Science.gov

Sample records for market network framework

  1. Network Management Framework for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Jaewoo; Jeon, Hahnearl; Lee, Jaiyong

    Network Management is the process of managing, monitoring, and controlling the network. Conventional network management was based on wired network which is heavy and unsuitable for resource constrained WSNs. WSNs can have large scale network and it is impossible to manage each node individually. Also, polling mechanism of Simple Network Management Protocol (SNMP) impose heavy management traffic overhead. Since management messages consume resources of WSNs, it can affect the performance of the network. Therefore, it is necessary for WSNs to perform energy efficient network management. In this paper, we will propose network management framework. We will introduce cluster-based network management architecture, and classify the Management Information Base (MIB) according to their characteristics. Then, we will define management messages and message exchange operation for each kind of MIB. The analysis result of the management overhead indicates that the proposed framework can reduce management traffic compared to polling mechanism.

  2. Probabilistic framework for network partition

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Liu, Jian; E, Weinan

    2009-08-01

    Given a large and complex network, we would like to find the partition of this network into a small number of clusters. This question has been addressed in many different ways. In a previous paper, we proposed a deterministic framework for an optimal partition of a network as well as the associated algorithms. In this paper, we extend this framework to a probabilistic setting, in which each node has a certain probability of belonging to a certain cluster. Two classes of numerical algorithms for such a probabilistic network partition are presented and tested. Application to three representative examples is discussed.

  3. Network model of bilateral power markets based on complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li

    2014-06-01

    The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.

  4. Markets on Networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltan; Anghel, Marian; Bassler, Kevin; Korniss, Gyorgy

    2003-03-01

    The dynamics of human, and most biological populations is characterized by competition for resources. By its own nature, this dynamics creates the group of "elites", formed by those agents who have strategies that are the most successful in the given situation, and therefore the rest of the agents will tend to follow, imitate, or interact with them, creating a social structure of leadership in the agent society. These inter-agent communications generate a complex social network with small-world character which itself forms the substrate for a second network, the action network. The latter is a highly dynamic, adaptive, directed network, defined by those inter-agent communication links on the substrate along which the passed information /prediction is acted upon by the other agents. By using the minority game for competition dynamics, here we show that when the substrate network is highly connected, the action network spontaneously develops hubs with a broad distribution of out-degrees, defining a robust leadership structure that is scale-free. Furthermore, in certain, realistic parameter ranges, facilitated by information passing on the action network, agents can spontaneously generate a high degree of cooperation making the collective almost maximally efficient.

  5. Structurally Dynamic Spin Market Networks

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  6. An analytical framework for local feedforward networks.

    PubMed

    Weaver, S; Baird, L; Polycarpou, M

    1998-01-01

    Interference in neural networks occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To obtain a better understanding of these properties, a theoretical framework, consisting of a measure of interference and a measure of network localization, is developed. These measures incorporate not only the network weights and architecture but also the learning algorithm. Using this framework to analyze sigmoidal, multilayer perceptron (MLP) networks that employ the backpropagation learning algorithm on the quadratic cost function, we address a familiar misconception that single-hidden-layer sigmoidal networks are inherently nonlocal by demonstrating that given a sufficiently large number of adjustable weights, single-hidden-layer sigmoidal MLP's exist that are arbitrarily local and retain the ability to approximate any continuous function on a compact domain. PMID:18252471

  7. A new policy framework for health care markets.

    PubMed

    Butler, Stuart M

    2004-01-01

    The frustration with health care markets recorded in the paper by Len Nichols and colleagues reflects the general, and accurate, perception that these markets typically do not work well. But markets respond to the framework of rules and tax incentives in which they must operate, and in health care this framework works against efficiency. The sensible response is not to reject market-based approaches in health care as inherently ineffective in achieving efficiency and cost control. Nor is it to add yet another layer of rules and government micromanagement. It is instead to fix the framework so that markets will foster efficiency. PMID:15046127

  8. [Marketing in veterinary practice; a theoretical framework].

    PubMed

    Schuurmans, A J; Smidts, A

    1990-03-15

    An increase in the number of veterinarians, while at the same time the number of animals has remained constant, has resulted in growing competition. By extending the range of products and by enlarging the veterinarians' scope of activities this competition can be decreased. A marketing-orientation will be helpful in this respect. This article indicates in which way marketing concepts can be used in a veterinary practice. The services of the veterinarian will be looked at by means of the Abell approach. This focuses on the functions performed by the services and examines, per function performed, for whom this might be interesting and which alternatives there might be. Next the concept of market segmentation is filled in for a veterinary practice by means of a hypothetical example. The marketing mix (product, place, price, promotion and personnel) is given considerable attention. The last element of marketing in a veterinary practice that is discussed here is the marketing information system. In a next article the question will be answered how marketing-directed the Dutch veterinarian works nowadays. To find this out research has been done; 166 vets were interviewed by telephone for approximately 40 minutes each. PMID:2321238

  9. A Framework for Curriculum Development in Marketing Education.

    ERIC Educational Resources Information Center

    Everett, Donna R.

    This book is designed to show marketing education teachers how Missouri's Show-Me Knowledge and Performance Standards can be reflected in the Marketing Education Framework. It is organized to present each of the nine competency strands (instructional units) by learner outcome and competencies. The instructional units are as follows: communications…

  10. Framework for Network Co-Simulation

    SciTech Connect

    Daily, Jeff; Ciraci, PNNL Selim; Fuller, PNNL Jason; Marinovici, PNNL Laurentiu; Fisher, PNNL Andrew; Lo, PNNL Chaomei; Hauer, PNNL Matthew

    2014-01-09

    The Framework for Network Co-Simulation (FNCS) uses a federated approach to integrate simulations which may have differing time scales. Special consideration is given to integration with a communication network simulation such that inter-simulation messages may be optionally routed through and delayed by such a simulation. In addition, FNCS uses novel time synchronization algorithms to accelerate co-simulation including the application of speculative multithreading. FNCS accomplishes all of these improvements with minimal end user intervention. Simulations can be integrated using FNCS while maintaining their original model input files simply by linking with the FNCS library and making appropriate calls into the FNCS API.

  11. Study of network resource allocation based on market and game theoretic mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Yingmei; Wang, Hongwei; Wang, Gang

    2004-04-01

    We work on the network resource allocation issue concerning network management system function based on market-oriented mechanism. The scheme is to model the telecommunication network resources as trading goods in which the various network components could be owned by different competitive, real-world entities. This is a multidisciplinary framework concentrating on the similarity between resource allocation in network environment and the market mechanism in economic theory. By taking an economic (market-based and game theoretic) approach in routing of communication network, we study the dynamic behavior under game-theoretic framework in allocating network resources. Based on the prior work of Gibney and Jennings, we apply concepts of utility and fitness to the market mechanism with an intention to close the gap between experiment environment and real world situation.

  12. Stock market index prediction using neural networks

    NASA Astrophysics Data System (ADS)

    Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok

    1994-03-01

    A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.

  13. Information transfer network of global market indices

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Kim, Jinho; Yook, Soon-Hyung

    2015-07-01

    We study the topological properties of the information transfer networks (ITN) of the global financial market indices for six different periods. ITN is a directed weighted network, in which the direction and weight are determined by the transfer entropy between market indices. By applying the threshold method, it is found that ITN undergoes a crossover from the complete graph to a small-world (SW) network. SW regime of ITN for a global crisis is found to be much more enhanced than that for ordinary periods. Furthermore, when ITN is in SW regime, the average clustering coefficient is found to be synchronized with average volatility of markets. We also compare the results with the topological properties of correlation networks.

  14. A framework for marketing image management.

    PubMed

    Barich, H; Kotler, P

    1991-01-01

    Managers know that the customer's impression of an organization is important. And sometimes companies attempt to determine just what that impression is. They conduct ad hoc surveys and focus groups. But too often the data is insubstantial, or difficult to analyze, or even inaccurate. Barich and Kotler introduce the concept of "marketing image" and describe a system of image management: designing a study, collecting data, analyzing image problems, modifying the image, and tracking responses to that image. They argue that only a systematic approach will yield useful and accurate information that a company can translate into action. PMID:10111301

  15. Framework for Network Co-Simulation

    Energy Science and Technology Software Center (ESTSC)

    2014-01-09

    The Framework for Network Co-Simulation (FNCS) uses a federated approach to integrate simulations which may have differing time scales. Special consideration is given to integration with a communication network simulation such that inter-simulation messages may be optionally routed through and delayed by such a simulation. In addition, FNCS uses novel time synchronization algorithms to accelerate co-simulation including the application of speculative multithreading. FNCS accomplishes all of these improvements with minimal end user intervention. Simulations canmore » be integrated using FNCS while maintaining their original model input files simply by linking with the FNCS library and making appropriate calls into the FNCS API.« less

  16. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  17. Influence network in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Gao, Ya-Chun; Zeng, Yong; Cai, Shi-Min

    2015-03-01

    In a stock market, the price fluctuations are interactive, that is, one listed company can influence others. In this paper, we seek to study the influence relationships among listed companies by constructing a directed network on the basis of the Chinese stock market. This influence network shows distinct topological properties. In particular, a few large companies that can lead the tendency of the stock market are recognized. Furthermore, by analyzing the subnetworks of listed companies distributed in several significant economic sectors, it is found that the influence relationships are totally different from one economic sector to another, of which three types of connectivity as well as hub-like listed companies are identified. In addition, the rankings of listed companies obtained from the centrality metrics of the influence network are compared with those according to the assets, which gives inspiration to uncover and understand the importance of listed companies on the stock market. These empirical results are meaningful in providing these topological properties of the Chinese stock market and economic sectors as well as revealing the interactive influence relationships among listed companies.

  18. Market-Based Decision Guidance Framework for Power and Alternative Energy Collaboration

    NASA Astrophysics Data System (ADS)

    Altaleb, Hesham

    With the introduction of power energy markets deregulation, innovations have transformed once a static network into a more flexible grid. Microgrids have also been deployed to serve various purposes (e.g., reliability, sustainability, etc.). With the rapid deployment of smart grid technologies, it has become possible to measure and record both, the quantity and time of the consumption of electrical power. In addition, capabilities for controlling distributed supply and demand have resulted in complex systems where inefficiencies are possible and where improvements can be made. Electric power like other volatile resources cannot be stored efficiently, therefore, managing such resource requires considerable attention. Such complex systems present a need for decisions that can streamline consumption, delay infrastructure investments, and reduce costs. When renewable power resources and the need for limiting harmful emissions are added to the equation, the search space for decisions becomes increasingly complex. As a result, the need for a comprehensive decision guidance system for electrical power resources consumption and productions becomes evident. In this dissertation, I formulate and implement a comprehensive framework that addresses different aspect of the electrical power generation and consumption using optimization models and utilizing collaboration concepts. Our solution presents a two-prong approach: managing interaction in real-time for the short-term immediate consumption of already allocated resources; and managing the operational planning for the long-run consumption. More specifically, in real-time, we present and implement a model of how to organize a secondary market for peak-demand allocation and describe the properties of the market that guarantees efficient execution and a method for the fair distribution of collaboration gains. We also propose and implement a primary market for peak demand bounds determination problem with the assumption that

  19. Model framework for describing the dynamics of evolving networks

    NASA Astrophysics Data System (ADS)

    Tobochnik, Jan; Strandburg, Katherine; Csardi, Gabor; Erdi, Peter

    2007-03-01

    We present a model framework for describing the dynamics of evolving networks. In this framework the addition of edges is stochastically governed by some important intrinsic and structural properties of network vertices through an attractiveness function. We discuss the solution of the inverse problem: determining the attractiveness function from the network evolution data. We also present a number of example applications: the description of the US patent citation network using vertex degree, patent age and patent category variables, and we show how the time-dependent version of the method can be used to find and describe important changes in the internal dynamics. We also compare our results to scientific citation networks.

  20. A distributed framework for inter-domain virtual network embedding

    NASA Astrophysics Data System (ADS)

    Wang, Zihua; Han, Yanni; Lin, Tao; Tang, Hui

    2013-03-01

    Network virtualization has been a promising technology for overcoming the Internet impasse. A main challenge in network virtualization is the efficient assignment of virtual resources. Existing work focused on intra-domain solutions whereas inter-domain situation is more practical in realistic setting. In this paper, we present a distributed inter-domain framework for mapping virtual networks to physical networks which can ameliorate the performance of the virtual network embedding. The distributed framework is based on a Multi-agent approach. A set of messages for information exchange is defined. We design different operations and IPTV use scenarios to validate the advantages of our framework. Use cases shows that our framework can solve the inter-domain problem efficiently.

  1. Topological structures in the equities market network

    PubMed Central

    Leibon, Gregory; Pauls, Scott; Rockmore, Daniel; Savell, Robert

    2008-01-01

    We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on “partition decoupled null models,” a new class of null models that incorporate the interaction of clustered partitions into a random model and generalize the Gaussian ensemble. As an application, we analyze a correlation matrix derived from 4 years of close prices of equities in the New York Stock Exchange (NYSE) and National Association of Securities Dealers Automated Quotation (NASDAQ). In this example, we expose (i) a natural structure composed of 2 interacting partitions of the market that both agrees with and generalizes standard notions of scale (e.g., sector and industry) and (ii) structure in the first partition that is a topological manifestation of a well-known pattern of capital flow called “sector rotation.” Our approach gives rise to a natural form of multiresolution analysis of the underlying time series that naturally decomposes the basic data in terms of the effects of the different scales at which it clusters. We support our conclusions and show the robustness of the technique with a successful analysis on a simulated network with an embedded topological structure. The equities market is a prototypical complex system, and we expect that our approach will be of use in understanding a broad class of complex systems in which correlation structures are resident.

  2. Instantiating a Global Network Measurement Framework

    SciTech Connect

    Tierney, Brian L.; Boote, Jeff; Boyd, Eric; Brown, Aaron; Grigoriev, Maxim; Metzger, Joe; Swany, Martin; Zekauskas, Matt; Zurawski, Jason

    2008-12-15

    perfSONAR is a web services-based infrastructure for collecting and publishing network performance monitoring. A primary goal of perfSONAR is making it easier to solve end-to-end performance problems on paths crossing several networks. It contains a set of services delivering performance measurements in a federated environment. These services act as an intermediate layer, between the performance measurement tools and the diagnostic or visualization applications. This layer is aimed at making and exchanging performance measurements across multiple networks and multiple user communities, using well-defined protocols. This paper summarizes the key perfSONAR components, and describes how they are deployed by the US-LHC community to monitor the networks distributing LHC data from CERN. All monitoring data described herein is publicly available, and we hope the availability of this data via a standard schema will inspire others to contribute to the effort by building network data analysis applications that use perfSONAR.

  3. Multitype Library Networking: A Framework for Decision-Making.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie; King, Donald W.

    1984-01-01

    Describes framework for library networking which consists of six interdependent dimensions to be used for decision making by libraries: functions to be performed, type of access information, types of materials, products and services, networking configurations, and communications means. Use of a series of cost models describing activities within…

  4. An Organizational Framework of Personal Health Records for Social Networks

    ERIC Educational Resources Information Center

    Hasan, Syed Omair

    2009-01-01

    This work proposes an organizational framework for creating a community to share personal health record (PHR) information in the form of a Health Records Social Network (HRSN). The work builds upon existing social network community concepts as well as the existing Systemized Nomenclature of Medicine (SNOMED) model used by the medical community and…

  5. Adding network approaches to a neurobiological framework of resilience.

    PubMed

    Levit-Binnun, Nava; Golland, Yulia

    2015-01-01

    In their paper, Kalisch et al. make an important attempt to create a unifying theoretical framework for the neuroscientific study of general resilience mechanisms. We suggest that such attempts can benefit tremendously by incorporating the recently emerging network approaches that enable the characterization of complex brain network architecture and dynamics, in both health and disease. PMID:26786965

  6. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571

  7. Network application and framework for quality of information processing

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin; Cook, Trevor; Scott, Lisa; Toth, Andrew

    2012-06-01

    To improve the effectiveness of network-centric decision making, we present a distributed network application and framework that provides users with actionable intelligence reports to support counter insurgency operations. ARL's Quality of Information (QoI) Intelligence Report Application uses QoI metrics like timeliness, accuracy, and precision combined with associated network performance data, such as throughput and latency, and mission-specific information requirements to deliver high quality data to users; that is data delivered in a manner which best supports the ability to make more informed decisions as it relates to the current mission. This application serves as a testing platform for integrated experimentation and validation of QoI processing techniques and methodologies. In this paper, we present the software-system framework and architecture, and show an example scenario that highlights how the framework aids in network integration and enables better data-to-decision.

  8. On effectiveness of network sensor-based defense framework

    NASA Astrophysics Data System (ADS)

    Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh

    2012-06-01

    Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.

  9. Simulating market dynamics: interactions between consumer psychology and social networks.

    PubMed

    Janssen, Marco A; Jager, Wander

    2003-01-01

    Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network). PMID:14761255

  10. Towards A Network-of-Networks Framework for Cyber Security

    SciTech Connect

    Halappanavar, Mahantesh; Choudhury, Sutanay; Hogan, Emilie A.; Hui, Peter SY; Johnson, John R.; Ray, Indrajit; Holder, Lawrence B.

    2013-06-07

    Networks-of-networks (NoN) is a graph-theoretic model of interdependent networks that have distinct dynamics at each network (layer). By adding special edges to represent relationships between nodes in different layers, NoN provides a unified mechanism to study interdependent systems intertwined in a complex relationship. While NoN based models have been proposed for cyber-physical systems, in this paper we build towards a three-layer NoN model for an enterprise cyber system. Each layer captures a different facet of a cyber system. We then discuss the potential benefits of graph-theoretic analysis enabled from such a model. Our goal is to provide a novel and powerful tool for modeling and analyzing problems in cyber security.

  11. Cyber Security Research Frameworks For Coevolutionary Network Defense

    SciTech Connect

    Rush, George D.; Tauritz, Daniel Remy

    2015-12-03

    Several architectures have been created for developing and testing systems used in network security, but most are meant to provide a platform for running cyber security experiments as opposed to automating experiment processes. In the first paper, we propose a framework termed Distributed Cyber Security Automation Framework for Experiments (DCAFE) that enables experiment automation and control in a distributed environment. Predictive analysis of adversaries is another thorny issue in cyber security. Game theory can be used to mathematically analyze adversary models, but its scalability limitations restrict its use. Computational game theory allows us to scale classical game theory to larger, more complex systems. In the second paper, we propose a framework termed Coevolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve attacker and defender agent strategies and capabilities and evaluate potential solutions with a custom network defense simulation. The third paper is a continuation of the CANDLES project in which we rewrote key parts of the framework. Attackers and defenders have been redesigned to evolve pure strategy, and a new network security simulation is devised which specifies network architecture and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search space and justify the use of a coevolutionary algorithm.

  12. Artificial Market Simulation with Embedded Complex Network Structures

    NASA Astrophysics Data System (ADS)

    Uchida, Makoto; Shirayama, Susumu

    We investigate a factor of the `network effect' that affects on communication service markets by a multi-agent based simulation approach. The network effect is one of a market characteristic, whereby the benefit of a service or a product increase with use. So far, the network effect has been studied in terms of macroscopic metrics, and interaction patterns of consumers in the market were often ignored. To investigate an infulence of structures of the interaction patterns, we propose a multi-agent based model for a communication serivce market, in which embedded complex network structures are considered as an interaction pattern of agents. Using several complex network models as the interaction patterns, we study the dynamics of a market in which two providers are competing. By a series of simulations, we show that the structural properties of the complex networks, such as the clustering coefficient and degree correlations, are the major factors of the network effect. We also discuss an adequate model of the interaction pattern for reproducing the market dynamics in the real world by performing simulations exploiting with a real data of social network.

  13. Influence of a network structure on the network effect in the communication service market

    NASA Astrophysics Data System (ADS)

    Uchida, Makoto; Shirayama, Susumu

    2008-09-01

    In this study, we analyze the network effect in a model of a personal communication market, by using a multi-agent based simulation approach. We introduce into the simulation model complex network structures as the interaction patterns of agents. With complex network models, we investigate the dynamics of a market in which two providers are competing. We also examine the structure of networks that affect the complex behavior of the market. By a series of simulations, we show that the structural properties of complex networks, such as the clustering coefficient and degree correlation, have a major influence on the dynamics of the market. We find that the network effect is increased if the interaction pattern of agents is characterized by a high clustering coefficient, or a positive degree correlation. We also discuss a suitable model of the interaction pattern for reproducing market dynamics in the real world, by performing simulations using real data of a social network.

  14. Online Monitor Framework for Network Distributed Data Acquisition Systems

    NASA Astrophysics Data System (ADS)

    Konno, Tomoyuki; Cabrera, Anatael; Ishitsuka, Masaki; Kuze, Masahiro; Sakamoto, Yasunobu; the Double Chooz Collaboration

    Data acquisition (DAQ) systems for recent high energy physics experiments consist of lots of subsystems distributed in the local area network. Therefore, scalability for the number of connections from subsystems and availability of access via the Internet are required. "Online monitor framework" is a general software framework for online data monitoring, which provides a way to collect monitoring information distributed in the network and pass them though the firewalls. The framework consists of two subsystems; "Monitor Sever" and "Monitor Viewer". Monitor Server is a core system of the framework. The server collects monitoring information from the DAQ subsystems to provide them to Monitor Viewer. Monitor Viewer is a graphical user interface of the monitor framework, which displays plots in itself. We adapted two types of technologies; Java and HTML5 with Google Web Toolkit, which are independent of operating systems or plugin-libraries like ROOT and contain some functionalities of communicating via the Internet and drawing graphics. The monitoring framework was developed for the Double Chooz reactor neutrino oscillation experiment but is general enough for other experiments. This document reports the structure of the online monitor framework with some examples from the adaption to the Double Chooz experiment.

  15. Communication and marketing as tools to cultivate the public's health: a proposed "people and places" framework

    PubMed Central

    Maibach, Edward W; Abroms, Lorien C; Marosits, Mark

    2007-01-01

    Background Communication and marketing are rapidly becoming recognized as core functions, or core competencies, in the field of public health. Although these disciplines have fostered considerable academic inquiry, a coherent sense of precisely how these disciplines can inform the practice of public health has been slower to emerge. Discussion In this article we propose a framework – based on contemporary ecological models of health – to explain how communication and marketing can be used to advance public health objectives. The framework identifies the attributes of people (as individuals, as social networks, and as communities or populations) and places that influence health behaviors and health. Communication, i.e., the provision of information, can be used in a variety of ways to foster beneficial change among both people (e.g., activating social support for smoking cessation among peers) and places (e.g., convincing city officials to ban smoking in public venues). Similarly, marketing, i.e., the development, distribution and promotion of products and services, can be used to foster beneficial change among both people (e.g., by making nicotine replacement therapy more accessible and affordable) and places (e.g., by providing city officials with model anti-tobacco legislation that can be adapted for use in their jurisdiction). Summary Public health agencies that use their communication and marketing resources effectively to support people in making healthful decisions and to foster health-promoting environments have considerable opportunity to advance the public's health, even within the constraints of their current resource base. PMID:17519027

  16. A Framework for Dimensioning VDL-2 Air-Ground Networks

    NASA Technical Reports Server (NTRS)

    Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven

    2014-01-01

    This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.

  17. A local area computer network expert system framework

    NASA Technical Reports Server (NTRS)

    Dominy, Robert

    1987-01-01

    Over the past years an expert system called LANES designed to detect and isolate faults in the Goddard-wide Hybrid Local Area Computer Network (LACN) was developed. As a result, the need for developing a more generic LACN fault isolation expert system has become apparent. An object oriented approach was explored to create a set of generic classes, objects, rules, and methods that would be necessary to meet this need. The object classes provide a convenient mechanism for separating high level information from low level network specific information. This approach yeilds a framework which can be applied to different network configurations and be easily expanded to meet new needs.

  18. Elastic Optical Path Network Architecture: Framework for Spectrally-Efficient and Scalable Future Optical Networks

    NASA Astrophysics Data System (ADS)

    Jinno, Masahiko; Takara, Hidehiko; Sone, Yoshiaki; Yonenaga, Kazushige; Hirano, Akira

    This paper presents an elastic optical path network architecture as a novel networking framework to address the looming capacity crunch problem in internet protocol (IP) and optical networks. The basic idea is to introduce elasticity and adaptation into the optical domain to yield spectrally-efficient optical path accommodation, heightened network scalability through IP traffic offloading to the elastic optical layer, and enhanced survivability for serious disasters.

  19. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.

    PubMed

    Ashwin, Peter; Coombes, Stephen; Nicks, Rachel

    2016-12-01

    The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear-for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience. PMID:26739133

  20. Practical use of a framework for network science experimentation

    NASA Astrophysics Data System (ADS)

    Toth, Andrew; Bergamaschi, Flavio

    2014-06-01

    In 2006, the US Army Research Laboratory (ARL) and the UK Ministry of Defence (MoD) established a collaborative research alliance with academia and industry, called the International Technology Alliance (ITA)1 In Network and Information Sciences, to address fundamental issues concerning Network and Information Sciences that will enhance decision making for coalition operations and enable rapid, secure formation of ad hoc teams in coalition environments and enhance US and UK capabilities to conduct coalition warfare. Research conducted under the ITA was extended through collaboration between ARL and IBM UK to characterize and dene a software stack and tooling that has become the reference framework for network science experimentation in support for validation of theoretical research. This paper discusses the composition of the reference framework for experimentation resulting from the ARL/IBM UK collaboration and its use, by the Network Science Collaborative Technology Alliance (NS CTA)2 , in a recent network science experiment conducted at ARL. It also discusses how the experiment was modeled using the reference framework, the integration of two new components, the Apollo Fact-Finder3 tool and the Medusa Crowd Sensing4 application, the limitations identified and how they shall be addressed in future work.

  1. Granger causality stock market networks: Temporal proximity and preferential attachment

    NASA Astrophysics Data System (ADS)

    Výrost, Tomáš; Lyócsa, Štefan; Baumöhl, Eduard

    2015-06-01

    The structure of return spillovers is examined by constructing Granger causality networks using daily closing prices of 20 developed markets from 2nd January 2006 to 31st December 2013. The data is properly aligned to take into account non-synchronous trading effects. The study of the resulting networks of over 94 sub-samples revealed three significant findings. First, after the recent financial crisis the impact of the US stock market has declined. Second, spatial probit models confirmed the role of the temporal proximity between market closing times for return spillovers, i.e. the time distance between national stock markets matters. Third, a preferential attachment between stock markets exists, i.e. the probability of the presence of spillover effects between any given two markets increases with their degree of connectedness to others.

  2. Cointegration-based financial networks study in Chinese stock market

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi

    2014-05-01

    We propose a method based on cointegration instead of correlation to construct financial complex network in Chinese stock market. The network is obtained starting from the matrix of p-value calculated by Engle-Granger cointegration test between all pairs of stocks. Then some tools for filtering information in complex network are implemented to prune the complete graph described by the above matrix, such as setting a level of statistical significance as a threshold and Planar Maximally Filtered Graph. We also calculate Partial Correlation Planar Graph of these stocks to compare the above networks. Last, we analyze these directed, weighted and non-symmetric networks by using standard methods of network analysis, including degree centrality, PageRank, HITS, local clustering coefficient, K-shell and strongly and weakly connected components. The results shed a new light on the underlying mechanisms and driving forces in a financial market and deepen our understanding of financial complex network.

  3. Weighted Networks at the Polish Market

    NASA Astrophysics Data System (ADS)

    Chmiel, A. M.; Sienkiewicz, J.; Suchecki, K.; Hołyst, J. A.

    During the last few years various models of networks [1,2] have become a powerful tool for analysis of complex systems in such distant fields as Internet [3], biology [4], social groups [5], ecology [6] and public transport [7]. Modeling behavior of economical agents is a challenging issue that has also been studied from a network point of view. The examples of such studies are models of financial networks [8], supply chains [9, 10], production networks [11], investment networks [12] or collective bank bankrupcies [13, 14]. Relations between different companies have been already analyzed using several methods: as networks of shareholders [15], networks of correlations between stock prices [16] or networks of board directors [17]. In several cases scaling laws for network characteristics have been observed.

  4. Novel indexes based on network structure to indicate financial market

    NASA Astrophysics Data System (ADS)

    Zhong, Tao; Peng, Qinke; Wang, Xiao; Zhang, Jing

    2016-02-01

    There have been various achievements to understand and to analyze the financial market by complex network model. However, current studies analyze the financial network model but seldom present quantified indexes to indicate or forecast the price action of market. In this paper, the stock market is modeled as a dynamic network, in which the vertices refer to listed companies and edges refer to their rank-based correlation based on price series. Characteristics of the network are analyzed and then novel indexes are introduced into market analysis, which are calculated from maximum and fully-connected subnets. The indexes are compared with existing ones and the results confirm that our indexes perform better to indicate the daily trend of market composite index in advance. Via investment simulation, the performance of our indexes is analyzed in detail. The results indicate that the dynamic complex network model could not only serve as a structural description of the financial market, but also work to predict the market and guide investment by indexes.

  5. Conceptual Framework for Developing a Diabetes Information Network

    PubMed Central

    Riazi, Hossein; Langarizadeh, Mostafa; Larijani, Bagher; Shahmoradi, Leila

    2016-01-01

    Objective: To provide a conceptual framework for managing diabetic patient care, and creating an information network for clinical research. Background: A wide range of information technology (IT) based interventions such as distance learning, diabetes registries, personal or electronic health record systems, clinical information systems, and clinical decision support systems have so far been used in supporting diabetic care. Previous studies demonstrated that IT could improve diabetes care at its different aspects. There is however no comprehensive conceptual framework that defines how different IT applications can support diverse aspects of this care. Therefore, a conceptual framework that combines different IT solutions into a wide information network for improving care processes and for research purposes is widely lacking. In this study we describe the theoretical underpin of a big project aiming at building a wide diabetic information network namely DIANET. Research design and methods: A literature review and a survey of national programs and existing regulations for diabetes management was conducted in order to define different aspects of diabetic care that should be supported by IT solutions. Both qualitative and quantitative research methods were used in this study. In addition to the results of a previous systematic literature review, two brainstorming and three expert panel sessions were conducted to identify requirements of a comprehensive information technology solution. Based on these inputs, the requirements for creating a diabetes information network were identified and used to create a questionnaire based on 9-point Likert scale. The questionnaire was finalized after removing some items based on calculated content validity ratio and content validity index coefficients. Cronbach’s alpha reliability coefficient was also calculated (αTotal= 0.98, P<0.05, CI=0.95). The final questionnaire was containing 45 items. It was sent to 13 clinicians at two

  6. A Newtonian framework for community detection in undirected biological networks.

    PubMed

    Narayanan, Tejaswini; Subramaniam, Shankar

    2014-02-01

    Community detection is a key problem of interest in network analysis, with applications in a variety of domains such as biological networks, social network modeling, and communication pattern analysis. In this paper, we present a novel framework for community detection that is motivated by a physical system analogy. We model a network as a system of point masses, and drive the process of community detection, by leveraging the Newtonian interactions between the point masses. Our framework is designed to be generic and extensible relative to the model parameters that are most suited for the problem domain. We illustrate the applicability of our approach by applying the Newtonian Community Detection algorithm on protein-protein interaction networks of E. coli , C. elegans, and S. cerevisiae. We obtain results that are comparable in quality to those obtained from the Newman-Girvan algorithm, a widely employed divisive algorithm for community detection. We also present a detailed analysis of the structural properties of the communities produced by our proposed algorithm, together with a biological interpretation using E. coli protein network as a case study. A functional enrichment heat map is constructed with the Gene Ontology functional mapping, in addition to a pathway analysis for each community. The analysis illustrates that the proposed algorithm elicits communities that are not only meaningful from a topological standpoint, but also possess biological relevance. We believe that our algorithm has the potential to serve as a key computational tool for driving therapeutic applications involving targeted drug development for personalized care delivery. PMID:24681920

  7. A framework for analyzing the impact of data integrity/quality on electricity market operations

    NASA Astrophysics Data System (ADS)

    Choi, Dae Hyun

    a circuit breaker) do network topology estimate, thus leading to the distortion of LMP. We present an analytical framework to quantify real-time LMP sensitivity subject to continuous and discrete data corruption via state estimation. The proposed framework offers system operators an analytical tool to identify economically sensitive buses and transmission lines to data corruption as well as find sensors that impact LMP changes significantly. This dissertation serves as a first step towards rigorous understanding of the fundamental coupling among cyber, physical and economical layers of operations in future smart grid.

  8. A Novel Framework to Maximum Lifetime for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Sheng, Feng; Xiao-Gang, Qi; Ji-Long, Xue

    In this paper, a novel framework is presented to prolong the lifetime of wireless sensor networks to the maximum. This framework consists of two parts. One is a novel topology management mechanism called electric fan topology mechanism (EFTM) and the other is an efficient routing protocol called maximum lifetime routing (MLR). EFTM provides a scheduler strategy to save much energy by turning off some transceivers periodically. MLR is based on the work of EFTM, which selects nodes with high-energy reserves as router. Though we turn off some transceivers periodically, we have developed receiver-based packet routing policy and last-mile algorithm to accommodate rapid change of topology and to guarantee the robust of networks. Simulation results show that MLR based on the work of EFTM extends the lifetime of networks to the maximum. MLR is suitable for large scale non-real time wireless sensor applications. When all trajectories are unavailable, nodes can still send packets to sink efficiently. The network using MLR can adapt to the rapid change of network topology very well.

  9. An integrated text mining framework for metabolic interaction network reconstruction

    PubMed Central

    Doungpan, Narumol; Meechai, Asawin; Shen, Bairong

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and

  10. An integrated text mining framework for metabolic interaction network reconstruction.

    PubMed

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  11. Introducing FNCS: Framework for Network Co-Simulation

    SciTech Connect

    2014-10-23

    This video provides a basic overview of the PNNL Future Power Grid Initiative-developed Framework for Network Co-Simulation (FNCS). It discusses the increasing amounts of data coming from the power grid, and the need for a tool like FNCS that brings together data, transmission and distribution simulators. Included is a description of the FNCS architecture, and the advantages this new open source tool can bring to grid research and development efforts.

  12. E-Services quality assessment framework for collaborative networks

    NASA Astrophysics Data System (ADS)

    Stegaru, Georgiana; Danila, Cristian; Sacala, Ioan Stefan; Moisescu, Mihnea; Mihai Stanescu, Aurelian

    2015-08-01

    In a globalised networked economy, collaborative networks (CNs) are formed to take advantage of new business opportunities. Collaboration involves shared resources and capabilities, such as e-Services that can be dynamically composed to automate CN participants' business processes. Quality is essential for the success of business process automation. Current approaches mostly focus on quality of service (QoS)-based service selection and ranking algorithms, overlooking the process of service composition which requires interoperable, adaptable and secure e-Services to ensure seamless collaboration, data confidentiality and integrity. Lack of assessment of these quality attributes can result in e-Service composition failure. The quality of e-Service composition relies on the quality of each e-Service and on the quality of the composition process. Therefore, there is the need for a framework that addresses quality from both views: product and process. We propose a quality of e-Service composition (QoESC) framework for quality assessment of e-Service composition for CNs which comprises of a quality model for e-Service evaluation and guidelines for quality of e-Service composition process. We implemented a prototype considering a simplified telemedicine use case which involves a CN in e-Healthcare domain. To validate the proposed quality-driven framework, we analysed service composition reliability with and without using the proposed framework.

  13. U.S. stock market interaction network as learned by the Boltzmann machine

    NASA Astrophysics Data System (ADS)

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-01

    We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model's parameters might be used as a precursor of financial instabilities.

  14. U.S. stock market interaction network as learned by the Boltzmann machine

    SciTech Connect

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.

  15. STOCK Market Differences in Correlation-Based Weighted Network

    NASA Astrophysics Data System (ADS)

    Youn, Janghyuk; Lee, Junghoon; Chang, Woojin

    We examined the sector dynamics of Korean stock market in relation to the market volatility. The daily price data of 360 stocks for 5019 trading days (from January, 1990 to August, 2008) in Korean stock market are used. We performed the weighted network analysis and employed four measures: the average, the variance, the intensity, and the coherence of network weights (absolute values of stock return correlations) to investigate the network structure of Korean stock market. We performed regression analysis using the four measures in the seven major industry sectors and the market (seven sectors combined). We found that the average, the intensity, and the coherence of sector (subnetwork) weights increase as market becomes volatile. Except for the "Financials" sector, the variance of sector weights also grows as market volatility increases. Based on the four measures, we can categorize "Financials," "Information Technology" and "Industrials" sectors into one group, and "Materials" and "Consumer Discretionary" sectors into another group. We investigated the distributions of intrasector and intersector weights for each sector and found the differences in "Financials" sector are most distinct.

  16. Networks in financial markets based on the mutual information rate

    NASA Astrophysics Data System (ADS)

    Fiedor, Paweł

    2014-05-01

    In the last few years there have been many efforts in econophysics studying how network theory can facilitate understanding of complex financial markets. These efforts consist mainly of the study of correlation-based hierarchical networks. This is somewhat surprising as the underlying assumptions of research looking at financial markets are that they are complex systems and thus behave in a nonlinear manner, which is confirmed by numerous studies, making the use of correlations which are inherently dealing with linear dependencies only baffling. In this paper we introduce a way to incorporate nonlinear dynamics and dependencies into hierarchical networks to study financial markets using mutual information and its dynamical extension: the mutual information rate. We show that this approach leads to different results than the correlation-based approach used in most studies, on the basis of 91 companies listed on the New York Stock Exchange 100 between 2003 and 2013, using minimal spanning trees and planar maximally filtered graphs.

  17. The structure and resilience of financial market networks.

    PubMed

    Peron, Thomas Kaue Dal'Maso; Costa, Luciano da Fontoura; Rodrigues, Francisco A

    2012-03-01

    Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience. PMID:22462993

  18. The structure and resilience of financial market networks

    NASA Astrophysics Data System (ADS)

    Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.

    2012-03-01

    Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.

  19. Analytical framework for recurrence network analysis of time series

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Donner, Reik V.; Kurths, Jürgen

    2012-04-01

    Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclimatology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an ɛ-recurrence network as a discrete subnetwork of a “continuous” graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ɛ. In particular, we introduce local measures such as the ɛ-clustering coefficient, mesoscopic measures such as ɛ-motif density, path-based measures such as ɛ-betweennesses, and global measures such as ɛ-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of ɛ via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasiperiodic motions, and for hyperballs and hypercubes by deriving analytical expressions for the novel measures and comparing them with data from numerical experiments. More generally, the theoretical framework put forward in this work describes random geometric graphs and other networks with spatial constraints, which appear frequently in disciplines ranging from biology to climate science.

  20. An autocatalytic network model for stock markets

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-02-01

    The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

  1. Knowledge Discovery Using Bayesian Network Framework for Intelligent Telecommunication Network Management

    NASA Astrophysics Data System (ADS)

    Bashar, Abul; Parr, Gerard; McClean, Sally; Scotney, Bryan; Nauck, Detlef

    The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.

  2. An improved unified network protocol framework for large-scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ding, Jin; Sivalingam, Krishna M.

    2004-08-01

    Rapid technological advances in wireless communication have made it possible for networking sensor devices. Given the low computation and battery power capacities of these sensor nodes, the key design factors of network protocols are self-configuring, energy-efficient, adaptive, and scalable. We presented the multi-hop infrastructure network architecture (MINA) for a wireless sensor network consisting of a few hundred sensors that communicate data to a base station (BS). We designed a Unified Network Protocol Framework for MINA that encompasses network organization, medium access control (MAC) and routing protocols. In this paper, we improve it by adaptively varying transmission range to maintain network connectivity. It is a derivative-free optimization algorithm. The BS periodically evaluates the objective function, chooses the appropriate transmission range and broadcasts it to the sensor nodes that then update the transmission range. The advantages are: (i) Avoids the disconnectivity; (ii) Maximizes the number of nodes that can be connected to the BS, (iii) Minimizes the energyxdelay metric and (iv) Avoids the "hot-spot" nodes in the network. The performance in terms of delay, throughput, energy consumption and network lifetimes, is studied in detail using discrete-event simulation compared with other protocol. The results show that it is energy efficient in a large scale network.

  3. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  4. Topological Isomorphisms of Human Brain and Financial Market Networks

    PubMed Central

    Vértes, Petra E.; Nicol, Ruth M.; Chapman, Sandra C.; Watkins, Nicholas W.; Robertson, Duncan A.; Bullmore, Edward T.

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets – the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular – more highly optimized for information processing – than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets. PMID:22007161

  5. A framework for integration of heterogeneous medical imaging networks.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  6. A Framework for Integration of Heterogeneous Medical Imaging Networks

    PubMed Central

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  7. Dynamics of cluster structures in a financial market network

    NASA Astrophysics Data System (ADS)

    Kocheturov, Anton; Batsyn, Mikhail; Pardalos, Panos M.

    2014-11-01

    In the course of recent fifteen years the network analysis has become a powerful tool for studying financial markets. In this work we analyze stock markets of the USA and Sweden. We study cluster structures of a market network constructed from a correlation matrix of returns of the stocks traded in each of these markets. Such cluster structures are obtained by means of the P-Median Problem (PMP) whose objective is to maximize the total correlation between a set of stocks called medians of size p and other stocks. Every cluster structure is an undirected disconnected weighted graph in which every connected component (cluster) is a star, or a tree with one central node (called a median) and several leaf nodes connected with the median by weighted edges. Our main observation is that in non-crisis periods of time cluster structures change more chaotically, while during crises they show more stable behavior and fewer changes. Thus an increasing stability of a market graph cluster structure obtained via the PMP could be used as an indicator of a coming crisis.

  8. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  9. A network access control framework for 6LoWPAN networks.

    PubMed

    Oliveira, Luís M L; Rodrigues, Joel J P C; de Sousa, Amaro F; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  10. Neural network based load and price forecasting and confidence interval estimation in deregulated power markets

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    With the deregulation of the electric power market in New England, an independent system operator (ISO) has been separated from the New England Power Pool (NEPOOL). The ISO provides a regional spot market, with bids on various electricity-related products and services submitted by utilities and independent power producers. A utility can bid on the spot market and buy or sell electricity via bilateral transactions. Good estimation of market clearing prices (MCP) will help utilities and independent power producers determine bidding and transaction strategies with low risks, and this is crucial for utilities to compete in the deregulated environment. MCP prediction, however, is difficult since bidding strategies used by participants are complicated and MCP is a non-stationary process. The main objective of this research is to provide efficient short-term load and MCP forecasting and corresponding confidence interval estimation methodologies. In this research, the complexity of load and MCP with other factors is investigated, and neural networks are used to model the complex relationship between input and output. With improved learning algorithm and on-line update features for load forecasting, a neural network based load forecaster was developed, and has been in daily industry use since summer 1998 with good performance. MCP is volatile because of the complexity of market behaviors. In practice, neural network based MCP predictors usually have a cascaded structure, as several key input factors need to be estimated first. In this research, the uncertainties involved in a cascaded neural network structure for MCP prediction are analyzed, and prediction distribution under the Bayesian framework is developed. A fast algorithm to evaluate the confidence intervals by using the memoryless Quasi-Newton method is also developed. The traditional back-propagation algorithm for neural network learning needs to be improved since MCP is a non-stationary process. The extended Kalman

  11. A Generic Framework of Performance Measurement in Networked Enterprises

    NASA Astrophysics Data System (ADS)

    Kim, Duk-Hyun; Kim, Cheolhan

    Performance measurement (PM) is essential for managing networked enterprises (NEs) because it greatly affects the effectiveness of collaboration among members of NE.PM in NE requires somewhat different approaches from PM in a single enterprise because of heterogeneity, dynamism, and complexity of NE’s. This paper introduces a generic framework of PM in NE (we call it NEPM) based on the Balanced Scorecard (BSC) approach. In NEPM key performance indicators and cause-and-effect relationships among them are defined in a generic strategy map. NEPM could be applied to various types of NEs after specializing KPIs and relationships among them. Effectiveness of NEPM is shown through a case study of some Korean NEs.

  12. Conductive metal-organic frameworks and networks: fact or fantasy?

    PubMed

    Hendon, Christopher H; Tiana, Davide; Walsh, Aron

    2012-10-14

    Electrical conduction is well understood in materials formed from inorganic or organic building blocks, but their combination to produce conductive hybrid frameworks and networks is an emerging and rapidly developing field of research. Self-assembling organic-inorganic compounds offer immense potential for functionalising material properties for a wide scope of applications including solar cells, light emitters, gas sensors and bipolar transparent conductors. The flexibility of combining two distinct material classes into a single solid-state system provides an almost infinite number of chemical and structural possibilities; however, there is currently no systematic approach established for designing new compositions and configurations with targeted electronic or optical properties. We review the current status in the field, in particular, the range of hybrid systems reported to date and the important role of materials modelling in the field. From theoretical arguments, the Mott insulator-to-metal transition should be possible in semiconducting metal-organic frameworks, but has yet to be observed. The question remains as to whether electro-active hybrid materials will evolve from chemical curiosities towards practical applications in the near term. PMID:22858739

  13. A cognitive information processing framework for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Feiyi; Qi, Hairong

    2004-09-01

    In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.

  14. A computational molecular design framework for crosslinked polymer networks.

    PubMed

    Eslick, J C; Ye, Q; Park, J; Topp, E M; Spencer, P; Camarda, K V

    2009-05-21

    Crosslinked polymers are important in a very wide range of applications including dental restorative materials. However, currently used polymeric materials experience limited durability in the clinical oral environment. Researchers in the dental polymer field have generally used a time-consuming experimental trial-and-error approach to the design of new materials. The application of computational molecular design (CMD) to crosslinked polymer networks has the potential to facilitate development of improved polymethacrylate dental materials. CMD uses quantitative structure property relations (QSPRs) and optimization techniques to design molecules possessing desired properties. This paper describes a mathematical framework which provides tools necessary for the application of CMD to crosslinked polymer systems. The novel parts of the system include the data structures used, which allow for simple calculation of structural descriptors, and the formulation of the optimization problem. A heuristic optimization method, Tabu Search, is used to determine candidate monomers. Use of a heuristic optimization algorithm makes the system more independent of the types of QSPRs used, and more efficient when applied to combinatorial problems. A software package has been created which provides polymer researchers access to the design framework. A complete example of the methodology is provided for polymethacrylate dental materials. PMID:23904665

  15. RUASN: A Robust User Authentication Framework for Wireless Sensor Networks

    PubMed Central

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  16. RUASN: a robust user authentication framework for wireless sensor networks.

    PubMed

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  17. An efficient automated parameter tuning framework for spiking neural networks

    PubMed Central

    Carlson, Kristofor D.; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L.

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier. PMID:24550771

  18. Geotube: a network based framework for Goescience dissemination

    NASA Astrophysics Data System (ADS)

    Grieco, Giovanni; Porta, Marina; Merlini, Anna Elisabetta; Caironi, Valeria; Reggiori, Donatella

    2016-04-01

    Geotube is a project promoted by Il Geco cultural association for the dissemination of Geoscience education in schools by open multimedia environments. The approach is based on the following keystones: • A deep and permanent epistemological reflection supported by confrontation within the International Scientific Community • A close link with the territory • A local to global inductive approach to basic concepts in Geosciences • The construction of an open framework to stimulate creativity The project has been developed as an educational activity for secondary schools (11 to 18 years old students). It provides for the creation of a network of institutions to be involved in order to ensure the required diversified expertise. They can comprise: Universities, Natural Parks, Mountain Communities, Municipalities, schools, private companies working in the sector, and so on. A single project lasts for one school year (October to June) and requires 8-12 work hours at school, one or two half day or full day excursions and a final event of presentation of outputs. The possible outputs comprise a pdf or ppt guidebook, a script and a video completely shooted and edited by the students. The framework is open in order to adapt to the single class or workgroup needs, the level and type of school, the time available and different subjects in Geosciences. In the last two years the two parts of the project have been successfully tested separately, while the full project will be presented at schools in in its full form in April 2016, in collaboration with University of Milan, Campo dei Fiori Natural Park, Piambello Mountain Community and Cunardo Municipality. The production of geotube outputs has been tested in a high school for three consecutive years. Students produced scripts and videos on the following subjects: geologic hazards, volcanoes and earthquakes, and climate change. The excursions have been tested with two different high schools. Firstly two areas have been

  19. Teaching Students How to Integrate and Assess Social Networking Tools in Marketing Communications

    ERIC Educational Resources Information Center

    Schlee, Regina Pefanis; Harich, Katrin R.

    2013-01-01

    This research is based on two studies that focus on teaching students how to integrate and assess social networking tools in marketing communications. Study 1 examines how students in marketing classes utilize social networking tools and explores their attitudes regarding the use of such tools for marketing communications. Study 2 focuses on an…

  20. U.S. stock market interaction network as learned by the Boltzmann machine

    DOE PAGESBeta

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less

  1. Statistical properties of the stock and credit market: RMT and network topology

    NASA Astrophysics Data System (ADS)

    Lim, Kyuseong; Kim, Min Jae; Kim, Sehyun; Kim, Soo Yong

    We analyzed the dependence structure of the credit and stock market using random matrix theory and network topology. The dynamics of both markets have been spotlighted throughout the subprime crisis. In this study, we compared these two markets in view of the market-wide effect from random matrix theory and eigenvalue analysis. We found that the largest eigenvalue of the credit market as a whole preceded that of the stock market in the beginning of the financial crisis and that of two markets tended to be synchronized after the crisis. The correlation between the companies of both markets became considerably stronger after the crisis as well.

  2. A study of the spreading scheme for viral marketing based on a complex network model

    NASA Astrophysics Data System (ADS)

    Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong

    2010-02-01

    Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.

  3. Switching benefits and costs in competitive health insurance markets: A conceptual framework and empirical evidence from the Netherlands.

    PubMed

    Duijmelinck, Daniëlle M I D; Mosca, Ilaria; van de Ven, Wynand P M M

    2015-05-01

    Competitive health insurance markets will only enhance cost-containment, efficiency, quality, and consumer responsiveness if all consumers feel free to easily switch insurer. Consumers will switch insurer if their perceived switching benefits outweigh their perceived switching costs. We developed a conceptual framework with potential switching benefits and costs in competitive health insurance markets. Moreover, we used a questionnaire among Dutch consumers (1091 respondents) to empirically examine the relevance of the different switching benefits and costs in consumers' decision to (not) switch insurer. Price, insurers' service quality, insurers' contracted provider network, the benefits of supplementary insurance, and welcome gifts are potential switching benefits. Transaction costs, learning costs, 'benefit loss' costs, uncertainty costs, the costs of (not) switching provider, and sunk costs are potential switching costs. In 2013 most Dutch consumers switched insurer because of (1) price and (2) benefits of supplementary insurance. Nearly half of the non-switchers - and particularly unhealthy consumers - mentioned one of the switching costs as their main reason for not switching. Because unhealthy consumers feel not free to easily switch insurer, insurers have reduced incentives to invest in high-quality care for them. Therefore, policymakers should develop strategies to increase consumer choice. PMID:25530069

  4. Cournot games with network effects for electric power markets

    NASA Astrophysics Data System (ADS)

    Spezia, Carl John

    The electric utility industry is moving from regulated monopolies with protected service areas to an open market with many wholesale suppliers competing for consumer load. This market is typically modeled by a Cournot game oligopoly where suppliers compete by selecting profit maximizing quantities. The classical Cournot model can produce multiple solutions when the problem includes typical power system constraints. This work presents a mathematical programming formulation of oligopoly that produces unique solutions when constraints limit the supplier outputs. The formulation casts the game as a supply maximization problem with power system physical limits and supplier incremental profit functions as constraints. The formulation gives Cournot solutions identical to other commonly used algorithms when suppliers operate within the constraints. Numerical examples demonstrate the feasibility of the theory. The results show that the maximization formulation will give system operators more transmission capacity when compared to the actions of suppliers in a classical constrained Cournot game. The results also show that the profitability of suppliers in constrained networks depends on their location relative to the consumers' load concentration.

  5. A multiobjective optimization framework for multicontaminant industrial water network design.

    PubMed

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. PMID:21435775

  6. Structure-Dynamics Relationships in Bursting Neuronal Networks Revealed Using a Prediction Framework

    PubMed Central

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Ruohonen, Keijo; Linne, Marja-Leena

    2013-01-01

    The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network topologies and search among many possibilities the aspects of structure that have the greatest effect on the network excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on the number and quality of the emergent network bursts are collected for each network type. We apply a prediction framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework, predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst count or burst length, of the networks. The performances of these predictors are compared with each other. We show that the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small () networks hold with few exceptions when different neuron models, different choices of neuron population and different average degrees are applied. We confirm our conclusions using larger () networks as well. Our findings reveal the relevance of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve as a general framework for structure-dynamics studies in biosciences. PMID:23935998

  7. Structure-dynamics relationships in bursting neuronal networks revealed using a prediction framework.

    PubMed

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Ruohonen, Keijo; Linne, Marja-Leena

    2013-01-01

    The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network topologies and search among many possibilities the aspects of structure that have the greatest effect on the network excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on the number and quality of the emergent network bursts are collected for each network type. We apply a prediction framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework, predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst count or burst length, of the networks. The performances of these predictors are compared with each other. We show that the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small ([Formula: see text]) networks hold with few exceptions when different neuron models, different choices of neuron population and different average degrees are applied. We confirm our conclusions using larger ([Formula: see text]) networks as well. Our findings reveal the relevance of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve as a general framework for structure

  8. Developing a Framework for Effective Network Capacity Planning

    NASA Technical Reports Server (NTRS)

    Yaprak, Ece

    2005-01-01

    As Internet traffic continues to grow exponentially, developing a clearer understanding of, and appropriately measuring, network's performance is becoming ever more critical. An important challenge faced by the Information Resources Directorate (IRD) at the Johnson Space Center in this context remains not only monitoring and maintaining a secure network, but also better understanding the capacity and future growth potential boundaries of its network. This requires capacity planning which involves modeling and simulating different network alternatives, and incorporating changes in design as technologies, components, configurations, and applications change, to determine optimal solutions in light of IRD's goals, objectives and strategies. My primary task this summer was to address this need. I evaluated network-modeling tools from OPNET Technologies Inc. and Compuware Corporation. I generated a baseline model for Building 45 using both tools by importing "real" topology/traffic information using IRD's various network management tools. I compared each tool against the other in terms of the advantages and disadvantages of both tools to accomplish IRD's goals. I also prepared step-by-step "how to design a baseline model" tutorial for both OPNET and Compuware products.

  9. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  10. Security Frameworks for Machine-to-Machine Devices and Networks

    NASA Astrophysics Data System (ADS)

    Demblewski, Michael

    Attacks against mobile systems have escalated over the past decade. There have been increases of fraud, platform attacks, and malware. The Internet of Things (IoT) offers a new attack vector for Cybercriminals. M2M contributes to the growing number of devices that use wireless systems for Internet connection. As new applications and platforms are created, old vulnerabilities are transferred to next-generation systems. There is a research gap that exists between the current approaches for security framework development and the understanding of how these new technologies are different and how they are similar. This gap exists because system designers, security architects, and users are not fully aware of security risks and how next-generation devices can jeopardize safety and personal privacy. Current techniques, for developing security requirements, do not adequately consider the use of new technologies, and this weakens countermeasure implementations. These techniques rely on security frameworks for requirements development. These frameworks lack a method for identifying next generation security concerns and processes for comparing, contrasting and evaluating non-human device security protections. This research presents a solution for this problem by offering a novel security framework that is focused on the study of the "functions and capabilities" of M2M devices and improves the systems development life cycle for the overall IoT ecosystem.

  11. Framework to study dynamic dependencies in networks of interacting processes.

    PubMed

    Chicharro, Daniel; Ledberg, Anders

    2012-10-01

    The analysis of dynamic dependencies in complex systems such as the brain helps to understand how emerging properties arise from interactions. Here we propose an information-theoretic framework to analyze the dynamic dependencies in multivariate time-evolving systems. This framework constitutes a fully multivariate extension and unification of previous approaches based on bivariate or conditional mutual information and Granger causality or transfer entropy. We define multi-information measures that allow us to study the global statistical structure of the system as a whole, the total dependence between subsystems, and the temporal statistical structure of each subsystem. We develop a stationary and a nonstationary formulation of the framework. We then examine different decompositions of these multi-information measures. The transfer entropy naturally appears as a term in some of these decompositions. This allows us to examine its properties not as an isolated measure of interdependence but in the context of the complete framework. More generally we use causal graphs to study the specificity and sensitivity of all the measures appearing in these decompositions to different sources of statistical dependence arising from the causal connections between the subsystems. We illustrate that there is no straightforward relation between the strength of specific connections and specific terms in the decompositions. Furthermore, causal and noncausal statistical dependencies are not separable. In particular, the transfer entropy can be nonmonotonic in dependence on the connectivity strength between subsystems and is also sensitive to internal changes of the subsystems, so it should not be interpreted as a measure of connectivity strength. Altogether, in comparison to an analysis based on single isolated measures of interdependence, this framework is more powerful to analyze emergent properties in multivariate systems and to characterize functionally relevant changes in the

  12. Framework to study dynamic dependencies in networks of interacting processes

    NASA Astrophysics Data System (ADS)

    Chicharro, Daniel; Ledberg, Anders

    2012-10-01

    The analysis of dynamic dependencies in complex systems such as the brain helps to understand how emerging properties arise from interactions. Here we propose an information-theoretic framework to analyze the dynamic dependencies in multivariate time-evolving systems. This framework constitutes a fully multivariate extension and unification of previous approaches based on bivariate or conditional mutual information and Granger causality or transfer entropy. We define multi-information measures that allow us to study the global statistical structure of the system as a whole, the total dependence between subsystems, and the temporal statistical structure of each subsystem. We develop a stationary and a nonstationary formulation of the framework. We then examine different decompositions of these multi-information measures. The transfer entropy naturally appears as a term in some of these decompositions. This allows us to examine its properties not as an isolated measure of interdependence but in the context of the complete framework. More generally we use causal graphs to study the specificity and sensitivity of all the measures appearing in these decompositions to different sources of statistical dependence arising from the causal connections between the subsystems. We illustrate that there is no straightforward relation between the strength of specific connections and specific terms in the decompositions. Furthermore, causal and noncausal statistical dependencies are not separable. In particular, the transfer entropy can be nonmonotonic in dependence on the connectivity strength between subsystems and is also sensitive to internal changes of the subsystems, so it should not be interpreted as a measure of connectivity strength. Altogether, in comparison to an analysis based on single isolated measures of interdependence, this framework is more powerful to analyze emergent properties in multivariate systems and to characterize functionally relevant changes in the

  13. Multiple Hub Network Choice in the Liberalized European Market

    NASA Technical Reports Server (NTRS)

    Berechman, Joseph; deWit, Jaap

    1997-01-01

    . In the meantime, open skies agreements have been concluded between the USA and most of the EU member states to facilitate strategic alliances between airlines of the states involved. As a result of this on-going liberalization the model of the single 'national' carrier using the national home base as its single hub for the designated third, fourth and sixth freedom operations will stepwise disappear. Within the EU the concept of the national carrier has already been replaced by that of the community carrier. State ownership in more and more European carriers is reduced. On the longer run mergers or even bankruptcy will further undermine the "single national carrier - single national hub" model in Europe. In the meantime, strategic alliances between national carriers in Europe will already reduce the airlines' loyalty to a single airport. Profit maximization and accountability to share holders will supersede the loyalty of these newly emerging alliances, probably looking for the opportunities of a multiple hub network to adequately cover the whole European market. As a consequence, some European airports might see a substantial decline in arriving, departing and transfer traffic, thus in revenues and financial solvency, as well as in their connection to other inter-continental and intra-European destinations. At the same time, other airports might realize a significant increase in traffic as they will be sought after by the profit maximizing airlines as their major gateway hubs. Which will be the losing airports and which will be the winning ones? Can airports anticipate the actions of airlines in deregulated markets and utilize policies which will improve their relative position? If so, what should be these anticipatory policies? These questions become the more urgent, since an increasing number of major European airports will be privatized in the near future. Although increasing airport congestion in Europe will also be reflected in a growing demand pressure for

  14. Using LinkedIn in the Marketing Classroom: Exploratory Insights and Recommendations for Teaching Social Media/Networking

    ERIC Educational Resources Information Center

    McCorkle, Denny E.; McCorkle, Yuhua Li

    2012-01-01

    With the rapid growth of social networking and media comes their consideration for use in the marketing classroom. Social networking skills are becoming essential for personal branding (e.g., networking, self-marketing) and corporate/product branding (e.g., marketing communication). This paper addresses the use of LinkedIn (i.e., an online…

  15. A Rule-Based and Hypertextual Electronic Mail System for Electronic Learning Environments: Applying the Distributed Network Learning Framework.

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Levin, James A.

    This paper discusses issues related to the design of software tools that support learners in their participation in network-based learning activities. To guide the development and use of a new class of educationally-oriented network tools, this paper proposes a cognitively-based, distributed network learning framework (DNLF). This framework has…

  16. Analysis of a Real Online Social Network Using Semantic Web Frameworks

    NASA Astrophysics Data System (ADS)

    Erétéo, Guillaume; Buffa, Michel; Gandon, Fabien; Corby, Olivier

    Social Network Analysis (SNA) provides graph algorithms to characterize the structure of social networks, strategic positions in these networks, specific sub-networks and decompositions of people and activities. Online social platforms like Facebook form huge social networks, enabling people to connect, interact and share their online activities across several social applications. We extended SNA operators using semantic web frameworks to include the semantics of these graph-based representations when analyzing such social networks and to deal with the diversity of their relations and interactions. We present here the results of this approach when it was used to analyze a real social network with 60,000 users connecting, interacting and sharing content.

  17. AUCTION MECHANISMS FOR IMPLEMENTING TRADABLE NETWORK PERMIT MARKETS

    NASA Astrophysics Data System (ADS)

    Wada, Kentaro; Akamatsu, Takashi

    This paper proposes a new auction mechanism for implementing the tradable network permit markets. Assuming that each user makes a trip from an origin to a destination along a path in a specific time period, we design an auction mechanism that enables each user to purchase a bundle of permits corresponding to a set of links in the user's preferred path. The objective of the proposed mechanism is to achieve a socially optimal state with minimal revelation of users' private information. In order to achieve this, the mechanism employs an evolutionary approach that has an auction phase and a path capacity adjustment phase, which are repeated on a day-to-day basis. We prove that the proposed mechanism has the following desirable properties: (1) truthful bidding is the dominant strategy for each user and (2) the proposed mechanism converges to an approximate socially optimal state in the sense that the achieved value of the social surplus reaches its maximum value when the number of users is large.

  18. A Framework for Supporting Survivability, Network Planning and Cross-Layer Optimization in Future Multi-Domain Terabit Networks

    SciTech Connect

    Baldin, Ilya; Huang, Shu; Gopidi, Rajesh

    2015-01-28

    This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.

  19. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction

    PubMed Central

    Renn, Jürgen

    2015-01-01

    ABSTRACT This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path‐dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 565–577, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26097188

  20. Security framework for networked storage system based on artificial immune system

    NASA Astrophysics Data System (ADS)

    Huang, Jianzhong; Xie, Changsheng; Zhang, Chengfeng; Zhan, Ling

    2007-11-01

    This paper proposed a theoretical framework for the networked storage system addressing the storage security. The immune system is an adaptive learning system, which can recognize, classify and eliminate 'non-self' such as foreign pathogens. Thus, we introduced the artificial immune technique to the storage security research, and proposed a full theoretical framework for storage security system. Under this framework, it is possible to carry out the quantitative evaluation for the storage security system using modeling language of artificial immune system (AIS), and the evaluation can offer security consideration for the deployment of networked storage system. Meanwhile, it is potential to obtain the active defense technique suitable for networked storage system via exploring the principle of AIS and achieve a highly secure storage system with immune characteristic.

  1. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  2. Multi-agent modelling framework for water, energy and other resource networks

    NASA Astrophysics Data System (ADS)

    Knox, S.; Selby, P. D.; Meier, P.; Harou, J. J.; Yoon, J.; Lachaut, T.; Klassert, C. J. A.; Avisse, N.; Mohamed, K.; Tomlinson, J.; Khadem, M.; Tilmant, A.; Gorelick, S.

    2015-12-01

    Bespoke modelling tools are often needed when planning future engineered interventions in the context of various climate, socio-economic and geopolitical futures. Such tools can help improve system operating policies or assess infrastructure upgrades and their risks. A frequently used approach is to simulate and/or optimise the impact of interventions in engineered systems. Modelling complex infrastructure systems can involve incorporating multiple aspects into a single model, for example physical, economic and political. This presents the challenge of combining research from diverse areas into a single system effectively. We present the Pynsim 'Python Network Simulator' framework, a library for building simulation models capable of representing, the physical, institutional and economic aspects of an engineered resources system. Pynsim is an open source, object oriented code aiming to promote integration of different modelling processes through a single code library. We present two case studies that demonstrate important features of Pynsim's design. The first is a large interdisciplinary project of a national water system in the Middle East with modellers from fields including water resources, economics, hydrology and geography each considering different facets of a multi agent system. It includes: modelling water supply and demand for households and farms; a water tanker market with transfer of water between farms and households, and policy decisions made by government institutions at district, national and international level. This study demonstrates that a well-structured library of code can provide a hub for development and act as a catalyst for integrating models. The second focuses on optimising the location of new run-of-river hydropower plants. Using a multi-objective evolutionary algorithm, this study analyses different network configurations to identify the optimal placement of new power plants within a river network. This demonstrates that Pynsim can be

  3. Multi-Agent Framework in Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Patricio, M. A.; Carbó, J.; Pérez, O.; García, J.; Molina, J. M.

    2006-12-01

    The recent interest in the surveillance of public, military, and commercial scenarios is increasing the need to develop and deploy intelligent and/or automated distributed visual surveillance systems. Many applications based on distributed resources use the so-called software agent technology. In this paper, a multi-agent framework is applied to coordinate videocamera-based surveillance. The ability to coordinate agents improves the global image and task distribution efficiency. In our proposal, a software agent is embedded in each camera and controls the capture parameters. Then coordination is based on the exchange of high-level messages among agents. Agents use an internal symbolic model to interpret the current situation from the messages from all other agents to improve global coordination.

  4. Collaborative Procurement within Enterprise Networks: A Literature Review, a Reference Framework and a Case Study

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Luca; Taticchi, Paolo; Bidini, Gianni; Sameh, Mohamed

    Collaboration among companies is nowadays a success leverage from those involved, especially for SMEs. The networking advantages are several and among them, reducing costs is a critical one. Costs reduction due to the possibility of Collaborative Procurement (CP) among partners is one of the most important achievements in a network. While the literature available offers good bases for managing single contractor procurement issues, little research addresses the case of CP within Enterprise Networks (ENs). This paper explore the mentioned issue and proposes a general framework for managing CP in ENs, those with the Virtual Development Office (VDO) structure. The findings from the application of the framework proposed in an Italian network are highlighted so as to provide preliminary results and drive future research.

  5. A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Ben; McCall, Fritz; Smorul, Mike

    2006-01-01

    The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.

  6. Cointegration analysis and influence rank—A network approach to global stock markets

    NASA Astrophysics Data System (ADS)

    Yang, Chunxia; Chen, Yanhua; Niu, Lei; Li, Qian

    2014-04-01

    In this paper, cointegration relationships among 26 global stock market indices over the periods of sub-prime and European debt crisis and their influence rank are investigated by constructing and analyzing directed and weighted cointegration networks. The obtained results are shown as follows: the crises have changed cointegration relationships among stock market indices, their cointegration relationship increased after the Lehman Brothers collapse, while the degree of cointegration gradually decreased from the sub-prime to European debt crisis. The influence of US, Japan and China market indices are entirely distinguished over different periods. Before European debt crisis US stock market is a ‘global factor’ which leads the developed and emerging markets, while the influence of US stock market decreased evidently during the European debt crisis. Before sub-prime crisis, there is no significant evidence to show that other stock markets co-move with China stock market, while it becomes more integrated with other markets during the sub-prime and European debt crisis. Among developed and emerging stock markets, the developed stock markets lead the world stock markets before European debt crisis, while due to the shock of sub-prime and European debt crisis, their influences decreased and emerging stock markets replaced them to lead global stock markets.

  7. DYVIPAC: an integrated analysis and visualisation framework to probe multi-dimensional biological networks

    PubMed Central

    Nguyen, Lan K.; Degasperi, Andrea; Cotter, Philip; Kholodenko, Boris N.

    2015-01-01

    Biochemical networks are dynamic and multi-dimensional systems, consisting of tens or hundreds of molecular components. Diseases such as cancer commonly arise due to changes in the dynamics of signalling and gene regulatory networks caused by genetic alternations. Elucidating the network dynamics in health and disease is crucial to better understand the disease mechanisms and derive effective therapeutic strategies. However, current approaches to analyse and visualise systems dynamics can often provide only low-dimensional projections of the network dynamics, which often does not present the multi-dimensional picture of the system behaviour. More efficient and reliable methods for multi-dimensional systems analysis and visualisation are thus required. To address this issue, we here present an integrated analysis and visualisation framework for high-dimensional network behaviour which exploits the advantages provided by parallel coordinates graphs. We demonstrate the applicability of the framework, named “Dynamics Visualisation based on Parallel Coordinates” (DYVIPAC), to a variety of signalling networks ranging in topological wirings and dynamic properties. The framework was proved useful in acquiring an integrated understanding of systems behaviour. PMID:26220783

  8. Marketing of Academic Library Services through Social Networking Sites: Implications of Electronic Word-of-Mouth

    ERIC Educational Resources Information Center

    Siddike, Md. Abul Kalam; Kiran, K.

    2015-01-01

    The main objective of this study is to investigate the perceptions of academic librarians towards the marketing of library services through social networking sites (SNSs) and their understanding of using electronic word-of-mouth (eWOM) as a marketing tool in academic libraries. This study follows a qualitative data-gathering approach of structured…

  9. Marketing Career Speed Networking: A Classroom Event to Foster Career Awareness

    ERIC Educational Resources Information Center

    Buff, Cheryl L.; O'Connor, Suzanne

    2012-01-01

    This paper describes the design, implementation, and evaluation of a marketing career speed networking event held during class time in two sections of the consumer behavior class. The event was coordinated through a partnering effort with marketing faculty and the college's Career Center. A total of 57 students participated in the event, providing…

  10. Rural physicians, rural networks, and free market health care in the 1990s.

    PubMed

    Rosenthal, T C; James, P; Fox, C; Wysong, J; FitzPatrick, P G

    1997-01-01

    The changes brought about by managed care in America's urban communities will have profound effects on rural physicians and hospitals. The rural health care market characterized by small, independent group practices working with community hospitals is being offered affiliations with large, often urban-based health care organizations. Health care is evolving into a free market system characterized by large networks of organizations capable of serving whole regions. Rural provider-initiated networks can assure local representation when participating in the new market and improve the rural health infrastructure. Although an extensive review of the literature from 1970 to 1996 reveals little definitive research about networks, many rural hospitals have embraced networking as one strategy to unify health care systems with minimal capitalization. These networks, now licensed in Minnesota and New York, offer rural physicians the opportunity to team up with their community hospital and enhance local health care accessibility. PMID:9225701

  11. Identifying emergent social networks at a federally qualified health center-based farmers' market.

    PubMed

    Alia, Kassandra A; Freedman, Darcy A; Brandt, Heather M; Browne, Teri

    2014-06-01

    Identifying potential mechanisms connecting farmers' market interventions with health, economic, and community outcomes could inform strategies for addressing health disparities. The present study used social network theory to guide the in-depth examination of naturally occurring social interactions at a farmers' market located at a federally qualified health center located in a rural, low-income community. Trained observers recorded 61 observation logs at the market over 18 weeks. Thematic analysis revealed a range of actors and nonhuman facilitators instrumental to the farmers' market context. These actors connected with one another for communication and relationship development, economic and financial exchange, education, resource sharing, community ownership of the farmers' market, and conflict resolution. These interactions provided opportunities for social networks to develop among attendees, which may have facilitated the acquisition of social supports related to improved health, economic and community outcomes. Results provide insight into the role social networks may play in mediating the relationship between a farmers' market intervention and individual benefits. Findings also contribute to defining the typology of social networks, which may further disentangle the complex relationships between social networks and health outcomes. Future research should identify strategies for purposefully targeting social networks as a way to reduce diet-related health disparities. PMID:24352510

  12. A framework on the emergence and effectiveness of global health networks.

    PubMed

    Shiffman, Jeremy; Quissell, Kathryn; Schmitz, Hans Peter; Pelletier, David L; Smith, Stephanie L; Berlan, David; Gneiting, Uwe; Van Slyke, David; Mergel, Ines; Rodriguez, Mariela; Walt, Gill

    2016-04-01

    Since 1990 mortality and morbidity decline has been more extensive for some conditions prevalent in low- and middle-income countries than for others. One reason may be differences in the effectiveness of global health networks, which have proliferated in recent years. Some may be more capable than others in attracting attention to a condition, in generating funding, in developing interventions and in convincing national governments to adopt policies. This article introduces a supplement on the emergence and effectiveness of global health networks. The supplement examines networks concerned with six global health problems: tuberculosis (TB), pneumonia, tobacco use, alcohol harm, maternal mortality and newborn deaths. This article presents a conceptual framework delineating factors that may shape why networks crystallize more easily surrounding some issues than others, and once formed, why some are better able than others to shape policy and public health outcomes. All supplement papers draw on this framework. The framework consists of 10 factors in three categories: (1) features of the networks and actors that comprise them, including leadership, governance arrangements, network composition and framing strategies; (2) conditions in the global policy environment, including potential allies and opponents, funding availability and global expectations concerning which issues should be prioritized; (3) and characteristics of the issue, including severity, tractability and affected groups. The article also explains the design of the project, which is grounded in comparison of networks surrounding three matched issues: TB and pneumonia, tobacco use and alcohol harm, and maternal and newborn survival. Despite similar burden and issue characteristics, there has been considerably greater policy traction for the first in each pair. The supplement articles aim to explain the role of networks in shaping these differences, and collectively represent the first comparative effort

  13. Integrated Bayesian network framework for modeling complex ecological issues.

    PubMed

    Johnson, Sandra; Mengersen, Kerrie

    2012-07-01

    The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development

  14. Multilayer network of language: A unified framework for structural analysis of linguistic subsystems

    NASA Astrophysics Data System (ADS)

    Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana

    2016-09-01

    Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems

  15. Heat-Passing Framework for Robust Interpretation of Data in Networks

    PubMed Central

    Fang, Yi; Sun, Mengtian; Ramani, Karthik

    2015-01-01

    Researchers are regularly interested in interpreting the multipartite structure of data entities according to their functional relationships. Data is often heterogeneous with intricately hidden inner structure. With limited prior knowledge, researchers are likely to confront the problem of transforming this data into knowledge. We develop a new framework, called heat-passing, which exploits intrinsic similarity relationships within noisy and incomplete raw data, and constructs a meaningful map of the data. The proposed framework is able to rank, cluster, and visualize the data all at once. The novelty of this framework is derived from an analogy between the process of data interpretation and that of heat transfer, in which all data points contribute simultaneously and globally to reveal intrinsic similarities between regions of data, meaningful coordinates for embedding the data, and exemplar data points that lie at optimal positions for heat transfer. We demonstrate the effectiveness of the heat-passing framework for robustly partitioning the complex networks, analyzing the globin family of proteins and determining conformational states of macromolecules in the presence of high levels of noise. The results indicate that the methodology is able to reveal functionally consistent relationships in a robust fashion with no reference to prior knowledge. The heat-passing framework is very general and has the potential for applications to a broad range of research fields, for example, biological networks, social networks and semantic analysis of documents. PMID:25668316

  16. A Theoretical Framework for Building Online Communities of Practice with Social Networking Tools

    ERIC Educational Resources Information Center

    Gunawardena, Charlotte N.; Hermans, Mary Beth; Sanchez, Damien; Richmond, Carol; Bohley, Maribeth; Tuttle, Rebekah

    2009-01-01

    This paper proposes a theoretical framework as a foundation for building online communities of practice when a suite of social networking applications referred to as collective intelligence tools are utilized to develop a product or solutions to a problem. Drawing on recent developments in Web 2.0 tools, research on communities of practice and…

  17. Institutional Ethnography and Actor-Network Theory: A Framework for Researching the Assessment of Trainee Teachers

    ERIC Educational Resources Information Center

    Tummons, Jonathan

    2010-01-01

    This article provides an analysis of assessment practices on one university-led teacher-training course in England, delivered across a network of further education colleges. After establishing that assessment practices are bound up in texts of different kinds, this article draws on two theoretical frameworks--institutional ethnography and…

  18. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    ERIC Educational Resources Information Center

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  19. MODELING FRAMEWORK FOR EVALUATING SEDIMENTATION IN STREAM NETWORKS: FOR USE IN SEDIMENT TMDL ANALYSIS

    EPA Science Inventory

    A modeling framework that can be used to evaluate sedimentation in stream networks is described. This methodology can be used to determine sediment Total Maximum Daily Loads (TMDLs) in sediment impaired waters, and provide the necessary hydrodynamic and sediment-related data t...

  20. Experimental analysis of chaotic neural network models for combinatorial optimization under a unifying framework.

    PubMed

    Kwok, T; Smith, K A

    2000-09-01

    The aim of this paper is to study both the theoretical and experimental properties of chaotic neural network (CNN) models for solving combinatorial optimization problems. Previously we have proposed a unifying framework which encompasses the three main model types, namely, Chen and Aihara's chaotic simulated annealing (CSA) with decaying self-coupling, Wang and Smith's CSA with decaying timestep, and the Hopfield network with chaotic noise. Each of these models can be represented as a special case under the framework for certain conditions. This paper combines the framework with experimental results to provide new insights into the effect of the chaotic neurodynamics of each model. By solving the N-queen problem of various sizes with computer simulations, the CNN models are compared in different parameter spaces, with optimization performance measured in terms of feasibility, efficiency, robustness and scalability. Furthermore, characteristic chaotic neurodynamics crucial to effective optimization are identified, together with a guide to choosing the corresponding model parameters. PMID:11152205

  1. Metadata and network API aspects of a framework for storing and retrieving civil infrastructure monitoring data

    NASA Astrophysics Data System (ADS)

    Wong, John-Michael; Stojadinovic, Bozidar

    2005-05-01

    A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.

  2. Dynamic Graph Analytic Framework (DYGRAF): greater situation awareness through layered multi-modal network analysis

    NASA Astrophysics Data System (ADS)

    Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.

    2012-06-01

    Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.

  3. A Comprehensive Review on Adaptability of Network Forensics Frameworks for Mobile Cloud Computing

    PubMed Central

    Abdul Wahab, Ainuddin Wahid; Han, Qi; Bin Abdul Rahman, Zulkanain

    2014-01-01

    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC. PMID:25097880

  4. Applying temporal network analysis to the venture capital market

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Feng, Ling; Zhu, Rongqian; Stanley, H. Eugene

    2015-10-01

    Using complex network theory to study the investment relationships of venture capital firms has produced a number of significant results. However, previous studies have often neglected the temporal properties of those relationships, which in real-world scenarios play a pivotal role. Here we examine the time-evolving dynamics of venture capital investment in China by constructing temporal networks to represent (i) investment relationships between venture capital firms and portfolio companies and (ii) the syndication ties between venture capital investors. The evolution of the networks exhibits rich variations in centrality, connectivity and local topology. We demonstrate that a temporal network approach provides a dynamic and comprehensive analysis of real-world networks.

  5. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  6. Mississippi Curriculum Framework for Fashion Marketing Technology (Program CIP: 08.0101--Apparel and Accessories Mkt. Op., Gen.). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the fashion marketing technology programs cluster. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies,…

  7. Mississippi Curriculum Framework for Marketing Management Technology (Program CIP: 52.1401--Business Mkt. & Mkt. Mgmt.). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the state's marketing management technology program. Presented in the introduction are a program description and suggested course sequence. Section I lists baseline competencies for the…

  8. A multiexpert framework for character recognition: a novel application of Clifford networks.

    PubMed

    Rahman, A R; Howells, W J; Fairhurst, M C

    2001-01-01

    A novel multiple-expert framework for recognition of handwritten characters is presented. The proposed framework is composed of multiple classifiers (experts) put together in such a manner as to enhance the recognition capability of the combined network compared to the best performing individual expert participating in the framework. Each of these experts has been derived from a novel neural structure in which the weight values are derived from Clifford algebra. A Clifford algebra is a mathematical paradigm capable of capturing the interdimensional dependencies found in multidimensional data. It offers a technique for concise data storage and processing by representing dependencies between the component dimensions of the data which is otherwise difficult to encode and hence is often employed in analyzing multidimensional data. Results achieved by the proposed multiple-expert framework demonstrates significant improvement over alternative techniques. PMID:18244366

  9. MOVE: a multi-level ontology-based visualization and exploration framework for genomic networks.

    PubMed

    Bosman, Diederik W J; Blom, Evert-Jan; Ogao, Patrick J; Kuipers, Oscar P; Roerdink, Jos B T M

    2007-01-01

    Among the various research areas that comprise bioinformatics, systems biology is gaining increasing attention. An important goal of systems biology is the unraveling of dynamic interactions between components of living cells (e. g., proteins, genes). These interactions exist among others on genomic, transcriptomic, proteomic and metabolomic levels. The levels themselves are heavily interconnected, resulting in complex networks of different interacting biological entities. Currently, various bioinformatics tools exist which are able to perform a particular analysis on a particular type of network. Unfortunately, each tool has its own disadvantages hampering it to be used consistently for different types of networks or analytical methods. This paper describes the conceptual development of an open source extensible software framework that supports visualization and exploration of highly complex genomic networks, like metabolic or gene regulatory networks. The focus is on the conceptual foundations, starting from requirements, a description of the state of the art of network visualization systems, and an analysis of their shortcomings. We describe the implementation of some initial modules of the framework and apply them to a biological test case in bacterial regulation, which shows the relevance and feasibility of the proposed approach. PMID:17688427

  10. A Two-Part Mixed-Effects Modeling Framework For Analyzing Whole-Brain Network Data

    PubMed Central

    Simpson, Sean L.; Laurienti, Paul J.

    2015-01-01

    Whole-brain network analyses remain the vanguard in neuroimaging research, coming to prominence within the last decade. Network science approaches have facilitated these analyses and allowed examining the brain as an integrated system. However, statistical methods for modeling and comparing groups of networks have lagged behind. Fusing multivariate statistical approaches with network science presents the best path to develop these methods. Toward this end, we propose a two-part mixed-effects modeling framework that allows modeling both the probability of a connection (presence/absence of an edge) and the strength of a connection if it exists. Models within this framework enable quantifying the relationship between an outcome (e.g., disease status) and connectivity patterns in the brain while reducing spurious correlations through inclusion of confounding covariates. They also enable prediction about an outcome based on connectivity structure and vice versa, simulating networks to gain a better understanding of normal ranges of topological variability, and thresholding networks leveraging group information. Thus, they provide a comprehensive approach to studying system level brain properties to further our understanding of normal and abnormal brain function. PMID:25796135

  11. A computational framework for the automated construction of glycosylation reaction networks.

    PubMed

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  12. A Computational Framework for the Automated Construction of Glycosylation Reaction Networks

    PubMed Central

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  13. Measuring performance in off-patent drug markets: a methodological framework and empirical evidence from twelve EU Member States.

    PubMed

    Kanavos, Panos

    2014-11-01

    This paper develops a methodological framework to help evaluate the performance of generic pharmaceutical policies post-patent expiry or after loss of exclusivity in non-tendering settings, comprising five indicators (generic availability, time delay to and speed of generic entry, number of generic competitors, price developments, and generic volume share evolution) and proposes a series of metrics to evaluate performance. The paper subsequently tests this framework across twelve EU Member States (MS) by using IMS data on 101 patent expired molecules over the 1998-2010 period. Results indicate that significant variation exists in generic market entry, price competition and generic penetration across the study countries. Size of a geographical market is not a predictor of generic market entry intensity or price decline. Regardless of geographic or product market size, many off patent molecules lack generic competitors two years after loss of exclusivity. The ranges in each of the five proposed indicators suggest, first, that there are numerous factors--including institutional ones--contributing to the success of generic entry, price decline and market penetration and, second, MS should seek a combination of supply and demand-side policies in order to maximise cost-savings from generics. Overall, there seems to be considerable potential for faster generic entry, uptake and greater generic competition, particularly for molecules at the lower end of the market. PMID:25201433

  14. Fiber Access Networks: Reliability Analysis and Swedish Broadband Market

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp

    Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.

  15. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    PubMed Central

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  16. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    PubMed

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  17. Health economic value of an innovation: delimiting the scope and framework of future market entry agreements

    PubMed Central

    Launois, Robert; Navarrete, Lucia Fiestas; Ethgen, Olivier; Le Moine, Jean-Gabriel; Gatsinga, René

    2014-01-01

    Background and objectives The objective of our paper is to offer a new, payer-friendly taxonomy of market entry agreements (MEAs) that aims to twin contracts with their methodological designs in an effort to clarify the distinction between contracts that are based on performance and those that are based on demonstrated effect. Methods Our analysis proceeds in two stages: First, we delimit the scope and framework of pay for performance (P4P) and pay for demonstrated effect (P4E) agreements. Second, we distinguish the methodological designs supporting the implementation of each of these contracts. Results We elucidate why P4P contracts prevent the payer from funding the true effectiveness of an innovation by expanding on their limitations. These include: 1) the normative nature of comparisons, 2) the impossibility of true effect imputability for each individual, and 3) the use of intermediary outcome measures. We then explore three main criticisms that payers must take into account when reasoning in terms of performance rather than in terms of the product effectiveness. Conclusion The potential effect that performance-based reimbursements may have on dissociating the components of the cost-effectiveness ratio constitutes an obstacle to a true health economic reasoning. PMID:27226844

  18. A Network Approach to Environmental Impact in Psychotic Disorder: Brief Theoretical Framework.

    PubMed

    Isvoranu, Adela-Maria; Borsboom, Denny; van Os, Jim; Guloksuz, Sinan

    2016-07-01

    The spectrum of psychotic disorder represents a multifactorial and heterogeneous condition and is thought to result from a complex interplay between genetic and environmental factors. In the current paper, we analyze this interplay using network analysis, which has been recently proposed as a novel psychometric framework for the study of mental disorders. Using general population data, we construct network models for the relation between 3 environmental risk factors (cannabis use, developmental trauma, and urban environment), dimensional measures of psychopathology (anxiety, depression, interpersonal sensitivity, obsessive-compulsive disorder, phobic anxiety, somatizations, and hostility), and a composite measure of psychosis expression. Results indicate the existence of specific paths between environmental factors and symptoms. These paths most often involve cannabis use. In addition, the analyses suggest that symptom networks are more strongly connected for people exposed to environmental risk factors, implying that environmental exposure may lead to less resilient symptom networks. PMID:27179124

  19. An integrated framework for targeting functional networks via transcranial magnetic stimulation.

    PubMed

    Opitz, Alexander; Fox, Michael D; Craddock, R Cameron; Colcombe, Stan; Milham, Michael P

    2016-02-15

    Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue. PMID:26608241

  20. Metal-Organic Framework Isomers with Diamondoid Networks Constructed of a Semi-Rigid Tetrahedral Linker

    SciTech Connect

    Tian, Jian; Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2010-10-19

    Solvothermal assembly of a semi-rigid tetrahedral carboxylate ligand tetrakis[4-(carboxyphenyl)oxamethyl]methane acid (H4X) with Cd(II) ion in different solvent systems yields three novel metal-organic framework isomers (1-3) based on different secondary building units (SBUs). Although all three frameworks have the same dia (diamondoid) topology, complex 1 and 3 are chiral and complex 2 is achiral. One of the networks, 3 shows cross-linked three-fold interpenetration of the single dia net and exhibits permanent porosities, as confirmed by BET and selective CO2 adsorption.

  1. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    SciTech Connect

    Cao, Hongduo; Li, Ying

    2014-03-15

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  2. Building oceanographic and atmospheric observation networks by composition: unmanned vehicles, communication networks, and planning and execution control frameworks

    NASA Astrophysics Data System (ADS)

    Sousa, J. T.; Pinto, J.; Martins, R.; Costa, M.; Ferreira, F.; Gomes, R.

    2014-12-01

    The problem of developing mobile oceanographic and atmospheric observation networks (MOAO) with coordinated air and ocean vehicles is discussed in the framework of the communications and control software tool chain developed at Underwater Systems and Technologies Laboratory (LSTS) from Porto University. This is done with reference to field experiments to illustrate key capabilities and to assess future MOAO operations. First, the motivation for building MOAO by "composition" of air and ocean vehicles, communication networks, and planning and execution control frameworks is discussed - in networked vehicle systems information and commands are exchanged among multiple vehicles and operators, and the roles, relative positions, and dependencies of these vehicles and operators change during operations. Second, the planning and execution control framework developed at LSTS for multi-vehicle systems is discussed with reference to key concepts such as autonomy, mixed-initiative interactions, and layered organization. Third, the LSTS tool software tool chain is presented to show how to develop MOAO by composition. The tool chain comprises the Neptus command and control framework for mixed initiative interactions, the underlying IMC messaging protocol, and the DUNE on-board software. Fourth, selected LSTS operational deployments illustrate MOAO capability building. In 2012 we demonstrated the use of UAS to "ferry" data from UUVs located beyond line of sight (BLOS). In 2013 we demonstrated coordinated observations of coastal fronts with small UAS and UUVs, "bent" BLOS through the use of UAS as communication relays, and UAS tracking of juvenile hammer-head sharks. In 2014 we demonstrated UUV adaptive sampling with the closed loop controller of the UUV residing on a UAS; this was done with the help of a Wave Glider ASV with a communications gateway. The results from these experiments provide a background for assessing potential future UAS operations in a compositional MOAO.

  3. Complex network analysis of conventional and Islamic stock market in Indonesia

    NASA Astrophysics Data System (ADS)

    Rahmadhani, Andri; Purqon, Acep; Kim, Sehyun; Kim, Soo Yong

    2015-09-01

    The rising popularity of Islamic financial products in Indonesia has become a new interesting topic to be analyzed recently. We introduce a complex network analysis to compare conventional and Islamic stock market in Indonesia. Additionally, Random Matrix Theory (RMT) has been added as a part of reference to expand the analysis of the result. Both of them are based on the cross correlation matrix of logarithmic price returns. Closing price data, which is taken from June 2011 to July 2012, is used to construct logarithmic price returns. We also introduce the threshold value using winner-take-all approach to obtain scale-free property of the network. This means that the nodes of the network that has a cross correlation coefficient below the threshold value should not be connected with an edge. As a result, we obtain 0.5 as the threshold value for all of the stock market. From the RMT analysis, we found that there is only market wide effect on both stock market and no clustering effect has been found yet. From the network analysis, both of stock market networks are dominated by the mining sector. The length of time series of closing price data must be expanded to get more valuable results, even different behaviors of the system.

  4. A Framework of Algorithms: Computing the Bias and Prestige of Nodes in Trust Networks

    PubMed Central

    Li, Rong-Hua; Yu, Jeffrey Xu; Huang, Xin; Cheng, Hong

    2012-01-01

    A trust network is a social network in which edges represent the trust relationship between two nodes in the network. In a trust network, a fundamental question is how to assess and compute the bias and prestige of the nodes, where the bias of a node measures the trustworthiness of a node and the prestige of a node measures the importance of the node. The larger bias of a node implies the lower trustworthiness of the node, and the larger prestige of a node implies the higher importance of the node. In this paper, we define a vector-valued contractive function to characterize the bias vector which results in a rich family of bias measurements, and we propose a framework of algorithms for computing the bias and prestige of nodes in trust networks. Based on our framework, we develop four algorithms that can calculate the bias and prestige of nodes effectively and robustly. The time and space complexities of all our algorithms are linear with respect to the size of the graph, thus our algorithms are scalable to handle large datasets. We evaluate our algorithms using five real datasets. The experimental results demonstrate the effectiveness, robustness, and scalability of our algorithms. PMID:23239990

  5. Framework for a hydrologic climate-response network in New England

    USGS Publications Warehouse

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  6. A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks

    PubMed Central

    Jenney, Anne; MacBeath, Gavin; Sorger, Peter K.

    2014-01-01

    Functional interpretation of genomic variation is critical to understanding human disease but it remains difficult to predict the effects of specific mutations on protein interaction networks and the phenotypes they regulate. We describe an analytical framework based on multiscale statistical mechanics that integrates genomic and biophysical data to model the human SH2-phosphoprotein network in normal and cancer cells. We apply our approach to data in The Cancer Genome Atlas (TCGA) and test model predictions experimentally. We find that mutations in phosphoproteins often create new interactions but that mutations in SH2 domains result almost exclusively in loss of interactions. Some of these mutations eliminate all interactions but many cause more selective loss, thereby rewiring specific edges in highly connected subnetworks. Moreover, idiosyncratic mutations appear to be as functionally consequential as recurrent mutations. By synthesizing genomic, structural, and biochemical data our framework represents a new approach to the interpretation of genetic variation. PMID:25362484

  7. Effects of global financial crisis on network structure in a local stock market

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2014-08-01

    This study considers the effects of the 2008 global financial crisis on threshold networks of a local Korean financial market around the time of the crisis. Prices of individual stocks belonging to KOSPI 200 (Korea Composite Stock Price Index 200) are considered for three time periods, namely before, during, and after the crisis. Threshold networks are constructed from fully connected cross-correlation networks, and thresholds of cross-correlation coefficients are assigned to obtain threshold networks. At the high threshold, only one large cluster consisting of firms in the financial sector, heavy industry, and construction is observed during the crisis. However, before and after the crisis, there are several fragmented clusters belonging to various sectors. The power law of the degree distribution in threshold networks is observed within the limited range of thresholds. Threshold networks are fatter during the crisis than before or after the crisis. The clustering coefficient of the threshold network follows the power law in the scaling range.

  8. A Framework for Understanding and Applying Ethical Principles in Network and Security Research

    NASA Astrophysics Data System (ADS)

    Kenneally, Erin; Bailey, Michael; Maughan, Douglas

    Current information and communications technology poses a variety of ethical challenges for researchers. In this paper, we present an intellectual framework for understanding and applying ethical principles in networking and security research rooted in the guidance suggested by an ongoing Department of Homeland Security working group on ethics. By providing this prototype ethical impact assessment, we seek to encourage community feedback on the working group's nascent efforts and spur researchers to concretely evaluate the ethical impact of their work.

  9. Self-organizing Ising model of artificial financial markets with small-world network topology

    NASA Astrophysics Data System (ADS)

    Zhao, Haijie; Zhou, Jie; Zhang, Anghui; Su, Guifeng; Zhang, Yi

    2013-01-01

    We study a self-organizing Ising-like model of artificial financial markets with underlying small-world (SW) network topology. The asset price dynamics results from the collective decisions of interacting agents which are located on a small-world complex network (the nodes symbolize the agents of a financial market). The model incorporates the effects of imitation, the impact of external news and private information. We also investigate the influence of different network topologies, from regular lattice to random graph, on the asset price dynamics by adjusting the probability of the rewiring procedure. We find that a specific combination of model parameters reproduce main stylized facts of real-world financial markets.

  10. Untangling complex networks: risk minimization in financial markets through accessible spin glass ground states

    PubMed Central

    Lisewski, Andreas Martin; Lichtarge, Olivier

    2010-01-01

    Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the relative margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network's Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields. PMID:20625477

  11. Market Related System Analysis of Satellite Communication Networks

    NASA Astrophysics Data System (ADS)

    Malyshev, V. V.; Panasenkova, M. V.

    2002-01-01

    The report is devoted to the technique of effectiveness analysis of communication space system with satellites in geostationary orbit using market models. The technique is worked out in order to choose the most optimal alternative of communication space system design. The alternative considered optimal and the system effective when the maximum profit from the system with limited system costs is achieved. The key point of the technique is a wide use of market models and application of market related parameters as an integral part of the design technique in order to secure the high commercial output of the communication space system. A range of models for decisive characteristics of communication space system is synthesized in terms of the technique. Flexible market model with detailed insight into the structure of the given market sector and its trends is created. The technique enables to choose the image and key parameters of the future system such as payload and ground sector characteristics so as to make the system most cost-effective and profitable. It is shown that such factors as the choice of launch vehicle can influence the system effectiveness rather dramatically. In particular, it is shown that under certain conditions delivering the small (five hundred kg) satellite to the geostationary orbit with the help of light-weight launch vehicle and the satellite's own electro-rocket thrusters is forty per cent more cost- effective than when the satellite is delivered with the help of the medium-size launch vehicle. The latter case can lead to the significant losses due to high launch costs that are nearly two times higher for the medium size launch vehicle than for the light launce vehicle. The technique is applicable both for designing a wide range of communication space systems and is recommended for those dealing with designing commercial systems. It can also be used to update and improve the systems that are already in operation.

  12. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.

    PubMed

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2016-02-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, "trained" networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale's principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity patterns

  13. A holistic framework for design of cost-effective minimum water utilization network.

    PubMed

    Wan Alwi, S R; Manan, Z A; Samingin, M H; Misran, N

    2008-07-01

    Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion. PMID:17449168

  14. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework

    PubMed Central

    Wang, Xiao-Jing

    2016-01-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, “trained” networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale’s principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity

  15. Discovering the influential users oriented to viral marketing based on online social networks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiguo

    2013-08-01

    The target of viral marketing on the platform of popular online social networks is to rapidly propagate marketing information at lower cost and increase sales, in which a key problem is how to precisely discover the most influential users in the process of information diffusion. A novel method is proposed in this paper for helping companies to identify such users as seeds to maximize information diffusion in the viral marketing. Firstly, the user trust network oriented to viral marketing and users’ combined interest degree in the network including isolated users are extensively defined. Next, we construct a model considering the time factor to simulate the process of information diffusion in viral marketing and propose a dynamic algorithm description. Finally, experiments are conducted with a real dataset extracted from the famous SNS website Epinions. The experimental results indicate that the proposed algorithm has better scalability and is less time-consuming. Compared with the classical model, the proposed algorithm achieved a better performance than does the classical method on the two aspects of network coverage rate and time-consumption in our four sub-datasets.

  16. Network analysis of returns and volume trading in stock markets: The Euro Stoxx case

    NASA Astrophysics Data System (ADS)

    Brida, Juan Gabriel; Matesanz, David; Seijas, Maria Nela

    2016-02-01

    This study applies network analysis to analyze the structure of the Euro Stoxx market during the long period from 2002 up to 2014. The paper generalizes previous research on stock market networks by including asset returns and volume trading as the main variables to study the financial market. A multidimensional generalization of the minimal spanning tree (MST) concept is introduced, by adding the role of trading volume to the traditional approach which only includes price returns. Additionally, we use symbolization methods to the raw data to study the behavior of the market structure in different, normal and critical, situations. The hierarchical organization of the network is derived, and the MST for different sub-periods of 2002-2014 is created to illustrate how the structure of the market evolves over time. From the structural topologies of these trees, different clusters of companies are identified and analyzed according to their geographical and economic links. Two important results are achieved. Firstly, as other studies have highlighted, at the time of the financial crisis after 2008 the network becomes a more centralized one. Secondly and most important, during our second period of analysis, 2008-2014, we observe that hierarchy becomes more country-specific where different sub-clusters of stocks belonging to France, Germany, Spain or Italy are found apart from their business sector group. This result may suggest that during this period of time financial investors seem to be worried most about country specific economic circumstances.

  17. Legitimising neural network river forecasting models: a new data-driven mechanistic modelling framework

    NASA Astrophysics Data System (ADS)

    Mount, N. J.; Dawson, C. W.; Abrahart, R. J.

    2013-01-01

    In this paper we address the difficult problem of gaining an internal, mechanistic understanding of a neural network river forecasting (NNRF) model. Neural network models in hydrology have long been criticised for their black-box character, which prohibits adequate understanding of their modelling mechanisms and has limited their broad acceptance by hydrologists. In response, we here present a new, data-driven mechanistic modelling (DDMM) framework that incorporates an evaluation of the legitimacy of a neural network's internal modelling mechanism as a core element in the model development process. The framework is exemplified for two NNRF modelling scenarios, and uses a novel adaptation of first order, partial derivate, relative sensitivity analysis methods as the means by which each model's mechanistic legitimacy is explored. The results demonstrate the limitations of standard, goodness-of-fit validation procedures applied by NNRF modellers, by highlighting how the internal mechanisms of complex models that produce the best fit scores can have much lower legitimacy than simpler counterparts whose scores are only slightly inferior. The study emphasises the urgent need for better mechanistic understanding of neural network-based hydrological models and the further development of methods for elucidating their mechanisms.

  18. On the Optimization of a Probabilistic Data Aggregation Framework for Energy Efficiency in Wireless Sensor Networks

    PubMed Central

    Kafetzoglou, Stella; Aristomenopoulos, Giorgos; Papavassiliou, Symeon

    2015-01-01

    Among the key aspects of the Internet of Things (IoT) is the integration of heterogeneous sensors in a distributed system that performs actions on the physical world based on environmental information gathered by sensors and application-related constraints and requirements. Numerous applications of Wireless Sensor Networks (WSNs) have appeared in various fields, from environmental monitoring, to tactical fields, and healthcare at home, promising to change our quality of life and facilitating the vision of sensor network enabled smart cities. Given the enormous requirements that emerge in such a setting—both in terms of data and energy—data aggregation appears as a key element in reducing the amount of traffic in wireless sensor networks and achieving energy conservation. Probabilistic frameworks have been introduced as operational efficient and performance effective solutions for data aggregation in distributed sensor networks. In this work, we introduce an overall optimization approach that improves and complements such frameworks towards identifying the optimal probability for a node to aggregate packets as well as the optimal aggregation period that a node should wait for performing aggregation, so as to minimize the overall energy consumption, while satisfying certain imposed delay constraints. Primal dual decomposition is employed to solve the corresponding optimization problem while simulation results demonstrate the operational efficiency of the proposed approach under different traffic and topology scenarios. PMID:26270664

  19. On the Optimization of a Probabilistic Data Aggregation Framework for Energy Efficiency in Wireless Sensor Networks.

    PubMed

    Kafetzoglou, Stella; Aristomenopoulos, Giorgos; Papavassiliou, Symeon

    2015-01-01

    Among the key aspects of the Internet of Things (IoT) is the integration of heterogeneous sensors in a distributed system that performs actions on the physical world based on environmental information gathered by sensors and application-related constraints and requirements. Numerous applications of Wireless Sensor Networks (WSNs) have appeared in various fields, from environmental monitoring, to tactical fields, and healthcare at home, promising to change our quality of life and facilitating the vision of sensor network enabled smart cities. Given the enormous requirements that emerge in such a setting-both in terms of data and energy-data aggregation appears as a key element in reducing the amount of traffic in wireless sensor networks and achieving energy conservation. Probabilistic frameworks have been introduced as operational efficient and performance effective solutions for data aggregation in distributed sensor networks. In this work, we introduce an overall optimization approach that improves and complements such frameworks towards identifying the optimal probability for a node to aggregate packets as well as the optimal aggregation period that a node should wait for performing aggregation, so as to minimize the overall energy consumption, while satisfying certain imposed delay constraints. Primal dual decomposition is employed to solve the corresponding optimization problem while simulation results demonstrate the operational efficiency of the proposed approach under different traffic and topology scenarios. PMID:26270664

  20. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A

    2016-08-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. PMID:27345947

  1. Threshold network of a financial market using the P-value of correlation coefficients

    NASA Astrophysics Data System (ADS)

    Ha, Gyeong-Gyun; Lee, Jae Woo; Nobi, Ashadun

    2015-06-01

    Threshold methods in financial networks are important tools for obtaining important information about the financial state of a market. Previously, absolute thresholds of correlation coefficients have been used; however, they have no relation to the length of time. We assign a threshold value depending on the size of the time window by using the P-value concept of statistics. We construct a threshold network (TN) at the same threshold value for two different time window sizes in the Korean Composite Stock Price Index (KOSPI). We measure network properties, such as the edge density, clustering coefficient, assortativity coefficient, and modularity. We determine that a significant difference exists between the network properties of the two time windows at the same threshold, especially during crises. This implies that the market information depends on the length of the time window when constructing the TN. We apply the same technique to Standard and Poor's 500 (S&P500) and observe similar results.

  2. A novel framework of classical and quantum prisoner's dilemma games on coupled networks.

    PubMed

    Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen

    2016-01-01

    Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner's dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner's dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner's dilemma is greatly impacted by the combined effect of entanglement and coupling. PMID:26975447

  3. A novel framework of classical and quantum prisoner’s dilemma games on coupled networks

    NASA Astrophysics Data System (ADS)

    Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen

    2016-03-01

    Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner’s dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner’s dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner’s dilemma is greatly impacted by the combined effect of entanglement and coupling.

  4. A novel framework of classical and quantum prisoner’s dilemma games on coupled networks

    PubMed Central

    Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen

    2016-01-01

    Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner’s dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner’s dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner’s dilemma is greatly impacted by the combined effect of entanglement and coupling. PMID:26975447

  5. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.

    PubMed

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628

  6. Network-Based Inference Framework for Identifying Cancer Genes from Gene Expression Data

    PubMed Central

    Yang, Bo; Zhang, Junying; Yin, Yaling; Zhang, Yuanyuan

    2013-01-01

    Great efforts have been devoted to alleviate uncertainty of detected cancer genes as accurate identification of oncogenes is of tremendous significance and helps unravel the biological behavior of tumors. In this paper, we present a differential network-based framework to detect biologically meaningful cancer-related genes. Firstly, a gene regulatory network construction algorithm is proposed, in which a boosting regression based on likelihood score and informative prior is employed for improving accuracy of identification. Secondly, with the algorithm, two gene regulatory networks are constructed from case and control samples independently. Thirdly, by subtracting the two networks, a differential-network model is obtained and then used to rank differentially expressed hub genes for identification of cancer biomarkers. Compared with two existing gene-based methods (t-test and lasso), the method has a significant improvement in accuracy both on synthetic datasets and two real breast cancer datasets. Furthermore, identified six genes (TSPYL5, CD55, CCNE2, DCK, BBC3, and MUC1) susceptible to breast cancer were verified through the literature mining, GO analysis, and pathway functional enrichment analysis. Among these oncogenes, TSPYL5 and CCNE2 have been already known as prognostic biomarkers in breast cancer, CD55 has been suspected of playing an important role in breast cancer prognosis from literature evidence, and other three genes are newly discovered breast cancer biomarkers. More generally, the differential-network schema can be extended to other complex diseases for detection of disease associated-genes. PMID:24073403

  7. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    PubMed Central

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628

  8. Marketing.

    ERIC Educational Resources Information Center

    Doyle, Peter

    1987-01-01

    Explores the role of marketing in the modern firm and the key tasks of marketing management. Defines the term "marketing" and discusses it as an economic concept. Discusses three key marketing principals. (RKM)

  9. A scalable computational framework for establishing long-term behavior of stochastic reaction networks.

    PubMed

    Gupta, Ankit; Briat, Corentin; Khammash, Mustafa

    2014-06-01

    Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed. PMID:24968191

  10. A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks

    PubMed Central

    Khammash, Mustafa

    2014-01-01

    Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed. PMID:24968191

  11. Optimality problem of network topology in stocks market analysis

    NASA Astrophysics Data System (ADS)

    Djauhari, Maman Abdurachman; Gan, Siew Lee

    2015-02-01

    Since its introduction fifteen years ago, minimal spanning tree has become an indispensible tool in econophysics. It is to filter the important economic information contained in a complex system of financial markets' commodities. Here we show that, in general, that tool is not optimal in terms of topological properties. Consequently, the economic interpretation of the filtered information might be misleading. To overcome that non-optimality problem, a set of criteria and a selection procedure of an optimal minimal spanning tree will be developed. By using New York Stock Exchange data, the advantages of the proposed method will be illustrated in terms of the power-law of degree distribution.

  12. An intra-body molecular communication networks framework for continuous health monitoring and diagnosis.

    PubMed

    Chahibi, Youssef; Balasingham, Ilangko

    2015-01-01

    Intra-body communication networks are designed to interconnect nano- or micro-sized sensors located inside the body for health monitoring and drug delivery. The most promising solutions are made of implanted nanosensors to timely monitor the body for the presence of specific diseases and pronounce a diagnosis without the intervention of a physician. In this manner, several deadly health conditions such as heart attacks are avoided through the early in vivo detection of their biomarkers. In reality, nanosensors are challenged by the individual specificities, molecular noise, limited durability, and low energy resources. In this paper, a framework is proposed for estimating and detecting diseases and localizing the nanosensors. This framework is based on molecular communication, a novel communication paradigm where information is conveyed through molecules. Through the case study of the shedding of endothelial cells as an early biomarker for heart attack, the intra-body molecular communication networks framework is shown to resolve major issues with in vivo nanosensors and lay the foundations of low-complexity biomedical signal processing algorithms for continuous disease monitoring and diagnosis. PMID:26737190

  13. Market analyses of livestock trade networks to inform the prevention of joint economic and epidemiological risks

    PubMed Central

    Gilligan, Christopher A.; Belloc, Catherine; Filipe, João A. N.; Vergu, Elisabeta

    2016-01-01

    Conventional epidemiological studies of infections spreading through trade networks, e.g. via livestock movements, generally show that central large-size holdings (hubs) should be preferentially surveyed and controlled in order to reduce epidemic spread. However, epidemiological strategies alone may not be economically optimal when costs of control are factored in together with risks of market disruption from targeting core holdings in a supply chain. Using extensive data on animal movements in supply chains for cattle and swine in France, we introduce a method to identify effective strategies for preventing outbreaks with limited budgets while minimizing the risk of market disruptions. Our method involves the categorization of holdings based on position along the supply chain and degree of market share. Our analyses suggest that trade has a higher risk of propagating epidemics through cattle networks, which are dominated by exchanges involving wholesalers, than for swine. We assess the effectiveness of contrasting interventions from the perspectives of regulators and the market, using percolation analysis. We show that preferentially targeting minor, non-central agents can outperform targeting of hubs when the costs to stakeholders and the risks of market disturbance are considered. Our study highlights the importance of assessing joint economic–epidemiological risks in networks underlying pathogen propagation and trade. PMID:26984191

  14. Market analyses of livestock trade networks to inform the prevention of joint economic and epidemiological risks.

    PubMed

    Moslonka-Lefebvre, Mathieu; Gilligan, Christopher A; Monod, Hervé; Belloc, Catherine; Ezanno, Pauline; Filipe, João A N; Vergu, Elisabeta

    2016-03-01

    Conventional epidemiological studies of infections spreading through trade networks, e.g., via livestock movements, generally show that central large-size holdings (hubs) should be preferentially surveyed and controlled in order to reduce epidemic spread. However, epidemiological strategies alone may not be economically optimal when costs of control are factored in together with risks of market disruption from targeting core holdings in a supply chain. Using extensive data on animal movements in supply chains for cattle and swine in France, we introduce a method to identify effective strategies for preventing outbreaks with limited budgets while minimizing the risk of market disruptions. Our method involves the categorization of holdings based on position along the supply chain and degree of market share. Our analyses suggest that trade has a higher risk of propagating epidemics through cattle networks, which are dominated by exchanges involving wholesalers, than for swine. We assess the effectiveness of contrasting interventions from the perspectives of regulators and the market, using percolation analysis. We show that preferentially targeting minor, non-central agents can outperform targeting of hubs when the costs to stakeholders and the risks of market disturbance are considered. Our study highlights the importance of assessing joint economic-epidemiological risks in networks underlying pathogen propagation and trade. PMID:26984191

  15. Physics of transportation: Towards optimal capacity using the multilayer network framework

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Zhou, Xing-Lian; Jusup, Marko; Wang, Zhen

    2016-01-01

    Because of the critical role of transportation in modern times, one of the most successful application areas of statistical physics of complex networks is the study of traffic dynamics. However, the vast majority of works treat transportation networks as an isolated system, which is inconsistent with the fact that many complex networks are interrelated in a nontrivial way. To mimic a realistic scenario, we use the framework of multilayer networks to construct a two-layered traffic model, whereby the upper layer provides higher transport speed than the lower layer. Moreover, passengers are guided to travel along the path of minimal travelling time and with the additional cost they can transfer from one layer to another to avoid congestion and/or reach the final destination faster. By means of numerical simulations, we show that a degree distribution-based strategy, although facilitating the cooperation between both layers, can be further improved by enhancing the critical generating rate of passengers using a particle swarm optimisation (PSO) algorithm. If initialised with the prior knowledge from the degree distribution-based strategy, the PSO algorithm converges considerably faster. Our work exemplifies how statistical physics of complex networks can positively affect daily life.

  16. Physics of transportation: Towards optimal capacity using the multilayer network framework.

    PubMed

    Du, Wen-Bo; Zhou, Xing-Lian; Jusup, Marko; Wang, Zhen

    2016-01-01

    Because of the critical role of transportation in modern times, one of the most successful application areas of statistical physics of complex networks is the study of traffic dynamics. However, the vast majority of works treat transportation networks as an isolated system, which is inconsistent with the fact that many complex networks are interrelated in a nontrivial way. To mimic a realistic scenario, we use the framework of multilayer networks to construct a two-layered traffic model, whereby the upper layer provides higher transport speed than the lower layer. Moreover, passengers are guided to travel along the path of minimal travelling time and with the additional cost they can transfer from one layer to another to avoid congestion and/or reach the final destination faster. By means of numerical simulations, we show that a degree distribution-based strategy, although facilitating the cooperation between both layers, can be further improved by enhancing the critical generating rate of passengers using a particle swarm optimisation (PSO) algorithm. If initialised with the prior knowledge from the degree distribution-based strategy, the PSO algorithm converges considerably faster. Our work exemplifies how statistical physics of complex networks can positively affect daily life. PMID:26791580

  17. Physics of transportation: Towards optimal capacity using the multilayer network framework

    PubMed Central

    Du, Wen-Bo; Zhou, Xing-Lian; Jusup, Marko; Wang, Zhen

    2016-01-01

    Because of the critical role of transportation in modern times, one of the most successful application areas of statistical physics of complex networks is the study of traffic dynamics. However, the vast majority of works treat transportation networks as an isolated system, which is inconsistent with the fact that many complex networks are interrelated in a nontrivial way. To mimic a realistic scenario, we use the framework of multilayer networks to construct a two-layered traffic model, whereby the upper layer provides higher transport speed than the lower layer. Moreover, passengers are guided to travel along the path of minimal travelling time and with the additional cost they can transfer from one layer to another to avoid congestion and/or reach the final destination faster. By means of numerical simulations, we show that a degree distribution-based strategy, although facilitating the cooperation between both layers, can be further improved by enhancing the critical generating rate of passengers using a particle swarm optimisation (PSO) algorithm. If initialised with the prior knowledge from the degree distribution-based strategy, the PSO algorithm converges considerably faster. Our work exemplifies how statistical physics of complex networks can positively affect daily life. PMID:26791580

  18. Beyond the Labor Market Paradigm: A Social Network Perspective on Teacher Recruitment and Retention

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira

    2010-01-01

    This article identifies limits of the dominant labor market perspective (LMP) in research on teacher recruitment and retention and describes how research that incorporates a social network perspective (SNP) can contribute to the knowledge base and development of teacher education, staffing, and professional development approaches. A discussion of…

  19. A minimum resource neural network framework for solving multiconstraint shortest path problems.

    PubMed

    Zhang, Junying; Zhao, Xiaoxue; He, Xiaotao

    2014-08-01

    Characterized by using minimum hard (structural) and soft (computational) resources, a novel parameter-free minimal resource neural network (MRNN) framework is proposed for solving a wide range of single-source shortest path (SP) problems for various graph types. The problems are the k-shortest time path problems with any combination of three constraints: time, hop, and label constraints, and the graphs can be directed, undirected, or bidirected with symmetric and/or asymmetric traversal time, which can be real and time dependent. Isomorphic to the graph where the SP is to be sought, the network is activated by generating autowave at source neuron and the autowave travels automatically along the paths with the speed of a hop in an iteration. Properties of the network are studied, algorithms are presented, and computation complexity is analyzed. The framework guarantees globally optimal solutions of a series of problems during the iteration process of the network, which provides insight into why even the SP is still too long to be satisfied. The network facilitates very large scale integrated circuit implementation and adapt to very large scale problems due to its massively parallel processing and minimum resource utilization. When implemented in a sequentially processing computer, experiments on synthetic graphs, road maps of cities of the USA, and vehicle routing with time windows indicate that the MRNN is especially efficient for large scale sparse graphs and even dense graphs with some constraints, e.g., the CPU time taken and the iteration number used for the road maps of cities of the USA is even less than  ∼ 2% and 0.5% that of the Dijkstra's algorithm. PMID:25050952

  20. Development of a privacy and security policy framework for a multistate comparative effectiveness research network.

    PubMed

    Kim, Katherine K; McGraw, Deven; Mamo, Laura; Ohno-Machado, Lucila

    2013-08-01

    Comparative effectiveness research (CER) conducted in distributed research networks (DRNs) is subject to different state laws and regulations as well as institution-specific policies intended to protect privacy and security of health information. The goal of the Scalable National Network for Effectiveness Research (SCANNER) project is to develop and demonstrate a scalable, flexible technical infrastructure for DRNs that enables near real-time CER consistent with privacy and security laws and best practices. This investigation began with an analysis of privacy and security laws and state health information exchange (HIE) guidelines applicable to SCANNER participants from California, Illinois, Massachusetts, and the Federal Veteran's Administration. A 7-member expert panel of policy and technical experts reviewed the analysis and gave input into the framework during 5 meetings held in 2011-2012. The state/federal guidelines were applied to 3 CER use cases: safety of new oral hematologic medications; medication therapy management for patients with diabetes and hypertension; and informational interventions for providers in the treatment of acute respiratory infections. The policy framework provides flexibility, beginning with a use-case approach rather than a one-size-fits-all approach. The policies may vary depending on the type of patient data shared (aggregate counts, deidentified, limited, and fully identified datasets) and the flow of data. The types of agreements necessary for a DRN may include a network-level and data use agreements. The need for flexibility in the development and implementation of policies must be balanced with responsibilities of data stewardship. PMID:23774516

  1. Untangling complex networks: Risk minimization in financial markets through accessible spin glass ground states

    NASA Astrophysics Data System (ADS)

    Lisewski, Andreas Martin; Lichtarge, Olivier

    2010-08-01

    Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network’s Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.

  2. Curation-Based Network Marketing: Strategies for Network Growth and Electronic Word-of-Mouth Diffusion

    ERIC Educational Resources Information Center

    Church, Earnie Mitchell, Jr.

    2013-01-01

    In the last couple of years, a new aspect of online social networking has emerged, in which the strength of social network connections is based not on social ties but mutually shared interests. This dissertation studies these "curation-based" online social networks (CBN) and their suitability for the diffusion of electronic word-of-mouth…

  3. Can Network Linkage Effects Determine Return? Evidence from Chinese Stock Market.

    PubMed

    Qiao, Haishu; Xia, Yue; Li, Ying

    2016-01-01

    This study used the dynamic conditional correlations (DCC) method to identify the linkage effects of Chinese stock market, and further detected the influence of network linkage effects on magnitude of security returns across different industries. Applying two physics-derived techniques, the minimum spanning tree and the hierarchical tree, we analyzed the stock interdependence within the network of the China Securities Index (CSI) industry index basket. We observed that that obvious linkage effects existed among stock networks. CII and CCE, CAG and ITH as well as COU, CHA and REI were confirmed as the core nodes in the three different networks respectively. We also investigated the stability of linkage effects by estimating the mean correlations and mean distances, as well as the normalized tree length of these indices. In addition, using the GMM model approach, we found inter-node influence within the stock network had a pronounced effect on stock returns. Our results generally suggested that there appeared to be greater clustering effect among the indexes belonging to related industrial sectors than those of diverse sectors, and network comovement was significantly affected by impactive financial events in the reality. Besides, stocks that were more central within the network of stock market usually had higher returns for compensation because they endured greater exposure to correlation risk. PMID:27257816

  4. Can Network Linkage Effects Determine Return? Evidence from Chinese Stock Market

    PubMed Central

    Qiao, Haishu; Xia, Yue; Li, Ying

    2016-01-01

    This study used the dynamic conditional correlations (DCC) method to identify the linkage effects of Chinese stock market, and further detected the influence of network linkage effects on magnitude of security returns across different industries. Applying two physics-derived techniques, the minimum spanning tree and the hierarchical tree, we analyzed the stock interdependence within the network of the China Securities Index (CSI) industry index basket. We observed that that obvious linkage effects existed among stock networks. CII and CCE, CAG and ITH as well as COU, CHA and REI were confirmed as the core nodes in the three different networks respectively. We also investigated the stability of linkage effects by estimating the mean correlations and mean distances, as well as the normalized tree length of these indices. In addition, using the GMM model approach, we found inter-node influence within the stock network had a pronounced effect on stock returns. Our results generally suggested that there appeared to be greater clustering effect among the indexes belonging to related industrial sectors than those of diverse sectors, and network comovement was significantly affected by impactive financial events in the reality. Besides, stocks that were more central within the network of stock market usually had higher returns for compensation because they endured greater exposure to correlation risk. PMID:27257816

  5. Is there any connection between the network morphology and the fluctuations of the stock market index?

    NASA Astrophysics Data System (ADS)

    Stefan, F. M.; Atman, A. P. F.

    2015-02-01

    Models which consider behavioral aspects of the investors have attracted increasing interest in the Finance and Econophysics literature in the last years. Different behavioral profiles (imitation, anti-imitation, indifference) were proposed for the investors, which take their decision based on their trust network (neighborhood). Results from agent-based models have shown that most of the features observed in actual stock market indices can be replicated in simulations. Here, we present a deeper investigation of an agent based model considering different network morphologies (regular, random, small-world) for the investors' trust network, in an attempt to answer the question raised in the title. We study the model by considering four scenarios for the investors and different initial conditions to analyze their influence in the stock market fluctuations. We have characterized the stationary limit for each scenario tested, focusing on the changes introduced when complex networks were used, and calculated the Hurst exponent in some cases. Simulations showed interesting results suggesting that the fluctuations of the stock market index are strongly affected by the network morphology, a remarkable result which we believe was never reported or predicted before.

  6. A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks

    PubMed Central

    Ye, Dayon; Zhang, Minji; Yang, Yu

    2015-01-01

    Wireless sensor networks (WSNs) have been widely investigated in recent years. One of the fundamental issues in WSNs is packet routing, because in many application domains, packets have to be routed from source nodes to destination nodes as soon and as energy efficiently as possible. To address this issue, a large number of routing approaches have been proposed. Although every existing routing approach has advantages, they also have some disadvantages. In this paper, a multi-agent framework is proposed that can assist existing routing approaches to improve their routing performance. This framework enables each sensor node to build a cooperative neighbour set based on past routing experience. Such cooperative neighbours, in turn, can help the sensor to effectively relay packets in the future. This framework is independent of existing routing approaches and can be used to assist many existing routing approaches. Simulation results demonstrate the good performance of this framework in terms of four metrics: average delivery latency, successful delivery ratio, number of live nodes and total sensing coverage. PMID:25928063

  7. Analysis of network clustering behavior of the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Mai, Yong; Li, Sai-Ping

    2014-11-01

    Random Matrix Theory (RMT) and the decomposition of correlation matrix method are employed to analyze spatial structure of stocks interactions and collective behavior in the Shanghai and Shenzhen stock markets in China. The result shows that there exists prominent sector structures, with subsectors including the Real Estate (RE), Commercial Banks (CB), Pharmaceuticals (PH), Distillers&Vintners (DV) and Steel (ST) industries. Furthermore, the RE and CB subsectors are mostly anti-correlated. We further study the temporal behavior of the dataset and find that while the sector structures are relatively stable from 2007 through 2013, the correlation between the real estate and commercial bank stocks shows large variations. By employing the ensemble empirical mode decomposition (EEMD) method, we show that this anti-correlation behavior is closely related to the monetary and austerity policies of the Chinese government during the period of study.

  8. A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.

    PubMed

    Zhang, Jiwei; Zhou, Douglas; Cai, David; Rangan, Aaditya V

    2014-08-01

    Homogeneously structured networks of neurons driven by noise can exhibit a broad range of dynamic behavior. This dynamic behavior can range from homogeneity to synchrony, and often incorporates brief spurts of collaborative activity which we call multiple-firing-events (MFEs). These multiple-firing-events depend on neither structured architecture nor structured input, and are an emergent property of the system. Although these MFEs likely play a major role in the neuronal avalanches observed in culture and in vivo, the mechanisms underlying these MFEs cannot easily be captured using current population-dynamics models. In this work we introduce a coarse-grained framework which illustrates certain dynamics responsible for the generation of MFEs. By using a new kind of ensemble-average, this coarse-grained framework can not only address the nucleation of MFEs, but can also faithfully capture a broad range of dynamic regimes ranging from homogeneity to synchrony. PMID:24338105

  9. Scale-Free Networks Provide a Unifying Framework for the Emergence of Cooperation

    NASA Astrophysics Data System (ADS)

    Santos, F. C.; Pacheco, J. M.

    2005-08-01

    We study the evolution of cooperation in the framework of evolutionary game theory, adopting the prisoner’s dilemma and snowdrift game as metaphors of cooperation between unrelated individuals. In sharp contrast with previous results we find that, whenever individuals interact following networks of contacts generated via growth and preferential attachment, leading to strong correlations between individuals, cooperation becomes the dominating trait throughout the entire range of parameters of both games, as such providing a unifying framework for the emergence of cooperation. Such emergence is shown to be inhibited whenever the correlations between individuals are decreased or removed. These results are shown to apply from very large population sizes down to small communities with nearly 100 individuals.

  10. Measuring youth exposure to alcohol marketing on social networking sites: challenges and prospects.

    PubMed

    Jernigan, David H; Rushman, Anne E

    2014-02-01

    Youth exposure to alcohol marketing has been linked to increased alcohol consumption and problems. On relatively new and highly interactive social networking sites (SNS) that are popular with youth, tools for measuring youth exposure to alcohol marketing in traditional media are inadequate. We critically review the existing policies of Facebook, Twitter, and YouTube designed to keep branded alcohol content away from underage youth. Looking at brand and user activity on Facebook for the 15 alcohol brands most popular among US youth, we found activity has grown dramatically in the past 3 years, and underage users may be accounting for some of this activity. Surveys of youth and adult participation in alcohol marketing on SNS will be needed to inform debate over these marketing practices. PMID:24284473

  11. Evaluation of Metal-Organic Frameworks and Porous Polymer Networks for CO2 -Capture Applications.

    PubMed

    Verdegaal, Wolfgang M; Wang, Kecheng; Sculley, Julian P; Wriedt, Mario; Zhou, Hong-Cai

    2016-03-21

    This manuscript presents experimental data for 20 adsorption materials (metal-organic frameworks, porous polymer networks, and Zeolite-5A), including CO2 and N2 isotherms and heat capacities. With input from only experimental data, working capacities per energy for each material were calculated. Furthermore, by running seven different carbon-capture scenarios in which the initial flue-gas composition and process temperature was systematically changed, we present a range of performances for each material and quantify how sensitive each is to these varying parameters. The presented calculations provide researchers with a tool to investigate promising carbon-capture materials more easily and completely. PMID:26840979

  12. A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths

    NASA Astrophysics Data System (ADS)

    Passalacqua, Paola; Do Trung, Tien; Foufoula-Georgiou, Efi; Sapiro, Guillermo; Dietrich, William E.

    2010-03-01

    A geometric framework for the automatic extraction of channels and channel networks from high-resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.

  13. Model‐Based Network Meta‐Analysis: A Framework for Evidence Synthesis of Clinical Trial Data

    PubMed Central

    Bennetts, M; Dias, S; Boucher, M; Welton, NJ

    2016-01-01

    Model‐based meta‐analysis (MBMA) is increasingly used in drug development to inform decision‐making and future trial designs, through the use of complex dose and/or time course models. Network meta‐analysis (NMA) is increasingly being used by reimbursement agencies to estimate a set of coherent relative treatment effects for multiple treatments that respect the randomization within the trials. However, NMAs typically either consider different doses completely independently or lump them together, with few examples of models for dose. We propose a framework, model‐based network meta‐analysis (MBNMA), that combines both approaches, that respects randomization, and allows estimation and prediction for multiple agents and a range of doses, using plausible physiological dose‐response models. We illustrate our approach with an example comparing the efficacies of triptans for migraine relief. This uses a binary endpoint, although we note that the model can be easily modified for other outcome types. PMID:27479782

  14. Explicit synchronisation of heterogeneous dynamics networks via three-layer communication framework

    NASA Astrophysics Data System (ADS)

    Wang, Bohui; Wang, Jingcheng; Zhang, Langwen; Zhang, Bin

    2016-06-01

    This paper addresses the explicit synchronisation of heterogeneous dynamics networks via three-layer communication framework. The main contribution is to propose an explicit synchronisation algorithm, in which the synchronisation errors of all the agents are decoupled. By constructing a three-layer node model, the proposed algorithm removes the assumptions that the topology is fixed and the synchronisation process is coupled. By introducing appropriate assumptions, the algorithm leads to a class of explicit synchronisation protocols based on the states of agents in different layers. It is proved in the sense of Lyapunov that, if the dwell time is larger than a threshold, the explicit synchronisation can be achieved for closed-loop heterogeneous dynamics networks under switching topologies. The results are further extended to the cases in which the switching topologies are only frequently but not always connected. Simulation results are presented with four single-link manipulators to verify the theoretical analysis.

  15. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    NASA Technical Reports Server (NTRS)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  16. FNCS: A Framework for Power System and Communication Networks Co-Simulation

    SciTech Connect

    Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.; Fisher, Andrew R.; Marinovici, Laurentiu D.; Agarwal, Khushbu

    2014-04-13

    This paper describes the Fenix framework that uses a federated approach for integrating power grid and communication network simulators. Compared existing approaches, Fenix al- lows co-simulation of both transmission and distribution level power grid simulators with the communication network sim- ulator. To reduce the performance overhead of time synchro- nization, Fenix utilizes optimistic synchronization strategies that make speculative decisions about when the simulators are going to exchange messages. GridLAB-D (a distribution simulator), PowerFlow (a transmission simulator), and ns-3 (a telecommunication simulator) are integrated with the frame- work and are used to illustrate the enhanced performance pro- vided by speculative multi-threading on a smart grid applica- tion. Our speculative multi-threading approach achieved on average 20% improvement over the existing synchronization methods

  17. A framework for performance measurement in university using extended network data envelopment analysis (DEA) structures

    NASA Astrophysics Data System (ADS)

    Kashim, Rosmaini; Kasim, Maznah Mat; Rahman, Rosshairy Abd

    2015-12-01

    Measuring university performance is essential for efficient allocation and utilization of educational resources. In most of the previous studies, performance measurement in universities emphasized the operational efficiency and resource utilization without investigating the university's ability to fulfill the needs of its stakeholders and society. Therefore, assessment of the performance of university should be separated into two stages namely efficiency and effectiveness. In conventional DEA analysis, a decision making unit (DMU) or in this context, a university is generally treated as a black-box which ignores the operation and interdependence of the internal processes. When this happens, the results obtained would be misleading. Thus, this paper suggest an alternative framework for measuring the overall performance of a university by incorporating both efficiency and effectiveness and applies network DEA model. The network DEA models are recommended because this approach takes into account the interrelationship between the processes of efficiency and effectiveness in the system. This framework also focuses on the university structure which is expanded from the hierarchical to form a series of horizontal relationship between subordinate units by assuming both intermediate unit and its subordinate units can generate output(s). Three conceptual models are proposed to evaluate the performance of a university. An efficiency model is developed at the first stage by using hierarchical network model. It is followed by an effectiveness model which take output(s) from the hierarchical structure at the first stage as a input(s) at the second stage. As a result, a new overall performance model is proposed by combining both efficiency and effectiveness models. Thus, once this overall model is realized and utilized, the university's top management can determine the overall performance of each unit more accurately and systematically. Besides that, the result from the network

  18. FERN – a Java framework for stochastic simulation and evaluation of reaction networks

    PubMed Central

    Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf

    2008-01-01

    Background Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. Results In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. Conclusion FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand

  19. Periodic synchronization control of discontinuous delayed networks by using extended Filippov-framework.

    PubMed

    Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting

    2015-08-01

    This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. PMID:26005005

  20. Uniform framework for the recurrence-network analysis of chaotic time series

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2016-01-01

    We propose a general method for the construction and analysis of unweighted ɛ -recurrence networks from chaotic time series. The selection of the critical threshold ɛc in our scheme is done empirically and we show that its value is closely linked to the embedding dimension M . In fact, we are able to identify a small critical range Δ ɛ numerically that is approximately the same for the random and several standard chaotic time series for a fixed M . This provides us a uniform framework for the nonsubjective comparison of the statistical measures of the recurrence networks constructed from various chaotic attractors. We explicitly show that the degree distribution of the recurrence network constructed by our scheme is characteristic to the structure of the attractor and display statistical scale invariance with respect to increase in the number of nodes N . We also present two practical applications of the scheme, detection of transition between two dynamical regimes in a time-delayed system and identification of the dimensionality of the underlying system from real-world data with a limited number of points through recurrence network measures. The merits, limitations, and the potential applications of the proposed method are also highlighted.

  1. A web-based modular framework for real-time monitoring of large scale sensor networks

    NASA Astrophysics Data System (ADS)

    Newman, R. L.; Lindquist, K. G.; Vernon, F. L.

    2007-12-01

    The Antelope Real Time System (ARTS) is an integrated combination of protocols, acquisition systems and applications designed for real-time data collection and analysis from an array of deployed field sensors. Historically these were seismic sensors, however the open architecture of the ARTS facilitated development of acquisition protocols for a diverse group of sensors, including data streams from hf radar, meteorological instrumentation and cameras. In parallel with the expansion of data-type ingestion, a web-based interface to the ARTS was developed in PHP, a popular HTML embedded scripting language. The application-driven development of web-based software to Antelope-stored data has risen exponentially over the last four years, from simple database interactions to web-based AJAX applications similar in look and feel to desktop software. As the web-based applications have grown in complexity, the architecture around their development has matured into an extensible framework with "plug'n'play" capabilities. Their modular design has allowed multiple institutions to deploy the same web-based applications, tailored for their specific requirements. Examples include the NSF Earthscope USArray Transportable Array, ROADNet's Realtime Imagebank, the broadband seismic network monitoring of the University of Nevada Reno and University of California San Diego, and monitoring of the downhole arrays maintained by the University of California Santa Barbara. The success of these deployments suggest that such a framework could be applicable to other large scale sensor networks, including the developing Ocean Observatories project.

  2. An Energy-Efficient Target Tracking Framework in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yu, Zhijun; Wei, Jianming; Liu, Haitao

    2009-12-01

    This study devises and evaluates an energy-efficient distributed collaborative signal and information processing framework for acoustic target tracking in wireless sensor networks. The distributed processing algorithm is based on mobile agent computing paradigm and sequential Bayesian estimation. At each time step, the short detection reports of cluster members will be collected by cluster head, and a sensor node with the highest signal-to-noise ratio (SNR) is chosen there as reference node for time difference of arrive (TDOA) calculation. During the mobile agent migration, the target state belief is transmitted among nodes and updated using the TDOA measurement of these fusion nodes one by one. The computing and processing burden is evenly distributed in the sensor network. To decrease the wireless communications, we propose to represent the belief by parameterized methods such as Gaussian approximation or Gaussian mixture model approximation. Furthermore, we present an attraction force function to handle the mobile agent migration planning problem, which is a combination of the node residual energy, useful information, and communication cost. Simulation examples demonstrate the estimation effectiveness and energy efficiency of the proposed distributed collaborative target tracking framework.

  3. Forecasting Volatility in Indian Stock Market using Artificial Neural Network with Multiple Inputs and Outputs

    NASA Astrophysics Data System (ADS)

    DattaChaudhuri, Tamal; Ghosh, Indranil

    2015-06-01

    Volatility in stock markets has been extensively studied in the applied finance literature. In this paper, Artificial Neural Network models based on various back propagation algorithms have been constructed to predict volatility in the Indian stock market through volatility of NIFTY returns and volatility of gold returns. This model considers India VIX, CBOE VIX, volatility of crude oil returns (CRUDESDR), volatility of DJIA returns (DJIASDR), volatility of DAX returns (DAXSDR), volatility of Hang Seng returns (HANGSDR) and volatility of Nikkei returns (NIKKEISDR) as predictor variables. Three sets of experiments have been performed over three time periods to judge the effectiveness of the approach.

  4. Decrypting Financial Markets through E-Joint Attention Efforts: On-Line Adaptive Networks of Investors in Periods of Market Uncertainty

    PubMed Central

    Casnici, Niccolò; Dondio, Pierpaolo; Casarin, Roberto; Squazzoni, Flaminio

    2015-01-01

    This paper looks at 800,000 messages on the Unicredit stock, exchanged by 7,500 investors in the Finanzaonline.com forum, between 2005 and 2012 and measured collective interpretations of stock market trends. We examined the correlation patterns between market uncertainty, bad news and investors' network structure by measuring the investors' communication patterns. Our results showed that the investors' network reacted to market trends in different ways: While less turbulent market phases implied less communication, higher market volatility generated more complex communication patterns. While the information content of messages was less technical in situations of uncertainty, bad news caused more informative messages only when market volatility was lower. This meant that bad news had a different impact on network behaviour, depending on market uncertainty. By measuring the investors' expertise, we found that their behaviour could help predict changes in daily stock returns. We also found that expert investors were more influential in communication processes during high volatility market phases, whereas they had less influence on the real-time forum's reaction after bad news. Our findings confirm the crucial role of e-communication platforms. However, they also show the need to reconsider the fragility of these collective intelligence systems when under external shocks. PMID:26244550

  5. Decrypting Financial Markets through E-Joint Attention Efforts: On-Line Adaptive Networks of Investors in Periods of Market Uncertainty.

    PubMed

    Casnici, Niccolò; Dondio, Pierpaolo; Casarin, Roberto; Squazzoni, Flaminio

    2015-01-01

    This paper looks at 800,000 messages on the Unicredit stock, exchanged by 7,500 investors in the Finanzaonline.com forum, between 2005 and 2012 and measured collective interpretations of stock market trends. We examined the correlation patterns between market uncertainty, bad news and investors' network structure by measuring the investors' communication patterns. Our results showed that the investors' network reacted to market trends in different ways: While less turbulent market phases implied less communication, higher market volatility generated more complex communication patterns. While the information content of messages was less technical in situations of uncertainty, bad news caused more informative messages only when market volatility was lower. This meant that bad news had a different impact on network behaviour, depending on market uncertainty. By measuring the investors' expertise, we found that their behaviour could help predict changes in daily stock returns. We also found that expert investors were more influential in communication processes during high volatility market phases, whereas they had less influence on the real-time forum's reaction after bad news. Our findings confirm the crucial role of e-communication platforms. However, they also show the need to reconsider the fragility of these collective intelligence systems when under external shocks. PMID:26244550

  6. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    NASA Astrophysics Data System (ADS)

    Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars

    2013-08-01

    There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.

  7. Landscape and Flux Framework for Non-Equilibrium Networks: Kinetic Paths and Rate Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2012-02-01

    We developed a general framework to quantify three key ingredients for dynamics of nonequilibrium systems through path integrals in length space. First, we identify dominant kinetic paths as the ones with optimal weights, leading to effective reduction of dimensionality or degrees of freedom from exponential to polynomial so large systems can be treated. Second, we uncover the underlying nonequilibrium potential landscapes from the explorations of the state space through kinetic paths. We apply our framework to a specific example of nonequilibrium network system: lambda phage genetic switch. Two distinct basins of attractions emerge. The dominant kinetic paths from one basin to another are irreversible and do not follow the usual steepest descent or gradient path along the landscape. It reflects the fact that the dynamics of nonequilibrium systems is not just determined by potential gradient but also the residual curl flux force, suggesting experiments to test theoretical predictions. Third, we have calculated dynamic transition time scales from one basin to another critical for stability of the system through instantons. Theoretical predictions are in good agreements with wild type and mutant experiments.We further uncover the correlations between the kinetic transition time scales and the underlying landscape topography: the barrier heights along the dominant paths. We found that both the dominant paths and the landscape are relatively robust against the influences of external environmental perturbations and the system tends to dissipate less with less fluctuations. Our theoretical framework is general and can be applied to other nonequilibrium systems.

  8. The structural role of weak and strong links in a financial market network

    NASA Astrophysics Data System (ADS)

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  9. Framework and implementation of a continuous network-wide health monitoring system for roadways

    NASA Astrophysics Data System (ADS)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2014-03-01

    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  10. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    PubMed

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data. PMID:26335705

  11. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model

    PubMed Central

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders’ expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day’s price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately. PMID:27196055

  12. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    PubMed

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately. PMID:27196055

  13. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets

    PubMed Central

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players’ behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents’ behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data. PMID:26335705

  14. Shareholding relationships in the Euro Area banking market: A network perspective

    NASA Astrophysics Data System (ADS)

    Pecora, Nicolò; Spelta, Alessandro

    2015-09-01

    In this paper we analyze the topological properties of the network of the Euro Area banking market network, with the primary aim of assessing the importance of a bank in the financial system with respect to ownership and control of other credit institutions. The network displays power law distributions in both binary and weighted degree metrics indicating a robust yet fragile structure and a direct link between an increase of control diversification and a rise in the market power. Therefore while in good time the network is seemingly robust, in bad times many banks can simultaneously go into distress. This behavior paves the way for Central bank's actions. In particular we investigate whether the Single Supervisory Mechanism introduced by the European Central Banks and based on banks' total asset is a good proxy to quantify their systemic importance. Results indicate that not all the financial institutions with high valued total assets are systemically important but only few of them. Moreover the network structure reveals that control is highly concentrated, with few important shareholders approximately controlling a separate subset of banks.

  15. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    PubMed

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-01

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach. PMID:25836235

  16. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    PubMed Central

    Santra, Tapesh

    2014-01-01

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances. PMID:25152886

  17. A General Framework for a Collaborative Water Quality Knowledge and Information Network

    NASA Astrophysics Data System (ADS)

    Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge

    2011-03-01

    Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.

  18. A Human Sensor Network Framework in Support of Near Real Time Situational Geophysical Modeling

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Price, A.; Smith, J. A.; Halem, M.

    2013-12-01

    The area of Disaster Management is well established among Federal Agencies such as FEMA, EPA, NOAA and NASA. These agencies have well formulated frameworks for response and mitigation based on near real time satellite and conventional observing networks for assimilation into geophysical models. Forecasts from these models are used to communicate with emergency responders and the general public. More recently, agencies have started using social media to broadcast warnings and alerts to potentially affected communities. In this presentation, we demonstrate the added benefits of mining and assimilating the vast amounts of social media data available from heterogeneous hand held devices and social networks into established operational geophysical modeling frameworks as they apply to the five cornerstones of disaster management - Prevention, Mitigation, Preparedness, Response and Recovery. Often, in situations of extreme events, social media provide the earliest notification of adverse extreme events. However, various forms of social media data also can provide useful geolocated and time stamped in situ observations, complementary to directly sensed conventional observations. We use the concept of a Human Sensor Network where one views social media users as carrying field deployed "sensors" whose posts are the remotely "sensed instrument measurements.' These measurements can act as 'station data' providing the resolution and coverage needed for extreme event specific modeling and validation. Here, we explore the use of social media through the use of a Human Sensor Network (HSN) approach as another data input source for assimilation into geophysical models. Employing the HSN paradigm can provide useful feedback in near real-time, but presents software challenges for rapid access, quality filtering and transforming massive social media data into formats consistent with the operational models. As a use case scenario, we demonstrate the value of HSN for disaster management

  19. Short-term load forecasting using generalized regression and probabilistic neural networks in the electricity market

    SciTech Connect

    Tripathi, M.M.; Upadhyay, K.G.; Singh, S.N.

    2008-11-15

    For the economic and secure operation of power systems, a precise short-term load forecasting technique is essential. Modern load forecasting techniques - especially artificial neural network methods - are particularly attractive, as they have the ability to handle the non-linear relationships between load, weather temperature, and the factors affecting them directly. A test of two different ANN models on data from Australia's Victoria market is promising. (author)

  20. Using the social structure of markets as a framework for analyzing vaccination debates: The case of emergency polio vaccination.

    PubMed

    Connelly, Yaron; Ziv, Arnona; Goren, Uri; Tal, Orna; Kaplan, Giora; Velan, Baruch

    2016-07-01

    The framework of the social structure of markets was used to analyze an online debate revolving around an emergency poliovirus vaccination campaign in Israel. Examination of a representative sample of 200 discussions revealed the activity of three parties: authoritative agents promoting vaccinations, alternative agents promoting anti-vaccination, both representing sellers, and the impartial agents, representing the customers-the general public deliberating whether to comply with vaccination or not. Both sellers interacted with consumers using mechanisms of luring and convincing. The authoritative agents conveyed their message by exhibiting professionalism, building trust and offering to share information. The alternative agents spread doubts and evoked negative emotions of distrust and fear. Among themselves, the alternative agents strived to discredit the authoritative agents, while the latter preferred to ignore the former. Content analysis of discussions conducted by the general public reveal reiteration of the messages conveyed by the sellers, implying that the transaction of pro and anti-vaccination ideas indeed took place. We suggest that the framework of the market as a social structure can be applied to the analysis of other vaccination debates, and thereby provide additional insights into vaccination polemics. PMID:27058586

  1. Segment-based Mass Customization: An Exploration of a New Conceptual Marketing Framework.

    ERIC Educational Resources Information Center

    Jiang, Pingjun

    2000-01-01

    Suggests that the concept of mass customization should be seen as an integral part of market segmentation theory which offers the best way to satisfy consumers' unique needs and wants while yielding profits to companies. Proposes a new concept of "segment-based based mass customization," and offers a series of propositions which are relevant to…

  2. MASM: a market architecture for sensor management in distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya

    2005-03-01

    Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.

  3. A Geostatistical Framework for Estimating Rain Intensity Fields Using Dense Rain Gauge Networks

    NASA Astrophysics Data System (ADS)

    Benoit, L.; Mariethoz, G.

    2015-12-01

    Rain gauges provide direct and continuous observations of rain accumulation with a high time resolution (up to 1min). However the representativeness of these measurements is restricted to the funnel where rainwater is collected. Due to the high spatial heterogeneity of rainfall, this poor spatial representativeness is a strong limitation for the detailed reconstruction of rain intensity fields. Here we propose a geostatistical framework that is able to generate an ensemble of simulated rain fields based on data from a dense rain gauge network. When the density of rain gauges is high (sensor spacing in the range 500m to 1km), the spatial correlation between precipitation time series becomes sufficient to identify and track the rain patterns observed at the rain gauge sampling rate. Rain observations derived from such networks can thus be used to reconstruct the rain field with a high resolution in both space and time (i.e. 1min in time, 100m in space). Our method produces an ensemble of realizations that honor the rain intensities measured throughout the rain gauge network and preserve the main features of the rain intensity field at the considered scale, i.e.: the advection and morphing properties of rain cells over time, the intermittency and the skewed distribution of rainfall, and the decrease of the rain rate near the rain cell borders (dry drift). This allows to image the observed rain field and characterize its main features, as well as to quantify the related uncertainty. The obtained reconstruction of the rainfall are continuous in time, and therefore can complement weather radar observations which are snapshots of the rain field. In addition, the application of this method to networks with a spatial extent comparable to the one of a radar pixel (i.e. around 1km2) could allow exploration of the rain field within a single radar pixel.

  4. Interventions for avian influenza A (H5N1) risk management in live bird market networks

    PubMed Central

    Fournié, Guillaume; Guitian, Javier; Desvaux, Stéphanie; Cuong, Vu Chi; Dung, Do Huu; Pfeiffer, Dirk Udo; Mangtani, Punam; Ghani, Azra C.

    2013-01-01

    Highly pathogenic avian influenza virus subtype H5N1 is endemic in Asia, with live bird trade as a major disease transmission pathway. A cross-sectional survey was undertaken in northern Vietnam to investigate the structure of the live bird market (LBM) contact network and the implications for virus spread. Based on the movements of traders between LBMs, weighted and directed networks were constructed and used for social network analysis and individual-based modeling. Most LBMs were connected to one another, suggesting that the LBM network may support large-scale disease spread. Because of cross-border trade, it also may promote transboundary virus circulation. However, opportunities for disease control do exist. The implementation of thorough, daily disinfection of the market environment as well as of traders’ vehicles and equipment in only a small number of hubs can disconnect the network dramatically, preventing disease spread. These targeted interventions would be an effective alternative to the current policy of a complete ban of LBMs in some areas. Some LBMs that have been banned still are very active, and they likely have a substantial impact on disease dynamics, exhibiting the highest levels of susceptibility and infectiousness. The number of trader visits to markets, information that can be collected quickly and easily, may be used to identify LBMs suitable for implementing interventions. This would not require prior knowledge of the force of infection, for which laboratory-confirmed surveillance would be necessary. These findings are of particular relevance for policy development in resource-scarce settings. PMID:23650388

  5. The Privacy Jungle:On the Market for Data Protection in Social Networks

    NASA Astrophysics Data System (ADS)

    Bonneau, Joseph; Preibusch, Sören

    We have conducted the first thorough analysis of the market for privacy practices and policies in online social networks. From an evaluation of 45 social networking sites using 260 criteria we find that many popular assumptions regarding privacy and social networking need to be revisited when considering the entire ecosystem instead of only a handful of well-known sites. Contrary to the common perception of an oligopolistic market, we find evidence of vigorous competition for new users. Despite observing many poor security practices, there is evidence that social network providers are making efforts to implement privacy enhancing technologies with substantial diversity in the amount of privacy control offered. However, privacy is rarely used as a selling point, even then only as auxiliary, nondecisive feature. Sites also failed to promote their existing privacy controls within the site. We similarly found great diversity in the length and content of formal privacy policies, but found an opposite promotional trend: though almost all policies are not accessible to ordinary users due to obfuscating legal jargon, they conspicuously vaunt the sites' privacy practices. We conclude that the market for privacy in social networks is dysfunctional in that there is significant variation in sites' privacy controls, data collection requirements, and legal privacy policies, but this is not effectively conveyed to users. Our empirical findings motivate us to introduce the novel model of a privacy communication game, where the economically rational choice for a site operator is to make privacy control available to evade criticism from privacy fundamentalists, while hiding the privacy control interface and privacy policy to maximize sign-up numbers and encourage data sharing from the pragmatic majority of users.

  6. Interventions for avian influenza A (H5N1) risk management in live bird market networks.

    PubMed

    Fournié, Guillaume; Guitian, Javier; Desvaux, Stéphanie; Cuong, Vu Chi; Dung, Do Huu; Pfeiffer, Dirk Udo; Mangtani, Punam; Ghani, Azra C

    2013-05-28

    Highly pathogenic avian influenza virus subtype H5N1 is endemic in Asia, with live bird trade as a major disease transmission pathway. A cross-sectional survey was undertaken in northern Vietnam to investigate the structure of the live bird market (LBM) contact network and the implications for virus spread. Based on the movements of traders between LBMs, weighted and directed networks were constructed and used for social network analysis and individual-based modeling. Most LBMs were connected to one another, suggesting that the LBM network may support large-scale disease spread. Because of cross-border trade, it also may promote transboundary virus circulation. However, opportunities for disease control do exist. The implementation of thorough, daily disinfection of the market environment as well as of traders' vehicles and equipment in only a small number of hubs can disconnect the network dramatically, preventing disease spread. These targeted interventions would be an effective alternative to the current policy of a complete ban of LBMs in some areas. Some LBMs that have been banned still are very active, and they likely have a substantial impact on disease dynamics, exhibiting the highest levels of susceptibility and infectiousness. The number of trader visits to markets, information that can be collected quickly and easily, may be used to identify LBMs suitable for implementing interventions. This would not require prior knowledge of the force of infection, for which laboratory-confirmed surveillance would be necessary. These findings are of particular relevance for policy development in resource-scarce settings. PMID:23650388

  7. Market scenarios and alternative administrative frameworks for US educational satellite systems

    NASA Technical Reports Server (NTRS)

    Walkmeyer, J. E., Jr.; Morgan, R. P.; Singh, J. P.

    1975-01-01

    Costs and benefits of developing an operational educational satellite system in the U.S. are analyzed. Scenarios are developed for each educational submarket and satellite channel and ground terminal requirements for a large-scale educational telecommunications system are estimated. Alternative organizational frameworks for such a system are described.

  8. An Efficient Framework for Large Scale Multimedia Content Distribution in P2P Network: I2NC.

    PubMed

    Anandaraj, M; Ganeshkumar, P; Vijayakumar, K P; Selvaraj, K

    2015-01-01

    Network coding (NC) makes content distribution more effective and easier in P2P content distribution network and reduces the burden of the original seeder. It generalizes traditional network routing by allowing the intermediate nodes to generate new coded packet by combining the received packets. The randomization introduced by network coding makes all packets equally important and resolves the problem of locating the rarest block. Further, it reduces traffic in the network. In this paper, we analyze the performance of traditional network coding in P2P content distribution network by using a mathematical model and it is proved that traffic reduction has not been fully achieved in P2P network using traditional network coding. It happens due to the redundant transmission of noninnovative information block among the peers in the network. Hence, we propose a new framework, called I2NC (intelligent-peer selection and incremental-network coding), to eliminate the unnecessary flooding of noninnovative coded packets and thereby to improve the performance of network coding in P2P content distribution further. A comparative study and analysis of the proposed system is made through various related implementations and the results show that 10-15% of traffic reduced and improved the average and maximum download time by reducing original seeder's workload. PMID:26605375

  9. An Efficient Framework for Large Scale Multimedia Content Distribution in P2P Network: I2NC

    PubMed Central

    Anandaraj, M.; Ganeshkumar, P.; Vijayakumar, K. P.; Selvaraj, K.

    2015-01-01

    Network coding (NC) makes content distribution more effective and easier in P2P content distribution network and reduces the burden of the original seeder. It generalizes traditional network routing by allowing the intermediate nodes to generate new coded packet by combining the received packets. The randomization introduced by network coding makes all packets equally important and resolves the problem of locating the rarest block. Further, it reduces traffic in the network. In this paper, we analyze the performance of traditional network coding in P2P content distribution network by using a mathematical model and it is proved that traffic reduction has not been fully achieved in P2P network using traditional network coding. It happens due to the redundant transmission of noninnovative information block among the peers in the network. Hence, we propose a new framework, called I2NC (intelligent-peer selection and incremental-network coding), to eliminate the unnecessary flooding of noninnovative coded packets and thereby to improve the performance of network coding in P2P content distribution further. A comparative study and analysis of the proposed system is made through various related implementations and the results show that 10–15% of traffic reduced and improved the average and maximum download time by reducing original seeder's workload. PMID:26605375

  10. [Market and public policy network failures: challenges and possibilities for the Brazilian Unified Health System].

    PubMed

    Pinheiro Filho, Francisco Percival; Sarti, Flávia Mori

    2012-11-01

    The principles and guidelines of the Brazilian Unified Health System (SUS) impose a healthcare service structure based on public policy networks which, combined with the financing model adopted, leads to market failings. This imposes barriers to the management of the public health system and the enactment of SUS objectives. The institutional characteristics and the heterogeneity of players, allied to the existence of different healthcare approaches, generate analytical complexity in the study of the global dynamics of the SUS network. There are limitations in the use of quantitative methods based on static analysis of retrospective SUS data. Thus, an approach taking SUS as a complex system using innovative quantitative methodology based on computational simulation is proposed. This paper sought to analyze challenges and possibilities of the combined application of cellular automata modeling and agent-based modeling for simulation of the evolution of the SUS healthcare service network. This approach should permit better understanding of the organization, heterogeneity and structural dynamics of the SUS service network and a minimization of the effects of market failings on the Brazilian health system. PMID:23175305

  11. A study of IEEE 802.15.4 security framework for wireless body area networks.

    PubMed

    Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup

    2011-01-01

    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN. PMID:22319358

  12. A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Networks

    PubMed Central

    Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup

    2011-01-01

    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN. PMID:22319358

  13. Response Surfaces of Neural Networks Learned Using Bayesian Framework and Its Application to Optimization Problem

    NASA Astrophysics Data System (ADS)

    Takeda, Norio

    We verified the generalization ability of the response surfaces of artificial neural networks (NNs), and that the surfaces could be applied to an engineering-design problem. A Bayesian framework to regularize NNs, which was proposed by Gull and Skilling, can be used to generate NN response surfaces with excellent generalization ability, i.e., to determine the regularizing constants in an objective function minimized during NN learning. This well-generalized NN might be useful to find an optimal solution in the process of response surface methodology (RSM). We, therefore, describe three rules based on the Bayesian framework to update the regularizing constants, utilizing these rules to generate NN response surfaces with noisy teacher data drawn from a typical unimodal or multimodal function. Good generalization ability was achieved with regularized NN response surfaces, even though an update rule including trace evaluation failed to determine the regularizing constants regardless of the response function. We, next, selected the most appropriate update rule, which included eigenvalue evaluation, and then the NN response surface regularized using the update rule was applied to finding the optimal solution to an illustrative engineering-design problem. The NN response surface did not fit the noise in the teacher data, and consequently, it could effectively be used to achieve a satisfactory solution. This may increase the opportunities for using NN in the process of RSM.

  14. A Bayesian framework for cell-level protein network analysis for multivariate proteomics image data

    NASA Astrophysics Data System (ADS)

    Kovacheva, Violet N.; Sirinukunwattana, Korsuk; Rajpoot, Nasir M.

    2014-03-01

    The recent development of multivariate imaging techniques, such as the Toponome Imaging System (TIS), has facilitated the analysis of multiple co-localisation of proteins. This could hold the key to understanding complex phenomena such as protein-protein interaction in cancer. In this paper, we propose a Bayesian framework for cell level network analysis allowing the identification of several protein pairs having significantly higher co-expression levels in cancerous tissue samples when compared to normal colon tissue. It involves segmenting the DAPI-labeled image into cells and determining the cell phenotypes according to their protein-protein dependence profile. The cells are phenotyped using Gaussian Bayesian hierarchical clustering (GBHC) after feature selection is performed. The phenotypes are then analysed using Difference in Sums of Weighted cO-dependence Profiles (DiSWOP), which detects differences in the co-expression patterns of protein pairs. We demonstrate that the pairs highlighted by the proposed framework have high concordance with recent results using a different phenotyping method. This demonstrates that the results are independent of the clustering method used. In addition, the highlighted protein pairs are further analysed via protein interaction pathway databases and by considering the localization of high protein-protein dependence within individual samples. This suggests that the proposed approach could identify potentially functional protein complexes active in cancer progression and cell differentiation.

  15. A Web Service-based framework model for people-centric sensing applications applied to social networking.

    PubMed

    Nunes, David; Tran, Thanh-Dien; Raposo, Duarte; Pinto, André; Gomes, André; Silva, Jorge Sá

    2012-01-01

    As the Internet evolved, social networks (such as Facebook) have bloomed and brought together an astonishing number of users. Mashing up mobile phones and sensors with these social environments enables the creation of people-centric sensing systems which have great potential for expanding our current social networking usage. However, such systems also have many associated technical challenges, such as privacy concerns, activity detection mechanisms or intermittent connectivity, as well as limitations due to the heterogeneity of sensor nodes and networks. Considering the openness of the Web 2.0, good technical solutions for these cases consist of frameworks that expose sensing data and functionalities as common Web-Services. This paper presents our RESTful Web Service-based model for people-centric sensing frameworks, which uses sensors and mobile phones to detect users' activities and locations, sharing this information amongst the user's friends within a social networking site. We also present some screenshot results of our experimental prototype. PMID:22438732

  16. A novel framework for command and control of networked sensor systems

    NASA Astrophysics Data System (ADS)

    Chen, Genshe; Tian, Zhi; Shen, Dan; Blasch, Erik; Pham, Khanh

    2007-04-01

    In this paper, we have proposed a highly innovative advanced command and control framework for sensor networks used for future Integrated Fire Control (IFC). The primary goal is to enable and enhance target detection, validation, and mitigation for future military operations by graphical game theory and advanced knowledge information fusion infrastructures. The problem is approached by representing distributed sensor and weapon systems as generic warfare resources which must be optimized in order to achieve the operational benefits afforded by enabling a system of systems. This paper addresses the importance of achieving a Network Centric Warfare (NCW) foundation of information superiority-shared, accurate, and timely situational awareness upon which advanced automated management aids for IFC can be built. The approach uses the Data Fusion Information Group (DFIG) Fusion hierarchy of Level 0 through Level 4 to fuse the input data into assessments for the enemy target system threats in a battlespace to which military force is being applied. Compact graph models are employed across all levels of the fusion hierarchy to accomplish integrative data fusion and information flow control, as well as cross-layer sensor management. The functional block at each fusion level will have a set of innovative algorithms that not only exploit the corresponding graph model in a computationally efficient manner, but also permit combined functional experiments across levels by virtue of the unifying graphical model approach.

  17. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  18. A Secure Multicast Framework in Large and High-Mobility Network Groups

    NASA Astrophysics Data System (ADS)

    Lee, Jung-San; Chang, Chin-Chen

    With the widespread use of Internet applications such as Teleconference, Pay-TV, Collaborate tasks, and Message services, how to construct and distribute the group session key to all group members securely is becoming and more important. Instead of adopting the point-to-point packet delivery, these emerging applications are based upon the mechanism of multicast communication, which allows the group member to communicate with multi-party efficiently. There are two main issues in the mechanism of multicast communication: Key Distribution and Scalability. The first issue is how to distribute the group session key to all group members securely. The second one is how to maintain the high performance in large network groups. Group members in conventional multicast systems have to keep numerous secret keys in databases, which makes it very inconvenient for them. Furthermore, in case that a member joins or leaves the communication group, many involved participants have to change their own secret keys to preserve the forward secrecy and the backward secrecy. We consequently propose a novel version for providing secure multicast communication in large network groups. Our proposed framework not only preserves the forward secrecy and the backward secrecy but also possesses better performance than existing alternatives. Specifically, simulation results demonstrate that our scheme is suitable for high-mobility environments.

  19. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework.

    PubMed

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  20. A framework for recovery-oriented, COTS-based ground station networks

    NASA Astrophysics Data System (ADS)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  1. A program for the Bayesian Neural Network in the ROOT framework

    NASA Astrophysics Data System (ADS)

    Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang

    2011-12-01

    We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.

  2. Biana: a software framework for compiling biological interactions and analyzing networks

    PubMed Central

    2010-01-01

    Background The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. Results We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. Conclusions BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules. PMID:20105306

  3. Polyoxometalate-based eight-connected self-catenated network and fivefold interpenetrating framework

    SciTech Connect

    Zhang Zhiming; Liu Jia; Li Yangguang; Yao Shuang; Wang Enbo; Wang Xinlong

    2010-01-15

    Two entangled compounds [(bpy){sub 6}Cu{sup I}{sub 6}Cl{sub 3}(Mo{sup V}W{sub 5}O{sub 19})] (1) and [(bpy){sub 7}Cu{sup I}{sub 7}Cl{sub 2}(BW{sub 12}O{sub 40})].H{sub 2}O (2) (bpy=4,4'-bipyridine), have been successfully synthesized under hydrothermal conditions and characterized by element analysis, IR spectroscopy, thermal gravimetric analysis, X-ray photoelectron spectroscopy, and single crystal X-ray diffraction analyses. Compound 1 represents the first eight-connected self-penetrating network constructed from cuprous chloride clusters [Cu{sub 6}Cl{sub 3}] and Lindquist-type polyoxoanions. Compound 2 exhibits an interesting fivefold interpenetrating network consisting of Keggin polyoxoanions and Cu{sup +}-metal-organic framework. Crystal data of the two compounds are following: 1, triclinic, P1-bar, a=11.502(2) A, b=13.069(3) A, c=13.296(3) A, alpha=90.55(3){sup o}, beta=113.74(3){sup o}, gamma=110.48(3){sup o}, Z=1; 2, triclinic, P1-bar, a=12.341(3) A, b=13.119(3) A, c=15.367(3) A, alpha=99.12(3){sup o}, beta=90.53(3){sup o}, gamma=104.49(3){sup o}, Z=1. - Graphical abstract: Compound 1 is the POM-based unprecedented eight-connected self-penetrating organic-inorganic hybrid network constructed from the cuprous chloride clusters [Cu{sub 6}Cl{sub 3}], Lindquist-type polyoxoanions [Mo{sup V}W{sub 5}O{sub 19}], and the 4,4'-bipyridine ligands.

  4. 76 FR 53443 - ENBALA Power Networks (USA), Inc.; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Federal Energy Regulatory Commission ENBALA Power Networks (USA), Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of ENBALA Power Networks (USA), Inc.'s application for...

  5. The co-evolutionary dynamics of directed network of spin market agents

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3<γin<3 coinciding with social networks.

  6. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  7. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  8. Dietary supplements: International legal framework and adulteration profiles, and characteristics of products on the Brazilian clandestine market.

    PubMed

    da Justa Neves, Diana Brito; Caldas, Eloisa Dutra

    2015-10-01

    The objectives of this work were to evaluate current legislation on dietary supplements in the United States, the European Union and Brazil, and the profile of adulterated and/or irregular products on these markets. Due to a less restrictive legal framework, a supplement product that is freely available in the US may be considered a drug or even be proscribed in the EU and Brazil, thus giving rise to a clandestine market based on smuggling. From 2007 to 2014, the United States Food and Drug Administration reported 572 cases of supplement adulterations in the country, mainly products for sexual enhancement (41.6%). Data from the European Union Rapid Alert System for Food and Feed showed 929 adulterations during the same period, over 40% due to unauthorized ingredients or undeclared medicines. From 2007 to 2013, the Brazilian Federal Police Department seized 5470 supplement products, 92.2% with an American-declared origin. Qualitative chemical analyses performed on 2898 products found 180 adulterations, 41.1% due to undeclared drugs, mainly anabolic steroids, anorectics and products for erectile dysfunction, all considered medicines in Brazil. Educating the public regarding the potential risks they are taking when consuming adulterated or irregular products is necessary to protect the health of consumers. PMID:26107294

  9. Pharma Pricing & Market Access Europe 2016--Health Network Communications' Tenth Annual Conference (February 23-25, 2016--London, UK).

    PubMed

    D'Souza, P

    2016-03-01

    Tighter national budgets and escalating drug prices continue to present challenges for pharmaceutical market access strategies and societal cost of care. As pharmaceutical companies and medical governmental advisory organizations enter tougher negotiations, hospital trusts and other dispensary firms face barriers to receiving the best medical treatment, and as a result patient access is limited. The 2016 HealthNetwork Communications' Pharma Pricing & Market Access Europe meeting brought together pharmaceutical, medical governmental advisory and stakeholders and market access/pricing consultants, to encourage discussions and negotiations into how to improve the drug pricing system and consequential market access strategies while achieving the respective reimbursement and affordability objectives. PMID:27186595

  10. A Unified Multiscale Field/Network/Agent Based Modeling Framework for Human and Ecological Health Risk Analysis

    PubMed Central

    Georgopoulos, Panos G.; Isukapalli, Sastry S.

    2011-01-01

    A conceptual framework is presented for multiscale field/network/agent-based modeling to support human and ecological health risk assessments. This framework is based on the representation of environmental dynamics in terms of interacting networks, agents that move across different networks, fields representing spatiotemporal distributions of physical properties, rules governing constraints and interactions, and actors that make decisions affecting the state of the system. Different deterministic and stochastic modeling case studies focusing on environmental exposures and associated risks are provided as examples, utilizing the bidirectional mapping between discrete, agent based approaches and continuous, equation based approaches. These examples include problems describing human health risk assessment, ecological risk assessment, and environmentally caused disease. PMID:19964423