSC produces SNODAS dataset using airborne Gamma radiation and gauge measurements combined with a physical model. The data set consisted of different snow characteristics such as SWE and snow depth. Landcover characteristics are introduced by using Normalized Difference Vegetation Index (NDVI). An Artificial Neural Network (ANN) algorithm has been employed to evaluate the effect of landcover in estimating snow depth and Snow Water Equivalent (SWE). The model is trained using SSM/I channels (19v, 19h, 37v, 37h, 22v, 85v, 85h) and the mean and standard deviation of NDVI for the each pixel. The preliminary time series results showed various degrees of

  3. Methaemoglobinaemia due to mephedrone ('snow').

    PubMed

    Ahmed, Noor; Hoy, Brent Philip Sew; McInerney, J

    2010-01-01

    Acquired methaemoglobinaemia is a serious complication caused by many oxidising drugs. It presents as cyanosis unresponsive to oxygen therapy. The case of 33-year-old male patient who presented in our department after noticing blue lips and fingers is presented. He had sniffed 1 g of 'snow' after buying it from a head shop. His oxygen saturation by pulse oximeter on room air at presentation was 90%, which did not improve with supplemental oxygen. Arterial blood gas analyses showed partial pressure of oxygen 37 kPa while on supplemental oxygen and a methaemoglobin concentration greater than 25%. The patient denied using any other recreational drugs and was not on regular treatment. Therefore, a diagnosis of methaemoglobinaemia due to mephedrone, which is the active ingredient of 'snow', was made. Treatment is with intravenous methylene blue. Our patient started to improve so methylene blue was not used and he was discharged after 8 h. PMID:22791577

  4. Snow Densification in Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Morris, E.; Wingham, D.

    2010-12-01

    As part of the calibration and validation experiments for the radar altimeter carried by the ESA Cryosat-2 satellite, snow density profiles have been measured along the EGIG line from Spring 2004 to Summer 2010. Repeated measurements at the same site allow the development of the characteristic stratigraphy of the dry snow zone to be observed and the rate of densification to be measured directly. Densification rates below the surface layer are found to be compatible with a physics-based grain boundary sliding model (Alley, 1987) but near-surface rates are enhanced. Alley, R.B. (1987). Firn densification by grain-boundary sliding: A First Model. J. de. Physique 48 (Coll. C1, Suppl. No.3) 249-256.

  5. The Inverted Snow Globe Shadow

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jair Lúcio Prados

    2015-01-01

    Our high school optics course finishes with an assignment that students usually appreciate. They must take pictures of everyday situations representing optical phenomena such as reflection, refraction, or dispersion, and post them on Instagram.1 When the photos were presented to the class, one student revealed an intriguing photo, similar to Fig. 1, showing a snow globe exposed to sunlight and its inverted shadow. This paper offers an explanation of the problem, which occurs due to light refraction from the globe.

  6. Dirty snow after nuclear war

    NASA Technical Reports Server (NTRS)

    Warren, S. G.; Wiscombe, W. J.

    1985-01-01

    It is shown that smoke from fires started by nuclear explosions could continue to cause significant disruption even after it has fallen from the atmosphere, by lowering the reflectivity of snow and sea ice surfaces, with possible effects on climate in northern latitudes caused by enhanced absorption of sunlight. The reduced reflectivity could persist for several years on Arctic sea ice and on the ablation area of the Greenland ice sheet.

  7. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  8. Spatiotemporal analysis of snow trends in Austria

    NASA Astrophysics Data System (ADS)

    Koch, Roland; Schöner, Wolfgang

    2015-04-01

    This study presents the spatiotemporal analysis of Austrian snow observations. A set of consistent and reliable long-term time series of snow depth on a daily scale from selected meteorological sites across Austria is used. The time series were collected by the Central Institute for Meteorology and Geodynamics (ZAMG) and the Hydrographical Central Bureau of Austria (HZB). The data cover a time period from the late nineteenth century until today. In the first part of the study spatiotemporal characteristics of seasonal snow depth observations were investigated by the method of principal component analysis (PCA). Furthermore, the spatial patterns of variability have been used for a regionalisation, identifying regions with similar conditions during the base period 1961 to 2010. The results show a clear separation of four major regions including various sub-regions. However, the regionalisation was limited due to sparse data coverage. The non-parametric Mann-Kendall statistical test had been used to assess the significance of trends in snow indices, e.g. snow depth, maximum snow depth, snow cover duration, at monthly and seasonal time scales. In order to remove the influence of the lag-1 serial correlation from the snow data, the trend-free pre-whitening approach was applied. In the monthly and seasonal time series during the period 1961-2010, negative trends in snow indices were significant at the 95% confidence level primarily at stations in the Western and Southern part of Austria. In addition, the correlation between snow observations and gridded HISTALP winter temperature and precipitation fields was investigated. The analysis has shown an increased temperature and decreased precipitation during the 1990s, yielding a pronounced reduction in snow depth and duration. As a matter of fact, the results indicate major shifts of the snow depth and snow cover duration around the 1970s and especially the 1990s, which are predominantly responsible for trends.

  9. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments.

    PubMed

    Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling

    2015-01-01

    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world's REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high (87)Sr/(86)Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414

  10. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments

    PubMed Central

    Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling

    2015-01-01

    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414

  11. Spatial and Temporal Variability of Surface Snow Accumulation and Snow Chemistry at East Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Ito, K.; Hirabayashi, M.

    2014-12-01

    Snow stakes along the traverse routes have been observed for long term monitoring program 'the variation of ice sheet surface mass balance' from the 1960's by the Japanese Antarctic Research Expedition in Shirase glacier drainage basin, East Antarctica. During the traverse route between coastal S16 point (69 02'S, 40 03'E, 580m a.s.l.) to inland Dome Fuji (77 22'S, 39 42'E, 3,810m a.s.l.), the snow stake observations every 2 km have been carried out from 1993. Yearly net snow accumulations from S16 to Dome Fuji were calculated. Heavy, modern and light snow events were observed. They were different in way accumulating spatial pattern depending on places. The yearly accumulation rates were compared with seasonal change of AAO-index (SAM). As a result, yearly accumulation rate and AAO-index showed the positive correlation.Surface snow samplings were conducted every 10km along the traverse route. Generally, the snow surface features are classified into three regions. (1) the coastal region: smooth surface, high snow accumulation (2) the katabatic slope region: rough sastrugi surface and smooth glazed surface(3) the high plateau region: smooth surface, little snow accumulation The chemistry of surface snow changes from the coast to inland. Furthermore, the chemical properties of snow are different for each surface at the same area. We can classify the surface snow with fresh drifting snow, deposited drift snow, soft and hard surface snow, sustrugi, surface hoar and so on. The value of each isotope ration and ion concentration greatly varied. Sometimes, snow might deposit thick equally. But the deposited snow was redistributed by the wind. When the snowstorm occurred, the blowing snow started to deposit in a certain opportunity. As for it, the area was not the uniform. It is necessary to discuss inhomogeneity of the depositional condition quantitatively.

  12. Storing snow for the next winter: Two case studies on the application of snow farming.

    NASA Astrophysics Data System (ADS)

    Grünewald, Thomas; Wolfsperger, Fabian

    2016-04-01

    Snow farming is the conservation of snow during the warm half-year. This means that large piles of snow are formed in spring in order to be conserved over the summer season. Well-insulating materials such as chipped wood are added as surface cover to reduce melting. The aim of snow farming is to provide a "snow guaranty" for autumn or early winter - this means that a specific amount of snow will definitively be available, independent of the weather conditions. The conserved snow can then be used as basis for the preparation of winter sports grounds such as cross-country tracks or ski runs. This helps in the organization of early winter season sport events such as World Cup races or to provide appropriate training conditions for athletes. We present a study on two snow farming projects, one in Davos (Switzerland) and one in the Martell valley of South Tyrol. At both places snow farming has been used for several years. For the summer season 2015, we monitored both snow piles in order to assess the amount of snow conserved. High resolution terrestrial laser scanning was performed to measure snow volumes of the piles at the beginning and at the end of the summer period. Results showed that only 20% to 30 % of the snow mass was lost due to ablation. This mass loss was surprisingly low considering the extremely warm and dry summer. In order to identify the most relevant drivers of snow melt we also present simulations with the sophisticated snow cover models SNOWPACK and Alpine3D. The simulations are driven by meteorological input data recorded in the vicinity of the piles and enable a detailed analysis of the relevant processes controlling the energy balance. The models can be applied to optimize settings for snow farming and to examine the suitability of new locations, configurations or cover material for future snow farming projects.

  13. Evaluating snow density models for integration in operational snow water resources monitoring

    NASA Astrophysics Data System (ADS)

    Jonas, T.; Magnusson, J.

    2012-12-01

    In the Alps, the distribution of seasonal snow is highly complex in time and space. Being able to monitor snow water resources is crucial for lake and reservoir management as well as for forecasting of snow-melt related spring floods. In Switzerland, while networks for periodic SWE measurements exist, they do not resolve the variability of snow at spatial and temporal scales as required by the national snow water resources monitoring program. However, there are hundreds of stations that provide daily snow depth information. Including these stations into SWE monitoring schemes requires the use of snow density models. In this study we first look at several model approaches to predict SWE under different scenarios regarding data availability: single snow depth reading, daily snow depth, daily snow and temperature data, etc. The model assessment is based on a large archive of snow pit data measured in the Swiss Alps over several decades. In a second step, we apply the above models to integrate daily snow depth readings in a data assimilation scheme to provide SWE distribution at medium to large scale. Finally, we compare the results of the data assimilation scheme intended for larger scale applications against field data from a 50 km2 test catchment that resolves the natural variability of snow depth and density at a smaller scale. This comparison reveals interesting differences in average density and depth from both data sets, suggesting that including a basic representation of small-scale variability may enhance larger-scale model approaches.

  14. A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species.

    PubMed

    Nithya, Chari; Devi, Muthu Gokila; Karutha Pandian, Shunmugiah

    2011-05-01

    Biofilm formation is a critical problem in nosocomial infections and in the aquaculture industries and biofilms show high resistance to antibiotics. The aim of the present study was to reveal a novel anti-biofilm compound from marine bacteria against antibiotic resistant gram-positive and gram-negative biofilms. The bacterial extract (50 μg ml(-1)) of S6-01 (Bacillus indicus = MTCC 5559) showed 80-90% biofilm inhibition against Escherichia coli, Shigella flexneri, Proteus mirabilis and S6-15 (Bacillus pumilus = MTCC 5560) showed 80-95% biofilm inhibition against all the 10 tested organisms. Furthermore, they also reduced the hydrophobicity index and extracellular polymeric substances (EPS) production. Structural elucidation of the active principle in S6-15 using GC-MS, (1)H NMR, and (13)C NMR spectral data revealed it to be 4-phenylbutanoic acid. This is the first report of 4-phenylbutanoic acid as a natural product. The purified compound (10-15 μg ml(-1)) showed potential activity against a wide range of biofilms. This study for the first time, reports a novel anti-biofilm compound from a marine bacterium with wide application in medicine and the aquaculture industry. PMID:21614700

  15. Erosional remnants and adjacent unconformities along an eolian-marine boundary of the Page Sandstone and Carmel Formation, Middle Jurassic, south-central Utah

    SciTech Connect

    Jones, L.S.; Blakey, R.C. . Dept. of Geology)

    1993-09-01

    Sandstone ridges along the marine-eolian boundary of the Middle Jurassic Page Sandstone (eolian) with the lower Carmel Formation (restricted marine) in south-central Utah have been identified as erosional remnants consisting of strata of siliciclastic sabkha and eolian origin. The ridges lie within two distinct units of the Thousand Pockets Tongue of the Page. Two equally plausible models explain the genesis of these ridges. One model involves (1) early cementation of eolian and sabkha strata, (2) wind erosion leading to development of yardangs and unconformities, (3) yardang tilting due to evaporite dissolution, and (4) renewed deposition and burial. The alternative model explains ridge development through (1) subsidence, with tilting, of eolian and sabkha strata into evaporites due to loading from linear dunes, (2) evaporite dissolution and unconformity development, and (3) renewed deposition and burial. These models provide important clues about the nature of a missing part of the rock record. Reconstruction of units that were deposited but later eroded improves paleogeographic interpretation and here indicates that the Carmel paleo-shoreline was considerably farther to the northwest than previously believed.

  16. Photochemical Formation of Hydroxyl Radical in Red-Soil-Polluted Seawater in Okinawa, Japan -Potential Impacts on Marine Organisms

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Hamdun, A. M.; Okada, K.; Kuroki, Y.; Ikota, H.; Fujimura, H.; Oomori, T.

    2004-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into coastal ocean (locally termed as red-soil-pollution) in the north of Okinawa Island, Japan. In an attempt to understand the impacts of red soil on oxidizing power of the seawater, we studied formation of hydroxyl radical (OH radical), the most potent oxidant in the environment, in red-soil-polluted seawaters, using 313 nm monochromatic light. Photo-formation rates of OH radical showed a good correlation with dissolved iron concentrations (R = 0.98). The major source of OH radical was found to be the Fenton reaction (a reaction between Fe(II) and HOOH). The un-filtered red-soil-polluted seawater samples exhibited faster OH radical formation rates than the filtered samples, suggesting that iron-bearing red soil particles enhanced formation of OH radical.

  17. Characterizing Marine Soundscapes.

    PubMed

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats. PMID:26610968

  18. Mechanism and Performance of CO2 Snow Jet in Co-Axial Type Injection Systems

    NASA Astrophysics Data System (ADS)

    Shen, Yi-Jun; Wang, Muh-Rong

    This paper describes the characteristics of CO2 snow formation with co-axial type injection systems. The injection of CO2 snow flow is controlled by a co-axial type nitrogen auxiliary nozzle. Five cases of co-axial nitrogen nozzle with different diameters and injection types of auxiliary nitrogen are presented. Flow field visualization and spray characteristics are performed by the particle image velocimetry (PIV). Result shows that the CO2 snow particles would collide with each other and generate lager particles in the recirculation zone of the formation chamber. Results also show that the particle size distribution is influenced by the geometry of the injection device. The length of the formation chamber influence the region and strength of recirculation flow. In the region after reattach zone of recirculation flow, the fine particles deposit on the chamber wall and form a deposition layer. The particles in the main stream further impinge onto the deposition layer and result in the snowballs. It turns out that the mean particle size becomes larger as the length of chamber is increased. Results also show that CO2 snow jet has higher velocity and the flow-focusing takes place with nitrogen auxiliary gas. Furthermore, the mist layer of the jet flow caused by lower temperature of CO2 snow is eliminated when co-axial nitrogen flow is injected. The velocity of CO2 snow jet is increased under higher injection pressure of co-axial nitrogen flow. Furthermore, smaller diameter of nitrogen auxiliary nozzle results in higher injection velocity of CO2 snow jet. Hence the injection power of the CO2 snow jet can be controlled by the design of the nitrogen auxiliary nozzle. It will be useful in the medical applications of cryotherapy treatment and the dry cleaning of the semiconductor and solar cell manufacturing processes.

  19. A new species of Ischyodus (Chondrichthyes: Holocephali: Callorhynchidae) from Upper Maastrichtian Shallow marine facies of the Fox Hills and Hell Creek Formations, Williston basin, North Dakota, USA

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.

    2005-01-01

    A new species of chimaeroid, Ischyodus rayhaasi sp. nov., is described based primarily upon the number and configuration of tritors on palatine and mandibular tooth plates. This new species is named in honour of Mr Raymond Haas. Fossils of I. rayhaasi have been recovered from the Upper Maastrichtian Fox Hills Formation and the Breien Member and an unnamed member of the Hell Creek Formation at sites in south-central North Dakota and north-central South Dakota, USA. Ischyodus rayhaasi inhabited shallow marine waters in the central part of the Western Interior Seaway during the latest Cretaceous. Apparently it was also present in similar habitats at that time in the Volga region of Russia. Ischyodus rayhaasi is the youngest Cretaceous species Ischyodus known to exist before the Cretaceous/Tertiary extinction, and the species apparently did not survive that event. It was replaced by Ischyodus dolloi, which is found in the Paleocene Cannonball Formation of the Williston Basin region of North Dakota and is widely distributed elsewhere. ?? The Palaeontological Association.

  20. Rain-on-snow: A process-based analysis of numerous events spanning a range of meteorological and snowpack boundary conditions

    NASA Astrophysics Data System (ADS)

    Würzer, Sebastian; Jonas, Tobias

    2015-04-01

    Rain-on-snow events have caused severe flood events in Europe in the recent past. Due to the complex interactions of physical processes during rain-on-snow events, it is still difficult to accurately predict the effect of snow cover on runoff formation. Data analysis from past rain-on-snow events have shown that depending on snowpack properties, the snow cover can amplify, delay or dampen runoff. Prior rain-on-snow research has tended towards process oriented single event case studies and broad-based analyses spanning a range of events and conditions. In order to improve our understanding of processes during rain-on-snow, detailed analyses of a large number of events covering a broad range of snowpack and meteorological conditions would be beneficial. In this study, an advanced physics-based snow cover model (SNOWPACK) is used to model snow cover processes during rain-on-snow events. SNOWPACK simulations detail the mass and energy balance and structural properties of the snowpack. Using 15 years of data from numerous stations throughout the Swiss Alps we investigated runoff formation during rain-on-snow events across a broad range of conditions. This enables us to identify critical meteorological boundary conditions capable of creating substantial runoff. Pre-event snow cover conditions have a significant influence on the meltwater release under different meteorological boundary conditions. With small pre-event liquid water content the snow cover is able to hold back rain in the snowpack and therefore lead to a delayed runoff release and lower runoff/rain ratio for an event. Furthermore, snow depth, total SWE, and energy inputs - factors oftentimes displaying seasonal dependencies - were also shown to strongly affect runoff generation.

  1. Some fundamentals of handheld snow surface thermography

    NASA Astrophysics Data System (ADS)

    Shea, C.; Jamieson, B.

    2011-02-01

    This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.

  2. Some fundamentals of handheld snow surface thermography

    NASA Astrophysics Data System (ADS)

    Shea, C.; Jamieson, B.

    2010-08-01

    This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.

  3. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides a brief summary of the utility of a wideband active and passive (radar and radiometer, respectively) instrument (8-40 GHz) to support the snow science community. The effort seeks to improve snow measurements through advanced calibration and expanded frequency of active and passive sensors and to demonstrate their science utility through airborne retrievals of snow water equivalent (SWE). In addition the effort seeks to advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  4. Mobility of lightweight robots over snow

    NASA Astrophysics Data System (ADS)

    Lever, James H.; Shoop, Sally A.

    2006-05-01

    Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.

  5. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England).

    NASA Astrophysics Data System (ADS)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter

    2015-04-01

    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within

  6. Parsimonious snow model explains reindeer population dynamics and ranging behavior

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Aanes, R.; Hansen, B. B.; Loe, L.; Severinsen, T.; Stien, A.

    2008-12-01

    Winter snow is a key factor affecting polar ecosystems. One example is the strong negative correlation of winter precipitation with fluctuations in population in some high-arctic animal populations. Ice layers within and at the base of the snowpack have particularly deleterious effects on such populations. Svalbard reindeer have small home ranges and are vulnerable to local "locked pasture" events due to ground-ice formation. When pastures are locked, reindeer are faced with the decision of staying, living off a diminishing fat store, or trying to escape beyond the unknown spatial borders of the ice. Both strategies may inhibit reproduction and increase mortality, leading to population declines. Here we assess the impact of winter snow and ice on the population dynamics of an isolated herd of Svalbard reindeer near Ny-Ålesund, monitored annually since 1978, with a retrospective analysis of the winter snowpack. Because there are no long-term observational records of snow or snow properties, such as ice layers, we must recourse to snowpack modeling. A parsimonious model of snow and ground-ice thickness is driven with daily temperature and precipitation data collected at a nearby weather station. The model uses the degree-day concept and has three adjustable parameters which are tuned to correlate model snow and ground-ice thicknesses to the limited observations available: April snow accumulation measurements on two local glaciers, and a limited number of ground-ice observations made in recent years. Parameter values used are comparable to those reported elsewhere. We find that modeled mean winter ground-ice thickness explains a significant percentage of the observed variance in reindeer population growth rate. Adding other explanatory parameters, such as modeled mean winter snowpack thickness or previous years' population size does not significanly improve the relation. Furthermore, positioning data from a small subset of reindeer show that model icing events are

  7. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  8. Effect of unsteady wind on drifting snow

    NASA Astrophysics Data System (ADS)

    Cierco, F.-X.; Naaim-Bouvet, F.; Naaim, M.

    2003-04-01

    Wind is not always a steady flow. It can oscillate producing blasts. However most of the current numerical models of drifting snow are constrained by one major assumption : forcing winds are steady and uniform. Experiments done in the CSTB climatic wind tunnel (with a data acquisition frequency of 1 Hz both for wind and drifting snow) showed that drifting snow is in a state of permanent disequilibrium in the presence of fluctuating airflows : mass flux and velocity were poorly matched. However, the study of wind and drifting snow gust factors done at Col du Lac Blanc (parameters recorded every 15 min with a scan rate of 1 s) shown that the largest drifting snow episodes appear during periods of roughly constant strong wind whereas a short but strong blast does not produce significant drifting snow. In order to better understand the effect of unsteady wind on drifting snow processes, these first investigations have been completed during winter 2003 by increasing the acquisition frequency during snow storms at Col du Lac Blanc using an ultrasonic anemometer and a profile of six drifting snow acoustic sensors set up side by side.

  9. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; Racette, Paul; Bonds, Quenton; Brucker, Ludovic; Koenig, Lora; Marshall, Hans-Peter; Vanhille, Ken; Borissenko, Anatoly; Tsang, Leung; Tan, Shurun

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  10. The reflectance characteristics of snow covered surfaces

    NASA Technical Reports Server (NTRS)

    Batten, E. S.

    1979-01-01

    Data analysis techniques were developed to most efficiently use available satellite measurements to determine and understand components of the surface energy budget for ice and snow-covered areas. The emphasis is placed on identifying the important components of the heat budget related to snow surfaces, specifically the albedo and the energy consumed in the melting process. Ice and snow charts are prepared by NOAA from satellite observations which map areas into three relative reflectivity zones. Field measurements are analyzed of the reflectivity of an open snow field to assist in the interpretation of the NOAA reflectivity zones.

  11. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    a hot grain flow over snow, although improperly scaled for investigating erosive processes, does demonstrate that snow hydrology and snowpack stability may be critical in the transformation of pyroclastic density currents to lahars. When such an experiment is run in a sloping flume, with meltwater able to drain freely at the base of the snow layer, the hot grain flow spreads over the snow surface and then comes to rest--no slurry is produced. In contrast, if meltwater drainage is blocked, the wet snow layer fails at its bed, mobilizes as a slush flow, and mixes with the hot grains to form a slurry. Ice layers within a natural snowpack would likewise block meltwater drainage and be conducive to the formation of slush flows. Abrasion and particle impacts—processes that have been studied intensively by engineers concerned with the wear of surfaces in machinery—probably play an important role in the erosion of glacier ice by pyroclastic density currents. A prime example may be the summit ice cap of Nevado del Ruiz, Colombia, which was left grooved by the eruption of 1985 (Thouret, J. Volcanol. Geotherm. Res., v. 41, 1990). Erosion of glacier ice is also strongly controlled by the orientation of crevasses, which can “capture” pyroclastic currents. This phenomenon was well displayed at Mount Redoubt, Alaska during the eruptions of 1989-90 and 2009.

  12. Operational snow mapping with simplified data assimilation using the seNorge snow model

    NASA Astrophysics Data System (ADS)

    Saloranta, Tuomo M.

    2016-07-01

    Frequently updated maps of snow conditions are useful for many applications, e.g., for avalanche and flood forecasting services, hydropower energy situation analysis, as well as for the general public. Numerical snow models are often applied in snow map production for operational hydrological services. However, inaccuracies in the simulated snow maps due to model uncertainties and the lack of suitable data assimilation techniques to correct them in near-real time may often reduce the usefulness of the snow maps in operational use. In this paper the revised seNorge snow model (v.1.1.1) for snow mapping is described, and a simplified data assimilation procedure is introduced to correct detected snow model biases in near real-time. The data assimilation procedure is theoretically based on the Bayesian updating paradigm and is meant to be pragmatic with modest computational and input data requirements. Moreover, it is flexible and can utilize both point-based snow depth and satellite-based areal snow-covered area observations, which are generally the most common data-sources of snow observations. The model and analysis codes as well as the "R" statistical software are freely available. All these features should help to lower the challenges and hurdles hampering the application of data-assimilation techniques in operational hydrological modeling. The steps of the data assimilation procedure (evaluation, sensitivity analysis, optimization) and their contribution to significantly increased accuracy of the snow maps are demonstrated with a case from eastern Norway in winter 2013/2014.

  13. The Morphology of Polar Snow Surfaces: A Race Between Time and Snow Grain Properties

    NASA Astrophysics Data System (ADS)

    Filhol, S. V. P.; Sturm, M.

    2014-12-01

    Polar snow surfaces are rough, composed of multiple forms shaped by the interaction of snow grains and the wind. Based on the literature and new three-dimensional laser scanning data acquired in the Alaskan Arctic, we revisited the existing classifications of snow forms, and suggest a new genetic classification. Next we compared the morphology of aeolian snow features to analogous sand features, and then investigated the processes responsible for the differences. Although previous studies have suggested close similitudes between sand and snow features (barchan dunes, transverse dunes, etc.), we find significant differences, including: 1) snow features are smaller by a factor of a 100, 2) snow dunes are flatter, 3) snow dunes move four orders of magnitude faster than sand dunes, and 4) sand dunes last millennia, while snow dunes are by and large ephemeral. Coupling equations for dune age, propagation speed, snow flux, and wind speed, we find that the lower density of snow grains vs. sand (which should produce a higher flux) is balanced by sintering, which serves as a countdown timer, eventually bonding grains together, reducing material fluxes, and thereby limiting the growth and age of snow dunes.

  14. Mercury Behavior in the Arctic Snow Pack: from Spring-Time Deposition to Melt

    NASA Astrophysics Data System (ADS)

    Chaulk, A. H.; Armstrong, D.; Stern, G. A.; Wang, F.

    2012-12-01

    Mercury is a global contaminant and has become an increasing concern in the Arctic marine ecosystem. Significant concentrations of neurotoxic methylmercury (MeHg) have been found in Arctic marine mammals; this has prompted wide spread investigation of the processes involved in mercury cycling and bioaccumulation in the Arctic. One major scientific dispute is on the net contribution of the atmospherically transported mercury. Atmospheric mercury depletion events (AMDEs) provide a possible pathway of increased atmospheric mercury deposition from the atmosphere to the surface. As part of the International Polar Year - Circumpolar Flaw Lead (IPY-CFL) study, a comprehensive time series of total mercury (THg) measurements in surface snow, snow pits, and melt ponds in the Beaufort Sea of the Arctic Ocean during and after the 2008 AMDE season (February - June) was completed. Ice core and water samples were also collected. The THg concentration in surface snow varied greatly, ranging from 1.0 - 290 ng L,-1, with the highest values observed during active AMDEs, as expected. Analysis of surface snow and vertical profiles of snow pits revealed a net accumulation of THg in the snow pack due to the short time intervals between successive AMD events, as well as the continuous burial by new or windblown snowfall. Contrary to coastal sites, in the Beaufort Sea there is insufficient time between subsequent AMDEs to allow for re-volatilization of deposited Hg. Rates of deposition of atmospheric Hg ranged from 200 - 784 ng m-2 into the top 1cm of snow. At one station it is estimated at less than 50% of the deposited Hg is re-emitted to the atmosphere. The THg concentration in melt ponds in later spring was 20- to 40- fold higher than that measured in the underlying seawater. It is suggested that in the Beaufort Sea, where AMDEs occur frequently due to dynamic nature of the sea ice environment, a larger than previously reported portion of atmospherically deposited Hg can be retained in

  15. Tool and Method for Testing the Resistance of the Snow Road Cover to Destruction

    NASA Astrophysics Data System (ADS)

    Zhelykevich, R.; Lysyannikov, A.; Kaiser, Yu; Serebrenikova, Yu; Lysyannikova, N.; Shram, V.; Kravtsova, Ye; Plakhotnikova, M.

    2016-06-01

    The paper presents the design of the tool for efficient determination of the hardness of the snow road coating. The tool increases vertical positioning of the rod with the tip through replacement of the rod slide friction of the ball element by roll friction of its outer bearing race in order to enhance the accuracy of determining the hardness of the snow-ice road covering. A special feature of the tool consists in possibility of creating different impact energy by the change of the lifting height of the rod with the tip (indenter) and the exchangeable load mass. This allows the study of the influence of the tip shape and the impact energy on the snow strength parameters in a wide range, extends the scope of application of the durometer and makes possible to determine the strength of snow-ice formations by indenters with various geometrical parameters depending on climatic conditions.

  16. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-09-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth

  17. Weekly LiDAR snow depth mapping for operational snow hydrology - the NASA JPL Airborne Snow Observatory (Invited)

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.; McGurk, B. J.

    2013-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, providing an unprecedented snowpack monitoring capability and enabling a new operational paradigm. In the Spring of 2013, the ASO mapped snow depth in the Tuolumne River Basin in California's Yosemite National Park on a nominally weekly basis, and provided fast-turnaround spatial snow depth and water equivalent maps to the operators of Hetch Hetchy Reservoir, the water supply for 2.5 million people on the San Francisco peninsula. These products enabled more accurate runoff simulation and optimal reservoir management in a year of very low snow accumulation. We present the initial results from this new application of multi-temporal LiDAR mapping in operational snow hydrology.

  18. The Persistent Life of Snow (Invited)

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Liston, G. E.; Elder, K.; Sturm, M.

    2009-12-01

    Snow is an essential element linking mountains and poles. In high-elevation and high-latitude environments, snow is the dominant precipitation form, and observations suggest snowpacks in both these areas are being altered with climate change directly (higher temperatures) and indirectly (vegetation change). Snow’s substantial control on energy balance, water resources, and ecosystem processes make it a key variable in understanding climate change ramifications in both mountain and polar systems. In spite of its broad importance, snow remains difficult to accurately quantify on many landscapes and over a wide range of spatial and temporal scales. Because of its interactions with the atmosphere and surrounding landscape, snow is inherently dynamic and a challenge to measure and model. In both mountainous and Arctic domains, it is often transported by wind and interacts with topography and vegetation to form a heterogeneous distribution in both space and time. This heterogeneous distribution imparts numerous effects on ecosystem structure and function and land-atmosphere surface fluxes; it also obfuscates analyses of long-term trends. Both middle latitude mountains and the Arctic are experiencing changes in vegetation, precipitation, and air temperature. These accompany attendant changes in the timing and spatial distributions of snow properties, characteristics, and quantities. We will describe tools, techniques, challenges, and outcomes of measuring and modeling snow accumulation and ablation in snowy environments ranging from low to high elevations and middle to high northern latitudes, with a particular focus on the common snow-related impacts of climate and vegetation changes in these two environments. We will look at middle- and high-latitude snow-vegetation interactions within shrubland environments and present improved ways to represent snow-atmosphere interactions within these landscapes. We will describe the potential ramifications of widespread bark

  19. Temperature Control Method in the Snow Road Construction

    NASA Astrophysics Data System (ADS)

    Serebrenikova, Yu; Lysyannikov, A.; Kaizer, Yu; Zhelykevich, R.; Plakhotnikova, M.; Lysyannikova, N.; Merko, M.; Merko, I.

    2016-06-01

    The paper substantiates the process of heat treatment before the snow compaction in snow road construction. The methods to measure the temperature of snow as a moving dispersed material have been considered in the paper.

  20. Use of low-temperature scanning electron microscopy to compare and characterize three classes of snow cover.

    PubMed

    Foster, James; Kelly, Richard; Rango, Albert; Armstrong, Richard; Erbe, Eric F; Pooley, Christopher; Wergin, William P

    2006-01-01

    This study, which uses low-temperature scanning electron microscopy (LTSEM), systematically sampled and characterized snow crystals that were collected from three unique classes of snow cover: prairie, taiga, and alpine. These classes, which were defined in previous field studies, result from exposure to unique climatic variables relating to wind, precipitation, and air temperature. Snow samples were taken at 10 cm depth intervals from the walls of freshly excavated snow pits. The depth of the snow pits for the prairie, taiga, and alpine covers were 28, 81, and 110 cm, respectively. Visual examination revealed that the prairie snow cover consisted of two distinct layers whereas the taiga and alpine covers had four distinct layers. Visual measurements were able to establish the range of crystal sizes that occurred in each layer, the temperature within the pit, and the snow density. The LTSEM observations revealed the detailed structures of the types of crystals that occurred in the snow covers, and documented the metamorphosis that transpired in the descending layers. Briefly, the top layers from two of the snow covers consisted of freshly fallen snow crystals that could be readily distinguished as plates and columns (prairie) or graupel (taiga). Alternatively, the top layer in the alpine cover consisted of older dendritic crystal fragments that had undergone early metamorphosis, that is, they had lost their sharp edges and had begun to show signs of joining or bonding with neighboring crystals. A unique layer, known as sun crust, was found in the prairie snow cover; however, successive samplings from all three snow covers showed similar stages of metamorphism that led to the formation of depth hoar crystals. These changes included the gradual development of large, three-dimensional crystals having clearly defined flat faces, sharp edges, internal depressions, and facets. The study, which indicates that LTSEM can be used to enhance visual data by systematically

  1. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  2. Aryl sulfate formation in sea urchins (Strongylocentrotus droebachiensis) ingesting marine algae (Fucus distichus) containing 2,6-dimethylnapthalene

    SciTech Connect

    Malins, D.C.; Roubal, W.T.

    1982-04-01

    The metabolism of tritiated 2,6-dimethylnapthalene (2,6-DMN) was studied in sea urchins (Strongylocentrotus droebachiensis) feeding on marine algae (Fucus distichus). The Fucus accumulated this hydrocarbon from sea water without converting it to metabolites. Most of the tritium accumulated by the sea urchins (e.g., 70.8% after 3 days) from feeding on 2,6-DMN-exposed Fucus was present in the exoskeleton (shell and spines). Moreover, after 3 days feeding, about 90% of the tritium in the total metabolite fraction of the gonads and digestive tract of the sea urchin was present as sulfate derivatives. These metabolites were identified through hydrolysis with aryl sulfatase, followed by thin-layer chromatography of the products. After 14 days of feeding, the tritium associated with the sulfate derivatives decreased in the gonads and digestive tract to 61 and 65%, respectively, of the total metabolite fraction. Hydroxy compounds from sulfatase hydrolysis were chromatographed using multiple elutions with toluene. The hydroxy isomers were separated and the R/sub f/ values were compared to those of pure reference compounds. The data indicated that 80% of the 2,6-dimethylnaphtyl sulfate contained the sulfate on the 1 and/or 3 position of the aromatic ring. Moreover, 6-methyl-2-naphthalenemethanol was not detected, which implies that sea urchins, unlike fish, metabolize alkyl-substituted aromatic hydrocarbons primarily through aromatic ring oxidations.

  3. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China

    NASA Astrophysics Data System (ADS)

    Li, Chao; Planavsky, Noah J.; Love, Gordon D.; Reinhard, Christopher T.; Hardisty, Dalton; Feng, Lianjun; Bates, Steven M.; Huang, Jing; Zhang, Qirui; Chu, Xuelei; Lyons, Timothy W.

    2015-02-01

    To improve our understanding of ocean chemistry and biogeochemical cycling following the termination of large-scale Paleoproterozoic iron formation (IF) deposition (∼1.85 billion years ago [Ga]), we conducted a Fe-S-C-Mo geochemical study of the ∼1.65 Ga Chuanlinggou Formation, Yanshan Basin, North China. Despite the cessation of IF deposition, our results suggest the presence of anoxic but non-euxinic (ferruginous) conditions persisted below the surface mixed layer for the deepest portion of the continental rifting basin and that this pattern is apparently independent of the local organic carbon content. However, our paired S-isotope data of carbonate-associated sulfate and pyrite suggest presence of sulfate in pore fluids, which is not consistent with insufficient sulfate for bacterial sulfate reduction in the water column. Despite evidence for deposition under anoxic conditions, sedimentary molybdenum (Mo) concentrations are mostly not enriched relative to average continental crust. This relationship is consistent with the notion that sulfide-dominated conditions in the water column and/or the sediments are required for Mo enrichment and validates past assertions that Mo enrichment patterns in ancient shales track both the local presence and global distribution of euxinia specifically. In addition, we identified extensive diagenetic carbonate precipitation in the upper Chuanlinggou Formation with only moderately negative δ13C values (-3.4 ± 1.4‰). We propose, with support from a numerical model, that these diagenetic carbon isotope values were most likely derived from precipitation of carbonates dominantly in the methanic zone within the sediments. Diagenetic carbonate precipitation in the methanic zone is likely to have been more extensive in the Proterozoic than the Phanerozoic due to porewater oxidant limitation.

  4. Model simulations of the modulating effect of the snow cover in a rain on snow event

    NASA Astrophysics Data System (ADS)

    Wever, N.; Jonas, T.; Fierz, C.; Lehning, M.

    2014-05-01

    In October 2011, the Swiss Alps encountered a marked rain on snow event when a large snowfall on 8 and 9 October was followed by intense rain on the 10th. This resulted in severe flooding in some parts of Switzerland. Model simulations were carried out for 14 meteorological stations in two regions of the Swiss Alps using the detailed physically-based snowpack model SNOWPACK. The results show that the snow cover has a strong modulating effect on the incoming rainfall signal on the sub-daily time scales. The snowpack runoff dynamics appears to be strongly dependent on the snow depth at the onset of the rain. Deeper snow covers have more storage potential and can absorb all rain and meltwater in the first hours, whereas the snowpack runoff from shallow snow covers reacts much quicker. It has been found that after about 4-6 h, the snowpack produced runoff and after about 11-13 h, total snowpack runoff becomes higher than total rainfall as a result of additional snow melt. These values are strongly dependent on the snow height at the onset of rainfall as well as precipitation and melt rates. An ensemble model study was carried out, in which meteorological forcing and rainfall from other stations were used for repeated simulations at a specific station. Using regression analysis, the individual contributions of rainfall, snow melt and the storage could be quantified. It was found that once the snowpack is producing runoff, deep snow covers produce more runoff than shallow ones. This could be associated with a higher contribution of the storage term. This term represents the recession curve from the liquid water storage and snowpack settling. In the event under study, snow melt in deep snow covers also turned out to be higher than in the shallow ones, although this is rather accidental. Our results show the dual nature of snow covers in rain on snow events. Snow covers initially absorb important amounts of rain water, but once meltwater is released by the snow cover, the

  5. Snowpack displacement measured by terrestrial radar interferometry as precursor for wet snow avalanches

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves

    2016-04-01

    Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding

  6. Continental and marine contributions to formation of mangrove sediments in an Eastern Amazonian mudplain: The case of the Marapanim Estuary

    NASA Astrophysics Data System (ADS)

    Vilhena, Maria Do Perpetuo Socorro Progene; Da Costa, Marcondes Lima; Berrêdo, José Francisco

    2010-03-01

    The coastline of the state of Pará in the Eastern Amazon is formed by submerged valleys occupied partially with mangroves, such as the estuary of the Marapanim River. The sediments of these mangroves are silty-clays, composed of quartz, kaolinite, illite, smectite, K-feldspar, pyrite, hematite, jarosite and halite with accessory zircon, estaurolite, tourmaline, rarely kyanite, rutile, ilmenite, sillimanite, andaluzite, topaz and anatase. Quartz, kaolinite, hematite and most accessories like zircon, estaurolite, tourmaline, rutile, kyanite, topaz, anatase and opaque minerals are inherited from the surrounding rocks (source area). The smectite, K-feldspar, pyrite, halite and jarosite are authigenic (neoformed). Halite and jarosite are currently and locally formed by intense evaporation. The sediments are formed mainly of SiO 2, Al 2O 3 and Fe 2O 3, which indicates that they were subjected to intense chemical weathering, like the sediments of the Barreiras Formation. This is reinforced by the trace elements, with concentration of residual elements Zr, Cr, V, Nb, among others, while other trace elements are impoverished. The formation of K-feldspar, illite, smectite, halite and pyrite were linked to the environment of sedimentation of the mangrove, rich in organic matter and under the influence of sea water which contributed SO42-, Cl, Na +, K +, Ca 2+, and Mg 2+ for the formation of these minerals. In conclusion the inherited minerals, chemical composition and concentration of residual trace elements show the Barreiras Formation to be the main source of the land-derived sediments of the Marapanim mangroves.

  7. Comments on Nancy Snow, "Generativity and Flourishing"

    ERIC Educational Resources Information Center

    Kamtekar, Rachana

    2015-01-01

    In her rich and wide-ranging paper, Nancy Snow argues that there is a virtue of generativity--an other-regarding desire to invest one's substance in forms of life and work that will outlive the self (p. 10). By "virtue" Snow means not just a desirable or praiseworthy quality of a person, but more precisely, as Aristotle defined it, a…

  8. Sampling designs for heterogeneous snow distributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive snow surveys of mountain basins are the most accurate means of characterizing the heterogeneous mosaic of snow distribution typically present. The collection of survey data is however costly and time-consuming and important decisions are required to adequately sample larger basins. In this...

  9. Kindergarten Explorations with Snow, Ice, and Water

    ERIC Educational Resources Information Center

    Carroll, Martha A.

    1978-01-01

    Using winter snow, kindergarten students can explore the properties of water. Students demonstrate melting, freezing, expansion, and evaporation through a number of activities involving a paper cup and a scoop of snow. Procedures and student reactions are described in detail by the teacher-author. (MA)

  10. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1984-01-01

    Thematic mapper radiometric characteristics, snow/cloud reflectance, and atmospheric correction are discussed with application to determining the spectral albedo of snow. The geometric characterics of TM and digital elevation data are examined. The geometric transformations and resampling required to coregister these data are discussed.

  11. Brilliant Colours from a White Snow Cover

    ERIC Educational Resources Information Center

    Vollmer, Michael; Shaw, Joseph A

    2013-01-01

    Surprisingly colourful views are possible from sparkling white snow. It is well known that similarly colourful features can exist in the sky whenever appropriate ice crystals are around. However, the transition of light reflection and refraction from ice crystals in the air to reflection and refraction from those in snow on the ground is not…

  12. Ground-penetrating radar observations of winter snow accumulation on Alaska Glaciers.

    NASA Astrophysics Data System (ADS)

    Gusmeroli, A.; Wolken, G. J.; Arendt, A. A.; Campbell, S. W.; O'Neel, S.; Marshall, H.

    2012-12-01

    Understanding the spatial variability of winter snow in glacierized watersheds is vital for estimating glacier changes, forecasting freshwater delivery to riverine and marine ecosystems and informing Earth loading models for studies of seasonal variations in crustal uplift. Accurately reproducing snow distribution within glacier-models still remains a challenge due to the difficulty obtaining in-situ measurements and large local or regional variability in snow thicknesses. Between March and July 2012, high frequency (200-500 MHz) Ground-Penetrating Radar (GPR) surveys designed to obtain spatially distributed measurements of snow accumulation, were collected on a number of different glaciers in south-central Alaska, USA. The surveys span a range of climatic zones including continental and maritime glaciers. Several modes of travel were employed, including helicopter-borne, snowmobile and ski-towed. Preliminary results from the Valdez Glacier suggest that the agreement between 200 MHz-GPR-derived snow-depth and 17 manually measured snow-depths is ± 10% using an estimated radar velocity of 0.22 m/ns, as one example. Additionally, GPR profiles in the accumulation areas showed firn-stratigraphy of previous summer surfaces, thus, making it possible to distinguish the elevation of the firn line and indicating that in the accumulation zone it may be possible to estimate annual net mass balance if density can be estimated. In this presentation we will illustrate the characteristics of snow accumulation on this suite of Alaska Glaciers as derived by GPR and discuss our results in terms of the usefulness and challenges associated with using GPR to determine the winter and annual mass balance of these glaciers.

  13. Modeling the spatial variability of snow instability with the snow cover model SNOWPACK

    NASA Astrophysics Data System (ADS)

    Richter, Bettina; Reuter, Benjamin; Gaume, Johan; Fierz, Charles; Bavay, Mathias; van Herwijnen, Alec; Schweizer, Jürg

    2016-04-01

    Snow stratigraphy - key information for avalanche forecasting - can be obtained using numerical snow cover models driven by meteorological data. Simulations are typically performed for the locations of automatic weather station or for virtual slopes of varying aspect. However, it is unclear to which extent these simulations can represent the snowpack properties in the surrounding terrain, in particular snow instability, which is known to vary in space. To address this issue, we implemented two newly developed snow instability criteria in SNOWPACK relating to failure initiation and crack propagation, two fundamental processes for dry-snow slab avalanche release. Snow cover simulations were performed for the Steintälli field site above Davos (Eastern Swiss Alps), where snowpack data from several field campaigns are available. In each campaign, about 150 vertical snow penetration resistance profiles were sampled with the snow micro-penetrometer (SMP). For each profile, SMP and SNOWPACK- based instability criteria were compared. In addition, we carried out SNOWPACK simulations for multiple aspects and slope angles, allowing to obtain statistical distributions of the snow instability at the basin scale. Comparing the modeled to the observed distributions of snow instability suggests that it is feasible to obtain an adequate spatial representation of snow instability without high resolution distributed modeling. Hence, for the purpose of regional avalanche forecasting, simulations for a selection of virtual slopes seems sufficient to assess the influence of basic terrain features such as aspect and elevation.

  14. Seeing the Snow through the Trees: Towards a Validated Canopy Adjustment for Fractional Snow Covered Area

    NASA Astrophysics Data System (ADS)

    Coons, L.; Nolin, A. W.; Painter, T.

    2012-12-01

    Satellite remote sensing is an important tool for monitoring the spatial distribution of snow cover, which acts as a vital reservoir of water for human and ecosystem needs. Current methods exist mapping the fraction of snow in each image pixel from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM). Although these methods can effectively detect this fractional snow-covered area (fSCA) in open areas, snow cover is underestimated in forested areas where canopy cover obscures the snow. Accounting for obscured snow cover will significantly improve estimates of fSCA for hydrologic forecasting and monitoring. This study will address how individual trees and the overall forest canopy affect snow distributions on the ground with the goal of determining metrics that can parameterize the spatial patterns of sub-canopy snow cover. Snow cover measurements were made during winter 2011-2012 at multiple sites representing a range of canopy densities. In the snow-free season, we used terrestrial laser scanning (TLS) and manual field methods to fully characterize the forest canopy height, canopy gap fraction, crown width, tree diameter at breast height (DBH), and stand density. We also use multi-angle satellite imagery from MISR and airborne photos to map canopy characteristics over larger areas. Certain canopy structure characteristics can be represented with remote sensing data. These data serve as a key first step in developing canopy adjustment factors for fSCA from MODIS, TM, and other snow mapping sensors.

  15. Red and near-infrared spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Obrien, H. W.; Munis, R. H.

    1975-01-01

    The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.

  16. Measuring Wind Ventilation of Dense Surface Snow

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; Huwald, H.; Selker, J. S.; Higgins, C. W.; Lehning, M.; Thomas, C. K.

    2014-12-01

    Wind ventilation enhances exposure of suspended, canopy-captured and corniced snow to subsaturated air and can significantly increase sublimation rate. Although sublimation rate may be high for highly ventilated snow this snow regime represents a small fraction snow that resides in a basin potentially minimizing its influence on snow mass balance. In contrast, the vast majority of a seasonal snowpack typically resides as poorly ventilated surface snow. The sublimation rate of surface snow is often locally so small as to defy direct measurement but regionally pervasive enough that the integrated mass loss of frozen water across a basin may be significant on a seasonal basis. In a warming climate, sublimation rate increases even in subfreezing conditions because the equilibrium water vapor pressure over ice increases exponentially with temperature. To better understand the process of wintertime surface snow sublimation we need to quantify the depth to which turbulent and topographically driven pressure perturbations effect air exchange within the snowpack. Hypothetically, this active layer depth increases the effective ventilated snow surface area, enhancing sublimation above that given by a plane, impermeable snow surface. We designed and performed a novel set of field experiments at two sites in the Oregon Cascades during the 2014 winter season to examine the spectral attenuation of pressure perturbations with depth for dense snow as a function of turbulence intensity and snow permeability. We mounted a Campbell Scientific Irgason Integrated CO2 and H2O Open Path Gas Analyzer and 3-D Sonic Anemometer one meter above the snow to capture mean and turbulent wind forcing and placed outlets of four high precision ParoScientific 216B-102 pressure transducers at different depths to measure the depth-dependent pressure response to wind forcing. A GPS antenna captured data acquisition time with sufficient precision to synchronize a Campbell Scientific CR-3000 acquiring

  17. A conceptual, distributed snow redistribution model

    NASA Astrophysics Data System (ADS)

    Frey, S.; Holzmann, H.

    2015-11-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall-runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling-Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where

  18. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  19. Air-snow interactions and atmospheric chemistry.

    PubMed

    Dominé, Florent; Shepson, Paul B

    2002-08-30

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species. PMID:12202818

  20. Remote sensing of snow and ice

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1979-01-01

    This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.

  1. Air-Snow Interactions and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Dominé, Florent; Shepson, Paul B.

    2002-08-01

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species.

  2. Uncertainty in alpine snow mass balance simulations due to snow model parameterisation and windflow representation

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.

    2013-12-01

    Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE < 1.1 m s-1), however there was great sensitivity in SWE simulated by the snow models to the driving windflow simulation used. Specifically, there were distinct differences in the magnitude and location of snow drifts from all snow models that depended on the windflow scheme. When compared to measurements from airborne LiDAR, snow surveys, and automated snow depth

  3. Impact of snow on surface brightness

    NASA Astrophysics Data System (ADS)

    Kukla, George J.; Brown, Jeffrey A.

    The snow-covered land surface has different albedo than the snow-free surface, depending primarily on the type and density of the vegetation, the relief, and the continuity and age of the snow blanket. This is clearly demonstrated by the winter mosaic of east central Asia shown on the front cover. It is a section of a larger composite assembled from cloud-free satellite images to portray the land surface under continuous snow cover. The mosaic is a valuable tool for distinguishing (from remote positions) snow from clouds and for charting snow cover where illumination is poor. It also can be used to determine relative sensitivity of surface albedo to the occurrence of snow.Segments with a minimum of clouds along the orbital subtrack were selected from the transparencies of the Defense Meteorological Satellite Program (DMSP). Satellite sensors record in the spectral band 0.4-1.2 µm. The satellite is in polar orbit at a mean altitude of 830 km (450 nm) and crosses the equator at approximately local noon. The spatial resolution along the orbital subtrack is about 0.6 km [Dickinson et al., 1974]. The mosaic is assembled from imagery taken between mid-January and mid-February of 1979. The original hard-copy transparencies (on loan from the DMSP library) were reproduced as contact negatives to preserve detail.The snow cover marks the land surface with a characteristic signature that depends on the distribution, density, and type of vegetation; relief; presence of water bodies; distribution and type of land use, etc. This signature can be readily utilized, among others, to distinguish snow-covered land from clouds and from snow-free land [Barnes et al., 1974; Lillesand et al., 1982]. We have compared the brightness fields in the imagery with the vegetation density and land-use patterns charted in the World Forestry Atlas [Wiebecke, 1971].

  4. Arctic Light Snow Observations: Missing Precipitation

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Rabin, Robert; Pavolonis, Michael; Heymsfield, Andrew; Girard, Eric; Burrows, William

    2015-04-01

    The objective of this work is to describe measurement conditions for light snow that is important for meteorological and hydrometeorological applications. Snow microphysical properties play a crucial role for developing better nowcasting/forecasting techniques, and to validate numerical weather prediction (NWP) simulations and assess climate change. Observations collected during the Fog Remote Sensing and Modeling (FRAM) and Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations (SAAWSO) projects that took place over the cold climatic regions of Canada, including Yellowknife, St. John's, and Goose Bay, respectively, were studied to assess missing snow effect on weather and climate change simulations. The Ground Cloud Imaging Probe (GCIP) together with other microphysical precipitation sensors (e.g. fog device, distrometer) can be used to better understand fog deposition, freezing drizzle, light rain, and light snow spectral characteristics and shape. Light snow particle size range based on GCIP measurements is between 7.5 and 940 µm, and provides particle size spectra over 60 channels at 15 µm intervals, as well as particle shape. The GCIP measurements together with hydrometeor measurements obtained from a distrometer called laser precipitation monitor (LPM) were used in an integrated approach for snow precipitation analysis because of the measurements uncertainties in the particle sizes less than 500 µm. The results suggest that missing light snow depth measurement as less than 1 mm/d can affect the energy budget of Arctic environments over a 6 month time period up to -2 to -5 W/m2 if snow sublimates. These values can be comparable with other feedbacks in climate simulations such as aerosol effects. In this study, GCIP used for light snow measurements and ice fog will be discussed and challenges related to measurement of light snow precipitation microphysics will be emphasized.

  5. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the

  6. Invertebrate Paleontology of the Wilson Grove Formation (Late Miocene to Late Pliocene), Sonoma and Marin Counties, California, with some Observations on Its Stratigraphy, Thickness, and Structure

    USGS Publications Warehouse

    Powell, Charles L.; Allen, James R.; Holland, Peter J.

    2004-01-01

    The Wilson Grove Formation is exposed from Petaluma north to northern Santa Rosa, and from Bennett Valley west to Bodega Bay. A fauna of at least 107 invertebrate taxa consisting of two brachiopods, 95 mollusks (48 bivalves and 46 gastropods), at least eight arthropods, and at least two echinoids have been collected, ranging in age from late Miocene to late Pliocene. Rocks and fossils from the southwest part of the outcrop area, along the Estero de San Antonio, were deposited in a deep-water marine environment. At Meacham Hill, near the Stony Point Rock Quarry, and along the northern margin of the outcrop area at River Road and Wilson Grove, the Wilson Grove Formation was deposited in shallow marine to continental environments. At Meacham Hill, these shallow water deposits represent a brackish bay to continental environment, whereas at River Road and Wilson Grove, fossils suggest normal, euhaline (normal marine salinity) conditions. A few taxa from the River Road area suggest water temperatures slightly warmer than along the adjacent coast today because their modern ranges do not extend as far north in latitude as River Road. In addition, fossil collections from along River Road contain the bivalve mollusks Macoma addicotti (Nikas) and Nuttallia jamesii Roth and Naidu, both of which are restricted to the late Pliocene. The late Miocene Roblar tuff of Sarna-Wojcicki (1992) also crops out northeast of the River Road area and underlies the late Pliocene section at Wilson Grove by almost 300 m. Outcrops in the central part of the region are older than those to the northeast, and presumably younger than deposits to the southwest. The Roblar tuff of Sarna-Wojcicki (1992) occurs at Steinbeck Ranch in the central portion of the outcrop area. At Spring Hill, also in the central part of the outcrop area, the sanddollar Scutellaster sp., cf. S. oregonensis (Clark) has been recently collected. This species, questionably identified here, is restricted to the late Miocene from

  7. Formation evaluation of gas hydrate-bearing marine sediments on the Blake Ridge with downhole geochemical log measurements

    USGS Publications Warehouse

    Collett, T.S.; Wendlandt, R.F.

    2000-01-01

    The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

  8. A Phase-tracking Snow Micro-structure Model

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Zabaras, N.

    2012-12-01

    Utilizing a methodology derived from models for phase transitions in alloy solidification [1], a 3D finite element (FE) model for snow metamorphism was developed. Avalanches are known to occur due to the existence of a weak-layer of faceted crystals, which form due to temperature gradients within the snow through a process known as kinetic metamorphism [2]. In general, snow models are limited in their ability to model these microstructural changes, especially in three dimensions, and rely on effective properties. To enhance the tools available to avalanche researchers a finite element model was developed capable of tracking vapor deposition within the snow. This is accomplished using a fixed-domain, stabilized finite element solution for the energy, mass, momentum, and transport equations. Using a level-set parameter the domain is separated into either solid or fluid components and along the phase-change boundary a "mushy-zone" is establish [1, 3]. This zone is modeled as porous media that includes the effects of shrinkage and density changes [1]. The basis of the model is the open-source C++ libMesh FE library, as such the model includes adaptive mesh coarsening and refinement and relies on domain decomposition for optimum parallel performance. This work is the initial phase of an ongoing research project that aims to demonstrate the ability to model snow at the micro-structural level and move away from the common coarse, effective property modeling techniques. It will serve as the deterministic basis for a multi-scale, stochastic model of snow that will account for uncertainties such as poorly understood growth properties and measurement variability. Future applications may include the inclusion of liquid melt and include external forces, yielding a comprehensive thermo-mechanical model that could evolve and fracture. [1] D. Samanta, N. Zabaras (2005), Modelling convection in solidification processes using stabilized finite element techniques, J. Numer. Meth. Eng

  9. Drifting and blowing snow, measurements and modelling

    NASA Astrophysics Data System (ADS)

    Gordon, Mark

    2007-12-01

    Blowing snow is a frequent and significant winter weather event, and there is currently a need for more observations and measurements of blowing snow, especially in arctic and subarctic environments. A camera system has been developed to measure the size and velocity of blowing snow particles. A second camera system has been developed to measure the relative blowing snow density profile near the snow surface. These systems have been used, along with standard meteorological instruments and optical particle counters, during field campaigns at Franklin Bay, NWT, and at Churchill, MB. An electric field mill was also deployed at Franklin Bay. Results demonstrate that the particle diameters follow a Gamma distribution with 103 < d¯ < 172 mum below a height of 0.15 m and 120 < d¯ < 154 mum between 0.2 m and 1.1 m. Within the saltation layer, the mass density can be approximated by a power-law (rhos ∝ z -gamma) with an exponent of gamma ≈ 1.5 for z < 40 mm. Between 40 < z < 100 mm, in the lower suspension layer, the value of the exponent increases to a range of 1.5 < gamma < 8. At greater heights, z > 100 mm, the exponent approaches gamma ≈ l. The height of saltation shows a very weak dependence on the friction velocity, a strong dependence on temperature and relative humidity, and a weak dependence on snow age. Electric field strengths as high as 2000 V m-1 were measured at a height of 0.5 m. A model to determine electric field strength based on the distribution of blowing snow particles shows a weak agreement with measurements. Results suggest the charge is most likely generated due to either fragmentation or asymmetric rubbing, which are both strongly dependent on wind speed. Modelling studies with the Canadian Land Surface Scheme (CLASS) and previous measurements of snow depth at Goose Bay, Hay River, the Beaufort Sea, Franklin Bay, and Resolute demonstrate that blowing snow sublimation can have a substantial effect on snow depth. Adding a blowing snow

  10. Chemical compound of a snow cover in taiga zone territory of the European northeast of Russia

    NASA Astrophysics Data System (ADS)

    Mariya, Vasilevich

    2013-04-01

    Receipt of substances from atmosphere plays an important role in geochemical balance of ecosystems. Atmosphere participates participate in an exchange and substance redistribution for the Earth, and its chemical compound gives the objective information on quality of the air environment. The snow cover acts as the effective store of substances which remain in it in an invariable condition within winter. Chemical compound of snow reflects the valid size of dry both damp losses and quantitative parametres of pollution of ecosystems. Sensitivity of a snow cover to change of industrial conditions in region allows to estimate a state of environment objectively. Distinction of areas on natural receipt macro- and microcomponents from atmosphere causes of an estimation of their background receipt on spreading surface. The purpose of the present work is studying of a chemical compound of a snow cover and spatial distribution of macrocomponents to a taiga zone territories of the European northeast (Republic Komi). It is established that average value of a mineralization of thawed snow, has made 2.8 mg/dm3 and tends to reduction with width increase. Our results have shown that thawed snow water in a taiga zone is characterised by subacidic reaction. Average value ?? has made 4.7 ± 0.1. The oxidation of snow cover is observed from the north on the south. Formation of acidity of a snow cover estimated through the relation of the sum of concentration anions (A = [SO42-] + [N?3-] + [?l-]) to the sum of cations concentration (K = [NH4+] + [Ca2+] + [Mg2+] + [Na+] + [K+]). The received data follows that thawed snow of a taiga zone is characterised by values ?/? <1 at increase in the given relation from the south on the north from 0.42 till (average value equally 0.58). Thus, the acid-base properties of a taiga zone snow cover are defined by deficiency of neutralised connections and prevalence in thawed snow of ions of hydrogen that corresponds to the general situation in the

  11. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  12. Analyzing the importance of wind-blown snow accumulations on Mount

    NASA Astrophysics Data System (ADS)

    Nestler, Alexander; Huss, Matthias; Ambartsumian, Rouben; Hambarian, Artak; Mohr, Sandra; Santi, Flavio

    2013-04-01

    Armenia's climate has a predominantly continental character with high amounts of precipitation and low temperatures during wintertime and a lack of precipitation together with high temperatures during summer. On the volcano Mount Aragatz, snow is relocated by strong winds into massive accumulations between 2500 and 4100 m a.s.l. during the winter season. These snow accumulations appear every winter in regular patterns as cornices on the lee side of sharp edges, such as those of ridges and canyons, which are arranged in a radial manner around the central crater. The biggest cornices almost outlast the hot period and provide considerable amounts of melt water until they disappear completely by the end of August. Snow melt water is known to have a high economic importance for agriculture on the slopes of Mount Aragatz and in the surroundings of Armenia's captial Yerewan. The aim of this study is to estimate the quantity of water naturally stored as snow on Mount Aragatz, and to what degree the use of geotextiles can prolong the lives of these snow accumulations. The characteristics and the spatial distribution of snow cornices on Mount Aragatz were determined using classical glaciological methods in June/July 2011 and 2012, involving snow depth soundings, water equivalent measurements and snow melt monitoring using ablation stakes, together with GPS mappings and classifications obtained from satellite images of the snow cornices. The combination of these data with ASTER DEMs and local weather data allows the modelling of the formation of wind-driven snow accumulations. Statistical relationships between the measured extent and volume of the snow cornices and surface parameters such as slope, aspect and curvature are established. In order to analyze the meltdown of the snow accumulations and the consequent impacts on runoff generation and the hydrological regime, a glacio-hydrological model integrating topographic parameters and meteorological data is applied. The

  13. Seasonal Snow Extent and Snow Volume in South America Using SSM/I Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Foster, James L.; Chang, A. T. C.; Hall, D. K.; Kelly, R.; Houser, Paul (Technical Monitor)

    2001-01-01

    Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1992-1998, both snow cover extent and snow depth (snow mass) were investigated during the winter months (May-August) in the Patagonia region of Argentina. Since above normal temperatures in this region are typically above freezing, the coldest winter month was found to be not only the month having the most extensive snow cover but also the month having the deepest snows. For the seven-year period of this study, the average snow cover extent (May-August) was about 0.46 million sq km and the average monthly snow mass was about 1.18 x 10(exp 13) kg. July 1992 was the month having the greatest snow extent (nearly 0.8 million sq km) and snow mass (approximately 2.6 x 10(exp 13) kg).

  14. Discovery of a Transiting Planet near the Snow-line

    NASA Astrophysics Data System (ADS)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J.; Henze, C.; Isaacson, H.; Kolbl, R.; Marcy, G. W.; Bryson, S. T.; Stassun, K.; Bastien, F.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ~2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ~180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ~3 Myr, indicating that Kepler-421b may have formed at its observed location. Based on archival data of the Kepler telescope.

  15. A Review of Global Satellite-Derived Snow Products

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2011-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow.

  16. A Review of Global Satellite-derived Snow Products

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2012-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow.

  17. A Review of Global Satellite-Derived Snow Products

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2011-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth s hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow

  18. Discovery of a transiting planet near the snow-line

    SciTech Connect

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J.; Henze, C.; Bryson, S. T.; Isaacson, H.; Kolbl, R.; Marcy, G. W.; Stassun, K.; Bastien, F.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.

  19. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  20. Snow Storm Blankets Southeastern U.S.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new year's storm brought heavy snow to portions of the southeastern United States, with some regions receiving more than a foot in less than two days. By Friday, January 4, 2002, the skies had cleared, and MODIS captured this false-color image showing the extent of the snowfall. Snow cover is red, and extends all the way from Alabama (lower left), up through Georgia, South Carolina, North Carolina, Virginia, and Maryland, including the southern reaches of the Delmarva Peninsula (upper right). Beneath some clouds in West Virginia (top center), snow is also visible on the Allegheny Mountains and the Appalachian Plateau, although it did come from the same storm. Though red isn't the color we associate with snow, scientists often find 'false-color' images more useful than 'true-color' images in certain situations. True-color images are images in which the satellite data are made to look like what our eyes would see, using a combination of red, green, and blue. In a true-color image of this scene, cloud and snow would appear almost identical-both would be very bright white-and would be hard to distinguish from each other. However, at near-infrared wavelengths of light, snow cover absorbs sunlight and therefore appears much darker than clouds. So a false-color image in which one visible wavelength of the data is colored red, and different near-infrared wavelengths are colored green and blue helps show the snow cover most clearly.

  1. Blowing Snow Over the Antarctic Plateau

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Eager, Rebecca; Campbell, James R.; Spinhirne, James D.

    2002-01-01

    Studies of blowing snow over Antarctica have been limited greatly by the remoteness and harsh conditions of the region. Space-based observations are also of lesser value than elsewhere, given the similarities between ice clouds and snow-covered surfaces, both at infrared and visible wavelengths. It is only in recent years that routine ground-based observation programs have acquired sufficient data to overcome the gap in our understanding of surface blowing snow. In this paper, observations of blowing snow from visual observers' records as well as ground-based spectral and lidar programs at South Pole station are analyzed to obtain the first climatology of blowing snow over the Antarctic plateau. Occurrence frequencies, correlation with wind direction and speed, typical layer heights, as well as optical depths are determined. Blowing snow is seen in roughly one third of the visual observations and occurs under a narrow range of wind directions. The near-surface layers typically a few hundred meters thick emit radiances similar to those from thin clouds. Because blowing snow remains close to the surface and is frequently present, it will produce small biases in space-borne altimetry; these must be properly estimated and corrected.

  2. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Brodzik, M. J.; Rittger, K.; Bormann, K. J.; Burgess, A. B.; Zimdars, P.; McGibbney, L. J.; Goodale, C. E.; Joyce, M.

    2015-12-01

    The Snow Data System at NASA JPL includes a data processing pipeline built with open source software, Apache 'Object Oriented Data Technology' (OODT). It produces a variety of data products using inputs from satellites such as MODIS, VIIRS and Landsat. Processing is carried out in parallel across a high-powered computing cluster. Algorithms such as 'Snow Covered Area and Grain-size' (SCAG) and 'Dust Radiative Forcing in Snow' (DRFS) are applied to satellite inputs to produce output images that are used by many scientists and institutions around the world. This poster will describe the Snow Data System, its outputs and their uses and applications, along with recent advancements to the system and plans for the future. Advancements for 2015 include automated daily processing of historic MODIS data for SCAG (MODSCAG) and DRFS (MODDRFS), automation of SCAG processing for VIIRS satellite inputs (VIIRSCAG) and an updated version of SCAG for Landsat Thematic Mapper inputs (TMSCAG) that takes advantage of Graphics Processing Units (GPUs) for faster processing speeds. The pipeline has been upgraded to use the latest version of OODT and its workflows have been streamlined to enable computer operators to process data on demand. Additional products have been added, such as rolling 8-day composites of MODSCAG data, a new version of the MODSCAG 'annual minimum ice and snow extent' (MODICE) product, and recoded MODSCAG data for the 'Satellite Snow Product Intercomparison and Evaluation Experiment' (SnowPEx) project.

  3. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-01-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.

  4. Adsorption of phenanthrene on natural snow.

    PubMed

    Domine, Florent; Cincinelli, Alessandra; Bonnaud, Elodie; Martellini, Tania; Picaud, Sylvain

    2007-09-01

    The snowpack is a reservoir for semivolatile organic compounds (SVOCs) and, in particular, for persistent organic pollutants (POPs), which are sequestered in winter and released to the atmosphere or hydrosphere in the spring. Modeling these processes usually assumes that SVOCs are incorporated into the snowpack by adsorption to snow surfaces, but this has never been proven because the specific surface area (SSA) of snow has never been measured together with snow composition. Here we expose natural snow to phenanthrene vapors (one of the more volatile POPs) and measure for the first time both the SSA and the chemical composition of the snow. The results are consistent with an adsorption equilibrium. The measured Henry's law constant is H(Phen)(T) = 2.88 x 10(22) exp(-10660/7) Pa m2 mol(-1), with Tin Kelvin. The adsorption enthalpy is delta H(ads) = -89 +/- 18 kJ mol(-1). We also perform molecular dynamics calculations of phenanthrene adsorption to ice and obtain AHads = -85 +/- 8 kJ mol(-1), close to the experimental value. Results are applied to the adsorption of phenanthrene to the Arctic and subarctic snowpacks. The subarctic snowpack, with a low snow area index (SAI = 1000), is a negligible reservoir of phenanthrene, butthe colder Arctic snowpack, with SAI = 2500, sequesters most of the phenanthrene present in the (snow + boundary layer) system. PMID:17937278

  5. Laboratory and field evidence for photochemical production of carbon monoxide (CO) in polar snow

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Brough, N.; Blake, D. R.; Jones, A. E.; Wolff, E. W.

    2010-05-01

    Carbon monoxide (CO) is considered as an indirect greenhouse gas, since increasing levels, e.g. by anthropogenic activities, will deplete hydroxyl (OH) radical concentrations and thus enhance build up of methane (CH4). Through its interactions with OH, CO concentrations also influence atmospheric oxidizing capacity. Recent observations in the mid latitudes of the northern hemisphere suggest that the sun lit snow pack acts as a CO source to the lower troposphere in summer. This aspect of snow photochemistry and snow-atmosphere exchange is likely only of regional importance, but a quantitative assessment of its atmospheric relevance is still lacking. Here we present new lab results from snow chamber experiments under controlled conditions. Snow samples from Halley, Antarctica (75.58° S, 26.65° W) were irradiated and gas emissions analyzed for CO, ozone (O3) and formaldehyde (CH2O). Comparison to experiments under dark conditions and blanks shows significant photolytic production of CO. Observed emission rates per surface area were on the order of 1.7 x 1010 molecules cm-2s-1. Assuming the typical diurnal variability of atmospheric mixing depth at Halley in summer these translate into CO production rates of 4-26 ppbv day-1. Ambient and firn air measurements of CO from a summer intensive campaign at Summit, Greenland (72.97° N, 38.77° W), another site in the high latitudes, allow to estimate fluxes and yield similar CO production rates of 3-17 ppbv day-1. Laboratory- and field-based CO formation rates observed in snow are compared with snow concentrations of total organic carbon (TOC) and CH2O. We discuss feasibility and further research needs of the parameterization of CO emissions from snow surfaces in order to extrapolate to the ice sheet scale.

  6. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2016-03-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic, half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach reproduced the additional stress obtained by finite element simulations for the simplified profiles well - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. The two study cases presented in this paper showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack

  7. BOREAS HYD-4 Standard Snow Course Data

    NASA Technical Reports Server (NTRS)

    Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 work was focused on collecting data during the winter focused field campaign (FFC-W) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Snow surveys were conducted at special snow courses throughout the 1993/94, 1994/95, 1995/96, and 1996/97 winter seasons. These snow courses were located in different boreal forest land cover types (i.e., old aspen, old black spruce, young jack pine, forest clearing, etc.) to document snow cover variations throughout the season as a function of different land cover. Measurements of snow depth, density, and water equivalent were acquired on or near the first and fifteenth of each month during the snow cover season. The data are provided in tabular ASCII files. The HYD-4 standard snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  8. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  9. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed

  10. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  11. Using snowboards and lysimeters to constrain snow model choices in a rain-snow transitional environment

    NASA Astrophysics Data System (ADS)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2015-12-01

    Physically based models of the hydrological cycle are critical for testing our understanding of the natural world and enabling forecasting of extreme events. Previous intercomparison studies (i.e. SNOWMIP I & II, PILPS) of existing snow models that vary in complexity have been hampered by multiple differences in model structure. Recent efforts to encompass multiple model hypothesizes into a single framework (i.e. the Structure for Understanding Multiple Modeling Alternatives [SUMMA] model), have provided the tools necessary for a more rigorous validation of process representation. However, there exist few snow observatories that measure sufficient physical states and fluxes to fully constrain the possible combinations within these multiple model frameworks. In practice, observations of bulk snow states, such as the snow water equivalent (SWE) or snow depth, are most commonly available. The downfall of calibrating a snow model using such single bulk variables can lead to parameter equanimity and compensatory errors, which ultimately impacts the skill of a model as a predictive tool. This study provides two examples of diagnosing modeled snow processes through novel error source identification. Simulations were performed at a recently upgraded (Oct. 2012) snow study site located at Snoqualmie Pass (917 m), in the Washington Cascades, USA. We focused on two physical processes, new snow accumulation and snowpack outflow during mid-winter rain-on-snow events, for their importance towards controlling runoff and flooding in this rain-snow transitional basin. Main results were: 1) modifying the snow model structure to match what was actually observed (i.e. a snow board), allowed the attribution of daily errors in model new snow accumulation to either partitioning, new snow density, or compaction. 2) Observed snow pit temperature profiles from infrared cameras and manual thermometers found that cold biases in the model snowpack temperature prior to rain-on-snow events could

  12. Recent progress in snow and ice research

    SciTech Connect

    Richter-menge, J.A.; Colbeck, S.C.; Jezek, K.C. )

    1991-01-01

    A review of snow and ice research in 1987-1990 is presented, focusing on the effects of layers in seasonal snow covers, ice mechanics on fresh water and sea ice, and remote sensig of polar ice sheets. These topics provide useful examples of general needs in snow and ice research applicable to most areas, such as better representation in models of detailed processes, controlled laboratory experiments to quantify processes, and field studies to provide the appropriate context for interpretation of processes from remote sensing.

  13. "Proximal Sensing" capabilities for snow cover monitoring

    NASA Astrophysics Data System (ADS)

    Valt, Mauro; Salvatori, Rosamaria; Plini, Paolo; Salzano, Roberto; Giusti, Marco; Montagnoli, Mauro; Sigismondi, Daniele; Cagnati, Anselmo

    2013-04-01

    The seasonal snow cover represents one of the most important land cover class in relation to environmental studies in mountain areas, especially considering its variation during time. Snow cover and its extension play a relevant role for the studies on the atmospheric dynamics and the evolution of climate. It is also important for the analysis and management of water resources and for the management of touristic activities in mountain areas. Recently, webcam images collected at daily or even hourly intervals are being used as tools to observe the snow covered areas; those images, properly processed, can be considered a very important environmental data source. Images captured by digital cameras become a useful tool at local scale providing images even when the cloud coverage makes impossible the observation by satellite sensors. When suitably processed these images can be used for scientific purposes, having a good resolution (at least 800x600x16 million colours) and a very good sampling frequency (hourly images taken through the whole year). Once stored in databases, those images represent therefore an important source of information for the study of recent climatic changes, to evaluate the available water resources and to analyse the daily surface evolution of the snow cover. The Snow-noSnow software has been specifically designed to automatically detect the extension of snow cover collected from webcam images with a very limited human intervention. The software was tested on images collected on Alps (ARPAV webcam network) and on Apennine in a pilot station properly equipped for this project by CNR-IIA. The results obtained through the use of Snow-noSnow are comparable to the one achieved by photo-interpretation and could be considered as better as the ones obtained using the image segmentation routine implemented into image processing commercial softwares. Additionally, Snow-noSnow operates in a semi-automatic way and has a reduced processing time. The analysis

  14. Potential genesis and implications of calcium nitrate in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Mahalinganathan, K.; Thamban, M.

    2015-11-01

    Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with nitrogen oxides contiguously. The association between Ca2+, an important proxy indicator of mineral dust and NO3-, a dominant anion in the Antarctic snow pack was analysed. A total of 41 snow cores (~ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML) in East Antarctica. Correlation statistics showed a strong association (at 99 % significance level) between NO3- and Ca2+ at the near-coastal sections of both PEL (r = 0.72) and cDML (r = 0.76) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.8) and cDML (r = 0.85). Such systematic associations between Ca2+ and NO3- is attributed to the interaction between calcic mineral dust and nitrogen oxides in the atmosphere, leading to the possible formation of calcium nitrate (Ca(NO3)2). Forward and back trajectory analyses using HYSPLIT model v. 4 revealed that Southern South America (SSA) was an important dust emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 μm, indicating that these dust particles reached the Antarctic region via long range transport from the SSA region. We propose that the association between Ca2+ and NO3- occurs during the long range transport due to the formation of Ca(NO3)2. The Ca(NO3)2 thus formed in the atmosphere undergo deposition over Antarctica under the influence of anticyclonic polar easterlies. However, influence of local dust sources from the nunataks in cDML evidently mask such association in the mountainous region. The study indicates that the input of dust-bound NO3- may contribute a significant fraction of

  15. Significance of hypoburrow nodule formation associated with large biogenic sedimentary structures in open-marine bay siliciclastics of the Upper Eocene Birket Qarun Formation, Wadi El-Hitan, Fayum, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Zaki A.; Gingras, Murray K.; Pemberton, S. George

    Unusually large biogenic sedimentary structures from the shallow quiescent-marine siliciclastics of the Upper Eocene Birket Qarun Formation in the Fayum area of Egypt display pronounced concretion formation around the trace fossils. The structures are massive, and vary morphologically, forming branched pillars (up to dm-scale), vertical (up to 180 cm height) amphora-like masses, and 3-D box-work "maze". Bioturbation, mainly Thalassinoides attributable to the Glossifungites ichnofacies, mediated and modified the physical and chemical microenvironments influencing early diagenesis; i.e., burrows promote the precipitation of pervasive calcite-dominated cement. The inferred paragenesis, combined with the negative (light) carbon and oxygen stable-isotopic values of the bulk calcite (δ 13C PDB from -0.94 to -4.98‰ and δ 18O PDB from -4.63 to -7.22‰) and bulk dolomite (δ 13C PDB from -2.05 to -8.23‰ and δ 18O PDB from -1.41 to -11.20‰), imply that the pore-water carbon was derived directly from seawater and dissolution of metastable carbonate, which was mediated by bacterial decomposition of organic matter and mixing of meteoric ground water. Thereby, the carbonate cement precipitated mostly under eodiagenetic conditions near the sediment/water interface (<~3 m in depth). The distribution of these structures is confined to parasequence-bounding flooding surfaces (generally expressed as transgressive surfaces of erosion). Notably, sedimentological, ichnological and paragenetic data can be related to stratigraphic evolution such that geochemical and textural evidence is distinctly associated with (1) early cementation of the host sandstone during highstands of relative sea level, (2) the formation of firmgrounds during low relative sea level, (3) the development of a Glossifungites-demarcated discontinuity during initial relative sea-level rise, and (4) continued cementation with rising relative sea level. This was followed by burial diagenesis, evidence for

  16. Elemental and fatty acid composition of snow algae in Arctic habitats

    PubMed Central

    Spijkerman, Elly; Wacker, Alexander; Weithoff, Guntram; Leya, Thomas

    2012-01-01

    Red, orange or green snow is the macroscopic phenomenon comprising different eukaryotic algae. Little is known about the ecology and nutrient regimes in these algal communities. Therefore, eight snow algal communities from five intensively tinted snow fields in western Spitsbergen were analysed for nutrient concentrations and fatty acid (FA) composition. To evaluate the importance of a shift from green to red forms on the FA-variability of the field samples, four snow algal strains were grown under nitrogen replete and moderate light (+N+ML) or N-limited and high light (−N+HL) conditions. All eight field algal communities were dominated by red and orange cysts. Dissolved nutrient concentration of the snow revealed a broad range of NH+4 (<0.005–1.2 mg N l−1) and only low PO3−4 (<18 μg P l−1) levels. The external nutrient concentration did not reflect cellular nutrient ratios as C:N and C:P ratios of the communities were highest at locations containing relatively high concentrations of NH+4 and PO3−4. Molar N:P ratios ranged from 11 to 21 and did not suggest clear limitation of a single nutrient. On a per carbon basis, we found a 6-fold difference in total FA content between the eight snow algal communities, ranging from 50 to 300 mg FA g C−1. In multivariate analyses total FA content opposed the cellular N:C quota and a large part of the FA variability among field locations originated from the abundant FAs C18:1n-9, C18:2n-6, and C18:3n-3. Both field samples and snow algal strains grown under −N+HL conditions had high concentrations of C18:1n-9. FAs possibly accumulated due to the cessation of growth. Differences in color and nutritional composition between patches of snow algal communities within one snow field were not directly related to nutrient conditions. We propose that the highly patchy distribution of snow algae within and between snow fields may also result from differences in topographical and geological parameters such as slope, melting

  17. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    SciTech Connect

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  18. The National Marine Educators' Association Historical Notes.

    ERIC Educational Resources Information Center

    Lanier, James A.

    1988-01-01

    Recounts the formation of the National Marine Education Association (NMEA) in 1976. Provides summaries of conferences dealing with marine education since 1960 along with a year-by-year reporting on NMEA conferences and activities from 1976-1988. (TW)

  19. An Upper Turonian fine-grained shallow marine stromatolite bed from the Muñecas Formation, Northern Iberian Ranges, Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, M.; Sánchez, F.; Walliser, E. O.; Reitner, J.

    2012-07-01

    A fine-grained stromatolite bed, laterally continuous on the kilometer scale and with small synoptic relief, crops out in the Muñecas Formation in the Northern Iberian Ranges. The Muñecas Fm. was deposited during the late Turonian on a shallow water platform in the Upper Cretaceous intracratonic Iberian basin. The stromatolite bed has a tabular to domed biostromal macrostructure. Its internal mesostructure consists of planar, wavy to hemispherical stromatoids that display a broad spectrum of microstructures, including dense micrite, bahamite peloids, peloidal to clotted microfabrics, irregular micritic-wall tubes, which are suggestive of algae and filamentous microframeworks, which are suggestive of filamentous cyanobacteria. Various stromatolite growth stages have been linked to the dominance of different accretion processes. The accretion of the entire fine-grained stromatolite involves a complex mosaic of processes: trapping and binding of quartz-silt grains and bahamites, which form the agglutinated parts of some laminae, and microbially induced precipitation, which forms spongiostromic and micritic laminae. Tubiform and filamentous microframeworks resembling porostromatate or skeletal stromatolitic growth were also recognized. Laser ICP-MS measurements of Al, Si, Mg, Mn, Sr, S and Fe were analyzed to detect the influence of siliciclastic inputs and major trends during stromatolite accretion. Carbon and oxygen isotopic compositions from the stromatolite and associated facies were used to identify possible microbial signatures. These data describes a unique and well-preserved example of a shallow marine Upper Turonian fine-grained stromatolite.

  20. Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method

    NASA Technical Reports Server (NTRS)

    Takeda, K.; Ochiai, H.; Takeuchi, S.

    1985-01-01

    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed.

  1. Hydrologic Modeling of Snow Dynamics in the U.S., the Problem with Point Observations, and the Need for Improved Remote Sensing of Snow Characteristics

    NASA Astrophysics Data System (ADS)

    Cline, D.

    2002-12-01

    Hydrological models used in research and operational applications are modest representations of the actual hydrologic system. Whether simple or complex, good models provide reliable guidance, but cannot represent every situation, every process that occurs in nature. Consequently, observations of important hydrologic states are necessary to evaluate model results, and importantly, to make corrections to the model so that it performs better in the future. Unfortunately, hydrologic observing systems have not, in general, kept pace with the rapid advances in hydrologic modeling seen over the past decade. Spatially distributed, physically based models can now be run at high spatial and temporal resolution, greatly reducing the uncertainties associated with model parameterization. Models in this class can provide detailed, apparently realistic information about hydrologic states and processes that simply stretches or exceeds the limits of model evaluation and data assimilation using available observations. In the U.S., water stored and released from seasonal snow packs directly leads to gross national revenue on the order of hundreds of billions of dollars each year, in the form of hydroelectric power generation, agriculture, manufacturing, recreation, and other activities. Snowmelt flooding is a chronic problem in many areas of the country, resulting in lost lives and several billion dollars in damages every few years. The distribution and state of snow cover affects weather and climate patterns around the globe, with immense but poorly understood consequences. Accurate, reliable snow models are necessary to understand and predict the formation, evolution, and ablation of snow packs and the soil states beneath them that affect snowmelt runoff. The National Operational Hydrologic Remote Sensing Center (National Weather Service, NOAA) is operating a new multi-layer snow/soil model for the continental U.S. at 1-km spatial resolution and hourly temporal resolution, to

  2. Sensitivity of Passive Microwave Snow Depth Retrievals to Weather Effects and Snow Evolution

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Powell, Dylan C.; Wang, James R.

    2006-01-01

    Snow fall and snow accumulation are key climate parameters due to the snow's high albedo, its thermal insulation, and its importance to the global water cycle. Satellite passive microwave radiometers currently provide the only means for the retrieval of snow depth and/or snow water equivalent (SWE) over land as well as over sea ice from space. All algorithms make use of the frequency-dependent amount of scattering of snow over a high-emissivity surface. Specifically, the difference between 37- and 19-GHz brightness temperatures is used to determine the depth of the snow or the SWE. With the availability of the Advanced Microwave Scanning Radiometer (AMSR-E) on the National Aeronautics and Space Administration's Earth Observing System Aqua satellite (launched in May 2002), a wider range of frequencies can be utilized. In this study we investigate, using model simulations, how snow depth retrievals are affected by the evolution of the physical properties of the snow (mainly grain size growth and densification), how they are affected by variations in atmospheric conditions and, finally, how the additional channels may help to reduce errors in passive microwave snow retrievals. The sensitivity of snow depth retrievals to atmospheric water vapor is confirmed through the comparison with precipitable water retrievals from the National Oceanic and Atmospheric Administration's Advanced Microwave Sounding Unit (AMSU-B). The results suggest that a combination of the 10-, 19-, 37-, and 89-GHz channels may significantly improve retrieval accuracy. Additionally, the development of a multisensor algorithm utilizing AMSR-E and AMSU-B data may help to obtain weather-corrected snow retrievals.

  3. Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Kinoshita, A. M.; Hogue, T. S.

    2014-07-01

    The current work evaluates the spatial and temporal variability in snow after a large forest fire in northern California with Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. MODIS MOD10A1 fractional snow covered area and MODSCAG fractional snow cover products are utilized to detect spatial and temporal changes in snowpack after the 2007 Moonlight Fire and an unburned basin, Grizzly Ridge, for water years (WY) 2002-2012. Estimates of canopy adjusted and non-adjusted MODSCAG fractional snow covered area (fSCA) are smoothed and interpolated to provide a continuous timeseries of daily basin average snow extent over the two basins. The removal of overstory canopy by wildfire exposes more snow cover; however, elemental pixel comparisons and statistical analysis show that the MOD10A1 product has a tendency to overestimate snow coverage pre-fire, muting the effects of wildfire. The MODSCAG algorithm better distinguishes sub-pixel snow coverage in forested areas and is highly correlated to soil burn severity after the fire. Annual MODSCAG fSCA estimates show statistically significant increased fSCA in the Moonlight Fire study area after the fire (WY 2008-2011; P < 0.01) compared to pre-fire averages and the control basin. After the fire, the number of days exceeding a pre-fire high snow cover threshold increased by 81%. Canopy reduction increases exposed viewable snow area and the amount of solar radiation that reaches the snowpack leading to earlier basin average melt-out dates compared to the nearby unburned basin. There is also a significant increase in MODSCAG fSCA post-fire regardless of slope or burn severity. Alteration of regional snow cover has significant implications for both short and long-term water supplies for downstream communities and resource managers.

  4. Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Kinoshita, A. M.; Hogue, T. S.

    2014-11-01

    The current work evaluates the spatial and temporal variability in snow after a large forest fire in northern California using Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area and grain size (MODSCAG). MODIS MOD10A1 fractional snow-covered area and MODSCAG fractional snow cover products are utilized to detect spatial and temporal changes in snowpack after the 2007 Moonlight Fire and an unburned basin, Grizzly Ridge, for water years (WY) 2002-2012. Estimates of canopy-adjusted and non-adjusted MODSCAG fractional snow-covered area (fSCA) are smoothed and interpolated to provide a continuous time series of average daily snow extent over the two basins. The removal of overstory canopy by wildfire exposes more snow cover; however, elemental pixel comparisons and statistical analysis show that the MOD10A1 product has a tendency to overestimate snow coverage pre-fire, muting the observed effects of wildfire. The MODSCAG algorithm better distinguishes subpixel snow coverage in forested areas and is highly correlated to soil burn severity after the fire. Annual MODSCAG fSCA estimates show statistically significant increased fSCA in the Moonlight Fire study area after the fire (P < 0.01 for WY 2008-2011) compared to pre-fire averages and the control basin. After the fire, the number of days exceeding a pre-fire high snow-cover threshold increased by 81%. Canopy reduction increases exposed viewable snow area and the amount of solar radiation that reaches the snowpack, leading to earlier basin average melt-out dates compared to the nearby unburned basin. There is also a significant increase in MODSCAG fSCA post-fire regardless of slope or burn severity. Regional snow cover change has significant implications for both short- and long-term water supply for impacted ecosystems, downstream communities, and resource managers.

  5. Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model

    NASA Astrophysics Data System (ADS)

    Dziubanski, David J.; Franz, Kristie J.

    2016-09-01

    Accurately initializing snow model states in hydrologic prediction models is important for estimating future snowmelt, water supplies, and flooding potential. While ground-based snow observations give the most reliable information about snowpack conditions, they are spatially limited. In the north-central USA, there are no continual observations of hydrologically critical snow variables. Satellites offer the most likely source of spatial snow data, such as the snow water equivalent (SWE), for this region. In this study, we test the impact of assimilating SWE data from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument into the US National Weather Service (NWS) SNOW17 model for seven watersheds in the Upper Mississippi River basin. The SNOW17 is coupled with the NWS Sacramento Soil Moisture Accounting (SACSMA) model, and both simulated SWE and discharge are evaluated. The ensemble Kalman filter (EnKF) assimilation framework is applied and updating occurs on a daily cycle for water years 2006-2011. Prior to assimilation, AMSR-E data is bias corrected using data from the National Operational Hydrologic Remote Sensing Center (NOHRSC) airborne snow survey program. An average AMSR-E SWE bias of -17.91 mm was found for the study basins. SNOW17 and SAC-SMA model parameters from the North Central River Forecast Center (NCRFC) are used. Compared to a baseline run without assimilation, the SWE assimilation improved discharge for five of the seven study sites, in particular for high discharge magnitudes associated with snow melt runoff. SWE and discharge simulations suggest that the SNOW17 is underestimating SWE and snowmelt rates in the study basins. Deep snow conditions and periods of snowmelt may have introduced error into the assimilation due to difficulty obtaining accurate brightness temperatures under these conditions. Overall results indicate that the AMSR-E data and EnKF are viable and effective solutions for improving simulations

  6. Modeling liquid water transport in snow under rain-on-snow conditions considering preferential flow

    NASA Astrophysics Data System (ADS)

    Würzer, Sebastian; Wever, Nander; Juras, Roman; Lehning, Michael; Jonas, Tobias

    2016-04-01

    Rain-on-snow (ROS) has caused severe flood events in Europe in the recent past. Thus, precisely forecasting snowpack runoff during ROS events is very important. Data analyses from past ROS events have shown that the release of snow cover runoff is often delayed relative to the onset of rainfall. This delay is influenced by the refreeze of liquid water inside the snowpack, as well as by the water transport mechanisms. Water percolation in turn depends on snow grain size but also on the presence of structures such as ice lenses or capillary barriers. Further, during sprinkling experiments, preferential flow was found to be a main mechanism to determine the generation of snow cover runoff. However, current 1D snow cover models are not capable of addressing this phenomenon correctly. For this study, the detailed physics-based snow cover model SNOWPACK has been extended with a water transport scheme accounting for preferential flow. The implemented Richardś Equation solver was modified based on a dual-domain approach to simulate water transport under preferential flow conditions. This transport model is used to simulate liquid water transport within the snow cover during ROS events. To validate the presented approach, we used an extensive data set of approximately 100 historic ROS events at different locations between 950 m and 2540 m elevation in the Alps. The data set comprises meteorological and snow cover measurements as well as snow lysimeter runoff data. Additionally, experimental sprinkling of dye tracer colored water was conducted on snow cover, where runoff was measured by snow lysimeters. The model was tested under a variety of ROS events including cold, ripe, stratified and homogeneous initial snow cover conditions. Preliminary results show an improvement in temporal runoff representation as well as in total runoff amount for several ROS events.

  7. Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model

    NASA Astrophysics Data System (ADS)

    Dziubanski, D.; Franz, K.

    2015-12-01

    Accurately initializing snow model states, and in particular snow water equivalent (SWE), in hydrologic prediction models is important for predicting future snowmelt, water supplies and flooding potential. While ground-based snow observations give the most reliable information about snowpack conditions, they are spatially limited and quite sparse in regions such as the north-central USA. Satellites are the most likely source of snow observations to fill this data gap. Using the ensemble Kalman filter (EnKF) assimilation framework, we test the assimilation of AMSR-E SWE into the US National Weather Service (NWS) SNOW17 model for seven watersheds in the Upper Mississippi River basin. SNOW17 is coupled with the NWS Sacramento Soil Moisture Accounting (SACSMA) model, and both simulated SWE and discharge are evaluated. Prior to assimilation, AMSR-E data is bias corrected using data from the National Operational Hydrologic Remote Sensing Center (NOHRSC) airborne snow survey program. Updating occurs on a daily cycle for water years 2006-2011. Results show improved discharge for five of the seven study sites as compared to the SNOW17 without assimilation. The assimilation of AMSR-E SWE produced high skill for peak flows during periods of snow melt, with one study site displaying a 36% improvement in simulated peak flow. As calibrated, the SNOW17 consistently underestimates the SWE and snow melt rates in these basins. Overall results indicate that updating SNOW17 SWE with AMRS-E data is a viable and effective solution for improving simulations of the operational forecast models.

  8. A passive microwave snow depth algorithm with a proxy for snow metamorphism

    USGS Publications Warehouse

    Josberger, E.G.; Mognard, N.M.

    2002-01-01

    Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002

  9. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1987-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  10. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1991-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  11. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1989-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R40 project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination Of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  12. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1986-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. It is concentrated on snow of the R{sub 4}D project area. However, an important aspect of this study is to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  13. Progress in radar snow research. [Brookings, South Dakota

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.

  14. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters

    NASA Astrophysics Data System (ADS)

    März, C.; Poulton, S. W.; Beckmann, B.; Küster, K.; Wagner, T.; Kasten, S.

    2009-04-01

    A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (about 15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After around 15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for about 90-100 ka, followed by another period of

  15. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters

    NASA Astrophysics Data System (ADS)

    März, C.; Poulton, S. W.; Beckmann, B.; Küster, K.; Wagner, T.; Kasten, S.

    2008-08-01

    A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (˜15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ˜15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H 2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ˜90-100 ka, followed by another period of anoxic, non

  16. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    SciTech Connect

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  17. Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI.

    PubMed

    Lütz-Meindl, Ursula; Lütz, Cornelius

    2006-01-01

    Snow algae frequently occur in alpine and polar permanent snow ecosystems and have developed adaptations to their harsh environment, where extreme temperature regimes high irradiation and low nutrient levels prevail. They live in a unique microhabitat, namely the liquid water between snow crystals. The predominant form appears as 'red snow' and in polar environment also 'green snow' frequently occurs. Light microscopy showed that most cells are densely covered by non-biotic particles of so far unknown composition. As snow normally contains very low amounts of nutrients, introduced mainly airborne like dust and precipitation, the inorganic particles at the surface of the snow algae may be important for their survival. By using electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), we investigated element distribution in ultrathin sections of snow algae from different polar (Svalbard, 5 m a.s.l., 79 degrees N and maritime Antarctic, King George Island, 10 m a.s.l., 62 degrees S) and alpine habitats (2400-3100 m a.s.l. Tyrol) for the present study. It turned out that the main elements of the cell wall attached particles are Si, Al, Fe and O independently from the origin of the snow algae. Interestingly, the same elements were also found in vacuolar compartments inside the cells. These vacuoles contain electron dense granules or crystals and are frequently found to be connected to the cortical cytoplasm. This finding suggests an uptake mechanism of the respective elements by pinocytosis. Co-transport of toxic aluminium together with silicon may be unavoidable as the inorganic nutrient uptake of the snow algae is limited to the thin water layer between the ice crystals. However, formation of insoluble aluminium silicates may serve as detoxification mechanism. PMID:16376553

  18. Sierra Nevada snow melt from SMS-2

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Mcmillan, M. C.

    1975-01-01

    A film loop from SMS-2 imagery shows snow melt over the Sierra Nevadas from May 10 to July 8, 1975. The sequence indicates a successful application of geostationary satellite data for monitoring dynamic hydrologic conditions.

  19. A High School Snow Ecology Unit

    ERIC Educational Resources Information Center

    Phillips, R. E.; Watson, C. A.

    1976-01-01

    Suggests that snow ecology be added to the high school curriculum and center around winter abiotic factors and biotic components, winter survival, case studies, winter research and arctic ecology. (LS)

  20. Mount Everest snow plume: A case study

    NASA Astrophysics Data System (ADS)

    Moore, G. W. K.

    2004-11-01

    A plume of snow blowing from the summit of Mount Everest is one of the most iconic images of the world's highest mountain. Its presence provides evidence of the strong jet stream winds that can buffet the mountain. In January 2004, astronauts onboard the International Space Station (ISS) observed a 15 to 20 km long snow plume emanating from the summit of Mount Everest. Remarkably little is known about these plumes and the role that they play in the redistribution of snow in the high Himalaya. In this paper we use a variety of meteorological datasets to show that the observed plume was the combination of high winds associated with the East Asian Jet Stream (EAJS) and a heavy snowfall that had occurred over the Himalaya during the preceding week. A simple model of a blown snow plume is shown to be consistent with the observations made from the ISS.

  1. Normalized-Difference Snow Index (NDSI)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.

    2010-01-01

    The Normalized-Difference Snow Index (NDSI) has a long history. 'The use of ratioing visible (VIS) and near-infrared (NIR) or short-wave infrared (SWIR) channels to separate snow and clouds was documented in the literature beginning in the mid-1970s. A considerable amount of work on this subject was conducted at, and published by, the Air Force Geophysics Laboratory (AFGL). The objective of the AFGL work was to discriminate snow cover from cloud cover using an automated algorithm to improve global cloud analyses. Later, automated methods that relied on the VIS/NIR ratio were refined substantially using satellite data In this section we provide a brief history of the use of the NDSI for mapping snow cover.

  2. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting

    USGS Publications Warehouse

    Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).

  3. Photochemical degradation of PCBs in snow.

    PubMed

    Matykiewiczová, Nina; Klánová, Jana; Klán, Petr

    2007-12-15

    This work represents the first laboratory study known to the authors describing photochemical behavior of persistent organic pollutants in snow at environmentally relevant concentrations. The snow samples were prepared by shock freezing of the corresponding aqueous solutions in liquid nitrogen and were UV-irradiated in a photochemical cold chamber reactor at -25 degrees C, in which simultaneous monitoring of snow-air exchange processeswas also possible. The main photodegradation pathway of two model snow contaminants, PCB-7 and PCB-153 (c approximately 100 ng kg(-1)), was found to be reductive dehalogenation. Possible involvement of the water molecules of snow in this reaction has been excluded by performing the photolyses in D2O snow. Instead, trace amounts of volatile organic compounds have been proposed to be the major source of hydrogen atom in the reduction, and this hypothesis was confirmed by the experiments with deuterated organic cocontaminants, such as d6-ethanol or d8-tetrahydrofuran. It is argued that bimolecular photoreduction of PCBs was more efficient or feasible than any other phototransformations under the experimental conditions used, including the coupling reactions. The photodegradation of PCBs, however, competed with a desorption process responsible for the pollutant loss from the snow samples, especially in case of lower molecular-mass congeners. Organic compounds, apparently largely located or photoproduced on the surface of snow crystals, had a predisposition to be released to the air but, at the same time, to react with other species in the gas phase. It is concluded that physicochemical properties of the contaminants and trace co-contaminants, their location and local concentrations in the matrix, and the wavelength and intensity of radiation are the most important factors in the evaluation of organic contaminants' lifetime in snow. Based on the results, it has been estimated that the average lifetime of PCBs in surface snow, connected

  4. 50 years of snow stratigraphy observations

    NASA Astrophysics Data System (ADS)

    Johansson, C.; Pohjola, V.; Jonasson, C.; Challagan, T. V.

    2012-04-01

    With start in autumn 1961 the Abisko Scientific Research Station (ASRS) located in the Swedish sub Arctic has performed snow stratigraphy observations, resulting in a unique 50 year long time series of data. The data set contains grain size, snow layer hardness, grain compactness and snow layer dryness, observed every second week during the winter season. In general snow and snow cover are important factors for the global radiation budget, and the earth's climate. On a more local scale the layered snowpack creates a relatively mild microclimate for Arctic plants and animals, and it also determines the water content of the snowpack (snow water equivalent) important for e.g. hydrological applications. Analysis of the snow stratigraphy data, divided into three consecutive time periods, show that there has been a change in the last time period. The variable most affected is the snow layer hardness, which shows an increase in hardness of the snowpack. The number of observations with a very hard snow layer/ice at ground level increased three-fold between the first two time periods and the last time period. The thickness of the bottom layer in the snowpack is also highly affected. There has been a 60% increase in layers thinner than 10 cm in the last time period, resulting in a mean reduction in the thickness of the bottom layer from 14 cm to 11 cm. Hence the living conditions for plants and animals at the ground surface have been highly changed. The changes in the snowpack are correlated to an increased mean winter air temperature. Thus, continued increasing, or temperatures within the same ranges as in the last time period, is likely to create harder snow condition in the future. These changes are likely to affect animals that live under the snow such as lemmings and voles or animals that graze sub-Arctic vegetation in winter (e.g. reindeer that would potentially require increased supplementary feeding that incurs financial costs to Sami reindeer herders). Any decrease

  5. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic

  6. Application of LANDSAT imagery for snow mapping in Norway

    NASA Technical Reports Server (NTRS)

    Odegaard, H.; Skorve, J. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. During the summer seasons of 1975 and 1976, the snow cover was successfully monitored and measured in the four basins. By using elevation distributions for these basins combined with the measured snow cover percentages, the equivalent snow line altitude was calculated. Equivalent snow line altitude was used in accordance with Mark Meier's definition. Cumulative runoff data were collected for the basins. Tables showing percentage snow cover versus cumulative runoff were worked out for 1975.

  7. Improved Sampling Strategy for Arctic Snow Distribution

    NASA Astrophysics Data System (ADS)

    Homan, J. W.; Kane, D. L.

    2012-12-01

    Watershed scale hydrologic models require good estimates of the spatially distributed snow water equivalent (SWE) at winter's end. Snow on the ground in treeless Arctic environments is susceptible to significant wind redistribution, which results in very heterogeneous snowpacks, with greater quantities of snow collection in depressions, valley bottoms and leeward sides of ridges. In the Arctic, precipitation and snow gauges are very poor indicators of the actual spatial snowpack distribution, particularly at winter's end when ablation occurs. Snow distribution patterns are similar from year to year because they are largely controlled by the interaction of topography, vegetation, and consistent weather patterns. From one year to the next, none of these controls radically change. Consequently, shallow and deep areas of snow tend to be spatially predetermined, resulting in depth (or SWE) differences that may vary as a whole, but not relative to each other, from year to year. This work attempts to identify snowpack distribution patterns at a watershed scale in the Arctic. Snow patterns are intended to be established by numerous field survey points from past end-of-winter field campaigns. All measured SWE values represent a certain percentage of a given watershed. Some may represent small-scale anomalies (local scale), while others might represent a large-scale area (regional scale). Since we are interested in identifying snowpack distribution patterns at a watershed scale, we aim to develop an improved point-source sampling strategy that only surveys regional representative areas. This will only be possible if the extreme high and low SWE measurements that represent local-scale snow conditions are removed in the sampled data set. The integration of these pattern identification methods will produce a hybrid approach to identifying snowpack distribution patterns. Improvement in our estimates of the snowpack distribution will aid in the forecasting of snowmelt runoff

  8. Snow management practices in French ski resorts

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; Francois, Hugues; George-Marcelpoil, Emmanuelle; Morin, Samuel

    2016-04-01

    Winter tourism plays a fundamental role in the economy of French mountain regions but also in other countries such as Austria, USA or Canada. Ski operators originally developed grooming methods to provide comfortable and safe skiing conditions. The interannual variability of snow conditions and the competition with international destinations and alternative tourism activities encouraged ski resorts to mitigate their dependency to weather conditions through snowmaking facilities. However some regions may not be able to produce machine made snow due to inadequate conditions and low altitude resorts are still negatively impacted by low snow seasons. In the meantime, even though the operations of high altitude resorts do not show any dependency to the snow conditions they invest in snowmaking facilities. Such developments of snowmaking facilities may be related to a confused and contradictory perception of climate change resulting in individualistic evolutions of snowmaking facilities, also depending on ski resorts main features such as their altitude and size. Concurrently with the expansion of snowmaking facilities, a large range of indicators have been used to discuss the vulnerability of ski resorts such as the so-called "100 days rule" which was widely used with specific thresholds (i.e. minimum snow depth, dates) and constraints (i.e. snowmaking capacity). The present study aims to provide a detailed description of snow management practices and major priorities in French ski resorts with respect to their characteristics. We set up a survey in autumn 2014, collecting data from 56 French ski operators. We identify the priorities of ski operators and describe their snowmaking and grooming practices and facilities. The operators also provided their perception of the ski resort vulnerability to snow and economic challenges which we could compare with the actual snow conditions and ski lift tickets sales during the period from 2001 to 2012.

  9. Snow darkening caused by black carbon emitted from fires

    NASA Astrophysics Data System (ADS)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin

    2014-05-01

    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version (http://snow.engin.umich.edu). This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  10. The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales

    NASA Technical Reports Server (NTRS)

    Stieglitz, Marc; Ducharne, Agnes; Koster, Randy; Suarez, Max; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.

  11. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  12. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  13. Snow as a habitat for microorganisms

    NASA Technical Reports Server (NTRS)

    Hoham, Ronald W.

    1989-01-01

    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  14. The structure of powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  15. Snow in Southwest United States

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In late December, the Southwest was blanketed with snow, and this scence was captured by MODIS on December 27, 2001. The white drape contrasts sharply with the red rock of the Colorado Plateau, a geologic region made up of a succession of plateaus and mesas composed mostly of sedimentary rock, whose reddish hues indicate the presence of oxidized iron. The Plateau covers the Four Corners area of the Southwest, including (clockwise from upper left) southern Utah, Colorado, New Mexico, and Arizona. The region gets its name from the Colorado River, seen most prominently as a dark ribbon running southwest through southern Utah. At the upper left of the image, a bank of low clouds partially obscures Utah's Great Salt Lake, but its faint outline is still visible. To the east and southeast of the lake, some high peaks of the Wasatch Mountain range break free of the clouds. The Park City area, one of the 2002 Winter Olympic venues, can be seen poking through the cloud deck about 75km southeast of the lake. Farther east, the dark Uinta Mountains follow the border between Colorado and Wyoming. The Uinta are one of the rare east-west running ranges of the Rocky Mountains.

  16. [Was Snow White a transsexual?].

    PubMed

    Michel, A; Mormont, C

    2002-01-01

    modalities in the transsexual dynamics. Nevertheless, one can ask oneself about the possibility of a request based on a desire rather than on a defense, or even on the existence of a defensive process diametrically opposed to the counter-phobic attitude and which, instead of actively provoking the dreaded reality, would privilege its avoidance and the search of passivity. This latter hypothesis has the advantage of being rather easy to explore with the Rorschach because, according to Exner, the predominance of passive compared to active human movement responses (which he terms the Snow White Syndrome) indicates the propensity to escape into passive fantasies and the tendency to avoid the initiative for behaviour or decision-making, if other people can do it in the subject's place (12). Our results largely confirmed the hypothesis of the existence of an opposite mechanism, as a third of subjects (n = 26) presented Snow White Syndrome. According to Exner, these transsexuals are typically characterized by hiding into a world of make believe, avoiding all responsibility, as well as any decision-making. This passivity in our Snow White Syndrome group was all the more remarkable in that, on the whole, it infiltrated into all the movement responses and seemed to define a rigid style of thinking and mental elaboration, in addition to a suggestive content of passivity. However, this condition cannot be associated with a general lack of dynamism or energy. In fact, the treatment of information, which provides data concerning the motivation to treat a stimulus field of the stimulus--whether this concerns the capture (L) of the stimulus or the elaboration (DQ+) of the response--displayed a sufficient amount of motivation. Furthermore, internal resources (EA) were considerable and were brought into play whenever it was necessary to adopt a behaviour or make a decision. Furthermore, based on these Rorschach findings, we note that in transsexuals with Snow White Syndrome, there is a

  17. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  18. Singlet molecular oxygen on natural snow and ice

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2010-12-01

    Singlet molecular oxygen (1O2*) is a reactive intermediate formed when a chromophore absorbs light and subsequently transfers energy to dissolved oxygen. As an oxidant, 1O2* reacts rapidly with a number of electron-rich environmental pollutants. In our work, we show enhanced kinetics for 1O2* in frozen solutions, where its rate of formation (Rf) and steady state concentration ([1O2*]) can be many orders of magnitude higher than found in the same unfrozen solution. Our goal here is to identify the contribution of 1O2* to the decay of pollutants on snow and ice. We conducted experiments in laboratory solutions made to simulate the concentrations and characteristics of natural snow, as well as in natural snow collected in the Sierra Nevada mountains of California and at Summit, Greenland. Natural snow contains a mixture of inorganic salts and organic species that can function as sources and/or sinks for oxidants, as well as contribute colligative control on the volume of quasi-liquid layers that occur at the surface and grain boundaries of ice. In our experiments, solutions typically contained up to five components: (1) Furfuryl alcohol (FFA), a commonly used probe for 1O2*, (2) Rose Bengal (RB), a 1O2* sensitizer, (3) HOOH, a photochemical precursor for hydroxyl radical (●OH), (4) glycerol to simulate unknown, naturally occurring sinks for ●OH, and (5) sodium sulfate to control the total concentration of solutes. We illuminated samples in a temperature-controlled solar simulator and subsequently measured the loss of FFA using high performance liquid chromatography. To differentiate reactions of 1O2* from other sinks (e.g. ●OH), selective sink species were added to determine the fraction of FFA loss due to direct photolysis, reaction with 1O2*, and reaction with ●OH. We verified reactions of 1O2* with FFA by two methods. First, we utilized the kinetic solvent isotope effect, where an enhancement of FFA loss in a mixture of D2O/water is indicative 1O2* since [1

  19. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments

    NASA Astrophysics Data System (ADS)

    Heimann, Adriana; Johnson, Clark M.; Beard, Brian L.; Valley, John W.; Roden, Eric E.; Spicuzza, Michael J.; Beukes, Nicolas J.

    2010-05-01

    Combined Fe, C, and O isotope measurements of ~ 2.5 Ga banded iron formation (BIF) carbonates from the Kuruman Iron Formation and underlying BIF and platform Ca-Mg carbonates of the Gamohaan Formation, South Africa, constrain the biologic and abiologic formation pathways in these extensive BIF deposits. Vertical intervals of up to 100 m were sampled in three cores that cover a lateral extent of ~ 250 km. BIF Fe carbonates have significant Fe isotope variability ( δ56Fe = + 1 to - 1‰) and relatively low δ13C (down to - 12‰) and δ18O values ( δ18O ~ + 21‰). In contrast, Gamohaan and stratigraphically-equivalent Campbellrand Ca-Mg carbonates have near-zero δ13C values and higher δ18O values. These findings argue against siderite precipitation from seawater as the origin of BIF Fe-rich carbonates. Instead, the C, O, and Fe isotope compositions of BIF Fe carbonates reflect authigenic pathways of formation in the sedimentary pile prior to lithification, where microbial dissimilatory iron reduction (DIR) was the major process that controlled the C, O, and Fe isotope compositions of siderite. Isotope mass-balance reactions indicate that the low- δ13C and low- δ18O values of BIF siderite, relative to those expected for precipitation from seawater, reflect inheritance of C and O isotope compositions of precursor organic carbon and ferric hydroxide that were generated in the photic zone and deposited on the seafloor. Carbon-Fe isotope relations suggest that BIF Fe carbonates formed through two end-member pathways: low- δ13C, low- δ56Fe Fe carbonates formed from remobilized, low- δ56Fe aqueous Fe 2+ produced by partial DIR of iron oxide, whereas low- δ13C, high- δ56Fe Fe carbonates formed by near-complete DIR of high- δ56Fe iron oxides that were residual from prior partial DIR. An important observation is the common occurrence of iron oxide inclusions in the high- δ56Fe siderite, supporting a model where such compositions reflect DIR "in place" in the soft

  20. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  1. Iodine-129 in snow and seawater in the Antarctic: level and source.

    PubMed

    Xing, Shan; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran; Shi, Keliang; Yi, Peng; Zhou, Weijian

    2015-06-01

    Anthropogenic (129)I has been released to the environment in different ways and chemical species by human nuclear activities since the 1940s. These sources provide ideal tools to trace the dispersion of volatile pollutants in the atmosphere. Snow and seawater samples collected in Bellingshausen, Amundsen, and Ross Seas in Antarctica in 2011 were analyzed for (129)I and (127)I, including organic forms; it was observed that (129)I/(127)I atomic ratios in the Antarctic surface seawater ((6.1-13) × 10(-12)) are about 2 orders of magnitude lower than those in the Antarctic snow ((6.8-9.5) × 10(-10)), but 4-6 times higher than the prenuclear level (1.5 × 10(-12)), indicating a predominantly anthropogenic source of (129)I in the Antarctic environment. The (129)I level in snow in Antarctica is 2-4 orders of magnitude lower than that in the Northern Hemisphere, but is not significantly higher than that observed in other sites in the Southern Hemisphere. This feature indicates that (129)I in Antarctic snow mainly originates from atmospheric nuclear weapons testing from 1945 to 1980; resuspension and re-emission of the fallout (129)I in the Southern Hemisphere maintains the (129)I level in the Antarctic atmosphere. (129)I directly released to the atmosphere and re-emitted marine discharged (129)I from reprocessing plants in Europe might not significantly disperse to Antarctica. PMID:25944707

  2. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Zatko, Maria; Geng, Lei; Alexander, Becky; Sofen, Eric; Klein, Katarina

    2016-03-01

    The formation and recycling of reactive nitrogen (NO, NO2, HONO) at the air-snow interface has implications for air quality and the oxidation capacity of the atmosphere in snow-covered regions. Nitrate (NO3-) photolysis in snow provides a source of oxidants (e.g., hydroxyl radical) and oxidant precursors (e.g., nitrogen oxides) to the overlying boundary layer, and alters the concentration and isotopic (e.g., δ15N) signature of NO3- preserved in ice cores. We have incorporated an idealized snowpack with a NO3- photolysis parameterization into a global chemical transport model (Goddard Earth Observing System (GEOS) Chemistry model, GEOS-Chem) to examine the implications of snow NO3- photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen, and the preservation of ice-core NO3- in ice cores across Antarctica and Greenland, where observations of these parameters over large spatial scales are difficult to obtain. A major goal of this study is to examine the influence of meteorological parameters and chemical, optical, and physical snow properties on the magnitudes and spatial patterns of snow-sourced NOx fluxes and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland. Snow-sourced NOx fluxes are most influenced by temperature-dependent quantum yields of NO3- photolysis, photolabile NO3- concentrations in snow, and concentrations of light-absorbing impurities (LAIs) in snow. Despite very different assumptions about snowpack properties, the range of model-calculated snow-sourced NOx fluxes are similar in Greenland (0.5-11 × 108 molec cm-2 s-1) and Antarctica (0.01-6.4 × 108 molec cm-2 s-1) due to the opposing effects of higher concentrations of both photolabile NO3- and LAIs in Greenland compared to Antarctica. Despite the similarity in snow-sourced NOx fluxes, these fluxes lead to smaller factor increases in mean austral summer boundary layer mixing ratios of total nitrate (HNO3+ NO3-), NOx, OH

  3. Snow measurement system for airborne snow surveys (GPR system from helicopter) in high mountian areas.

    NASA Astrophysics Data System (ADS)

    Sorteberg, Hilleborg K.

    2010-05-01

    In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.

  4. Snow hydrology studies using data from the Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Bowley, C. J.

    1981-01-01

    This paper describes a study of the snow hydrology application of thermal infrared (IR) data from the Heat Capacity Mapping Mission (HCMM) satellite. The HCMM data in both imagery and digital tape formats are analyzed for two study areas: the Salt-Verde Watershed in central Arizona and the southern Sierra Nevada in California. The analysis procedures are described, including the development of a unique contour plotting program that makes it possible to overlay HCMM thermal contours directly onto the visible channel imagery. The results indicate that satellite thermal-IR data can provide the hydrologist with additional useful information on snow cover.

  5. Are methyl halides produced on all ice surfaces? Observations from snow-laden field sites

    NASA Astrophysics Data System (ADS)

    Swanson, Aaron L.; Blake, Nicola J.; Blake, Donald R.; Sherwood Rowland, F.; Dibb, Jack E.; Lefer, Barry L.; Atlas, Elliot

    We present data collected from a number of snow-covered environments including two polar locations (Summit, Greenland and the South Pole) and two mid-latitude regions (a remote site in northern Michigan, and Niwot Ridge, Colorado). At each site, concentrations of CH3I and C2H5I were enhanced within the interstitial air near the snow surface, compared to levels in boundary layer air. Fluxes of CH3Br from surface snow to the atmosphere were observed at each site except Niwot Ridge, where CH3Br appeared to have a sink. The mid-latitude sites showed significant emissions of CH3Cl, mostly originating at the ground surface and traveling up through the snow, while at the polar locations CH3Cl emissions from firn air were relatively small. In general, methyl halide mixing ratios in firn air were significantly greater at Summit than at the South Pole, with Summit showing a strong diurnal cycle in the production of alkyl halides that was well correlated with actinic radiation and firn temperature. We suggest that the most likely route to alkyl halide formation is through an acid catalyzed nucleophilic substitution of an alcohol type function by a halide, both of which should be preferentially segregated to the quasi-liquid layer at the surface of the snow grains. A series of experiments using a snow-filled quartz chamber irradiated by natural sunlight allowed estimation of emission trends that were hard to measure in the natural snowpack. These static chamber experiments confirmed significant production of the primary alkyl halides, following the order CH3Cl>CH3Br>C2H5Cl>CH3I>C2H5Br>C2H5I>1-C3H7Br>1-C3H7I. Our observations at all four locations, including polar and mid-latitude sites, imply that alkyl halide production may be associated with all surface snows.

  6. Low Temperature SEM of Precipitated and Metamorphosed Snow Crystals Collected and Transported from Remote Sites

    NASA Astrophysics Data System (ADS)

    Wergin, William P.; Rango, Albert; Erbe, Eric F.; Murphy, Charles A.

    1996-06-01

    Procedures were developed to sample, store, ship, and process precipitated and metamorphosed snow crystals, collectively known as “snowflakes,” from remote sites to a laboratory where they could be observed and photographed using low temperature scanning electron microscopy (LTSEM). Snow samples were collected during 1994 96 from West Virginia, Colorado, and Alaska and sent to Beltsville, Maryland for observation. The samples consisted of freshly precipitated snowflakes as well as snow that was collected from pits that were excavated in winter snowfields measuring up to 1.5m in depth. The snow crystals were mounted onto copper plates, plunged into lN2 and then transferred to a storage dewar that was shipped to the laboratory. Observations, which could be easily recorded in stereo format (three-dimension), revealed detailed surface features on the precipitated crystals consisting of rime, graupel, and skeletal features. Samples from snowpacks preserved the metamorphosed crystals, which had unique structural features and bonding patterns resulting from temperature and vapor pressure gradients. In late spring, the surface of a snowpack in an alpine region exhibited a reddish hue. Undisturbed surfaces from these snowpacks could be sampled to observe the snow crystals as well as the organisms responsible for the coloration. Etching the surface of samples from these sites exposed the presence of numerous cells believed to be algae. The results of this study indicate that LTSEM can be used to provide detailed information about the surface features of precipitated and metamorphosed snow crystals sampled at remote locations. The technique can also be used to increase our understanding about the ecology of snow. The results have application to research activities that attempt to forecast the quantity of water in the winter snowpack and the amount that will ultimately reach reservoirs and be available for agriculture and hydroelectric power.

  7. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton

    2002-08-01

    Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. PMID:12208033

  8. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  9. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  10. Evolution of the surface area of a snow layer

    SciTech Connect

    Hanot, L.; Domine, F.

    1999-12-01

    Atmospheric trace gases can partition between the atmosphere and the snow surface. Because snow has a large surface-to-volume ratio, an important interaction potential between ice and atmospheric trace gases exists. Quantifying this partitioning requires the knowledge of the surface area (SA) of snow. Eleven samples were taken from a 50 cm thick snow fall at Col de Porte, near Grenoble (French Alps) between January 20 and February 4, 1998. Fresh snow and 3, 8, and 15-day-old snow were sampled at three different depths. Surface hoar, formed after the fall, was also sampled. Air and surface snow temperature, snow density, and snow fall rate were measured. Snow temperature always remained below freezing. Snow SA was measured using methane adsorption at 77.15 K. Values ranged from 2.25 m{sup 2}/g for fresh snow to 0.25 m{sup 2}/g for surface hoar and surface snow after 15 days. These values are much too high to be explained by the macroscopic aspect of snow crystals, and microstructures such as small rime droplets must have been present. Large decrease in SA with time were observed. The first meter of snowpack had a total surface area of about 50,000 m{sup 2} per m{sup 2} of ground. Reduction in SA will lead to the emission of adsorbed species by the snowpack, with possible considerable increase in atmospheric concentrations.

  11. Snow Model for the F-Layer

    NASA Astrophysics Data System (ADS)

    Lasbleis, M.; Hernlund, J. W.; Labrosse, S.

    2015-12-01

    Seismic observations of the Earth's core reveal a complex structure: radial and lateral heterogeneities in seismic anisotropy and attenuation in the solid inner core, but also discrepancies between observed P-wave velocity and homogeneous PREM model in the deep liquid outer core. In this work, we focus on the 200km anomalous layer at the bottom of the outer core that exhibits seismic velocities lower than the PREM model. It has been interpreted as a layer depleted in light elements, whereas the usual model considers that light elements are expelled at the surface of the inner core by freezing of the outer core alloy. Recent models of core formation argued for an early stratified liquid core, and the stratified layers at the top and bottom of the outer core would be a vestige of this primordial stratification. However, freezing of the inner core at the inner core boundary releases light elements that provide buoyancy fluxes that would mix the stratified liquid above with small scale buoyant plumes. To model the F-layer, we consider that the freezing of the iron alloy and the release of light elements have to occur in the bulk of the layer. Iron snow forms and settles in the layer, buffering the thermal and chemical profile to the liquidus. We show that this dynamics can both sustain and stabilize the stratified layer in the liquid outer core while simultaneously matching the seismic observations. However, the expected layer is stable only for a given set of parameters, in particular when a high thermal diffusivity (>100 W/m/K) is employed. If freezing of the iron alloy of the outer core occurs in the bulk of the layer, several assumptions for both the outer and inner core has to be discussed: the F-layer acts as a boundary layer for both composition and temperature, and modifies the quantity of light elements expelled into the outer core as well as the composition that freezes to form the inner core.

  12. Snow Study at Centre for Atmospheric Research Experiments: Variability of snow fall velocity, density and shape

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil

    In this work, snow data, collected at the Centre for Atmospheric Research Experiments (CARE) site during the winter of 2005/06 as part of the Canadian CALIPSO/CloudSat Validation Project (C3VP) were analyzed with various goals in mind: 1) investigate the effects of surface temperature and system depth on the snow fall velocity and particle size . . distribution, 2) find the variables that control the relationships between snow fall velocity and size (control variables), 3) retrieve the coefficient and the exponent in the power-law mass-size relations used in snow reflectivity, 4) estimate vertical air motion and 5) describe the shape of snowflakes that can be used in polarimetric studies of snow. It also includes considerable calibration work on the Hydrometeor Velocity and Shape Detector (HVSD); as well as sensitivity testing for radar calibration and Mie-scattering effect on snow density. Snow events were classified into several categories according to the radar echo vertical extent (H), surface and echo top temperatures (T s, Tt), to find their effects on snow fall velocity and particle size distribution. Several case studies, including situations of strong turbulence, were also examined. Simple and multiple correlation analyses between control variables and parameters of the power-law size-velocity relationship were carried out for 13 snow cases having a high R2 between their mean snowflakes fall velocity and the v-D fitted curve, in order to find the control variables of power-law v-D relations. Those cases were all characterized by single layered precipitation with different echo depth, surface and echo top temperatures. Results show that the exponent "b" in v-D power-law relationship has little effect on the variability of snow fall velocity; all control variables (T s, Tt, H) correlate much better to the coefficient "a" than to the exponent "b", leading to a snow fall velocity that can be simulated with a varying coefficient "a" and a fixed exponent "b" (v

  13. Data sets for snow cover monitoring and modelling from the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Holm, M.; Daniels, K.; Scott, D.; McLean, B.; Weaver, R.

    2003-04-01

    A wide range of snow cover monitoring and modelling data sets are pending or are currently available from the National Snow and Ice Data Center (NSIDC). In-situ observations support validation experiments that enhance the accuracy of remote sensing data. In addition, remote sensing data are available in near-real time, providing coarse-resolution snow monitoring capability. Time series data beginning in 1966 are valuable for modelling efforts. NSIDC holdings include SMMR and SSM/I snow cover data, MODIS snow cover extent products, in-situ and satellite data collected for NASA's recent Cold Land Processes Experiment, and soon-to-be-released ASMR-E passive microwave products. The AMSR-E and MODIS sensors are part of NASA's Earth Observing System flying on the Terra and Aqua satellites Characteristics of these NSIDC-held data sets, appropriateness of products for specific applications, and data set access and availability will be presented.

  14. Spring Snow Depth on Arctic Sea Ice using the IceBridge Snow Depth Product (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I. G.; Nghiem, S. V.; Kurtz, N. T.; Farrell, S. L.

    2013-12-01

    Snow has dual roles in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from colder air temperatures, slowing its growth. From spring into summer, the albedo of snow determines how much insolation is transmitted through the sea ice and into the underlying ocean, ultimately impacting the progression of the summer ice melt. Knowing the snow thickness and distribution are essential for understanding and modeling sea ice thermodynamics and the surface heat budget. Therefore, an accurate assessment of the snow cover is necessary for identifying its impacts in the changing Arctic. This study assesses springtime snow conditions on Arctic sea ice using airborne snow thickness measurements from Operation IceBridge (2009-2012). The 2012 data were validated with coordinated in situ measurements taken in March 2012 during the BRomine, Ozone, and Mercury EXperiment field campaign. We find a statistically significant correlation coefficient of 0.59 and RMS error of 5.8 cm. The comparison between the IceBridge snow thickness product and the 1937, 1954-1991 Soviet drifting ice station data suggests that the snow cover has thinned by 33% in the western Arctic and 44% in the Beaufort and Chukchi Seas. A rudimentary estimation shows that a thinner snow cover in the Beaufort and Chukchi Seas translates to a mid-December surface heat flux as high as 81 W/m2 compared to 32 W/m2. The relationship between the 2009-2012 thinner snow depth distribution and later sea ice freeze-up is statistically significant, with a correlation coefficient of 0.59. These results may help us better understand the surface energy budget in the changing Arctic, and may improve our ability to predict the future state of the sea ice cover.

  15. Potential genesis and implications of calcium nitrate in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Mahalinganathan, Kanthanathan; Thamban, Meloth

    2016-04-01

    Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with atmospheric acids contiguously. The association between nssCa2+, an important proxy indicator of mineral dust, and NO3-, a dominant anion in the Antarctic snowpack, was analysed. A total of 41 snow cores ( ˜ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions in East Antarctica - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML). Correlation statistics showed a strong association (at 99 % significance level) between NO3- and nssCa2+ at the near-coastal sections of both PEL (r = 0.74) and cDML (r = 0.82) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.73) and cDML (r = 0.84). Such systematic associations between nssCa2+ and NO3- are attributed to the interaction between calcic mineral dust and nitric acid in the atmosphere, leading to the formation of calcium nitrate (Ca(NO3)2) aerosol. Principal component analysis revealed common transport and depositional processes for nssCa2+ and NO3- both in PEL and cDML. Forward- and back-trajectory analyses using HYSPLIT model v. 4 revealed that southern South America (SSA) was an important dust-emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 µm, indicating that these dust particles reached the Antarctic region via long-range transport from the SSA region. We propose that the association between nssCa2+ and NO3- occurs during the long-range transport due to the formation of Ca(NO3)2 rather than to local neutralisation processes. However, the influence of local dust sources from the nunataks in cDML and the contribution of high sea salt in coastal PEL evidently mask such association in the

  16. First Moderate Resolution Imaging Spectroradiometer (MODIS) Snow and Ice Workshop

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K. (Editor)

    1995-01-01

    This document is a compilation of summaries of talks presented at a 2-day workshop on Moderate Resolution maging Spectroradiometer (MODIS) snow and ice products. The objectives of the workshop were to: inform the snow and ce community of potential MODIS products, seek advice from the participants regarding the utility of the products, and letermine the needs for future post-launch MODIS snow and ice products. Four working groups were formed to discuss at-launch snow products, at-launch ice products, post-launch snow and ice products and utility of MODIS snow and ice products, respectively. Each working group presented recommendations at the conclusion of the workshop.

  17. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-06-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.

  18. Snow and ice ecosystems: not so extreme.

    PubMed

    Maccario, Lorrie; Sanguino, Laura; Vogel, Timothy M; Larose, Catherine

    2015-12-01

    Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems. PMID:26408452

  19. A Comparison of Satellite-Derived Snow Maps with a Focus on Ephemeral Snow in North Carolina

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Fuhrmann, Christopher M.; Perry, L. Baker; Riggs, George A.; Robinson, David A.; Foster, James L.

    2010-01-01

    In this paper, we focus on the attributes and limitations of four commonly-used daily snowcover products with respect to their ability to map ephemeral snow in central and eastern North Carolina. We show that the Moderate-Resolution Imaging Spectroradiometer (MODIS) fractional snow-cover maps can delineate the snow-covered area very well through the use of a fully-automated algorithm, but suffer from the limitation that cloud cover precludes mapping some ephemeral snow. The semi-automated Interactive Multi-sensor Snow and ice mapping system (IMS) and Rutgers Global Snow Lab (GSL) snow maps are often able to capture ephemeral snow cover because ground-station data are employed to develop the snow maps, The Rutgers GSL maps are based on the IMS maps. Finally, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provides some good detail of snow-water equivalent especially in deeper snow, but may miss ephemeral snow cover because it is often very thin or wet; the AMSR-E maps also suffer from coarse spatial resolution. We conclude that the southeastern United States represents a good test region for validating the ability of satellite snow-cover maps to capture ephemeral snow cover,

  20. Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, a Revised Algorithm and a Snow Depth Climatology

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.

    1997-01-01

    While it is recognized that no single snow algorithm is capable of producing accurate global estimates of snow depth, for research purposes it is useful to test an algorithm's performance in different climatic areas in order to see how it responds to a variety of snow conditions. This study is one of the first to develop separate passive microwave snow algorithms for North America and Eurasia by including parameters that consider the effects of variations in forest cover and crystal size on microwave brightness temperature. A new algorithm (GSFC 1996) is compared to a prototype algorithm (Chang et al., 1987) and to a snow depth climatology (SDC), which for this study is considered to be a standard reference or baseline. It is shown that the GSFC 1996 algorithm compares much more favorably to the SDC than does the Chang et al. (1987) algorithm. For example, in North America in February there is a 15% difference between the GSFC 198-96 Algorithm and the SDC, but with the Chang et al. (1987) algorithm the difference is greater than 50%. In Eurasia, also in February, there is only a 1.3% difference between the GSFC 1996 algorithm and the SDC, whereas with the Chang et al. (1987) algorithm the difference is about 20%. As expected, differences tend to be less when the snow cover extent is greater, particularly for Eurasia. The GSFC 1996 algorithm performs better in North America in each month than dose the Chang et al. (1987) algorithm. This is also the case in Eurasia, except in April and May when the Chang et al.(1987) algorithms is in closer accord to the SDC than is GSFC 1996 algorithm.

  1. ESA Globsnow - Hemispherical Snow Extent and Snow Water Equivalent Records for Climate Research Purposes

    NASA Astrophysics Data System (ADS)

    Luojus, K.; Pulliainen, J. T.; Takala, M.; Lemmetyinen, J.; Derksen, C.; Bojkov, B. R.

    2011-12-01

    The efforts of the European Space Agency (ESA) Data User Element (DUE) funded GlobSnow project has resulted in two new global records of snow parameters intended for climate research purposes. The datasets contains satellite-retrieved information on snow extent (SE) and snow water equivalent (SWE) extending 15 and 30 years respectively. The dataset on snow extent is based on optical data of Envisat AATSR and ERS-2 ATSR-2 sensors covering Northern Hemisphere between years 1995 to 2010. The record on snow water equivalent is based on satellite-based radiometer measurements (SMMR, SSM/I and AMSR-E) combined with ground-based weather station data, starting from 1979 and extending to present day. The GlobSnow SWE product is the first satellite-based dataset of snow water equivalent information on a daily basis at a hemispherical scale for 30+ years. In addition to the SE and SWE time-series, an operational near-real time (NRT) snow information service has been implemented. The current data, including the prototype products and the used validation data are available for all interested parties through the GlobSnow www-pages (http://www.globsnow.info). Extensive algorithm evaluation efforts were carried out for the candidate SWE and SE algorithms using ground truth data gathered from Canada, Scandinavia, Russia and the Alps. The acquired evaluation results enabled the selection of the final algorithms to be utilized for the GlobSnow products. The SWE product is derived using an assimilation algorithm by FMI and the SE product is a combination of NR and SYKE developed algorithms utilizing optical data. Both algorithms showed enhanced estimation characteristics when compared with currently available existing products. Prototype SE and SWE products were released for user evaluation during November 2009 covering the years 2003-2008 for SWE and 2004-2006 for SE. The final SWE product covers the Northern Hemisphere, spanning 1979 - 2010. The SE product covers the Northern

  2. Assessment of Northern Hemisphere Snow Water Equivalent Datasets in ESA SnowPEx project

    NASA Astrophysics Data System (ADS)

    Luojus, Kari; Pulliainen, Jouni; Cohen, Juval; Ikonen, Jaakko; Derksen, Chris; Mudryk, Lawrence; Nagler, Thomas; Bojkov, Bojan

    2016-04-01

    Reliable information on snow cover across the Northern Hemisphere and Arctic and sub-Arctic regions is needed for climate monitoring, for understanding the Arctic climate system, and for the evaluation of the role of snow cover and its feedback in climate models. In addition to being of significant interest for climatological investigations, reliable information on snow cover is of high value for the purpose of hydrological forecasting and numerical weather prediction. Terrestrial snow covers up to 50 million km² of the Northern Hemisphere in winter and is characterized by high spatial and temporal variability. Therefore satellite observations provide the best means for timely and complete observations of the global snow cover. There are a number of independent SWE products available that describe the snow conditions on multi-decadal and global scales. Some products are derived using satellite-based information while others rely on meteorological observations and modelling. What is common to practically all the existing hemispheric SWE products, is that their retrieval performance on hemispherical and multi-decadal scales are not accurately known. The purpose of the ESA funded SnowPEx project is to obtain a quantitative understanding of the uncertainty in satellite- as well as model-based SWE products through an internationally coordinated and consistent evaluation exercise. The currently available Northern Hemisphere wide satellite-based SWE datasets which were assessed include 1) the GlobSnow SWE, 2) the NASA Standard SWE, 3) NASA prototype and 4) NSIDC-SSM/I SWE products. The model-based datasets include: 5) the Global Land Data Assimilation System Version 2 (GLDAS-2) product 6) the European Centre for Medium-Range Forecasts Interim Land Reanalysis (ERA-I-Land) which uses a simple snow scheme 7) the Modern Era Retrospective Analysis for Research and Applications (MERRA) which uses an intermediate complexity snow scheme; and 8) SWE from the Crocus snow scheme, a

  3. Converting Snow Depth to SWE: The Fusion of Simulated Data with Remote Sensing Retrievals and the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Marks, D. G.; Painter, T. H.; Hedrick, A. R.; Deems, J. S.

    2015-12-01

    Snow cover monitoring has greatly benefited from remote sensing technology but, despite their critical importance, spatially distributed measurements of snow water equivalent (SWE) in mountain terrain remain elusive. Current methods of monitoring SWE rely on point measurements and are insufficient for distributed snow science and effective management of water resources. Many studies have shown that the spatial variability in SWE is largely controlled by the spatial variability in snow depth. JPL's Airborne Snow Observatory mission (ASO) combines LiDAR and spectrometer instruments to retrieve accurate and very high-resolution snow depth measurements at the watershed scale, along with other products such as snow albedo. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage SWE from the measured snow depths. Snow density is a spatially and temporally variable property that cannot yet be reliably extracted from remote sensing techniques, and is difficult to extrapolate to basin scales. However, some physically based snow models have shown skill in simulating bulk snow densities and therefore provide a pathway for snow depth to SWE conversion. Leveraging model ability where remote sensing options are non-existent, ASO employs a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. After an adjustment scheme guided by in-situ data, these density estimates are used to derive the elusive spatial distribution of SWE from the observed snow depth distributions from ASO. In this study, we describe how the process of fusing model data with remote sensing retrievals is undertaken in the context of ASO along with estimates of uncertainty in the final SWE volume products. This work will likely be of interest to those working in snow hydrology, water resource management and the broader remote sensing community.

  4. Snow nitrate photolysis in polar regions and the mid-latitudes: Impact on boundary layer chemistry and implications for ice core records

    NASA Astrophysics Data System (ADS)

    Zatko, Maria C.

    The formation and recycling of nitrogen oxides (NOx=NO+NO 2) associated with snow nitrate photolysis has important implications for air quality and the preservation of nitrate in ice core records. This dissertation examines snow nitrate photolysis in polar and mid-latitude regions using field and laboratory based observations combined with snow chemistry column models and a global chemical transport model to explore the impacts of snow nitrate photolysis on boundary layer chemistry and the preservation of nitrate in polar ice cores. Chapter 1 describes how a global chemical transport model is used to calculate the photolysis-driven flux and redistribution of nitrogen across Antarctica, and Chapter 2 presents similar work for Greenland. Snow-sourced NOx is most dependent on the quantum yield for nitrate photolysis as well as the concentration of photolabile nitrate and light-absorbing impurities (e.g., black carbon, dust, organics) in snow. Model-calculated fluxes of snow-sourced NOx are similar in magnitude in Antarctica (0.5--7.8x108 molec cm-2 s -1) and Greenland (0.1--6.4x108 molec cm-2 s-1) because both nitrate and light-absorbing impurity concentrations in snow are higher (by factors of 2 and 10, respectively) in Greenland. Snow nitrate photolysis influences boundary layer chemistry and ice-core nitrate preservation less in Greenland compared to Antarctica largely due to Greenland's proximity to NOx-source regions. Chapter 3 describes how a snow chemistry column model combined with chemistry and optical measurements from the Uintah Basin Winter Ozone Study (UBWOS) 2014 is used to calculate snow-sourced NOx in eastern Utah. Daily-averaged fluxes of snow-sourced NOx (2.9x10 7--1.3x108 molec cm-2 s-1) are similar in magnitude to polar snow-sourced NO x fluxes, but are only minor components of the Uintah Basin boundary layer NOx budget and can be neglected when developing ozone reduction strategies for the region. Chapter 4 presents chemical and optical

  5. Andes Mountain Snow Distribution, Properties, and Trend: 1979-2014

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.

    2015-04-01

    Andes snow presence, absence, properties, and water amount are key components of Earth's changing climate system that incur far-reaching physical ramifications. Modeling developments permit relatively high-resolution (4-km horizontal grid; 3-h time step) Andes snow estimates for 1979-2014. SnowModel, in conjunction with land cover, topography, and 35-years of NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, was used to create a spatially distributed, time-evolving, snow-related dataset that included air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent depth, and average snow density. Regional variability is a dominant feature of the modeled snow-property trends from an area northeast of Quito (latitude: 2.65°S to 0.23°N) to Patagonia (latitude: 52.15°S to 46.44°S). For example, the Quito area annual snow cover area changed -45%, -43% around Cusco (latitude: 14.75°S to 12.52°S), -5% east of Santiago (including the Olivares Basin), and 25% in Patagonia. The annual snow covered area for the entire Andes decreased 13%, mainly in the elevation band between 4,000-5,000 m a.s.l. In spite of strong regional variability, the data clearly show a general positive trend in mean annual air temperature and precipitation, and a decreasing trend in snow precipitation, snow precipitation days, and snow density. Also, the snow-cover onset is later and the snow-cover duration - the number of snow cover days - decreased.

  6. Compatibility of Canadian Snowfall and Snow Cover Data

    NASA Astrophysics Data System (ADS)

    Goodison, B. E.

    1981-08-01

    The accuracy and compatibility of Canadian snowfall and snow survey data were investigated in the Cold Creek research basin in southern Ontario. Problems in obtaining compatible point measurements of snowfall precipitation from gauge and ruler measurements are discussed. However, it is shown that correction of gauge measurements (MSC Nipher, Universal, Fischer and Porter) of snowfall water equivalent for catch variations caused by environmental factors, notably wind speed, results in compatible storm or seasonal totals. Accurate statistics of basin snow cover were determined from snow courses specifically sited in relation to basin land use. At the time of peak accumulation, which might occur at any time during the winter, there was a statistically significant difference in snow cover between land use categories. Mean basin snow cover was calculated by weighting the snow survey measurements in proportion to basin land use. The need to consider the effect of changing land use on snow course measurements is demonstrated. Results show that as an alternative to direct snow survey measurements, accumulated precipitation may be used to estimate snow cover up to peak accumulation. Net snow cover determined from accumulated corrected gauge data less short-term melt losses and snow evaporation was within the confidence limits of the basin mean snow cover measured during the winter. Compatible results are only achieved when precipitation measurements are corrected for gauge catch variations and snow survey data are representative of basin land use.

  7. Importance of snow to global precipitation

    NASA Astrophysics Data System (ADS)

    Field, P. R.; Heymsfield, A. J.

    2015-11-01

    Precipitation controls the availability of drinking water and viability of the land to support agriculture. Failure to accurately predict the location, magnitude, and frequency of precipitation impacts not only numerical weather forecasting but also climate modeling. It has been proposed that most rainfall events originate from ice that has melted to form rain. Here we use remote sensing from spaceborne cloud radar to quantify that idea. A new metric is constructed to quantify the fraction of rain events at the surface that are linked to snow melting at a higher altitude. CloudSat is used to show the global variation of the importance of snow in the precipitation process. In the tropics, subtropics, midlatitude and polar regions 0.3, 0.4, 0.8, and >0.9, respectively, of all precipitation events (>1 mm/d) are linked to the production of snow in clouds.

  8. The solar reflectance of a snow field

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1978-01-01

    The radiative transfer equation was solved using a modified Schuster-Schwartzschild approximation to obtain an expression for the solar reflectance of a snow field. The parameters in the reflectance formula are the single scattering albedo and the fraction of energy scattered in the backward direction. The single scattering albedo is calculated from the crystal size using a geometrical optics formula and the fraction of energy scattered in the backward direction is calculated from the Mie scattering theory. Numerical results for reflectance are obtained for visible and near infrared radiation for different snow conditions. Good agreement was found with the whole spectral range. The calculation also shows the observed effect of aging on the snow reflectance.

  9. Correlation function studies for snow and ice

    NASA Technical Reports Server (NTRS)

    Vallese, F.; Kong, J. A.

    1981-01-01

    The random medium model is used to characterize snow and ice fields in the interpretation of active and passive microwave remote sensing data. A correlation function is used to describe the random permittivity fluctuations with the associated mean and variance and correlation lengths; and several samples are investigated to determine typical correlation functions for snow and ice. It is shown that correlation functions are extracted directly from appropriate ground truth data, and an exponential correlation function is observed for snow and ice with lengths corresponding to the actual size of ice particles or air bubbles. Thus, given that a medium has spatially stationary statistics and a small medium, the random medium model can interpret remote sensing data where theoretical parameters correspond to actual physical parameters of the terrain.

  10. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1982-01-01

    The sample LANDSAT-4 TM tape (7 bands) of NE Arkansas/Tennessee area was received and displayed. Snow reflectance in all 6 TM reflective bands, i.e. 1, 2, 3, 4, 5, and 7 was simulated, using Wiscombe and Warren's (1980) delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. One of the objectives is to interpret surface optical grain size of snow, for spectral extension of albedo. While TM data of the study area are not received, simulation results are encouraging. It also appears that the TM filters resemble a "square-wave" closely enough to permit assuming a square-wave in calculations. Integrated band reflectance over the actual response functions was simulated, using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible.

  11. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth

    NASA Astrophysics Data System (ADS)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin

    2016-06-01

    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  12. Arctic Snow Microstructure Experiment for the development of snow emission modelling

    NASA Astrophysics Data System (ADS)

    Maslanka, William; Leppänen, Leena; Kontu, Anna; Sandells, Mel; Lemmetyinen, Juha; Schneebeli, Martin; Proksch, Martin; Matzl, Margret; Hannula, Henna-Reetta; Gurney, Robert

    2016-04-01

    The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013-2014 and 2014-2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0, and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models, the Helsinki University of Technology (HUT) snow emission model and Microwave Emission Model of Layered Snowpacks (MEMLS), were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small, with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.

  13. Law and Marine Science

    ERIC Educational Resources Information Center

    Bockrath, Joseph

    1976-01-01

    The University of Delaware Marine Studies has implemented courses in coastal zone law and policy and maritime law. The courses attempt to integrate the scientist's or engineer's work with public policy formation. The program emphasizes historical and current issues and the economic, cultural, and political forces operating in decision-making…

  14. Thermal energy in dry snow avalanches

    NASA Astrophysics Data System (ADS)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2015-09-01

    Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. For the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the effective elevation drop of the mass of the avalanche with a warming of approximately 0.3 °C per 100 vertical metres. Contrarily, the temperature change due to entrainment varied for the individual avalanches, from -0.08 to 0.3 °C, and depended on the temperature of the snow along the path and the erosion depth. Infrared radiation thermography (IRT) was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to identify the warmest temperatures to be located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  15. Nitrate postdeposition processes in Svalbard surface snow

    NASA Astrophysics Data System (ADS)

    Björkman, Mats P.; Vega, Carmen P.; Kühnel, Rafael; Spataro, Francesca; Ianniello, Antonietta; Esposito, Giulio; Kaiser, Jan; Marca, Alina; Hodson, Andy; Isaksson, Elisabeth; Roberts, Tjarda J.

    2014-11-01

    The snowpack acts as a sink for atmospheric reactive nitrogen, but several postdeposition pathways have been reported to alter the concentration and isotopic composition of snow nitrate with implications for atmospheric boundary layer chemistry, ice core records, and terrestrial ecology following snow melt. Careful daily sampling of surface snow during winter (11-15 February 2010) and springtime (9 April to 5 May 2010) near Ny-Ålesund, Svalbard reveals a complex pattern of processes within the snowpack. Dry deposition was found to dominate over postdeposition losses, with a net nitrate deposition rate of (0.6 ± 0.2) µmol m-2 d-1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely result from long-range atmospheric transport of oxidized nitrogen or include the redeposition of photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that polar basin air masses bring 15N-depleted nitrate to Svalbard, while high nitrate δ(18O) values only occur in connection with ozone-depleted air, and show that these signatures are reflected in the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an active role in the halogen dynamics for this region, as indicated by declining bromide concentrations and increasing nitrate δ(18O), during high BrO (low-ozone) events. The data also indicate that the snowpack BrO-NOx cycling continued in postevent periods, when ambient ozone and BrO levels recovered.

  16. Rainwater propagation through snow during artificial rain-on-snow events

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Würzer, Sebastian; Pavlasek, Jiri; Jonas, Tobias

    2016-04-01

    The mechanism of rainwater propagation and runoff generation during rain-on-snow (ROS) is still insufficiently known. Understanding rainwater behaviour within the natural snowpack is crucial especially for forecasting of natural hazards like floods and wet snow avalanches. In this study, rainwater percolation through snow was investigated by sprinkling the naturally stable isotope deuterium on snow and conduct hydrograph separation on samples collected from the snowpack runoff. This allowed quantifying the contribution of rainwater and snowmelt in the water released from the snowpack. Four field experiments were carried out during the winter 2015 in the vicinity of Davos, Switzerland. A 1 by 1 m block of natural snow cover was isolated from the surrounding snowpack to enable a closed water balance. This experimental snow sample was exposed to artificial rainfall with 41 mm of deuterium enriched water. The sprinkling was run in four 30 minutes intervals separated by three 30 minutes non-sprinkling intervals. The runoff from the snow cube was monitored quantitatively by a snow lysimeter and output water was continuously sampled for the deuterium concentration. Further, snowpack properties were analysed before and after the sprinkling, including vertical profiles of snow density, liquid water content (LWC) and deuterium concentration. One experiment conducted on cold snowpack showed that rainwater propagated much faster as compared to three experiments conducted on ripe isothermal snowpack. Our data revealed that sprinkled rainwater initially pushed out pre-event LWC or mixed with meltwater created within the snowpack. Hydrographs from every single experiment showed four pronounced peaks, with the first peak always consisted of less rainwater than the following ones. The partial contribution of rainwater to the total runoff consistently increased over the course of the experiment, but never exceeded 63 %. Moreover, the development of preferential paths after the first

  17. Morphological possibilities in general crystallography. Snow crystals.

    PubMed

    Janner, A

    2002-07-01

    Morphological features of snow crystals are analyzed on the basis of concepts of a general crystallography, where point groups of infinite order are possible. The observations are first formulated in a set of rules, leading to a macroscopic growth lattice and to continuous growth boundaries. Both are brought in connection with two-dimensional integral invertible transformations. Families of boundaries are considered, labeled by a set of indices restricted by selection rules and generalizing the law of rational indices. These properties are indicated graphically on a sample of 12 natural snow crystals. Their geometric and arithmetic properties are summarized in a table. PMID:12089456

  18. Can GRACE detect winter snows in Japan?

    NASA Astrophysics Data System (ADS)

    Heki, Kosuke

    2010-05-01

    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not

  19. Snow in Time for the Solstice

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In mid-December, the weather in eastern North America cooperated with the calendar, and a wintry blast from the Arctic delivered freezing cold air, blustery winds, and snow just in time for the Winter Solstice on December 21' the Northern Hemisphere's longest night of the year and the official start of winter. This image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on December 20, 2004, the day after an Arctic storm dove down into the United States, bringing snow to New England (upper right of top image); the coastal mid-Atlantic, including Washington, D.C.; and the southern Appalachian Mountains in Tennessee and North Carolina. Over the Atlantic Ocean (image right), the fierce Arctic winds were raking the clouds into rows, like a gardener getting ready to plant the seeds of winter. The detailed close-up at the bottom of this image pair shows the cloud and snow patterns around Lake Ontario, illustrating the occurrence of 'lake-effect snow.' Areas in western upstate New York often get as much as fifteen feet or more of snow each year as cold air from Canada and the Arctic sweeps down over the relatively warm waters of Lakes Ontario and Erie. Cold air plus moisture from the lakes equals heavy snow. Since the wind generally blows from west to east, it is the 'downwind' cities like Buffalo and Rochester that receive the heaping helpings of snowfall, while cities on the upwind side of the lake, such as Toronto, receive much less. Unlike storms that begin with specific low-pressure systems in the Pacific Ocean and march eastward across the Pacific Northwest, the Rockies, the Great Plains, and sometimes the East, the lake-effect snows aren't tied to a specific atmospheric disturbance. They are more a function of geography, which means that the lakes can keep fueling snow storms for as long as they remain ice-free in early winter, as well as when they begin to thaw in late winter and early spring. Image courtesy the SeaWiFS Project, NASA

  20. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    Progress on the registration of TM data to digital topographic data; on comparison of TM, MSS and NOAA meteorological satellite data for snowcover mapping; and on radiative transfer models for atmospheric correction is reported. Some methods for analyzing spatial contiguity of snow within the snow covered area were selected. The methods are based on a two-channel version of the grey level co-occurence matrix, combined with edge detection derived from an algorithm for computing slopes and exposures from digital terrain data.

  1. Isothermal densification and metamorphism of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Loewe, H.; Schneebeli, M.

    2012-12-01

    The interplay between overburden stress and surface energy induced growth and coarsening is relevant for the densification of snow and porous ice at all densities. The densification of new snow is amenable to high precision experiments on short time scales. To this end we investigate the coupling of densification and metamorphism of new snow via time-lapse tomography experiments in the laboratory. We compare the evolution of density, strain, and specific surface area to previous long-time metamorphism experiments of snow and creep of polycrystalline ice. Experimental conditions are tailored to the requirements of time-lapse tomography and the measurements are conducted under nearly isothermal conditions at -20°C with a duration of two days. Images were taken with temporal resolution of a few hours which reveal precise details of the microstructure evolution due to sintering and compaction. We used different crystal shapes of natural new snow and snow samples obtained by sieving crystals grown in a snowmaker in the laboratory. To simulate the effect of overburden stress due to an overlying snowpack additional weights were applied to the sample. As expected we find an influence of the densification rate on initial density and overburden stress. We calculated strain rates and identified a transient creep behavior with a similar power law for all crystal types which substantially differs from the Andrade creep of polycrystalline ice. As a main result we found that the evolution of the specific surface area is independent of the density and follows a unique decay form for all measurements of each crystal type. The accuracy of the measurements allows to obtain a decay exponent for the SSA which is the same as previously obtained from the long-time regime during isothermal metamorphism after several months. Our preliminary results for all available types of new snow suggest a correlation between the initial density and SSA. We also find snow samples which coincide in

  2. Microwave emission from snow and glacier ice. [brightness temperature for snow fields

    NASA Technical Reports Server (NTRS)

    Chang, T. C.; Gloersen, P.; Schmugge, T.; Wilheit, T. T.; Zwally, H. J.

    1975-01-01

    The microwave brightness temperature for snow fields was studied assuming that the snow cover consists of closely packed scattering spheres which do not interact coherently. The Mie scattering theory was used to compute the volume scattering albedo. It is shown that in the wavelength range from 0.8 to 2.8 cm, most of the micro-radiation emanates from a layer 10 meters or less in thickness. It is concluded that it is possible to determine snow accumulation rates as well as near-surface temperature.

  3. On the sublimation of blowing snow and of snow in canopies

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.; Simon, K.; Gordon, M.; Weng, W.

    2003-04-01

    Tests have been made within the Canadian Land Surface Scheme (CLASS) of various parameterizations of sublimation of blowing snow, and tested in the context of data from weather stations (Goose Bay and Resolute) in northern Canada. We will focus on parameterization schemes based on results obtained with the PIEKTUK model of blowing snow. In addition we will present preliminary results concerning the parameterization of sublimation of snow caught in tree canopies, using schemes similar to those for evaporation from wet canopies. This is considered to be a major factor in the water budgets of forested areas in northern Canada.

  4. Integration of snow management practices into a detailed snow pack model

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle

    2016-04-01

    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George

  5. Relationship Between HNO3, NO, NO2 and HONO Fluxes Above Snow Surfaces at Ny- Aalesund, Svalbard (Arctic)

    NASA Astrophysics Data System (ADS)

    Amoroso, A.; Beine, H. J.; Esposito, G.; Nardino, M.; Montagnoli, M.; Ianniello, A.

    2006-12-01

    Deposition of NO3- in and on snow surfaces is not the final sink for atmospheric N-species; nitrates can be photochemically re-activated in the snow: this leads to the release of the more reactive species NO, NO2, and HONO back into the atmosphere. Surface flux measurements of HONO, HNO3, NO and NO2 were made above the snow surface near the Italian Station "Dirigibile Italia" at the Kongsfjorden International Research Base at Ny-Aalesund, Svalbard (79 N), between February 20, 2006 and April 20, 2006 During a few defined episodes the maximum fluxes observed were 40 nmol m-2h-1 for HONO, 50 and 150 nmol m-2h-1 for NO and NO2 , respectively, and -350 nmol m-2h-1 for HNO3 . However, for the most part the fluxes were much smaller at this Arctic marine site, in accord with earlier observations. These observations help us understand the nitrogen exchange processes between snow surfaces and the atmosphere. In this work we explore the chemical and physical snow and light conditions necessary for NOx and HONO release.

  6. Application of LANDSAT imagery for snow mapping in Norway

    NASA Technical Reports Server (NTRS)

    Odegaard, H. (Principal Investigator); Ostrem, G.

    1977-01-01

    The author has identified the following significant results. It was shown that if the snow cover extent was determined from all four LANDSAT bands, there were significant differences in results. The MSS 4 gave the largest snow cover, but only slightly more than MSS 5, whereas MSS 6 and 7 gave the smallest snow area. A study was made to show that there was a relationship between the last date of snow fall and the area covered with snow, as determined from different bands. Imagery obtained shortly after a snow fall showed no significant difference in the snow-covered area when the four bans were compared, whereas, pronounced differences in the snow-covered area were found in images taken after a long period without precipitation.

  7. Assimilating MODIS Snow Covers into Land Surface Model: Validation with in-situ Snow Measurements in Northern Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Huang, Chunlin; Hou, Jinliang; Wang, WeiZhen

    2016-04-01

    Accurate monitoring of the spatiotemporal distribution and variation of snow cover is important for snowmelt runoff simulation and water resources management especially in mountainous areas. In this work, we develop a snow data assimilation scheme based on Ensemble Kalman Filter (EnKF) algorithm and Common Land Model (CoLM), which can assimilate snow cover fraction (SCF) products from the Moderate resolution imaging Spectroradiometer (MODIS) into CoLM for improving snow depth (SD) and snow cover area simulations. An empirical model between SD and SCF has been built based on MODIS SCF and snow depth observations at meteorological stations located in study area, which is used as observation operator in snow data assimilation scheme. The assimilation experiment is conducted during 2004-2007, in Xingjiang province, west China. The preliminary assimilation results are very promising and show that the assimilation of SCF could significantly improve the CoLM capability of simulating snow cover area and snow depth. The assimilation results are more closer to those of observations, which have more reasonable and reliable snow accumulation and melting trends throughout the snow season. After assimilating MODIS SCF observations, the Root Mean Square Error (RMSE) and Mean Bias error (MBE) of snow cover or snow depth are significantly reduced compared to the results without assimilation.

  8. Evolution of first-year and second-year snow properties on sea ice in the Weddell Sea during spring-summer transition

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Haas, Christian; Willmes, Sascha

    2009-09-01

    Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W m-2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.

  9. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  10. Hydrocarbons in the snow-ice cover of different areas of the White Sea

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.

    2014-05-01

    The data on the content of hydrocarbons (HC) are presented and compared to the contents of organic carbon, lipids, and particulate matter in the snow-ice cover of the coastal areas of Dvina and Kandalaksha bays of the White Sea (2008-2012). The accumulation of HC in the snow-ice cover depends on the degree of atmosphere contamination, the conditions of the ice formation, and the intensity of the biogeochemical processes at the ice-water interface. Because of this, the aquatic area of Arkhangelsk is characterized by the highest HC concentrations in the snow and in the upper layer of ice. The peculiarities of the formation of the snow-ice cover in Rugozero bight of Kandalaksha Bay cause the concentrating of HC in different layers of ice. The decrease of the concentration of HC in the show-ice cover of the White Sea compared to earlier studies resulted from the recession of industrial activities during the recent years.

  11. Numerical simulation of drifting snow sublimation in the saltation layer

    PubMed Central

    Dai, Xiaoqing; Huang, Ning

    2014-01-01

    Snow sublimation is an important hydrological process and one of the main causes of the temporal and spatial variation of snow distribution. Compared with surface sublimation, drifting snow sublimation is more effective due to the greater surface exposure area of snow particles in the air. Previous studies of drifting snow sublimation have focused on suspended snow, and few have considered saltating snow, which is the main form of drifting snow. In this study, a numerical model is established to simulate the process of drifting snow sublimation in the saltation layer. The simulated results show 1) the average sublimation rate of drifting snow particles increases linearly with the friction velocity; 2) the sublimation rate gradient with the friction velocity increases with increases in the environmental temperature and the undersaturation of air; 3) when the friction velocity is less than 0.525 m/s, the snowdrift sublimation of saltating particles is greater than that of suspended particles; and 4) the snowdrift sublimation in the saltation layer is less than that of the suspended particles only when the friction velocity is greater than 0.625 m/s. Therefore, the drifting snow sublimation in the saltation layer constitutes a significant portion of the total snow sublimation. PMID:25312383

  12. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    NASA Astrophysics Data System (ADS)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  13. Connecting European snow cover variability with large scale atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Bartolini, E.; Claps, P.; D'Odorico, P.

    2010-09-01

    Winter snowfall and its temporal variability are important factors in the development of water management strategies for snow-dominated regions. For example, mountain regions of Europe rely on snow for recreation, and on snowmelt for water supply and hydropower. It is still unclear whether in these regions the snow regime is undergoing any major significant change. Moreover, snow interannual variability depends on different climatic variables, such as precipitation and temperature, and their interplay with atmospheric and pressure conditions. This paper uses the EASE Grid weekly snow cover and Ice Extent database from the National Snow and Ice Data Center to assess the possible existence of trends in snow cover across Europe. This database provides a representation of snow cover fields in Europe for the period 1972-2006 and is used here to construct snow cover indices, both in time and space. These indices allow us to investigate the historical spatial and temporal variability of European snow cover fields, and to relate them to the modes of climate variability that are known to affect the European climate. We find that both the spatial and temporal variability of snow cover are strongly related to the Arctic Oscillation during wintertime. In the other seasons, weaker correlation appears between snow cover and the other patterns of climate variability, such as the East Atlantic, the East Atlantic West Russia, the North Atlantic Oscillation, the Polar Pattern and the Scandinavian Pattern.

  14. Land-atmosphere coupling associated with snow cover

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Schär, Christoph; Viterbo, Pedro; Miranda, Pedro M. A.

    2011-08-01

    This study investigates the role of interannual snow cover variability in controlling the land-atmosphere coupling and its relation with near surface (T2M) and soil temperature (STL1). Global atmospheric simulations are carried out with the EC-EARTH climate model using climatological sea surface temperature and sea ice distributions. Snow climatology, derived from a control run (COUP), is used to replace snow evolution in the snow-uncoupled simulation (UNCOUP). The snow cover and depth variability explains almost 60% of the winter T2M variability in predominantly snow-covered regions. During spring the differences in interannual variability of T2M are more restricted to the snow line regions. The variability of soil temperature is also damped in UNCOUP. However, there are regions with a pronounced signal in STL1 with no counterpart in T2M. These regions are characterized by a significant interannual variability in snow depth, rather than snow cover (almost fully snow covered during winter). These results highlight the importance of both snow cover and snow depth in decoupling the soil temperature evolution from the overlying atmosphere.

  15. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  16. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  17. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  18. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  19. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  20. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  1. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  2. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  3. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  4. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  5. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  6. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  7. The Snow Day: One Tough Call.

    ERIC Educational Resources Information Center

    Dewar, Randy L.

    2003-01-01

    Describes eight common mistakes that beginning superintendents make when deciding whether the weather forecasts for snow and ice will make roads hazardous enough to cancel schools. For example, delaying an obvious decision to cancel schools until the morning or passing the responsibility to someone else. Describes several elements of an inclement…

  8. BOREAS HYD-4 Areal Snow Course Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 team focused on collecting data during the 1994 winter focused field campaign (FFCW) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the hydrology research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Airborne remote sensing data (gamma, passive microwave) were acquired along a series of flight lines established in the vicinity of the BOREAS study areas. Ground snow surveys were conducted along selected sections of these aircraft flight lines. These calibration segments were typically 10-20 km in length, and ground data were collected at one to two kilometer intervals. The data are provided in tabular ASCII files. The HYD-04 areal snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1982-01-01

    Snow reflectance in all 6 TM reflective bands, i.e., 1, 2, 3, 4, 5, and 7 was simulated using a delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. It appears that the TM filters resemble a ""square-wave'' closely enough that a square-wave can be assumed in calculations. Integrated band reflectance over the actual response functions was calculated using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible. Tables are given which show (1) sensor saturation radiance as a percentage of the solar constant, integrated through the band response function; (2) comparisons of integrations through the sensor response function with integrations over the equivalent square wave; and (3) calculations of integrated reflectance for snow over all reflective TM bands, and water and ice clouds with thickness of 1 mm water equivalent over TM bands 5 and 7. These calculations look encouraging for snow/cloud discrimination with TM bands 5 and 7.

  10. "Snow Soup" Students Take on Animation Creation

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2009-01-01

    This article describes the process of producing "Snow Soup"--the 2009 Adobe Flash animation produced by the Computer Game Development and Animation seniors of Washington County Technical High School in Hagerstown, Maryland, for libraries in their area. In addition to the Flash product, the students produced two related Game Maker games, a printed…

  11. The Life and Work of John Snow

    ERIC Educational Resources Information Center

    Melville, Wayne; Fazio, Xavier

    2007-01-01

    Due to his work to determine how cholera was spread in the 18th century, John Snow (1813-1858) has been hailed as the father of modern epidemiology. This article presents an inquiry model based on his life and work, which teachers can use to develop a series of biology lessons involving the history and nature of science. The lessons presented use…

  12. Black Carbon and Dust in Snow and Ice on Snow Dome, Mt. Olympus

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Delaney, I.; Skiles, M.; Dixon, D. A.

    2012-12-01

    Deposition of black carbon (BC) and dust on highly reflective snow and glacier ice causes darkening of the surface, resulting in greater absorption of solar energy, heating of the snow/ice, and accelerated snow and glacier melt. The deposition of BC and dust may be affecting the timing and availability of water resources in the Pacific Northwest where the majority of runoff comes from snow and glacier melt, but minimal related research has taken place in this region. A recent modeling study suggested that BC deposition is causing a decrease in spring snow water equivalent and a shift to earlier peak runoff in the spring in the Western United States. Additionally, limited observations made in the early 1980s in Washington State determined that light absorbing impurities (e.g., BC and dust) were reducing the snow albedo. Since 2009, we have collected snow and ice samples from glaciers and the seasonal snowpack from spatially distributed sites in Washington State to determine impurity content, and to assess how impurity concentrations vary in relation to emission source proximity. Here we present results from the summer 2012 fieldwork on Snow Dome, Mt. Olympus in Washington State. Mt. Olympus is located upwind from major regional sources of BC and dust, but may receive BC from ocean shipping and trans-Pacific transport of BC and dust from large Asian sources. We used a field spectrometer to measure spectral albedo on Snow Dome, and analyzed surface snow samples and shallow ice cores to characterize the spatial and temporal variability of impurity deposition. Total impurity load was determined gravimetrically. Dust concentrations are inferred from ICPMS analyses and BC concentrations are determined using a Single Particle Soot Photometer (SP2), with select samples also analyzed for BC using a Sunset EC-OC to facilitate method inter-comparison. We assess the role that absorbing impurities may play in accelerating melt at Snow Dome, and briefly compare our results to

  13. Climate sensitivity of snow regimes simulated by physically based snow models (Invited)

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Sabourin, A.; Ellis, C. R.

    2009-12-01

    Seasonal snow regimes consist of snowfall, snow redistribution by wind, snow interception and snowmelt. Sublimation can be an important ablation mechanism under highly ventilated conditions. All of these processes are strongly controlled by the energy inputs and energy state of the snowpack. Warmer winter temperatures have been observed and are predicted for many cold regions environments. The Cold Regions Hydrological Model (CRHM) has the capability to successfully model the major snow processes in a physically based manner. It is used here to explore the sensitivity of snow regimes in three environments to warmer winter temperatures. The windswept alpine and mountain spruce forest environments use baseline data from Marmot Creek Research Basin in the Rocky Mountains of Alberta, Canada and the prairie cropland environments use data from Bad Lake Research Basin in the semi-arid prairies of Saskatchewan, Canada. Under current conditions blowing snow in both alpine and prairie environments redistributes most snowfall from wind exposed ridge and fallow-field surfaces and deposits transported snow in drifts on lee slopes, gullies and treed or shrub areas. Sublimation losses are substantial. Melt occurs in May-June in the alpine and in March-April on the Prairie. Currently, snow interception and sublimation are major losses of seasonal snowpack in mountain forest environments due to high sublimation losses. Forest melt occurs in April-May. Warming is shown to reduce sublimation losses - its restriction of wind redistribution and interception overcomes the additional energy available for sublimation. Warming also advances the timing of snowmelt initiation to varying degrees, but its effects on the rate and duration of melt are equivocal. In certain environments melt is faster and shorter in duration as warming occurs, but in others the rate diminishes with warming and so duration is not strongly affected. These results have important implications for determining the

  14. Measurement of snow particle size and speed in powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Ito, Yoichi; Nishimura, Kouichi; Naaim-Bouvet, Florence; Bellot, Hervé; Thibert, Emmanuel; Ravanat, Xavier; Fontaine, Firmin

    2015-04-01

    Generally snow avalanches consist a dense-flow layer at the bottom and a powder snow cloud on top. Snow particle size and speed are key parameters to describe the turbulent condition in the powder cloud, however, the information on the particles were not well investigated. In this study, we observed powder snow avalanches using a snow particle counter (SPC) to measure the particle size and speed. The SPC is an optical device consisting a laser diode and photodiode; a pulse signal proportional to its diameter is generated resulting from a snow particle passing through the sensing volume. In general use, the signals are sent to a transducer and divided into 32 size classes based on particle diameter to observe the snow particle size distribution and mass flux at 1-s intervals. In this study, the direct output signal from the transducer was also acquired at a high frequency to obtain the original pulse signal produced by each snow particle. Then the speed of each particle can be calculated using the peak of the pulse, which corresponds to particle diameter and the duration over which the particle passes through the sampling area. We also employed an ultrasonic anemometer to measure air flow speed. Both sensors were installed at the Col du Lautaret Pass in the French Alps. The results of the particle size and speed distribution were then compared with airflow movement in the powder cloud. The ratio of the particle and airflow speeds changed by the particle size distribution and the distance from the dense-flow layer.

  15. Chemical Imaging of the CO Snow Line in the HD 163296 Disk

    NASA Astrophysics Data System (ADS)

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.; Wilner, David J.; Bergin, Edwin A.; Hughes, A. Meredith; Hogherheijde, Michiel; D’Alessio, Paola

    2015-11-01

    The condensation fronts (snow lines) of H2O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J = 3‑2 and DCO+ J = 4‑3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.

  16. Merging a Terrain-Based Parameter with Drifting Snow Fluxes for Assessing Snow Redistribution in Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Heiser, Micha; Guyomarc'h, Gilbert; Nishimura, Kouichi

    2016-04-01

    Wind and the associated snow transport are dominating factors determining the snow distribution and accumulation in alpine areas. These factors result in a high spatial variability of snow heights that is difficult to evaluate and quantify. We merge a terrain-based parameter Sxm, which characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, with snow particle counter (SPC) data. SPC estimate the snow flux, the mass of drifting snow particles per time and area. From the SPCs' point measurements of horizontal snow flux, a quantity of transported snow is derived, which is distributed over the terrain in dependency of Sxm. Estimated changes in snow heights due to wind redistribution are compared with measured changes, obtained with terrestrial laser scanning (TLS). Data and results are from the Col du Lac Blanc research site in the French Alps. We use a high raster resolution of 1 m, which is required when assessing the snow-redistribution situation in highly structured terrain or in the starting zones of small and medium-sized avalanches. Results show that the model works in principle. It could reproduce patterns of snow redistribution and estimate changes in snow heights reasonably well, as shown by good regression quality (r² values of 0.60 to 0.76). The derivation of Sxm and the amount of transport have shown to be not generally applicable, however, but rather are formulations that must be calibrated when applied in studies with other terrain and weather characteristics.

  17. Arctic Snow Microstructure Experiment for the development of snow emission modelling

    NASA Astrophysics Data System (ADS)

    Maslanka, W.; Leppänen, L.; Kontu, A.; Sandells, M.; Lemmetyinen, J.; Schneebeli, M.; Hannula, H.-R.; Gurney, R.

    2015-12-01

    The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013-2014 and 2014-2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0 and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small; with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.

  18. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  19. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2013-08-01

    To provide a theoretical framework towards better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. In this paper, we describe a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. The model employs a chemical mechanism adapted from the one previously used for the simulation of multiphase halogen chemistry involving deliquesced sea-salt aerosols in the marine boundary layer. A common set of aqueous-phase reactions describe chemistry both in the liquid-like (or brine) layer on the grain surface of the snowpack and in "haze" aerosols mainly composed of sulfate in the atmosphere. The process of highly soluble/reactive trace gases, whether entering the snowpack from the atmosphere or formed via gas-phase chemistry in the snowpack interstitial air (SIA), is simulated by the uptake on brine-covered snow grains and subsequent reactions in the aqueous phase while being traveled vertically within the SIA. A "bromine explosion", by which, in a conventional definition, HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is a dominant process of reactive bromine formation in the top 1 mm (or less) layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the brine on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the Br2 release into the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via

  20. Marine Biomedicine

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  1. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  2. Stereological characterization of dry alpine snow for microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff

    1989-01-01

    A persistent problem in investigations of electromagnetic properties of snow, from reflectance at visible wavelengths to emission and backscattering in the microwave, has been the proper characterization of the snow's physical properties. It is suggested that the granular and laminar structure of snow can be measured in its aggregated state by stereology performed on sections prepared from snow specimens, and that these kinds of measurements can be incorporated into models of the electromagnetic properties. With careful sampling, anisotropy in the snow microstructure at various scales can be quantified. It is shown how stereological parameters can be averaged over orientation and optical depth for radiative transfer modeling.

  3. Validation of the Snow Submodel of the Biosphere-Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data.

    NASA Astrophysics Data System (ADS)

    Yang, Zong-Liang; Dickinson, Robert E.; Robock, Alan; Vinnikov, K. Ya.

    1997-02-01

    Snow cover is one of the most important variables affecting agriculture, hydrology, and climate, but detailed measurements are not widely available. Therefore, the effectiveness and validity of snow schemes in general circulation models have been difficult to assess. Using long-term snow cover data from the former Soviet Union, this paper focuses on the validation of the snow submodel in the Biosphere-Atmosphere Transfer Scheme (BATS) using 6 years of data (1978-83) at six stations. Fundamental uncertainties in the datasets limit the accuracy of our assessment of the model's performance.In the absence of a wind correction for the gauge-measured precipitation and with the standard rain-snow transition criterion (2.2°C), the model gives reasonable simulations of snow water equivalent and surface temperature for all of the six stations and the six winters examined. In particular, the time of accumulation and the end of ablation and the alteration due to aging are well captured. With some simple modifications of the code, the model can also reproduce snow depth, snow cover fraction, and surface albedo. In view of the scheme's simplicity and efficiency, these results are encouraging.However, if a wind correction is applied to the gauge-measured precipitation, the model shows increased root-mean-square errors in snow water equivalent for all six stations except Tulun. Perhaps, the better agreement without wind correction means that the snow has blown beyond the area of snow measurement, as might be accounted for only by a detailed regional snow-wind distribution model.This study underlines four aspects that warrant special attention: (i) estimation of the downward longwave radiation, (ii) separation of the aging processes for snowpack density and snow surface albedo, (iii) parameterization of snow cover fraction, and (iv) choice of critical temperature for rain-snow transition.

  4. Rain-on-snow events in the western United States

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Hay, L.E.

    2007-01-01

    Rain-on-snow events pose a significant flood hazard in the western United States. This study provides a description of the spatial and temporal variability of the frequency of rain-on-snow events for 4318 sites in the western United States during water years (October through September) 1949-2003. Rain-on-snow events are found to be most common during the months of October through May; however, at sites in the interior western United States, rain-on-snow events can occur in substantial numbers as late as June and as early as September. An examination of the temporal variability of October through May rain-on-snow events indicates a mixture of increasing and decreasing trends in rain-on-snow events across the western United States. Decreasing trends in rain-on-snow events are most pronounced at lower elevations and are associated with trends toward fewer snowfall days and fewer precipitation days with snow on the ground. Rain-on-snow events are more (less) frequent in the northwestern (southwestern) United States during La Nin??a (El Nin??o) conditions. Additionally, increases in temperature in the western United States appear to be contributing to decreases in the number of rain-on-snow events for many sites through effects on the number of days with snowfall and the number of days with snow on the ground. ?? 2007 American Meteorological Society.

  5. Experimental investigation of drifting snow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2015-11-01

    Drifting snow has a significant impact on snow distribution in mountains, prairies as well as on glaciers and polar regions. In all these environments, the local mass balance is highly influenced by drifting snow. Despite most of the model approaches still rely on the assumption of steady-state and equilibrium saltation, recent advances have proven the mass-transport of drifting snow events to be highly intermittent. A clear understanding of such high intermittency has not yet been achieved. Therefore in our contribution we investigate mass- and momentum fluxes during drifting snow events, in order to better understand that the link between snow cover erosion and deposition. Experiments were conducted in a cold wind tunnel, employing sensors for the momentum flux measurements, the mass flux measurement and for the snow depth estimation over a certain area upstream of the other devices. Preliminary results show that the mass flux is highly intermittent at scales ranging from eddy turnover time to much larger scales. The former scales are those that contribute the most to the overall intermittency and we observe a link between the turbulent flow structures and the mass flux of drifting snow at those scales. The role of varying snow properties in inducing drifting snow intermittency goes beyond such link and is expected to occur at much larger scales, caused by the physical snow properties such as density and cohesiveness.

  6. Spatial variability of snow physical properties across northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Polashenski, C.; Dibb, J. E.; Domine, F.

    2013-12-01

    In the late spring and early summer of 2013, researchers on the SAGE (Sunlight Absorption on the Greenland ice sheet Experiment) Traverse, embarked on a 4000 km ground traverse across northwestern Greenland in an attempt to quantify spatial variability of snow chemistry, snow physical properties, and snow reflectance. The field team targeted sites first visited by Carl Benson during his series of traverses from 1952 to 1955 as part of his pioneering work to characterize the Greenland Ice Sheet. This route now represents a rapidly changing and variable area of Greenland, as the route passes through several of the ice sheet facies first delimited by Benson. Along the traverse, the SAGE field team made ground-based albedo measurements using a hand-held spectroradiometer and collected snow physical property samples to determine snow specific surface area (SSA) from shallow, 2m pits. In addition, snow density and stratigraphy were measured. Snow layers in the near-surface and at the previous season's melt layer were targeted for sampling. Here we present preliminary snow physical property results from the upper portion of the snow pits and relate these to surface albedo data collected over the route. Further measurements of snow properties in the 2012 melt layer will be analyzed to assess the potential role of snow chemical (see Dibb et al. for a discussion of chemical analysis) and physical property driven albedo feedbacks could have played in contributing to that event. Route of 2013 SAGE Traverse in northwestern Greenland.

  7. Mapping "At Risk" Snow in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Nolin, A. W.; Daly, C.

    2005-12-01

    One of the most visible and widely felt impacts of climate change is the change (mostly loss) of low elevation snow cover in the mid-latitudes. Snow cover that accumulates at temperatures close to the ice-water phase transition is at greater risk to climate warming than cold climate snow packs because it affects both precipitation phase and ablation rates. Changes in such climatologically sensitive snow packs can impact hydropower generation, reservoir storage, rain-on-snow floods, and winter recreation. Using a climatologically based global snow cover classification (Sturm et al., 1995) "at risk" snow is defined as lower elevation maritime and alpine snow classes. This original classification was produced globally at 0.5-degree resolution and used monthly means of temperature and precipitation as well as vegetation cover to map snow climates. In this work, the classification is updated for the Pacific Northwest region using fields of temperature and precipitation from PRISM as well as MODIS-derived global maps of vegetation cover. This new classification has significantly impro