Science.gov

Sample records for marine snow formation

  1. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    PubMed

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. PMID:26781957

  2. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Passow, U.; Ziervogel, K.; Asper, V.; Diercks, A.

    2012-09-01

    The large marine snow formation event observed in oil-contaminated surface waters of the Gulf of Mexico (GoM) after the Deepwater Horizon accident possibly played a key role in the fate of the surface oil. We characterized the unusually large and mucus-rich marine snow that formed and conducted roller table experiments to investigate their formation mechanisms. Once marine snow lost its buoyancy, its sinking velocity, porosity and excess density were then similar to those of diatom or miscellaneous aggregates. The hydrated density of the component particles of the marine snow from the GoM was remarkably variable, suggesting a wide variety of component types. Our experiments suggest that the marine snow appearing at the surface after the oil spill was formed through the interaction of three mechanisms: (1) production of mucous webs through the activities of bacterial oil-degraders associated with the floating oil layer; (2) production of oily particulate matter through interactions of oil components with suspended matter and their coagulation; and (3) coagulation of phytoplankton with oil droplets incorporated into aggregates. Marine snow formed in some, but not all, experiments with water from the subsurface plume of dissolved hydrocarbons, emphasizing the complexity of the conditions leading to the formation of marine snow in oil-contaminated seawater at depth.

  3. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons.

    PubMed

    Fu, Jie; Gong, Yanyan; Zhao, Xiao; O'Reilly, S E; Zhao, Dongye

    2014-12-16

    This work explored the formation mechanism of marine oil snow (MOS) and the associated transport of oil hydrocarbons in the presence of a stereotype oil dispersant, Corexit EC9500A. Roller table experiments were carried out to simulate natural marine processes that lead to formation of marine snow. We found that both oil and the dispersant greatly promoted the formation of MOS, and MOS flocs as large as 1.6-2.1 mm (mean diameter) were developed within 3-6 days. Natural suspended solids and indigenous microorganisms play critical roles in the MOS formation. The addition of oil and the dispersant greatly enhanced the bacterial growth and extracellular polymeric substance (EPS) content, resulting in increased flocculation and formation of MOS. The dispersant not only enhanced dissolution of n-alkanes (C9-C40) from oil slicks into the aqueous phase, but facilitated sorption of more oil components onto MOS. The incorporation of oil droplets in MOS resulted in a two-way (rising and sinking) transport of the MOS particles. More lower-molecular-weight (LMW) n-alkanes (C9-C18) were partitioned in MOS than in the aqueous phase in the presence of the dispersant. The information can aid in our understanding of dispersant effects on MOS formation and oil transport following an oil spill event. PMID:25420231

  4. Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.

    2010-12-01

    The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (< 1cm diameter). Subsamples of the water surrounding the aggregates were taken throughout 21 days of the roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the

  5. Viral Lysis of Cells Influences The Concentration and Compostion of Dissolved Organic Matter and The Formation of Organic Aggregates (marine Snow)

    NASA Astrophysics Data System (ADS)

    Weinbauer, M. G.; Peduzzi, P.

    The effect of moderately (ca. 2.5 fold) increasing the concentration of the virus-size fraction (VSF) of seawater on the chemical composition of the dissolved organic mat- ter (DOM) pool during the formation of organic aggregates (marine snow) was tested experimentally with seawater samples collected in the Northern Adriatic Sea. The VSF enrichment did not significantly change the concentration of selected DOM com- pounds, whereas viral abundance was ca. 2-fold higher. During long-term experiments (40 - 200 hrs), bacterial abundance was on average 25% lower in the VSF amended than in the control incubations, and the frequency of visibly infected cells was stimu- lated by ca. 50%. VSF delayed the development of phytoplankton blooms (diatoms), but in the end of the experiments, Chl a concentrations in the VSF amended incuba- tions exceeded those in the control incubations. The VSF enrichment caused an enrich- ment of Serine and Threonine in the dissolved hydrolysable amino acid (AA) fraction indicative of viral lysis of diatoms. Bulk dissolved free AA acid and monomeric car- bohydrate (CHO) concentrations were repressed, whereas bulk dissolved hydrolysable AA and CHO concentrations were stimulated in the VSF enriched incubations. Viral lysis was likely the major reason for the stimulation of hydrolysable DOM. The for- mation of organic aggregates was repressed by the VSF enrichment, but the aggregates were larger and more persistent in the VSF amended than in the control incubations. Stimulation of hydrolysable DOM and sticky viral lysis products might be the reason for the larger and more persistent aggregates. This demonstrates that bioactive mate- rial in the VSF of seawater can have major implications for primary production and the cycling of organic carbon in the ocean.

  6. Prompt Planetesimal Formation beyond the Snow Line

    NASA Astrophysics Data System (ADS)

    Armitage, Philip J.; Eisner, Josh A.; Simon, Jacob B.

    2016-09-01

    We develop a simple model to predict the radial distribution of planetesimal formation. The model is based on the observed growth of dust to millimeter-sized particles, which drift radially, pile-up, and form planetesimals where the stopping time and dust-to-gas ratio intersect the allowed region for streaming instability-induced gravitational collapse. Using an approximate analytic treatment, we first show that drifting particles define a track in metallicity–stopping time space whose only substantial dependence is on the disk’s angular momentum transport efficiency. Prompt planetesimal formation is feasible for high particle accretion rates (relative to the gas, {\\dot{M}}p/\\dot{M}≳ 3× {10}-2 for α ={10}-2), which could only be sustained for a limited period of time. If it is possible, it would lead to the deposition of a broad and massive belt of planetesimals with a sharp outer edge. Numerically including turbulent diffusion and vapor condensation processes, we find that a modest enhancement of solids near the snow line occurs for centimeter-sized particles, but that this is largely immaterial for planetesimal formation. We note that radial drift couples planetesimal formation across radii in the disk, and suggest that considerations of planetesimal formation favor a model in which the initial deposition of material for giant planet cores occurs well beyond the snow line.

  7. Rapid Smothering of Coral Reef Organisms by Muddy Marine Snow

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Wolanski, E.

    2000-01-01

    Estuarine mud, when resuspended in nutrient-rich near-shore water, aggregates to marine snow, and within minutes to hours can exert detrimental or even lethal effects on small coral reef organisms. In a pilot study, estuarine mud was suspended in near-shore and off-shore waters of the Great Barrier Reef to a final concentration of 170 mg l -1. The short-term responses of a coral ( Acropora sp.) and coral-inhabiting barnacles (subfamily Pyrgomatidae), exposed to either near-shore or off-shore water, were microscopically observed and video recorded. In the off-shore water treatment, flocculation was minor, and aggregate sizes were c. 50 μm. The organisms were able to clean themselves from these small settling aggregates at low siltation (<0·5 mg cm -2), and struggled and produced mucus only at high siltation (4-5 mg cm -2). In contrast, in near-shore, nutrient-enriched waters, the suspended mud aggregated into large sticky flocs of marine snow (200-2000 μm diameter). The organisms responded to a thin coat of deposited flocs with vigorous cleaning by cirri and tentacle beating. After 5 min struggle, the barnacle stopped moving, calanoid copepods were entangled in the aggregates, and thick layers of mucus were exuded by the coral polyps. Both barnacle and copepods died after <1 h exposure; a short time compared with natural occurrences of marine snow deposition on coral reefs. Enhanced nutrient concentrations are known to contribute to enhance biologically mediated flocculation. This pilot study suggests that the concentration of suspended mud, and extent of stickiness and flocculation, can synergistically affect reef benthos organisms after short exposure. The enclosed macro video recordings clearly visualize these effects, and help convey the important implications for managers: that inshore reefs of the Great Barrier Reef cannot be sustainably managed without managing the adjacent land.

  8. Marine Snow and Gels: Hot Spots of Biogeochemical Cycling, Biological Activity, and Sedimentation in the Sea

    NASA Astrophysics Data System (ADS)

    Alldredge, A. L.

    2004-12-01

    Much of the organic carbon sequestered in the deep sea and ocean bottom sediments as relatively rare, large detrital particles generically known as marine snow. Because they are enriched in organic matter, microbes, and nutrients, these large particles also serve as hot spots for biological and chemical process in the water column. Recent evidence reveals that abundant carbohydrate gel particles in the ocean, formed from the dissolved exudates of phytoplankton and bacteria, are intricately involved in the formation of marine snow. These discoveries are changing the way we conceptualize the pelagic zone on small scales. We no longer imagine seawater as a relatively homogeneous fluid in which float a spectrum of dispersed molecules, particles, and organisms, but instead see it as a rich hydrated matrix of transparent organic gels, detritus, and cob-web like surfaces which provide microscale physical, chemical, and biological structure. This talk will focus on the origins, fate, and significance of marine snow and gels in the sea, including their role in carbon cycling, sedimentation and carbon flux , food webs, and chemical and biological transformation.

  9. Detection of ice crust formation on snow with satellite data

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Bulygina, Olga N.; Kumpula, Timo; Forbes, Bruce; Stammler, Florian

    2010-05-01

    Short term thawing of the snow surface and subsequent refreeze can lead to the formation of ice crusts. These events are related to specific meteorological conditions such us rain-on-snow events and/or temporary increase of air temperature above zero degree Celsius. The structure change in the snow pack has adverse effect especially on wild life and also the local community related to reindeer herding. Active microwave satellite data can be used to monitor changes of snow related to thawing. So far they have been mostly employed for spring thaw detection. Coarse spatial resolution sensors such as scatterometer feature short revisit intervals. Seawinds QuikScat (Ku-band, 25km, 1999-2009) acquired data several times per day at high latitudes. This allows precise detection of the timing of thaw events. Also the change of structure in the snow itself impacts the backscatter. Values increase significantly. A method has been developed to monitor these events at high latitudes (>60°N) on circumpolar scale. Validation is carried out based on air temperature records and snow course data over Northern Eurasia. Events during midwinter of the last nine years (November - February 2000/1 - 2008/9) have been frequent in northern Europe, European Russia and Alaska. They have occurred up to once a year in central Siberia, the Russian Far East and most of northern Canada. Monitoring is important as such events are discussed in relation to climate change especially over Northern Eurasia.

  10. Astrophysics: Variable snow lines affect planet formation

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda

    2016-07-01

    Observations of the disk of dust and gas around a nascent star reveal that the distance from the star at which water in the disk forms ice is variable. This variation might hinder the formation of planets. See Letter p.258

  11. Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations

    NASA Astrophysics Data System (ADS)

    Chen, Zeyuan; Chu, Liang; Galbavy, Edward S.; Ram, Keren; Anastasio, Cort

    2016-08-01

    While the hydroxyl radical (OH) in the snowpack is likely a dominant oxidant for organic species and bromide, little is known about the kinetics or steady-state concentrations of OH on/in snow and ice. Here we measure the formation rate, lifetime, and concentration of OH for illuminated polar snow samples studied in the laboratory and in the field. Laboratory studies show that OH kinetics and steady-state concentrations are essentially the same for a given sample studied as ice and liquid; this is in contrast to other photooxidants, which show a concentration enhancement in ice relative to solution as a result of kinetic differences in the two phases. The average production rate of OH in samples studied at Summit, Greenland, is 5 times lower than the average measured in the laboratory, while the average OH lifetime determined in the field is 5 times higher than in the laboratory. These differences indicate that the polar snows we studied in the laboratory are affected by contamination, despite significant efforts to prevent this; our results suggest similar contamination may be a widespread problem in laboratory studies of ice chemistry. Steady-state concentrations of OH in clean snow studied in the field at Summit, Greenland, range from (0.8 to 3) × 10-15 M, comparable to values reported for midlatitude cloud and fog drops, rain, and deliquesced marine particles, even though impurity concentrations in the snow samples are much lower. Partitioning of firn air OH to the snow grains will approximately double the steady-state concentration of snow-grain hydroxyl radical, leading to an average [OH] in near-surface, summer Summit snow of approximately 4 × 10-15 M. At this concentration, the OH-mediated lifetimes of organics and bromide in Summit snow grains are approximately 3 days and 7 h, respectively, suggesting that hydroxyl radical is a major

  12. Oil droplet collisions with marine snow: effect of manipulating droplet size

    NASA Astrophysics Data System (ADS)

    Lambert, R. A.; Variano, E. A.

    2013-12-01

    Solid particle aggregates in the ocean, such as marine snow, can scavenge oil droplets as they are transported in the ocean, resulting in the removal of oil from the water column. Often, chemical dispersant is applied to oil spills to manipulate the oil droplet size; we study how such manipulations affect the rate at which oil is removed from the water column by collision with marine snow. We model the collision process using the particle pair methodology. Three dominant collision mechanisms are considered for particle pairs in the ocean environment: turbulent shear, differential settling and Brownian motion. A comparison of the removal rate of oil from the water column for large and small droplets size is conducted at constant volume fraction. The results of the study show that, for a constant volume of oil, droplet size does alter the amount of oil removed from the water column during collisions with marine snow, and that a greater amount of oil is removed when the droplets are large. This finding holds regardless of which collision mechanism is considered. Of the three mechanisms, differential settling results in the largest constant-volume removal rate (since oil droplets rise while marine floc settle downward) while Brownian diffusion results in the lowest removal rate. These finding suggest that using chemical dispersant on deep-sea oil spills to reduce droplet size will reduce the total volume of oil that becomes attached to marine snow and reduce the amount removed from the water column by this mechanism.

  13. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.

    2015-01-01

    The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of

  14. Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Beine, Harry; Anastasio, Cort; Domine, Florent; Douglas, Thomas; Barret, Manuel; France, James; King, Martin; Hall, Sam; Ullmann, Kirk

    2012-07-01

    We measured light absorption in 42 marine snow, sea ice, seawater, brine, and frost flower samples collected during the OASIS field campaign between February 27 and April 15, 2009. Samples represented multiple sites between landfast ice and open pack ice in coastal areas approximately 5 km west of Barrow, Alaska. The chromophores that are most commonly measured in snow, H2O2, NO3-, and NO2-, on average account for less than 1% of sunlight absorption in our samples. Instead, light absorption is dominated by unidentified "residual" species, likely organic compounds. Light absorption coefficients for the frost flowers on first-year sea ice are, on average, 40 times larger than values for terrestrial snow samples at Barrow, suggesting very large rates of photochemical reactions in frost flowers. For our marine samples the calculated rates of sunlight absorption and OH production from known chromophores are (0.1-1.4) × 1014 (photons cm-3 s-1) and (5-70) × 10-12 (mol L-1 s-1), respectively. Our residual spectra are similar to spectra of marine chromophoric dissolved organic matter (CDOM), suggesting that CDOM is the dominant chromophore in our samples. Based on our light absorption measurements we estimate dissolved organic carbon (DOC) concentrations in Barrow seawater and frost flowers as approximately 130 and 360 μM C, respectively. We expect that CDOM is a major source of OH in our marine samples, and it is likely to have other significant photochemistry as well.

  15. Snow bedforms: A review, new data, and a formation model

    NASA Astrophysics Data System (ADS)

    Filhol, Simon; Sturm, Matthew

    2015-09-01

    Snow bedforms, like sand bedforms, consist of various shapes that form under the action of wind on mobile particles. Throughout a year, they can cover up to 11% of the Earth surface, concentrated toward the poles. These forms impact the local surface energy balance and the distribution of precipitation. Only a few studies have concentrated on their genesis. Their size ranges from 2 cm (ripple marks) to 2.5 m tall (whaleback dunes). We counted a total of seven forms that are widely recognized. Among them sastrugi, an erosional shape, is the most widespread. From laser scans, we compared scaling of snow versus sand barchan morphology. We found that both have proportionally the same footprint, but snow barchans are flatter. The key difference is that snow can sinter, immobilizing the bedform and creating an erodible material. Using a model, we investigated the effect of sintering on snow dune dynamics. We found that sintering limits their size because it progressively hardens the snow and requires an ever-increasing wind speed to maintain snow transport. From the literature and results from this model, we have reclassified snow bedforms based on two parameters: wind speed and snow surface conditions. The new data show that snow dune behavior mirrors that of sand dunes, with merging, calving, and collision. However, isolated snow barchans are rare, with most of the snow surfaces encountered in the field consisting of several superimposed bedforms formed sequentially during multiple weather events. Spatially variable snow properties and geometry can explain qualitatively these widespread compound snow surfaces.

  16. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  17. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic.

    PubMed

    Douglas, Thomas A; Sturm, Matthew; Simpson, William R; Blum, Joel D; Alvarez-Aviles, Laura; Keeler, Gerald J; Perovich, Donald K; Biswas, Abir; Johnson, Kelsey

    2008-03-01

    Mercury is deposited to the Polar Regions during springtime atmospheric mercury depletion events (AMDEs) but the relationship between snow and ice crystal formation and mercury deposition is not well understood. The objective of this investigation was to determine if mercury concentrations were related to the type and formation of snow and ice crystals. On the basis of almost three hundred analyses of samples collected in the Alaskan Arctic, we suggestthat kinetic crystals growing from the vapor phase, including surface hoar, frost flowers, and diamond dust, yield mercury concentrations that are typically 2-10 times higher than that reported for snow deposited during AMDEs (approximately 80 ng/L). Our results show that the crystal type and formation affect the mercury concentration in any given snow sample far more than the AMDE activity prior to snow collection. We present a conceptual model of how snow grain processes including deposition, condensation, reemission, sublimation, and turbulent diffusive uptake influence mercury concentrations in snow and ice. These processes are time dependent and operate collectively to affect the retention and fate of mercury in the cryosphere. The model highlights the importance of the formation and postdeposition crystallographic history of snow or ice crystals in determining the fate and concentration of mercury in the cryosphere. PMID:18441801

  18. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  19. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow.

    PubMed

    Thiele, Stefan; Fuchs, Bernhard M; Amann, Rudolf; Iversen, Morten H

    2015-02-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  20. Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow

    PubMed Central

    Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf

    2014-01-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  1. Numerical computations of faceted pattern formation in snow crystal growth.

    PubMed

    Barrett, John W; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model. PMID:23005427

  2. Numerical computations of faceted pattern formation in snow crystal growth

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model.

  3. Pyroclast/snow interactions and thermally driven slurry formation. Part 1: Theory for monodisperse grain beds

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.

  4. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  5. Surface formation of HONO over soil and snow during UBWS 2012, 2014

    NASA Astrophysics Data System (ADS)

    Tsai, J. Y.; Colosimo, S. F.; Spolaor, M.; Cheung, R.; Pikelnaya, O.; Zamora, R. J.; Williams, E. J.; Stutz, J.

    2014-12-01

    The release of HONO from snow in remote polar regions has been known for many years. HONO in the snow is likely formed through chemical processes initiated by the photolysis of nitrate in the snowpack. This source has recently also been invoked to explain high ozone levels observed at wintertime gas-drilling locations. The release of HONO from snowpack would be enhanced in oil and gas fields, where emissions of NOx are significant, thus serving as an important OH precursor and driver of ozone formation. Here we present observations of gradients of HONO mixing ratios using the UCLA LP-DOAS instrument during the Uintah Basin Winter Ozone Studies (UBWOS) in 2012 and 2014. HONO levels were measured at about 25, 45, and 65 m above the ground level. The lack of snow during UBWS 2012 compared to the snowy 2014 conditions allows us to directly study the influence of snow cover on HONO chemistry. Preliminary results show that HONO mixing ratios were comparable during both years, with nighttime hourly averages ranging from 60 ppt to 120ppt and daytime hourly averages close to 50ppt. However, during the snow covered year, we observed a significant peak of HONO (up to 100 ppt in the lowest light path) around 13:00 local time. During this time, a strong HONO vertical gradient was also observed. We will discuss the possible daytime HONO sources responsible for these observations and investigate the role of snow in HONO formation in a polluted environment

  6. The effect of vegetation cover on the formation of glide-snow avalanches

    NASA Astrophysics Data System (ADS)

    Feistl, Thomas; Bebi, Peter; Bartelt, Perry

    2014-05-01

    Glide snow avalanches release on steep, smooth slopes and can be prevented either by protection forests or by artificial defense structures. To minimize the risk for people and infrastructure, guidelines have been formulated concerning structure, height and distance between avalanche prevention bridges. These guidelines assure the major functions of the defense structures: first to prevent the release of avalanches and second to withstand the static and dynamic forces of the moving snow cover. The major functions of protection forests are generally similar and therefore guidelines on the maximum tolerable size of forest gaps exist in Switzerland. These guidelines are based on a static relationship between the pressure of the snow cover and the resistance of the defense structure and on empirical observations (forest). Whereas ground friction is only qualitatively taken into account, we assume it to play a crucial role in glide snow avalanche formation. To prove this assumption we collected data on the predominant vegetation cover of 67 release areas in the region of Davos, Switzerland. Our observations reveal a strong relationship between vegetation cover type, slope angle and slab length. We were able to quantify the Coulomb friction parameter μ by applying a physical model that accounts for the dynamic forces of the moving snow on the stauchwall, the fixed snow cover below the release area. The stauchwall resists the dynamic forces of the snow cover, until a critical strain rate is reached and then fails in brittle compression. This failure strongly depends on the friction between snow cover and soil. A typical value of μ for grassy slopes is 0.2. Snow characteristics like density are implemented in the model as constants. We compared the model results with the guidelines for defense structures and forest gap sizes and found accordance for certain friction parameter values. Forest gaps of 40 meter length and a 35° slope angle require friction values of 0

  7. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation. PMID:22466199

  8. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  9. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  10. Interactions Between Snow-Adapted Organisms, Minerals and Snow in a Mars-Analog Environment, and Implications for the Possible Formation of Mineral Biosignatures

    NASA Astrophysics Data System (ADS)

    Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.

    2015-12-01

    Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated

  11. Carbonaceous particles reduce marine microgel formation.

    PubMed

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL(-1) CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca(2+) bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  12. Carbonaceous particles reduce marine microgel formation

    PubMed Central

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL−1 CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca2+ bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  13. Laser-induced supersaturation and snow formation in a sub-saturated cloud chamber

    NASA Astrophysics Data System (ADS)

    Ju, Jingjing; Leisner, Tomas; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2014-12-01

    Calculation of the saturation ratio inside vortices formed below the filament in a sub-saturation zone in a cloud chamber was given. By mixing the air with a large temperature gradient, supersaturation was sustained inside the vortices. This led to precipitation and snow formation when strong filaments were created using short focal length lenses ( f = 20 and 30 cm). However, when longer filaments were formed with the same laser pulse energy but longer focal length lenses ( f = 50 and 80 cm), only condensation (mist) was observed. The lack of precipitation was attributed to the weaker air flow, which was not strong enough to form strong vortices below the filament to sustain precipitation.

  14. Yeah!!! A Snow Day!

    ERIC Educational Resources Information Center

    Cone, Theresa Purcell; Cone, Stephen L.

    2006-01-01

    As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…

  15. Pitted rock surfaces on Mars: A mechanism of formation by transient melting of snow and ice

    NASA Astrophysics Data System (ADS)

    Head, James W.; Kreslavsky, Mikhail A.; Marchant, David R.

    2011-09-01

    Pits in rocks on the surface of Mars have been observed at several locations. Similar pits are observed in rocks in the Mars-like hyperarid, hypothermal stable upland zone of the Antarctic Dry Valleys; these form by very localized chemical weathering due to transient melting of small amounts of snow on dark dolerite boulders preferentially heated above the melting point of water by sunlight. We examine the conditions under which a similar process might explain the pitted rocks seen on the surface of Mars (rock surface temperatures above the melting point; atmospheric pressure exceeding the triple point pressure of H2O; an available source of solid water to melt). We find that on Mars today each of these conditions is met locally and regionally, but that they do not occur together in such a way as to meet the stringent requirements for this process to operate. In the geological past, however, conditions favoring this process are highly likely to have been met. For example, increases in atmospheric water vapor content (due, for example, to the loss of the south perennial polar CO2 cap) could favor the deposition of snow, which if collected on rocks heated to above the melting temperature during favorable conditions (e.g., perihelion), could cause melting and the type of locally enhanced chemical weathering that can cause pits. Even when these conditions are met, however, the variation in heating of different rock facets under Martian conditions means that different parts of the rock may weather at different times, consistent with the very low weathering rates observed on Mars. Furthermore, as is the case in the stable upland zone of the Antarctic Dry Valleys, pit formation by transient melting of small amounts of snow readily occurs in the absence of subsurface active layer cryoturbation.

  16. Effect of Type and Concentration of Ballasting Particles on Sinking Rate of Marine Snow Produced by the Appendicularian Oikopleura dioica

    PubMed Central

    Lombard, Fabien; Guidi, Lionel; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d-1 increase in sinking speed for a 5×105 µm3 ml-1 increase in particle concentration, near independent on ballast type. We finally compare our observations to the literature and stress the need to generate aggregates similar to those in nature in order to get realistic estimates of the impact of ballast particles on sinking speeds. PMID:24086610

  17. The Winter Environment: Snow

    ERIC Educational Resources Information Center

    Murphy, James E.

    1974-01-01

    Discusses the structure and formation of snow crystals, outlines the history of snow removal, and describes techniques that can be used by students for studying snowflakes and relating their structure to the conditions under which they were formed. (JR)

  18. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    PubMed

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-01

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation. PMID:27137026

  19. Formation, distribution and variability in snow cover on the Asian territory of the USSR

    NASA Technical Reports Server (NTRS)

    Pupkov, V. N.

    1985-01-01

    A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.

  20. A Blowing Snow Model for Ice Shelf Rifts

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.; Tremblay, L.; Macayeal, D. R.

    2005-12-01

    Ice melange (a mixture of snow, marine ice, and ice talus) may play various roles in the rates of propagation of iceberg-calving rifts through Antarctic ice shelves. This modeling study examines the role of windblown snow in the formation and maintenance of ice melange in the "nascent rift" in the Ross Ice Shelf (78 08'S, 178 29'W). The rift axis is perpendicular to the regional wind direction, allowing us to employ a two-dimensional blowing snow model. The Piektuk-Tuvaq blowing snow model (Dery and Tremblay, 2004) adapted the Piektuk blowing snow model for use in sea ice environments by including parameterization for open-water leads within the sea ice. This version of the model was used to study the initial conditions of a freshly-opened rift, as the input of blowing snow into the seawater within the rift promotes marine ice formation by cooling and freshening the surface water. We adapted the Piektuk-Tuvaq model both for the local climatic conditions and to incorporate the geometry of the rift, which is 30m deep and 100m wide (far deeper than a lead). We present the evolution of the topography within the rift for two cases. The first is an ice melange composed exclusively of snow and marine ice, the second uses an initial topography including large chunks of ice talus.

  1. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10‑3), the snow line produces a ringlike structure with a minimum at αmm ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  2. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10-3), the snow line produces a ringlike structure with a minimum at αmm ˜ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  3. Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Lin, D. N. C.

    2007-07-01

    The first challenge in the formation of both terrestrial planets and the cores of gas giants is the retention of grains in protoplanetary disks. In most regions of these disks, gas attains sub-Keplerian speeds as a consequence of a negative pressure gradient. Hydrodynamic drag leads to orbital decay and depletion of the solid material in the disk, with characteristic timescales as short as only a few hundred years for meter-sized objects at 1 AU. In this Letter, we suggest a particle retention mechanism that promotes the accumulation of grains and the formation of planetesimals near the water sublimation front or ``snow line.'' This model is based on the assumption that, in the regions most interesting for planet formation, the viscous evolution of the disk is due to turbulence driven by the magnetorotational instability (MRI) in the surface layers of the disk. The depth to which MRI effectively generates turbulence is a strong function of grain size and abundance. A sharp increase in the grain-to-gas density ratio across the snow line reduces the column depth of the active layer. As the disk evolves toward a quasi-steady state, this change in the active layer creates a local maximum in radial distribution of the gas surface density and pressure, causing the gas to rotate at super-Keplerian speed and halting the inward migration of grains. This scenario presents a robust process for grain retention that may aid in the formation of proto-gas giant cores preferentially near the snow line.

  4. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features

  5. RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION

    SciTech Connect

    Okuzumi, Satoshi; Kobayashi, Hiroshi; Tanaka, Hidekazu; Wada, Koji

    2012-06-20

    Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm{sup -3}) even if collisional compression is taken into account. We also show that the high porosity triggers significant acceleration in collisional growth. This acceleration is a natural consequence of the particles' aerodynamical properties at low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy particles.

  6. Formation and diagenesis of modern marine calcified cyanobacteria.

    PubMed

    Planavsky, N; Reid, R P; Lyons, T W; Myshrall, K L; Visscher, P T

    2009-12-01

    Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a modern marine reef setting at Highborne Cay, Bahamas. Our observations and stable isotope data suggest that initial calcification occurs in living cyanobacteria and is photosynthetically induced. A single variety of cyanobacteria, Dichothrix sp., produces calcified filaments. Adjacent cyanobacterial mats form well-laminated stromatolites, rather than calcified filaments, indicating there can be a strong taxonomic control over the mechanism of microbial calcification. Petrographic analyses indicate that the calcified filaments are degraded during early diagenesis and are not present in well-lithified microbialites. The early diagenetic destruction of calcified filaments at Highborne Cay indicates that the absence of calcified cyanobacteria from periods of the Phanerozoic is likely to be caused by low preservation potential as well as inhibited formation. PMID:19796131

  7. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    PubMed

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems. PMID:26359115

  8. Appalachia Snow

    Atmospheric Science Data Center

    2014-05-15

    ... on December 4 and 5, 2002, also brought the season's first snow to parts of the south and southern Appalachia. The extent of snow cover over central Kentucky, eastern Tennessee, western North Carolina and ...

  9. Dining Dovekies Demand, "When, Where and What's for Dinner?" The Impact of Seasonal Changes in Snow Melt and the Development of the Arctic Marine Food Web on Seabirds.

    NASA Astrophysics Data System (ADS)

    Karnovsky, N. J.; Harding, A.; Welcker, J.; Brown, Z. W.; Kitaysky, A.; Kwasniewski, S.; Walkusz, W.; Gremillet, D.

    2011-12-01

    The Atlantic sector of the Arctic is undergoing widespread climate change with increases in air and sea temperatures which impact the timing of ice retreat, snow melt and the development of the marine food web. Dovekies (Alle alle) are small seabirds that migrate to the Atlantic Sector of the Arctic to feed in ice free waters that have abundant lipid-rich zooplankton. In the Greenland Sea, the dovekies are largely dependent on the advection of Calanus copepods into the area. We hypothesized that dovekies breeding adjacent to water masses which bring smaller, less energy-rich prey into the region (Calanus finmarchicus), work harder to find food and have higher stress levels. We tested this hypothesis by attaching time-depth recorders to provisioning dovekies at three colonies adjacent to different water masses (the West Spistbergen Current, the East Greenland Current, and the Sorkapp Current). We determined the length of time dovekies at different colonies spent at-sea collecting food for themselves and their chicks. We measured circulating corticosteroid hormone levels in their blood to assess stress levels. We collected chick meals to determine the energetic content of prey fed chicks at the different colonies. We found that dovekies are sensitive to the quality of prey available to them. Dovekies exposed to less profitable prey made longer foraging trips and worked harder while at-sea to collect prey for themselves and their chicks. Furthermore, over the past 50 years, dovekies breeding along the western shores of Spitsbergen have initiated breeding earlier in spring as their nest sites have become snow-free at earlier dates. We evaluate the impact of earlier breeding and the timing of the development of the marine food web within different currents which advect and/or support Calanus copepods into the Greenland Sea. Future possible declines in dovekies may impact terrestrial food webs which are highly influenced by the annual input of nitrogen rich guano on the

  10. Ice Formation Potential of Field-Collected Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Carrion-Matta, A.; Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    Marine biogenic particles composed mainly of sea salt and organic material aerosolized from a mesocosm in laboratory experiments have recently been found to act as ice nuclei. How these particles relate to those collected from sea spray under ambient conditions in the field is unknown. This study reports on the heterogeneous ice nucleation potential of particles collected during the marine aerosol characterization experiment (MACE) on the south shore of Long Island, New York. Ambient aerosol size distributions were measured and particles were collected on hydrophobically coated substrates and subsequently used for ice nucleation experiments using an ice nucleation cell coupled to an optical microscope. This technique allows detection of ice formation for temperatures between 200 and 273 K and for relative humidity with respect to ice (RHice) from 100% up to water saturation. Individual ice nucleating particles were identified for subsequent chemical and physical characterization using both X-ray and electron micro-spectroscopic techniques. Concentrations of bacteria, viruses, and transparent exopolymer particles (TEP) in the bulk seawater, sea-surface microlayer (SML), and in sea spray were determined using established methods and related to airborne sea spray particles and their ice nucleation potential. Onshore aerosol size distribution measurements taken at 5 m height and 10 m away from the breaking waves, revealed a peak maximum at 100 nm and Ntot = 6.8 x 10^2 cm^-3. Bacterial, viral, and TEP were found to be enriched in the SML. Ambient particles collected during MACE were found to nucleate ice efficiently, e. g. at 215 K, ice nucleation occurred on average at 125% RHice. Results of aerosol size distributions and ice nucleation efficiencies are compared to laboratory bubble bursting experiments in which natural seawater was used. The goal of this study is to understand the connection between sea spray aerosolization and atmospheric ice cloud formation and to

  11. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  12. Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms

    NASA Astrophysics Data System (ADS)

    Sellegri, K.; Pey, J.; Rose, C.; Culot, A.; DeWitt, H. L.; Mas, S.; Schwier, A. N.; Temime-Roussel, B.; Charriere, B.; Saiz-Lopez, A.; Mahajan, A. S.; Parin, D.; Kukui, A.; Sempere, R.; D'Anna, B.; Marchand, N.

    2016-06-01

    Earth, as a whole, can be considered as a living organism emitting gases and particles into its atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change by emitting particles that ultimately will influence cloud coverage. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We identify iodine-containing species as major precursors for new particle clusters' formation, while questioning the role of the commonly accepted dimethyl sulfide oxidation products, in forming new particle clusters in the region investigated and within a time scale on the order of an hour. We further show that amines would sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest that iodine-containing species and amines are correlated to different biological tracers. These observations, if generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions.

  13. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  14. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  15. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  16. Snow cover in the Siberian forest-steppe

    NASA Technical Reports Server (NTRS)

    Zykov, I. V.

    1985-01-01

    A study is made of the snow cover on an experimental agricultural station in Mariinsk in the winter of 1945 to 1946. Conditions of snow cover formation, and types and indicators of snow cover are discussed. Snow cover structure and conditions and nature of thawing are described.

  17. Ramp-style deposition of Oligocene Marine Vedder formation, San Joaquin Valley, California

    SciTech Connect

    Bloch, R.B.

    1986-04-01

    The Oligocene Vedder formation consists of well-sorted medium to fine-grained marine sand and shale in the subsurface of the eastern San Joaquin Valley. Updip, this formation interfingers with nonmarine/lagoonal facies known as the Walker Formation. This relationship appears to be transgressive because the marine Vedder generally overlies the Walker Formation. Downdip, the Vedder sands interfinger with middle to lower bathyal shale in a progradational manner, forming upward-coarsening patterns in well logs. Depositional water depths for the shale were determined from benthic foraminifera assemblages. The Vedder formation is approximately 750 ft thick along its updip part, and gradually thickens to 1500 ft downdip. Overall deposition geometry, determined from well-log correlations and seismic data, is generally parallel and downlapping. A prominent shelf-slope break is not evident. Rather, depositional surfaces are tabular or broadly lobate, with a depositional slope of 5/sup 0/-10/sup 0/. This geometry of constant slope between nonmarine and deep marine water depth is termed a ramp. The depositional style and geometry are similar to that of the Oligocene upper Pleito Formation, which crops out in the San Emigdio Mountains on the southern margin of the San Joaquin Valley. The Vedder formation was deposited subsequent to a period of rapid subsidence (about 50 cm/1000 years), as determined from geohistory analysis of well data on the Bakersfield arch. This rapid subsidence may have induced deposition in a ramp geometry, rather than a shelf-slope configuration.

  18. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end. PMID:24483507

  19. Anoxic marine lakes - an analogue environment for insular phosphorite formation

    SciTech Connect

    Burnett, W.C. )

    1990-06-01

    Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau, were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.

  20. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  1. Brine-Wetted Snow on the Surface of Sea Ice: A Potentially Vast and Overlooked Microbial Habitat

    NASA Astrophysics Data System (ADS)

    Deming, J. W.; Ewert, M.; Bowman, J. S.; Colangelo-Lillis, J.; Carpenter, S. D.

    2010-12-01

    On the hemispheric scale, snow on the surface of sea ice significantly impacts the exchange of mass and energy across the ocean-ice-atmosphere interface. The snow cover over Arctic sea ice plays a central role in Arctic photochemistry, including atmospheric depletion events at the onset of spring, and in ecosystem support, by determining the availability of photosynthetically active radiation for algal primary production at the bottom of the ice. Among the non-uniformities of snow relevant to its larger-scale roles is salt content. When snow is deposited on the surface of new sea ice, brine expelled onto the ice surface during ice formation wicks into the snow by capillary action, forming a brine-wetted or saline snow layer at the ice-snow interface. A typical salinity for this basal snow layer in the Arctic (measured on a 3-cm depth interval of melted snow) is about 20 (ppt by optical salinometer), with maxima approaching 30 ppt, thus higher than the salinity of melted surface sea ice (< 12 ppt). Although the physical-chemical properties of this brine-wetted layer have been examined in recent years, and the (assumed) air-derived microbial content of overlying low-salinity snow is known to be low in winter, basal saline snow is essentially unexplored as a microbial habitat. As part of an NSF-supported project on frost flowers, we investigated snow overlying coastal sea ice off Barrow, Alaska, in February 2010 (since snow buries frost flowers). Sterile (ethanol-rinsed) tools were used to open snow pits 60 cm wide, record temperature by thermoprobe at 3-cm depth intervals, and collect samples from newly exposed snow walls for salinity (3-cm intervals) and biological measurements (6-cm intervals). The latter included counts of bacterial abundance by epifluorescence microscopy and assays of extracellular polysaccharide substances (EPS). We also sampled snow on a larger scale to extract sufficient DNA to analyze microbial community composition (ongoing work), as well as

  2. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.

    PubMed

    You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing

    2007-10-01

    China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture. PMID:17624525

  3. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  4. Glacial marine sediments in the precambrian Gowganda formation at Whitefish Falls, Ontario (Canada)

    USGS Publications Warehouse

    Lindsey, D.A.

    1971-01-01

    Study of a well-exposed section of the Gowganda Formation at Whitefish Falls, Ontario, suggests criteria for the recognition of glacial marine sediments. Thickness of hundreds of feet, lateral continuity, faint internal stratification, sorted lenses of sandstone and conglomerate, and dropstones characterize much of the tillite. Thickness of hundreds of feet, lateral continuity, and marked development of irregular and lenticular laminae instead of varve structure characterize much of the argillite. These characteristics, together with evidence for a nearshore, marine-to-deltaic environment for the overlying beds, suggest a glacial marine interpretation even though no fossil evidence is available. Massive tillite, tillite containing faint stratification and lenses of sorted conglomerate and sandstone, and dropstone-bearing argillite, all of which interfinger, suggest a glacial marine environment composed of: (1) a subglacial facies; (2) a periglacial facies; and (3) a facies of marine ice rafting, respectively. Separation of the two tillite-bearing members by as much as 700 ft. of argillite containing no dropstones suggests two distinct ice ages during Gowganda time. ?? 1971.

  5. Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis

    PubMed Central

    Thibane, Vuyisile S.; Kock, Johan L. F.; Ells, Ruan; van Wyk, Pieter W. J.; Pohl, Carolina H.

    2010-01-01

    The effect of marine polyunsaturated fatty acids on biofilm formation by the human pathogens Candida albicans and Candida dubliniensis was investigated. It was found that stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3) have an inhibitory effect on mitochondrial metabolism of both C. albicans and C. dubliniensis and that the production of biofilm biomass by C. dubliniensis was more susceptible to these fatty acids than C. albicans. Ultrastructural differences, which may be due to increased oxidative stress, were observed between treated and untreated cells of C. albicans and C. dubliniensis with formation of rough cell walls by both species and fibrillar structures in C. dubliniensis. These results indicate that marine polyunsaturated fatty acids may be useful in the treatment and/or prevention of biofilms formed by these pathogenic yeasts. PMID:21116408

  6. Snow, Wind, Sun, and Time - How snow-driven processes control the Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Druckenmiller, M. L.; Perovich, D. K.

    2012-12-01

    Snowfall on Arctic sea ice is important for a number of reasons. The snowpack insulates sea ice from the cold winter atmosphere, redistribution of snow alters the surface roughness of the ice, light scattering in the snow increases ice albedo and reduces light transmission, and the weight of early season snow can result in ice surface flooding. An integrated set of field observations were collected to better understand how snowfall and, particularly, snow redistribution processes impact Arctic ice mass balance. Coincident measurements of snow depth and ice thickness on un-deformed first year ice indicate that snow dunes 'lock' in place early in the winter growth season, resulting in thinner ice beneath the dunes due to lower rates of energy loss. Coincident ground-based LiDAR measurements of surface topography and snow depth show that snow dune formation is largely responsible for the topographic relief of otherwise flat first year ice. Past work has shown that pond formation during the early melt season is strongly guided by the snow-controlled relative surface heights at a given site. Here multiple study sites are examined in an effort to better understand how differing patterns of snow redistribution can impact the overall extent of melt ponds, and therefore ice albedo. The results enhance basic knowledge of how snow processes control sea ice mass balance, and evoke several questions which must be answered in order to understand how changing precipitation regimes may affect sea ice in the Arctic.

  7. Snow economics and the NOHRSC Snow Information System (SNOW-INFO) for the United States

    NASA Astrophysics Data System (ADS)

    Carroll, T.; Cline, D.; Berkowitz, E.; Savage, D.

    2003-04-01

    .7 trillion (16%) of the Nation's GDP related to the water contained in seasonal snowpacks, reliable snow information is critical to the management of the U.S. economy. In addition to helping improve river and flood forecasts and water supply forecasts, NOHRSC snow information has the potential also to support better decision making and improved efficiency in manufacturing, mining, agriculture, and thermo- and hydroelectric power generation. A 0.1% improvement in revenue resulting from reliable snow information results in an economic benefit to the Nation of 1.7 billion each year (in 2002 dollars). In an effort to provide snow information to support hydrologic forecasting operations in the NWS as well as to enhance the national economy, the NOHRSC has developed and implemented a Snow Information System (SNOW-INFO) that generates and distributes a variety of snow cover products in a variety of formats for the coterminous U.S. SNOW-INFO provides several new products that include: modeled snowpack characteristics such as snow ripeness, melt rates, mean snowpack temperature, and sublimation losses in a variety of alphanumeric, gridded, map, and time-series representations. SNOW-INFO products and data sets are available in near real-time to end-users from the NOHRSC web site (www.nohrsc.nws.gov) and FTP. A variety of SNOW-INFO products and maps from the 2003 snow season depicting simulated and assimilated snow model state variables for the coterminous U.S. are presented.

  8. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China

    NASA Astrophysics Data System (ADS)

    Li, Chao; Love, Gordon D.; Lyons, Timothy W.; Scott, Clinton T.; Feng, Lianjun; Huang, Jing; Chang, Huajin; Zhang, Qirui; Chu, Xuelei

    2012-05-01

    Here, in an effort to explore Cryogenian seawater chemistry, we present chemostratigraphic results for iron, carbon, molybdenum, and sulfur for two outcrop sections for the ca. 663-654 Ma Datangpo Formation deposited between the two major Neoproterozoic glacial episodes (Sturtian and Marinoan) in the Nanhua Basin, South China. Paleogeographic reconstruction suggests that the interglacial Nanhua Basin was an emerging young ocean basin, which opened by rifting from ca. 820-630 Ma. Seawater exchange with the open ocean was restricted; such interglacial conditions may have been a common feature throughout the region and the world in association with widespread rifted margins during global sea-level lowstands. Geochemical profiles generated for the shallow water Yangjiaping and deeper water Minle sections demonstrate broadly consistent stratigraphic variations and generally point to anoxic (mostly euxinic) deep water deposition for the lower black shales but increasing oxygenation for the upper siltstones deposited in shallower water at both sections. Fluctuations in water chemistry recorded in the Datangpo Formation can be explained by a stratified redox model in which water column chemistry was strongly controlled by Fe availability and other nutrient fluxes, low dissolved marine sulfate concentrations, sea level variation, and varying inputs of marine organic carbon delivered via primary production. A compilation of new and published sulfur isotope data for the Datangpo Formation indicates that the extremely 34S-enriched pyrite (up to 69‰) in the basal carbonates and shales was formed mainly in the deep waters of the Nanhua Basin. The most likely explanation is a 34S-enriched deep marine sulfate pool generated, in part, during the Sturtian glaciation by bacterial sulfate reduction in combination with severely suppressed riverine sulfate inputs and restriction of the marginal basin during a dramatic drop in sea level. This study highlights the importance of both

  9. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces.

    PubMed

    Lee, Jin-Woo; Nam, Ji-Hyun; Kim, Yang-Hoon; Lee, Kyu-Ho; Lee, Dong-Hun

    2008-04-01

    Succession of bacterial communities during the first 36 h of biofilm formation in coastal water was investigated at 3 approximately 15 h intervals. Three kinds of surfaces (i.e., acryl, glass, and steel substratum) were submerged in situ at Sacheon harbor, Korea. Biofilms were harvested by scraping the surfaces, and the compositions of bacterial communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of 16S rRNA genes. While community structure based on T-RFLP analysis showed slight differences by substratum, dramatic changes were commonly observed for all substrata between 9 and 24 h. Identification of major populations by 16S rRNA gene sequences indicated that gamma-Proteobacteria (Pseudomonas, Acinetobacter, Alteromonas, and uncultured gamma-Proteobacteria) were predominant in the community during 0 approximately 9 h, while the ratio of alpha-Proteobacteria (Loktanella, Methylobacterium, Pelagibacter, and uncultured alpha-Proteobacteria) increased 2.6 approximately 4.8 folds during 24 approximately 36 h of the biofilm formation, emerging as the most predominant group. Previously, alpha-Proteobacteria were recognized as the pioneering organisms in marine biofilm formation. However, results of this study, which revealed the bacterial succession with finer temporal resolution, indicated some species of gamma-Proteobacteria were more important as the pioneering population. Measures to control pioneering activities of these species can be useful in prevention of marine biofilm formation. PMID:18545967

  10. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.

    PubMed

    Filippelli, Gabriel M

    2011-08-01

    The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand

  11. Snow particle speeds in drifting snow

    NASA Astrophysics Data System (ADS)

    Nishimura, Kouichi; Yokoyama, Chika; Ito, Yoichi; Nemoto, Masaki; Naaim-Bouvet, Florence; Bellot, Hervé; Fujita, Koji

    2014-08-01

    Knowledge of snow particle speeds is necessary for deepening our understanding of the internal structures of drifting snow. In this study, we utilized a snow particle counter (SPC) developed to observe snow particle size distributions and snow mass flux. Using high-frequency signals from the SPC transducer, we obtained the sizes of individual particles and their durations in the sampling area. Measurements were first conducted in the field, with more precise measurements being obtained in a boundary layer established in a cold wind tunnel. The obtained results were compared with the results of a numerical analysis. Data on snow particle speeds, vertical velocity profiles, and their dependence on wind speed obtained in the field and in the wind tunnel experiments were in good agreement: both snow particle speed and wind speed increased with height, and the former was always 1 to 2 m s-1 less than the latter below a height of 1 m. Thus, we succeeded in obtaining snow particle speeds in drifting snow, as well as revealing the dependence of particle speed on both grain size and wind speed. The results were verified by similar trends observed using random flight simulations. However, the difference between the particle speed and the wind speed in the simulations was much greater than that observed under real conditions. Snow transport by wind is an aeolian process. Thus, the findings presented here should be also applicable to other geophysical processes relating to the aeolian transport of particles, such as blown sand and soil.

  12. Toxic elements (As, Se, Cd, Hg, Pb) and their mineral and technogenic formations in the snow cover in the vicinity of the industrial enterprises of Tomsk

    NASA Astrophysics Data System (ADS)

    Talovskaya, A. V.; Filimonenko, E. A.; Osipova, N. A.; Lyapina, E. E.; azikov, E. G. Y.

    2014-08-01

    Snow samples were collected in four industrial areas of Tomsk where brickworks, factories for the production of reinforced concrete structures, machine repair industries and local boilers, petrochemical plant and thermal power station are located. Study of insoluble fraction of aerosols in snow and melted snow water was performed to determine the contents of the emissions from these facilities. The insoluble fraction of aerosols in snow is aerosol particles deposited on snow cover. As, Se, Cd, Hg, Pb concentration was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Mineral modes of the elements were determined by scanning electron microscope. It was found the snow cover is mainly polluted by As, Se, Cd, Hg, Pb in the thermal power station impact area, by As - in the brickworks impact area, by Se - in the impact area of densely located factories for the production of reinforced concrete structures, machine repair industries and local boilers. The research results show that the mineral modes of As are associated with arsenopyrite, of Pb - with galena in the insoluble fraction of aerosols in snow.

  13. Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments.

    PubMed

    Ndungu, Kuria; Schaanning, Morten; Braaten, Hans Fredrik Veiteberg

    2016-10-15

    In situ subaqueous capping (ISC) of contaminated marine sediments is frequently proposed as a feasible and effective mitigation option. However, though effective in isolating mercury species migration into overlying water, capping can also alter the location and extent of biogeochemical zones and potentially enhance methylmercury (MeHg) formation in Hg-contaminated marine sediments. We carried out a boxcosm study to investigate whether the addition of organic carbon (OC) to Hg-contaminated marine sediments beneath an in situ cap would initiate and/or enhance MeHg formation of the inorganic Hg present. The study was motivated by ongoing efforts to remediate ca. 30,000 m(2) of Hg-contaminated seabed sediments from a Hg spill from the U864 WWII submarine wreck. By the time of sinking, the submarine is assumed to have been holding a cargo of ca. 65 tons of liquid Hg. Natural organic matter and petroleum hydrocarbons from fuels and lubricants in the wreck are potential sources of organic carbon that could potentially fuel MeHg formation beneath a future cap. The results of our study clearly demonstrated that introduction of algae OC to Hg-contaminated sediments, triggered high rates of MeHg production as long a there was sufficient OC. Thus, MeHg production was limited by the amount of organic carbon available. The study results also confirmed that, within the six-month duration of the study and in the absence of bioturbating fauna, a 3-cm sediment clay cap could effectively reduce fluxes of Hg species to the overlying water and isolate the Hg-contaminated sediments from direct surficial deposition of organic matter that could potentially fuel methylation. PMID:27494695

  14. Scattering optics of snow.

    PubMed

    Kokhanovsky, Alexander A; Zege, Eleonora P

    2004-03-01

    Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by the snow cover. However, the presence of pollutants and the microstructure of snow (e.g., the size and shape of grains, which depend also on temperature and on the age of the snow) are also of importance in the variation of the snow's spectral albedo. The snow's spectral albedo and its bidirectional reflectance are studied theoretically. The albedo also determines the spectral absorptance of snow, which is of importance, e.g., in studies of the heating regime in snow. We investigate the influence of the nonspherical shape of grains and of close-packed effects on snow's reflectance in the visible and the near-infrared regions of the electromagnetic spectrum. The rate of the spectral transition from highly reflective snow in the visible to almost totally absorbing black snow in the infrared is governed largely by the snow's grain sizes and by the load of pollutants. Therefore both the characteristics of snow and its concentration of impurities can be monitored on a global scale by use of spectrometers and radiometers placed on orbiting satellites. PMID:15015542

  15. Snow Conditions Near Barrow in Spring 2012

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I.; Nghiem, S. V.; Sturm, M.; Kurtz, N. T.; Farrell, S. L.; Gleason, E.; Lieb-Lappen, R.; Saiet, E.

    2012-12-01

    Snow has a dual role in the growth and decay of Arctic sea ice. It provides insulation from colder air temperatures during the winter, which hinders sea ice formation. Snow is highly reflective and, as a result, it delays the surface ice melt during the spring. Summer snow melt influences the formation and location of melt ponds on sea ice, which further modifies heat transport into sea ice and the underlying ocean. Identifying snow thickness and extent is of key importance in understanding the surface heat budget, particularly during the early spring when the maximum snowfall has surpassed, and surface melt has not yet occurred. Regarding Arctic atmospheric chemical processes, snow may sustain or terminate halogen chemical recycling and distribution, depending on the state of the snow cover. Therefore, an accurate assessment of the snow cover state in the changing Arctic is important to identify subsequent impacts of snow change on both physical and chemical processes in the Arctic environment. In this study, we assess the springtime snow conditions near Barrow, Alaska using coordinated airborne and in situ measurements taken during the NASA Operation IceBridge and BRomine, Ozone, and Mercury EXperiment (BROMEX) field campaigns in March 2012, and compare these to climatological records. Operation IceBridge was conceived to bridge the gap between satellite retrievals ice thickness by ICESat which ceased operating in 2009 and ICESat-2 which is planned for launch in 2016. As part of the IceBridge mission, snow depth may be estimated by taking the difference between the snow/air surface and the snow/ice interface measured by University of Kansas's snow radar installed on a P-3 Orion and the measurements have an approximate spatial resolution of 40 m along-track and 16 m across-track. The in situ snow depth measurements were measured by an Automatic Snow Depth Probe (Magnaprobe), which has an accuracy of 0.5 cm. Samples were taken every one-to-two meters at two sites

  16. Comparative Taphonomy, Taphofacies, and Bonebeds of the Mio-Pliocene Purisima Formation, Central California: Strong Physical Control on Marine Vertebrate Preservation in Shallow Marine Settings

    PubMed Central

    Boessenecker, Robert W.; Perry, Frank A.; Schmitt, James G.

    2014-01-01

    Background Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. Methodology/Principal Findings Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. Conclusions/Significance Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the

  17. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1.

    PubMed

    Nithya, Chari; Begum, Mansur Farzana; Pandian, Shunmugiah Karutha

    2010-09-01

    According to the Centers for Disease Control and Prevention, biofilms cause 65% of infections in developed countries. Pseudomonas aeruginosa biofilm cause life threatening infections in cystic fibrosis infection and they are 1,000 times more tolerant to antibiotic than the planktonic cells. As quorum sensing, hydrophobicity index and extracellular polysaccharide play a crucial role in biofilm formation, extracts from 46 marine bacterial isolates were screened against these factors in P. aeruginosa. Eleven extracts showed antibiofilm activity. Extracts of S6-01 (Bacillus indicus = MTCC 5559) and S6-15 (Bacillus pumilus = MTCC 5560) inhibited the formation of PAO1 biofilm up to 95% in their Biofilm Inhibitory Concentration(BIC) of 50 and 60 microg/ml and 85% and 64% in the subinhibitory concentrations (1/4 and 1/8 of the BIC, respectively). Furthermore, the mature biofilm was disrupted to 70-74% in their BIC. The antibiofilm compound from S6-15 was partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Current study for the first time reveals the antibiofilm and antiquorum-sensing activity of B. pumilus, B. indicus, Bacillus arsenicus, Halobacillus trueperi, Ferrimonas balearica, and Marinobacter hydrocarbonoclasticus from marine habitat. PMID:20665017

  18. Spatiotemporal variations of monocarboxylic acids in snow layers along a transect from Zhongshan Station to Dome A, eastern Antarctica

    NASA Astrophysics Data System (ADS)

    Li, Chuanjin; Xiao, Cunde; Shi, Guitao; Ding, Minghu; Kang, Shichang; Zhang, Lulu; Hou, Shugui; Sun, Bo; Qin, Dahe; Ren, Jiawen

    2015-05-01

    The spatiotemporal distributions of formate and acetate in snow layers along a transect from Zhongshan Station to Dome A are presented here. The mean concentrations of mono-carboxylic acids in summer surface snow layers were 2.93 ± 1.72 ng g- 1 and 10.07 ± 5.87 ng g- 1 for formate and acetate, respectively. In the snow pit samples, the concentrations varied between 0.47 ± 0.14 ng g- 1 and 3.12 ± 4.24 ng g- 1 for formate and between 5.31 ± 1.55 ng g- 1 and 13.29 ± 4.64 ng g- 1 for acetate. Spatially, the concentrations of both acids featured negative trends with increasing elevation and distance inland for the initial 600 km of the transect, which implies that marine sources from the coastal oceans dominate the acid supply. Different distribution styles of the acids in the interior section (600-1248 km) suggest that different source region and transporting mechanism may be responsible for the acid deposition in the interior regions. Seasonal variations in the amounts of acid in a coastal snow pit (29-A) indicate higher values in the summer and lower amounts in the winter. An enlarged source region and intensified production and transport mechanisms were primarily responsible for the higher values in summer. Longer records from the interior snow pits (29-L and 29-M) indicate elevated values in the 1970s and lower values in the 1980s and early 1990s. The increases in the mono-carboxylic acids since 1999 in snow pit 29-L and since 2005 in snow pit 29-M were temporally coincident with Chinese expedition activities in the area, suggesting that human activities were responsible for the increases in the acid load during recent decades.

  19. Camping in the Snow.

    ERIC Educational Resources Information Center

    Brown, Constance

    1979-01-01

    Describes the experience of winter snow camping. Provides suggestions for shelter, snow kitchens, fires and stoves, cooking, latrines, sleeping warm, dehydration prevention, and clothing. Illustrated with full color photographs. (MA)

  20. Modelling snow properties in Kautokeino, Northern Norway

    NASA Astrophysics Data System (ADS)

    Vikhamar-Schuler, D.; Dish Mathiesen, S.; Hanssen-Bauer, I.

    2010-09-01

    Hard snow layers deteriorate the grazing situation for reindeers during winter. By modelling the snowpack evolution in Kautokeino over the period 1966-2009, we analyse the weather situations that favor the formation of high-density snow. This work is part of the IPY project EALAT (http://icr.arcticportal.org/en/ealat). We used daily meteorological observations to drive the Swiss multi-layer model SNOWPACK to simulate the evolution of snow cover stratigraphy in terms of density, temperature and grain size. Results are evaluated using direct snow pack observations made during the winter seasons 2007-2010. Furthermore, we compare the modelled snowpack 1966-2010 with historical records of difficult grazing conditions reported by reindeer herders. In particular, the considerable losses of animal lives during the winter 1967/68 was caused by the occurrence of ground ice in conjunction to the long snow cover duration. This unfavorable coincidence is well reproduced by our model results.

  1. Monitoring global snow cover

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard; Hardman, Molly

    1991-01-01

    A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.

  2. Remote sensing of snow

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.

    1987-01-01

    The snow parameters affecting sensor responses at different wavelengths are discussed. The effects of snow depth and background radiation on gamma ray sensors and of crystal size, contaminants, snow depth, liquid water, and surface roughness on visible and near-infrared sensors are considered. The influence of temperature, crystal size, and liquid water on thermal infrared sensors and of liquid water, crystal size, water equivalent depth, stratification, snow surface roughness, density, temperature, and soil condition on microwave sensors are addressed.

  3. Snow Bank Detectives

    ERIC Educational Resources Information Center

    Olson, Eric A.; Rule, Audrey C.; Dehm, Janet

    2005-01-01

    In the city where the authors live, located on the shore of Lake Ontario, children have ample opportunity to interact with snow. Water vapor rising from the relatively warm lake surface produces tremendous "lake effect" snowfalls when frigid winter winds blow. Snow piles along roadways after each passing storm, creating impressive snow banks. When…

  4. Laboratory investigations of marine impact events: Factors influencing crater formation and projectile survivability

    NASA Astrophysics Data System (ADS)

    Milner, D. J.; Baldwin, E. C.; Burchell, M. J.

    2008-12-01

    Given that the Earth’s surface is covered in around two-thirds water, the majority of impact events should have occurred in marine environments. However, with the presence of a water layer, crater formation may be prohibited. Indeed, formation is greatly controlled by the water depth to projectile diameter ratio, as discussed in this paper. Previous work has shown that the underlying target material also influences crater formation (e.g., Gault and Sonett 1982; Baldwin et al. 2007). In addition to the above parameters we also show the influence of impact angle, impact velocity and projectile density for a variety of water depths on crater formation and projectile survivability. The limiting ratio of water depth to projectile diameter on cratering represents the point at which the projectile is significantly slowed by transit through the water layer to reduce the impact energy to that which prohibits cratering. We therefore study the velocity decay produced by a water layer using laboratory, analytical and numerical modelling techniques, and determine the peak pressures endured by the projectile. For an impact into a water depth five times the projectile diameter, the velocity of the projectile is found to be reduced to 26-32% its original value. For deep water impacts we find that up to 60% of the original mass of the projectile survives in an oblique impact, where survivability is defined as the solid or melted mass fraction of the projectile that could be collected after impact.

  5. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  6. The Snows of Enceladus

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Schmidt, J.; White, O.

    2011-10-01

    The icy south polar plumes of Enceladus make for a spectacular effect in the Saturn system (e.g., the Ering), but also profoundly alter the surface of Enceladus itself. Recent models of the plume particle dynamics predict that the heavier particles will reaccrete, effectively "snowing" fine-grained debris back onto the surface in discrete patterns [1], depending on the actual distribution of ejection sites. The densest fallout pattern is dominated by two scytheshaped lobes extending northward from the South-Polar-Terrains along the 40 and 220W longitudes. Recent color mapping of Enceladus demonstrates that IR/UV color asymmetries across the surface match these predicted patterns astonishingly well [2]. Theory and observation therefore confirm the apparent formation of a blanket of very small particles covering most of the surface of Enceladus to different depths, depending on location and plume source changes.

  7. Multiwell Experiment: I, The marine interval of the Mesaverde Formation: Final report

    SciTech Connect

    Not Available

    1987-04-01

    The Department of Energy's Multiwell Experiment is a field laboratory in the Piceance Basin of Colorado which has two overall objectives: to characterize the low permeability gas reservoirs in the Mesaverde Formation and to develop technology for their production. Different depositional environments have created distinctly different reservoirs in the Mesaverde, and MWX has addressed each of these in turn. This report presents a comprehensive summary of results from the lowermost interval: the marine interval which lies between 7450 and 8250 ft at the MWX site. Separate sections of this report are background and summary; site description and operations; geology; log analysis; core analysis; in situ stress; well testing, analysis and reservoir evaluation; and a bibliography. Additional detailed data, results, and data file references are given on microfiche in several appendices.

  8. Conditioned water affects pair formation behaviour in the marine polychaete Neanthes (Nereis) acuminata.

    PubMed

    Storey, Ellen J; Reish, Don J; Hardege, Jörg D

    2013-01-01

    Assessing cues from conspecifics is paramount during mate choice decisions. Neanthes acuminata is a marine polychaete with a unique life cycle: pair formation, female death following reproduction, male parental care and male ability to mate again after egg care. Males completing such egg care are 'experienced'. Females have been shown to prefer experienced males over all others, including aggressively dominant males. As the female dies following reproduction, the reproductive success of her offspring depends upon successful parental care by the male. It is therefore vital that the female makes a good mate choice decision. This paper shows that the use of conditioned water from males caring for eggs and newly experienced males caused the female to alter her choice to a previously undesired male. However, conditioned water from males, which had reproduced but were isolated for 2 weeks, did not have the same effect on pairing behaviour. This indicates that the smell of experience is short lived. PMID:22941305

  9. Snow instability patterns at the scale of a small basin

    NASA Astrophysics Data System (ADS)

    Reuter, Benjamin; Richter, Bettina; Schweizer, Jürg

    2016-02-01

    Spatial and temporal variations are inherent characteristics of the alpine snow cover. Spatial heterogeneity is supposed to control the avalanche release probability by either hindering extensive crack propagation or facilitating localized failure initiation. Though a link between spatial snow instability variations and meteorological forcing is anticipated, it has not been quantitatively shown yet. We recorded snow penetration resistance profiles with the snow micropenetrometer at an alpine field site during five field campaigns in Eastern Switzerland. For each of about 150 vertical profiles sampled per day a failure initiation criterion and the critical crack length were calculated. For both criteria we analyzed their spatial structure and predicted snow instability in the basin by external drift kriging. The regression models were based on terrain and snow depth data. Slope aspect was the most prominent driver, but significant covariates varied depending on the situation. Residual autocorrelation ranges were shorter than the ones of the terrain suggesting external influences possibly due to meteorological forcing. To explore the causes of the instability patterns we repeated the geostatistical analysis with snow cover model output as covariate data for one case. The observed variations of snow instability were related to variations in slab layer properties which were caused by preferential deposition of precipitation and differences in energy input at the snow surface during the formation period of the slab layers. Our results suggest that 3-D snow cover modeling allows reproducing some of the snow property variations related to snow instability, but in future work all relevant micrometeorological spatial interactions should be considered.

  10. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  11. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  12. Snow surface roughness as a function of terrain parameters and snow depth distribution

    NASA Astrophysics Data System (ADS)

    Veitinger, J.; Sovilla, B.; Purves, R.

    2012-12-01

    During and after a snowfall, wind, snow gliding and avalanches redistribute snow and smooth the geomorphology of the terrain by filling irregularities. Terrain smoothing is believed to be an important factor in avalanche formation. In avalanche release zones, it influences fracture initiation and propagation as well as the resistance to slab motion and thus affects its location and extension. In avalanche paths, terrain smoothing changes the terrain-avalanche friction and thus has an impact on avalanche dynamics. Moreover, smoothing of terrain irregularities by snow also affects surface heat transfer and energy balance as well as snow depth distribution. Thus, understanding snow smoothing on topography is very important in avalanche hazard assessment, run-off modelling and water resource management. To characterize the smoothing effect of snow on terrain we use the concept of roughness. Roughness is calculated for several snow surfaces and its corresponding underlying terrain within two selected high alpine test sites in the Swiss Alps. High resolution snow depth measurements were performed by airborne and terrestrial LIDAR to produce the elevation models of the snow covered terrain. The difference in surface roughness between snow cover and terrain is modelled as a function of geomorphological parameters (terrain roughness and slope) and snow depth (mean and standard deviation) and ultimately validated against the experimental data. The model uses a multi-scale approach in assessing the different parameters and results for different scales are presented. Finally, we discuss to which extent snow depth distribution can be explained by terrain parameters and in particular by terrain roughness.

  13. The role of sulfur in the formation of humic polymers in marine sediments

    SciTech Connect

    Vairavamurthy, M.A.

    1996-12-31

    In anoxic marine sediments, hydrogen sulfide formed from bacterial sulfate reduction significantly impacts the diagenesis and preservation of organic matter through incorporating sulfur into the latter; however, the underlying geochemical mechanisms are still unclear. We used XANES spectroscopy to investigate whether di- and poly-sulfide linkages are involved in the formation of humic polymers in anaerobic marine sediments. The approach was to treat the humic acids with tributyl phosphine, that cleaves di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and polysulfide linkages, and to examine the changes in XANES spectra before and after such treatment. With simple di- and poly-sulfide compounds (benzyl disulfide and trisulfide), the shape of the XANES spectra changed when treated with tributyl phosphine because of the formation of sulfhydryl groups. A similar effect was observed for sedimentary humic acids isolated from a salt marsh in Shelter Island, suggesting that di- and poly-sulfide linkages are indeed involved in forming humic polymers. We determined by liquid chromatography, two major low-molecular-weight thiols, 3-mercatopropionate and methane thiol, among the compounds released from tributyl phosphine treated humics. These thiols can be easily degraded by sedimentary bacteria when they are present in solution. However, both thiols were present as components of the humic substances throughout the sediment column, down to the 22-cm depth sampled, suggesting that incorporation into humic polymers, in fact, provides a mechanism for preventing mineralization of the bound organic matter. In general, humic polymers resist microbial degradation because of their randomly polymerized structure.

  14. Type 2 quorum sensing monitoring, inhibition and biofilm formation in marine microrganisms.

    PubMed

    Liaqat, Iram; Bachmann, Robert Thomas; Edyvean, Robert G J

    2014-03-01

    The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another. PMID:24166155

  15. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    were enhanced with time compared with larger sizes. In contrast, all particle sizes were equally enhanced when frits were used. Aerosolized particles were hygroscopic, a finding with significance for warm cloud formation and potential liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.

  16. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocities of macroscopic organic aggregates (marine snow)

    NASA Astrophysics Data System (ADS)

    Iversen, M. H.; Ploug, H.

    2010-05-01

    Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted), Skeletonema costatum aggregates (opal ballasted), and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted). Overall average carbon-specific respiration rate was ~0.13 d-1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregate of different composition and sources. Compiled carbon-specific respiration rates (including this study) vary between 0.08 d-1 and 0.20 d-1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The calculated carbon remineralization length scale due to microbial respiration and sinking velocity of mm-large marine aggregates was higher for calcite ballasted aggregates as compared to opal-ballasted aggregates. It varied between 0.0002 m-1 and 0.0030 m-1, and decreased with increasing aggregate size.

  17. Atmospheric new particle formation as source of CCN in the Eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-04-01

    While Cloud Condensation Nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the Eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (0.2-0.4 lower κ between the 60 and 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in afternoon, which was very likely due to the higher sulfate to organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneously to the formation of new particles during daytime, particles formed in the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range transported particles.

  18. Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-08-01

    While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of κ was lower by 0.2-0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.

  19. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  20. Spatial-temporal dynamics of chemical composition of surface snow in East Antarctic along the transect Station Progress-Station Vostok

    NASA Astrophysics Data System (ADS)

    Khodzher, T. V.; Golobokova, L. P.; Shibaev, Y. A.; Lipenkov, V. Y.; Petit, J. R.

    2013-05-01

    This paper presents data on chemical composition of the Antarctic snow sampled during the 53rd Russian Antarctic Expedition (RAE, 2008) along the first tractor traverse (TT) from Station Progress to Station Vostok (East Antarctica). Snow samples were obtained from the cores drilled at 55.3, 253, 337, 369, 403, 441, 480, 519, 560, 618, 819, and 1276 km from Station Progress. Data on horizontal and deep distribution of chemical components in the snow provide evidence of spatial and temporal variations of conditions for the snow cover formation along the transect under study. Sea salt was the main source for chemical composition of snow cover near the ice edge. Concentrations of marine-derived components decreased further inland. A hypothesis was put forward that some ions in the snow cover of the central part of East Antarctica were likely to be of continental origin. Elevated concentrations of sulphate ions of continental origin were recorded in some profiles of the transect at a depth of 130-150 cm which was attributed to buried signals of the Pinatubo volcano eruption (1991).

  1. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    NASA Astrophysics Data System (ADS)

    Iversen, M. H.; Ploug, H.

    2010-09-01

    Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted), Skeletonema costatum aggregates (opal ballasted), and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted). Overall average carbon-specific respiration rate was ~0.13 d-1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study) vary between 0.08 d-1 and 0.20 d-1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m-1 and 0.0030 m-1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  2. "Let It Snow, Let It Snow, Let It Snow!"

    ERIC Educational Resources Information Center

    Pangbourne, Laura

    2010-01-01

    Winter in the UK has, in recent years, brought a significant amount of snow and cold weather. This was the case while the author was a trainee teacher on placement at a rural primary school in Dartmoor early in 2010. The day started promisingly with the class looking at the weather forecast on the interactive whiteboard and having a short…

  3. Control of marine biofouling and medical biofilm formation with engineered topography

    NASA Astrophysics Data System (ADS)

    Schumacher, James Frederick

    Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally

  4. Secondary organic aerosol formation of relevance to the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal areas. The purpose of this dissertation is to test this hypothesis and quantify the SOA formation potentials of some representative biogenic and anthropogenic hydrocarbons when oxidized by Cl in laboratory chamber experiments. The chosen model compounds for biogenic and anthropogenic hydrocarbons in this study are three monoterpenes (alpha-pinene, beta-pinene, and d-limonene) and two aromatics (m-xylene and toluene), respectively. Results indicate that the oxidation of these monoterpenes and aromatics generates significant amounts of aerosol. The SOA yields of alpha-pinene, beta-pinene, and d-limonene obtained in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 mug m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. The SOA yields for m-xylene and toluene are found to be in the range of 0.035 to 0.12 for aerosol concentrations up to 19 mug m-3. For d-limonene and toluene, data indicate two yield curves that depend on the initial concentration ratios of Cl precursor to hydrocarbon hydrocarbon. Zero-dimensional calculations based on these yields show that SOA formation from the five model compounds when oxidized by Cl in the marine boundary layer could be a significant source of SOA in the early morning. In addition, the mechanistic reaction pathways for Cl oxidation of alpha-pinene, beta-pinene, d-limonene, and toluene with Cl have been developed within the framework of the Caltech Atmospheric Chemistry Mechanisms (CACM). Output from the developed mechanisms is combined with an absorptive partitioning model to predict precursor decay curves and time-dependent SOA concentrations in experiments. Model calculations are able to match (in general within general +/- 50

  5. A Distributed Snow Evolution Modeling System (SnowModel)

    NASA Astrophysics Data System (ADS)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  6. Loropetalum chinense 'Snow Panda'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new Loropetalum chinense, ‘Snow Panda’, developed at the U.S. National Arboretum is described. ‘Snow Panda’ (NA75507, PI660659) originated from seeds collected near Yan Chi He, Hubei, China in 1994 by the North America-China Plant Exploration Consortium (NACPEC). Several seedlings from this trip w...

  7. GulfSnow Peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GulfSnow peach is jointly released for grower trial by the U.S. Department of Agriculture, Agricultural Research Service (Byron, GA), Georgia Agricultural Experiment Station and Florida Agricultural Experiment Station. GulfSnow was previously tested as AP06-09W and originated from a cross of AP98-3...

  8. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  9. Make Your Own Snow Day!

    ERIC Educational Resources Information Center

    Robeck, Edward

    2011-01-01

    Children love snow days, even when they come during the warmest weather. In this lesson the snow isn't falling outside, it's in the classroom--thanks to "Snowflake Bentley" (Briggs Martin 1998) and several models of snowflakes. A lesson on snow demonstrates several principles of practice for using models in elementary science. Focusing on snow was…

  10. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    USGS Publications Warehouse

    Thompson, W.B.; Griggs, C.B.; Miller, N.G.; Nelson, R.E.; Weddle, T.K.; Kilian, T.M.

    2011-01-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907??31 to 11,650??5014C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520+95/??20calyr BP. Ages of shells juxtaposed with the logs are 12,850??6514C yr BP (Mytilus edulis) and 12,800??5514C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England. ?? 2011 University of Washington.

  11. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    NASA Astrophysics Data System (ADS)

    Thompson, Woodrow B.; Griggs, Carol B.; Miller, Norton G.; Nelson, Robert E.; Weddle, Thomas K.; Kilian, Taylor M.

    2011-05-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/-20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP ( Mytilus edulis) and 12,800 ± 55 14C yr BP ( Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.

  12. Metal content and toxicity of produced formation water (PFW): study of the possible effects of the discharge on marine environment.

    PubMed

    Manfra, L; Moltedo, G; Lamberti, C Virno; Maggi, C; Finoia, M G; Giuliani, S; Onorati, F; Gabellini, M; Di Mento, R; Cicero, A M

    2007-08-01

    A preliminary chemical and ecotoxicological assessment was performed on the produced formation water (PFW) and superficial sediment around a gas platform (Fratello Cluster), located in the Adriatic Sea (Italy), in order to evaluate the effects of PFW discharged from the installation. The ecotoxicological bioassays, with the marine bacterium Vibrio fischeri and the sea urchin Paracentrotus lividus, were associated with chemical data to estimate the possible effects on living organisms. PFW collected on the platform was toxic, but no significant effect was recorded on marine sediment. Only the sediment station nearest to the discharge point showed higher values of some contaminants (zinc and arsenic) in comparison to other sites and only some stations showed low toxicity. PMID:17549537

  13. Impact of LIP formation on marine productivity during early Aptian and latest Cenomanian Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Erba, E.; Duncan, R.

    2003-04-01

    Of all the Cretaceous Oceanic Anoxic Events (OAEs), the Early Aptian OAE1a and latest Cenomanian OAE2 are truly global in nature and typically represented by carbonate crisis and Corg-rich black shales. They correlate with onset and climax of the mid-Cretaceous greenhouse, a time of exceptional warmth with accelerated burial of organic matter, carbon and strontium isotope excursions, and major biotic changes. Extraordinary rates of volcanism during the formation of Ontong Java and Caribbean Plateaus are proposed to have introduced excess CO_2 in the ocean/atmosphere system, turning the climate into a super-greenhouse state. High-resolution multidisciplinary investigations of well-dated sections indicate that marine ecosystems reacted to higher fertility and pCO2 by reducing biomineralization and increasing production of organic matter. In particular, rates of calcitization and evolutionary changes of micrite-forming calcareous nannoplankton (the biological and carbonate pump) affected the organic and inorganic carbon cycle as well as diffusion of atmospheric CO_2 in the Cretaceous ocean. Increasing geological evidence suggests that OAE1a and OAE2 were mainly oceanic productivity events, directly or indirectly controlled by submarine volcanic eruptions. High levels of volcanogenic CO_2 in the atmosphere accelerated continental weathering and increased nutrient content in oceanic surface waters via river run-off. However, only coastal eutrophication can be triggered by river input, and this mechanism cannot explain enhanced primary productivity in remote parts of large oceans like those recorded in wide-spread sediments of OAE1a and OAE2. Conversely, global productivity can be stimulated by hydrothermal megaplumes that introduce in the oceans high concentrations of dissolved and particulate metals that are biolimiting (and toxic) and, consequently, can trigger large blooms (and deaths) of primary producers. We speculate that during OAE1a and OAE2, higher productivity

  14. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  15. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest

    PubMed Central

    Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  16. Organic geochemical characterisation of shallow marine Cretaceous formations from Yola Sub-basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Jauro, Aliyu; Adegoke, Adebanji Kayode

    2016-05-01

    The shallow marine shales of the Cretaceous formations namely Yolde, Dukul, Jessu, Sekuliye and Numanha ranging in age from Cenomanian to Coniacian within the Yola Sub-basin in the Northern Benue Trough, northeastern Nigeria were analysed to provide an overview on their hydrocarbon generation potential. This study is based on pyrolysis analysis, total organic carbon content (TOC), extractable organic matter (EOM), biomarker distributions and measured vitrinite reflectance. The present-day TOC contents range between 0.24 and 0.71 wt. % and Hydrogen Index (HI) values between 8.7 and 113 mg HC/g TOC with Type III/IV kerogens. Based on the present-day kerogen typing, the shale sediments are expected to generate mainly gas. Biomarker compositions indicates deposition in a marine environment under suboxic conditions with prevalent contribution of aquatic organic matter and a significant amount of terrigenous organic matter input. Organic matter that is dominated by marine components contains kerogens of Type II and Type II-III. This study shows that the organic matter has been affected by volcanic intrusion and consequently, have reached post-mature stage of oil generation. These higher thermal maturities levels are consistent with the vitrinite reflectance ranging from 0.85 to 2.35 Ro % and high Tmax (440-508 °C) values as supported by biomarker maturity ratios. Based on this study, a high prospect for major gas and minor oil generation potential is anticipated from the shallow marine Cretaceous formations from Yola Sub-basin.

  17. BOREAS HYD-3 Snow Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of snow depth, snow density in three cm intervals, an integrated snow pack density and snow water equivalent (SWE), and snow pack physical properties from snow pit evaluation taken in 1994 and 1996. The data were collected from several sites in both the southern study area (SSA) and the northern study area (NSA). A variety of standard tools were used to measure the snow pack properties, including a meter stick (snow depth), a 100 cc snow density cutter, a dial stem thermometer, and the Canadian snow sampler as used by HYD-4 to obtain a snow pack-integrated measure of SWE. This study was undertaken to predict spatial distributions of snow properties important to the hydrology, remote sensing signatures, and the transmissivity of gases through the snow. The data are available in tabular ASCII files. The snow measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

    PubMed Central

    Gross, Martin; Ramos, Maria Ines F.; Piller, Werner E.

    2016-01-01

    A huge wetland (the ‘Pebas system’) covered western Amazonia during the Miocene, hosting a highly diverse and endemic aquatic fauna. One of the most contentious issues concerns the existence, potential pathways and effects of marine incursions on this ecosystem. Palaeontological evidences (body fossils) are rare. The finding of a new, presumably marine ostracod species (Pellucistoma curupira sp. nov.) in the upper middle Miocene Solimões Formation initiated a taxonomic, ecological and biogeographical review of the genus Pellucistoma. We demonstrate that this marine (sublittoral, euhaline), subtropical–tropical taxon is biogeographically confined to the Americas. The biogeographical distribution of Pellucistoma largely depends on geographical, thermal and osmotic barriers (e.g. land bridges, deep and/or cold waters, sea currents, salinity). We assume an Oligocene/early Miocene, Caribbean origin for Pellucistoma and outline the dispersal of hitherto known species up to the Holocene. Pellucistoma curupira sp. nov. is dwarfed in comparison to all other species of this genus and extremely thin-shelled. This is probably related to poorly oxygenated waters and, in particular, to strongly reduced salinity. The associated ostracod fauna (dominated by the eurypotent Cyprideis and a few, also stunted ostracods of possibly marine ancestry) supports this claim. Geochemical analyses (δ18O, δ13C) on co-occurring ostracod valves (Cyprideis spp.) yielded very light values, indicative of a freshwater setting. These observations point to a successful adaptation of P. curupira sp. nov. to freshwater conditions and therefore do not signify the presence of marine water. Pellucistoma curupira sp. nov. shows closest affinities to Caribbean species. We hypothesize that Pellucistoma reached northern South America (Llanos Basin) during marine incursions in the early Miocene. While larger animals of marine origin (e.g. fishes, dolphins, manatees) migrated actively into the Pebas

  19. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances. PMID:27362920

  20. Early Miocene chondrichthyans from the Culebra Formation, Panama: A window into marine vertebrate faunas before closure the Central American Seaway

    NASA Astrophysics Data System (ADS)

    Pimiento, Catalina; Gonzalez-Barba, Gerardo; Hendy, Austin J. W.; Jaramillo, Carlos; MacFadden, Bruce J.; Montes, Camilo; Suarez, Sandra C.; Shippritt, Monica

    2013-03-01

    The newly described chondrichthyan fauna of the early Miocene Culebra Formation of Panama provides insight into the marine vertebrates occupying shallow seas adjacent to the Central American Seaway, prior to the rise of the Isthmus of Panama. This study takes advantage of a time-limited and unique opportunity to recover fossil from renewed excavations of the Panama Canal. The chondrichthyan fauna of the Culebra Formation is composed of teeth and vertebral centra representing 12 taxa. The species found possessed a cosmopolitan tropical and warm-temperate distribution during the early Neogene and are similar to other assemblages of the tropical eastern Pacific and southern Caribbean. The taxa described suggest a neritic environment, and is in contrast with other interpretations that proposed bathyal water depths for the upper member of the Culebra Formation. The wide depth range of the most common species, Carcharocles chubutensis, and the habitat preference of Pristis sp., suggests varied marine environments, from deep, to shallow waters, close to emerged areas of the evolving isthmus.

  1. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Wang, Jiasheng; Algeo, Thomas J.; Su, Pibo; Hu, Gaowei

    2016-09-01

    During the last decade, gypsum has been discovered widely in marine methane hydrate-bearing sediments. However, whether this gypsum is an in-situ authigenic precipitate remains controversial. The GMGS2 expedition carried out in 2013 by the Guangzhou Marine Geological Survey (GMGS) in the northern South China Sea provided an excellent opportunity for investigating the formation of authigenic minerals and, in particular, the relationship between gypsum and methane hydrate. In this contribution, we analyzed the morphology and sulfur isotope composition of gypsum and authigenic pyrite as well as the carbon and oxygen isotopic compositions of authigenic carbonate in a drillcore from Site GMGS2-08. These methane-derived carbonates have characteristic carbon and oxygen isotopic compositions (δ13C: -57.9‰ to -27.3‰ VPDB; δ18O: +1.0‰ to +3.8‰ VPDB) related to upward seepage of methane following dissociation of underlying methane hydrates since the Late Pleistocene. Our data suggest that gypsum in the sulfate-methane transition zone (SMTZ) of this core precipitated as in-situ authigenic mineral. Based on its sulfur isotopic composition, the gypsum sulfur is a mixture of sulfate derived from seawater and from partial oxidation of authigenic pyrite. Porewater Ca2+ ions for authigenic gypsum were likely generated from carbonate dissolution through acidification produced by oxidation of authigenic pyrite and ion exclusion during methane hydrate formation. This study thus links the formation mechanism of authigenic gypsum with the oxidation of authigenic pyrite and evolution of underlying methane hydrates. These findings suggest that authigenic gypsum may be a useful proxy for recognition of SMTZs and methane hydrate zones in modern and ancient marine methane hydrate geo-systems.

  2. FTS (Fog To Snow) Conversion Process During the SNOW-V10 Project

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Zhou, B.

    2012-05-01

    The objective of this work is to understand how winter fog which occurred on Whistler Mountain on 3-4 March 2010 developed into a snow event by the means of the FTS (Fog To Snow) process. This event was documented using data collected during the Science of Nowcasting Winter Weather for Vancouver 2010 (SNOW-V10) project that was supported by the Fog Remote Sensing and Modelling (FRAM) project. The FTS resulted in a snow event at about 1,850 m altitude where the RND (Roundhouse) meteorological station was located. For both days, there was no large scale system that affected local fog formation and its development into snow. Patchy fog occurred in the early hours of both days and was based below 1,500 m. Clear skies at night likely resulted in cooling, the valley temperature (T) was about -1°C in the early morning, and snow was on the ground. Winds were relatively calm (<1 m s-1). At the RND site, T was about -3°C. Weather at RND was clear and sunny till noon. When fog moved over the mountain peak/near RND, light snow started and lasted for about 4-5 h and was not detected by precipitation sensors except the Ground Cloud Imaging Probe (GCIP) and Laser Precipitation Sensor (LPM). In this work, the FTS process is conceptually summarized. Because clear weather conditions over the high mountain tops can become hazardous with low visibilities and significant snow amounts (<1.0 mm h-1), such events are important and need to be predicted.

  3. FTS (Fog To Snow) Conversion Process During The SNOW-V10 Project

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Isaac, G. A.

    2010-07-01

    The objective of this work is to understand how winter fog which occurred on Whistler Mountain on 3-4 March 2010 developed into a snow event by the means of the FTS (Fog_To_Snow) process. This event was documented using data collected during the Science of Nowcasting Winter Weather for Vancouver 2010 (SNOW-V10) project that was supported by the Fog Remote Sensing and Modeling (FRAM) project. The FTS resulted in a snow event at about 1850 m height where the RND (Roundhouse) meteorological station was located. For both days, there was no large scale system that affected local fog formation and its development into snow. The patchy fog occurred in the early hours of both days and was based below 1500 m. Clear skies at night likely resulted in cooling, the valley temperature (T) was about +3C in the early morning, and snow was on the ground. Winds were relatively calm (<1 m/s). At the RND site, T was about -3C. Weather at RND was clear and sunny till noon. When shortwave (SW) radiation provided additional heat at the low levels and sloping surfaces, fog started to lift up over a 3-4 hr time period gaining additional moisture from melting snow. Then, the fog layers were eventually converted to cumulus/altocumulus. Afternoon, at about 01:30 PM, the entire valley was filled up with a fog/cloud mixture. When fog moved over the mountain peak/near RND, light snow started and lasted for about 4-5 hrs and was not detected by precipitation sensors except the Ground Cloud Imaging Probe (GCIP) and Laser Precipitation Sensor (LPM). In the presentation, observations collected during the FTS process will be summarized, and it will be proposed as an important winter and forecasting event over high elevations.

  4. Secrets of Snow Liveshot Recap

    NASA Video Gallery

    Research Physical Scientist and Deputy Project Scientist for GPM Gail Skofronick-Jackson answers questions about the importance of studying snow from space, the impact of not enough snow, and the f...

  5. Recent research in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1987-01-01

    Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.

  6. Mollusks of the Upper Jurassic (upper Oxfordian-lower Kimmeridgian) shallow marine Minas Viejas Formation, northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Beckmann, Seija; Stinnesbeck, Wolfgang; Götte, Martin

    2015-10-01

    We present the first systematic description of Late Jurassic (late Oxfordian-early Kimmeridgian) invertebrates from the shallow marine Minas Viejas Formation of northeastern Mexico. The unit was generally considered to be extremely poor in fossils, due to an overall evaporitic character. The collection described here includes three taxa of ammonites, 10 taxa of bivalves and five taxa of gastropods. The fossils were discovered near Galeana and other localities in southern Nuevo León and northeastern San Luis Potosí, in thin-bedded marly limestones intercalated between gypsum units. Due to complex internal deformation of the sediments, fossils used for this study cannot be assigned to precise layers of origin. However, the taxa identified suggest a Late Jurassic (late Oxfordian-early Kimmeridgian) age for these fossil-bearing layers and allow us, for the first time, to assign a biostratigraphic age to Upper Jurassic strata in the region underlying the La Caja and La Casita formations.

  7. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Wu, Wenfang; Hao, Likai; Wuestner, Marina; Obst, Martin; Moran, Dawn; McIlvin, Matthew; Saito, Mak; Kappler, Andreas

    2015-10-01

    Evidence for Fe(II) oxidation and deposition of Fe(III)-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF). While the exact mechanisms of Fe(II) oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III) minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II)-rich) waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II) concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II) is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) are consistent with extracellular precipitation of Fe(III) (oxyhydr)oxide minerals, but that >10% of Fe(III) sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS) in Fe(II) toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II). These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  8. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  9. Improving WEPP snow simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow simulation is essential to reliable prediction of runoff and erosion, particularly in high-latitude areas in the northern tier of states and forested watersheds at high elevations. The Water Erosion Prediction Project (WEPP) model is one of a few including a component for winter hydrology simul...

  10. Principles of Snow Hydrology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow hydrology is a specialized field of hydrology that is of particular importance for high latitudes and mountainous terrain. In many parts of the world, river and groundwater supplies for domestic, irrigation, industrial and ecosystem needs are generated from snowmelt, and an in-depth understand...

  11. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2013-10-01

    Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and

  12. Snow surface temperature, radiative forcing and snow depth as determinants of snow density

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Painter, T. H.; Skiles, M.; Deems, J. S.

    2014-12-01

    Watershed scale observations of snow water equivalence (SWE) are becoming increasingly important globally as the quantity and timing of snowmelt has become less predictable. In the Colorado River watershed, where dust deposition can hasten snowmelt by several weeks, the need for these observations is critical. While advances in measuring snow depth and albedo from the NASA Airborne Snow Observatory have greatly improved our ability to constrain snow depth and radiative forcing, we have yet to develop a method for remotely observing snow density, which is required for calculating SWE. We evaluate measured and modeled variables of snow- infrared surface temperature, radiative forcing and snow depth as predictors of snow density. We use 10 seasons of in situ measured snow surface temperature, cumulative modeled dust in snow radiative forcing, snow depth and manually measured snow density from locations in the Rocky Mountains of southwestern Colorado. We also use measured snow depth and SWE from the 2013 and 2014 water years, from 23-35 locations stratified by modeled downwelling short wave radiation, and evaluate them as predictors of snow density. Our analysis shows that daily mean snow surface temperature (R2 0.61, p = <0.001) and cumulative radiative forcing (R2 0.54, p = <0.001) individually have significant coefficients of determination whereas snow depth alone was not significant. Multiple regression with all three variables (R2 0.84, p = <0.001) was the best predictor of density. Furthermore, when snowpack conditions were isothermal at 0° C, the diurnal coefficient of variation, of measured hourly surface temperature, exhibited consistently high variance. In 2013 we found significant correlations between spatially distributed measurements of snow density (R2 0.33, p = <0.001) and modeled downwelling short wave radiation. However, in 2014 the correlation was very low, supporting our hypothesis that seasonal differences in dust driven radiative forcing are also

  13. 'Snow Queen' Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This animation consists of two close-up images of 'Snow Queen,' taken several days apart, by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander.

    Snow Queen is the informal name for a patch of bright-toned material underneath the lander.

    Thruster exhaust blew away surface soil covering Snow Queen when Phoenix landed on May 25, 2008, exposing this hard layer comprising several smooth rounded cavities beneath the lander. The RAC images show how Snow Queen visibly changed between June 15, 2008, the 21st Martian day, or sol, of the mission and July 9, 2008, the 44th sol.

    Cracks as long as 10 centimeters (about four inches) appeared. One such crack is visible at the left third and the upper third of the Sol 44 image. A seven millimeter (one-third inch) pebble or clod appears just above and slightly to the right of the crack in the Sol 44 image. Cracks also appear in the lower part of the left third of the image. Other pieces noticeably shift, and some smooth texture has subtly roughened.

    The Phoenix team carefully positioned and focused RAC the same way in both images. Each image is about 60 centimeters, or about two feet, wide. The object protruding in from the top on the right half of the images is Phoenix's thermal and electrical conductivity probe.

    Snow Queen and other ice exposed by Phoenix landing and trenching operations on northern polar Mars is the first time scientists have been able to monitor Martian ice at a place where temperatures are cold enough that the ice doesn't immediately sublimate, or vaporize, away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Studies on Physical Properties of Snow Based on Multi Channel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.

    1985-01-01

    The analysis of the data observed over a snow field with a breadboard model of MSR (microwave scanning radiometer) to be installed in MOS-1 (Marine Observation Satellite-1) indicates that: (1) the influence of incident angle on brightness temperature is larger in horizontal polarization component than in vertical polarization component. The effect of incident angle depends upon the property of snow with larger value for dry snow; (2) the difference of snow surface configuration consisting of artifically made parallel ditches of 5 cm depth and 5 cm width with spacing of 10 and 30 cm respectively which are oriented normal to electrical axis do not affect brightness temperature significantly; and (3) there is high negative correlation between brightness temperature and snow depth up to the depth of 70 cm which suggests that the snow depth can be measured with a two channel microwave radiometer up to this depth.

  15. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    PubMed

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health. PMID:27162369

  16. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    PubMed Central

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health. PMID:27162369

  17. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    NASA Astrophysics Data System (ADS)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  18. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  19. 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'

    Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  1. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  2. Highstands during Marine Isotope Stage 5: evidence from the Ironshore Formation of Grand Cayman, British West Indies

    NASA Astrophysics Data System (ADS)

    Coyne, Morag K.; Jones, Brian; Ford, Derek

    2007-02-01

    The Ironshore Formation on Grand Cayman is formed of six unconformity-bounded packages (units A-F). Units A, B, C, and D, known from the subsurface in the northeastern part of Grand Cayman, formed during Marine Isotope Stages (MIS) 11(?), 9, 7, and 5e, respectively. Unconformities at the tops of units A, B, and C are highlighted by terra rossa and/or calcrete layers. Strata in core obtained from wells drilled in George Town Harbour and exposed on the west part of Grand Cayman belong to unit D, and the newly defined units E and F. Corals from unit E yielded Th/U ages of ˜104 ka whereas conch shells from unit F gave ages of ˜84 ka. Unit E equates to MIS 5c whereas unit F developed during MIS 5a. Th/U dating of corals and conchs from the Ironshore Formation on the western part of Grand Cayman shows that unit D formed during the MIS 5e highstand whereas units E and F developed in association with highstands at 95-110 ka (MIS 5c) and 73-87 ka (MIS 5a). Unit E, ˜5 m thick in the offshore cores, is poorly represented in onshore exposures. Unit F, which unconformably overlies unit D at most localities, is formed largely of fossil-poor, cross-bedded ooid grainstones. The unconformity at the top of unit D, a marine erosional surface with up to 2.5 m relief, is not characterized by terra rossa or calcrete in the offshore cores or onshore exposures. Unit D formed with a highstand of +6 m asl, whereas units E and F developed when sea level was +2 to +5 asl and +3 to +6 m asl, respectively. Thus, the highstands associated with MIS 5e, 5c, and 5a were at similar elevations.

  3. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish.

    PubMed

    Kurita, Yukihiro; Nakada, Tsutomu; Kato, Akira; Doi, Hiroyuki; Mistry, Abinash C; Chang, Min-Hwang; Romero, Michael F; Hirose, Shigehisa

    2008-04-01

    Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B). PMID:18216137

  4. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment

    NASA Astrophysics Data System (ADS)

    Loh, Andrew; Shim, Won Joon; Ha, Sung Yong; Yim, Un Hyuk

    2014-12-01

    Oil suspended particulate matter (SPM) aggregates (OSA) are naturally occurring phenomena where oil droplets and particles interact to form aggregates. This aggregation could aid cleanup processes of oil contaminated waters. When OSA is formed, it makes oil less sticky and would facilitate the dispersion of oil into the water column. Increased oil-water surface contact by OSA formation enhances biodegradation of oil. Its applicability as a natural oil clean-up mechanism has been effectively demonstrated over past decades. There are many factors affecting the formation of OSA and its stability in the natural environment that need to be understood. This review provides a current understanding of (1) types of OSA that could be formed in the natural environment; (2) controlling factors and environmental parameters for the formation of OSA; (3) environmental parameters; and (4) fate of OSA and its applicability for oil spill remediation processes.

  5. Interannual variability of snow and fluvial regimes in Andorra

    NASA Astrophysics Data System (ADS)

    Pesado, Cristina; Riba, Sergi; Pons, Marc; Lopez-Moreno, Juan Ignacio

    2016-04-01

    Highlands in Andorra are snow-dominated areas during all the winter and most of the spring season. Interannual snow variability in these areas has a strong and straight influence on the amount and seasonality of river regimes at the bottom of the valley where most of the population and water requirements are concentrated. The present study analyzes the temporal and spatial variability of the fluvial regimes in Andorra and seeks to understand the interplay of different topographic and climatic variables on this variability. For example, in mountainous regions temperature determines the state of precipitation and this state can significantly affect runoff formation. The interannual temporal and spatial variability of temperatures, pluviometry and different snow indices such as snow heights and days with snow on the ground has been studied for the last decade and correlated with the fluvial dynamics and its variability using discharge measurements. This study focus especially in the assessment of the role of snow and its seasonality in the fluvial regime dynamics and the influence in the torrential flows and flood hazard. Flood hazard, force to take protection measures, which need information about flood frequency and magnitude. For this, flow instrumental series are used, but usually they do not consider phenomena like snowmelt. This study contributes intends to better understand the interplay between snow and fluvial dynamics and improve the assessment of the availability of water resources as well as the requirements in terms of protection measures.

  6. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  7. MODIS Snow and Ice Production

    NASA Technical Reports Server (NTRS)

    Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)

    2002-01-01

    Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.

  8. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.

  9. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other

  10. Remote Sensing of Snow Cover. Section; Snow Extent

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.

    2012-01-01

    Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.

  11. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation

    NASA Astrophysics Data System (ADS)

    de la Rocha, Christina L.; Brzezinski, Mark A.; DeNiro, Michael J.

    1997-12-01

    The fractionation of silicon isotopes by three species of marine diatoms, Skeletonema costatum, Thalassiosira weissflogii, and Thalassiosira sp., grown in batch culture, is reported. Fractionation was observed for all species. The δ 30Si value of the diatom silica and that of the initial silicic acid in the culture medium were used to compute a fractionation factor (α). The values of a for the three species were nearly identical, averaging 0.9989 ± 0.0004 (s.d., n = 13), which corresponds to the production of diatom silica with a δ 30Si value that is 1.1‰ more negative than that of the dissolved silicon utilized for growth. The fractionation factor did not vary with temperature and the consequent change in growth rate (ANOVA, p =0.61; tested at 12°, 15°, and 22°C with Thalassiosira sp.). The observation of fractionation of silicon isotopes by diatoms is an essential step in establishing δ 30Si variations in biogenic silica as a potential oceanographic tracer.

  12. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  13. A multi-mineral natural product from red marine algae reduces colon polyp formation in C57BL/6 mice

    PubMed Central

    Aslam, Muhammad N.; Bergin, Ingrid; Naik, Madhav; Paruchuri, Tejaswi; Hampton, Anna; Rehman, Muneeb; Dame, Michael K; Rush, Howard; Varani, James

    2013-01-01

    The goal of this study was to determine if a multi-mineral natural product derived from red marine algae, could reduce colon polyp formation in mice on a high fat diet. C57BL/6 mice were maintained for up to 18 months either on a high-fat “Western-style” diet or on a low-fat diet (AIN 76A), with or without the multi-mineral-supplement. To summarize, colon polyps were detected in 22 of 70 mice (31%) on the high-fat diet, but in only 2 of 70 mice (3%) receiving the mineral-supplemented high-fat diet (p<0.0001). Colon polyps were detected in 16 of 70 mice (23%) in the low-fat group; not significantly different from high-fat group but significantly higher than the high-fat-supplemented group (p=0.0006). This was in spite of the fact that the calcium level in the low-fat diet was comparable to the level of calcium in the high-fat diet containing the multi-mineral-product. Supplementation of the low-fat diet reduced the incidence to 8 of 70 mice (11% incidence). Taken together, these findings demonstrate that a multi-mineral natural product can protect mice on a high-fat diet against adenomatous polyp formation in the colon. These data suggest that increased calcium alone is insufficient to explain the lower incidence of colon polyps. PMID:23035966

  14. Integrated Northern Hemisphere Terrestrial Snow Extent Climate Datasets

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Estilow, T. W.; Henderson, G.; Mote, T. L.; Hall, D. K.

    2011-12-01

    Multiple satellite-derived sources of snow cover extent (SCE), snow-cover fraction (SCF) and melting snow over Northern Hemisphere (NH) lands have been used to produce two integrated datasets. One dataset is long enough (over 30 years) to be considered a climate data record (CDR), a second has data of a quality suitable for a CDR but lacks the duration to be recognized as such. These datasets provide state-of-the-art NH snow information in multiple formats and on multiple time steps for the research community, decision-makers and stakeholders. To generate the CDR, a low-resolution, long-term SCE record available on a weekly timescale derived from a thorough reanalysis of NOAA satellite-derived maps of NH continental SCE dating back to the late 1966 was integrated with a newly generated 1979-present microwave SCE and melting snow product. A 100 km Equal-Area Scalable Earth version 2 grid (EASE2) developed at the National Snow and Ice Data Center is used for this CDR. The shorter-term integrated dataset has a higher spatial resolution (25km EASE2) and is daily. It was developed to assess the level of agreement between the NOAA Interactive Multisensor Snow and Ice Mapping System SCE, the previously mentioned microwave product and the MODIS cloud gap filled SCF product. The period of overlap for these three datasets spans from 2000-present. We will discuss methodologies of identifying SCE, melting snow and SCF amongst the contributing data sources, techniques of integrating these products into the CDR and 25km products and confidence assessments. We will also provide an overall evaluation of how these datasets improve regional to NH scale monitoring of snow cover.

  15. 'Snow White' in Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the trench dubbed 'Snow White,' after further digging on the 25th Martian day, or sol, of the mission (June 19, 2008). The lander's solar panel is casting a shadow over a portion of the trench.

    The trench is about 5 centimeters (2 inches) deep and 30 centimeters (12 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. On the evolution of the Snow Line in Protoplanetary Discs

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Livio, Mario

    2014-01-01

    We examine the evolution of the snow line in a protoplanetary disc. If the magneto-rotational instability (MRI) drives turbulence throughout the disc, there is a unique snow line outside of which the disc is icy. The snow line moves closer to the star as the infall accretion rate drops. Because the snow line moves inside the radius of the Earth's orbit, the formation of our water-devoid planet is difficult with this model. However, protoplanetary discs are not likely to be sufficiently ionised to be fully turbulent. A dead zone at the mid-plane slows the flow of material through the disc and a global steady state cannot be achieved. We model the evolution of the snow line also in a disc with a dead zone. As the mass is accumulating, the outer parts of the dead zone become self gravitating, heat the massive disc and thus the outer snow line does not come inside the radius of the Earth's orbit. With this model there is sufficient time and mass in the disc for the Earth to form from water-devoid planetesimals at a radius of 1AU. Furthermore, the additional inner icy region within the dead zone predicted by this model may allow for the formation of giant planets close to their host star without the need for much migration.

  17. Quantifying Snow Transport Using Snow Fences and Sonic Sensors

    NASA Astrophysics Data System (ADS)

    Sturm, M.; Berezovskaya, S.; Hiemstra, C.; Gelvin, A.

    2010-12-01

    Accurate assessment of snow transport (T) during wind events is a prerequisite to reliable estimation of snow loads on infrastructure and prediction of avalanche danger in the mountains. It is also a critical term in the winter water balance, affecting snow sublimation. To assess T we constructed two snow fences in northern Alaska and used an existing municipal fence near Barrow, Alaska to trap the wind-blown flux of snow. On the leeward side of each fence we installed a line of SR50 sonic ranging sensors that could be used to track the increase in snow height with time. We also installed web-cameras to monitor changes in drift shape. Periodic snow surface elevation surveys using a DGPS system provided more detailed drift profiles during the winter. Wind speed and direction were monitored near the fences. The sonic sensor results have been combined with the DGPS surveys to produce a time series of drift cross-section from which the flux has been computed. We have related this flux to individual wind events in an effort to identify the optimal conditions for blowing snow transport and to derive an empirical expression for T from weather measurements.

  18. SnowClim: Snow climate monitoring for Europe

    NASA Astrophysics Data System (ADS)

    Bissolli, P.; Maier, U.

    2009-09-01

    Snow cover, particularly its depth and its frequency, is a very essential climate element. It influences the earth's surface radiation budget considerably due to its reflectivity properties and also it has large impact on economy and daily life (e.g. traffic, tourism). Although a lot of research and many national activities of snow monitoring have been done, there are very few products describing an integrated snow monitoring for whole Europe. In the light of a foreseen future Regional Climate Centre on Climate Monitoring (RCC-CM), the German Meteorological Service (Deutscher Wetterdienst, DWD) has established some first operational snow climate monitoring activities for the WMO Region VI (Europe and the Middle East). First selected key elements are the number of snowdays with a snow cover > 1 cm, the mean and the maximum snow depth per month. Results are presented in form of monthly and climatological maps, tables and diagrams of time series starting in 1981. Data presently are taken from observations at synoptical stations, received by the Global Telecommunication System. A first quality control based on threshold tests has been developed. The snow climate monitoring products are currently under further development. New evaluations will be carried out also on a daily data basis, additional satellite data, and also the quality control procedure will be extended. Some operational SnowClim products are available on the DWD web site: www.dwd.de/snowclim

  19. High-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata: Examples from the Sunnyside Member of the Cretaceous Blackhawk Formation Book Cliffs eastern Utah

    SciTech Connect

    Davies, R.; Howell, J.; Boyd, R.; Flint, S.; Diessel, C.

    2006-07-15

    The Sunnyside Member of the Upper Cretaceous Blackhawk Formation in the Book Cliffs of eastern Utah provides an ideal opportunity to investigate high-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata in an area of outstanding outcrop exposure. The thick, laterally extensive coal seam that caps the Sunnyside Member is critical for correlating between its shallow-marine and terrestrial components. Petrographic analysis of 281 samples obtained from 7 vertical sections spanning more than 30 km (18 mi) of depositional dip enabled us to recognize a series of transgressive-regressive coal facies trends in the seam. On this basis, we were able to identify a high-resolution record of accommodation change throughout the deposition of the coal, as well as a series of key sequence-stratigraphic surfaces. The stratigraphic relationships between the coal and the siliciclastic components of the Sunnyside Member enable us to correlate this record with that identified in the time-equivalent shallow-marine strata and to demonstrate that the coal spans the formation of two marine parasequences and two high-frequency, fourth-order sequence boundaries. This study has important implications for improving the understanding of sequence-stratigraphic expression in terrestrial strata and for correlating between marine and terrestrial records of base-level change. It may also have implications for improving the predictability of vertical and lateral variations in coal composition for mining and coalbed methane projects.

  20. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  1. Microtomography of macroscopic snow samples

    NASA Astrophysics Data System (ADS)

    Matzl, M.; Schneebeli, M.; Steinfeld, D.; Steiner, S.; Heggli, M.

    2010-12-01

    During the last 10 years X-ray microtomography (micro-CT) has proved to be the first successful method to measure the true three-dimensional (3-D) structure of snow on the ground. Micro-CT is used to reconstruct 3-D microstructures as a source for numerical simulations, to conduct long-term observations of metamorphism or the behavior of snow under stress and to derive macroscopic parameters describing the microstructure of snow like specific surface area or density. However, micro-CT was confined to small samples with a typically evaluated size of 5 x 5 x 5 mm3. One reason for the small size was the limited computational power, the other the sample preparation. Based on the replica method for 3-D micro-CT samples introduced by Heggli et al. (2009), we are now able to visualize snow samples up to 70 mm height, and about 10 mm diameter, with a resolution of 10 μm. Because inclusion of small air bubbles during the casting process can not be avoided, we make two scans, one before and one after sublimation, the two scans are then registered and subtracted. After image segmentation and morphological image processing the replica can be analysed in the same way as direct snow measurements. Based on such samples, we imaged highly fragile snow samples, like new snow, buried surface hoar and other weak layers. The samples show a fascinating new image of how complex snow layers are. Most samples show strong density gradients within a structurally similar layer. We think that this technique will improve our understanding of snow metamorphism and snow properties. Heggli, M.; Frei, E.; Schneebeli, M., 2009: Instruments and Methods. Snow Replica method for three-dimensional X-ray microtomographic imaging. J. Glaciol. 55, 192: 631-639.

  2. Late albian kiowa-skull creek marine transgression, lower dakota formation, eastern margin of western interior seaway, U.S.A

    USGS Publications Warehouse

    Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.J.; Zawistoski, A.N.; Kvale, E.P.; Ravn, R.L.; Joeckel, R.M.

    2000-01-01

    An integrated geochemical-sedimentological project is studying the paleoclimatic and paleogeographic characteristics of the mid-Cretaceous greenhouse world of western North America. A critical part of this project, required to establish a temporal framework, is a stratigraphie study of depositional relationships between the AlbianCenomanian Dakota and the Upper Albian Kiowa formations of the eastern margin of the Western Interior Seaway (WIS). Palynostratigraphic and sedimentologic analyses provide criteria for the Dakota Formation to be divided into three sedimentary sequences bounded by unconformities (D0, D1, and D2) that are recognized from western Iowa to westernmost Kansas. The lowest of these sequences, defined by unconformities D0 and D1, is entirely Upper Albian, and includes the largely nonmarine basal Dakota (lower part of the Nishnabotna Member) strata in western Iowa and eastern Nebraska and the marine Kiowa Formation to the southwest in Kansas. The gravel-rich fluvial deposits of the basal part of the Nishnabotna Member of the Dakota Formation correlate with transgressive marine shales of the Kiowa Formation. This is a critical relationship to establish because of the need to correlate between marine and nonmarine strata that contain both geochronologic and paleoclimatic proxy data. The basal gravel facies (up to 40 m thick in western Iowa) aggraded in incised valleys during the Late Albian Kiowa-Skull Creek marine transgression. In southeastern Nebraska, basal gravels intertongue with carbonaceous mudrocks that contain diverse assemblages of Late Albian palynomorphs, including marine dinoflagellates and acritarchs. This palynomorph assemblage is characterized by occurrences of palynomorph taxa not known to range above the Albian Kiowa-Skull Creek depositional cycle elsewhere in the Western Interior, and correlates to the lowest of four generalized palynostratographic units that are comparable to other palynological sequences elsewhere in North

  3. The marine transgression in the Benue Trough (NE Nigeria): a palaeogeographic interpretation of the Gongila Formation

    NASA Astrophysics Data System (ADS)

    Rebelle, M.

    Upper Cretaceous Gongila Formation in Benue Trough (NE Nigeria) is investigated. Through a detailed sedimentologic study, a lithologic log is proposed with 22 different levels for a 20 m thick section. Both palaeontological and petrographical results are used to describe the diagenetic history of Gongila limestones. A sedimentologic interpretation is thus suggested, illustrating the close relationships between sedimentation and regional tectonics. Occurrence of a Trans-Saharan Seaway is finally discussed. The palaeontological affinities between Sahara and Nigerian faunas have to be supported by sedimentological observations in order to conclude with assurance on the existence of such a seaway during the Cenomanian and Lower Turonian.

  4. Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Alexander, B.; Allman, D. J.; Amos, H. M.; Fairlie, T. D.; Dachs, J.; Hegg, Dean A.; Sletten, Ronald S.

    2012-03-01

    We use observations of the oxygen-17 excess of non-sea salt sulfate aerosol (Δ17O(nssSO42-)) collected from two ship cruises in the subtropical northeast Atlantic Ocean in August 2006 and February 2007 to quantify the formation pathways of sulfate in the marine boundary layer (MBL). The large observed Δ17O(nssSO42-) values up to 7.3‰ suggest a large role for sulfate formation via S(IV) oxidation by O3 in the MBL. Model simulations with the GEOS-Chem global chemical transport model suggest that in-cloud oxidation of S(IV) by O3 represents over one-third (36-37%) of total in-cloud sulfate production on average. A model parameterization accounting for the impacts of sea salt aerosol on cloud droplet chemical heterogeneity and resulting impacts on in-cloud sulfate production rates improves the model's agreement with the Δ17O(nssSO42-) observations in the MBL. Including this parameterization in the model had little impact on the global sulfur budget due to the dominant role of continental anthropogenic emissions for global sulfur emissions in the present-day. The large observed Δ17O(nssSO42-) argue against a significant role of hypobromous (HOBr) or hypochlorous (HOCl) acid for sulfate formation in the remote MBL of the wintertime subtropical northeast Atlantic, but S(IV) oxidation by HOBr/HOCl on the order of 20% of total sulfate abundance is consistent with the summertime Δ17O(nssSO42-) observations in the more polluted coastal region of the Iberian Peninsula. Additional measurements of Δ17O(nssSO42-) are needed to quantify sulfate production mechanisms in the MBL over larger spatial and temporal scales.

  5. Application of snow models to snow removal operations on the Going-to-the-Sun Road, Glacier National Park

    USGS Publications Warehouse

    Fagre, Daniel B.; Klasner, Frederick L.

    2000-01-01

    Snow removal, and the attendant avalanche risk for road crews, is a major issue on mountain highways worldwide. The Going-to-the-Sun Road is the only road that crosses Glacier National Park, Montana. This 80-km highway ascends over 1200m along the wall of a glaciated basin and crosses the continental divide. The annual opening of the road is critical to the regional economy and there is public pressure to open the road as early as possible. Despite the 67-year history of snow removal activities, few stat on snow conditions at upper elevations were available to guide annual planning for the raod opening. We examined statistical relationships between the opening date and nearby SNOTEL data on snow water equivalence (WE) for 30 years. Early spring SWE (first Monday in April) accounted for only 33% of the variance in road opening dates. Because avalanche spotters, used to warn heavy equipment operators of danger, are ineffective during spring storms or low-visibility conditions, we incorporated the percentage of days with precipitation during plowing as a proxy for visibility. This improved the model's predictive power to 69%/ A mountain snow simulator (MTSNOW) was used to calculate the depth and density of snow at various points along the road and field data were collected for comparison. MTSNOW underestimated the observed snow conditions, in part because it does not yet account for wind redistribution of snow. The severe topography of the upper reaches of the road are subjected to extensive wind redistribution of snow as evidence by the formation of "The Big Drift" on the lee side of Logan Pass.

  6. Marine Boundary Layer Structure for the Sea Fog Formation off the West Coast of the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Yum, Seong Soo

    2012-05-01

    Marine boundary layer (MBL) structure for the formation of sea fogs off the west coast of the Korean Peninsula are examined for the investigation period from January 2002 to August 2006, using the meteorological data measured at a buoy and the vertical sounding data measured at an island in this region. There is the total of 3,294 vertical soundings during the investigation period. Based on these vertical soundings, the MBL structure is classified as convective boundary layer (CBL; when inversion exists aloft but at altitudes lower than 3 km, 1,618 soundings), stable boundary layer (SBL; when inversion base is at the surface, 655 soundings) or near-neutral boundary layer (NNBL; when there is no inversion or inversion base is higher than 3 km altitude, 1,021 soundings). Under the CBL condition, the most frequently formed lower level cloud is stratocumulus but fogs do form in spring and summer months mostly as warm sea fogs [TSST (=T-SST) < 0]. Under the SBL condition, stratus and cold sea fogs (TSST > 0) are the most frequently found lower level clouds. The effects of turbulence, advection and radiation on sea fog formation vary with turbulence strength, represented by bulk Richardson number, R b. For cold sea fog cases, in the highly turbulent regime ( R b < 0.03), strong turbulent cooling and drying are canceled out by equally strong or even stronger warm and moist advection, and thus the additional radiative cooling turns out to be critical in the successful formation of fog. In the weak turbulent and non-turbulent ( R b > 0.30) regimes, the effects of turbulence decrease dramatically and so do the advection effects but radiative cooling is still strong, again making it the crucial reason for the successful formation of cold sea fogs. On the other hand, the turbulent moisture supply from the warmer sea surface is the crucial factor for the formation of warm sea fogs while turbulent warming and radiative cooling largely cancel each other out and the advection

  7. The value of snow cover

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  8. Snow reflectance from thematic mapper

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    Calculations of snow reflectance in all 6 TM reflective bands (i.e., 1,2,3,4,5, and 7) using a delta Eddington model show that snow reflectance in bands 4,5, and 7 is sensitive to grain size. Efforts to interpret the surface optical grain size for the spectral extension of albedo are described. Results show the TM data include spectral channels suitable for snow/cloud discrimination and for snow albedo measurements that can be extended throughout the solar spectrum. Except for band 1, the dynamic range is large enough that saturation occurs only occasionally. The finer resolution gives much better detail on the snowcovered area and might make it possible to use textural information instead of the snowline as an index to the amount of snow melt runoff.

  9. ESA SnowLab project

    NASA Astrophysics Data System (ADS)

    Wiesmann, Andreas; Caduff, Rafael; Frey, Othmar; Werner, Charles

    2016-04-01

    Retrieval of the snow water equivalaent (SWE) from passive microwave observations dates back over three decades to initial studies made using the first operational radiometers in space. However, coarse spatial resolution (25 km) is an acknowledged limitation for the application of passive microwave measurements. The natural variability of snow cover itself is also notable; properties such as stratigraphy and snow microstructure change both spatially and over time, affecting the microwave signature. To overcome this deficit, the satellite mission COld REgions Hydrology High-resolution Observatory (CoReH2O) was proposed to the European Space Agency (ESA) in 2005 in response to the call for Earth Explorer 7 candidate missions. CoReH2O was a dual frequency (X- and Ku-band) SAR mission aimed to provide maps of SWE over land and snow accumulation on glaciers at a spatial resolution of 200 to 500 meters with an unprecedented accuracy. Within the frame of preparatory studies for CoReH2O Phase A, ESA undertook several research initiatives from 2009 to 2013 to study the mission concept and capabilities of the proposed sensor. These studies provided a wealth of information on emission and backscattering signatures of natural snow cover, which can be exploited to study new potential mission concepts for retrieval of snow cover properties and other elements of the cryosphere. Currently data related to multi-frequency, multi-polarisation, multitemporal of active and passive microwave measurements are still not available. In addition, new methods related to e.g. tomography are currently under development and need to be tested with real data. Also, the potential of interferometric and polarimetric measurements of the snow cover and its possible impact for novel mission/retrieval concepts must be assessed. . The objective of the SnowLab activity is to fill this gap and complement these datasets from earlier campaigns by acquiring a comprehensive multi-frequency, multi

  10. PERSPECTIVE: Snow matters in the polar regions

    NASA Astrophysics Data System (ADS)

    Sodeau, John

    2010-03-01

    Antarctica is not quite as chemically pristine as might sometimes be thought (Jones et al 2008). For example, as elsewhere, reduced sulfur species such as dimethylsulfide (DMS) are emitted from biogenic marine sources at the poles (Read et al 2008). Somewhat less well known is that inland (as opposed to coastal) field campaigns have also detected, within the Antarctic boundary layer (ABL), emissions containing unexpectedly high levels of diverse, oxidizing chemicals such as NOx, nitrate ions, formaldehyde, ozone and hydrogen peroxide (Honrath et al 1999, Hutterli et al 2004, Sumner and Shepson 1999). And then there are the halogen-containing compounds (Simpson et al 2007). The transformation of DMS to sulfate aerosols capable of acting as cloud condensation nuclei often proceeds via one main oxidized product of DMS, namely methanesulfonic acid (MSA). Two specific reactions have been well studied to date in this regard, namely DMS plus either OH or NO3 radicals. Corresponding reactions with halogen radicals, which also contribute to the oxidizing capacity of our atmosphere, have generally been considered to be of less importance. The reason for this view is that even though the reactivity of bromine- and iodine-containing radicals is much greater than that of OH, the halogens were thought to be relatively scarce in the polar atmosphere. However both BrO (and IO) have been detected in the Antarctic CHABLIS campaign, as discussed in depth in the Atmospheric Chemistry and Physics special issue of 2008, see Jones et al (2008). It was subsequently shown that calculated MSA production from the DMS/BrO reaction may be about an order of magnitude greater than when the OH radical was the oxidizing reactant. The recent analytical measurements by Antony et al (2010) of MSA, Br and NO3 found in snow along the Ingrid Christensen Coast of East Antarctica are important in the above field context. Hence it would appear that the concentrations of these ions in ice-cap sites are up

  11. Imaging the water snow-line during a protostellar outburst

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Casassus, Simon; Tobin, John; Bos, Steven P.; Williams, Jonathan P.; Perez, Sebastian; Zhu, Zhaohuan; Caceres, Claudio; Canovas, Hector; Dunham, Michael M.; Hales, Antonio; Prieto, Jose L.; Principe, David A.; Schreiber, Matthias R.; Ruiz-Rodriguez, Dary; Zurlo, Alice

    2016-07-01

    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296 (refs 3, 10), at distances of about 30 astronomical units (AU) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 AU away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report images at 0.03-arcsec resolution (12 AU) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 AU, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.

  12. Imaging the water snow-line during a protostellar outburst.

    PubMed

    Cieza, Lucas A; Casassus, Simon; Tobin, John; Bos, Steven P; Williams, Jonathan P; Perez, Sebastian; Zhu, Zhaohuan; Caceres, Claudio; Canovas, Hector; Dunham, Michael M; Hales, Antonio; Prieto, Jose L; Principe, David A; Schreiber, Matthias R; Ruiz-Rodriguez, Dary; Zurlo, Alice

    2016-07-14

    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation. PMID:27411631

  13. A probabilistic model for snow avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  14. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    PubMed

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. PMID:26617163

  15. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter.

    PubMed

    Zhu, Songming; Shen, Jiazheng; Ruan, Yunjie; Guo, Xishan; Ye, Zhangying; Deng, Yale; Shi, Mingming

    2016-07-01

    Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm. PMID:27068911

  16. Vertical profiles of specific surface area, thermal conductivity and density of mid-latitude, Arctic and Antarctic snow: relationships between snow physics and climat

    NASA Astrophysics Data System (ADS)

    Domine, F.; Arnaud, L.; Bock, J.; Carmagnola, C.; Champollion, N.; Gallet, J.; Lesaffre, B.; Morin, S.; Picard, G.

    2011-12-01

    We have measured vertical profiles of specific surface area (SSA), thermal conductivity (TC) and density in snow from 12 different climatic regions featuring seasonal snowpacks of maritime, Alpine, taiga and tundra types, on Arctic sea ice, and from ice caps in Greenland and Antarctica. We attempt to relate snow physical properties to climatic variables including precipitation, temperature and its yearly variation, wind speed and its short scale temporal variations. As expected, temperature is a key variable that determines snow properties, mostly by determining the metamorphic regime (temperature gradient or equi-temperature) in conjunction with precipitation. However, wind speed and wind speed distribution also seem to have an at least as important role. For example high wind speeds determine the formation of windpacks of high SSA and high TC instead of depth hoar with lower values of these variables. The distribution of wind speed also strongly affects properties, as for example frequent moderate winds result in frequent snow remobilization, producing snow with higher SSA and lower TC than regions with the same average wind speeds, but with less frequent and more intense wind episodes. These strong effects of climate on snow properties imply that climate change will greatly modify snow properties, which in turn will affect climate, as for example changes in snow SSA modify albedo and changes in TC affect permafrost and the release of greenhouse gases from thawing permafrost. Some of these climate-snow feedbacks will be discussed.

  17. On the Snow Line in Dusty Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Sasselov, D. D.; Lecar, M.

    2000-01-01

    C. Hayashi prescribed a ``minimum-mass solar nebula,'' which contained just enough material to make the planets. This prescription, which has been widely used in constructing scenarios for planet formation, proposed that ice will condense when the temperature falls below 170 K (the ``snow line''). In Hayashi's model, that occurred at 2.7 AU. It is usually assumed that the cores of the giant planets (e.g., Jupiter) form beyond the snow line. The snow line, in Hayashi's model, is where the temperature of a black body that absorbed direct sunlight and reradiated as much as it absorbed would be 170 K. Since Hayashi, there have been a series of more detailed models of the absorption by dust of the stellar radiation and of accretional heating, which alter the location of the snow line. We have attempted a ``self-consistent'' model of a T Tauri disk in the sense that we used dust properties and calculated surface temperatures that matched observed disks. We then calculated the midplane temperature for those disks, with no accretional heating or with small (<=10-8 Msolar yr-1) accretion rates. (Larger accretion rates can push the snow line out to beyond 4 AU but do not match the observed disks.) Our models bring the snow line in to the neighborhood of 1 AU--not far enough to explain the close planetary companions to other stars, but much closer than in recent starting lines for orbit migration scenarios.

  18. Snow metamorphism: A fractal approach.

    PubMed

    Carbone, Anna; Chiaia, Bernardino M; Frigo, Barbara; Türk, Christian

    2010-09-01

    Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level. PMID:21230135

  19. NASA’s Sense of Snow: the Airborne Snow Observatory

    NASA Video Gallery

    Water is a critical resource in the western U.S. NASA’s Airborne Snow Observatory is giving California water agencies the first complete measurements of the water available in the Sierra snowpack ...

  20. The Effect of Forest Structure on Snow Hydrology in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Pomeroy, J.; Ellis, C.; MacDonald, J.

    2008-12-01

    Mountain evergreen forests exert two primary effects on the formation and ablation of the seasonal snowcover. The first is the interception of snowfall in the forest canopy, resulting in sublimation, melt or unloading from the canopy. Snow interception can capture a very large percentage of the seasonal snowfall and in cold conditions this snow can be held for many days in the canopy. In the canopy snow is exposed to high rates of turbulent transfer and so can sublimate rapidly where unsaturated conditions prevail. Snow also metamorphoses in the canopy and some intercepted snow is unloaded to the surface, depending on the mechanics of slippage between branch and intercepted snow and the failure of intercepted snow clumps. The result of the snow interception, sublimation and unloading processes is that snow accumulation usually declines with increasing forest cover. This effect is most pronounced in cold, dry and windy conditions. The second primary effect of mountain forests is that snow on the ground is subjected to modified radiation regimes due to the extinction of shortwave radiation and emission of longwave radiation by the forest canopy. Some extinguished shortwave energy is also emitted as longwave energy. The result is to sometimes reduce and sometimes increase the incoming radiation available to the snowpack compared to open areas, the direction of change depending on cloudiness, solar angle, canopy structure, snow albedo, degree of slope and aspect. In cold continental mountain environments, net radiation available for snowmelt is generally reduced by increasing forest cover on level sites and south facing slopes but is enhanced by increasing forest cover on north facing slopes. The dramatic implications of the combined effects on snow hydrology of changing snow interception and radiation regimes as mountain forest cover is reduced from insect infestation, logging and burning are demonstrated and discussed.

  1. Contaminants in arctic snow collected over northwest Alaskan sea ice

    USGS Publications Warehouse

    Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.

    2002-01-01

    Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.

  2. The ringed seal's last refuge and the importance of snow cover

    NASA Astrophysics Data System (ADS)

    Kelly, B. P.; Bitz, C. M.

    2010-12-01

    Ringed seals are strongly adapted to inhabiting seasonal ice cover throughout the Arctic Ocean, marginal seas, and some freshwater lakes. Their distribution has expanded and contracted with northern hemisphere ice cover and is expected to mirror declining ice cover in coming decades. Ringed seals require snow cover to provide shelter from extreme cold and from predators, and the southern extent of their range corresponds to the latitudes to which snow cover—sufficient to form and maintain subnivean lairs—extends. The lairs are especially critical to the survival of pups born and nursed under the snow in late March through May. Snow drifts 50 cm or deeper are necessary for lair occupation, and field measurements indicate that such drifting occurs only where average snow depths (on flat ice) exceed 20 cm. When snow depths are less, ringed seal pups freeze in their lairs and are vulnerable to predation by carnivores and birds. As the climate warms, winter precipitation is expected to increase in the Arctic Ocean, potentially favoring formation and occupation of lairs. At the same time, increasingly late ice formation is expected to decrease the overall accumulation of snow, an effect exacerbated by the high fraction of annual snow fall that occurs in autumn. Early snow melts also contribute to pup mortality and are likely to increase as the climate warms. We forecast April snow depths on Arctic sea ice through the year 2100 in seven runs of CCSM3. Despite predicted increases in winter precipitation in the Arctic, the model forecasted that the accumulation of snow on sea ice will decrease by almost 50% in this century. The timing of the onset of snow melt changes little in the projections, but the shallower snow pack will melt more quickly in the warmer climate. In almost all portions of the range, average snow depths are expected to be less than 20 cm and inadequate for successful rearing of ringed seal young by the end of the century and—in many locations

  3. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  4. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2014-04-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for linking snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density (bulk density) climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.22 ± 0.05 g cm-3 over the study area. The maximum and minimum monthly mean snow density was about 0.33 g cm-3 in June, and 0.14 g cm-3 in October, respectively. Maritime and ephemeral snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, on the coast of Arctic Russia, and the Kamchatka Peninsula, while the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. There was a high correlation of snow density with elevation for tundra snow and snow density was highly correlated with latitude for prairie snow.

  5. Comprehensive Study of Carbonaceous Species in Arctic Snow: from Snow Type to Carbon Sources and Sinks in the Snowpack

    NASA Astrophysics Data System (ADS)

    Voisin, D.; Cozic, J.; Houdier, S.; Barret, M.; Jaffrezo, J. L.; King, M. D.; Beine, H. J.; Domine, F.

    2012-04-01

    . Total Carbon Content is highest in is highest in soil influenced indurated depth hoar layers and in diamond dust precipitation. It is found to decrease as snow ages, due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. A precise evaluation of this recycled fraction would need a more precise evaluation of the annual importance of diamond dust as a source of carbon to the snowpack. Organic Carbon in surface snows appears to have a very significant (~40%) insoluble fraction. HULIS, short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC+WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or an unknown source; a marine source is suggested.

  6. The Fallacy of Drifting Snow

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    2011-12-01

    A common parametrization over snow-covered surfaces that are undergoing saltation is that the aerodynamic roughness length for wind speed ( z 0) scales as {α u_ast^2/g}, where u * is the friction velocity, g is the acceleration of gravity, and α is an empirical constant. Data analyses seem to support this scaling: many published plots of z 0 measured over snow demonstrate proportionality to {u_ast^2 }. In fact, I show similar plots here that are based on two large eddy-covariance datasets: one collected over snow-covered Arctic sea ice; another collected over snow-covered Antarctic sea ice. But in these and in most such plots from the literature, the independent variable, u *, was used to compute z 0 in the first place; the plots thus suffer from fictitious correlation that causes z 0 to unavoidably increase with u * without any intervening physics. For these two datasets, when I plot z 0 against u * derived from a bulk flux algorithm—and thus minimize the fictitious correlation— z 0 is independent of u * in the drifting snow region, u * ≥ 0.30 ms-1. I conclude that the relation {z_0 = α u_ast^2/g} when snow is drifting is a fallacy fostered by analyses that suffer from fictitious correlation.

  7. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  8. The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): An analogue of future shallow-marine carbonate systems?

    NASA Astrophysics Data System (ADS)

    Payros, Aitor; Pujalte, Victoriano; Tosquella, Josep; Orue-Etxebarria, Xabier

    2010-07-01

    If the ongoing phenomenon of global warming prevails, three main consequences are expected in tropical seas: a higher sea level, a reduction in coral reefs and more intense cyclones. What will shallow-marine carbonate systems be like? Insights can be gained from the Pyrenean Urbasa-Andia Formation, a transgressive heterozoan-like foralgal (larger foraminiferal and red algal) ramp that formed in Middle Eocene times, a greenhouse interval characterized by high atmospheric CO 2 content. Firstly, the evolution of future tropical shallow-marine systems subject to a sea-level rise is very likely to be similar to that seen in the backstepping architecture of the Urbasa-Andia Formation. Secondly, Eocene larger foraminifers rose when the Paleocene-Eocene hyperthermal event caused a decline in corals in tropical seas. Coral reefs are again among the ecosystems that are likely to be particularly affected by current global warming. It is therefore probable that future shallow-marine tropical ecosystems will be devoid of platform margin coral reefs, heterozoan ramps being far more common. Thirdly, strong storm influence was common on the Urbasa-Andia carbonate ramp, the most distinctive feature being a distal dune field that was formed below storm wave base by high-energy return currents. Similar features also characterize other Eocene carbonate ramps. Furthermore, numerical simulations highlighted the effect of strong tropical cyclones during the equable climate of the Eocene. Together this information supports the hypothesis that tropical cyclone activity may increase under future greenhouse conditions. Taking everything into account, the transgressive storm-dominated foralgal ramp represented by the Urbasa-Andia Formation can be used as a virtual analogue of future shallow-marine carbonate sedimentary environments developed under greenhouse conditions.

  9. A consideration on the electric field formed by blowing snow particles

    NASA Astrophysics Data System (ADS)

    Omiya, Satoshi; Sato, Atsushi

    2013-04-01

    Fluctuations of the atmospheric electric field strength have been reported during blowing snow events. A primary factor of this phenomenon is the electrification of the blowing snow particles. Electric force applied to the blowing snow particles may be a contributing factor in the formation of snow drifts and snow cornices and changing particles' trajectory motion. These can cause natural disaster such as an avalanche and visibility deterioration. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The purpose of this study was to clarify the fluctuation characteristics of the electric field. In previous studies, some numerical models have been proposed; however, these models did not consider the dependency of the particle charges on the particle diameter or the height dependency of the horizontal mass flux. Taking into account those dependencies, we estimated the vertical electric field distribution. In this study, an experimental equation (Omiya et al., 2011), which can estimate the individual particle charge from the particle diameter and the air temperature, was used. In addition, the approximation equations of the vertical distribution of wind speed, the horizontal mass flux, and the average particle diameter were also used. A hot-wire anemometer was used to measure the wind speed. A snow particle counter (SPC) was used to measure the horizontal mass flux and the particle diameter distribution. This experiment was conducted in a cold wind tunnel (Ice and Snow Research Center, NIED, JAPAN) at an air temperature of -10 degree Celsius. In this calculation, for simplicity, some assumptions were considered; 1) The particle diameter and the particle number density are horizontally constant and uniform. (The electric field formed by the blowing snow particles is uniform horizontally.) 2) All the blowing snow particles are electrified negatively

  10. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  11. Politics of Snow

    NASA Astrophysics Data System (ADS)

    Burko, D.

    2012-12-01

    In a 2010 catalog introduction for my exhibition titled: POLITICS OF SNOW, Eileen Claussen, President of the Pew Center on Global Climate Change wrote the following: "Climate change has been taken over by politics…We are awash in talking points, briefing papers, scientific studies, and communiqués from national governments… Diane Burko's paintings remind us that all these words can often obscure or even obstruct our view of what is truly happening …..There is only so much you can do with words. People need to see that the world is changing before our eyes. When we look at Diane's images of the effects of climate change, we connect to something much deeper and more profound (and more moving) than the latest political pitch from one side or another in this debate…These paintings also connect us to something else. Even as Diane documents how things are changing, she also reminds us of the stunning beauty of nature - and, in turn, the urgency of doing everything in our power to protect it." The creation of this body of work was made possible because of the collaboration of many glacial geologists and scientists who continually share their visual data with me. Since 2006 I've been gathering repeats from people like Bruce Molnia (USGS) and Tad Pfeffer of Alaskan glaciers, from Daniel Fagre (USGS) of Glacier National Park and Lonnie Thompson and Jason Box (Ohio University's Byrd Polar Center) about Kilimanjaro, Qori Kalis and Petermann glaciers as well as from photographer David Breashears on the disappearing Himalayan glaciers. In my practice, I acknowledge the photographers, or archive agencies, such as USGS, NASA or Snow and Ice Center, in the title and all printed material. As a landscape painter and photographer my intent is to not reproduce those images but rather use them as inspiration. At first I used the documentary evidence in sets of diptychs or triptychs. Since 2010 I have incorporated geological charts of recessional lines, graphs, symbols and

  12. Detecting Falling Snow from Space

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Ben; Munchak, Joe

    2012-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earth's surface in order to fully capture the atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms includes determining the thresholds of detection for various active and passive sensor channel configurations, snow event cloud structures and microphysics, snowflake particle electromagnetic properties, and surface types. In this work, cloud resolving model simulations of a lake effect and synoptic snow event were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W -band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) Ku and Ka band, and the GPM Microwave Imager (GMI) channels from 10 to 183 plus or minus 7 GHz. Eleven different snowflake shapes were used to compute radar reflectivities and passive brightness temperatures. Notable results include: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, "the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with approximately 0.05 g per cubic meter detected at the surface, or an approximately 0.5-1 millimeter per hr. melted snow rate (equivalent to 0.5-2 centimeters per hr. solid fluffy snowflake rate). With detection levels of falling snow known, we can focus current and future retrieval efforts on detectable storms and concentrate advances on achievable results. We will also have an understanding of the light snowfall events missed by the sensors and not captured in the global estimates.

  13. Wind tunnel observations of drifting snow

    NASA Astrophysics Data System (ADS)

    Paterna, Enrico; Crivelli, Philip; Lehning, Michael

    2016-04-01

    Drifting snow has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by drifting snow. Understanding the dynamic of snow saltation is crucial to the accurate description of the process. We applied digital shadowgraphy in a cold wind tunnel to measure drifting snow over natural snow covers. The acquisition and evaluation of time-resolved shadowgraphy images allowed us to resolve a large part of the saltation layer. The technique has been successfully compared to the measurements obtained from a Snow Particle Counter, considered the most robust technique for snow mass-flux measurements so far. The streamwise snow transport is dominated by large-scale events. The vertical snow transport has a more equal distribution of energy across the scales, similarly to what is observed for the flow turbulence velocities. It is hypothesized that the vertical snow transport is a quantity that reflects the local entrainment of the snow crystals into the saltation layer while the streamwise snow transport results from the streamwise development of the trajectories of the snow particles once entrained, and therefore is rather a non-local quantity.

  14. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, L.; Kontu, A.; Hannula, H.-R.; Sjöblom, H.; Pulliainen, J.

    2015-12-01

    The manual snow survey program of the Arctic Research Centre of Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (SD) and snow water equivalent (SWE); however some older records of the snow and ice cover exists. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day measurements include observations of SD, SWE, temperature, density, horizontal layers of snow, grain size, specific surface area (SSA), and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  15. SnopViz, an interactive snow profile visualization tool

    NASA Astrophysics Data System (ADS)

    Fierz, Charles; Egger, Thomas; gerber, Matthias; Bavay, Mathias; Techel, Frank

    2016-04-01

    SnopViz is a visualization tool for both simulation outputs of the snow-cover model SNOWPACK and observed snow profiles. It has been designed to fulfil the needs of operational services (Swiss Avalanche Warning Service, Avalanche Canada) as well as offer the flexibility required to satisfy the specific needs of researchers. This JavaScript application runs on any modern browser and does not require an active Internet connection. The open source code is available for download from models.slf.ch where examples can also be run. Both the SnopViz library and the SnopViz User Interface will become a full replacement of the current research visualization tool SN_GUI for SNOWPACK. The SnopViz library is a stand-alone application that parses the provided input files, for example, a single snow profile (CAAML file format) or multiple snow profiles as output by SNOWPACK (PRO file format). A plugin architecture allows for handling JSON objects (JavaScript Object Notation) as well and plugins for other file formats may be added easily. The outputs are provided either as vector graphics (SVG) or JSON objects. The SnopViz User Interface (UI) is a browser based stand-alone interface. It runs in every modern browser, including IE, and allows user interaction with the graphs. SVG, the XML based standard for vector graphics, was chosen because of its easy interaction with JS and a good software support (Adobe Illustrator, Inkscape) to manipulate graphs outside SnopViz for publication purposes. SnopViz provides new visualization for SNOWPACK timeline output as well as time series input and output. The actual output format for SNOWPACK timelines was retained while time series are read from SMET files, a file format used in conjunction with the open source data handling code MeteoIO. Finally, SnopViz is able to render single snow profiles, either observed or modelled, that are provided as CAAML-file. This file format (caaml.org/Schemas/V5.0/Profiles/SnowProfileIACS) is an international

  16. BOREAS RSS-8 Snow Maps Derived from Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy; Chang, Alfred T. C.; Foster, James L.; Chien, Janeet Y. L.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-8 team utilized Landsat Thematic Mapper (TM) images to perform mapping of snow extent over the Southern Study Area (SSA). This data set consists of two Landsat TM images that were used to determine the snow-covered pixels over the BOREAS SSA on 18 Jan 1993 and on 06 Feb 1994. The data are stored in binary image format files. The RSS-08 snow map data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. Snow Micro-Structure Model

    Energy Science and Technology Software Center (ESTSC)

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  18. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  19. Peculiarities of hydrocarbon distribution in the snow-ice cover of different regions of the white sea

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.

    2014-03-01

    This paper presents data on the content of hydrocarbons (HCs) in the snow-ice cover of the coastal regions of the Dvina and Kandalaksha gulfs, White Sea, in 2008-2012 in comparison with the content of organic carbon, lipids, and the suspension. The accumulation of HCs in the snow-ice cover depends on the degree of pollution of the atmosphere, formation conditions of ice, and intensity of biogeochemical processes at the ice-water boundary. Thus, the highest concentrations in the water basin of Arkhangelsk are identified in snow and in the upper part of the ice. The peculiarities of formation of the snow-ice cover in Rugozero Bay of the Kandalaksha Gulf leads to the concentration of HCs in different snow and ice layers. The decreased HC content in the snow-ice cover of the White Sea, in comparison with previous studies, is caused by recession of industrial production in recent years.

  20. A bisphenol-A-based resin system that cures via triazole ring formation for marine composite applications

    NASA Astrophysics Data System (ADS)

    Gorman, Irene Elizabeth

    Large composite panels, such as those utilized in marine applications, cannot be economically cured in an autoclave. For these structures the elevated temperatures necessary to achieve high crosslink density must come from the curing reaction itself. We are developing a resin system that cures via triazole ring formation (cycloaddition reaction of azides with terminal alkynes) instead of the traditional oxirane/amine reaction. The high exothermicity of the azido/alkyne reaction is expected to yield higher extents of reaction under ambient-cure conditions, making the resin system potentially suitable for "out-of-autoclave" curing processes. This work was conducted through a multi-tiered approach involving synthesis, kinetic studies, thermal characterization, and mechanical analysis. The difunctional azide-terminated resin, di(3-azido-2 hydroxypropyl) ether of bisphenol-A (DAHP-BPA), was selected as the baseline diazide. A number of alkyne crosslinkers were synthesized and characterized, including propiolate esters of di- and trifunctional alcohols, propargyl esters of di- and trifunctional carboxylic acids, propargyl ethers of di- and trifunctional alcohols, and N,N,N',N'-tetrapropargyl derivatives of primary diamines. Commercially available tripropargylamine (TPA) was also studied. Curing energetics as a function of alkyne type and catalyst loading, investigated through a dynamic differential scanning calorimetry approach, displayed two distinct kinetic profiles when considering propiolate and propargyl type crosslinkers. Those systems employing a propiolate-based alkyne were found to be much more reactive towards the Huisgen 1,3-dipolar cycloaddition than the propargyl species. Additionally, the mechanical and thermal properties of resin systems, both un-catalyzed and catalyzed, composed of DAHP-BPA and tripropargyl amine were investigated by compression and rheological studies, differential scanning calorimetry, and thermogravametric analysis. The moduli of both

  1. Snow and Ice Crust Changes over Northern Eurasia since 1966

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.

    2009-12-01

    observations has substantially changed at that year. Therefore, this analysis includes only data of 585 Russian stations from 1966 to 2008 that have all years of data with a minimal number of missing observations. Surveys run separately along all types of environment typical for the site for 1 to 2 km, describing the current snow cover properties including characteristics of snow and ice crust. Joint analysis of these characteristics of crust together with a suite of synoptic information at the stations allows us to empirically assess the process of snow and ice crust formation and development throughout the cold season and outline major factors responsible for their dynamics. Finally, regional averaging and time series analysis of both, these factors and the crust characteristics themselves, answer the question about the regional climatic changes of snow and ice crusts over Northern Eurasia, including those crust characteristics that are of practical importance for reindeer husbandry. These results for the Russian Federation will be presented at the Meeting.

  2. Marine Ecomechanics

    NASA Astrophysics Data System (ADS)

    Denny, Mark W.; Gaylord, Brian

    2010-01-01

    The emerging field of marine ecomechanics provides an explicit physical framework for exploring interactions among marine organisms and between these organisms and their environments. It exhibits particular utility through its construction of predictive, mechanistic models, a number of which address responses to changing climatic conditions. Examples include predictions of (a) the change in relative abundance of corals as a function of colony morphology, ocean acidity, and storm intensity; (b) the rate of disturbance and patch formation in beds of mussels, a competitive dominant on many intertidal shores; (c) the dispersal and recruitment patterns of giant kelps, an important nearshore foundation species; (d) the effects of turbulence on external fertilization, a widespread method of reproduction in the sea; and (e) the long-term incidence of extreme ecological events. These diverse examples emphasize the breadth of marine ecomechanics. Indeed, its principles can be applied to any ecological system.

  3. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon. PMID:19569324

  4. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, Leena; Kontu, Anna; Hannula, Henna-Reetta; Sjöblom, Heidi; Pulliainen, Jouni

    2016-05-01

    The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  5. Radar spectral observations of snow

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Radar remote sensing experiments have been conducted at test sites in Kansas, Colorado, and South Dakota over the last six years to examine backscatter coefficient response to snowcovered terrain. Truck-mounted 1-35 GHz scatterometers were employed in conjunction with detailed ground-truth measurements. From these experiments and associated modeling efforts, most of the fundamental questions concerning backscatter behavior in response to important snow parameters have been, at least qualitatively, answered. The optimum angular range seems to be between 20 and 50 deg and, for these angles, the results indicate that the radar backscatter generally: (1) increases with increasing water equivalent, (2) decreases with increasing liquid water, (3) increases with increasing crystal size, (4) is insensitive to surface roughness for dry snow conditions, and (5) can be sensitive to soil state if the snowcover is dry. This paper gives a summary of these results, along with empirical and theoretical models for describing the backscatter from snow.

  6. Shallow marine event sedimentation in a volcanic arc-related setting: The Ordovician Suri Formation, Famatina range, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1996-01-01

    level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.

  7. New Insights into an Old Cycle: The Marine Phosphorus Cycle and the Formation of Critical Phosphate Rock Resources (Invited)

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.

    2010-12-01

    The cycling and geochemistry of phosphorus (P) in the marine environment is a critical component of biological productivity and of resource availability: P control the long-term carbon cycle via its role as a limiting nutrient, and the burial and concentration of P within marine sediments dictates the quality and availability of P as a fertilizer component from a resources standpoint. Given the projections of severe P fertilizer limitation over the next several centuries, understanding the controls on P geochemistry and concentration into a minable resource is critical in sustaining global populations. Several critical aspects of the marine P cycle have been uncovered over the past few decades which have clarified our understanding of P burial and concentration. First, the initial authigenic process of P mineralization within marine sediments, termed phosphogenesis, seems to occur regardless of marine setting. Phosphogenesis results from the release of P into sedimentary pore waters from organic and oxide-bound fractions, and the subsequent supersaturation with respect to carbonate fluorapatite. In sediment-starved basins with significant upwelling-driven productivity, the supply of P into sedimentary pore waters can be so high that visibly apparent layers of carbonate fluorapatite can be formed. Even in such environments, however, the mineral P content is too low to be of economic value unless it has undergone concentration via sediment reworking, a common occurrence in some dynamic continental margin environments. Thus, a combination of phosphogenesis in a high productivity setting plus sediment starvation plus condensation via reworking are necessary to produce phosphorites, sedimentary rocks with high P contents which are ideal as fertilizer-grade P resources. Given these special marine conditions, phosphorites are largely distributed along ancient marine environments (with the exception of the nearly-depleted atoll guano reserves). The largest currently

  8. Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth

    NASA Astrophysics Data System (ADS)

    Kongoli, Cezar; Grody, Norman C.; Ferraro, Ralph R.

    2004-12-01

    The objective of this paper is to interpret microwave scattering signatures over snow cover as observed by the Advanced Microwave Sounding Unit (AMSU) for the retrievals of snow water equivalent and snow depth. A case study involving seasonal snow cover over the U.S. Great Plains was analyzed in detail. Area-wide analysis of the relationship between snow depth and the AMSU scattering signatures in the 23-150 GHz window region showed weak correlation, deteriorated by the dependence of these signatures on snow metamorphism. The lower frequency scattering index, computed as the difference in the brightness temperature between 23 and 31 GHz channels, was low and insensitive to fresh snow predominant in December, but increased later in the season, and thus was more sensitive to snow depth for older snow cover. However, this seasonal increase in microwave scattering was observed for every snow depth range, suggesting a strong dependence on snow metamorphism. In contrast, the 89 GHz scattering index responded to relatively shallow snow cover in December, but was less sensitive to snow depth variability later in the season. A snow hydrology model was applied at specific locations to estimate snow water equivalent (other than snow depth) for comparisons with the AMSU measurements. Overall, the lower frequency index was the best predictor of snow water equivalent and snow depth. However, correlation was higher for snow density and snow water equivalent. This was attributed to the response of this scattering index to the grain size evolution with time, which correlated better with the snow density and water equivalent changes in the snow cover than snow depth. Correlation between the snow water equivalent and the lower frequency index for fresh snow cover was significantly improved by switching to the higher frequency index at 89 GHz as predictor when the lower frequency index at 31 GHz was less than the 5 K threshold. Correlation further improved for fresh snow cover

  9. Fish faunas from the Late Jurassic (Tithonian) Vaca Muerta Formation of Argentina: One of the most important Jurassic marine ichthyofaunas of Gondwana

    NASA Astrophysics Data System (ADS)

    Gouiric-Cavalli, Soledad; Cione, Alberto Luis

    2015-11-01

    The marine deposits of the Vaca Muerta Formation (Tithonian-Berriasian) houses one of the most diverse Late Jurassic ichthyofaunas of Gondwana. However, most of the specimens remain undescribed. Jurassic fishes have been recovered from several localities at Neuquén Province (i.e., Picún Leufú, Plaza Huincul, Cerro Lotena, Portada Las Lajas, Los Catutos, and Arroyo Covunco) but also from Mendoza Province (i.e., La Valenciana, Los Molles, and Arroyo del Cajón Grande). Presently, the fish fauna of Los Catutos, near Zapala city (Neuquén Province), has yielded the highest number of specimens, which are taxonomically and morphologically diverse. At Los Catutos locality, the Vaca Muerta Formation is represented by the Los Catutos Member, which is considered the only lithographic limestones known in the Southern Hemisphere. Here, we review the Tithonian fish faunas from the Vaca Muerta Formation. During Late Jurassic times, the actual Argentinian territory could have been a morphological diversification center, at least for some actinopterygian groups. The apparently lower species diversity recorded in marine Jurassic ichthyofaunas of Argentina (and some Gondwanan countries) in comparison with Chilean and European fish faunas could be related to the fish paleontological research history in Gondwana and the low number of detailed studies of most of specimens recorded.

  10. Snow wetness measurements for melt forecasting

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Clapp, F. D.; Meier, M. F.; Smith, J. L.

    1975-01-01

    A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow.

  11. Late Paleocene to Early Eocene marine vertebrates from the Uppermost Aruma Formation (northern Saudi Arabia): implications for the K-T transition

    NASA Astrophysics Data System (ADS)

    Thomas, Herbert; Roger, Jack; Halawani, Mohammed; Memesh, Abdallah; Lebret, Patrick; Bourdillon, Chantal; Buffetaut, Eric; Cappetta, Henri; Cavelier, Claude; Dutheil, Didier; Tonge, Haiyan; Vaslet, Denis

    1999-12-01

    A new assemblage of marine vertebrates from northern Saudi Arabia, east of the Nafud, leads us to reconsider the age of the top unit of the Aruma Formation, the Lina Member, hitherto referred to the Maastrichtian. This assemblage contains the remains of a dozen selachian and actinopterygian fishes, as well as those of a giant sea turtle representing a new dermochelyid taxon. It suggests a Late Paleocene to Early Eocene age for this unit. This new dating and a revision of the stratigraphic position of the Lina Member demonstrate the existence, on a regional scale, of an important hiatus at the K-T boundary.

  12. Snow Hydrology in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-08-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas.The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snow pack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter.Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  13. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  14. Cold, Ice, and Snow Safety (For Parents)

    MedlinePlus

    ... to Know About Zika & Pregnancy Cold, Ice, and Snow Safety KidsHealth > For Parents > Cold, Ice, and Snow Safety Print A A A Text Size What's ... a few. Plus, someone has to shovel the snow, right? Once outdoors, however, take precautions to keep ...

  15. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  16. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  17. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  18. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Federal assistance will be provided for all costs eligible under 44 CFR 206.225 for a specified period of... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Snow assistance. 206.227... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  19. Microwave emission from an irregular snow layer

    NASA Technical Reports Server (NTRS)

    Eom, H. J.; Lee, K. K.; Fung, A. K.

    1983-01-01

    Emission from an irregular snow layer is modeled by a layer of Mie scatterers using the radiative transfer method. Comparisons are made with measurements showing snow wetness effects and rough air-snow boundary effects. For convenience of reference, theoretical model behavior is also illustrated.

  20. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  1. Elevation dependency of mountain snow depth

    NASA Astrophysics Data System (ADS)

    Grünewald, T.; Bühler, Y.; Lehning, M.

    2014-12-01

    Elevation strongly affects quantity and distribution patterns of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation-snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites near to the time of the maximum seasonal snow accumulation. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales: (i) the complete data sets (10 km scale), (ii) sub-catchments (km scale) and (iii) slope transects (100 m scale). We show that most elevation-snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore, we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks (if present).

  2. Physiochemical characterization of insoluble residues in California Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Creamean, Jessie; Axson, Jessica; Bondy, Amy; Craig, Rebecca; May, Nathaniel; Shen, Hongru; Weber, Michael; Warner, Katy; Pratt, Kerri; Ault, Andrew

    2015-04-01

    The effects atmospheric aerosols have on cloud particle formation are dependent on both the aerosol physical and chemical characteristics. For instance, larger, irregular-shaped mineral dusts efficiently form cloud ice crystals, enhancing precipitation, whereas small, spherical pollution aerosols have the potential to form small cloud droplets that delay the autoconversion of cloudwater to precipitation. Thus, it is important to understand the physiochemical properties and sources of aerosols that influence cloud and precipitation formation. We present an in-depth analysis of the size, chemistry, and sources of soluble and insoluble residues found in snow collected at three locations in the California Sierra Nevada Mountains during the 2012/2013 winter season. For all sites, February snow samples contained high concentrations of regional pollutants such as ammonium nitrate and biomass burning species, while March snow samples were influenced by mineral dust. The snow at the lower elevation sites in closer proximity to the Central Valley of California were heavily influenced by agricultural and industrial emissions, whereas the highest elevation site was exposed to a mixture of Central Valley pollutants in addition to long-range transported dust from Asia and Africa. Further, air masses likely containing transported dust typically traveled over cloud top heights at the low elevation sites, but were incorporated into the cold (-28°C, on average) cloud tops more often at the highest elevation site, particularly in March, which we hypothesize led to enhanced ice crystal formation and thus the observation of dust in the snow collected at the ground. Overall, understanding the spatial and temporal dependence of aerosol sources is important for remote mountainous regions such as the Sierra Nevada where snowpack provides a steady, vital supply of water.

  3. Photopolarimetric Retrievals of Snow Properties

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  4. Photopolarimetric retrievals of snow properties

    NASA Astrophysics Data System (ADS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-10-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  5. Photopolarimetric retrievals of snow properties

    NASA Astrophysics Data System (ADS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-05-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on air- and space-borne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited dataset, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  6. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer

  7. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    NASA Astrophysics Data System (ADS)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); http://snow.engin.umich.edu) model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  8. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  9. The Effect of Black Carbon and Snow Grain Size on Snow Surface Albedo

    NASA Astrophysics Data System (ADS)

    Hadley, O. L.; Kirchstetter, T.; Flanner, M.

    2009-12-01

    Black carbon (BC) has been measured in snow and ice cores at levels that climate models predict are high enough to be the second leading cause in arctic ice melt and glacial retreat after greenhouse gas warming. BC deposited on snow reduces the snow surface albedo; however, in addition to BC content, snow albedo also depends on sky cover, solar angle, snow grain size and shape, surface roughness, and depth. Quantifying the albedo reduction due to BC separately from these other variables is difficult to achieve in field measurements. We are conducting laboratory experiments that isolate the effect of BC and snow grain size on snow albedo. Snow is made by spraying and freezing drops of water; BC contaminated snow is made from BC hydrosol. Snow albedo is measured with a spectrometer equipped with an integrating sphere over the entire visible spectrum (400-1000 nm). Snow grain size distribution and shape are characterized using a digital microscope to calculate the effective radius of the snow. Measured snow albedo is compared to that predicted using the Snow, Ice, and Aerosol Radiative Model. Preliminary results indicate good agreement between measured and modeled albedo for pure and BC contaminated snow.

  10. Snow complexity representation and GCM climate

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Viterbo, Pedro; Miranda, Pedro M. A.; Balsamo, Gianpaolo

    2010-05-01

    Accurate simulations of the snow cover strongly impact on the quality of weather and climate predictions as the solar radiation absorption at land-atmosphere interface is modified by a factor up to 4 in response to snow presence (albedo effect). In Northern latitudes and Mountainous regions snow acts also as an important energy and water reservoir and a correct representation of snow mass and snow density is crucial for temperature predictions at all time-scales, with direct consequences for soil hydrology (thermal insulation effect). Three different complexity snow schemes implemented in the ECMWF land surface scheme HTESSEL are tested within the EC-EARTH framework. The snow schemes are: 1) OLD, the original HTESSEL single bulk layer snow scheme (same as in the ERA-40 and ERA-Interim reanalysis); 2) OPER, a new snow scheme in operations since September 2009, with a liquid water reservoir and revised formulations of snow density, fractional cover and snow albedo; and 3) ML3, a multi-layer version of OPER. All three snow schemes in HTESSEL are energy- and mass- balance models. The multi-layer snow scheme, ML3, was validated in offline mode covering several spatial and temporal scales: (i) site simulations for several observation locations from the Snow Models intercomparison project-2 (SnowMip2) and (ii) global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and the ECMWF ERA-Interim re-analysis. On point locations ML3 improve snow mass simulations, while on a global scale the impacts are residual pointing to the need of coupled atmosphere simulations. The 3 schemes are compared in the framework of the atmospheric model of EC-EARTH, based on the current seasonal forecast system of ECMWF. The standard configuration runs at T159 horizontal spectral resolution with 62 vertical levels. Three member ensembles of 30 years (1979-2008) simulations, with prescribed SSTs and sea ice, were performed for each of the snow schemes

  11. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.

    PubMed

    Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre

    2014-12-01

    Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems. PMID:25318592

  12. Comparison of the Snow Simulations in Community Land Model Using Two Snow Cover Fraction Parameterizations

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong

    2016-04-01

    Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm

  13. Challenges in simulation of snow microstructure and implications for remote sensing of snow mass

    NASA Astrophysics Data System (ADS)

    Sandells, M. J.; Essery, R.; Leppänen, L.; Lemmetyinen, J.; Rutter, N.

    2014-12-01

    One of the greatest challenges for global measurement of snow mass is quantification of the snow microstructure. Radiative transfer models are more sensitive to the snow structure metrics used than to snow depth, so microstructure must be well quantified in order to retrieve snow mass from satellite observations. Principles of physics have been used to simulate microstructure in many years of avalanche and climate research, although these have different accuracy requirements to remote sensing applications. Growth of snow crystals is dependent primarily on the snow temperature gradient, but also the temperature and density of the snow. Forced with the same meteorological data, different models simulate different snow temperatures. Even with the same grain growth assumptions, this leads to different rates of microstructure evolution. This must be taken into consideration if snow models are to be used to give the necessary parameters for retrieval of snow water equivalent. The JULES Investigation Model snow model (JIM) has a highly configurable structure that allows different layering assumptions to be used. It incorporates all major components from existing snow models, which enables the simulation of an ensemble of 1701 members. JIM was used to quantify the impact of different model parameterizations such as snow compaction and thermal conductivity on simulated microstructure (previously referred to as 'grain size') for each of four different grain size parameterizations from the Crocus, MOSES, SNICAR and SNTHERM models. The Helsinki University of Technology snow microwave emission model was then used to demonstrate the impact of different snow model assumptions on the simulation of microwave brightness temperature. This paper discusses potential snow mass retrieval errors due to uncertainties in snow parameters from snow evolution models, and how these may be mitigated through techniques such as data assimilation.

  14. Elevation dependency of mountain snow depth

    NASA Astrophysics Data System (ADS)

    Grünewald, T.; Bühler, Y.; Lehning, M.

    2014-07-01

    Elevation strongly affects quantity and distribution of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation - snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales ranging from the complete data sets by km-scale sub-catchments to slope transects. We show that most elevation - snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks.

  15. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  16. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2013-02-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  17. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2012-08-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  18. Imaging of the CO snow line in a solar nebula analog.

    PubMed

    Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F

    2013-08-01

    Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets. PMID:23868917

  19. Microbes in High Arctic Snow and Implications for the Cold Biosphere ▿ †

    PubMed Central

    Harding, Tommy; Jungblut, Anne D.; Lovejoy, Connie; Vincent, Warwick F.

    2011-01-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83oN). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere. PMID:21460114

  20. Springtime peaks of trace metals in Antarctic snow.

    PubMed Central

    Ikegawa, M; Kimura, M; Honda, K; Makita, K; Fujii, Y; Itokawa, Y

    1997-01-01

    Drifting snow samples were collected at Asuka Station (71 degrees 32'S, 24 degrees 08'E, 930 m above sea level) over a period from July to December 1991; 36 elements (including Na, Mg, K, Ca, Fe, Al, Li, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Se, Rb, Sr, Cd, Pb, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Th) in snow were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) by direct sample introduction. Concentrations of Cl-, NO3-, and SO(4)2- in the snow were also determined by ion chromatography. In late September to early October, there was a pronounced peak concentration of most of the elements together with non-sea salt sulfate. Enrichment factor analyses suggest that Na, Mg, Ca, K, and Sr are of marine origin and Al, Fe, Mn, Rb, Cr, Ni, Ga, V, and all the rare earth elements are of crustal origins. Volcanic eruption of Mt. Pinatubo (June 1991) and Mt. Hudson (August 1991) could be the reason for the precipitation of Pb, Cd, Cu, Zn, and Se together with non-sea salt sulfates in the austral spring at Asuka Station. Images Figure 1. Figure 2. Figure 3. PMID:9288501

  1. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2014-12-01

    . These tests compare modeled and measured snow surface temperature, snow energy content, snow water equivalent, and snowmelt outflow. We found that with these refinements the model is able to better represent the snowpack energy balance and internal energy content while still retaining a parsimonious one layer format.

  2. Analysis and improvement of estimated snow water equivalent (SWE) using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    E Azar, A.; Ghedira, H.; Khanbilvardi, R.

    2005-12-01

    The goal of this study is to improve the retrieval of SWE/Snow depth in Great lakes area, United States using passive microwave images along with Normalized Difference Vegetation Index NDVI and Artificial Neural Networks (ANNs). Passive microwave images have been successfully used to estimate snow characteristics such as Snow Water Equivalent (SWE) and snow depth. Despite considerable progress, challenges still exist with respect to accuracy and reliability. In this study, Special Sensor Microwave Imager (SSM/I) channels which are available in Equal-Area Scalable Earth Grid (EASE-GRID) format are used. The study area is covered by a 28 by 35 grid of EASE-Grid pixels, 25km by 25km each. To have a comprehensive data set of brightness temperatures (Tb) of SSM/I channels, an assortment of pixels were selected based on latitude and land cover. A time series analysis was conducted for three winter seasons to assess the SSM/I capability to estimates snow depth and SWE for various land covers. Ground truth data' were obtained from the National Climate Data Center (NCDC) and the National Operational Hydrological Remote Sensing Center (NOHRSC). The NCDC provided daily snow depth measurements reported from various stations located in the study area. Measurements were recorded and projected to match EASE-GRID formatting. The NOHRSC produces SNODAS dataset using airborne Gamma radiation and gauge measurements combined with a physical model. The data set consisted of different snow characteristics such as SWE and snow depth. Landcover characteristics are introduced by using Normalized Difference Vegetation Index (NDVI). An Artificial Neural Network (ANN) algorithm has been employed to evaluate the effect of landcover in estimating snow depth and Snow Water Equivalent (SWE). The model is trained using SSM/I channels (19v, 19h, 37v, 37h, 22v, 85v, 85h) and the mean and standard deviation of NDVI for the each pixel. The preliminary time series results showed various degrees of

  3. Methaemoglobinaemia due to mephedrone ('snow').

    PubMed

    Ahmed, Noor; Hoy, Brent Philip Sew; McInerney, J

    2010-01-01

    Acquired methaemoglobinaemia is a serious complication caused by many oxidising drugs. It presents as cyanosis unresponsive to oxygen therapy. The case of 33-year-old male patient who presented in our department after noticing blue lips and fingers is presented. He had sniffed 1 g of 'snow' after buying it from a head shop. His oxygen saturation by pulse oximeter on room air at presentation was 90%, which did not improve with supplemental oxygen. Arterial blood gas analyses showed partial pressure of oxygen 37 kPa while on supplemental oxygen and a methaemoglobin concentration greater than 25%. The patient denied using any other recreational drugs and was not on regular treatment. Therefore, a diagnosis of methaemoglobinaemia due to mephedrone, which is the active ingredient of 'snow', was made. Treatment is with intravenous methylene blue. Our patient started to improve so methylene blue was not used and he was discharged after 8 h. PMID:22791577

  4. Snow Densification in Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Morris, E.; Wingham, D.

    2010-12-01

    As part of the calibration and validation experiments for the radar altimeter carried by the ESA Cryosat-2 satellite, snow density profiles have been measured along the EGIG line from Spring 2004 to Summer 2010. Repeated measurements at the same site allow the development of the characteristic stratigraphy of the dry snow zone to be observed and the rate of densification to be measured directly. Densification rates below the surface layer are found to be compatible with a physics-based grain boundary sliding model (Alley, 1987) but near-surface rates are enhanced. Alley, R.B. (1987). Firn densification by grain-boundary sliding: A First Model. J. de. Physique 48 (Coll. C1, Suppl. No.3) 249-256.

  5. Dirty snow after nuclear war

    NASA Technical Reports Server (NTRS)

    Warren, S. G.; Wiscombe, W. J.

    1985-01-01

    It is shown that smoke from fires started by nuclear explosions could continue to cause significant disruption even after it has fallen from the atmosphere, by lowering the reflectivity of snow and sea ice surfaces, with possible effects on climate in northern latitudes caused by enhanced absorption of sunlight. The reduced reflectivity could persist for several years on Arctic sea ice and on the ablation area of the Greenland ice sheet.

  6. The Inverted Snow Globe Shadow

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jair Lúcio Prados

    2015-01-01

    Our high school optics course finishes with an assignment that students usually appreciate. They must take pictures of everyday situations representing optical phenomena such as reflection, refraction, or dispersion, and post them on Instagram.1 When the photos were presented to the class, one student revealed an intriguing photo, similar to Fig. 1, showing a snow globe exposed to sunlight and its inverted shadow. This paper offers an explanation of the problem, which occurs due to light refraction from the globe.

  7. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  8. Spatiotemporal analysis of snow trends in Austria

    NASA Astrophysics Data System (ADS)

    Koch, Roland; Schöner, Wolfgang

    2015-04-01

    This study presents the spatiotemporal analysis of Austrian snow observations. A set of consistent and reliable long-term time series of snow depth on a daily scale from selected meteorological sites across Austria is used. The time series were collected by the Central Institute for Meteorology and Geodynamics (ZAMG) and the Hydrographical Central Bureau of Austria (HZB). The data cover a time period from the late nineteenth century until today. In the first part of the study spatiotemporal characteristics of seasonal snow depth observations were investigated by the method of principal component analysis (PCA). Furthermore, the spatial patterns of variability have been used for a regionalisation, identifying regions with similar conditions during the base period 1961 to 2010. The results show a clear separation of four major regions including various sub-regions. However, the regionalisation was limited due to sparse data coverage. The non-parametric Mann-Kendall statistical test had been used to assess the significance of trends in snow indices, e.g. snow depth, maximum snow depth, snow cover duration, at monthly and seasonal time scales. In order to remove the influence of the lag-1 serial correlation from the snow data, the trend-free pre-whitening approach was applied. In the monthly and seasonal time series during the period 1961-2010, negative trends in snow indices were significant at the 95% confidence level primarily at stations in the Western and Southern part of Austria. In addition, the correlation between snow observations and gridded HISTALP winter temperature and precipitation fields was investigated. The analysis has shown an increased temperature and decreased precipitation during the 1990s, yielding a pronounced reduction in snow depth and duration. As a matter of fact, the results indicate major shifts of the snow depth and snow cover duration around the 1970s and especially the 1990s, which are predominantly responsible for trends.

  9. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments.

    PubMed

    Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling

    2015-01-01

    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world's REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high (87)Sr/(86)Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414

  10. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments

    PubMed Central

    Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling

    2015-01-01

    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414