Science.gov

Sample records for markov dynamic models

  1. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  2. Hidden Markov Models for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Continuous monitoring of complex dynamic systems is an increasingly important issue in diverse areas such as nuclear plant safety, production line reliability, and medical health monitoring systems. Recent advances in both sensor technology and computational capabilities have made on-line permanent monitoring much more feasible than it was in the past. In this paper it is shown that a pattern recognition system combined with a finite-state hidden Markov model provides a particularly useful method for modelling temporal context in continuous monitoring. The parameters of the Markov model are derived from gross failure statistics such as the mean time between failures. The model is validated on a real-world fault diagnosis problem and it is shown that Markov modelling in this context offers significant practical benefits.

  3. Trajectory classification using switched dynamical hidden Markov models.

    PubMed

    Nascimento, Jacinto C; Figueiredo, Mario; Marques, Jorge S

    2010-05-01

    This paper proposes an approach for recognizing human activities (more specifically, pedestrian trajectories) in video sequences, in a surveillance context. A system for automatic processing of video information for surveillance purposes should be capable of detecting, recognizing, and collecting statistics of human activity, reducing human intervention as much as possible. In the method described in this paper, human trajectories are modeled as a concatenation of segments produced by a set of low level dynamical models. These low level models are estimated in an unsupervised fashion, based on a finite mixture formulation, using the expectation-maximization (EM) algorithm; the number of models is automatically obtained using a minimum message length (MML) criterion. This leads to a parsimonious set of models tuned to the complexity of the scene. We describe the switching among the low-level dynamic models by a hidden Markov chain; thus, the complete model is termed a switched dynamical hidden Markov model (SD-HMM). The performance of the proposed method is illustrated with real data from two different scenarios: a shopping center and a university campus. A set of human activities in both scenarios is successfully recognized by the proposed system. These experiments show the ability of our approach to properly describe trajectories with sudden changes. PMID:20051342

  4. Perspective: Markov models for long-timescale biomolecular dynamics

    SciTech Connect

    Schwantes, C. R.; McGibbon, R. T.; Pande, V. S.

    2014-09-07

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.

  5. Semi-Markov Graph Dynamics

    PubMed Central

    Raberto, Marco; Rapallo, Fabio; Scalas, Enrico

    2011-01-01

    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs. PMID:21887245

  6. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1993-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  7. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1995-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  8. Using Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories.

    PubMed

    Sezer, Deniz; Freed, Jack H; Roux, Benoit

    2008-09-01

    Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin-labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of nanoseconds) trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of the spin label dynamics from atomistic trajectories. A systematic, two-step procedure, based on the probabilistic framework of hidden Markov models, is developed to build a discrete-time Markov chain process that faithfully captures the internal spin label dynamics on time scales longer than about 150 ps. The constructed Markov model is used both to gain insight into the long-lived conformations of the spin label and to generate the stochastic trajectories required for the simulation of ESR spectra. The methodology is illustrated with an application to the case of a spin-labeled poly alanine alpha helix in explicit solvent. PMID:18698714

  9. A Bayesian method for construction of Markov models to describe dynamics on various time-scales

    NASA Astrophysics Data System (ADS)

    Rains, Emily K.; Andersen, Hans C.

    2010-10-01

    The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an NP×NP transition rate matrix for transitions between the mesostates in one mesoscopic time step, where NP is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most probable

  10. Comparison of the Beta and the Hidden Markov Models of Trust in Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Moe, Marie E. G.; Helvik, Bjarne E.; Knapskog, Svein J.

    Computational trust and reputation models are used to aid the decision-making process in complex dynamic environments, where we are unable to obtain perfect information about the interaction partners. In this paper we present a comparison of our proposed hidden Markov trust model to the Beta reputation system. The hidden Markov trust model takes the time between observations into account, it also distinguishes between system states and uses methods previously applied to intrusion detection for the prediction of which state an agent is in. We show that the hidden Markov trust model performs better when it comes to the detection of changes in behavior of agents, due to its larger richness in model features. This means that our trust model may be more realistic in dynamic environments. However, the increased model complexity also leads to bigger challenges in estimating parameter values for the model. We also show that the hidden Markov trust model can be parameterized so that it responds similarly to the Beta reputation system.

  11. Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint

    NASA Astrophysics Data System (ADS)

    Bacallado, Sergio; Chodera, John D.; Pande, Vijay

    2009-07-01

    Discrete-space Markov models are a convenient way of describing the kinetics of biomolecules. The most common strategies used to validate these models employ statistics from simulation data, such as the eigenvalue spectrum of the inferred rate matrix, which are often associated with large uncertainties. Here, we propose a Bayesian approach, which makes it possible to differentiate between models at a fixed lag time making use of short trajectories. The hierarchical definition of the models allows one to compare instances with any number of states. We apply a conjugate prior for reversible Markov chains, which was recently introduced in the statistics literature. The method is tested in two different systems, a Monte Carlo dynamics simulation of a two-dimensional model system and molecular dynamics simulations of the terminally blocked alanine dipeptide.

  12. A new approach to simulating stream isotope dynamics using Markov switching autoregressive models

    NASA Astrophysics Data System (ADS)

    Birkel, Christian; Paroli, Roberta; Spezia, Luigi; Dunn, Sarah M.; Tetzlaff, Doerthe; Soulsby, Chris

    2012-09-01

    In this study we applied Markov switching autoregressive models (MSARMs) as a proof-of-concept to analyze the temporal dynamics and statistical characteristics of the time series of two conservative water isotopes, deuterium (δ2H) and oxygen-18 (δ18O), in daily stream water samples over two years in a small catchment in eastern Scotland. MSARMs enabled us to explicitly account for the identified non-linear, non-Normal and non-stationary isotope dynamics of both time series. The hidden states of the Markov chain could also be associated with meteorological and hydrological drivers identifying the short (event) and longer-term (inter-event) transport mechanisms for both isotopes. Inference was based on the Bayesian approach performed through Markov Chain Monte Carlo algorithms, which also allowed us to deal with a high rate of missing values (17%). Although it is usually assumed that both isotopes are conservative and exhibit similar dynamics, δ18O showed somewhat different time series characteristics. Both isotopes were best modelled with two hidden states, but δ18O demanded autoregressions of the first order, whereas δ2H of the second. Moreover, both the dynamics of observations and the hidden states of the two isotopes were explained by two different sets of covariates. Consequently use of the two tracers for transit time modelling and hydrograph separation may result in different interpretations on the functioning of a catchment system.

  13. Free energies from dynamic weighted histogram analysis using unbiased Markov state model.

    PubMed

    Rosta, Edina; Hummer, Gerhard

    2015-01-13

    The weighted histogram analysis method (WHAM) is widely used to obtain accurate free energies from biased molecular simulations. However, WHAM free energies can exhibit significant errors if some of the biasing windows are not fully equilibrated. To account for the lack of full equilibration, we develop the dynamic histogram analysis method (DHAM). DHAM uses a global Markov state model to obtain the free energy along the reaction coordinate. A maximum likelihood estimate of the Markov transition matrix is constructed by joint unbiasing of the transition counts from multiple umbrella-sampling simulations along discretized reaction coordinates. The free energy profile is the stationary distribution of the resulting Markov matrix. For this matrix, we derive an explicit approximation that does not require the usual iterative solution of WHAM. We apply DHAM to model systems, a chemical reaction in water treated using quantum-mechanics/molecular-mechanics (QM/MM) simulations, and the Na(+) ion passage through the membrane-embedded ion channel GLIC. We find that DHAM gives accurate free energies even in cases where WHAM fails. In addition, DHAM provides kinetic information, which we here use to assess the extent of convergence in each of the simulation windows. DHAM may also prove useful in the construction of Markov state models from biased simulations in phase-space regions with otherwise low population. PMID:26574225

  14. Mixed Markov models

    PubMed Central

    Fridman, Arthur

    2003-01-01

    Markov random fields can encode complex probabilistic relationships involving multiple variables and admit efficient procedures for probabilistic inference. However, from a knowledge engineering point of view, these models suffer from a serious limitation. The graph of a Markov field must connect all pairs of variables that are conditionally dependent even for a single choice of values of the other variables. This makes it hard to encode interactions that occur only in a certain context and are absent in all others. Furthermore, the requirement that two variables be connected unless always conditionally independent may lead to excessively dense graphs, obscuring the independencies present among the variables and leading to computationally prohibitive inference algorithms. Mumford [Mumford, D. (1996) in ICIAM 95, eds. Kirchgassner, K., Marenholtz, O. & Mennicken, R. (Akademie Verlag, Berlin), pp. 233–256] proposed an alternative modeling framework where the graph need not be rigid and completely determined a priori. Mixed Markov models contain node-valued random variables that, when instantiated, augment the graph by a set of transient edges. A single joint probability distribution relates the values of regular and node-valued variables. In this article, we study the analytical and computational properties of mixed Markov models. In particular, we show that positive mixed models have a local Markov property that is equivalent to their global factorization. We also describe a computationally efficient procedure for answering probabilistic queries in mixed Markov models. PMID:12829802

  15. Characterising the Transmission Dynamics of Acinetobacter baumannii in Intensive Care Units Using Hidden Markov Models.

    PubMed

    Doan, Tan N; Kong, David C M; Marshall, Caroline; Kirkpatrick, Carl M J; McBryde, Emma S

    2015-01-01

    Little is known about the transmission dynamics of Acinetobacter baumannii in hospitals, despite such information being critical for designing effective infection control measures. In the absence of comprehensive epidemiological data, mathematical modelling is an attractive approach to understanding transmission process. The statistical challenge in estimating transmission parameters from infection data arises from the fact that most patients are colonised asymptomatically and therefore the transmission process is not fully observed. Hidden Markov models (HMMs) can overcome this problem. We developed a continuous-time structured HMM to characterise the transmission dynamics, and to quantify the relative importance of different acquisition sources of A. baumannii in intensive care units (ICUs) in three hospitals in Melbourne, Australia. The hidden states were the total number of patients colonised with A. baumannii (both detected and undetected). The model input was monthly incidence data of the number of detected colonised patients (observations). A Bayesian framework with Markov chain Monte Carlo algorithm was used for parameter estimations. We estimated that 96-98% of acquisition in Hospital 1 and 3 was due to cross-transmission between patients; whereas most colonisation in Hospital 2 was due to other sources (sporadic acquisition). On average, it takes 20 and 31 days for each susceptible individual in Hospital 1 and Hospital 3 to become colonised as a result of cross-transmission, respectively; whereas it takes 17 days to observe one new colonisation from sporadic acquisition in Hospital 2. The basic reproduction ratio (R0) for Hospital 1, 2 and 3 was 1.5, 0.02 and 1.6, respectively. Our study is the first to characterise the transmission dynamics of A. baumannii using mathematical modelling. We showed that HMMs can be applied to sparse hospital infection data to estimate transmission parameters despite unobserved events and imperfect detection of the organism

  16. Hand Gesture Spotting Based on 3D Dynamic Features Using Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Elmezain, Mahmoud; Al-Hamadi, Ayoub; Michaelis, Bernd

    In this paper, we propose an automatic system that handles hand gesture spotting and recognition simultaneously in stereo color image sequences without any time delay based on Hidden Markov Models (HMMs). Color and 3D depth map are used to segment hand regions. The hand trajectory will determine in further step using Mean-shift algorithm and Kalman filter to generate 3D dynamic features. Furthermore, k-means clustering algorithm is employed for the HMMs codewords. To spot meaningful gestures accurately, a non-gesture model is proposed, which provides confidence limit for the calculated likelihood by other gesture models. The confidence measures are used as an adaptive threshold for spotting meaningful gestures. Experimental results show that the proposed system can successfully recognize isolated gestures with 98.33% and meaningful gestures with 94.35% reliability for numbers (0-9).

  17. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating

  18. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  19. Stochastic Simulation of Rainfall Data Using a Markov Chain Model Calibrated to Dynamically Downscaled Climate Data

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Nadeeka, P. M.

    2014-12-01

    This study used high resolution spatially distributed rainfall data produced by NSW/ACT Regional Climate Modelling (NARCliM) project. NARCliM dynamically downscaled four Global Climate Models using three Regional Climate Models within the Weather Research and Forecasting model to generate gridded climate data at 10 km spatial resolution for south eastern Australia. These dataset are being used in this project to evaluate the urban water security of reservoirs on the east coast of Australia. A stochastic model to simulate rainfall series was developed for runoff generation using parameters calibrated to NARCliM. This study has developed a Markov Chain model, which simulates the occurrence of daily rainfall using the transition probability of dry and wet days, while the precipitation for the wet days are generated using a two parameter gamma distribution. We have identified significant seasonal and intra- to inter-decadal variations of the model parameters at our field site. Incorporating the temporal variability (for instance, calibrating the model parameters to each decade independently), we have found that the model satisfactorily preserves the daily, monthly and annual characteristics of the NARCliM rainfall. In addition to the temporal variability, we have observed that the model parameters vary spatially at our site with potential orographic effects that vary both seasonally and decadally. However, the parameters of the model fitted to the NARCliM rainfall are significantly different from the parameters fitted to the ground-based climate station rainfall. Suitability of the model for the generation of long time series (e.g. 1000 years) required for reservoir simulation will be discussed.

  20. Identifying Dynamic Functional Connectivity Changes in Dementia with Lewy Bodies Based on Product Hidden Markov Models

    PubMed Central

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack; Blanc, Frédéric

    2016-01-01

    Exploring time-varying connectivity networks in neurodegenerative disorders is a recent field of research in functional MRI. Dementia with Lewy bodies (DLB) represents 20% of the neurodegenerative forms of dementia. Fluctuations of cognition and vigilance are the key symptoms of DLB. To date, no dynamic functional connectivity (DFC) investigations of this disorder have been performed. In this paper, we refer to the concept of connectivity state as a piecewise stationary configuration of functional connectivity between brain networks. From this concept, we propose a new method for group-level as well as for subject-level studies to compare and characterize connectivity state changes between a set of resting-state networks (RSNs). Dynamic Bayesian networks, statistical and graph theory-based models, enable one to learn dependencies between interacting state-based processes. Product hidden Markov models (PHMM), an instance of dynamic Bayesian networks, are introduced here to capture both statistical and temporal aspects of DFC of a set of RSNs. This analysis was based on sliding-window cross-correlations between seven RSNs extracted from a group independent component analysis performed on 20 healthy elderly subjects and 16 patients with DLB. Statistical models of DFC differed in patients compared to healthy subjects for the occipito-parieto-frontal network, the medial occipital network and the right fronto-parietal network. In addition, pairwise comparisons of DFC of RSNs revealed a decrease of dependency between these two visual networks (occipito-parieto-frontal and medial occipital networks) and the right fronto-parietal control network. The analysis of DFC state changes thus pointed out networks related to the cognitive functions that are known to be impaired in DLB: visual processing as well as attentional and executive functions. Besides this context, product HMM applied to RSNs cross-correlations offers a promising new approach to investigate structural and

  1. Identifying Dynamic Functional Connectivity Changes in Dementia with Lewy Bodies Based on Product Hidden Markov Models.

    PubMed

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack; Blanc, Frédéric

    2016-01-01

    Exploring time-varying connectivity networks in neurodegenerative disorders is a recent field of research in functional MRI. Dementia with Lewy bodies (DLB) represents 20% of the neurodegenerative forms of dementia. Fluctuations of cognition and vigilance are the key symptoms of DLB. To date, no dynamic functional connectivity (DFC) investigations of this disorder have been performed. In this paper, we refer to the concept of connectivity state as a piecewise stationary configuration of functional connectivity between brain networks. From this concept, we propose a new method for group-level as well as for subject-level studies to compare and characterize connectivity state changes between a set of resting-state networks (RSNs). Dynamic Bayesian networks, statistical and graph theory-based models, enable one to learn dependencies between interacting state-based processes. Product hidden Markov models (PHMM), an instance of dynamic Bayesian networks, are introduced here to capture both statistical and temporal aspects of DFC of a set of RSNs. This analysis was based on sliding-window cross-correlations between seven RSNs extracted from a group independent component analysis performed on 20 healthy elderly subjects and 16 patients with DLB. Statistical models of DFC differed in patients compared to healthy subjects for the occipito-parieto-frontal network, the medial occipital network and the right fronto-parietal network. In addition, pairwise comparisons of DFC of RSNs revealed a decrease of dependency between these two visual networks (occipito-parieto-frontal and medial occipital networks) and the right fronto-parietal control network. The analysis of DFC state changes thus pointed out networks related to the cognitive functions that are known to be impaired in DLB: visual processing as well as attentional and executive functions. Besides this context, product HMM applied to RSNs cross-correlations offers a promising new approach to investigate structural and

  2. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    PubMed Central

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-01-01

    Thrombin-binding aptamer (TBA) with the sequence 5′GGTTGGTGTGGTTGG3′ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation. PMID:27045335

  3. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-01

    Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  4. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  5. Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling.

    PubMed

    Fačkovec, B; Vanden-Eijnden, E; Wales, D J

    2015-07-28

    A method is derived to coarse-grain the dynamics of complex molecular systems to a Markov jump process (MJP) describing how the system jumps between cells that fully partition its state space. The main inputs are relaxation times for each pair of cells, which are shown to be robust with respect to positioning of the cell boundaries. These relaxation times can be calculated via molecular dynamics simulations performed in each cell separately and are used in an efficient estimator for the rate matrix of the MJP. The method is illustrated through applications to Sinai billiards and a cluster of Lennard-Jones discs. PMID:26233119

  6. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    PubMed

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ

  7. Derivation of a Markov state model of the dynamics of a protein-like chain immersed in an implicit solvent

    NASA Astrophysics Data System (ADS)

    Schofield, Jeremy; Bayat, Hanif

    2014-09-01

    A Markov state model of the dynamics of a protein-like chain immersed in an implicit hard sphere solvent is derived from first principles for a system of monomers that interact via discontinuous potentials designed to account for local structure and bonding in a coarse-grained sense. The model is based on the assumption that the implicit solvent interacts on a fast time scale with the monomers of the chain compared to the time scale for structural rearrangements of the chain and provides sufficient friction so that the motion of monomers is governed by the Smoluchowski equation. A microscopic theory for the dynamics of the system is developed that reduces to a Markovian model of the kinetics under well-defined conditions. Microscopic expressions for the rate constants that appear in the Markov state model are analyzed and expressed in terms of a temperature-dependent linear combination of escape rates that themselves are independent of temperature. Excellent agreement is demonstrated between the theoretical predictions of the escape rates and those obtained through simulation of a stochastic model of the dynamics of bond formation. Finally, the Markov model is studied by analyzing the eigenvalues and eigenvectors of the matrix of transition rates, and the equilibration process for a simple helix-forming system from an ensemble of initially extended configurations to mainly folded configurations is investigated as a function of temperature for a number of different chain lengths. For short chains, the relaxation is primarily single-exponential and becomes independent of temperature in the low-temperature regime. The profile is more complicated for longer chains, where multi-exponential relaxation behavior is seen at intermediate temperatures followed by a low temperature regime in which the folding becomes rapid and single exponential. It is demonstrated that the behavior of the equilibration profile as the temperature is lowered can be understood in terms of the

  8. Hidden Markov models and neural networks for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.

  9. Optimal Use of Data in Parallel Tempering Simulations for the Construction of Discrete-State Markov Models of Biomolecular Dynamics

    SciTech Connect

    Prinz, Jan-Hendrik; Chondera, John D; Pande, Vijay S; Swope, William C; Smith, Jeremy C; Noe, F

    2011-01-01

    Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.

  10. Dynamic simulation of vegetation abundance in a reservoir riparian zone using a sub-pixel Markov model

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoning; Cui, Tianxiang; Pu, Ruiliang; Lin, Chuan; Chen, Yuzhu

    2015-03-01

    Vegetation abundance is a significant indicator for measuring the coverage of plant community. It is also a fundamental data for the evaluation of a reservoir riparian zone eco-environment. In this study, a sub-pixel Markov model was introduced and applied to simulate dynamics of vegetation abundance in the Guanting Reservoir Riparian zone based on seven Landsat Thematic Mapper/Enhanced Thematic Mapper Plus/Operational Land Imager data acquired between 2001 and 2013. Our study extended Markov model's application from a traditional regional scale to a sub-pixel scale. Firstly, Linear Spectral Mixture Analysis (LSMA) was used to obtain fractional images with a five-endmember model consisting of terrestrial plants, aquatic plants, high albedo, low albedo, and bare soil. Then, a sub-pixel transitive probability matrix was calculated. Based on the matrix, we simulated statuses of vegetation abundance in 2010 and 2013, which were compared with the results created by LSMA. Validations showed that there were only slight differences between the LSMA derived results and the simulated terrestrial plants fractional images for both 2010 and 2013, while obvious differences existed for aquatic plants fractional images, which might be attributed to a dramatically diversity of water level and water discharge between 2001 and 2013. Moreover, the sub-pixel Markov model could lead to an RMSE (Root Mean Square Error) of 0.105 and an R2 of 0.808 for terrestrial plants, and an RMSE of 0.044 and an R2 of 0.784 for aquatic plants in 2010. For the simulated results with the 2013 image, an RMSE of 0.126 and an R2 of 0.768 could be achieved for terrestrial plants, and an RMSE of 0.086 and an R2 of 0.779 could be yielded for aquatic plants. These results suggested that the sub-pixel Markov model could yield a reasonable result in a short period. Additionally, an analysis of dynamics of vegetation abundance from 2001 to 2020 indicated that there existed an increasing trend for the average

  11. Derivation of a Markov state model of the dynamics of a protein-like chain immersed in an implicit solvent

    SciTech Connect

    Schofield, Jeremy Bayat, Hanif

    2014-09-07

    A Markov state model of the dynamics of a protein-like chain immersed in an implicit hard sphere solvent is derived from first principles for a system of monomers that interact via discontinuous potentials designed to account for local structure and bonding in a coarse-grained sense. The model is based on the assumption that the implicit solvent interacts on a fast time scale with the monomers of the chain compared to the time scale for structural rearrangements of the chain and provides sufficient friction so that the motion of monomers is governed by the Smoluchowski equation. A microscopic theory for the dynamics of the system is developed that reduces to a Markovian model of the kinetics under well-defined conditions. Microscopic expressions for the rate constants that appear in the Markov state model are analyzed and expressed in terms of a temperature-dependent linear combination of escape rates that themselves are independent of temperature. Excellent agreement is demonstrated between the theoretical predictions of the escape rates and those obtained through simulation of a stochastic model of the dynamics of bond formation. Finally, the Markov model is studied by analyzing the eigenvalues and eigenvectors of the matrix of transition rates, and the equilibration process for a simple helix-forming system from an ensemble of initially extended configurations to mainly folded configurations is investigated as a function of temperature for a number of different chain lengths. For short chains, the relaxation is primarily single-exponential and becomes independent of temperature in the low-temperature regime. The profile is more complicated for longer chains, where multi-exponential relaxation behavior is seen at intermediate temperatures followed by a low temperature regime in which the folding becomes rapid and single exponential. It is demonstrated that the behavior of the equilibration profile as the temperature is lowered can be understood in terms of the

  12. Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms.

    PubMed

    Langrock, Roland; Swihart, Bruce J; Caffo, Brian S; Punjabi, Naresh M; Crainiceanu, Ciprian M

    2013-08-30

    In this manuscript, we consider methods for the analysis of populations of electroencephalogram signals during sleep for the study of sleep disorders using hidden Markov models (HMMs). Notably, we propose an easily implemented method for simultaneously modeling multiple time series that involve large amounts of data. We apply these methods to study sleep-disordered breathing (SDB) in the Sleep Heart Health Study (SHHS), a landmark study of SDB and cardiovascular consequences. We use the entire, longitudinally collected, SHHS cohort to develop HMM population parameters, which we then apply to obtain subject-specific Markovian predictions. From these predictions, we create several indices of interest, such as transition frequencies between latent states. Our HMM analysis of electroencephalogram signals uncovers interesting findings regarding differences in brain activity during sleep between those with and without SDB. These findings include stability of the percent time spent in HMM latent states across matched diseased and non-diseased groups and differences in the rate of transitioning. PMID:23348835

  13. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    PubMed

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning. PMID:23576983

  14. Efficient search and responsiveness trade-offs in a Markov chain model of evolution in dynamic environments.

    PubMed

    Menezes, Amor A; Kabamba, Pierre T

    2016-06-01

    Motivated by the desire to study evolutionary responsiveness in fluctuating environments, and by the current interest in analyses of evolution that merge notions of fitness maximization with dynamical systems concepts such as Lyapunov functions, this paper models natural evolution with a simple stochastic dynamical system that can be represented as a Markov chain. The process maximizes fitness globally via search and has links to information and entropy. These links suggest that a possible rationale for evolution with the exponential fitness functions observed in nature is that of optimally-efficient search in a dynamic environment, which represents the quickest trade-off of prior information about the genotype search space for search effort savings after an environment perturbation. A Lyapunov function is also provided that relates the stochastic dynamical system model with search information, and the model shows that evolution is not gradient-based but dwells longer on more fit outcomes. The model further indicates that tuning the amount of selection trades off environment responsiveness with the time to reach fit outcomes, and that excessive selection causes a loss of responsiveness, a result that is validated by the literature and impacts efforts in directed evolution. PMID:26976482

  15. Markov Analysis of Sleep Dynamics

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lee, J.-S.; Robinson, P. A.; Jeong, D.-U.

    2009-05-01

    A new approach, based on a Markov transition matrix, is proposed to explain frequent sleep and wake transitions during sleep. The matrix is determined by analyzing hypnograms of 113 obstructive sleep apnea patients. Our approach shows that the statistics of sleep can be constructed via a single Markov process and that durations of all states have modified exponential distributions, in contrast to recent reports of a scale-free form for the wake stage and an exponential form for the sleep stage. Hypnograms of the same subjects, but treated with Continuous Positive Airway Pressure, are analyzed and compared quantitatively with the pretreatment ones, suggesting potential clinical applications.

  16. Modeling Winter Rainfall in Northwest India using a Hidden Markov Model: Understanding Occurrence of Different States and their Dynamical Connections

    NASA Astrophysics Data System (ADS)

    Pal, I.; Robertson, A. W.; Lall, U.; Cane, M. A.

    2013-12-01

    A multiscale-modeling framework for daily rainfall is considered and diagnostic results are presented for an application to the winter season in Northwest India. The daily rainfall process is considered to follow a Hidden Markov Model (HMM), with the hidden states assumed to be an unknown random function of slowly varying climatic modulation of the winter jet stream and moisture transport dynamics. The data used are from 14 stations over the Satluj River basin in northwest India in winter (Dec-Jan-Feb-Mar). The period considered is 1977/78-2005/06. The HMM identifies four discrete weather states, which are used to describe daily rainfall variability over the study region. The first hidden state has low rainfall occurrence and intensity, the second has modest occurrence and low intensity, the third has high occurrence but low to modest intensity and the fourth has high frequency and intensity of daily rainfall. Each state was found to be associated with a distinct atmospheric circulation pattern, with States 3 and 4 characterized by a zonally oriented wave train extending across Eurasia between 20N-40N, identified with ';Western Disturbances'. State 1, by contrast, is characterized by a lack of synoptic wave activity. The occurrence of State 4 is strongly conditioned by the El Nino and Indian Ocean Dipole (IOD) phenomena in winter, which is demonstrated using large-scale correlation maps based on mean sea level pressure (MSLP) and sea surface temperature (SST). This suggests that there is a tendency of higher frequency of the wet days and intense Western Disturbances in winter during El Nino and positive IOD years. These findings, derived from daily rainfall station records, help clarify the sequence of Northern Hemisphere mid-latitude storms bringing winter rainfall over Northwest India, and their association with potentially predictable low frequency modes on seasonal time scales and longer.

  17. Modeling winter rainfall in Northwest India using a hidden Markov model: understanding occurrence of different states and their dynamical connections

    NASA Astrophysics Data System (ADS)

    Pal, Indrani; Robertson, Andrew W.; Lall, Upmanu; Cane, Mark A.

    2015-02-01

    A multiscale-modeling framework for daily rainfall is considered and diagnostic results are presented for an application to the winter season in Northwest India. The daily rainfall process is considered to follow a hidden Markov model (HMM), with the hidden states assumed to be an unknown random function of slowly varying climatic modulation of the winter jet stream and moisture transport dynamics. The data used are from 14 stations over Satluj River basin in winter (December-January-February-March). The period considered is 1977/78-2005/06. The HMM identifies four discrete weather states, which are used to describe daily rainfall variability over study region. Each state was found to be associated with a distinct atmospheric circulation pattern, with the driest and drier states, State 1 and 2 respectively, characterized by a lack of synoptic wave activity. In contrast, the wetter and wettest states, States 3 and 4 respectively, are characterized by a zonally oriented wave train extending across Eurasia between 20N and 40N, identified with `western disturbances' (WD). The occurrence of State 4 is strongly conditioned by the El Nino and Indian Ocean Dipole (IOD) phenomena in winter, which is demonstrated using large-scale correlation maps based on mean sea level pressure and sea surface temperature. This suggests that there is a tendency of higher frequency of the wet days and intense WD activities in winter during El Nino and positive IOD years. These findings, derived from daily rainfall station records, help clarify the sequence of Northern Hemisphere mid-latitude storms bringing winter rainfall over Northwest India, and their association with potentially predictable low frequency modes on seasonal time scales and longer.

  18. A Markov model for the temporal dynamics of balanced random networks of finite size

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  19. Influence of credit scoring on the dynamics of Markov chain

    NASA Astrophysics Data System (ADS)

    Galina, Timofeeva

    2015-11-01

    Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.

  20. Analyzing conformational dynamics of single P-glycoprotein transporters by Förster resonance energy transfer using hidden Markov models.

    PubMed

    Zarrabi, Nawid; Ernst, Stefan; Verhalen, Brandy; Wilkens, Stephan; Börsch, Michael

    2014-03-15

    Single-molecule Förster resonance energy (smFRET) transfer has become a powerful tool for observing conformational dynamics of biological macromolecules. Analyzing smFRET time trajectories allows to identify the state transitions occuring on reaction pathways of molecular machines. Previously, we have developed a smFRET approach to monitor movements of the two nucleotide binding domains (NBDs) of P-glycoprotein (Pgp) during ATP hydrolysis driven drug transport in solution. One limitation of this initial work was that single-molecule photon bursts were analyzed by visual inspection with manual assignment of individual FRET levels. Here a fully automated analysis of Pgp smFRET data using hidden Markov models (HMM) for transitions up to 9 conformational states is applied. We propose new estimators for HMMs to integrate the information of fluctuating intensities in confocal smFRET measurements of freely diffusing lipid bilayer bound membrane proteins in solution. HMM analysis strongly supports that under conditions of steady state turnover, conformational states with short NBD distances and short dwell times are more populated compared to conditions without nucleotide or transport substrate present. PMID:23891547

  1. Stochastic Downscaling of Daily Rainfall: Analysis of future hydroclimatic changes and their impact on the Pontinia plain using Nonhomogeneous Hidden Markov Model and Dynamic Hierarchical Bayesian Network Model.

    NASA Astrophysics Data System (ADS)

    Cioffi, Francesco; Devineni, Naresh; Monti, Alessandro; Lall, Upmanu

    2013-04-01

    The Nonhomogeneous Hidden Markov Model is an established technique that usually provides excellent results for the downscaling of multi-site precipitation. However, the selection of the number of states is subjective and results in a model that can be over parameterized and overfit leading to por performance in applications. A dynamic hierarchical Bayesian network model (DHBN) that is continuous and is not based on discretization into states is tested here and compared against NHMM for the downscaling of daily precipitation for Pontinia Plain. This región is a relevant example of coastal area particularly vulnerable to hydrological changes. The winter (October-March) wet season is considered. Weather states and atmospheric variables from CMIP5 GCM are used as exogenous predictors. The daily rainfall occurrence and amount at 32 stations over the region for the winters of 1916-2004 is used as the primary data. Rainfall variability is described in terms of occurrence of 'weather state' as classified by a Hidden Markov Model, and associated to variables representing the main characteristics of large scale atmospheric circulation as obtained by reanalysis data. A nonhomogeneous hidden Markov model (NHHM) and a DHBN model are used to make future projections of the downscaled precipitation as by using the GCM's simulations under different global warming scenarios.The spatial interaction between the sites is modeled through the underlying covariance function and the uncertainty in the model parameters is explicitly represented in their posterior distribution. Preliminary results show that the seasonal statistics are adequately captures for the 20th century runs. The structural differences between the two models are discussed.

  2. Building Simple Hidden Markov Models. Classroom Notes

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Ng, Michael K.

    2004-01-01

    Hidden Markov models (HMMs) are widely used in bioinformatics, speech recognition and many other areas. This note presents HMMs via the framework of classical Markov chain models. A simple example is given to illustrate the model. An estimation method for the transition probabilities of the hidden states is also discussed.

  3. Markov state models of protein misfolding.

    PubMed

    Sirur, Anshul; De Sancho, David; Best, Robert B

    2016-02-21

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity. PMID:26897000

  4. Markov state models of protein misfolding

    NASA Astrophysics Data System (ADS)

    Sirur, Anshul; De Sancho, David; Best, Robert B.

    2016-02-01

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.

  5. Mixture Hidden Markov Models in Finance Research

    NASA Astrophysics Data System (ADS)

    Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia

    Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.

  6. A semi-Markov model for price returns

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo

    2012-10-01

    We study the high frequency price dynamics of traded stocks by a model of returns using a semi-Markov approach. More precisely we assume that the intraday returns are described by a discrete time homogeneous semi-Markov process and the overnight returns are modeled by a Markov chain. Based on this assumptions we derived the equations for the first passage time distribution and the volatility autocorrelation function. Theoretical results have been compared with empirical findings from real data. In particular we analyzed high frequency data from the Italian stock market from 1 January 2007 until the end of December 2010. The semi-Markov hypothesis is also tested through a nonparametric test of hypothesis.

  7. Semi-Markov Arnason-Schwarz models.

    PubMed

    King, Ruth; Langrock, Roland

    2016-06-01

    We consider multi-state capture-recapture-recovery data where observed individuals are recorded in a set of possible discrete states. Traditionally, the Arnason-Schwarz model has been fitted to such data where the state process is modeled as a first-order Markov chain, though second-order models have also been proposed and fitted to data. However, low-order Markov models may not accurately represent the underlying biology. For example, specifying a (time-independent) first-order Markov process involves the assumption that the dwell time in each state (i.e., the duration of a stay in a given state) has a geometric distribution, and hence that the modal dwell time is one. Specifying time-dependent or higher-order processes provides additional flexibility, but at the expense of a potentially significant number of additional model parameters. We extend the Arnason-Schwarz model by specifying a semi-Markov model for the state process, where the dwell-time distribution is specified more generally, using, for example, a shifted Poisson or negative binomial distribution. A state expansion technique is applied in order to represent the resulting semi-Markov Arnason-Schwarz model in terms of a simpler and computationally tractable hidden Markov model. Semi-Markov Arnason-Schwarz models come with only a very modest increase in the number of parameters, yet permit a significantly more flexible state process. Model selection can be performed using standard procedures, and in particular via the use of information criteria. The semi-Markov approach allows for important biological inference to be drawn on the underlying state process, for example, on the times spent in the different states. The feasibility of the approach is demonstrated in a simulation study, before being applied to real data corresponding to house finches where the states correspond to the presence or absence of conjunctivitis. PMID:26584064

  8. Markov state models and molecular alchemy

    NASA Astrophysics Data System (ADS)

    Schütte, Christof; Nielsen, Adam; Weber, Marcus

    2015-01-01

    In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.

  9. Multiple alignment using hidden Markov models

    SciTech Connect

    Eddy, S.R.

    1995-12-31

    A simulated annealing method is described for training hidden Markov models and producing multiple sequence alignments from initially unaligned protein or DNA sequences. Simulated annealing in turn uses a dynamic programming algorithm for correctly sampling suboptimal multiple alignments according to their probability and a Boltzmann temperature factor. The quality of simulated annealing alignments is evaluated on structural alignments of ten different protein families, and compared to the performance of other HMM training methods and the ClustalW program. Simulated annealing is better able to find near-global optima in the multiple alignment probability landscape than the other tested HMM training methods. Neither ClustalW nor simulated annealing produce consistently better alignments compared to each other. Examination of the specific cases in which ClustalW outperforms simulated annealing, and vice versa, provides insight into the strengths and weaknesses of current hidden Maxkov model approaches.

  10. Robust Dynamics and Control of a Partially Observed Markov Chain

    SciTech Connect

    Elliott, R. J. Malcolm, W. P. Moore, J. P.

    2007-12-15

    In a seminal paper, Martin Clark (Communications Systems and Random Process Theory, Darlington, 1977, pp. 721-734, 1978) showed how the filtered dynamics giving the optimal estimate of a Markov chain observed in Gaussian noise can be expressed using an ordinary differential equation. These results offer substantial benefits in filtering and in control, often simplifying the analysis and an in some settings providing numerical benefits, see, for example Malcolm et al. (J. Appl. Math. Stoch. Anal., 2007, to appear).Clark's method uses a gauge transformation and, in effect, solves the Wonham-Zakai equation using variation of constants. In this article, we consider the optimal control of a partially observed Markov chain. This problem is discussed in Elliott et al. (Hidden Markov Models Estimation and Control, Applications of Mathematics Series, vol. 29, 1995). The innovation in our results is that the robust dynamics of Clark are used to compute forward in time dynamics for a simplified adjoint process. A stochastic minimum principle is established.

  11. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems.

    PubMed

    Sheong, Fu Kit; Silva, Daniel-Adriano; Meng, Luming; Zhao, Yutong; Huang, Xuhui

    2015-01-13

    The conformational dynamics of multibody systems plays crucial roles in many important problems. Markov state models (MSMs) are powerful kinetic network models that can predict long-time-scale dynamics using many short molecular dynamics simulations. Although MSMs have been successfully applied to conformational changes of individual proteins, the analysis of multibody systems is still a challenge because of the complexity of the dynamics that occur on a mixture of drastically different time scales. In this work, we have developed a new algorithm, automatic state partitioning for multibody systems (APM), for constructing MSMs to elucidate the conformational dynamics of multibody systems. The APM algorithm effectively addresses different time scales in the multibody systems by directly incorporating dynamics into geometric clustering when identifying the metastable conformational states. We have applied the APM algorithm to a 2D potential that can mimic a protein-ligand binding system and the aggregation of two hydrophobic particles in water and have shown that it can yield tremendous enhancements in the computational efficiency of MSM construction and the accuracy of the models. PMID:26574199

  12. On multitarget pairwise-Markov models

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald

    2015-05-01

    Single- and multi-target tracking are both typically based on strong independence assumptions regarding both the target states and sensor measurements. In particular, both are theoretically based on the hidden Markov chain (HMC) model. That is, the target process is a Markov chain that is observed by an independent observation process. Since HMC assumptions are invalid in many practical applications, the pairwise Markov chain (PMC) model has been proposed as a way to weaken those assumptions. In this paper it is shown that the PMC model can be directly generalized to multitarget problems. Since the resulting tracking filters are computationally intractable, the paper investigates generalizations of the cardinalized probability hypothesis density (CPHD) filter to applications with PMC models.

  13. Zipf exponent of trajectory distribution in the hidden Markov model

    NASA Astrophysics Data System (ADS)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  14. Evaluation of Usability Utilizing Markov Models

    ERIC Educational Resources Information Center

    Penedo, Janaina Rodrigues; Diniz, Morganna; Ferreira, Simone Bacellar Leal; Silveira, Denis S.; Capra, Eliane

    2012-01-01

    Purpose: The purpose of this paper is to analyze the usability of a remote learning system in its initial development phase, using a quantitative usability evaluation method through Markov models. Design/methodology/approach: The paper opted for an exploratory study. The data of interest of the research correspond to the possible accesses of users…

  15. Multiensemble Markov models of molecular thermodynamics and kinetics.

    PubMed

    Wu, Hao; Paul, Fabian; Wehmeyer, Christoph; Noé, Frank

    2016-06-01

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model. PMID:27226302

  16. Multiensemble Markov models of molecular thermodynamics and kinetics

    PubMed Central

    Wu, Hao; Paul, Fabian; Noé, Frank

    2016-01-01

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models—clustering of high-dimensional spaces and modeling of complex many-state systems—with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein–ligand binding model. PMID:27226302

  17. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance-rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  18. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    SciTech Connect

    Xu, Zuwei; Zhao, Haibo Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  19. Optimized Markov state models for metastable systems

    NASA Astrophysics Data System (ADS)

    Guarnera, Enrico; Vanden-Eijnden, Eric

    2016-07-01

    A method is proposed to identify target states that optimize a metastability index amongst a set of trial states and use these target states as milestones (or core sets) to build Markov State Models (MSMs). If the optimized metastability index is small, this automatically guarantees the accuracy of the MSM, in the sense that the transitions between the target milestones is indeed approximately Markovian. The method is simple to implement and use, it does not require that the dynamics on the trial milestones be Markovian, and it also offers the possibility to partition the system's state-space by assigning every trial milestone to the target milestones it is most likely to visit next and to identify transition state regions. Here the method is tested on the Gly-Ala-Gly peptide, where it is shown to correctly identify the expected metastable states in the dihedral angle space of the molecule without a priori information about these states. It is also applied to analyze the folding landscape of the Beta3s mini-protein, where it is shown to identify the folded basin as a connecting hub between an helix-rich region, which is entropically stabilized, and a beta-rich region, which is energetically stabilized and acts as a kinetic trap.

  20. Estimating Neuronal Ageing with Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Pham, Tuan D.

    2011-06-01

    Neuronal degeneration is widely observed in normal ageing, meanwhile the neurode-generative disease like Alzheimer's disease effects neuronal degeneration in a faster way which is considered as faster ageing. Early intervention of such disease could benefit subjects with potentials of positive clinical outcome, therefore, early detection of disease related brain structural alteration is required. In this paper, we propose a computational approach for modelling the MRI-based structure alteration with ageing using hidden Markov model. The proposed hidden Markov model based brain structural model encodes intracortical tissue/fluid distribution using discrete wavelet transformation and vector quantization. Further, it captures gray matter volume loss, which is capable of reflecting subtle intracortical changes with ageing. Experiments were carried out on healthy subjects to validate its accuracy and robustness. Results have shown its ability of predicting the brain age with prediction error of 1.98 years without training data, which shows better result than other age predition methods.

  1. Markov and non-Markov processes in complex systems by the dynamical information entropy

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Gafarov, F. M.

    1999-12-01

    We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.

  2. Programs Help Create And Evaluate Markov Models

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Pade Approximation With Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) computer programs provide flexible, user-friendly, language-based interface for creation and evaluation of Markov models describing behaviors of fault-tolerant reconfigurable computer systems. Produce exact solution for probabilities of system failures and provide conservative estimates of numbers of significant digits in solutions. Also offer as part of bundled package with SURE and ASSIST, two other reliable analysis programs developed by Systems Validation Methods group at Langley Research Center.

  3. Hidden Markov Model Analysis of Multichromophore Photobleaching

    PubMed Central

    Messina, Troy C.; Kim, Hiyun; Giurleo, Jason T.; Talaga, David S.

    2007-01-01

    The interpretation of single-molecule measurements is greatly complicated by the presence of multiple fluorescent labels. However, many molecular systems of interest consist of multiple interacting components. We investigate this issue using multiply labeled dextran polymers that we intentionally photobleach to the background on a single-molecule basis. Hidden Markov models allow for unsupervised analysis of the data to determine the number of fluorescent subunits involved in the fluorescence intermittency of the 6-carboxy-tetramethylrhodamine labels by counting the discrete steps in fluorescence intensity. The Bayes information criterion allows us to distinguish between hidden Markov models that differ by the number of states, that is, the number of fluorescent molecules. We determine information-theoretical limits and show via Monte Carlo simulations that the hidden Markov model analysis approaches these theoretical limits. This technique has resolving power of one fluorescing unit up to as many as 30 fluorescent dyes with the appropriate choice of dye and adequate detection capability. We discuss the general utility of this method for determining aggregation-state distributions as could appear in many biologically important systems and its adaptability to general photometric experiments. PMID:16913765

  4. Phase transitions in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Lathouwers, Emma

    In Hidden Markov Models (HMMs), a Markov process is not directly accessible. In the simplest case, a two-state Markov model ``emits'' one of two ``symbols'' at each time step. We can think of these symbols as noisy measurements of the underlying state. With some probability, the symbol implies that the system is in one state when it is actually in the other. The ability to judge which state the system is in sets the efficiency of a Maxwell demon that observes state fluctuations in order to extract heat from a coupled reservoir. The state-inference problem is to infer the underlying state from such noisy measurements at each time step. We show that there can be a phase transition in such measurements: for measurement error rates below a certain threshold, the inferred state always matches the observation. For higher error rates, there can be continuous or discontinuous transitions to situations where keeping a memory of past observations improves the state estimate. We can partly understand this behavior by mapping the HMM onto a 1d random-field Ising model at zero temperature. We also present more recent work that explores a larger parameter space and more states. Research funded by NSERC, Canada.

  5. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking.

    PubMed

    Mukherjee, Sudipto; Pantelopulos, George A; Voelz, Vincent A

    2016-01-01

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics. PMID:27538695

  6. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking

    PubMed Central

    Mukherjee, Sudipto; Pantelopulos, George A.; Voelz, Vincent A.

    2016-01-01

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics. PMID:27538695

  7. Improved Hidden-Markov-Model Method Of Detecting Faults

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.

    1994-01-01

    Method of automated, continuous monitoring to detect faults in complicated dynamic system based on hidden-Markov-model (HMM) approach. Simpler than another, recently proposed HMM method, but retains advantages of that method, including low susceptibility to false alarms, no need for mathematical model of dynamics of system under normal or faulty conditions, and ability to detect subtle changes in characteristics of monitored signals. Examples of systems monitored by use of this method include motors, turbines, and pumps critical in their applications; chemical-processing plants; powerplants; and biomedical systems.

  8. Markov counting models for correlated binary responses.

    PubMed

    Crawford, Forrest W; Zelterman, Daniel

    2015-07-01

    We propose a class of continuous-time Markov counting processes for analyzing correlated binary data and establish a correspondence between these models and sums of exchangeable Bernoulli random variables. Our approach generalizes many previous models for correlated outcomes, admits easily interpretable parameterizations, allows different cluster sizes, and incorporates ascertainment bias in a natural way. We demonstrate several new models for dependent outcomes and provide algorithms for computing maximum likelihood estimates. We show how to incorporate cluster-specific covariates in a regression setting and demonstrate improved fits to well-known datasets from familial disease epidemiology and developmental toxicology. PMID:25792624

  9. MODELING PAVEMENT DETERIORATION PROCESSES BY POISSON HIDDEN MARKOV MODELS

    NASA Astrophysics Data System (ADS)

    Nam, Le Thanh; Kaito, Kiyoyuki; Kobayashi, Kiyoshi; Okizuka, Ryosuke

    In pavement management, it is important to estimate lifecycle cost, which is composed of the expenses for repairing local damages, including potholes, and repairing and rehabilitating the surface and base layers of pavements, including overlays. In this study, a model is produced under the assumption that the deterioration process of pavement is a complex one that includes local damages, which occur frequently, and the deterioration of the surface and base layers of pavement, which progresses slowly. The variation in pavement soundness is expressed by the Markov deterioration model and the Poisson hidden Markov deterioration model, in which the frequency of local damage depends on the distribution of pavement soundness, is formulated. In addition, the authors suggest a model estimation method using the Markov Chain Monte Carlo (MCMC) method, and attempt to demonstrate the applicability of the proposed Poisson hidden Markov deterioration model by studying concrete application cases.

  10. Non-Markov dissipative dynamics of electron transfer in a photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Poddubnyy, V. V.; Glebov, I. O.; Eremin, V. V.

    2014-02-01

    We consider the dissipative dynamics of electron transfer in the photosynthetic reaction center of purple bacteria and propose a model where the transition between electron states arises only due to the interaction between a chromophore system and the protein environment and is not accompanied by the motion of nuclei of the reaction subsystem. We establish applicability conditions for the Markov approximation in the framework of this model and show that these conditions are not necessarily satisfied in the protein medium. We represent the spectral function of the "system+heat bath" interaction in the form of one or several Gaussian functions to study specific characteristics of non-Markov dynamics of the final state population, the presence of an induction period and vibrations. The consistency of the computational results obtained for non-Markov dynamics with experimental data confirms the correctness of the proposed approach.

  11. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series

    PubMed Central

    Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina

    2015-01-01

    Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies. PMID:26427023

  12. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series.

    PubMed

    Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina

    2015-01-01

    Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies. PMID:26427023

  13. A Markov model of the Indus script

    PubMed Central

    Rao, Rajesh P. N.; Yadav, Nisha; Vahia, Mayank N.; Joglekar, Hrishikesh; Adhikari, R.; Mahadevan, Iravatham

    2009-01-01

    Although no historical information exists about the Indus civilization (flourished ca. 2600–1900 B.C.), archaeologists have uncovered about 3,800 short samples of a script that was used throughout the civilization. The script remains undeciphered, despite a large number of attempts and claimed decipherments over the past 80 years. Here, we propose the use of probabilistic models to analyze the structure of the Indus script. The goal is to reveal, through probabilistic analysis, syntactic patterns that could point the way to eventual decipherment. We illustrate the approach using a simple Markov chain model to capture sequential dependencies between signs in the Indus script. The trained model allows new sample texts to be generated, revealing recurring patterns of signs that could potentially form functional subunits of a possible underlying language. The model also provides a quantitative way of testing whether a particular string belongs to the putative language as captured by the Markov model. Application of this test to Indus seals found in Mesopotamia and other sites in West Asia reveals that the script may have been used to express different content in these regions. Finally, we show how missing, ambiguous, or unreadable signs on damaged objects can be filled in with most likely predictions from the model. Taken together, our results indicate that the Indus script exhibits rich synactic structure and the ability to represent diverse content. both of which are suggestive of a linguistic writing system rather than a nonlinguistic symbol system. PMID:19666571

  14. A Markov model of the Indus script.

    PubMed

    Rao, Rajesh P N; Yadav, Nisha; Vahia, Mayank N; Joglekar, Hrishikesh; Adhikari, R; Mahadevan, Iravatham

    2009-08-18

    Although no historical information exists about the Indus civilization (flourished ca. 2600-1900 B.C.), archaeologists have uncovered about 3,800 short samples of a script that was used throughout the civilization. The script remains undeciphered, despite a large number of attempts and claimed decipherments over the past 80 years. Here, we propose the use of probabilistic models to analyze the structure of the Indus script. The goal is to reveal, through probabilistic analysis, syntactic patterns that could point the way to eventual decipherment. We illustrate the approach using a simple Markov chain model to capture sequential dependencies between signs in the Indus script. The trained model allows new sample texts to be generated, revealing recurring patterns of signs that could potentially form functional subunits of a possible underlying language. The model also provides a quantitative way of testing whether a particular string belongs to the putative language as captured by the Markov model. Application of this test to Indus seals found in Mesopotamia and other sites in West Asia reveals that the script may have been used to express different content in these regions. Finally, we show how missing, ambiguous, or unreadable signs on damaged objects can be filled in with most likely predictions from the model. Taken together, our results indicate that the Indus script exhibits rich synactic structure and the ability to represent diverse content. both of which are suggestive of a linguistic writing system rather than a nonlinguistic symbol system. PMID:19666571

  15. Hidden Markov Modeling for Weigh-In-Motion Estimation

    SciTech Connect

    Abercrombie, Robert K; Ferragut, Erik M; Boone, Shane

    2012-01-01

    This paper describes a hidden Markov model to assist in the weight measurement error that arises from complex vehicle oscillations of a system of discrete masses. Present reduction of oscillations is by a smooth, flat, level approach and constant, slow speed in a straight line. The model uses this inherent variability to assist in determining the true total weight and individual axle weights of a vehicle. The weight distribution dynamics of a generic moving vehicle were simulated. The model estimation converged to within 1% of the true mass for simulated data. The computational demands of this method, while much greater than simple averages, took only seconds to run on a desktop computer.

  16. Hidden Markov models for stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John

    2015-07-01

    The formalism of state estimation and hidden Markov models can simplify and clarify the discussion of stochastic thermodynamics in the presence of feedback and measurement errors. After reviewing the basic formalism, we use it to shed light on a recent discussion of phase transitions in the optimized response of an information engine, for which measurement noise serves as a control parameter. The HMM formalism also shows that the value of additional information displays a maximum at intermediate signal-to-noise ratios. Finally, we discuss how systems open to information flow can apparently violate causality; the HMM formalism can quantify the performance gains due to such violations.

  17. Forest Pest Occurrence Predictionca-Markov Model

    NASA Astrophysics Data System (ADS)

    Xie, Fangyi; Zhang, Xiaoli; Chen, Xiaoyan

    Since the spatial pattern of forest pest occurrence is determined by biological characteristics and habitat conditions, this paper introduced construction of a cellular automaton model combined with Markov model to predicate the forest pest occurrence. Rules of the model includes the cell states rules, neighborhood rules and transition rules which are defined according to the factors from stand conditions, stand structures, climate and the influence of the factors on the state conversion. Coding for the model is also part of the implementations of the model. The participants were designed including attributes and operations of participants expressed with a UML diagram. Finally, the scale issues on forest pest occurrence prediction, of which the core are the prediction of element size and time interval, are partly discussed in this paper.

  18. Multivariate Markov chain modeling for stock markets

    NASA Astrophysics Data System (ADS)

    Maskawa, Jun-ichi

    2003-06-01

    We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.

  19. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models.

    PubMed

    Dodani, Sheel C; Kiss, Gert; Cahn, Jackson K B; Su, Ye; Pande, Vijay S; Arnold, Frances H

    2016-05-01

    The dynamic motions of protein structural elements, particularly flexible loops, are intimately linked with diverse aspects of enzyme catalysis. Engineering of these loop regions can alter protein stability, substrate binding and even dramatically impact enzyme function. When these flexible regions are unresolvable structurally, computational reconstruction in combination with large-scale molecular dynamics simulations can be used to guide the engineering strategy. Here we present a collaborative approach that consists of both experiment and computation and led to the discovery of a single mutation in the F/G loop of the nitrating cytochrome P450 TxtE that simultaneously controls loop dynamics and completely shifts the enzyme's regioselectivity from the C4 to the C5 position of L-tryptophan. Furthermore, we find that this loop mutation is naturally present in a subset of homologous nitrating P450s and confirm that these uncharacterized enzymes exclusively produce 5-nitro-L-tryptophan, a previously unknown biosynthetic intermediate. PMID:27102675

  20. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models

    NASA Astrophysics Data System (ADS)

    Dodani, Sheel C.; Kiss, Gert; Cahn, Jackson K. B.; Su, Ye; Pande, Vijay S.; Arnold, Frances H.

    2016-05-01

    The dynamic motions of protein structural elements, particularly flexible loops, are intimately linked with diverse aspects of enzyme catalysis. Engineering of these loop regions can alter protein stability, substrate binding and even dramatically impact enzyme function. When these flexible regions are unresolvable structurally, computational reconstruction in combination with large-scale molecular dynamics simulations can be used to guide the engineering strategy. Here we present a collaborative approach that consists of both experiment and computation and led to the discovery of a single mutation in the F/G loop of the nitrating cytochrome P450 TxtE that simultaneously controls loop dynamics and completely shifts the enzyme's regioselectivity from the C4 to the C5 position of L-tryptophan. Furthermore, we find that this loop mutation is naturally present in a subset of homologous nitrating P450s and confirm that these uncharacterized enzymes exclusively produce 5-nitro-L-tryptophan, a previously unknown biosynthetic intermediate.

  1. Benchmarking of a Markov multizone model of contaminant transport.

    PubMed

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). PMID:25143517

  2. Estimation and uncertainty of reversible Markov models

    NASA Astrophysics Data System (ADS)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-01

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software — http://pyemma.org — as of version 2.0.

  3. Weighted-indexed semi-Markov models for modeling financial returns

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo

    2012-07-01

    In this paper we propose a new stochastic model based on a generalization of semi-Markov chains for studying the high frequency price dynamics of traded stocks. We assume that the financial returns are described by a weighted-indexed semi-Markov chain model. We show, through Monte Carlo simulations, that the model is able to reproduce important stylized facts of financial time series such as the first-passage-time distributions and the persistence of volatility. The model is applied to data from the Italian and German stock markets from 1 January 2007 until the end of December 2010.

  4. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  5. Hidden Markov Models for Detecting Aseismic Events in Southern California

    NASA Astrophysics Data System (ADS)

    Granat, R.

    2004-12-01

    We employ a hidden Markov model (HMM) to segment surface displacement time series collection by the Southern California Integrated Geodetic Network (SCIGN). These segmented time series are then used to detect regional events by observing the number of simultaneous mode changes across the network; if a large number of stations change at the same time, that indicates an event. The hidden Markov model (HMM) approach assumes that the observed data has been generated by an unobservable dynamical statistical process. The process is of a particular form such that each observation is coincident with the system being in a particular discrete state, which is interpreted as a behavioral mode. The dynamics are the model are constructed so that the next state is directly dependent only on the current state -- it is a first order Markov process. The model is completely described by a set of parameters: the initial state probabilities, the first order Markov chain state-to-state transition probabilities, and the probability distribution of observable outputs associated with each state. The result of this approach is that our segmentation decisions are based entirely on statistical changes in the behavior of the observed daily displacements. In general, finding the optimal model parameters to fit the data is a difficult problem. We present an innovative model fitting method that is unsupervised (i.e., it requires no labeled training data) and uses a regularized version of the expectation-maximization (EM) algorithm to ensure that model solutions are both robust with respect to initial conditions and of high quality. We demonstrate the reliability of the method as compared to standard model fitting methods and show that it results in lower noise in the mode change correlation signal used to detect regional events. We compare candidate events detected by this method to the seismic record and observe that most are not correlated with a significant seismic event. Our analysis

  6. Probabilistic Resilience in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Panerati, Jacopo; Beltrame, Giovanni; Schwind, Nicolas; Zeltner, Stefan; Inoue, Katsumi

    2016-05-01

    Originally defined in the context of ecological systems and environmental sciences, resilience has grown to be a property of major interest for the design and analysis of many other complex systems: resilient networks and robotics systems other the desirable capability of absorbing disruption and transforming in response to external shocks, while still providing the services they were designed for. Starting from an existing formalization of resilience for constraint-based systems, we develop a probabilistic framework based on hidden Markov models. In doing so, we introduce two new important features: stochastic evolution and partial observability. Using our framework, we formalize a methodology for the evaluation of probabilities associated with generic properties, we describe an efficient algorithm for the computation of its essential inference step, and show that its complexity is comparable to other state-of-the-art inference algorithms.

  7. Projected metastable Markov processes and their estimation with observable operator models

    SciTech Connect

    Wu, Hao Prinz, Jan-Hendrik Noé, Frank

    2015-10-14

    The determination of kinetics of high-dimensional dynamical systems, such as macromolecules, polymers, or spin systems, is a difficult and generally unsolved problem — both in simulation, where the optimal reaction coordinate(s) are generally unknown and are difficult to compute, and in experimental measurements, where only specific coordinates are observable. Markov models, or Markov state models, are widely used but suffer from the fact that the dynamics on a coarsely discretized state spaced are no longer Markovian, even if the dynamics in the full phase space are. The recently proposed projected Markov models (PMMs) are a formulation that provides a description of the kinetics on a low-dimensional projection without making the Markovianity assumption. However, as yet no general way of estimating PMMs from data has been available. Here, we show that the observed dynamics of a PMM can be exactly described by an observable operator model (OOM) and derive a PMM estimator based on the OOM learning.

  8. Projected metastable Markov processes and their estimation with observable operator models

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Prinz, Jan-Hendrik; Noé, Frank

    2015-10-01

    The determination of kinetics of high-dimensional dynamical systems, such as macromolecules, polymers, or spin systems, is a difficult and generally unsolved problem — both in simulation, where the optimal reaction coordinate(s) are generally unknown and are difficult to compute, and in experimental measurements, where only specific coordinates are observable. Markov models, or Markov state models, are widely used but suffer from the fact that the dynamics on a coarsely discretized state spaced are no longer Markovian, even if the dynamics in the full phase space are. The recently proposed projected Markov models (PMMs) are a formulation that provides a description of the kinetics on a low-dimensional projection without making the Markovianity assumption. However, as yet no general way of estimating PMMs from data has been available. Here, we show that the observed dynamics of a PMM can be exactly described by an observable operator model (OOM) and derive a PMM estimator based on the OOM learning.

  9. Modelling modal gating of ion channels with hierarchical Markov models

    PubMed Central

    Fackrell, Mark; Crampin, Edmund J.; Taylor, Peter

    2016-01-01

    Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available. In this paper, we develop a modular approach for building such a model in an iterative process. First, stochastic switching between modes and stochastic opening and closing within modes are represented in separate aggregated Markov models. Second, the continuous-time hierarchical Markov model, a new modelling framework proposed here, then enables us to combine these components so that in the integrated model both mode switching as well as the kinetics within modes are appropriately represented. A mathematical analysis reveals that the behaviour of the hierarchical Markov model naturally depends on the properties of its components. We also demonstrate how a hierarchical Markov model can be parametrized using experimental data and show that it provides a better representation than a previous model of the same dataset. Because evidence is increasing that modal gating reflects underlying molecular properties of the channel protein, it is likely that biophysical processes are better captured by our new approach than in earlier models. PMID:27616917

  10. Manpower planning using Markov Chain model

    NASA Astrophysics Data System (ADS)

    Saad, Syafawati Ab; Adnan, Farah Adibah; Ibrahim, Haslinda; Rahim, Rahela

    2014-07-01

    Manpower planning is a planning model which understands the flow of manpower based on the policies changes. For such purpose, numerous attempts have been made by researchers to develop a model to investigate the track of movements of lecturers for various universities. As huge number of lecturers in a university, it is difficult to track the movement of lecturers and also there is no quantitative way used in tracking the movement of lecturers. This research is aimed to determine the appropriate manpower model to understand the flow of lecturers in a university in Malaysia by determine the probability and mean time of lecturers remain in the same status rank. In addition, this research also intended to estimate the number of lecturers in different status rank (lecturer, senior lecturer and associate professor). From the previous studies, there are several methods applied in manpower planning model and appropriate method used in this research is Markov Chain model. Results obtained from this study indicate that the appropriate manpower planning model used is validated by compare to the actual data. The smaller margin of error gives a better result which means that the projection is closer to actual data. These results would give some suggestions for the university to plan the hiring lecturers and budgetary for university in future.

  11. Noiseless compression using non-Markov models

    NASA Technical Reports Server (NTRS)

    Blumer, Anselm

    1989-01-01

    Adaptive data compression techniques can be viewed as consisting of a model specified by a database common to the encoder and decoder, an encoding rule and a rule for updating the model to ensure that the encoder and decoder always agree on the interpretation of the next transmission. The techniques which fit this framework range from run-length coding, to adaptive Huffman and arithmetic coding, to the string-matching techniques of Lempel and Ziv. The compression obtained by arithmetic coding is dependent on the generality of the source model. For many sources, an independent-letter model is clearly insufficient. Unfortunately, a straightforward implementation of a Markov model requires an amount of space exponential in the number of letters remembered. The Directed Acyclic Word Graph (DAWG) can be constructed in time and space proportional to the text encoded, and can be used to estimate the probabilities required for arithmetic coding based on an amount of memory which varies naturally depending on the encoded text. The tail of that portion of the text which was encoded is the longest suffix that has occurred previously. The frequencies of letters following these previous occurrences can be used to estimate the probability distribution of the next letter. Experimental results indicate that compression is often far better than that obtained using independent-letter models, and sometimes also significantly better than other non-independent techniques.

  12. Hidden Markov models for threat prediction fusion

    NASA Astrophysics Data System (ADS)

    Ross, Kenneth N.; Chaney, Ronald D.

    2000-04-01

    This work addresses the often neglected, but important problem of Level 3 fusion or threat refinement. This paper describes algorithms for threat prediction and test results from a prototype threat prediction fusion engine. The threat prediction fusion engine selectively models important aspects of the battlespace state using probability-based methods and information obtained from lower level fusion engines. Our approach uses hidden Markov models of a hierarchical threat state to find the most likely Course of Action (CoA) for the opposing forces. Decision tress use features derived from the CoA probabilities and other information to estimate the level of threat presented by the opposing forces. This approach provides the user with several measures associated with the level of threat, including: probability that the enemy is following a particular CoA, potential threat presented by the opposing forces, and likely time of the threat. The hierarchical approach used for modeling helps us efficiently represent the battlespace with a structure that permits scaling the models to larger scenarios without adding prohibitive computational costs or sacrificing model fidelity.

  13. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  14. Stylistic gait synthesis based on hidden Markov models

    NASA Astrophysics Data System (ADS)

    Tilmanne, Joëlle; Moinet, Alexis; Dutoit, Thierry

    2012-12-01

    In this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was then used for automatic adaptation to a particular style of walk using only a small amount of training data from the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into account the dynamics of the data and to model accurately the duration of each HMM state. We also address the assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests show that the style of these sequences can easily be recognized and look natural to the evaluators.

  15. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  16. Efficient Parallel Learning of Hidden Markov Chain Models on SMPs

    NASA Astrophysics Data System (ADS)

    Li, Lei; Fu, Bin; Faloutsos, Christos

    Quad-core cpus have been a common desktop configuration for today's office. The increasing number of processors on a single chip opens new opportunity for parallel computing. Our goal is to make use of the multi-core as well as multi-processor architectures to speed up large-scale data mining algorithms. In this paper, we present a general parallel learning framework, Cut-And-Stitch, for training hidden Markov chain models. Particularly, we propose two model-specific variants, CAS-LDS for learning linear dynamical systems (LDS) and CAS-HMM for learning hidden Markov models (HMM). Our main contribution is a novel method to handle the data dependencies due to the chain structure of hidden variables, so as to parallelize the EM-based parameter learning algorithm. We implement CAS-LDS and CAS-HMM using OpenMP on two supercomputers and a quad-core commercial desktop. The experimental results show that parallel algorithms using Cut-And-Stitch achieve comparable accuracy and almost linear speedups over the traditional serial version.

  17. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  18. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models.

    PubMed

    Pan, Xiaoliang; Schwartz, Steven D

    2016-07-14

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy. PMID:27347759

  19. Using Markov state models to study self-assembly.

    PubMed

    Perkett, Matthew R; Hagan, Michael F

    2014-06-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  20. Using Markov state models to study self-assembly

    PubMed Central

    Perkett, Matthew R.; Hagan, Michael F.

    2014-01-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  1. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  2. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. PMID:24001407

  3. Time series segmentation with shifting means hidden markov models

    NASA Astrophysics Data System (ADS)

    Kehagias, Ath.; Fortin, V.

    2006-08-01

    We present a new family of hidden Markov models and apply these to the segmentation of hydrological and environmental time series. The proposed hidden Markov models have a discrete state space and their structure is inspired from the shifting means models introduced by Chernoff and Zacks and by Salas and Boes. An estimation method inspired from the EM algorithm is proposed, and we show that it can accurately identify multiple change-points in a time series. We also show that the solution obtained using this algorithm can serve as a starting point for a Monte-Carlo Markov chain Bayesian estimation method, thus reducing the computing time needed for the Markov chain to converge to a stationary distribution.

  4. Comparison of the unavailability using FT model and Markov model of SDS1

    SciTech Connect

    Cho, S.; Jiang, J.

    2006-07-01

    In Candu nuclear power plants, the unavailability of the shutdown system number 1 (SDS1) is not only a function of the component failure rate, but also the test interval, the test duration, and the channel configuration. In classical fault tree methods, the effect of the configuration change and the test duration is usually ignored. To analyze their effects on the unavailability, a dynamic fault tree model and a Markov process model of the shutdown system number 1 have been developed and quantified using the high neutron power trip channel data in this paper. It is shown that the Markov process model of the SDS1 trip channel provides the most conservative results, while the dynamic fault tree model offers the least conservative one. The unavailability decreases as the test frequency and the test duration increases in both models. (authors)

  5. Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules.

    PubMed

    Noé, Frank; Wu, Hao; Prinz, Jan-Hendrik; Plattner, Nuria

    2013-11-14

    Markov state models (MSMs) have been successful in computing metastable states, slow relaxation timescales and associated structural changes, and stationary or kinetic experimental observables of complex molecules from large amounts of molecular dynamics simulation data. However, MSMs approximate the true dynamics by assuming a Markov chain on a clusters discretization of the state space. This approximation is difficult to make for high-dimensional biomolecular systems, and the quality and reproducibility of MSMs has, therefore, been limited. Here, we discard the assumption that dynamics are Markovian on the discrete clusters. Instead, we only assume that the full phase-space molecular dynamics is Markovian, and a projection of this full dynamics is observed on the discrete states, leading to the concept of Projected Markov Models (PMMs). Robust estimation methods for PMMs are not yet available, but we derive a practically feasible approximation via Hidden Markov Models (HMMs). It is shown how various molecular observables of interest that are often computed from MSMs can be computed from HMMs/PMMs. The new framework is applicable to both, simulation and single-molecule experimental data. We demonstrate its versatility by applications to educative model systems, a 1 ms Anton MD simulation of the bovine pancreatic trypsin inhibitor protein, and an optical tweezer force probe trajectory of an RNA hairpin. PMID:24320261

  6. Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules

    NASA Astrophysics Data System (ADS)

    Noé, Frank; Wu, Hao; Prinz, Jan-Hendrik; Plattner, Nuria

    2013-11-01

    Markov state models (MSMs) have been successful in computing metastable states, slow relaxation timescales and associated structural changes, and stationary or kinetic experimental observables of complex molecules from large amounts of molecular dynamics simulation data. However, MSMs approximate the true dynamics by assuming a Markov chain on a clusters discretization of the state space. This approximation is difficult to make for high-dimensional biomolecular systems, and the quality and reproducibility of MSMs has, therefore, been limited. Here, we discard the assumption that dynamics are Markovian on the discrete clusters. Instead, we only assume that the full phase-space molecular dynamics is Markovian, and a projection of this full dynamics is observed on the discrete states, leading to the concept of Projected Markov Models (PMMs). Robust estimation methods for PMMs are not yet available, but we derive a practically feasible approximation via Hidden Markov Models (HMMs). It is shown how various molecular observables of interest that are often computed from MSMs can be computed from HMMs/PMMs. The new framework is applicable to both, simulation and single-molecule experimental data. We demonstrate its versatility by applications to educative model systems, a 1 ms Anton MD simulation of the bovine pancreatic trypsin inhibitor protein, and an optical tweezer force probe trajectory of an RNA hairpin.

  7. Variance-penalized Markov decision processes: dynamic programming and reinforcement learning techniques

    NASA Astrophysics Data System (ADS)

    Gosavi, Abhijit

    2014-08-01

    In control systems theory, the Markov decision process (MDP) is a widely used optimization model involving selection of the optimal action in each state visited by a discrete-event system driven by Markov chains. The classical MDP model is suitable for an agent/decision-maker interested in maximizing expected revenues, but does not account for minimizing variability in the revenues. An MDP model in which the agent can maximize the revenues while simultaneously controlling the variance in the revenues is proposed. This work is rooted in machine learning/neural network concepts, where updating is based on system feedback and step sizes. First, a Bellman equation for the problem is proposed. Thereafter, convergent dynamic programming and reinforcement learning techniques for solving the MDP are provided along with encouraging numerical results on a small MDP and a preventive maintenance problem.

  8. A comparison of weighted ensemble and Markov state model methodologies

    NASA Astrophysics Data System (ADS)

    Feng, Haoyun; Costaouec, Ronan; Darve, Eric; Izaguirre, Jesús A.

    2015-06-01

    Computation of reaction rates and elucidation of reaction mechanisms are two of the main goals of molecular dynamics (MD) and related simulation methods. Since it is time consuming to study reaction mechanisms over long time scales using brute force MD simulations, two ensemble methods, Markov State Models (MSMs) and Weighted Ensemble (WE), have been proposed to accelerate the procedure. Both approaches require clustering of microscopic configurations into networks of "macro-states" for different purposes. MSMs model a discretization of the original dynamics on the macro-states. Accuracy of the model significantly relies on the boundaries of macro-states. On the other hand, WE uses macro-states to formulate a resampling procedure that kills and splits MD simulations for achieving better efficiency of sampling. Comparing to MSMs, accuracy of WE rate predictions is less sensitive to the definition of macro-states. Rigorous numerical experiments using alanine dipeptide and penta-alanine support our analyses. It is shown that MSMs introduce significant biases in the computation of reaction rates, which depend on the boundaries of macro-states, and Accelerated Weighted Ensemble (AWE), a formulation of weighted ensemble that uses the notion of colors to compute fluxes, has reliable flux estimation on varying definitions of macro-states. Our results suggest that whereas MSMs provide a good idea of the metastable sets and visualization of overall dynamics, AWE provides reliable rate estimations requiring less efforts on defining macro-states on the high dimensional conformational space.

  9. Numerical methods in Markov chain modeling

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef; Stewart, William J.

    1989-01-01

    Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.

  10. Nonadiabatic entropy production for non-Markov dynamics

    NASA Astrophysics Data System (ADS)

    García-García, Reinaldo

    2012-09-01

    We extend the definition of nonadiabatic entropy production given for Markovian systems by Esposito and Van den Broeck [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.090601 104, 090601 (2010)], to arbitrary non-Markov ergodic dynamics. We also introduce a notion of stability characterizing non-Markovianity. For stable non-Markovian systems, the nonadiabatic entropy production satisfies an integral fluctuation theorem, leading to the second law of thermodynamics for transitions between nonequilibrium steady states. This quantity can also be written as a sum of products of generalized fluxes and forces, thus being suitable for thermodynamics. On the other hand, the generalized fluctuation-dissipation relation also holds, clarifying that the conditions for it to be satisfied are ergodicity and stability instead of Markovianity. We show that in spite of being counterintuitive, the stability criterion introduced in this work may be violated in non-Markovian systems even if they are ergodic, leading to a violation of the fluctuation theorem and the generalized fluctuation-dissipation relation. Stability represents then a necessary condition for the above properties to hold and explains why the generalized fluctuation-dissipation relation has remained elusive in the study of non-Markov systems exhibiting nonequilibrium steady states.

  11. Discrete Latent Markov Models for Normally Distributed Response Data

    ERIC Educational Resources Information Center

    Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.

    2005-01-01

    Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…

  12. Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio

    2016-01-01

    We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…

  13. Building Higher-Order Markov Chain Models with EXCEL

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.

    2004-01-01

    Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…

  14. A Markov model for NASA's Ground Communications Facility

    NASA Technical Reports Server (NTRS)

    Adeyemi, O.

    1974-01-01

    A 'natural' way of constructing finite-state Markov chains (FSMC) is presented for those noise burst channels that can be modeled by them. In particular, a five-state Markov chain is given as a model of errors occurring at the Ground Communications Facility (GCF). A maximum likelihood procedure applicable to any FSMC is developed for estimating all the model parameters starting from the data of error runs. A few of the statistics important for estimating the performance of error control strategies on the channel are provided.

  15. Meeting the NICE requirements: a Markov model approach.

    PubMed

    Mauskopf, J

    2000-01-01

    The National Institute of Clinical Excellence (NICE) was established in the United Kingdom in April 1999 to issue guidance for the National Health Service (NHS) on the use of selective new health care interventions. This article describes the NICE requirements for both incidence-based cost-effectiveness analyses and prevalence-based estimates of the aggregate NHS impact of the new drug. The article demonstrates how both of these requirements can be met using Markov modeling techniques. A Markov model for a hypothetical new treatment for HIV infection is used as an illustration of how to generate the estimates that are required by NICE. The article concludes with a discussion of the difficulties of obtaining data of sufficient quality to include in the Markov model to ensure that the submission meets all the NICE requirements and is credible to the NICE advisory board. PMID:16464193

  16. Assessment of optimized Markov models in protein fold classification.

    PubMed

    Lampros, Christos; Simos, Thomas; Exarchos, Themis P; Exarchos, Konstantinos P; Papaloukas, Costas; Fotiadis, Dimitrios I

    2014-08-01

    Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%. PMID:25152041

  17. Detecting critical state before phase transition of complex systems by hidden Markov model

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.

  18. Using higher-order Markov models to reveal flow-based communities in networks

    NASA Astrophysics Data System (ADS)

    Salnikov, Vsevolod; Schaub, Michael T.; Lambiotte, Renaud

    2016-03-01

    Complex systems made of interacting elements are commonly abstracted as networks, in which nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated by the edges. Markov processes have been the prevailing paradigm to model such a network-based dynamics, for instance in the form of random walks or other types of diffusions. Despite the success of this modelling perspective for numerous applications, it represents an over-simplification of several real-world systems. Importantly, simple Markov models lack memory in their dynamics, an assumption often not realistic in practice. Here, we explore possibilities to enrich the system description by means of second-order Markov models, exploiting empirical pathway information. We focus on the problem of community detection and show that standard network algorithms can be generalized in order to extract novel temporal information about the system under investigation. We also apply our methodology to temporal networks, where we can uncover communities shaped by the temporal correlations in the system. Finally, we discuss relations of the framework of second order Markov processes and the recently proposed formalism of using non-backtracking matrices for community detection.

  19. Using higher-order Markov models to reveal flow-based communities in networks

    PubMed Central

    Salnikov, Vsevolod; Schaub, Michael T.; Lambiotte, Renaud

    2016-01-01

    Complex systems made of interacting elements are commonly abstracted as networks, in which nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated by the edges. Markov processes have been the prevailing paradigm to model such a network-based dynamics, for instance in the form of random walks or other types of diffusions. Despite the success of this modelling perspective for numerous applications, it represents an over-simplification of several real-world systems. Importantly, simple Markov models lack memory in their dynamics, an assumption often not realistic in practice. Here, we explore possibilities to enrich the system description by means of second-order Markov models, exploiting empirical pathway information. We focus on the problem of community detection and show that standard network algorithms can be generalized in order to extract novel temporal information about the system under investigation. We also apply our methodology to temporal networks, where we can uncover communities shaped by the temporal correlations in the system. Finally, we discuss relations of the framework of second order Markov processes and the recently proposed formalism of using non-backtracking matrices for community detection. PMID:27029508

  20. Using higher-order Markov models to reveal flow-based communities in networks.

    PubMed

    Salnikov, Vsevolod; Schaub, Michael T; Lambiotte, Renaud

    2016-01-01

    Complex systems made of interacting elements are commonly abstracted as networks, in which nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated by the edges. Markov processes have been the prevailing paradigm to model such a network-based dynamics, for instance in the form of random walks or other types of diffusions. Despite the success of this modelling perspective for numerous applications, it represents an over-simplification of several real-world systems. Importantly, simple Markov models lack memory in their dynamics, an assumption often not realistic in practice. Here, we explore possibilities to enrich the system description by means of second-order Markov models, exploiting empirical pathway information. We focus on the problem of community detection and show that standard network algorithms can be generalized in order to extract novel temporal information about the system under investigation. We also apply our methodology to temporal networks, where we can uncover communities shaped by the temporal correlations in the system. Finally, we discuss relations of the framework of second order Markov processes and the recently proposed formalism of using non-backtracking matrices for community detection. PMID:27029508

  1. Latent Variable Model for Learning in Pairwise Markov Networks

    PubMed Central

    Amizadeh, Saeed; Hauskrecht, Milos

    2011-01-01

    Pairwise Markov Networks (PMN) are an important class of Markov networks which, due to their simplicity, are widely used in many applications such as image analysis, bioinformatics, sensor networks, etc. However, learning of Markov networks from data is a challenging task; there are many possible structures one must consider and each of these structures comes with its own parameters making it easy to overfit the model with limited data. To deal with the problem, recent learning methods build upon the L1 regularization to express the bias towards sparse network structures. In this paper, we propose a new and more flexible framework that let us bias the structure, that can, for example, encode the preference to networks with certain local substructures which as a whole exhibit some special global structure. We experiment with and show the benefit of our framework on two types of problems: learning of modular networks and learning of traffic networks models. PMID:22228193

  2. Nonparametric identification and maximum likelihood estimation for hidden Markov models

    PubMed Central

    Alexandrovich, G.; Holzmann, H.; Leister, A.

    2016-01-01

    Nonparametric identification and maximum likelihood estimation for finite-state hidden Markov models are investigated. We obtain identification of the parameters as well as the order of the Markov chain if the transition probability matrices have full-rank and are ergodic, and if the state-dependent distributions are all distinct, but not necessarily linearly independent. Based on this identification result, we develop a nonparametric maximum likelihood estimation theory. First, we show that the asymptotic contrast, the Kullback–Leibler divergence of the hidden Markov model, also identifies the true parameter vector nonparametrically. Second, for classes of state-dependent densities which are arbitrary mixtures of a parametric family, we establish the consistency of the nonparametric maximum likelihood estimator. Here, identification of the mixing distributions need not be assumed. Numerical properties of the estimates and of nonparametric goodness of fit tests are investigated in a simulation study.

  3. Dynamical symmetries of Markov processes with multiplicative white noise

    NASA Astrophysics Data System (ADS)

    Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; González Arenas, Zochil; Lozano, Gustavo S.

    2016-05-01

    We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau–Lifshitz–Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.

  4. Deterioration Prediction Model of Irrigation Facilities by Markov Chain Model

    NASA Astrophysics Data System (ADS)

    Mori, Takehisa; Nishino, Noriyasu; Fujiwara, Tetsuro

    "Stock Management" launched in all over Japan is an activity to use irrigation facilities effectively and to reduce life cycle costs of theirs. Deterioration prediction of the irrigation facility condition is a vital process for the study of maintenance measures and the estimation of maintenance cost. It is important issue to establish the prediction technique with higher accuracy. Thereupon, we established a deterioration prediction model by a statistical method "Markov chain", and analyzed a function diagnosis data of irrigation facilities. As a result, we clarified the deterioration characteristics into each structure type and facilities.

  5. Markov reliability models for digital flight control systems

    NASA Technical Reports Server (NTRS)

    Mcgough, John; Reibman, Andrew; Trivedi, Kishor

    1989-01-01

    The reliability of digital flight control systems can often be accurately predicted using Markov chain models. The cost of numerical solution depends on a model's size and stiffness. Acyclic Markov models, a useful special case, are particularly amenable to efficient numerical solution. Even in the general case, instantaneous coverage approximation allows the reduction of some cyclic models to more readily solvable acyclic models. After considering the solution of single-phase models, the discussion is extended to phased-mission models. Phased-mission reliability models are classified based on the state restoration behavior that occurs between mission phases. As an economical approach for the solution of such models, the mean failure rate solution method is introduced. A numerical example is used to show the influence of fault-model parameters and interphase behavior on system unreliability.

  6. Markov Modeling of Component Fault Growth over a Derived Domain of Feasible Output Control Effort Modifications

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.

  7. A Markov switching model for annual hydrologic time series

    NASA Astrophysics Data System (ADS)

    Akıntuǧ, B.; Rasmussen, P. F.

    2005-09-01

    This paper investigates the properties of Markov switching (MS) models (also known as hidden Markov models) for generating annual time series. This type of model has been used in a number of recent studies in the water resources literature. The model considered here assumes that climate is switching between M states and that the state sequence can be described by a Markov chain. Observations are assumed to be drawn from a normal distribution whose parameters depend on the state variable. We present the stochastic properties of this class of models along with procedures for model identification and parameter estimation. Although, at a first glance, MS models appear to be quite different from ARMA models, we show that it is possible to find an ARMA model that has the same autocorrelation function and the same marginal distribution as any given MS model. Hence, despite the difference in model structure, there are strong similarities between MS and ARMA models. MS and ARMA models are applied to the time series of mean annual discharge of the Niagara River. Although it is difficult to draw any general conclusion from a single case study, it appears that MS models (and ARMA models derived from MS models) generally have stronger autocorrelation at higher lags than ARMA models estimated by conventional maximum likelihood. This may be an important property if the purpose of the study is the analysis of multiyear droughts.

  8. Operations and support cost modeling using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  9. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    SciTech Connect

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G. E-mail: gerhard.hummer@biophys.mpg.de; Hummer, Gerhard E-mail: gerhard.hummer@biophys.mpg.de

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  10. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.

    PubMed

    Nedialkova, Lilia V; Amat, Miguel A; Kevrekidis, Ioannis G; Hummer, Gerhard

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small--but nontrivial--differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  11. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  12. Estimating the pen trajectories of static signatures using hidden Markov models.

    PubMed

    Nel, Emli-Mari; du Preez, Johan A; Herbst, B M

    2005-11-01

    Static signatures originate as handwritten images on documents and by definition do not contain any dynamic information. This lack of information makes static signature verification systems significantly less reliable than their dynamic counterparts. This study involves extracting dynamic information from static images, specifically the pen trajectory while the signature was created. We assume that a dynamic version of the static image is available (typically obtained during an earlier registration process). We then derive a hidden Markov model from the static image and match it to the dynamic version of the image. This match results in the estimated pen trajectory of the static image. PMID:16285373

  13. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  14. An abstract specification language for Markov reliability models

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1985-01-01

    Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.

  15. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    PubMed

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. PMID:25761965

  16. Towards automatic Markov reliability modeling of computer architectures

    NASA Technical Reports Server (NTRS)

    Liceaga, C. A.; Siewiorek, D. P.

    1986-01-01

    The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.

  17. Stochastic algorithms for Markov models estimation with intermittent missing data.

    PubMed

    Deltour, I; Richardson, S; Le Hesran, J Y

    1999-06-01

    Multistate Markov models are frequently used to characterize disease processes, but their estimation from longitudinal data is often hampered by complex patterns of incompleteness. Two algorithms for estimating Markov chain models in the case of intermittent missing data in longitudinal studies, a stochastic EM algorithm and the Gibbs sampler, are described. The first can be viewed as a random perturbation of the EM algorithm and is appropriate when the M step is straightforward but the E step is computationally burdensome. It leads to a good approximation of the maximum likelihood estimates. The Gibbs sampler is used for a full Bayesian inference. The performances of the two algorithms are illustrated on two simulated data sets. A motivating example concerned with the modelling of the evolution of parasitemia by Plasmodium falciparum (malaria) in a cohort of 105 young children in Cameroon is described and briefly analyzed. PMID:11318215

  18. A Hidden Markov Approach to Modeling Interevent Earthquake Times

    NASA Astrophysics Data System (ADS)

    Chambers, D.; Ebel, J. E.; Kafka, A. L.; Baglivo, J.

    2003-12-01

    A hidden Markov process, in which the interevent time distribution is a mixture of exponential distributions with different rates, is explored as a model for seismicity that does not follow a Poisson process. In a general hidden Markov model, one assumes that a system can be in any of a finite number k of states and there is a random variable of interest whose distribution depends on the state in which the system resides. The system moves probabilistically among the states according to a Markov chain; that is, given the history of visited states up to the present, the conditional probability that the next state is a specified one depends only on the present state. Thus the transition probabilities are specified by a k by k stochastic matrix. Furthermore, it is assumed that the actual states are unobserved (hidden) and that only the values of the random variable are seen. From these values, one wishes to estimate the sequence of states, the transition probability matrix, and any parameters used in the state-specific distributions. The hidden Markov process was applied to a data set of 110 interevent times for earthquakes in New England from 1975 to 2000. Using the Baum-Welch method (Baum et al., Ann. Math. Statist. 41, 164-171), we estimate the transition probabilities, find the most likely sequence of states, and estimate the k means of the exponential distributions. Using k=2 states, we found the data were fit well by a mixture of two exponential distributions, with means of approximately 5 days and 95 days. The steady state model indicates that after approximately one fourth of the earthquakes, the waiting time until the next event had the first exponential distribution and three fourths of the time it had the second. Three and four state models were also fit to the data; the data were inconsistent with a three state model but were well fit by a four state model.

  19. Infinite Factorial Unbounded-State Hidden Markov Model.

    PubMed

    Valera, Isabel; Ruiz, Francisco J R; Perez-Cruz, Fernando

    2016-09-01

    There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markovmodels (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem. PMID:26571511

  20. Behavior Detection using Confidence Intervals of Hidden Markov Models

    SciTech Connect

    Griffin, Christopher H

    2009-01-01

    Markov models are commonly used to analyze real-world problems. Their combination of discrete states and stochastic transitions is suited to applications with deterministic and stochastic components. Hidden Markov Models (HMMs) are a class of Markov model commonly used in pattern recognition. Currently, HMMs recognize patterns using a maximum likelihood approach. One major drawback with this approach is that data observations are mapped to HMMs without considering the number of data samples available. Another problem is that this approach is only useful for choosing between HMMs. It does not provide a criteria for determining whether or not a given HMM adequately matches the data stream. In this work, we recognize complex behaviors using HMMs and confidence intervals. The certainty of a data match increases with the number of data samples considered. Receiver Operating Characteristic curves are used to find the optimal threshold for either accepting or rejecting a HMM description. We present one example using a family of HMM's to show the utility of the proposed approach. A second example using models extracted from a database of consumer purchases provides additional evidence that this approach can perform better than existing techniques.

  1. Probabilistic Independence Networks for Hidden Markov Probability Models

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic; Heckerman, Cavid; Jordan, Michael I

    1996-01-01

    In this paper we explore hidden Markov models(HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a self-contained review of the basic principles of PINs. It is shown that the well-known forward-backward (F-B) and Viterbi algorithms for HMMs are special cases of more general enference algorithms for arbitrary PINs.

  2. Target characterization using hidden Markov models and classifiers

    SciTech Connect

    Kil, D.H.; Shin, F.B.; Fricke, J.R.

    1996-06-01

    We investigate various projection spaces and extract key parameters or features from each space to characterize low-frequency active (LFA) target returns in a low-dimensional space. The projection spaces encompass (1) time-embedded phase map, (2) segmented matched filter output, (3) various time-frequency distribution functions, such as Reduced Interference Distribution, to capture time-varying echo signatures, and (4) principal component inversion for signal cleaning and characterization. We utilize both dynamic and static features and parameterize them with a hybrid classification methodology consisting of hidden Markov models, classifiers, and data fusion. This clue identification and evaluation process is complemented by concurrent work on target physics to enhance our understanding of the target echo formation process. As a function of target aspect, we can observe (1) back scatter dominated by axial n=0 modes propagating back and forth along the length of the shell, (2) direct scatter from shell discontinuities, (3) helical or creeping waves from phase matching between the acoustic waves and membrane waves (both shear and compressional), and (4) the ``array response`` of the shell, with coherent superposition of elemental scattering sites along the shell leading to a peak response near broadside. As a function of target structures (the empty shell and the ribbed/complex shells), we see considerable complexity brought about by multiple reflections of the membrane waves between the rings. We show the merit of fusing parameters estimated from these projection spaces in characterizing LFA target returns using the MIT/NRL scaled model data. Our hybrid classifiers outperform the matched filter-based recognizer by an average of 5-25%;. This improvement can be attributed to a combination of good features that maximize inter-class discrimination and appropriate classifier topologies that exploit the underlying multi-dimensional feature probability density function.

  3. Markov Boundary Discovery with Ridge Regularized Linear Models

    PubMed Central

    Visweswaran, Shyam

    2016-01-01

    Ridge regularized linear models (RRLMs), such as ridge regression and the SVM, are a popular group of methods that are used in conjunction with coefficient hypothesis testing to discover explanatory variables with a significant multivariate association to a response. However, many investigators are reluctant to draw causal interpretations of the selected variables due to the incomplete knowledge of the capabilities of RRLMs in causal inference. Under reasonable assumptions, we show that a modified form of RRLMs can get “very close” to identifying a subset of the Markov boundary by providing a worst-case bound on the space of possible solutions. The results hold for any convex loss, even when the underlying functional relationship is nonlinear, and the solution is not unique. Our approach combines ideas in Markov boundary and sufficient dimension reduction theory. Experimental results show that the modified RRLMs are competitive against state-of-the-art algorithms in discovering part of the Markov boundary from gene expression data. PMID:27170915

  4. Discriminative Feature Selection via Multiclass Variable Memory Markov Model

    NASA Astrophysics Data System (ADS)

    Slonim, Noam; Bejerano, Gill; Fine, Shai; Tishby, Naftali

    2003-12-01

    We propose a novel feature selection method based on a variable memory Markov (VMM) model. The VMM was originally proposed as a generative model trying to preserve the original source statistics from training data. We extend this technique to simultaneously handle several sources, and further apply a new criterion to prune out nondiscriminative features out of the model. This results in a multiclass discriminative VMM (DVMM), which is highly efficient, scaling linearly with data size. Moreover, we suggest a natural scheme to sort the remaining features based on their discriminative power with respect to the sources at hand. We demonstrate the utility of our method for text and protein classification tasks.

  5. Distribution system reliability assessment using hierarchical Markov modeling

    SciTech Connect

    Brown, R.E.; Gupta, S.; Christie, R.D.; Venkata, S.S.; Fletcher, R.

    1996-10-01

    Distribution system reliability assessment is concerned with power availability and power quality at each customer`s service entrance. This paper presents a new method, termed Hierarchical Markov Modeling (HMM), which can perform predictive distribution system reliability assessment. HMM is unique in that it decomposes the reliability model based on system topology, integrated protection systems, and individual protection devices. This structure, which easily accommodates the effects of backup protection, fault isolation, and load restoration, is compared to simpler reliability models. HMM is then used to assess the reliability of an existing utility distribution system and to explore the reliability impact of several design improvement options.

  6. STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning

    PubMed Central

    Kappel, David; Nessler, Bernhard; Maass, Wolfgang

    2014-01-01

    In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task. PMID:24675787

  7. Markov Modeling with Soft Aggregation for Safety and Decision Analysis

    SciTech Connect

    COOPER,J. ARLIN

    1999-09-01

    The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and

  8. Regularized Deterministic Annealing Hidden Markov Models for Identificationand Analysis of Seismic and Aseismic events.

    NASA Astrophysics Data System (ADS)

    Granat, R. A.; Clayton, R.; Kedar, S.; Kaneko, Y.

    2003-12-01

    We employ a robust hidden Markov model (HMM) based technique to perform statistical pattern analysis of suspected seismic and aseismic events in the poorly explored period band of minutes to hours. The technique allows us to classify known events and provides a statistical basis for finding and cataloging similar events represented elsewhere in the observations. In this work, we focus on data collected by the Southern California TriNet system. The hidden Markov model (HMM) approach assumes that the observed data has been generated by an unobservable dynamical statistical process. The process is of a particular form such that each observation is coincident with the system being in a particular discrete state. The dynamics are the model are constructed so that the next state is directly dependent only on the current state -- it is a first order Markov process. The model is completely described by a set of parameters: the initial state probabilities, the first order Markov chain state-to-state transition probabilities, and the probability distribution of observable outputs associated with each state. Application of the model to data involves optimizing these model parameters with respect to some function of the observations, typically the likelihood of the observations given the model. Our work focused on the fact that this objective function has a number of local maxima that is exponential in the model size (the number of states). This means that not only is it very difficult to discover the global maximum, but also that results can vary widely between applications of the model. For some domains which employ HMMs for such purposes, such as speech processing, sufficient a priori information about the system is available to avoid this problem. However, for seismic data in general such a priori information is not available. Our approach involves analytical location of sub-optimal local maxima; once the locations of these maxima have been found, then we can employ a

  9. Hidden Markov model using Dirichlet process for de-identification.

    PubMed

    Chen, Tao; Cullen, Richard M; Godwin, Marshall

    2015-12-01

    For the 2014 i2b2/UTHealth de-identification challenge, we introduced a new non-parametric Bayesian hidden Markov model using a Dirichlet process (HMM-DP). The model intends to reduce task-specific feature engineering and to generalize well to new data. In the challenge we developed a variational method to learn the model and an efficient approximation algorithm for prediction. To accommodate out-of-vocabulary words, we designed a number of feature functions to model such words. The results show the model is capable of understanding local context cues to make correct predictions without manual feature engineering and performs as accurately as state-of-the-art conditional random field models in a number of categories. To incorporate long-range and cross-document context cues, we developed a skip-chain conditional random field model to align the results produced by HMM-DP, which further improved the performance. PMID:26407642

  10. Markov-random-field modeling for linear seismic tomography.

    PubMed

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2014-10-01

    We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences. PMID:25375468

  11. AIRWAY LABELING USING A HIDDEN MARKOV TREE MODEL

    PubMed Central

    Ross, James C.; Díaz, Alejandro A.; Okajima, Yuka; Wassermann, Demian; Washko, George R.; Dy, Jennifer; San José Estépar, Raúl

    2014-01-01

    We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM). We obtain a collection of discrete points along the segmented airway tree using particles sampling [1] and establish topology using Kruskal’s minimum spanning tree algorithm. Following this, our HMTM algorithm probabilistically assigns labels to each point. While alternative methods label airway branches out to the segmental level, we describe a general method and demonstrate its performance out to the subsubsegmental level (two generations further than previously published approaches). We present results on a collection of 25 computed tomography (CT) datasets taken from a Chronic Obstructive Pulmonary Disease (COPD) study. PMID:25436039

  12. COCIS: Markov processes in single molecule fluorescence

    PubMed Central

    Talaga, David S.

    2009-01-01

    This article examines the current status of Markov processes in single molecule fluorescence. For molecular dynamics to be described by a Markov process, the Markov process must include all states involved in the dynamics and the FPT distributions out of those states must be describable by a simple exponential law. The observation of non-exponential first-passage time distributions or other evidence of non-Markovian dynamics is common in single molecule studies and offers an opportunity to expand the Markov model to include new dynamics or states that improve understanding of the system. PMID:19543444

  13. A Markov chain model for reliability growth and decay

    NASA Technical Reports Server (NTRS)

    Siegrist, K.

    1982-01-01

    A mathematical model is developed to describe a complex system undergoing a sequence of trials in which there is interaction between the internal states of the system and the outcomes of the trials. For example, the model might describe a system undergoing testing that is redesigned after each failure. The basic assumptions for the model are that the state of the system after a trial depends probabilistically only on the state before the trial and on the outcome of the trial and that the outcome of a trial depends probabilistically only on the state of the system before the trial. It is shown that under these basic assumptions, the successive states form a Markov chain and the successive states and outcomes jointly form a Markov chain. General results are obtained for the transition probabilities, steady-state distributions, etc. A special case studied in detail describes a system that has two possible state ('repaired' and 'unrepaired') undergoing trials that have three possible outcomes ('inherent failure', 'assignable-cause' 'failure' and 'success'). For this model, the reliability function is computed explicitly and an optimal repair policy is obtained.

  14. Reduction Of Sizes Of Semi-Markov Reliability Models

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Palumbo, Dan L.

    1995-01-01

    Trimming technique reduces computational effort by order of magnitude while introducing negligible error. Error bound depends on only three parameters from semi-Markov model: maximum sum of rates for failure transitions leaving any state, maximum average holding time for recovery-mode state, and operating time for system. Error bound computed before any model generated, enabling modeler to decide immediately whether or not model can be trimmed. Trimming procedure specified by precise and easy description, making it easy to include trimming procedure in program generating mathematical models for use in assessing reliability. Typical application of technique in design of digital control systems required to be extremely reliable. In addition to aerospace applications, fault-tolerant design has growing importance in wide range of industrial applications.

  15. Active Inference for Binary Symmetric Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Galstyan, Aram

    2015-10-01

    We consider active maximum a posteriori (MAP) inference problem for hidden Markov models (HMM), where, given an initial MAP estimate of the hidden sequence, we select to label certain states in the sequence to improve the estimation accuracy of the remaining states. We focus on the binary symmetric HMM, and employ its known mapping to 1d Ising model in random fields. From the statistical physics viewpoint, the active MAP inference problem reduces to analyzing the ground state of the 1d Ising model under modified external fields. We develop an analytical approach and obtain a closed form solution that relates the expected error reduction to model parameters under the specified active inference scheme. We then use this solution to determine most optimal active inference scheme in terms of error reduction, and examine the relation of those schemes to heuristic principles of uncertainty reduction and solution unicity.

  16. A hidden Markov model for space-time precipitation

    SciTech Connect

    Zucchini, W. ); Guttorp, P. )

    1991-08-01

    Stochastic models for precipitation events in space and time over mesoscale spatial areas have important applications in hydrology, both as input to runoff models and as parts of general circulation models (GCMs) of global climate. A family of multivariate models for the occurrence/nonoccurrence of precipitation at N sites is constructed by assuming a different probability of events at the sites for each of a number of unobservable climate states. The climate process is assumed to follow a Markov chain. Simple formulae for first- and second-order parameter functions are derived, and used to find starting values for a numerical maximization of the likelihood. The method is illustrated by applying it to data for one site in Washington and to data for a network in the Great plains.

  17. Robust Hidden Markov Models for Geophysical Data Analysis

    NASA Astrophysics Data System (ADS)

    Granat, R. A.

    2002-12-01

    We employed robust hidden Markov models (HMMs) to perform statistical analysis of seismic events and crustal deformation. These models allowed us to classify different kinds of events or modes of deformation, and furthermore gave us a statistical basis for understanding relationships between different classes. A hidden Markov model is a statistical model for ordered data (typically in time). The observed data is assumed to have been generated by an unobservable statistical process of a particular form. This process is such that each observation is coincident with the system being in a particular discrete state. Furthermore, the next state is dependent on the current state; in other words, it is a first order Markov process. The model is completely described by a set of model parameters: the initial state probabilities, the first order Markov chain state-to-state transition probabilities, and the probabilities of observable outputs associated with each state. Application of the model to data involves optimizing these model parameters with respect to some function of the observations, typically the likelihood of the observations given the model. Our work focused on the fact that this objective function typically has a number of local maxima that is exponential in the model size (the number of states). This means that not only is it very difficult to discover the global maximum, but also that results can vary widely between applications of the model. For some domains, such as speech processing, sufficient a priori information about the system is available such that this problem can be avoided. However, for general scientific analysis, such a priori information is often not available, especially in cases where the HMM is being used as an exploratory tool for scientific understanding. Such was the case for the geophysical data sets used in this work. Our approach involves analytical location of sub-optimal local maxima; once the locations of these maxima have been found

  18. A coupled hidden Markov model for disease interactions.

    PubMed

    Sherlock, Chris; Xifara, Tatiana; Telfer, Sandra; Begon, Mike

    2013-08-01

    To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis-Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. PMID:24223436

  19. A dose and time response Markov model for the in-host dynamics of infection with intracellular bacteria following inhalation: with application to Francisella tularensis

    PubMed Central

    Wood, R. M.; Egan, J. R.; Hall, I. M.

    2014-01-01

    In a novel approach, the standard birth–death process is extended to incorporate a fundamental mechanism undergone by intracellular bacteria, phagocytosis. The model accounts for stochastic interaction between bacteria and cells of the immune system and heterogeneity in susceptibility to infection of individual hosts within a population. Model output is the dose–response relation and the dose-dependent distribution of time until response, where response is the onset of symptoms. The model is thereafter parametrized with respect to the highly virulent Schu S4 strain of Francisella tularensis, in the first such study to consider a biologically plausible mathematical model for early human infection with this bacterium. Results indicate a median infectious dose of about 23 organisms, which is higher than previously thought, and an average incubation period of between 3 and 7 days depending on dose. The distribution of incubation periods is right-skewed up to about 100 organisms and symmetric for larger doses. Moreover, there are some interesting parallels to the hypotheses of some of the classical dose–response models, such as independent action (single-hit model) and individual effective dose (probit model). The findings of this study support experimental evidence and postulations from other investigations that response is, in fact, influenced by both in-host and between-host variability. PMID:24671937

  20. Wave propagation modeling with non-Markov phase screens.

    PubMed

    Charnotskii, Mikhail

    2016-04-01

    A recently introduced [J. Opt. Soc. Am. A30, 479 (2013)10.1364/JOSAA.30.000479JOAOD61084-7529] sparse spectrum (SS) model of statistically homogeneous random fields makes it possible to generate 3D samples of refractive-index fluctuations with prescribed spectral density at a very reasonable computational cost. The SS technique can be used in the framework of the split-step Fourier method for numerical simulation of wave propagation in turbulence. It allows generation of the phase screen samples that are free from the limitations of the Markov approximation, which is commonly used for theoretical description and numerical modeling of optical waves propagation through turbulence. We investigate statistics of these phase screens and present a numerical algorithm for their generation. PMID:27140765

  1. Identifying Seismicity Levels via Poisson Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Orfanogiannaki, K.; Karlis, D.; Papadopoulos, G. A.

    2010-08-01

    Poisson Hidden Markov models (PHMMs) are introduced to model temporal seismicity changes. In a PHMM the unobserved sequence of states is a finite-state Markov chain and the distribution of the observation at any time is Poisson with rate depending only on the current state of the chain. Thus, PHMMs allow a region to have varying seismicity rate. We applied the PHMM to model earthquake frequencies in the seismogenic area of Killini, Ionian Sea, Greece, between period 1990 and 2006. Simulations of data from the assumed model showed that it describes quite well the true data. The earthquake catalogue is dominated by main shocks occurring in 1993, 1997 and 2002. The time plot of PHMM seismicity states not only reproduces the three seismicity clusters but also quantifies the seismicity level and underlies the degree of strength of the serial dependence of the events at any point of time. Foreshock activity becomes quite evident before the three sequences with the gradual transition to states of cascade seismicity. Traditional analysis, based on the determination of highly significant changes of seismicity rates, failed to recognize foreshocks before the 1997 main shock due to the low number of events preceding that main shock. Then, PHMM has better performance than traditional analysis since the transition from one state to another does not only depend on the total number of events involved but also on the current state of the system. Therefore, PHMM recognizes significant changes of seismicity soon after they start, which is of particular importance for real-time recognition of foreshock activities and other seismicity changes.

  2. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    SciTech Connect

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-07

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  3. Comparison of the kinetics of different Markov models for ligand binding under varying conditions.

    PubMed

    Martini, Johannes W R; Habeck, Michael

    2015-03-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest. PMID:25747058

  4. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    NASA Astrophysics Data System (ADS)

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  5. Markov Model of Accident Progression at Fukushima Daiichi

    SciTech Connect

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  6. Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation

    NASA Astrophysics Data System (ADS)

    Andreão, Rodrigo Varejão; Boudy, Jérôme

    2006-12-01

    This work aims at providing new insights on the electrocardiogram (ECG) segmentation problem using wavelets. The wavelet transform has been originally combined with a hidden Markov models (HMMs) framework in order to carry out beat segmentation and classification. A group of five continuous wavelet functions commonly used in ECG analysis has been implemented and compared using the same framework. All experiments were realized on the QT database, which is composed of a representative number of ambulatory recordings of several individuals and is supplied with manual labels made by a physician. Our main contribution relies on the consistent set of experiments performed. Moreover, the results obtained in terms of beat segmentation and premature ventricular beat (PVC) detection are comparable to others works reported in the literature, independently of the type of the wavelet. Finally, through an original concept of combining two wavelet functions in the segmentation stage, we achieve our best performances.

  7. A Markov decision model for determining optimal outpatient scheduling.

    PubMed

    Patrick, Jonathan

    2012-06-01

    Managing an efficient outpatient clinic can often be complicated by significant no-show rates and escalating appointment lead times. One method that has been proposed for avoiding the wasted capacity due to no-shows is called open or advanced access. The essence of open access is "do today's demand today". We develop a Markov Decision Process (MDP) model that demonstrates that a short booking window does significantly better than open access. We analyze a number of scenarios that explore the trade-off between patient-related measures (lead times) and physician- or system-related measures (revenue, overtime and idle time). Through simulation, we demonstrate that, over a wide variety of potential scenarios and clinics, the MDP policy does as well or better than open access in terms of minimizing costs (or maximizing profits) as well as providing more consistent throughput. PMID:22089944

  8. Comparison of glycosyltransferase families using the profile hidden Markov model.

    PubMed

    Kikuchi, Norihiro; Kwon, Yeon-Dae; Gotoh, Masanori; Narimatsu, Hisashi

    2003-10-17

    In order to investigate the relationship between glycosyltransferase families and the motif for them, we classified 47 glycosyltransferase families in the CAZy database into four superfamilies, GTS-A, -B, -C, and -D, using a profile Hidden Markov Model method. On the basis of the classification and the similarity between GTS-A and nucleotidylyltransferase family catalyzing the synthesis of nucleotide-sugar, we proposed that ancient oligosaccharide might have been synthesized by the origin of GTS-B whereas the origin of GTS-A might be the gene encoding for synthesis of nucleotide-sugar as the donor and have evolved to glycosyltransferases to catalyze the synthesis of divergent carbohydrates. We also suggested that the divergent evolution of each superfamily in the corresponding subcellular component has increased the complexities of eukaryotic carbohydrate structure. PMID:14521949

  9. Pediatric heart sound segmentation using hidden Markov model.

    PubMed

    Sedighian, Pouye; Subudhi, Andrew W; Scalzo, Fabien; Asgari, Shadnaz

    2014-01-01

    Recent advances in technology have enabled automatic cardiac auscultation using digital stethoscopes. This in turn creates the need for development of algorithms capable of automatic segmentation of heart sounds. Pediatric heart sound segmentation is a challenging task due to various confounding factors including the significant influence of respiration on children's heart sounds. The current work investigates the application of homomorphic filtering and Hidden Markov Model for the purpose of segmenting pediatric heart sounds. The efficacy of the proposed method is evaluated on the publicly available Pascal Challenge dataset and its performance is compared with those of three other existing methods. The results show that our proposed method achieves an accuracy of 92.4%±1.1% and 93.5%±1.1% in identifying the first and second heart sound components, respectively, and is superior to three other existing methods in terms of accuracy or computational complexity. PMID:25571237

  10. Natural movement generation using hidden Markov models and principal components.

    PubMed

    Kwon, Junghyun; Park, Frank C

    2008-10-01

    Recent studies have shown that the perception of natural movements-in the sense of being "humanlike"-depends on both joint and task space characteristics of the movement. This paper proposes a movement generation framework that merges two established techniques from gesture recognition and motion generation-hidden Markov models (HMMs) and principal components-into an efficient and reliable means of generating natural movements, which uniformly considers joint and task space characteristics. Given human motion data that are classified into several movement categories, for each category, the principal components extracted from the joint trajectories are used as basis elements. An HMM is, in turn, designed and trained for each movement class using the human task space motion data. Natural movements are generated as the optimal linear combination of principal components, which yields the highest probability for the trained HMM. Experimental case studies with a prototype humanoid robot demonstrate the various advantages of our proposed framework. PMID:18784005

  11. Projection methods for the numerical solution of Markov chain models

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  12. Modeling carbachol-induced hippocampal network synchronization using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin

    2010-10-01

    In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.

  13. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models.

    PubMed

    Scherer, Martin K; Trendelkamp-Schroer, Benjamin; Paul, Fabian; Pérez-Hernández, Guillermo; Hoffmann, Moritz; Plattner, Nuria; Wehmeyer, Christoph; Prinz, Jan-Hendrik; Noé, Frank

    2015-11-10

    Markov (state) models (MSMs) and related models of molecular kinetics have recently received a surge of interest as they can systematically reconcile simulation data from either a few long or many short simulations and allow us to analyze the essential metastable structures, thermodynamics, and kinetics of the molecular system under investigation. However, the estimation, validation, and analysis of such models is far from trivial and involves sophisticated and often numerically sensitive methods. In this work we present the open-source Python package PyEMMA ( http://pyemma.org ) that provides accurate and efficient algorithms for kinetic model construction. PyEMMA can read all common molecular dynamics data formats, helps in the selection of input features, provides easy access to dimension reduction algorithms such as principal component analysis (PCA) and time-lagged independent component analysis (TICA) and clustering algorithms such as k-means, and contains estimators for MSMs, hidden Markov models, and several other models. Systematic model validation and error calculation methods are provided. PyEMMA offers a wealth of analysis functions such that the user can conveniently compute molecular observables of interest. We have derived a systematic and accurate way to coarse-grain MSMs to few states and to illustrate the structures of the metastable states of the system. Plotting functions to produce a manuscript-ready presentation of the results are available. In this work, we demonstrate the features of the software and show new methodological concepts and results produced by PyEMMA. PMID:26574340

  14. Comparing quantum versus Markov random walk models of judgements measured by rating scales

    PubMed Central

    Wang, Z.; Busemeyer, J. R.

    2016-01-01

    Quantum and Markov random walk models are proposed for describing how people evaluate stimuli using rating scales. To empirically test these competing models, we conducted an experiment in which participants judged the effectiveness of public health service announcements from either their own personal perspective or from the perspective of another person. The order of the self versus other judgements was manipulated, which produced significant sequential effects. The quantum and Markov models were fitted to the data using the same number of parameters, and the model comparison strongly supported the quantum over the Markov model. PMID:26621984

  15. Identification and classification of conopeptides using profile Hidden Markov Models.

    PubMed

    Laht, Silja; Koua, Dominique; Kaplinski, Lauris; Lisacek, Frédérique; Stöcklin, Reto; Remm, Maido

    2012-03-01

    Conopeptides are small toxins produced by predatory marine snails of the genus Conus. They are studied with increasing intensity due to their potential in neurosciences and pharmacology. The number of existing conopeptides is estimated to be 1 million, but only about 1000 have been described to date. Thanks to new high-throughput sequencing technologies the number of known conopeptides is likely to increase exponentially in the near future. There is therefore a need for a fast and accurate computational method for identification and classification of the novel conopeptides in large data sets. 62 profile Hidden Markov Models (pHMMs) were built for prediction and classification of all described conopeptide superfamilies and families, based on the different parts of the corresponding protein sequences. These models showed very high specificity in detection of new peptides. 56 out of 62 models do not give a single false positive in a test with the entire UniProtKB/Swiss-Prot protein sequence database. Our study demonstrates the usefulness of mature peptide models for automatic classification with accuracy of 96% for the mature peptide models and 100% for the pro- and signal peptide models. Our conopeptide profile HMMs can be used for finding and annotation of new conopeptides from large datasets generated by transcriptome or genome sequencing. To our knowledge this is the first time this kind of computational method has been applied to predict all known conopeptide superfamilies and some conopeptide families. PMID:22244925

  16. A hidden markov model derived structural alphabet for proteins.

    PubMed

    Camproux, A C; Gautier, R; Tufféry, P

    2004-06-01

    Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction. PMID:15147844

  17. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  18. Application of Gray Markov SCGM(1,1)c Model to Prediction of Accidents Deaths in Coal Mining

    PubMed Central

    Lan, Jian-yi; Zhou, Ying

    2014-01-01

    The prediction of mine accident is the basis of aviation safety assessment and decision making. Gray prediction is suitable for such kinds of system objects with few data, short time, and little fluctuation, and Markov chain theory is just suitable for forecasting stochastic fluctuating dynamic process. Analyzing the coal mine accident human error cause, combining the advantages of both Gray prediction and Markov theory, an amended Gray Markov SCGM(1,1)c model is proposed. The gray SCGM(1,1)c model is applied to imitate the development tendency of the mine safety accident, and adopt the amended model to improve prediction accuracy, while Markov prediction is used to predict the fluctuation along the tendency. Finally, the new model is applied to forecast the mine safety accident deaths from 1990 to 2010 in China, and, 2011–2014 coal accidents deaths were predicted. The results show that the new model not only discovers the trend of the mine human error accident death toll but also overcomes the random fluctuation of data affecting precision. It possesses stronger engineering application.

  19. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    PubMed Central

    Zhu, Shijia; Wang, Yadong

    2015-01-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings. PMID:26680653

  20. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  1. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks.

    PubMed

    Zhu, Shijia; Wang, Yadong

    2015-01-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is 'stationarity', and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings. PMID:26680653

  2. Accelerating Monte Carlo Markov chains with proxy and error models

    NASA Astrophysics Data System (ADS)

    Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan

    2015-12-01

    In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

  3. Decoding coalescent hidden Markov models in linear time

    PubMed Central

    Harris, Kelley; Sheehan, Sara; Kamm, John A.; Song, Yun S.

    2014-01-01

    In many areas of computational biology, hidden Markov models (HMMs) have been used to model local genomic features. In particular, coalescent HMMs have been used to infer ancient population sizes, migration rates, divergence times, and other parameters such as mutation and recombination rates. As more loci, sequences, and hidden states are added to the model, however, the runtime of coalescent HMMs can quickly become prohibitive. Here we present a new algorithm for reducing the runtime of coalescent HMMs from quadratic in the number of hidden time states to linear, without making any additional approximations. Our algorithm can be incorporated into various coalescent HMMs, including the popular method PSMC for inferring variable effective population sizes. Here we implement this algorithm to speed up our demographic inference method diCal, which is equivalent to PSMC when applied to a sample of two haplotypes. We demonstrate that the linear-time method can reconstruct a population size change history more accurately than the quadratic-time method, given similar computation resources. We also apply the method to data from the 1000 Genomes project, inferring a high-resolution history of size changes in the European population. PMID:25340178

  4. Recognition of surgical skills using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Speidel, Stefanie; Zentek, Tom; Sudra, Gunther; Gehrig, Tobias; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is a highly complex medical discipline and can be regarded as a major breakthrough in surgical technique. A minimally invasive intervention requires enhanced motor skills to deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To recognize and analyze the current situation for context-aware assistance, we need intraoperative sensor data and a model of the intervention. Characteristics of a situation are the performed activity, the used instruments, the surgical objects and the anatomical structures. Important information about the surgical activity can be acquired by recognizing the surgical gesture performed. Surgical gestures in minimally invasive surgery like cutting, knot-tying or suturing are here referred to as surgical skills. We use the motion data from the endoscopic instruments to classify and analyze the performed skill and even use it for skill evaluation in a training scenario. The system uses Hidden Markov Models (HMM) to model and recognize a specific surgical skill like knot-tying or suturing with an average recognition rate of 92%.

  5. A clustering approach for estimating parameters of a profile hidden Markov model.

    PubMed

    Aghdam, Rosa; Pezeshk, Hamid; Malekpour, Seyed Amir; Shemehsavar, Soudabeh; Eslahchi, Changiz

    2013-01-01

    A Profile Hidden Markov Model (PHMM) is a standard form of a Hidden Markov Models used for modeling protein and DNA sequence families based on multiple alignment. In this paper, we implement Baum-Welch algorithm and the Bayesian Monte Carlo Markov Chain (BMCMC) method for estimating parameters of small artificial PHMM. In order to improve the prediction accuracy of the estimation of the parameters of the PHMM, we classify the training data using the weighted values of sequences in the PHMM then apply an algorithm for estimating parameters of the PHMM. The results show that the BMCMC method performs better than the Maximum Likelihood estimation. PMID:23865165

  6. Grey-Markov model with state membership degree and its application

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Li, Bingjun; Liu, Fang

    2013-10-01

    In the Grey-Markov forecasting, the extent of a given state that a research object belongs to is expressed as state membership degree. The state membership degree can help compensate for the inaccurate states division and improve the predicted results. Based on the Grey-Markov forecasting analysis, this paper uses the central triangle albino function to calculate the state membership degrees of research objects and determine the state transition probability. Thereby, the new model achieves the improvement of conventional Grey-Markov model. Taking the grain production of Henan Province as an example, the validity and applicability of the improved model are verified.

  7. Ensemble hidden Markov models with application to landmine detection

    NASA Astrophysics Data System (ADS)

    Hamdi, Anis; Frigui, Hichem

    2015-12-01

    We introduce an ensemble learning method for temporal data that uses a mixture of hidden Markov models (HMM). We hypothesize that the data are generated by K models, each of which reflects a particular trend in the data. The proposed approach, called ensemble HMM (eHMM), is based on clustering within the log-likelihood space and has two main steps. First, one HMM is fit to each of the N individual training sequences. For each fitted model, we evaluate the log-likelihood of each sequence. This results in an N-by-N log-likelihood distance matrix that will be partitioned into K groups using a relational clustering algorithm. In the second step, we learn the parameters of one HMM per cluster. We propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum classification error (MCE), and the variational Bayesian (VB) training approaches. Finally, to test a new sequence, its likelihood is computed in all the models and a final confidence value is assigned by combining the models' outputs using an artificial neural network. We propose both discrete and continuous versions of the eHMM. Our approach was evaluated on a real-world application for landmine detection using ground-penetrating radar (GPR). Results show that both the continuous and discrete eHMM can identify meaningful and coherent HMM mixture components that describe different properties of the data. Each HMM mixture component models a group of data that share common attributes. These attributes are reflected in the mixture model's parameters. The results indicate that the proposed method outperforms the baseline HMM that uses one model for each class in the data.

  8. Optical character recognition of handwritten Arabic using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M.

    2011-04-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  9. A markov model based analysis of stochastic biochemical systems.

    PubMed

    Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajial K

    2007-01-01

    The molecular networks regulating basic physiological processes in a cell are generally converted into rate equations assuming the number of biochemical molecules as deterministic variables. At steady state these rate equations gives a set of differential equations that are solved using numerical methods. However, the stochastic cellular environment motivates us to propose a mathematical framework for analyzing such biochemical molecular networks. The stochastic simulators that solve a system of differential equations includes this stochasticity in the model, but suffer from simulation stiffness and require huge computational overheads. This paper describes a new markov chain based model to simulate such complex biological systems with reduced computation and memory overheads. The central idea is to transform the continuous domain chemical master equation (CME) based method into a discrete domain of molecular states with corresponding state transition probabilities and times. Our methodology allows the basic optimization schemes devised for the CME and can also be extended to reduce the computational and memory overheads appreciably at the cost of accuracy. The simulation results for the standard Enzyme-Kinetics and Transcriptional Regulatory systems show promising correspondence with the CME based methods and point to the efficacy of our scheme. PMID:17951818

  10. Mapping eQTL Networks with Mixed Graphical Markov Models

    PubMed Central

    Tur, Inma; Roverato, Alberto; Castelo, Robert

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303

  11. Efficient inference of hidden Markov models from large observation sequences

    NASA Astrophysics Data System (ADS)

    Priest, Benjamin W.; Cybenko, George

    2016-05-01

    The hidden Markov model (HMM) is widely used to model time series data. However, the conventional Baum- Welch algorithm is known to perform poorly when applied to long observation sequences. The literature contains several alternatives that seek to improve the memory or time complexity of the algorithm. However, for an HMM with N states and an observation sequence of length T, these alternatives require at best O(N) space and O(N2T) time. Given the preponderance of applications that increasingly deal with massive amounts of data, an alternative whose time is O(T)+poly(N) is desired. Recent research presents an alternative to the Baum-Welch algorithm that relies on nonnegative matrix factorization. This document examines the space complexity of this alternative approach and proposes further optimizations using approaches adopted from the matrix sketching literature. The result is a streaming algorithm whose space complexity is constant and time complexity is linear with respect to the size of the observation sequence. The paper also presents a batch algorithm that allow for even further improved space complexity at the expense of an additional pass over the observation sequence.

  12. Supervised learning of hidden Markov models for sequence discrimination

    SciTech Connect

    Mamitsuka, Hiroshi

    1997-12-01

    We present two supervised learning algorithms for hidden Markov models (HMMs) for sequence discrimination. When we model a class of sequences with an HMM, conventional learning algorithms for HMMs have trained the HMM with training examples belonging to the class, i.e. positive examples alone, while both of our methods allow us to use negative examples as well as positive examples. One of our algorithms minimizes a kind of distance between a target likelihood of a given training sequence and an actual likelihood of the sequence, which is obtained by a given HMM, using an additive type of parameter updating based on a gradient-descent learning. The other algorithm maximizes a criterion which represents a kind of ratio of the likelihood of a positive example to the likelihood of the total example, using a multiplicative type of parameter updating which is more efficient in actual computation time than the additive type one. We compare our two methods with two conventional methods on a type of cross-validation of actual motif classification experiments. Experimental results show that in terms of the average number of classification errors, our two methods out-perform the two conventional algorithms. 14 refs., 4 figs., 1 tab.

  13. A Network of SCOP Hidden Markov Models and Its Analysis

    PubMed Central

    2011-01-01

    Background The Structural Classification of Proteins (SCOP) database uses a large number of hidden Markov models (HMMs) to represent families and superfamilies composed of proteins that presumably share the same evolutionary origin. However, how the HMMs are related to one another has not been examined before. Results In this work, taking into account the processes used to build the HMMs, we propose a working hypothesis to examine the relationships between HMMs and the families and superfamilies that they represent. Specifically, we perform an all-against-all HMM comparison using the HHsearch program (similar to BLAST) and construct a network where the nodes are HMMs and the edges connect similar HMMs. We hypothesize that the HMMs in a connected component belong to the same family or superfamily more often than expected under a random network connection model. Results show a pattern consistent with this working hypothesis. Moreover, the HMM network possesses features distinctly different from the previously documented biological networks, exemplified by the exceptionally high clustering coefficient and the large number of connected components. Conclusions The current finding may provide guidance in devising computational methods to reduce the degree of overlaps between the HMMs representing the same superfamilies, which may in turn enable more efficient large-scale sequence searches against the database of HMMs. PMID:21635719

  14. Optical character recognition of handwritten Arabic using hidden Markov models

    SciTech Connect

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M

    2011-01-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  15. Analysis of nanopore data using hidden Markov models

    PubMed Central

    Schreiber, Jacob; Karplus, Kevin

    2015-01-01

    Motivation: Nanopore-based sequencing techniques can reconstruct properties of biosequences by analyzing the sequence-dependent ionic current steps produced as biomolecules pass through a pore. Typically this involves alignment of new data to a reference, where both reference construction and alignment have been performed by hand. Results: We propose an automated method for aligning nanopore data to a reference through the use of hidden Markov models. Several features that arise from prior processing steps and from the class of enzyme used can be simply incorporated into the model. Previously, the M2MspA nanopore was shown to be sensitive enough to distinguish between cytosine, methylcytosine and hydroxymethylcytosine. We validated our automated methodology on a subset of that data by automatically calculating an error rate for the distinction between the three cytosine variants and show that the automated methodology produces a 2–3% error rate, lower than the 10% error rate from previous manual segmentation and alignment. Availability and implementation: The data, output, scripts and tutorials replicating the analysis are available at https://github.com/UCSCNanopore/Data/tree/master/Automation. Contact: karplus@soe.ucsc.edu or jmschreiber91@gmail.com Supplementary information: Supplementary data are available from Bioinformatics online. PMID:25649617

  16. Detection of new genes in a bacterial genome using Markov models for three gene classes.

    PubMed

    Borodovsky, M; McIninch, J D; Koonin, E V; Rudd, K E; Médigue, C; Danchin, A

    1995-09-11

    We further investigated the statistical features of the three classes of Escherichia coli genes that have been previously delineated by factorial correspondence analysis and dynamic clustering methods. A phased Markov model for a nucleotide sequence of each gene class was developed and employed for gene prediction using the GeneMark program. The protein-coding region prediction accuracy was determined for class-specific Markov models of different orders when the programs implementing these models were applied to gene sequences from the same or other classes. It is shown that at least two training sets and two program versions derived for different classes of E. coli genes are necessary in order to achieve a high accuracy of coding region prediction for uncharacterized sequences. Some annotated E. coli genes from Class I and Class III are shown to be spurious, whereas many open reading frames (ORFs) that have not been annotated in GenBank as genes are predicted to encode proteins. The amino acid sequences of the putative products of these ORFs initially did not show similarity to already known proteins. However, conserved regions have been identified in several of them by screening the latest entries in protein sequence databases and applying methods for motif search, while some other of these new genes have been identified in independent experiments. PMID:7567469

  17. Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy.

    PubMed

    Abler, Daniel; Kanellopoulos, Vassiliki; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken

    2013-07-01

    Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of 'general Markov models', providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results. PMID:23824126

  18. High-order hidden Markov model for piecewise linear processes and applications to speech recognition.

    PubMed

    Lee, Lee-Min; Jean, Fu-Rong

    2016-08-01

    The hidden Markov models have been widely applied to systems with sequential data. However, the conditional independence of the state outputs will limit the output of a hidden Markov model to be a piecewise constant random sequence, which is not a good approximation for many real processes. In this paper, a high-order hidden Markov model for piecewise linear processes is proposed to better approximate the behavior of a real process. A parameter estimation method based on the expectation-maximization algorithm was derived for the proposed model. Experiments on speech recognition of noisy Mandarin digits were conducted to examine the effectiveness of the proposed method. Experimental results show that the proposed method can reduce the recognition error rate compared to a baseline hidden Markov model. PMID:27586781

  19. A discrete Markov metapopulation model for persistence and extinction of species.

    PubMed

    Thompson, Colin J; Shtilerman, Elad; Stone, Lewi

    2016-09-01

    A simple discrete generation Markov metapopulation model is formulated for studying the persistence and extinction dynamics of a species in a given region which is divided into a large number of sites or patches. Assuming a linear site occupancy probability from one generation to the next we obtain exact expressions for the time evolution of the expected number of occupied sites and the mean-time to extinction (MTE). Under quite general conditions we show that the MTE, to leading order, is proportional to the logarithm of the initial number of occupied sites and in precise agreement with similar expressions for continuous time-dependent stochastic models. Our key contribution is a novel application of generating function techniques and simple asymptotic methods to obtain a second order asymptotic expression for the MTE which is extremely accurate over the entire range of model parameter values. PMID:27302909

  20. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    NASA Astrophysics Data System (ADS)

    Johnston, Kyle B.; Peter, Adrian M.

    2016-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. Our research focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

  1. Hidden Markov chain modeling for epileptic networks identification.

    PubMed

    Le Cam, Steven; Louis-Dorr, Valérie; Maillard, Louis

    2013-01-01

    The partial epileptic seizures are often considered to be caused by a wrong balance between inhibitory and excitatory interneuron connections within a focal brain area. These abnormal balances are likely to result in loss of functional connectivities between remote brain structures, while functional connectivities within the incriminated zone are enhanced. The identification of the epileptic networks underlying these hypersynchronies are expected to contribute to a better understanding of the brain mechanisms responsible for the development of the seizures. In this objective, threshold strategies are commonly applied, based on synchrony measurements computed from recordings of the electrophysiologic brain activity. However, such methods are reported to be prone to errors and false alarms. In this paper, we propose a hidden Markov chain modeling of the synchrony states with the aim to develop a reliable machine learning methods for epileptic network inference. The method is applied on a real Stereo-EEG recording, demonstrating consistent results with the clinical evaluations and with the current knowledge on temporal lobe epilepsy. PMID:24110697

  2. ENSO informed Drought Forecasting Using Nonhomogeneous Hidden Markov Chain Model

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Yoo, J.; Kim, T.

    2013-12-01

    The study aims at developing a new scheme to investigate the potential use of ENSO (El Niño/Southern Oscillation) for drought forecasting. In this regard, objective of this study is to extend a previously developed nonhomogeneous hidden Markov chain model (NHMM) to identify climate states associated with drought that can be potentially used to forecast drought conditions using climate information. As a target variable for forecasting, SPI(standardized precipitation index) is mainly utilized. This study collected monthly precipitation data over 56 stations that cover more than 30 years and K-means cluster analysis using drought properties was applied to partition regions into mutually exclusive clusters. In this study, six main clusters were distinguished through the regionalization procedure. For each cluster, the NHMM was applied to estimate the transition probability of hidden states as well as drought conditions informed by large scale climate indices (e.g. SOI, Nino1.2, Nino3, Nino3.4, MJO and PDO). The NHMM coupled with large scale climate information shows promise as a technique for forecasting drought scenarios. A more detailed explanation of large scale climate patterns associated with the identified hidden states will be provided with anomaly composites of SSTs and SLPs. Acknowledgement This research was supported by a grant(11CTIPC02) from Construction Technology Innovation Program (CTIP) funded by Ministry of Land, Transport and Maritime Affairs of Korean government.

  3. User’s manual for basic version of MCnest Markov chain nest productivity model

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  4. Technical manual for basic version of the Markov chain nest productivity model (MCnest)

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  5. Modeling and computing of stock index forecasting based on neural network and Markov chain.

    PubMed

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  6. Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis.

    PubMed

    Zhou, De; Lin, Zhulu; Liu, Liming

    2012-11-15

    Land salinization and desalinization are complex processes affected by both biophysical and human-induced driving factors. Conventional approaches of land salinization assessment and simulation are either too time consuming or focus only on biophysical factors. The cellular automaton (CA)-Markov model, when coupled with spatial pattern analysis, is well suited for regional assessments and simulations of salt-affected landscapes since both biophysical and socioeconomic data can be efficiently incorporated into a geographic information system framework. Our hypothesis set forth that the CA-Markov model can serve as an alternative tool for regional assessment and simulation of land salinization or desalinization. Our results suggest that the CA-Markov model, when incorporating biophysical and human-induced factors, performs better than the model which did not account for these factors when simulating the salt-affected landscape of the Yinchuan Plain (China) in 2009. In general, the CA-Markov model is best suited for short-term simulations and the performance of the CA-Markov model is largely determined by the availability of high-quality, high-resolution socioeconomic data. The coupling of the CA-Markov model with spatial pattern analysis provides an improved understanding of spatial and temporal variations of salt-affected landscape changes and an option to test different soil management scenarios for salinity management. PMID:23085467

  7. Group association test using a hidden Markov model.

    PubMed

    Cheng, Yichen; Dai, James Y; Kooperberg, Charles

    2016-04-01

    In the genomic era, group association tests are of great interest. Due to the overwhelming number of individual genomic features, the power of testing for association of a single genomic feature at a time is often very small, as are the effect sizes for most features. Many methods have been proposed to test association of a trait with a group of features within a functional unit as a whole, e.g. all SNPs in a gene, yet few of these methods account for the fact that generally a substantial proportion of the features are not associated with the trait. In this paper, we propose to model the association for each feature in the group as a mixture of features with no association and features with non-zero associations to explicitly account for the possibility that a fraction of features may not be associated with the trait while other features in the group are. The feature-level associations are first estimated by generalized linear models; the sequence of these estimated associations is then modeled by a hidden Markov chain. To test for global association, we develop a modified likelihood ratio test based on a log-likelihood function that ignores higher order dependency plus a penalty term. We derive the asymptotic distribution of the likelihood ratio test under the null hypothesis. Furthermore, we obtain the posterior probability of association for each feature, which provides evidence of feature-level association and is useful for potential follow-up studies. In simulations and data application, we show that our proposed method performs well when compared with existing group association tests especially when there are only few features associated with the outcome. PMID:26420797

  8. A graph theoretic approach to global earthquake sequencing: A Markov chain model

    NASA Astrophysics Data System (ADS)

    Vasudevan, K.; Cavers, M. S.

    2012-12-01

    We construct a directed graph to represent a Markov chain of global earthquake sequences and analyze the statistics of transition probabilities linked to earthquake zones. For earthquake zonation, we consider the simplified plate boundary template of Kagan, Bird, and Jackson (KBJ template, 2010). We demonstrate the applicability of the directed graph approach to hazard-related forecasting using some of the properties of graphs that represent the finite Markov chain. We extend the present study to consider Bird's 52-plate zonation (2003) describing the global earthquakes at and within plate boundaries to gain further insight into the usefulness of digraphs corresponding to a Markov chain model.

  9. The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach

    PubMed Central

    Ficz, Gabriella; Wolf, Verena; Walter, Jörn

    2016-01-01

    DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance. PMID:27224554

  10. Statistical Inference in Hidden Markov Models Using k-Segment Constraints

    PubMed Central

    Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher

    2016-01-01

    Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674

  11. A stochastic Markov chain model to describe lung cancer growth and metastasis.

    PubMed

    Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter

    2012-01-01

    A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model. PMID:22558094

  12. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution.

    PubMed

    Trendelkamp-Schroer, Benjamin; Noé, Frank

    2013-04-28

    Direct simulation of biomolecular dynamics in thermal equilibrium is challenging due to the metastable nature of conformation dynamics and the computational cost of molecular dynamics. Biased or enhanced sampling methods may improve the convergence of expectation values of equilibrium probabilities and expectation values of stationary quantities significantly. Unfortunately the convergence of dynamic observables such as correlation functions or timescales of conformational transitions relies on direct equilibrium simulations. Markov state models are well suited to describe both stationary properties and properties of slow dynamical processes of a molecular system, in terms of a transition matrix for a jump process on a suitable discretization of continuous conformation space. Here, we introduce statistical estimation methods that allow a priori knowledge of equilibrium probabilities to be incorporated into the estimation of dynamical observables. Both maximum likelihood methods and an improved Monte Carlo sampling method for reversible transition matrices with fixed stationary distribution are given. The sampling approach is applied to a toy example as well as to simulations of the MR121-GSGS-W peptide, and is demonstrated to converge much more rapidly than a previous approach of Noé [J. Chem. Phys. 128, 244103 (2008)]. PMID:23635117

  13. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution

    NASA Astrophysics Data System (ADS)

    Trendelkamp-Schroer, Benjamin; Noé, Frank

    2013-04-01

    Direct simulation of biomolecular dynamics in thermal equilibrium is challenging due to the metastable nature of conformation dynamics and the computational cost of molecular dynamics. Biased or enhanced sampling methods may improve the convergence of expectation values of equilibrium probabilities and expectation values of stationary quantities significantly. Unfortunately the convergence of dynamic observables such as correlation functions or timescales of conformational transitions relies on direct equilibrium simulations. Markov state models are well suited to describe both stationary properties and properties of slow dynamical processes of a molecular system, in terms of a transition matrix for a jump process on a suitable discretization of continuous conformation space. Here, we introduce statistical estimation methods that allow a priori knowledge of equilibrium probabilities to be incorporated into the estimation of dynamical observables. Both maximum likelihood methods and an improved Monte Carlo sampling method for reversible transition matrices with fixed stationary distribution are given. The sampling approach is applied to a toy example as well as to simulations of the MR121-GSGS-W peptide, and is demonstrated to converge much more rapidly than a previous approach of Noé [J. Chem. Phys. 128, 244103 (2008), 10.1063/1.2916718].

  14. Markov Model of Severe Accident Progression and Management

    SciTech Connect

    Bari, R.A.; Cheng, L.; Cuadra,A.; Ginsberg,T.; Lehner,J.; Martinez-Guridi,G.; Mubayi,V.; Pratt,W.T.; Yue, M.

    2012-06-25

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  15. Modeling sediment transport as a spatio-temporal Markov process.

    NASA Astrophysics Data System (ADS)

    Heyman, Joris; Ancey, Christophe

    2014-05-01

    Despite a century of research about sediment transport by bedload occuring in rivers, its constitutive laws remain largely unknown. The proof being that our ability to predict mid-to-long term transported volumes within reasonable confidence interval is almost null. The intrinsic fluctuating nature of bedload transport may be one of the most important reasons why classical approaches fail. Microscopic probabilistic framework has the advantage of taking into account these fluctuations at the particle scale, to understand their effect on the macroscopic variables such as sediment flux. In this framework, bedload transport is seen as the random motion of particles (sand, gravel, pebbles...) over a two-dimensional surface (the river bed). The number of particles in motion, as well as their velocities, are random variables. In this talk, we show how a simple birth-death Markov model governing particle motion on a regular lattice accurately reproduces the spatio-temporal correlations observed at the macroscopic level. Entrainment, deposition and transport of particles by the turbulent fluid (air or water) are supposed to be independent and memoryless processes that modify the number of particles in motion. By means of the Poisson representation, we obtained a Fokker-Planck equation that is exactly equivalent to the master equation and thus valid for all cell sizes. The analysis shows that the number of moving particles evolves locally far from thermodynamic equilibrium. Several analytical results are presented and compared to experimental data. The index of dispersion (or variance over mean ratio) is proved to grow from unity at small scales to larger values at larger scales confirming the non Poisonnian behavior of bedload transport. Also, we study the one and two dimensional K-function, which gives the average number of moving particles located in a ball centered at a particle centroid function of the ball's radius.

  16. Reverse engineering a social agent-based hidden markov model--visage.

    PubMed

    Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A

    2008-12-01

    We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution. PMID:19145665

  17. A continuous time version and a generalization of a Markov-recapture model for trapping experiments.

    PubMed

    Alpizar-Jara, Russell; Smith, Charles E

    2008-01-01

    Wileyto et al. [E.P. Wileyto, W.J. Ewens, M.A. Mullen, Markov-recapture population estimates: a tool for improving interpretation of trapping experiments, Ecology 75 (1994) 1109] propose a four-state discrete time Markov process, which describes the structure of a marking-capture experiment as a method of population estimation. They propose this method primarily for estimation of closed insect populations. Their method provides a mark-recapture estimate from a single trap observation by allowing subjects to mark themselves. The estimate of the unknown population size is based on the assumption of a closed population and a simple Markov model in which the rates of marking, capture, and recapture are assumed to be equal. Using the one step transition probability matrix of their model, we illustrate how to go from an embedded discrete time Markov process to a continuous time Markov process assuming exponentially distributed holding times. We also compute the transition probabilities after time t for the continuous time case and compare the limiting behavior of the continuous and discrete time processes. Finally, we generalize their model by relaxing the assumption of equal per capita rates for marking, capture, and recapture. Other questions about how their results change when using a continuous time Markov process are examined. PMID:18556026

  18. Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research

    USGS Publications Warehouse

    Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.

    2002-01-01

    Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.

  19. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression.

    PubMed

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-05-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  20. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

    PubMed Central

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-01-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  1. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  2. Cost-effectiveness analysis in colorectal cancer using a semi-Markov model.

    PubMed

    Castelli, Christel; Combescure, Christophe; Foucher, Yohann; Daures, Jean-Pierre

    2007-12-30

    Cost and effectiveness are usually modeled according to one studied event or one health state with parametric or non-parametric methods. In this paper, we propose an original method for assessing total costs while incorporating the dynamics of change in the health status of patients. A semi-Markov model in which the distributions of sojourn times are explicitly defined is developed. The hazard function of sojourn times is modeled by Weibull distributions specific to each transition. A vector of covariates is incorporated into the hazard function of each transition. From a regression model for costs, a cumulative cost function is derived. An estimation of the mean cost per patient in each state defined in the semi-Markov model could thus be made, and this enables us to identify the determinants of direct costs. The results of incremental net benefit (INB) are assessed using the bootstrap method. A cost-effectiveness analysis is performed in order to compare two strategies of follow-up in the colorectal cancer study. Two hundred and forty patients were enrolled in this study. Three health states are defined for patients with curative resection of colorectal cancer: alive without relapse, alive with relapse, and dead. The mean survival is 4.35 and 4.12 years, respectively, in the standard and moderate follow-up groups. We show that mean cost differs significantly by follow-up strategy and Dukes stage. Finally, the INB is assessed and this indicates that neither of the strategies compared was more cost-effective than the other. PMID:18058847

  3. Development of a Compound Distribution Markov Chain Model for Stochastic Generation of Rainfall with Long Term Persistence

    NASA Astrophysics Data System (ADS)

    Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George

    2015-04-01

    One of the overriding issues in the rainfall simulation is the underestimation of observed rainfall variability in longer timescales (e.g. monthly, annual and multi-year), which usually results into under-estimation of reservoir reliability in urban water planning. This study has developed a Compound Distribution Markov Chain (CDMC) model for stochastic generation of daily rainfall. We used two parameters of Markov Chain process (transition probabilities of wet-to-wet and dry-to-dry days) for simulating rainfall occurrence and two parameters of gamma distribution (calculated from mean and standard deviation of wet-day rainfall) for simulating wet-day rainfall amounts. While two models with deterministic parameters underestimated long term variability, our investigation found that the long term variability of rainfall in the model is predominantly governed by the long term variability of gamma parameters, rather than the variability of Markov Chain parameters. Therefore, in the third approach, we developed the CDMC model with deterministic parameters of Markov Chain process, but stochastic parameters of gamma distribution by sampling the mean and standard deviation of wet-day rainfall from their log-normal and bivariate-normal distribution. We have found that the CDMC is able to replicate both short term and long term rainfall variability, when we calibrated the model at two sites in east coast of Australia using three types of daily rainfall data - (1) dynamically downscaled, 10 km resolution gridded data produced by NSW/ACT Regional Climate Modelling project, (2) 5 km resolution gridded data by Australian Water Availability Project and (3) point scale raingauge stations data by Bureau of Meteorology, Australia. We also examined the spatial variability of parameters and their link with local orography at our field site. The suitability of the model in runoff generation and urban reservoir-water simulation will be discussed.

  4. MARKOV Model Application to Proliferation Risk Reduction of an Advanced Nuclear System

    SciTech Connect

    Bari,R.A.

    2008-07-13

    The Generation IV International Forum (GIF) emphasizes proliferation resistance and physical protection (PR&PP) as a main goal for future nuclear energy systems. The GIF PR&PP Working Group has developed a methodology for the evaluation of these systems. As an application of the methodology, Markov model has been developed for the evaluation of proliferation resistance and is demonstrated for a hypothetical Example Sodium Fast Reactor (ESFR) system. This paper presents the case of diversion by the facility owner/operator to obtain material that could be used in a nuclear weapon. The Markov model is applied to evaluate material diversion strategies. The following features of the Markov model are presented here: (1) An effective detection rate has been introduced to account for the implementation of multiple safeguards approaches at a given strategic point; (2) Technical failure to divert material is modeled as intrinsic barriers related to the design of the facility or the properties of the material in the facility; and (3) Concealment to defeat or degrade the performance of safeguards is recognized in the Markov model. Three proliferation risk measures are calculated directly by the Markov model: the detection probability, technical failure probability, and proliferation time. The material type is indicated by an index that is based on the quality of material diverted. Sensitivity cases have been done to demonstrate the effects of different modeling features on the measures of proliferation resistance.

  5. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    NASA Astrophysics Data System (ADS)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-06-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  6. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    SciTech Connect

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-06-19

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  7. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  8. Super-Resolution Using Hidden Markov Model and Bayesian Detection Estimation Framework

    NASA Astrophysics Data System (ADS)

    Humblot, Fabrice; Mohammad-Djafari, Ali

    2006-12-01

    This paper presents a new method for super-resolution (SR) reconstruction of a high-resolution (HR) image from several low-resolution (LR) images. The HR image is assumed to be composed of homogeneous regions. Thus, the a priori distribution of the pixels is modeled by a finite mixture model (FMM) and a Potts Markov model (PMM) for the labels. The whole a priori model is then a hierarchical Markov model. The LR images are assumed to be obtained from the HR image by lowpass filtering, arbitrarily translation, decimation, and finally corruption by a random noise. The problem is then put in a Bayesian detection and estimation framework, and appropriate algorithms are developed based on Markov chain Monte Carlo (MCMC) Gibbs sampling. At the end, we have not only an estimate of the HR image but also an estimate of the classification labels which leads to a segmentation result.

  9. Deriving non-homogeneous DNA Markov chain models by cluster analysis algorithm minimizing multiple alignment entropy.

    PubMed

    Borodovsky, M; Peresetsky, A

    1994-09-01

    Non-homogeneous Markov chain models can represent biologically important regions of DNA sequences. The statistical pattern that is described by these models is usually weak and was found primarily because of strong biological indications. The general method for extracting similar patterns is presented in the current paper. The algorithm incorporates cluster analysis, multiple alignment and entropy minimization. The method was first tested using the set of DNA sequences produced by Markov chain generators. It was shown that artificial gene sequences, which initially have been randomly set up along the multiple alignment panels, are aligned according to the hidden triplet phase. Then the method was applied to real protein-coding sequences and the resulting alignment clearly indicated the triplet phase and produced the parameters of the optimal 3-periodic non-homogeneous Markov chain model. These Markov models were already employed in the GeneMark gene prediction algorithm, which is used in genome sequencing projects. The algorithm can also handle the case in which the sequences to be aligned reveal different statistical patterns, such as Escherichia coli protein-coding sequences belonging to Class II and Class III. The algorithm accepts a random mix of sequences from different classes, and is able to separate them into two groups (clusters), align each cluster separately, and define a non-homogeneous Markov chain model for each sequence cluster. PMID:7952897

  10. Modeling strategic use of human computer interfaces with novel hidden Markov models.

    PubMed

    Mariano, Laura J; Poore, Joshua C; Krum, David M; Schwartz, Jana L; Coskren, William D; Jones, Eric M

    2015-01-01

    Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM) for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game's functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic task pursuit. PMID

  11. Modeling strategic use of human computer interfaces with novel hidden Markov models

    PubMed Central

    Mariano, Laura J.; Poore, Joshua C.; Krum, David M.; Schwartz, Jana L.; Coskren, William D.; Jones, Eric M.

    2015-01-01

    Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM) for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game's functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic task pursuit. PMID

  12. Communication: Consistent interpretation of molecular simulation kinetics using Markov state models biased with external information

    NASA Astrophysics Data System (ADS)

    Rudzinski, Joseph F.; Kremer, Kurt; Bereau, Tristan

    2016-02-01

    Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and reference (e.g., from experiments or higher-level simulations) observables. To bound the microscopic information generated by computer simulations within reference measurements, we propose a method that reweights the microscopic transitions of the system to improve consistency with a set of coarse kinetic observables. The method employs the well-developed Markov state modeling framework to efficiently link microscopic dynamics with long-time scale constraints, thereby consistently addressing a wide range of time scales. To emphasize the robustness of the method, we consider two distinct coarse-grained models with significant kinetic inconsistencies. When applied to the simulated conformational dynamics of small peptides, the reweighting procedure systematically improves the time scale separation of the slowest processes. Additionally, constraining the forward and backward rates between metastable states leads to slight improvement of their relative stabilities and, thus, refined equilibrium properties of the resulting model. Finally, we find that difficulties in simultaneously describing both the simulated data and the provided constraints can help identify specific limitations of the underlying simulation approach.

  13. Testing the Markov hypothesis in fluid flows

    NASA Astrophysics Data System (ADS)

    Meyer, Daniel W.; Saggini, Frédéric

    2016-05-01

    Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence, and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that depending on the heterogeneity level, Markov models work well above a certain scale of interest for media with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity dynamics of the different media considered.

  14. A Review of Real-Time Markov Model ENSO Forecast in 1996-2015: Why did it Forecast a Strong El Nino since March 2015?

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2015-12-01

    The Markov model for real time ENSO forecast at Climate Prediction Center of National Centers for Environmental Prediction (NCEP) is based on observed sea surface temperature, sea level from the NCEP ocean reanalysis, and pseudo wind stress from the Florida State University in 1980-1995. The Markov model is constructed in a reduced multivariate EOF (MEOF) space with 3 MEOFs. The cross-validated hindcast skill of NINO3.4 in 1980-1995 is competitive among dynamical and statistical models. The model was implemented into operation at CPC in early 2000s since it successfully forecasted the El Nino in winter 1997/98 starting from November 1996 initial conditions (I.C.). In this study, we assessed the real time forecast skill of ENSO by the Markov model in 1996-2015 and compared it with that of other operational forecast models. It is found that the Markov model has lower forecast skill of ENSO in the 2000s than that in the 1980s and 1990s, which is common among ENSO forecast models. The lower forecast skill of the Markov model in the 2000s can be attributed to weak precursor of positive heat content anomaly in the equatorial Pacific and a shorter lead time of the precursor relative to NINO3.4, both of which is related to the decadal change of ENSO. However, out of surprise, the Markov model successfully forecasted the El Nino in winter 2014/15 starting from February 2014 I.C.. In addition, the Markov model forecasted the continuation of the El Nino into the spring/summer/fall of 2015. Starting from March 2015 I.C., the Markov model forecasted a strong El Nino in winter 2015/16. This surprising long-lead forecast skill can be attributed to the positive second principal component (PC) of MEOF that leads NINO3.4 by 6-9 months, a precursor commonly seen in the 1980s and 1990s. This provided us confidence in the model forecast of a strong El Nino in winter 2015/16 that is highly consistent with the ensemble forecast of dynamical models.

  15. Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method.

    PubMed

    Chen, C; Lin, C-H; Long, Z; Chen, Q

    2014-02-01

    To quickly obtain information about airborne infectious disease transmission in enclosed environments is critical in reducing the infection risk to the occupants. This study developed a combined computational fluid dynamics (CFD) and Markov chain method for quickly predicting transient particle transport in enclosed environments. The method first calculated a transition probability matrix using CFD simulations. Next, the Markov chain technique was applied to calculate the transient particle concentration distributions. This investigation used three cases, particle transport in an isothermal clean room, an office with an underfloor air distribution system, and the first-class cabin of an MD-82 airliner, to validate the combined CFD and Markov chain method. The general trends of the particle concentrations vs. time predicted by the Markov chain method agreed with the CFD simulations for these cases. The proposed Markov chain method can provide faster-than-real-time information about particle transport in enclosed environments. Furthermore, for a fixed airflow field, when the source location is changed, the Markov chain method can be used to avoid recalculation of the particle transport equation and thus reduce computing costs. PMID:23789964

  16. Post processing with first- and second-order hidden Markov models

    NASA Astrophysics Data System (ADS)

    Taghva, Kazem; Poudel, Srijana; Malreddy, Spandana

    2013-01-01

    In this paper, we present the implementation and evaluation of first order and second order Hidden Markov Models to identify and correct OCR errors in the post processing of books. Our experiments show that the first order model approximately corrects 10% of the errors with 100% precision, while the second order model corrects a higher percentage of errors with much lower precision.

  17. Methods for testing the Markov condition in the illness-death model: a comparative study.

    PubMed

    Rodríguez-Girondo, Mar; Uña-Álvarez, Jacobo de

    2016-09-10

    Markov three-state progressive and illness-death models are often used in biomedicine for describing survival data when an intermediate event of interest may be observed during the follow-up. However, the usual estimators for Markov models (e.g., Aalen-Johansen transition probabilities) may be systematically biased in non-Markovian situations. On the other hand, despite non-Markovian estimators for transition probabilities and related curves are available, including the Markov information in the construction of the estimators allows for variance reduction. Therefore, testing for the Markov condition is a relevant issue in practice. In this paper, we discuss several characterizations of the Markov condition, with special focus on its equivalence with the quasi-independence between left truncation and survival times in standard survival analysis. New methods for testing the Markovianity of an illness-death model are proposed and compared with existing ones by means of an intensive simulation study. We illustrate our findings through the analysis of a data set from stem cell transplant in leukemia. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990971

  18. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  19. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction.

    PubMed

    Griffin, William A; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects-some good and some bad-on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  20. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    PubMed

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238

  1. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes.

    PubMed

    Pooley, C M; Bishop, S C; Marion, G

    2015-06-01

    Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob-Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed 'model-based proposal' (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2-8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. PMID:25994297

  2. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes

    PubMed Central

    Pooley, C. M.; Bishop, S. C.; Marion, G.

    2015-01-01

    Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob–Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed ‘model-based proposal’ (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2–8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. PMID:25994297

  3. Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.

    PubMed

    Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M

    2016-08-25

    Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations. PMID:27079355

  4. Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models.

    PubMed

    Wang, Hongyan; Zhou, Xiaobo

    2013-04-01

    By altering the electrostatic charge of histones or providing binding sites to protein recognition molecules, Chromatin marks have been proposed to regulate gene expression, a property that has motivated researchers to link these marks to cis-regulatory elements. With the help of next generation sequencing technologies, we can now correlate one specific chromatin mark with regulatory elements (e.g. enhancers or promoters) and also build tools, such as hidden Markov models, to gain insight into mark combinations. However, hidden Markov models have limitation for their character of generative models and assume that a current observation depends only on a current hidden state in the chain. Here, we employed two graphical probabilistic models, namely the linear conditional random field model and multivariate hidden Markov model, to mark gene regions with different states based on recurrent and spatially coherent character of these eight marks. Both models revealed chromatin states that may correspond to enhancers and promoters, transcribed regions, transcriptional elongation, and low-signal regions. We also found that the linear conditional random field model was more effective than the hidden Markov model in recognizing regulatory elements, such as promoter-, enhancer-, and transcriptional elongation-associated regions, which gives us a better choice. PMID:23237214

  5. Fusion of Hidden Markov Random Field models and its Bayesian estimation.

    PubMed

    Destrempes, François; Angers, Jean-François; Mignotte, Max

    2006-10-01

    In this paper, we present a Hidden Markov Random Field (HMRF) data-fusion model. The proposed model is applied to the segmentation of natural images based on the fusion of colors and textons into Julesz ensembles. The corresponding Exploration/ Selection/Estimation (ESE) procedure for the estimation of the parameters is presented. This method achieves the estimation of the parameters of the Gaussian kernels, the mixture proportions, the region labels, the number of regions, and the Markov hyper-parameter. Meanwhile, we present a new proof of the asymptotic convergence of the ESE procedure, based on original finite time bounds for the rate of convergence. PMID:17022259

  6. Enhancement of Markov chain model by integrating exponential smoothing: A case study on Muslims marriage and divorce

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Fadhilah; Rahim, Rahela Abdul

    2015-12-01

    Markov Chain has been introduced since the 1913 for the purpose of studying the flow of data for a consecutive number of years of the data and also forecasting. The important feature in Markov Chain is obtaining the accurate Transition Probability Matrix (TPM). However to obtain the suitable TPM is hard especially in involving long-term modeling due to unavailability of data. This paper aims to enhance the classical Markov Chain by introducing Exponential Smoothing technique in developing the appropriate TPM.

  7. Clinical Decision Analysis and Markov Modeling for Surgeons: An Introductory Overview.

    PubMed

    Hogendoorn, Wouter; Moll, Frans L; Sumpio, Bauer E; Hunink, M G Myriam

    2016-08-01

    This study addresses the use of decision analysis and Markov models to make contemplated decisions for surgical problems. Decision analysis and decision modeling in surgical research are increasing, but many surgeons are unfamiliar with the techniques and are skeptical of the results. The goal of this review is to familiarize surgeons with techniques and terminology used in decision analytic papers, to provide the reader a practical guide to read these papers, and to ensure that surgeons can critically appraise the quality of published clinical decision models and draw well founded conclusions from such reports.First, a brief explanation of decision analysis and Markov models is presented in simple steps, followed by an overview of the components of a decision and Markov model. Subsequently, commonly used terms and definitions are described and explained, including quality-adjusted life-years, disability-adjusted life-years, discounting, half-cycle correction, cycle length, probabilistic sensitivity analysis, incremental cost-effectiveness ratio, and the willingness-to-pay threshold.Finally, the advantages and limitations of research with Markov models are described, and new modeling techniques and future perspectives are discussed. It is important that surgeons are able to understand conclusions from decision analytic studies and are familiar with the specific definitions of the terminology used in the field to keep up with surgical research. Decision analysis can guide treatment strategies when complex clinical questions need to be answered and is a necessary and useful addition to the surgical research armamentarium. PMID:26756750

  8. Markov-CA model using analytical hierarchy process and multiregression technique

    NASA Astrophysics Data System (ADS)

    Omar, N. Q.; Sanusi, S. A. M.; Hussin, W. M. W.; Samat, N.; Mohammed, K. S.

    2014-06-01

    The unprecedented increase in population and rapid rate of urbanisation has led to extensive land use changes. Cellular automata (CA) are increasingly used to simulate a variety of urban dynamics. This paper introduces a new CA based on an integration model built-in multi regression and multi-criteria evaluation to improve the representation of CA transition rule. This multi-criteria evaluation is implemented by utilising data relating to the environmental and socioeconomic factors in the study area in order to produce suitability maps (SMs) using an analytical hierarchical process, which is a well-known method. Before being integrated to generate suitability maps for the periods from 1984 to 2010 based on the different decision makings, which have become conditioned for the next step of CA generation. The suitability maps are compared in order to find the best maps based on the values of the root equation (R2). This comparison can help the stakeholders make better decisions. Thus, the resultant suitability map derives a predefined transition rule for the last step for CA model. The approach used in this study highlights a mechanism for monitoring and evaluating land-use and land-cover changes in Kirkuk city, Iraq owing changes in the structures of governments, wars, and an economic blockade over the past decades. The present study asserts the high applicability and flexibility of Markov-CA model. The results have shown that the model and its interrelated concepts are performing rather well.

  9. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    USGS Publications Warehouse

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  10. A methodology to monitor the changing trends in health status of an elderly person by developing a markov model.

    PubMed

    Kaushik, Alka; Celler, B G; Ambikairajah, E

    2005-01-01

    In this paper we are proposing a statistical testing methodology to monitor changing trends in the health status of elderly people. The occupancy pattern of elderly people can be modeled using a Markov chain, estimating transition probabilities of the chain and test hypotheses about them. The profile of the person for a given period can be stored as a transition matrix of a discrete, regular, ergodic Markov chain. The observation of the occupancy pattern for a given test period can be established as a test Markov chain using information from sensors such as infrared sensors, magnetic switches etc. In the absence of real time data, we have used uniformly distributed transition probabilities to define the profile of the Markov chain and then generated test Markov chain based on this model. The transition probabilities are extracted for the test and profile Markov chain using Maximum Likelihood Estimates (MLE). The statistical testing of occupancy monitoring establishes a basis for statistical inference about the system performance without generating any real time statistics for the occupancy pattern. Chi square test and likelihood ratio tests ensure that the sequences generated from the two Markov chains are statistically same. Any difference in profile Markov chain and test Markov chain could indicate a changed health status of the elderly person. PMID:17282661

  11. Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Cai, Baoping

    2014-01-01

    Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010

  12. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    SciTech Connect

    Ghil, M.; Kravtsov, S.; Robertson, A. W.; Smyth, P.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influence large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.

  13. (abstract) Modeling Protein Families and Human Genes: Hidden Markov Models and a Little Beyond

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre

    1994-01-01

    We will first give a brief overview of Hidden Markov Models (HMMs) and their use in Computational Molecular Biology. In particular, we will describe a detailed application of HMMs to the G-Protein-Coupled-Receptor Superfamily. We will also describe a number of analytical results on HMMs that can be used in discrimination tests and database mining. We will then discuss the limitations of HMMs and some new directions of research. We will conclude with some recent results on the application of HMMs to human gene modeling and parsing.

  14. Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models

    PubMed Central

    2014-01-01

    We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels–Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently identified in two FRET constructs and at three Mg2+ concentrations. Structures generally tend to become more compact upon addition of Mg2+. Some compact structures are observed to significantly depend on Mg2+ concentration, suggesting a tertiary fold stabilized by Mg2+ ions. One compact structure was observed to be Mg2+-independent, consistent with stabilization by tertiary Watson–Crick base pairing found in the folded Diels–Alderase structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding. PMID:24568646

  15. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e., internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature. PMID:27054199

  16. Spike Correlations in a Songbird Agree with a Simple Markov Population Model

    PubMed Central

    Weber, Andrea P; Hahnloser, Richard H. R

    2007-01-01

    The relationships between neural activity at the single-cell and the population levels are of central importance for understanding neural codes. In many sensory systems, collective behaviors in large cell groups can be described by pairwise spike correlations. Here, we test whether in a highly specialized premotor system of songbirds, pairwise spike correlations themselves can be seen as a simple corollary of an underlying random process. We test hypotheses on connectivity and network dynamics in the motor pathway of zebra finches using a high-level population model that is independent of detailed single-neuron properties. We assume that neural population activity evolves along a finite set of states during singing, and that during sleep population activity randomly switches back and forth between song states and a single resting state. Individual spike trains are generated by associating with each of the population states a particular firing mode, such as bursting or tonic firing. With an overall modification of one or two simple control parameters, the Markov model is able to reproduce observed firing statistics and spike correlations in different neuron types and behavioral states. Our results suggest that song- and sleep-related firing patterns are identical on short time scales and result from random sampling of a unique underlying theme. The efficiency of our population model may apply also to other neural systems in which population hypotheses can be tested on recordings from small neuron groups. PMID:18159941

  17. A mixed non-homogeneous hidden Markov model for categorical data, with application to alcohol consumption.

    PubMed

    Maruotti, Antonello; Rocci, Roberto

    2012-04-30

    Hidden Markov models (HMMs) are frequently used to analyse longitudinal data, where the same set of subjects is repeatedly observed over time. In this context, several sources of heterogeneity may arise at individual and/or time level, which affect the hidden process, that is, the transition probabilities between the hidden states. In this paper, we propose the use of a finite mixture of non-homogeneous HMMs (NH-HMMs) to face the heterogeneity problem. The non-homogeneity of the model allows us to take into account observed sources of heterogeneity by means of a proper set of covariates, time and/or individual dependent, explaining the variations in the transition probabilities. Moreover, we handle the unobserved sources of heterogeneity at the individual level, due to, for example, omitted covariates, by introducing a random term with a discrete distribution. The resulting model is a finite mixture of NH-HMM that can be used to classify individuals according to their dynamic behaviour or to estimate a mixed NH-HMM without any assumption regarding the distribution of the random term following the non-parametric maximum likelihood approach. We test the effectiveness of the proposal through a simulation study and an application to real data on alcohol abuse. PMID:22302505

  18. Fitting optimum order of Markov chain models for daily rainfall occurrences in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Deni, Sayang Mohd; Jemain, Abdul Aziz; Ibrahim, Kamarulzaman

    2009-06-01

    The analysis of the daily rainfall occurrence behavior is becoming more important, particularly in water-related sectors. Many studies have identified a more comprehensive pattern of the daily rainfall behavior based on the Markov chain models. One of the aims in fitting the Markov chain models of various orders to the daily rainfall occurrence is to determine the optimum order. In this study, the optimum order of the Markov chain models for a 5-day sequence will be examined in each of the 18 rainfall stations in Peninsular Malaysia, which have been selected based on the availability of the data, using the Akaike’s (AIC) and Bayesian information criteria (BIC). The identification of the most appropriate order in describing the distribution of the wet (dry) spells for each of the rainfall stations is obtained using the Kolmogorov-Smirnov goodness-of-fit test. It is found that the optimum order varies according to the levels of threshold used (e.g., either 0.1 or 10.0 mm), the locations of the region and the types of monsoon seasons. At most stations, the Markov chain models of a higher order are found to be optimum for rainfall occurrence during the northeast monsoon season for both levels of threshold. However, it is generally found that regardless of the monsoon seasons, the first-order model is optimum for the northwestern and eastern regions of the peninsula when the level of thresholds of 10.0 mm is considered. The analysis indicates that the first order of the Markov chain model is found to be most appropriate for describing the distribution of wet spells, whereas the higher-order models are found to be adequate for the dry spells in most of the rainfall stations for both threshold levels and monsoon seasons.

  19. A Test of the Need Hierarchy Concept by a Markov Model of Change in Need Strength.

    ERIC Educational Resources Information Center

    Rauschenberger, John; And Others

    1980-01-01

    In this study of 547 high school graduates, Alderfer's and Maslow's need hierarchy theories were expressed in Markov chain form and were subjected to empirical test. Both models were disconfirmed. Corroborative multiwave correlational analysis also failed to support the need hierarchy concept. (Author/IRT)

  20. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  1. An Evaluation of a Markov Chain Monte Carlo Method for the Rasch Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho

    2001-01-01

    Examined the accuracy of the Gibbs sampling Markov chain Monte Carlo procedure for estimating item and person (theta) parameters in the one-parameter logistic model. Analyzed four empirical datasets using the Gibbs sampling, conditional maximum likelihood, marginal maximum likelihood, and joint maximum likelihood methods. Discusses the conditions…

  2. Markov Models of Search State Patterns in a Hypertext Information Retrieval System.

    ERIC Educational Resources Information Center

    Qiu, Liwen

    1993-01-01

    Describes research that was conducted to determine the search state patterns through which users retrieve information in hypertext systems. Use of the Markov model to describe users' search behavior is discussed, and search patterns of different user groups were studied by comparing transition probability matrices. (Contains 25 references.) (LRW)

  3. Obesity status transitions across the elementary years: Use of Markov chain modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overweight and obesity status transition probabilities using first-order Markov transition models applied to elementary school children were assessed. Complete longitudinal data across eleven assessments were available from 1,494 elementary school children (from 7,599 students in 41 out of 45 school...

  4. Markov Chain Monte Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Stark, Stephen; Chernyshenko, Oleksandr S.

    2006-01-01

    The authors present a Markov Chain Monte Carlo (MCMC) parameter estimation procedure for the generalized graded unfolding model (GGUM) and compare it to the marginal maximum likelihood (MML) approach implemented in the GGUM2000 computer program, using simulated and real personality data. In the simulation study, test length, number of response…

  5. An NCME Instructional Module on Estimating Item Response Theory Models Using Markov Chain Monte Carlo Methods

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Bolt, Daniel M.

    2007-01-01

    The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…

  6. Avian life history profiles for use in the Markov chain nest productivity model (MCnest)

    EPA Science Inventory

    The Markov Chain nest productivity model, or MCnest, quantitatively estimates the effects of pesticides or other toxic chemicals on annual reproductive success of avian species (Bennett and Etterson 2013, Etterson and Bennett 2013). The Basic Version of MCnest was developed as a...

  7. Semi-Markov regime switching interest rate models and minimal entropy measure

    NASA Astrophysics Data System (ADS)

    Hunt, Julien; Devolder, Pierre

    2011-10-01

    In this paper, we present a discrete time regime switching binomial-like model of the term structure where the regime switches are governed by a discrete time semi-Markov process. We model the evolution of the prices of zero-coupon when given an initial term structure as in the model by Ho and Lee that we aim to extend. We discuss and derive conditions for the model to be arbitrage free and relate this to the notion of martingale measure. We explicitly show that due to the extra source of uncertainty coming from the underlying semi-Markov process, there are an infinite number of equivalent martingale measures. The notion of path independence is also studied in some detail, especially in the presence of regime switches. We deal with the market incompleteness by giving an explicit characterization of the minimal entropy martingale measure. We give an application to the pricing of a European bond option both in a Markov and semi-Markov framework. Finally, we draw some conclusions.

  8. A markov decision process model for the optimal dispatch of military medical evacuation assets.

    PubMed

    Keneally, Sean K; Robbins, Matthew J; Lunday, Brian J

    2016-06-01

    We develop a Markov decision process (MDP) model to examine aerial military medical evacuation (MEDEVAC) dispatch policies in a combat environment. The problem of deciding which aeromedical asset to dispatch to each service request is complicated by the threat conditions at the service locations and the priority class of each casualty event. We assume requests for MEDEVAC support arrive sequentially, with the location and the priority of each casualty known upon initiation of the request. The United States military uses a 9-line MEDEVAC request system to classify casualties as being one of three priority levels: urgent, priority, and routine. Multiple casualties can be present at a single casualty event, with the highest priority casualty determining the priority level for the casualty event. Moreover, an armed escort may be required depending on the threat level indicated by the 9-line MEDEVAC request. The proposed MDP model indicates how to optimally dispatch MEDEVAC helicopters to casualty events in order to maximize steady-state system utility. The utility gained from servicing a specific request depends on the number of casualties, the priority class for each of the casualties, and the locations of both the servicing ambulatory helicopter and casualty event. Instances of the dispatching problem are solved using a relative value iteration dynamic programming algorithm. Computational examples are used to investigate optimal dispatch policies under different threat situations and armed escort delays; the examples are based on combat scenarios in which United States Army MEDEVAC units support ground operations in Afghanistan. PMID:25223847

  9. Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields

    PubMed Central

    Perdikaris, P.; Venturi, D.; Royset, J. O.; Karniadakis, G. E.

    2015-01-01

    We propose a new framework for design under uncertainty based on stochastic computer simulations and multi-level recursive co-kriging. The proposed methodology simultaneously takes into account multi-fidelity in models, such as direct numerical simulations versus empirical formulae, as well as multi-fidelity in the probability space (e.g. sparse grids versus tensor product multi-element probabilistic collocation). We are able to construct response surfaces of complex dynamical systems by blending multiple information sources via auto-regressive stochastic modelling. A computationally efficient machine learning framework is developed based on multi-level recursive co-kriging with sparse precision matrices of Gaussian–Markov random fields. The effectiveness of the new algorithms is demonstrated in numerical examples involving a prototype problem in risk-averse design, regression of random functions, as well as uncertainty quantification in fluid mechanics involving the evolution of a Burgers equation from a random initial state, and random laminar wakes behind circular cylinders. PMID:26345079

  10. Extracting duration information in a picture category decoding task using hidden Markov Models

    PubMed Central

    Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y; Schoenfeld, Mircea A; Knight, Robert T; Rose, Georg

    2016-01-01

    Objective Adapting classifiers for the purpose of brain signal decoding is a major challenge in brain–computer-interface (BCI) research. In a previous study we showed in principle that hidden Markov models (HMM) are a suitable alternative to the well-studied static classifiers. However, since we investigated a rather straightforward task, advantages from modeling of the signal could not be assessed. Approach Here, we investigate a more complex data set in order to find out to what extent HMMs, as a dynamic classifier, can provide useful additional information. We show for a visual decoding problem that besides category information, HMMs can simultaneously decode picture duration without an additional training required. This decoding is based on a strong correlation that we found between picture duration and the behavior of the Viterbi paths. Main results Decoding accuracies of up to 80% could be obtained for category and duration decoding with a single classifier trained on category information only. Significance The extraction of multiple types of information using a single classifier enables the processing of more complex problems, while preserving good training results even on small databases. Therefore, it provides a convenient framework for online real-life BCI utilizations. PMID:26859831

  11. Extracting duration information in a picture category decoding task using hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y.; Schoenfeld, Mircea A.; Knight, Robert T.; Rose, Georg

    2016-04-01

    Objective. Adapting classifiers for the purpose of brain signal decoding is a major challenge in brain-computer-interface (BCI) research. In a previous study we showed in principle that hidden Markov models (HMM) are a suitable alternative to the well-studied static classifiers. However, since we investigated a rather straightforward task, advantages from modeling of the signal could not be assessed. Approach. Here, we investigate a more complex data set in order to find out to what extent HMMs, as a dynamic classifier, can provide useful additional information. We show for a visual decoding problem that besides category information, HMMs can simultaneously decode picture duration without an additional training required. This decoding is based on a strong correlation that we found between picture duration and the behavior of the Viterbi paths. Main results. Decoding accuracies of up to 80% could be obtained for category and duration decoding with a single classifier trained on category information only. Significance. The extraction of multiple types of information using a single classifier enables the processing of more complex problems, while preserving good training results even on small databases. Therefore, it provides a convenient framework for online real-life BCI utilizations.

  12. Ancestry inference in complex admixtures via variable-length Markov chain linkage models.

    PubMed

    Rodriguez, Jesse M; Bercovici, Sivan; Elmore, Megan; Batzoglou, Serafim

    2013-03-01

    Inferring the ancestral origin of chromosomal segments in admixed individuals is key for genetic applications, ranging from analyzing population demographics and history, to mapping disease genes. Previous methods addressed ancestry inference by using either weak models of linkage disequilibrium, or large models that make explicit use of ancestral haplotypes. In this paper we introduce ALLOY, an efficient method that incorporates generalized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial hidden Markov model to capture the parallel process producing the maternal and paternal admixed haplotypes, and models the background linkage disequilibrium in the ancestral populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a broad range of scenarios ranging from recent to ancient admixtures with up to four ancestral populations. We show that ALLOY outperforms the previous state of the art, and is robust to uncertainties in model parameters. PMID:23421795

  13. Ancestry Inference in Complex Admixtures via Variable-length Markov Chain Linkage Models

    PubMed Central

    Bercovici, Sivan; Elmore, Megan; Batzoglou, Serafim

    2013-01-01

    Abstract Inferring the ancestral origin of chromosomal segments in admixed individuals is key for genetic applications, ranging from analyzing population demographics and history, to mapping disease genes. Previous methods addressed ancestry inference by using either weak models of linkage disequilibrium, or large models that make explicit use of ancestral haplotypes. In this paper we introduce ALLOY, an efficient method that incorporates generalized, but highly expressive, linkage disequilibrium models. ALLOY applies a factorial hidden Markov model to capture the parallel process producing the maternal and paternal admixed haplotypes, and models the background linkage disequilibrium in the ancestral populations via an inhomogeneous variable-length Markov chain. We test ALLOY in a broad range of scenarios ranging from recent to ancient admixtures with up to four ancestral populations. We show that ALLOY outperforms the previous state of the art, and is robust to uncertainties in model parameters. PMID:23421795

  14. Hidden Markov Models for Zero-Inflated Poisson Counts with an Application to Substance Use

    PubMed Central

    DeSantis, Stacia M.; Bandyopadhyay, Dipankar

    2011-01-01

    Paradigms for substance abuse cue-reactivity research involve short term pharmacological or stressful stimulation designed to elicit stress and craving responses in cocaine-dependent subjects. It is unclear as to whether stress induced from participation in such studies increases drug-seeking behavior. We propose a 2-state Hidden Markov model to model the number of cocaine abuses per week before and after participation in a stress- and cue-reactivity study. The hypothesized latent state corresponds to ‘high’ or ‘low’ use. To account for a preponderance of zeros, we assume a zero-inflated Poisson model for the count data. Transition probabilities depend on the prior week’s state, fixed demographic variables, and time-varying covariates. We adopt a Bayesian approach to model fitting, and use the conditional predictive ordinate statistic to demonstrate that the zero-inflated Poisson hidden Markov model outperforms other models for longitudinal count data. PMID:21538455

  15. Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model.

    PubMed

    Jarvis, Peter D; Sumner, Jeremy G

    2016-08-01

    We consider the continuous-time presentation of the strand symmetric phylogenetic substitution model (in which rate parameters are unchanged under nucleotide permutations given by Watson-Crick base conjugation). Algebraic analysis of the model's underlying structure as a matrix group leads to a change of basis where the rate generator matrix is given by a two-part block decomposition. We apply representation theoretic techniques and, for any (fixed) number of phylogenetic taxa L and polynomial degree D of interest, provide the means to classify and enumerate the associated Markov invariants. In particular, in the quadratic and cubic cases we prove there are precisely [Formula: see text] and [Formula: see text] linearly independent Markov invariants, respectively. Additionally, we give the explicit polynomial forms of the Markov invariants for (i) the quadratic case with any number of taxa L, and (ii) the cubic case in the special case of a three-taxon phylogenetic tree. We close by showing our results are of practical interest since the quadratic Markov invariants provide independent estimates of phylogenetic distances based on (i) substitution rates within Watson-Crick conjugate pairs, and (ii) substitution rates across conjugate base pairs. PMID:26660305

  16. Model reduction by trimming for a class of semi-Markov reliability models and the corresponding error bound

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Palumbo, Daniel L.

    1991-01-01

    Semi-Markov processes have proved to be an effective and convenient tool to construct models of systems that achieve reliability by redundancy and reconfiguration. These models are able to depict complex system architectures and to capture the dynamics of fault arrival and system recovery. A disadvantage of this approach is that the models can be extremely large, which poses both a model and a computational problem. Techniques are needed to reduce the model size. Because these systems are used in critical applications where failure can be expensive, there must be an analytically derived bound for the error produced by the model reduction technique. A model reduction technique called trimming is presented that can be applied to a popular class of systems. Automatic model generation programs were written to help the reliability analyst produce models of complex systems. This method, trimming, is easy to implement and the error bound easy to compute. Hence, the method lends itself to inclusion in an automatic model generator.

  17. A Markov Chain Model for evaluating the effectiveness of randomized surveillance procedures

    SciTech Connect

    Edmunds, T.A.

    1994-01-01

    A Markov Chain Model has been developed to evaluate the effectiveness of randomized surveillance procedures. The model is applicable for surveillance systems that monitor a collection of assets by randomly selecting and inspecting the assets. The model provides an estimate of the detection probability as a function of the amount of time that an adversary would require to steal or sabotage the asset. An interactive computer code has been written to perform the necessary computations.

  18. The optimum order of a Markov chain model for daily rainfall in Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, O. D.; Webster, P.

    1996-11-01

    Markov type models are often used to describe the occurrence of daily rainfall. Although models of Order 1 have been successfully employed, there remains uncertainty concerning the optimum order for such models. This paper is concerned with estimation of the optimum order of Markov chains and, in particular, the use of objective criteria of the Akaike and Bayesian Information Criteria (AIC and BIC, respectively). Using daily rainfall series for five stations in Nigeria, it has been found that the AIC and BIC estimates vary with month as well as the value of the rainfall threshold used to define a wet day. There is no apparent system to this variation, although AIC estimates are consistently greater than or equal to BIC estimates, with values of the latter limited to zero or unity. The optimum order is also investigated through generation of synthetic sequences of wet and dry days using the transition matrices of zero-, first- and second-order Markov chains. It was found that the first-order model is superior to the zero-order model in representing the characteristics of the historical sequence as judged using frequency duration curves. There was no discernible difference between the model performance for first- and second-order models. There was no seasonal varation in the model performance, which contrasts with the optimum models identified using AIC and BIC estimates. It is concluded that caution is needed with the use of objective criteria for determining the optimum order of the Markov model and that the use of frequency duration curves can provide a robust alternative method of model identification. Comments are also made on the importance of record length and non-stationarity for model identification

  19. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first

  20. Computing the viscosity of supercooled liquids: Markov Network model.

    PubMed

    Li, Ju; Kushima, Akihiro; Eapen, Jacob; Lin, Xi; Qian, Xiaofeng; Mauro, John C; Diep, Phong; Yip, Sidney

    2011-01-01

    The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-equation description in which the system follows a transition-state pathway trajectory of hopping among local energy minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative connection is established between the temperature variation of the calculated viscosity and the underlying potential energy and inherent stress landscape, showing a different landscape topography or "terrain" is needed for low-temperature viscosity (of order 10(7) Pa·s) from that associated with high-temperature viscosity (10(-5) Pa·s). Within this range our results clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this work explicitly demonstrates that a temperature-dependent "terrain" characterizing different parts of the same potential energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-dependent effective activation barrier is quantified. PMID:21464988

  1. Detection of prostate cancer on histopathology using color fractals and Probabilistic Pairwise Markov models.

    PubMed

    Yu, Elaine; Monaco, James P; Tomaszewski, John; Shih, Natalie; Feldman, Michael; Madabhushi, Anant

    2011-01-01

    In this paper we present a system for detecting regions of carcinoma of the prostate (CaP) in H&E stained radical prostatectomy specimens using the color fractal dimension. Color textural information is known to be a valuable characteristic to distinguish CaP from benign tissue. In addition to color information, we know that cancer tends to form contiguous regions. Our system leverages the color staining information of histology as well as spatial dependencies. The color and textural information is first captured using color fractal dimension. To incorporate spatial dependencies, we combine the probability map constructed via color fractal dimension with a novel Markov prior called the Probabilistic Pairwise Markov Model (PPMM). To demonstrate the capability of this CaP detection system, we applied the algorithm to 27 radical prostatectomy specimens from 10 patients. A per pixel evaluation was conducted with ground truth provided by an expert pathologist using only the color fractal feature first, yielding an area under the receiver operator characteristic curve (AUC) curve of 0.790. In conjunction with a Markov prior, the resultant color fractal dimension + Markov random field (MRF) classifier yielded an AUC of 0.831. PMID:22255076

  2. Structural Disorder of Folded Proteins: Isotope-Edited 2D IR Spectroscopy and Markov State Modeling

    PubMed Central

    Baiz, Carlos R.; Tokmakoff, Andrei

    2015-01-01

    The conformational heterogeneity of the N-terminal domain of the ribosomal protein L9 (NTL91-39) in its folded state is investigated using isotope-edited two-dimensional infrared spectroscopy. Backbone carbonyls are isotope-labeled (13C=18O) at five selected positions (V3, V9, V9G13, G16, and G24) to provide a set of localized spectroscopic probes of the structure and solvent exposure at these positions. Structural interpretation of the amide I line shapes is enabled by spectral simulations carried out on structures extracted from a recent Markov state model. The V3 label spectrum indicates that the β-sheet contacts between strands I and II are well folded with minimal disorder. The V9 and V9G13 label spectra, which directly probe the hydrogen-bond contacts across the β-turn, show significant disorder, indicating that molecular dynamics simulations tend to overstabilize ideally folded β-turn structures in NTL91-39. In addition, G24-label spectra provide evidence for a partially disordered α-helix backbone that participates in hydrogen bonding with the surrounding water. PMID:25863066

  3. Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models.

    PubMed

    Suárez, Ernesto; Adelman, Joshua L; Zuckerman, Daniel M

    2016-08-01

    Because standard molecular dynamics (MD) simulations are unable to access time scales of interest in complex biomolecular systems, it is common to "stitch together" information from multiple shorter trajectories using approximate Markov state model (MSM) analysis. However, MSMs may require significant tuning and can yield biased results. Here, by analyzing some of the longest protein MD data sets available (>100 μs per protein), we show that estimators constructed based on exact non-Markovian (NM) principles can yield significantly improved mean first-passage times (MFPTs) for protein folding and unfolding. In some cases, MSM bias of more than an order of magnitude can be corrected when identical trajectory data are reanalyzed by non-Markovian approaches. The NM analysis includes "history" information, higher order time correlations compared to MSMs, that is available in every MD trajectory. The NM strategy is insensitive to fine details of the states used and works well when a fine time-discretization (i.e., small "lag time") is used. PMID:27340835

  4. Markov models and the ensemble Kalman filter for estimation of sorption rates.

    SciTech Connect

    Vugrin, Eric D.; McKenna, Sean Andrew; Vugrin, Kay White

    2007-09-01

    Non-equilibrium sorption of contaminants in ground water systems is examined from the perspective of sorption rate estimation. A previously developed Markov transition probability model for solute transport is used in conjunction with a new conditional probability-based model of the sorption and desorption rates based on breakthrough curve data. Two models for prediction of spatially varying sorption and desorption rates along a one-dimensional streamline are developed. These models are a Markov model that utilizes conditional probabilities to determine the rates and an ensemble Kalman filter (EnKF) applied to the conditional probability method. Both approaches rely on a previously developed Markov-model of mass transfer, and both models assimilate the observed concentration data into the rate estimation at each observation time. Initial values of the rates are perturbed from the true values to form ensembles of rates and the ability of both estimation approaches to recover the true rates is examined over three different sets of perturbations. The models accurately estimate the rates when the mean of the perturbations are zero, the unbiased case. For the cases containing some bias, addition of the ensemble Kalman filter is shown to improve accuracy of the rate estimation by as much as an order of magnitude.

  5. A non-homogeneous Markov model for phased-mission reliability analysis

    NASA Technical Reports Server (NTRS)

    Smotherman, Mark; Zemoudeh, Kay

    1989-01-01

    Three assumptions of Markov modeling for reliability of phased-mission systems that limit flexibility of representation are identified. The proposed generalization has the ability to represent state-dependent behavior, handle phases of random duration using globally time-dependent distributions of phase change time, and model globally time-dependent failure and repair rates. The approach is based on a single nonhomogeneous Markov model in which the concept of state transition is extended to include globally time-dependent phase changes. Phase change times are specified using nonoverlapping distributions with probability distribution functions that are zero outside assigned time intervals; the time intervals are ordered according to the phases. A comparison between a numerical solution of the model and simulation demonstrates that the numerical solution can be several times faster than simulation.

  6. A novel framework to simulating non-stationary, non-linear, non-Normal hydrological time series using Markov Switching Autoregressive Models

    NASA Astrophysics Data System (ADS)

    Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.

    2012-12-01

    In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by

  7. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.

    PubMed

    Korostil, Igor A; Peters, Gareth W; Cornebise, Julien; Regan, David G

    2013-05-20

    A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordinary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6, HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group. Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed and common sexually transmitted infection with more than 100 types currently known. The two types studied in this paper, types 6 and 11, are causing about 90% of anogenital warts. We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes the sexual interactions between members of the population under study and relies on several quantities that are a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic model parameters as well as unknown sexual mixing matrix parameters related to assortativity. Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain methods. We conclude with simulation studies on synthetic and recent actual data. PMID

  8. Characterization of Caenorhabditis elegans behavior in response to chemical stress by using hidden Markov model

    NASA Astrophysics Data System (ADS)

    Choi, Yeontaek; Sim, Seungwoo; Lee, Sang-Hee

    2014-06-01

    The locomotion behavior of Caenorhabditis elegans has been extensively studied to understand the relationship between the changes in the organism's neural activity and the biomechanics. However, so far, we have not yet achieved the understanding. This is because the worm complicatedly responds to the environmental factors, especially chemical stress. Constructing a mathematical model is helpful for the understanding the locomotion behavior in various surrounding conditions. In the present study, we built three hidden Markov models for the crawling behavior of C. elegans in a controlled environment with no chemical treatment and in a polluted environment by formaldehyde, toluene, and benzene (0.1 ppm and 0.5 ppm for each case). The organism's crawling activity was recorded using a digital camcorder for 20 min at a rate of 24 frames per second. All shape patterns were quantified by branch length similarity entropy and classified into five groups by using the self-organizing map. To evaluate and establish the hidden Markov models, we compared correlation coefficients between the simulated behavior (i.e. temporal pattern sequence) generated by the models and the actual crawling behavior. The comparison showed that the hidden Markov models are successful to characterize the crawling behavior. In addition, we briefly discussed the possibility of using the models together with the entropy to develop bio-monitoring systems for determining water quality.

  9. Hidden Markov Model analysis of force/torque information in telemanipulation

    SciTech Connect

    Hannaford, B. ); Lee, P. )

    1991-10-01

    A new model is developed for prediction and analysis of sensor information recorded during robotic performance of tasks by telemanipulation. The model uses the Hidden Markov Model (stochastic functions of Markov nets; HMM) to describe the task structure, the operator or intelligent controller's goal structure, and the sensor signals such as forces and torques arising from interaction with the environment. The Markov process portion encodes the task sequence/subgoal structure, and the observation densities associated with each subgoal state encode the expected sensor signals associated with carrying out that subgoal. Methodology is described for construction of the model parameters based on engineering knowledge of the task. The Viterbi algorithm is used for model based analysis of force signals measured during experimental teleoperation and achieves excellent segmentation of the data into subgoal phases. The Baum-Welch algorithm is used to identify the most likely HMM from a given experiment. The HMM achieves a structured, knowledge-base model with explicit uncertainties and mature, optimal identification algorithms.

  10. Hidden Markov models and other machine learning approaches in computational molecular biology

    SciTech Connect

    Baldi, P.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  11. Markov random field restoration of point correspondences for active shape modeling

    NASA Astrophysics Data System (ADS)

    Hilger, Klaus B.; Paulsen, Rasmus R.; Larsen, Rasmus

    2004-05-01

    In this paper it is described how to build a statistical shape model using a training set with a sparse of landmarks. A well defined model mesh is selected and fitted to all shapes in the training set using thin plate spline warping. This is followed by a projection of the points of the warped model mesh to the target shapes. When this is done by a nearest neighbour projection it can result in folds and inhomogeneities in the correspondence vector field. The novelty in this paper is the use and extension of a Markov random field regularisation of the correspondence field. The correspondence field is regarded as a collection of random variables, and using the Hammersley-Clifford theorem it is proved that it can be treated as a Markov Random Field. The problem of finding the optimal correspondence field is cast into a Bayesian framework for Markov Random Field restoration, where the prior distribution is a smoothness term and the observation model is the curvature of the shapes. The Markov Random Field is optimised using a combination of Gibbs sampling and the Metropolis-Hasting algorithm. The parameters of the model are found using a leave-one-out approach. The method leads to a generative model that produces highly homogeneous polygonised shapes with improved reconstruction capabilities of the training data. Furthermore, the method leads to an overall reduction in the total variance of the resulting point distribution model. The method is demonstrated on a set of human ear canals extracted from 3D-laser scans.

  12. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  13. The Application of Wavelet-Domain Hidden Markov Tree Model in Diabetic Retinal Image Denoising

    PubMed Central

    Cui, Dong; Liu, Minmin; Hu, Lei; Liu, Keju; Guo, Yongxin; Jiao, Qing

    2015-01-01

    The wavelet-domain Hidden Markov Tree Model can properly describe the dependence and correlation of fundus angiographic images’ wavelet coefficients among scales. Based on the construction of the fundus angiographic images Hidden Markov Tree Models and Gaussian Mixture Models, this paper applied expectation-maximum algorithm to estimate the wavelet coefficients of original fundus angiographic images and the Bayesian estimation to achieve the goal of fundus angiographic images denoising. As is shown in the experimental result, compared with the other algorithms as mean filter and median filter, this method effectively improved the peak signal to noise ratio of fundus angiographic images after denoising and preserved the details of vascular edge in fundus angiographic images. PMID:26628926

  14. A path-independent method for barrier option pricing in hidden Markov models

    NASA Astrophysics Data System (ADS)

    Rashidi Ranjbar, Hedieh; Seifi, Abbas

    2015-12-01

    This paper presents a method for barrier option pricing under a Black-Scholes model with Markov switching. We extend the option pricing method of Buffington and Elliott to price continuously monitored barrier options under a Black-Scholes model with regime switching. We use a regime switching random Esscher transform in order to determine an equivalent martingale pricing measure, and then solve the resulting multidimensional integral for pricing barrier options. We have calculated prices for down-and-out call options under a two-state hidden Markov model using two different Monte-Carlo simulation approaches and the proposed method. A comparison of the results shows that our method is faster than Monte-Carlo simulation methods.

  15. Assessing the limits of hidden Markov model analysis for multi-state particle tracks in living systems

    NASA Astrophysics Data System (ADS)

    Young, Dylan

    Particle tracking offers significant insight into the molecular mechanics that govern the behavior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures such as the cell cytoskeleton, membrane or extracellular matrix. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks, however robust methods for failure detection are required when HMMs are applied to individual particle tracks and limited data sets. Here, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used for both the optimization of likelihood models, and also to generate custom failure tests based on a modified Bayesian Information Criterion. In the first instance, these failure tests can be applied to assess the quality of the HMM results. In addition, they provide critical information for the successful design of particle tracking experiments where trajectories containing multiple mobile states are expected.

  16. Estimation of the occurrence rate of strong earthquakes based on hidden semi-Markov models

    NASA Astrophysics Data System (ADS)

    Votsi, I.; Limnios, N.; Tsaklidis, G.; Papadimitriou, E.

    2012-04-01

    The present paper aims at the application of hidden semi-Markov models (HSMMs) in an attempt to reveal key features for the earthquake generation, associated with the actual stress field, which is not accessible to direct observation. The models generalize the hidden Markov models by considering the hidden process to form actually a semi-Markov chain. Considering that the states of the models correspond to levels of actual stress fields, the stress field level at the occurrence time of each strong event is revealed. The dataset concerns a well catalogued seismically active region incorporating a variety of tectonic styles. More specifically, the models are applied in Greece and its surrounding lands, concerning a complete data sample with strong (M≥ 6.5) earthquakes that occurred in the study area since 1845 up to present. The earthquakes that occurred are grouped according to their magnitudes and the cases of two and three magnitude ranges for a corresponding number of states are examined. The parameters of the HSMMs are estimated and their confidence intervals are calculated based on their asymptotic behavior. The rate of the earthquake occurrence is introduced through the proposed HSMMs and its maximum likelihood estimator is calculated. The asymptotic properties of the estimator are studied, including the uniformly strongly consistency and the asymptotical normality. The confidence interval for the proposed estimator is given. We assume the state space of both the observable and the hidden process to be finite, the hidden Markov chain to be homogeneous and stationary and the observations to be conditionally independent. The hidden states at the occurrence time of each strong event are revealed and the rate of occurrence of an anticipated earthquake is estimated on the basis of the proposed HSMMs. Moreover, the mean time for the first occurrence of a strong anticipated earthquake is estimated and its confidence interval is calculated.

  17. A mixed model for two-state Markov processes under panel observation.

    PubMed

    Cook, R J

    1999-09-01

    Many chronic medical conditions can be meaningfully characterized in terms of a two-state stochastic process. Here we consider the problem in which subjects make transitions among two such states in continuous time but are only observed at discrete, irregularly spaced time points that are possibly unique to each subject. Data arising from such an observation scheme are called panel data, and methods for related analyses are typically based on Markov assumptions. The purpose of this article is to present a conditionally Markov model that accommodates subject-to-subject variation in the model parameters by the introduction of random effects. We focus on a particular random effects formulation that generates a closed-form expression for the marginal likelihood. The methodology is illustrated by application to a data set from a parasitic field infection survey. PMID:11315028

  18. Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.

    2015-12-01

    This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.

  19. Availability analysis of subsea blowout preventer using Markov model considering demand rate

    NASA Astrophysics Data System (ADS)

    Kim, Sunghee; Chung, Soyeon; Yang, Youngsoon

    2014-12-01

    Availabilities of subsea Blowout Preventers (BOP) in the Gulf of Mexico Outer Continental Shelf (GoM OCS) is investigated using a Markov method. An updated β factor model by SINTEF is used for common-cause failures in multiple redundant systems. Coefficient values of failure rates for the Markov model are derived using the β factor model of the PDS (reliability of computer-based safety systems, Norwegian acronym) method. The blind shear ram preventer system of the subsea BOP components considers a demand rate to reflect reality more. Markov models considering the demand rate for one or two components are introduced. Two data sets are compared at the GoM OCS. The results show that three or four pipe ram preventers give similar availabilities, but redundant blind shear ram preventers or annular preventers enhance the availability of the subsea BOP. Also control systems (PODs) and connectors are contributable components to improve the availability of the subsea BOPs based on sensitivity analysis.

  20. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    PubMed

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain. PMID:24246289

  1. HaplotypeCN: copy number haplotype inference with Hidden Markov Model and localized haplotype clustering.

    PubMed

    Lin, Yen-Jen; Chen, Yu-Tin; Hsu, Shu-Ni; Peng, Chien-Hua; Tang, Chuan-Yi; Yen, Tzu-Chen; Hsieh, Wen-Ping

    2014-01-01

    Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states. PMID:24849202

  2. A novel seizure detection algorithm informed by hidden Markov model event states

    NASA Astrophysics Data System (ADS)

    Baldassano, Steven; Wulsin, Drausin; Ung, Hoameng; Blevins, Tyler; Brown, Mesha-Gay; Fox, Emily; Litt, Brian

    2016-06-01

    Objective. Recently the FDA approved the first responsive, closed-loop intracranial device to treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and decreased battery life. In this work, we propose a more robust seizure detection model. Approach. We use a Bayesian nonparametric Markov switching process to parse intracranial EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a multidimensional Gaussian distribution to allow for predictive state assignment. By detecting event states highly specific for seizure onset zones, the method can identify precise regions of iEEG data associated with the transition to seizure activity, reducing false positive detections associated with interictal bursts. The seizure detection algorithm was translated to a real-time application and validated in a small pilot study using 391 days of continuous iEEG data from two dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after the NeuroPace RNS System was developed as a control. Main results. Our novel seizure detection method demonstrated an improvement in false negative rate (0/55 seizures missed versus 2/55 seizures missed) as well as a significantly reduced false positive rate (0.0012 h versus 0.058 h‑1). All seizures were detected an average of 12.1 ± 6.9 s before the onset of unequivocal epileptic activity (unequivocal epileptic onset (UEO)). Significance. This algorithm represents a computationally inexpensive, individualized, real-time detection method suitable for implantable antiepileptic devices that may considerably reduce false positive rate relative to current industry standards.

  3. Hidden Markov Models and Neural Networks for Fault Detection

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1998-01-01

    Continuous online monitoring of complex dynamic systems is common in applications as diverse as industrial plant operations, telecommunications network, and biomedical health monitoring. For monitoring purposes, the exact nature of the system under observation is typically not relevant provided there exist some measurements or symptoms which provide diagnostics information regarding the underlying system state.

  4. A method of hidden Markov model optimization for use with geophysical data sets

    NASA Technical Reports Server (NTRS)

    Granat, R. A.

    2003-01-01

    Geophysics research has been faced with a growing need for automated techniques with which to process large quantities of data. A successful tool must meet a number of requirements: it should be consistent, require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these issues.

  5. An Introduction to Markov Modeling: Concepts and Uses

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Lau, Sonie (Technical Monitor)

    1998-01-01

    Kharkov modeling is a modeling technique that is widely useful for dependability analysis of complex fault tolerant systems. It is very flexible in the type of systems and system behavior it can model. It is not, however, the most appropriate modeling technique for every modeling situation. The first task in obtaining a reliability or availability estimate for a system is selecting which modeling technique is most appropriate to the situation at hand. A person performing a dependability analysis must confront the question: is Kharkov modeling most appropriate to the system under consideration, or should another technique be used instead? The need to answer this gives rise to other more basic questions regarding Kharkov modeling: what are the capabilities and limitations of Kharkov modeling as a modeling technique? How does it relate to other modeling techniques? What kind of system behavior can it model? What kinds of software tools are available for performing dependability analyses with Kharkov modeling techniques? These questions and others will be addressed in this tutorial.

  6. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    PubMed Central

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200

  7. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    PubMed

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200

  8. Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains

    NASA Astrophysics Data System (ADS)

    Formentin, M.; Külske, C.; Reichenbachs, A.

    2012-01-01

    We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.

  9. Dynamics of a tracer granular particle as a nonequilibrium Markov process.

    PubMed

    Puglisi, Andrea; Visco, Paolo; Trizac, Emmanuel; van Wijland, Frédéric

    2006-02-01

    The dynamics of a tracer particle in a stationary driven granular gas is investigated. We show how to transform the linear Boltzmann equation, describing the dynamics of the tracer into a master equation for a continuous Markov process. The transition rates depend on the stationary velocity distribution of the gas. When the gas has a Gaussian velocity probability distribution function (PDF), the stationary velocity PDF of the tracer is Gaussian with a lower temperature and satisfies detailed balance for any value of the restitution coefficient alpha. As soon as the velocity PDF of the gas departs from the Gaussian form, detailed balance is violated. This nonequilibrium state can be characterized in terms of a Lebowitz-Spohn action functional W(tau) defined over trajectories of time duration tau. We discuss the properties of this functional and of a similar functional W(tau), which differs from the first for a term that is nonextensive in time. On the one hand, we show that in numerical experiments (i.e., at finite times tau), the two functionals have different fluctuations and W always satisfies an Evans-Searles-like symmetry. On the other hand, we cannot observe the verification of the Lebowitz-Spohn-Gallavotti-Cohen (LS-GC) relation, which is expected for W(tau) at very large times tau. We give an argument for the possible failure of the LS-GC relation in this situation. We also suggest practical recipes for measuring W(tau) and W(tau) in experiments. PMID:16605329

  10. A Markov Model for Assessing the Reliability of a Digital Feedwater Control System

    SciTech Connect

    Chu,T.L.; Yue, M.; Martinez-Guridi, G.; Lehner, J.

    2009-02-11

    A Markov approach has been selected to represent and quantify the reliability model of a digital feedwater control system (DFWCS). The system state, i.e., whether a system fails or not, is determined by the status of the components that can be characterized by component failure modes. Starting from the system state that has no component failure, possible transitions out of it are all failure modes of all components in the system. Each additional component failure mode will formulate a different system state that may or may not be a system failure state. The Markov transition diagram is developed by strictly following the sequences of component failures (i.e., failure sequences) because the different orders of the same set of failures may affect the system in completely different ways. The formulation and quantification of the Markov model, together with the proposed FMEA (Failure Modes and Effects Analysis) approach, and the development of the supporting automated FMEA tool are considered the three major elements of a generic conceptual framework under which the reliability of digital systems can be assessed.

  11. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  12. An approximation formula for a class of Markov reliability models

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    A way of considering a small but often used class of reliability model and approximating algebraically the systems reliability is shown. The models considered are appropriate for redundant reconfigurable digital control systems that operate for a short period of time without maintenance, and for such systems the method gives a formula in terms of component fault rates, system recovery rates, and system operating time.

  13. Composition of Web Services Using Markov Decision Processes and Dynamic Programming

    PubMed Central

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity. PMID:25874247

  14. Protein modeling with hybrid Hidden Markov Model/Neurel network architectures

    SciTech Connect

    Baldi, P.; Chauvin, Y.

    1995-12-31

    Hidden Markov Models (HMMs) are useful in a number of tasks in computational molecular biology, and in particular to model and align protein families. We argue that HMMs are somewhat optimal within a certain modeling hierarchy. Single first order HMMs, however, have two potential limitations: a large number of unstructured parameters, and a built-in inability to deal with long-range dependencies. Hybrid HMM/Neural Network (NN) architectures attempt to overcome these limitations. In hybrid HMM/NN, the HMM parameters are computed by a NN. This provides a reparametrization that allows for flexible control of model complexity, and incorporation of constraints. The approach is tested on the immunoglobulin family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs. To capture dependencies, however, one must resort to a larger hybrid model class, where the data is modeled by multiple HMMs. The parameters of the HMMs, and their modulation as a function of input or context, is again calculated by a NN.

  15. Quasi-hidden Markov model and its applications in cluster analysis of earthquake catalogs

    NASA Astrophysics Data System (ADS)

    Wu, Zhengxiao

    2011-12-01

    We identify a broad class of models, quasi-hidden Markov models (QHMMs), which include hidden Markov models (HMMs) as special cases. Applying the QHMM framework, this paper studies how an earthquake cluster propagates statistically. Two QHMMs are used to describe two different propagating patterns. The "mother-and-kids" model regards the first shock in an earthquake cluster as "mother" and the aftershocks as "kids," which occur in a neighborhood centered by the mother. In the "domino" model, however, the next aftershock strikes in a neighborhood centered by the most recent previous earthquake in the cluster, and therefore aftershocks act like dominoes. As the likelihood of QHMMs can be efficiently computed via the forward algorithm, likelihood-based model selection criteria can be calculated to compare these two models. We demonstrate this procedure using data from the central New Zealand region. For this data set, the mother-and-kids model yields a higher likelihood as well as smaller AIC and BIC. In other words, in the aforementioned area the next aftershock is more likely to occur near the first shock than near the latest aftershock in the cluster. This provides an answer, though not entirely satisfactorily, to the question "where will the next aftershock be?". The asymptotic consistency of the model selection procedure in the paper is duly established, namely that, when the number of the observations goes to infinity, with probability one the procedure picks out the model with the smaller deviation from the true model (in terms of relative entropy rate).

  16. Modeling Dyadic Processes Using Hidden Markov Models: A Time Series Approach to Mother-Infant Interactions during Infant Immunization

    ERIC Educational Resources Information Center

    Stifter, Cynthia A.; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…

  17. Bayesian Modeling of Time Trends in Component Reliability Data via Markov Chain Monte Carlo Simulation

    SciTech Connect

    D. L. Kelly

    2007-06-01

    Markov chain Monte Carlo (MCMC) techniques represent an extremely flexible and powerful approach to Bayesian modeling. This work illustrates the application of such techniques to time-dependent reliability of components with repair. The WinBUGS package is used to illustrate, via examples, how Bayesian techniques can be used for parametric statistical modeling of time-dependent component reliability. Additionally, the crucial, but often overlooked subject of model validation is discussed, and summary statistics for judging the model’s ability to replicate the observed data are developed, based on the posterior predictive distribution for the parameters of interest.

  18. Markov Models and the Ensemble Kalman Filter for Estimation of Sorption Rates

    NASA Astrophysics Data System (ADS)

    Vugrin, E. D.; McKenna, S. A.; White Vugrin, K.

    2007-12-01

    Non-equilibrium sorption of contaminants in ground water systems is examined from the perspective of sorption rate estimation. A previously developed Markov transition probability model for solute transport is used in conjunction with a new conditional probability-based model of the sorption and desorption rates based on breakthrough curve data. Two models for prediction of spatially varying sorption and desorption rates along a one-dimensional streamline are developed. These models are a Markov model that utilizes conditional probabilities to determine the rates and an ensemble Kalman filter (EnKF) applied to the conditional probability method. Both approaches rely on a previously developed Markov-model of mass transfer, and both models assimilate the observed concentration data into the rate estimation at each observation time. Initial values of the rates are perturbed from the true values to form ensembles of rates and the ability of both estimation approaches to recover the true rates is examined over three different sets of perturbations. The models accurately estimate the rates when the mean of the perturbations are zero, the unbiased case. For the cases containing some bias, addition of the ensemble Kalman filter is shown to improve accuracy of the rate estimation by as much as an order of magnitude. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia Laboratory Directed Research and Development program.

  19. Phonetic recognition of natural speech by nonstationary Markov models

    NASA Astrophysics Data System (ADS)

    Falaschi, Alessandro

    1988-04-01

    A speech recognition system based on statistical decision theory, viewing the problem as the classical design of a decoder in a communication system framework is outlined. Statistical properties of the language are used to characterize the allowable phonetic sequence inside the words, while trying to capture allophonic phoneme features into functional-dependent acoustical models with the aim of utilizing them as word segmentation cues. Experiments prove the utility of an explicit modeling of the intrinsic speech nonstationarity in a statistically based speech recognition system. The nonstationarity of phonetic chain statistics and acoustical transition probabilities can be easily taken into account, yielding recognition improvements. The use of inside syllable position dependent phonetic models does not improve recognition performance, and the iterative Viterbi training algorithm seems unable to adequately valorize this kind of acoustical modeling. As a direct consequence of the system design, the recognized phonetic sequence exhibits word boundary marks even in absence of pauses between words, thus giving anchor points to the higher level parsing algorithms needed in a complete recognition system.

  20. Markov-switching multifractal models as another class of random-energy-like models in one-dimensional space

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2012-03-01

    We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.

  1. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology

    PubMed Central

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-01-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1–0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. PMID:26272507

  2. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.

    PubMed

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-11-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. PMID:26272507

  3. Markov-Tree model of intrinsic transport in Hamiltonian systems

    NASA Technical Reports Server (NTRS)

    Meiss, J. D.; Ott, E.

    1985-01-01

    A particle in a chaotic region of phase space can spend a long time near the boundary of a regular region since transport there is slow. This 'stickiness' of regular regions is thought to be responsible for previous observations in numerical experiments of a long-time algebraic decay of the particle survival probability, i.e., survival probability approximately t to the (-z) power for large t. This paper presents a global model for transport in such systems and demonstrates the essential role of the infinite hierarchy of small islands interspersed in the chaotic region. Results for z are discussed.

  4. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology

    NASA Astrophysics Data System (ADS)

    Dong, Ming; He, David

    2007-07-01

    Diagnostics and prognostics are two important aspects in a condition-based maintenance (CBM) program. However, these two tasks are often separately performed. For example, data might be collected and analysed separately for diagnosis and prognosis. This practice increases the cost and reduces the efficiency of CBM and may affect the accuracy of the diagnostic and prognostic results. In this paper, a statistical modelling methodology for performing both diagnosis and prognosis in a unified framework is presented. The methodology is developed based on segmental hidden semi-Markov models (HSMMs). An HSMM is a hidden Markov model (HMM) with temporal structures. Unlike HMM, an HSMM does not follow the unrealistic Markov chain assumption and therefore provides more powerful modelling and analysis capability for real problems. In addition, an HSMM allows modelling the time duration of the hidden states and therefore is capable of prognosis. To facilitate the computation in the proposed HSMM-based diagnostics and prognostics, new forward-backward variables are defined and a modified forward-backward algorithm is developed. The existing state duration estimation methods are inefficient because they require a huge storage and computational load. Therefore, a new approach is proposed for training HSMMs in which state duration probabilities are estimated on the lattice (or trellis) of observations and states. The model parameters are estimated through the modified forward-backward training algorithm. The estimated state duration probability distributions combined with state-changing point detection can be used to predict the useful remaining life of a system. The evaluation of the proposed methodology was carried out through a real world application: health monitoring of hydraulic pumps. In the tests, the recognition rates for all states are greater than 96%. For each individual pump, the recognition rate is increased by 29.3% in comparison with HMMs. Because of the temporal

  5. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data

    USGS Publications Warehouse

    Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun

    2012-01-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).

  6. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data.

    PubMed

    Kendall, William L; White, Gary C; Hines, James E; Langtimm, Catherine A; Yoshizaki, Jun

    2012-04-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last 20 years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected-value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We have also implemented these models in program MARK. This general framework could also be used by practitioners to consider constrained models of particular interest, or to model the relationship between within-primary-period parameters (e.g., state structure) and between-primary-period parameters (e.g., state transition probabilities). PMID:22690641

  7. [Succession caused by beaver (Castor fiber L.) life activity: II. A refined Markov model].

    PubMed

    Logofet; Evstigneev, O I; Aleinikov, A A; Morozova, A O

    2015-01-01

    The refined Markov model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity represents a discrete chain of the following six states: flooded forest, swamped forest, pond, grassy swamp, shrubby swamp, and wet forest, which correspond to certain stages of succession. Those stages are defined, and a conceptual scheme of probable transitions between them for one time step is constructed from the knowledge of beaver behaviour in small river floodplains of "Bryanskii Les" Reserve. We calibrated the corresponding matrix of transition probabilities according to the optimization principle: minimizing differences between the model outcome and reality; the model generates a distribution of relative areas corresponding to the stages of succession, that has to be compared to those gained from case studies in the Reserve during 2002-2006. The time step is chosen to equal 2 years, and the first-step data in the sum of differences are given various weights, w (between 0 and 1). The value of w = 0.2 is selected due to its optimality and for some additional reasons. By the formulae of finite homogeneous Markov chain theory, we obtained the main results of the calibrated model, namely, a steady-state distribution of stage areas, indexes of cyclicity, and the mean durations (M(j)) of succession stages. The results of calibration give an objective quantitative nature to the expert knowledge of the course of succession and get a proper interpretation. The 2010 data, which are not involved in the calibration procedure, enabled assessing the quality of prediction by the homogeneous model in short-term (from the 2006 situation): the error of model area distribution relative to the distribution observed in 2010 falls into the range of 9-17%, the best prognosis being given by the least optimal matrices (rejected values of w). This indicates a formally heterogeneous nature of succession processes in time. Thus, the refined version of the homogeneous Markov chain

  8. Alignment of multiple proteins with an ensemble of Hidden Markov Models

    PubMed Central

    Song, Yinglei; Qu, Junfeng; Hura, Gurdeep S.

    2011-01-01

    In this paper, we developed a new method that progressively construct and update a set of alignments by adding sequences in certain order to each of the existing alignments. Each of the existing alignments is modelled with a profile Hidden Markov Model (HMM) and an added sequence is aligned to each of these profile HMMs. We introduced an integer parameter for the number of profile HMMs. The profile HMMs are then updated based on the alignments with leading scores. Our experiments on BaliBASE showed that our approach could efficiently explore the alignment space and significantly improve the alignment accuracy. PMID:20376922

  9. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjun; Liu, Wen; Yang, Xuefeng; Xing, Shengwei

    2015-02-01

    In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  10. Hierarchical Markov random-field modeling for texture classification in chest radiographs

    NASA Astrophysics Data System (ADS)

    Vargas-Voracek, Rene; Floyd, Carey E., Jr.; Nolte, Loren W.; McAdams, Page

    1996-04-01

    A hierarchical Markov random field (MRF) modeling approach is presented for the classification of textures in selected regions of interest (ROIs) of chest radiographs. The procedure integrates possible texture classes and their spatial definition with other components present in an image such as noise and background trend. Classification is performed as a maximum a-posteriori (MAP) estimation of texture class and involves an iterative Gibbs- sampling technique. Two cases are studied: classification of lung parenchyma versus bone and classification of normal lung parenchyma versus miliary tuberculosis (MTB). Accurate classification was obtained for all examined cases showing the potential of the proposed modeling approach for texture analysis of radiographic images.

  11. An analytical study of various telecomminication networks using markov models

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, M.; Jayamani, E.; Ezhumalai, P.

    2015-04-01

    The main aim of this paper is to examine issues relating to the performance of various Telecommunication networks, and applied queuing theory for better design and improved efficiency. Firstly, giving an analytical study of queues deals with quantifying the phenomenon of waiting lines using representative measures of performances, such as average queue length (on average number of customers in the queue), average waiting time in queue (on average time to wait) and average facility utilization (proportion of time the service facility is in use). In the second, using Matlab simulator, summarizes the finding of the investigations, from which and where we obtain results and describing methodology for a) compare the waiting time and average number of messages in the queue in M/M/1 and M/M/2 queues b) Compare the performance of M/M/1 and M/D/1 queues and study the effect of increasing the number of servers on the blocking probability M/M/k/k queue model.

  12. High range resolution radar target identification using the Prony model and hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dewitt, Mark R.

    1992-12-01

    Fully polarized Xpatch signatures are transformed to two left circularly polarized signals. These two signals are then filtered by a linear FM pulse compression ('chirp') transfer function, corrupted by AWGN, and filtered by a filter matched to the 'chirp' transfer function. The bandwidth of the 'chirp' radar is about 750 MHz. Range profile feature extraction is performed using the TLS Prony Model parameter estimation technique developed at Ohio State University. Using the Prony Model, each scattering center is described by a polarization ellipse, relative energy, frequency response, and range. This representation of the target is vector quantized using a K-means clustering algorithm. Sequences of vector quantized scattering centers as well as sequences of vector quantized range profiles are used to synthesize target specific Hidden Markov Models (HMM's). The identification decision is made by determining which HMM has the highest probability of generating the unknown sequence. The data consist of synthesized Xpatch signatures of two targets which have been difficult to separate with other RTI algorithms. The RTI algorithm developed is clearly able to separate these two targets over a 10 by 10 degree (1 degree granularity) aspect angle window off the nose for SNR's as low as 0 dB. The classification rate is 100 percent for SNR's of 5 - 20 dB, 95 percent for a SNR of 0 dB and it drops rapidly for SNR's lower than 0 dB.

  13. biomvRhsmm: Genomic Segmentation with Hidden Semi-Markov Model

    PubMed Central

    Murani, Eduard; Ponsuksili, Siriluck

    2014-01-01

    High-throughput technologies like tiling array and next-generation sequencing (NGS) generate continuous homogeneous segments or signal peaks in the genome that represent transcripts and transcript variants (transcript mapping and quantification), regions of deletion and amplification (copy number variation), or regions characterized by particular common features like chromatin state or DNA methylation ratio (epigenetic modifications). However, the volume and output of data produced by these technologies present challenges in analysis. Here, a hidden semi-Markov model (HSMM) is implemented and tailored to handle multiple genomic profile, to better facilitate genome annotation by assisting in the detection of transcripts, regulatory regions, and copy number variation by holistic microarray or NGS. With support for various data distributions, instead of limiting itself to one specific application, the proposed hidden semi-Markov model is designed to allow modeling options to accommodate different types of genomic data and to serve as a general segmentation engine. By incorporating genomic positions into the sojourn distribution of HSMM, with optional prior learning using annotation or previous studies, the modeling output is more biologically sensible. The proposed model has been compared with several other state-of-the-art segmentation models through simulation benchmarking, which shows that our efficient implementation achieves comparable or better sensitivity and specificity in genomic segmentation. PMID:24995333

  14. Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model

    NASA Astrophysics Data System (ADS)

    Novkaniza, F.; Ivana, Aldila, D.

    2016-04-01

    Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i - 1, or i. Approximation probability of an outbreak with gambler's ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.

  15. Study of behavior and determination of customer lifetime value(CLV) using Markov chain model

    NASA Astrophysics Data System (ADS)

    Permana, Dony; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.

    2014-03-01

    Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.

  16. Study of behavior and determination of customer lifetime value(CLV) using Markov chain model

    SciTech Connect

    Permana, Dony; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.

    2014-03-24

    Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.

  17. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    PubMed Central

    Djordjevic, Ivan B.

    2015-01-01

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually

  18. Predicting Tenure Dynamics: Models Help Manage Tenure System.

    ERIC Educational Resources Information Center

    Strauss, Jon C.

    1997-01-01

    Presents three different, complementary statistical models for predicting faculty tenure dynamics, using data from Worcester Polytechnic Institute (Massachusetts). The difference equation model exactly describes future behavior but requires complete specification. The Markov-chain model can predict the full life-cycle of tenure from initial age…

  19. Short-term droughts forecast using Markov chain model in Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Rahmat, Siti Nazahiyah; Jayasuriya, Niranjali; Bhuiyan, Muhammed A.

    2016-04-01

    A comprehensive risk management strategy for dealing with drought should include both short-term and long-term planning. The objective of this paper is to present an early warning method to forecast drought using the Standardised Precipitation Index (SPI) and a non-homogeneous Markov chain model. A model such as this is useful for short-term planning. The developed method has been used to forecast droughts at a number of meteorological monitoring stations that have been regionalised into six (6) homogenous clusters with similar drought characteristics based on SPI. The non-homogeneous Markov chain model was used to estimate drought probabilities and drought predictions up to 3 months ahead. The drought severity classes defined using the SPI were computed at a 12-month time scale. The drought probabilities and the predictions were computed for six clusters that depict similar drought characteristics in Victoria, Australia. Overall, the drought severity class predicted was quite similar for all the clusters, with the non-drought class probabilities ranging from 49 to 57 %. For all clusters, the near normal class had a probability of occurrence varying from 27 to 38 %. For the more moderate and severe classes, the probabilities ranged from 2 to 13 % and 3 to 1 %, respectively. The developed model predicted drought situations 1 month ahead reasonably well. However, 2 and 3 months ahead predictions should be used with caution until the models are developed further.

  20. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences.

    PubMed

    Siebert, Matthias; Söding, Johannes

    2016-07-27

    Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs. In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that account for dependencies need many parameters and are prone to overfitting. We have developed a Bayesian approach for motif discovery using Markov models in which conditional probabilities of order k - 1 act as priors for those of order k This Bayesian Markov model (BaMM) training automatically adapts model complexity to the amount of available data. We also derive an EM algorithm for de-novo discovery of enriched motifs. For transcription factor binding, BaMMs achieve significantly (P    =  1/16) higher cross-validated partial AUC than PWMs in 97% of 446 ChIP-seq ENCODE datasets and improve performance by 36% on average. BaMMs also learn complex multipartite motifs, improving predictions of transcription start sites, polyadenylation sites, bacterial pause sites, and RNA binding sites by 26-101%. BaMMs never performed worse than PWMs. These robust improvements argue in favour of generally replacing PWMs by BaMMs. PMID:27288444

  1. A new Markov model for base-loaded units for use in production costing

    SciTech Connect

    Ansari, S.H.; Patton, A.D. )

    1990-08-01

    This paper describes a new Markov model for base-loaded units henceforth to be called the LLM (load linked Markov) model for use in a probabilistic production costing algorithm. This new LLM model recognizes the relationship between the need for operating a base-loaded unit and the system load cycle. A comparison of the results obtained by using a traditional production costing method, the Opcost method with explicit consideration of unit duty cycle effects and the new method using the LLM model for base-loaded units to be called Procop method show significant differences in the energies produced by the base-loaded units and consequently the other units. The linkage of a base-loaded unit's need for operation to the load cycle avoids the assumption of the traditional model that the base-loaded units are equally needed all times. It also avoids the ad hoc treatment of outage postponability of base-loaded units. Hence the Procop method is more physically based and is likely to be more accurately responsive to changes in the load cycle and other system parameters.

  2. Modeling of stratigraphic columns using Markov Chains and Gibbs sampling algorithms, Campo Oritupano, Venezuela.

    NASA Astrophysics Data System (ADS)

    Durán, E.

    2012-04-01

    The interbeded sandstones, siltstones and shale layers within the stratigraphic units of the Oficina Formation were stochastically characterized. The units within the Oritupano field are modeled using the information from 12 wells and a post-stack 3-D seismic cube. The Markov Chain algorithm was successful at maintaining the proportion of lithotypes of the columns in the study area. Different transition probability matrixes are evaluated by changing the length of the sequences represented in the transition matrix and how this choice of length affects ciclicity and the genetic relations between lithotypes. The Gibbs algorithm, using small sequences as building blocks for modeling, kept the main stratigraphic succession according to the geology. Although the modeled stratigraphy depends strongly on initial conditions, the use of longer sequences in the substitution helps not to overweight the transition counts from one lithotype to the same in the main diagonal of the probability matrix of the Markov Chain in the Gibbs algorithm. A methodology based on the phase spectrum of the seismic trace for tying the modeled sequences with the seismic data is evaluated and discussed. The results point to the phase spectrum as an alternate way to cross-correlate synthetic seismograms with the seismic trace in favor of the well known amplitude correlation. Finally, a map of net sand over the study area is generated from the modeled columns and compared with previous stratigraphic and facies analysis at the levels of interest.

  3. Multilayer Markov Random Field models for change detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  4. Hidden Markov model analysis of force/torque information in telemanipulation

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake; Lee, Paul

    1991-01-01

    A model for the prediction and analysis of sensor information recorded during robotic performance of telemanipulation tasks is presented. The model uses the hidden Markov model to describe the task structure, the operator's or intelligent controller's goal structure, and the sensor signals. A methodology for constructing the model parameters based on engineering knowledge of the task is described. It is concluded that the model and its optimal state estimation algorithm, the Viterbi algorithm, are very succesful at the task of segmenting the data record into phases corresponding to subgoals of the task. The model provides a rich modeling structure within a statistical framework, which enables it to represent complex systems and be robust to real-world sensory signals.

  5. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models.

    PubMed

    Monaco, James P; Tomaszewski, John E; Feldman, Michael D; Hagemann, Ian; Moradi, Mehdi; Mousavi, Parvin; Boag, Alexander; Davidson, Chris; Abolmaesumi, Purang; Madabhushi, Anant

    2010-08-01

    In this paper we present a high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a digitized HS can contain 80Kx70K pixels - far too many for current automated Gleason grading algorithms to process. However, grading can be separated into two distinct steps: (1) detecting cancerous regions and (2) then grading these regions. The detection step does not require diagnostic resolution and can be performed much more quickly. Thus, we introduce a CaP detection system capable of analyzing an entire digitized whole-mount HS (2x1.75cm(2)) in under three minutes (on a desktop computer) while achieving a CaP detection sensitivity and specificity of 0.87 and 0.90, respectively. We obtain this high-throughput by tailoring the system to analyze the HSs at low resolution (8microm per pixel). This motivates the following algorithm: (Step 1) glands are segmented, (Step 2) the segmented glands are classified as malignant or benign, and (Step 3) the malignant glands are consolidated into continuous regions. The classification of individual glands leverages two features: gland size and the tendency for proximate glands to share the same class. The latter feature describes a spatial dependency which we model using a Markov prior. Typically, Markov priors are expressed as the product of potential functions. Unfortunately, potential functions are mathematical abstractions, and constructing priors through their selection becomes an ad hoc procedure, resulting in simplistic models such as the Potts. Addressing this problem, we introduce PPMMs which formulate priors in terms of probability density functions, allowing the creation of more sophisticated models. To demonstrate the efficacy of our CaP detection system and assess the advantages of using a PPMM prior instead of the Potts, we alternately

  6. Multi-state Markov model for disability: A case of Malaysia Social Security (SOCSO)

    NASA Astrophysics Data System (ADS)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2016-06-01

    Studies of SOCSO's contributor outcomes like disability are usually restricted to a single outcome. In this respect, the study has focused on the approach of multi-state Markov model for estimating the transition probabilities among SOCSO's contributor in Malaysia between states: work, temporary disability, permanent disability and death at yearly intervals on age, gender, year and disability category; ignoring duration and past disability experience which is not consider of how or when someone arrived in that category. These outcomes represent different states which depend on health status among the workers.

  7. Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction

    NASA Astrophysics Data System (ADS)

    Bui, Lam Thu; Barlow, Michael

    We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.

  8. Markov Jump-Linear Performance Models for Recoverable Flight Control Computers

    NASA Technical Reports Server (NTRS)

    Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.

  9. High-Throughput Detection of Prostate Cancer in Histological Sections Using Probabilistic Pairwise Markov Models

    PubMed Central

    Monaco, James P.; Tomaszewski, John E.; Feldman, Michael D.; Hagemann, Ian; Moradi, Mehdi; Mousavi, Parvin; Boag, Alexander; Davidson, Chris; Abolmaesumi, Purang; Madabhushi, Anant

    2010-01-01

    In this paper we present a high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a digitized HS can contain 80K×70K pixels — far too many for current automated Gleason grading algorithms to process. However, grading can be separated into two distinct steps: 1) detecting cancerous regions and 2) then grading these regions. The detection step does not require diagnostic resolution and can be performed much more quickly. Thus, we introduce a CaP detection system capable of analyzing an entire digitized whole-mount HS (2×1.75 cm2) in under three minutes (on a desktop computer) while achieving a CaP detection sensitivity and specificity of 0.87 and 0.90, respectively. We obtain this high-throughput by tailoring the system to analyze the HSs at low resolution (8 µm per pixel). This motivates the following algorithm: Step 1) glands are segmented, Step 2) the segmented glands are classified as malignant or benign, and Step 3) the malignant glands are consolidated into continuous regions. The classification of individual glands leverages two features: gland size and the tendency for proximate glands to share the same class. The latter feature describes a spatial dependency which we model using a Markov prior. Typically, Markov priors are expressed as the product of potential functions. Unfortunately, potential functions are mathematical abstractions, and constructing priors through their selection becomes an ad hoc procedure, resulting in simplistic models such as the Potts. Addressing this problem, we introduce PPMMs which formulate priors in terms of probability density functions, allowing the creation of more sophisticated models. To demonstrate the efficacy of our CaP detection system and assess the advantages of using a PPMM prior instead of the Potts, we alternately incorporate

  10. Estimating the survival function based on the semi-Markov model for dependent censoring.

    PubMed

    Zhao, Ziqiang; Zheng, Ming; Jin, Zhezhen

    2016-04-01

    In this paper, we study a nonparametric maximum likelihood estimator (NPMLE) of the survival function based on a semi-Markov model under dependent censoring. We show that the NPMLE is asymptotically normal and achieves asymptotic nonparametric efficiency. We also provide a uniformly consistent estimator of the corresponding asymptotic covariance function based on an information operator. The finite-sample performance of the proposed NPMLE is examined with simulation studies, which show that the NPMLE has smaller mean squared error than the existing estimators and its corresponding pointwise confidence intervals have reasonable coverages. A real example is also presented. PMID:25772373

  11. Reciprocal Markov Modeling of Feedback Mechanisms Between Emotion and Dietary Choice Using Experience-Sampling Data.

    PubMed

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H

    2015-01-01

    With intensively collected longitudinal data, recent advances in the experience-sampling method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal the relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet, & Dube, 2011) that observed 160 participants' food consumption and momentary emotions 6 times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal-healthiness decision, the proposed reciprocal Markov model (RMM) can accommodate both hidden ("general" emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent with the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  12. Reciprocal Markov modeling of feedback mechanisms between emotion and dietary choice using experience sampling data

    PubMed Central

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H.

    2015-01-01

    With intensively collected longitudinal data, recent advances in Experience Sampling Method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well-equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet & Dube, 2011) that observed 160 participants’ food consumption and momentary emotions six times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal healthiness decision, the proposed Reciprocal Markov Model (RMM) can accommodate both hidden (“general” emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent to the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  13. A Hidden Markov Model for Analysis of Frontline Veterinary Data for Emerging Zoonotic Disease Surveillance

    PubMed Central

    Robertson, Colin; Sawford, Kate; Gunawardana, Walimunige S. N.; Nelson, Trisalyn A.; Nathoo, Farouk; Stephen, Craig

    2011-01-01

    Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines. PMID:21949763

  14. Prediction of earthquake hazard by hidden Markov model (around Bilecik, NW Turkey)

    NASA Astrophysics Data System (ADS)

    Can, Ceren; Ergun, Gul; Gokceoglu, Candan

    2014-09-01

    Earthquakes are one of the most important natural hazards to be evaluated carefully in engineering projects, due to the severely damaging effects on human-life and human-made structures. The hazard of an earthquake is defined by several approaches and consequently earthquake parameters such as peak ground acceleration occurring on the focused area can be determined. In an earthquake prone area, the identification of the seismicity patterns is an important task to assess the seismic activities and evaluate the risk of damage and loss along with an earthquake occurrence. As a powerful and flexible framework to characterize the temporal seismicity changes and reveal unexpected patterns, Poisson hidden Markov model provides a better understanding of the nature of earthquakes. In this paper, Poisson hidden Markov model is used to predict the earthquake hazard in Bilecik (NW Turkey) as a result of its important geographic location. Bilecik is in close proximity to the North Anatolian Fault Zone and situated between Ankara and Istanbul, the two biggest cites of Turkey. Consequently, there are major highways, railroads and many engineering structures are being constructed in this area. The annual frequencies of earthquakes occurred within a radius of 100 km area centered on Bilecik, from January 1900 to December 2012, with magnitudes (M) at least 4.0 are modeled by using Poisson-HMM. The hazards for the next 35 years from 2013 to 2047 around the area are obtained from the model by forecasting the annual frequencies of M ≥ 4 earthquakes.

  15. Prediction of earthquake hazard by hidden Markov model (around Bilecik, NW Turkey)

    NASA Astrophysics Data System (ADS)

    Can, Ceren Eda; Ergun, Gul; Gokceoglu, Candan

    2014-09-01

    Earthquakes are one of the most important natural hazards to be evaluated carefully in engineering projects, due to the severely damaging effects on human-life and human-made structures. The hazard of an earthquake is defined by several approaches and consequently earthquake parameters such as peak ground acceleration occurring on the focused area can be determined. In an earthquake prone area, the identification of the seismicity patterns is an important task to assess the seismic activities and evaluate the risk of damage and loss along with an earthquake occurrence. As a powerful and flexible framework to characterize the temporal seismicity changes and reveal unexpected patterns, Poisson hidden Markov model provides a better understanding of the nature of earthquakes. In this paper, Poisson hidden Markov model is used to predict the earthquake hazard in Bilecik (NW Turkey) as a result of its important geographic location. Bilecik is in close proximity to the North Anatolian Fault Zone and situated between Ankara and Istanbul, the two biggest cites of Turkey. Consequently, there are major highways, railroads and many engineering structures are being constructed in this area. The annual frequencies of earthquakes occurred within a radius of 100 km area centered on Bilecik, from January 1900 to December 2012, with magnitudes ( M) at least 4.0 are modeled by using Poisson-HMM. The hazards for the next 35 years from 2013 to 2047 around the area are obtained from the model by forecasting the annual frequencies of M ≥ 4 earthquakes.

  16. Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study.

    PubMed

    de Uña-Álvarez, Jacobo; Meira-Machado, Luís

    2015-06-01

    Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. PMID:25735883

  17. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states

    PubMed Central

    Tveito, Aslak; Lines, Glenn T.; Edwards, Andrew G.; McCulloch, Andrew

    2016-01-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well known from the literature. PMID:27154008

  18. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. PMID:27154008

  19. Spatially Enhanced Differential RNA Methylation Analysis from Affinity-Based Sequencing Data with Hidden Markov Model

    PubMed Central

    Zhang, Yu-Chen; Zhang, Shao-Wu; Liu, Lian; Liu, Hui; Zhang, Lin; Cui, Xiaodong; Huang, Yufei; Meng, Jia

    2015-01-01

    With the development of new sequencing technology, the entire N6-methyl-adenosine (m6A) RNA methylome can now be unbiased profiled with methylated RNA immune-precipitation sequencing technique (MeRIP-Seq), making it possible to detect differential methylation states of RNA between two conditions, for example, between normal and cancerous tissue. However, as an affinity-based method, MeRIP-Seq has yet provided base-pair resolution; that is, a single methylation site determined from MeRIP-Seq data can in practice contain multiple RNA methylation residuals, some of which can be regulated by different enzymes and thus differentially methylated between two conditions. Since existing peak-based methods could not effectively differentiate multiple methylation residuals located within a single methylation site, we propose a hidden Markov model (HMM) based approach to address this issue. Specifically, the detected RNA methylation site is further divided into multiple adjacent small bins and then scanned with higher resolution using a hidden Markov model to model the dependency between spatially adjacent bins for improved accuracy. We tested the proposed algorithm on both simulated data and real data. Result suggests that the proposed algorithm clearly outperforms existing peak-based approach on simulated systems and detects differential methylation regions with higher statistical significance on real dataset. PMID:26301253

  20. Markov-switching model for nonstationary runoff conditioned on El Niño information

    NASA Astrophysics Data System (ADS)

    Gelati, E.; Madsen, H.; Rosbjerg, D.

    2010-02-01

    We define a Markov-modulated autoregressive model with exogenous input (MARX) to generate runoff scenarios using climatic information. Runoff parameterization is assumed to be conditioned on a hidden climate state following a Markov chain, where state transition probabilities are functions of the climatic input. MARX allows stochastic modeling of nonstationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We apply MARX to inflow time series of the Daule Peripa reservoir (Ecuador). El Niño-Southern Oscillation (ENSO) information is used to condition runoff parameterization. Among the investigated ENSO indexes, the NINO 1+2 sea surface temperature anomalies and the trans-Niño index perform best as predictors. In the perspective of reservoir optimization at various time scales, MARX produces realistic long-term scenarios and short-term forecasts, especially when intense El Niño events occur. Low predictive ability is found for negative runoff anomalies, as no climatic index correlating properly with negative inflow anomalies has yet been identified.

  1. The analysis of disease biomarker data using a mixed hidden Markov model (Open Access publication)

    PubMed Central

    Detilleux, Johann C

    2008-01-01

    A mixed hidden Markov model (HMM) was developed for predicting breeding values of a biomarker (here, somatic cell score) and the individual probabilities of health and disease (here, mastitis) based upon the measurements of the biomarker. At a first level, the unobserved disease process (Markov model) was introduced and at a second level, the measurement process was modeled, making the link between the unobserved disease states and the observed biomarker values. This hierarchical formulation allows joint estimation of the parameters of both processes. The flexibility of this approach is illustrated on the simulated data. Firstly, lactation curves for the biomarker were generated based upon published parameters (mean, variance, and probabilities of infection) for cows with known clinical conditions (health or mastitis due to Escherichia coli or Staphylococcus aureus). Next, estimation of the parameters was performed via Gibbs sampling, assuming the health status was unknown. Results from the simulations and mathematics show that the mixed HMM is appropriate to estimate the quantities of interest although the accuracy of the estimates is moderate when the prevalence of the disease is low. The paper ends with some indications for further developments of the methodology. PMID:18694546

  2. Markov chain modelling of reliability analysis and prediction under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Singh, Salvinder; Abdullah, Shahrum; Nik Mohamed, Nik Abdullah; Mohd Noorani, Mohd Salmi

    2015-03-01

    The reliability assessment for an automobile crankshaft provides an important understanding in dealing with the design life of the component in order to eliminate or reduce the likelihood of failure and safety risks. The failures of the crankshafts are considered as a catastrophic failure that leads towards a severe failure of the engine block and its other connecting subcomponents. The reliability of an automotive crankshaft under mixed mode loading using the Markov Chain Model is studied. The Markov Chain is modelled by using a two-state condition to represent the bending and torsion loads that would occur on the crankshaft. The automotive crankshaft represents a good case study of a component under mixed mode loading due to the rotating bending and torsion stresses. An estimation of the Weibull shape parameter is used to obtain the probability density function, cumulative distribution function, hazard and reliability rate functions, the bathtub curve and the mean time to failure. The various properties of the shape parameter is used to model the failure characteristic through the bathtub curve is shown. Likewise, an understanding of the patterns posed by the hazard rate onto the component can be used to improve the design and increase the life cycle based on the reliability and dependability of the component. The proposed reliability assessment provides an accurate, efficient, fast and cost effective reliability analysis in contrast to costly and lengthy experimental techniques.

  3. A dynamic fault tree model of a propulsion system

    NASA Technical Reports Server (NTRS)

    Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila

    2006-01-01

    We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.

  4. Stochastic Analysis of Exit-Fluid Temperature Time-Series Data from the TAG Hydrothermal Mound: Events, States, and Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R.; Humphris, S.; Canales, J.

    2005-12-01

    The TAG hydrothermal mound is a dynamic structure that is continuously growing via mineral deposition, collapsing from gravitational instabilities and anhydrite dissolution, and shaking from frequent seismic activity on the adjacent normal faults. As a result, the sub-surface fluid circulation patterns beneath the mound are continually re-organizing in response to events that close and open flow paths. These characteristics are clearly evident in time series exit-fluid temperature data acquired from June 2003 through July 2004 as part of the Seismicity and Fluid Flow of TAG (STAG) experiment. Twenty one temperature probes were deployed in actively venting cracks across the TAG mound, and temperature measurements were acquired at each site every ~10 minutes. A key insight for understanding the exit-fluid temperature data is that the measurements can be modeled as Markov chains, where each measurement is a random variable drawn from a finite set of probability distributions associated with the hidden states of the system (i.e., Hidden Markov Models). The Markov chain changes states in response to events that can affect multiple probes, but not necessarily in the same way. For example, an event may cause temperatures at one probe to rapidly increase while temperatures at another probe rapidly decrease. The data from many probes can be explained with a two-state Markov chain, with one state corresponding to "crack open" and the second state corresponding to "crack closed", but still other probes require three or more states, possibly in a nested structure. These stochastic models are deepening our understanding of shallow circulation patterns beneath the TAG mound, and we hope to use them to condition subsurface flow models incorporating the relevant physics of permeable flow in fractures and heat flow.

  5. Partially ordered mixed hidden Markov model for the disablement process of older adults

    PubMed Central

    Ip, Edward H.; Zhang, Qiang; Rejeski, W. Jack; Harris, Tamara B.; Kritchevsky, Stephen

    2013-01-01

    At both the individual and societal levels, the health and economic burden of disability in older adults is enormous in developed countries, including the U.S. Recent studies have revealed that the disablement process in older adults often comprises episodic periods of impaired functioning and periods that are relatively free of disability, amid a secular and natural trend of decline in functioning. Rather than an irreversible, progressive event that is analogous to a chronic disease, disability is better conceptualized and mathematically modeled as states that do not necessarily follow a strict linear order of good-to-bad. Statistical tools, including Markov models, which allow bidirectional transition between states, and random effects models, which allow individual-specific rate of secular decline, are pertinent. In this paper, we propose a mixed effects, multivariate, hidden Markov model to handle partially ordered disability states. The model generalizes the continuation ratio model for ordinal data in the generalized linear model literature and provides a formal framework for testing the effects of risk factors and/or an intervention on the transitions between different disability states. Under a generalization of the proportional odds ratio assumption, the proposed model circumvents the problem of a potentially large number of parameters when the number of states and the number of covariates are substantial. We describe a maximum likelihood method for estimating the partially ordered, mixed effects model and show how the model can be applied to a longitudinal data set that consists of N = 2,903 older adults followed for 10 years in the Health Aging and Body Composition Study. We further statistically test the effects of various risk factors upon the probabilities of transition into various severe disability states. The result can be used to inform geriatric and public health science researchers who study the disablement process. PMID:24058222

  6. Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio

    2016-07-01

    From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.

  7. HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher's exact test.

    PubMed

    Sun, Shuying; Yu, Xiaoqing

    2016-03-01

    DNA methylation is an epigenetic event that plays an important role in regulating gene expression. It is important to study DNA methylation, especially differential methylation patterns between two groups of samples (e.g. patients vs. normal individuals). With next generation sequencing technologies, it is now possible to identify differential methylation patterns by considering methylation at the single CG site level in an entire genome. However, it is challenging to analyze large and complex NGS data. In order to address this difficult question, we have developed a new statistical method using a hidden Markov model and Fisher's exact test (HMM-Fisher) to identify differentially methylated cytosines and regions. We first use a hidden Markov chain to model the methylation signals to infer the methylation state as Not methylated (N), Partly methylated (P), and Fully methylated (F) for each individual sample. We then use Fisher's exact test to identify differentially methylated CG sites. We show the HMM-Fisher method and compare it with commonly cited methods using both simulated data and real sequencing data. The results show that HMM-Fisher outperforms the current available methods to which we have compared. HMM-Fisher is efficient and robust in identifying heterogeneous DM regions. PMID:26854292

  8. Statistical identification with hidden Markov models of large order splitting strategies in an equity market

    NASA Astrophysics Data System (ADS)

    Vaglica, Gabriella; Lillo, Fabrizio; Mantegna, Rosario N.

    2010-07-01

    Large trades in a financial market are usually split into smaller parts and traded incrementally over extended periods of time. We address these large trades as hidden orders. In order to identify and characterize hidden orders, we fit hidden Markov models to the time series of the sign of the tick-by-tick inventory variation of market members of the Spanish Stock Exchange. Our methodology probabilistically detects trading sequences, which are characterized by a significant majority of buy or sell transactions. We interpret these patches of sequential buying or selling transactions as proxies of the traded hidden orders. We find that the time, volume and number of transaction size distributions of these patches are fat tailed. Long patches are characterized by a large fraction of market orders and a low participation rate, while short patches have a large fraction of limit orders and a high participation rate. We observe the existence of a buy-sell asymmetry in the number, average length, average fraction of market orders and average participation rate of the detected patches. The detected asymmetry is clearly dependent on the local market trend. We also compare the hidden Markov model patches with those obtained with the segmentation method used in Vaglica et al (2008 Phys. Rev. E 77 036110), and we conclude that the former ones can be interpreted as a partition of the latter ones.

  9. Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio

    2016-04-01

    From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.

  10. "Markov at the bat": a model of cognitive processing in baseball batters.

    PubMed

    Gray, Rob

    2002-11-01

    Anecdotal evidence from players and coaches indicates that cognitive processing (e.g., expectations about the upcoming pitch) plays an important role in successful baseball batting, yet this aspect of hitting has not been investigated in detail. The present study provides experimental evidence that prior expectations significantly influence the timing of a baseball swing. A two-state Markov model was used to predict the effects of pitch sequence and pitch count on batting performance. The model is a hitting strategy of switching between expectancy states using a simple set of transition rules. In a simulated batting experiment, the model provided a good fit to the hitting performance of 6 experienced college baseball players, and the estimated model parameters were highly correlated with playing level. PMID:12430839

  11. Hidden Markov model approach to skill learning and its application to telerobotics

    SciTech Connect

    Yang, J. . Robotics Inst. Univ. of Akron, OH . Dept. of Electrical Engineering); Xu, Y. . Robotics Inst.); Chen, C.S. . Dept. of Electrical Engineering)

    1994-10-01

    In this paper, the authors discuss the problem of how human skill can be represented as a parametric model using a hidden Markov model (HMM), and how an HMM-based skill model can be used to learn human skill. HMM is feasible to characterize a doubly stochastic process--measurable action and immeasurable mental states--that is involved in the skill learning. The authors formulated the learning problem as a multidimensional HMM and developed a testbed for a variety of skill learning applications. Based on ''the most likely performance'' criterion, the best action sequence can be selected from all previously measured action data by modeling the skill as an HMM. The proposed method has been implemented in the teleoperation control of a space station robot system, and some important implementation issues have been discussed. The method allows a robot to learn human skill certain tasks and to improve motion performance.

  12. An estimator of the survival function based on the semi-Markov model under dependent censorship.

    PubMed

    Lee, Seung-Yeoun; Tsai, Wei-Yann

    2005-06-01

    Lee and Wolfe (Biometrics vol. 54 pp. 1176-1178, 1998) proposed the two-stage sampling design for testing the assumption of independent censoring, which involves further follow-up of a subset of lost-to-follow-up censored subjects. They also proposed an adjusted estimator for the survivor function for a proportional hazards model under the dependent censoring model. In this paper, a new estimator for the survivor function is proposed for the semi-Markov model under the dependent censorship on the basis of the two-stage sampling data. The consistency and the asymptotic distribution of the proposed estimator are derived. The estimation procedure is illustrated with an example of lung cancer clinical trial and simulation results are reported of the mean squared errors of estimators under a proportional hazards and two different nonproportional hazards models. PMID:15938546

  13. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    PubMed Central

    Anderson, John R.

    2011-01-01

    Multivariate pattern analysis can be combined with hidden Markov model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first “mind reading” application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second “model discovery” application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. PMID:21820455

  14. Quantifying copy number variations using a hidden Markov model with inhomogeneous emission distributions.

    PubMed

    McCallum, Kenneth Jordan; Wang, Ji-Ping

    2013-07-01

    Copy number variations (CNVs) are a significant source of genetic variation and have been found frequently associated with diseases such as cancers and autism. High-throughput sequencing data are increasingly being used to detect and quantify CNVs; however, the distributional properties of the data are not fully understood. A hidden Markov model (HMM) is proposed using inhomogeneous emission distributions based on negative binomial regression to account for the sequencing biases. The model is tested on the whole genome sequencing data and simulated data sets. An algorithm for CNV detection is implemented in the R package CNVfinder. The model based on negative binomial regression is shown to provide a good fit to the data and provides competitive performance compared with methods based on normalization of read counts. PMID:23428932

  15. Adaptation of hidden Markov models for recognizing speech of reduced frame rate.

    PubMed

    Lee, Lee-Min; Jean, Fu-Rong

    2013-12-01

    The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation. PMID:23757520

  16. Development of the hidden Markov models based Lithuanian speech recognition system

    NASA Astrophysics Data System (ADS)

    Ringeliene, Z.; Lipeika, A.

    2010-09-01

    The paper presents a prototype of the speaker-independent Lithuanian isolated word recognition system. The system is based on the hidden Markov models, a powerful statistical method for modeling speech signals. The prototype system can be used for Lithuanian words recognition investigations and is a good starting point for the development of a more sophisticated recognition system. The system graphical user interface is easy to control. Visualization of the entire recognition process is useful for analyzing of the recognition results. Based on this recognizer, a system for Web browser control by voice was developed. The program, which implements control by voice commands, was integrated in the speech recognition system. The system performance was evaluated by using different sets of acoustic models and vocabularies.

  17. A hidden Markov model combined with climate indices for multidecadal streamflow simulation

    NASA Astrophysics Data System (ADS)

    Bracken, C.; Rajagopalan, B.; Zagona, E.

    2014-10-01

    Hydroclimate time series often exhibit very low year-to-year autocorrelation while showing prolonged wet and dry epochs reminiscent of regime-shifting behavior. Traditional stochastic time series models cannot capture the regime-shifting features thereby misrepresenting the risk of prolonged wet and dry periods, consequently impacting management and planning efforts. Upper Colorado River Basin (UCRB) annual flow series highlights this clearly. To address this, a simulation framework is developed using a hidden Markov (HM) model in combination with large-scale climate indices that drive multidecadal variability. We demonstrate this on the UCRB flows and show that the simulations are able to capture the regime features by reproducing the multidecadal spectral features present in the data where a basic HM model without climate information cannot.

  18. Brief Communication: Earthquake sequencing: analysis of time series constructed from the Markov chain model

    NASA Astrophysics Data System (ADS)

    Cavers, M. S.; Vasudevan, K.

    2015-10-01

    Directed graph representation of a Markov chain model to study global earthquake sequencing leads to a time series of state-to-state transition probabilities that includes the spatio-temporally linked recurrent events in the record-breaking sense. A state refers to a configuration comprised of zones with either the occurrence or non-occurrence of an earthquake in each zone in a pre-determined time interval. Since the time series is derived from non-linear and non-stationary earthquake sequencing, we use known analysis methods to glean new information. We apply decomposition procedures such as ensemble empirical mode decomposition (EEMD) to study the state-to-state fluctuations in each of the intrinsic mode functions. We subject the intrinsic mode functions, derived from the time series using the EEMD, to a detailed analysis to draw information content of the time series. Also, we investigate the influence of random noise on the data-driven state-to-state transition probabilities. We consider a second aspect of earthquake sequencing that is closely tied to its time-correlative behaviour. Here, we extend the Fano factor and Allan factor analysis to the time series of state-to-state transition frequencies of a Markov chain. Our results support not only the usefulness of the intrinsic mode functions in understanding the time series but also the presence of power-law behaviour exemplified by the Fano factor and the Allan factor.

  19. Recovery of Graded Response Model Parameters: A Comparison of Marginal Maximum Likelihood and Markov Chain Monte Carlo Estimation

    ERIC Educational Resources Information Center

    Kieftenbeld, Vincent; Natesan, Prathiba

    2012-01-01

    Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…

  20. Detecting microcalcifications in digital mammograms using wavelet domain hidden Markov tree model.

    PubMed

    Regentova, Emma; Zhang, Lei; Zheng, Jun; Veni, Gopaalkrishna

    2006-01-01

    In this paper we investigate the performance of statistical modeling of digital mammograms by means of wavelet domain hidden Markov tree model (WHMT) for its inclusion to a computer-aided diagnostic prompting system for detecting microcalcification (MC) clusters. The system incorporates: (1) gross-segmentation of mammograms for obtaining the breast region; (2) eliminating the pepper-type noise, (3) block-wise wavelet transform of the breast signal and likelihood calculation; (4) image segmentation; (5) postprocessing for retaining MC clusters. FROC curves are obtained for all MC clusters containing mammograms of mini-MIAS database. 100% of true positive cases are detected by the system at 2.9 false positives per case. PMID:17945686

  1. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment

    NASA Astrophysics Data System (ADS)

    Jiang, Huiming; Chen, Jin; Dong, Guangming

    2016-05-01

    Hidden Markov model (HMM) has been widely applied in bearing performance degradation assessment. As a machine learning-based model, its accuracy, subsequently, is dependent on the sensitivity of the features used to estimate the degradation performance of bearings. It's a big challenge to extract effective features which are not influenced by other qualities or attributes uncorrelated with the bearing degradation condition. In this paper, a bearing performance degradation assessment method based on HMM and nuisance attribute projection (NAP) is proposed. NAP can filter out the effect of nuisance attributes in feature space through projection. The new feature space projected by NAP is more sensitive to bearing health changes and barely influenced by other interferences occurring in operation condition. To verify the effectiveness of the proposed method, two different experimental databases are utilized. The results show that the combination of HMM and NAP can effectively improve the accuracy and robustness of the bearing performance degradation assessment system.

  2. Damage evaluation by a guided wave-hidden Markov model based method

    NASA Astrophysics Data System (ADS)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  3. Non-intrusive gesture recognition system combining with face detection based on Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Wang, Yuanqing; Xu, Liujing; Cao, Liqun; Han, Lei; Zhou, Biye; Li, Minggao

    2014-11-01

    A non-intrusive gesture recognition human-machine interaction system is proposed in this paper. In order to solve the hand positioning problem which is a difficulty in current algorithms, face detection is used for the pre-processing to narrow the search area and find user's hand quickly and accurately. Hidden Markov Model (HMM) is used for gesture recognition. A certain number of basic gesture units are trained as HMM models. At the same time, an improved 8-direction feature vector is proposed and used to quantify characteristics in order to improve the detection accuracy. The proposed system can be applied in interaction equipments without special training for users, such as household interactive television

  4. Grinding Wheel Condition Monitoring with Hidden Markov Model-Based Clustering Methods

    SciTech Connect

    Liao, T. W.; Hua, G; Qu, Jun; Blau, Peter Julian

    2006-01-01

    Hidden Markov model (HMM) is well known for sequence modeling and has been used for condition monitoring. However, HMM-based clustering methods are developed only recently. This article proposes a HMM-based clustering method for monitoring the condition of grinding wheel used in grinding operations. The proposed method first extract features from signals based on discrete wavelet decomposition using a moving window approach. It then generates a distance (dissimilarity) matrix using HMM. Based on this distance matrix several hierarchical and partitioning-based clustering algorithms are applied to obtain clustering results. The proposed methodology was tested with feature sequences extracted from acoustic emission signals. The results show that clustering accuracy is dependent upon cutting condition. Higher material removal rate seems to produce more discriminatory signals/features than lower material removal rate. The effect of window size, wavelet decomposition level, wavelet basis, clustering algorithm, and data normalization were also studied.

  5. FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus.

    PubMed

    Prestat, Emmanuel; David, Maude M; Hultman, Jenni; Taş, Neslihan; Lamendella, Regina; Dvornik, Jill; Mackelprang, Rachel; Myrold, David D; Jumpponen, Ari; Tringe, Susannah G; Holman, Elizabeth; Mavromatis, Konstantinos; Jansson, Janet K

    2014-10-29

    A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. 'profiles') were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/. PMID:25260589

  6. A computationally efficient approach for hidden-Markov model-augmented fingerprint-based positioning

    NASA Astrophysics Data System (ADS)

    Roth, John; Tummala, Murali; McEachen, John

    2016-09-01

    This paper presents a computationally efficient approach for mobile subscriber position estimation in wireless networks. A method of data scaling assisted by timing adjust is introduced in fingerprint-based location estimation under a framework which allows for minimising computational cost. The proposed method maintains a comparable level of accuracy to the traditional case where no data scaling is used and is evaluated in a simulated environment under varying channel conditions. The proposed scheme is studied when it is augmented by a hidden-Markov model to match the internal parameters to the channel conditions that present, thus minimising computational cost while maximising accuracy. Furthermore, the timing adjust quantity, available in modern wireless signalling messages, is shown to be able to further reduce computational cost and increase accuracy when available. The results may be seen as a significant step towards integrating advanced position-based modelling with power-sensitive mobile devices.

  7. FOAM (Functional Ontology Assignments for Metagenomes): A Hidden Markov Model (HMM) database with environmental focus

    SciTech Connect

    Prestat, Emmanuel; David, Maude M.; Hultman, Jenni; Ta , Neslihan; Lamendella, Regina; Dvornik, Jill; Mackelprang, Rachel; Myrold, David D.; Jumpponen, Ari; Tringe, Susannah G.; Holman, Elizabeth; Mavromatis, Konstantinos; Jansson, Janet K.

    2014-09-26

    A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/.

  8. Efficient maximum likelihood parameterization of continuous-time Markov processes

    PubMed Central

    McGibbon, Robert T.; Pande, Vijay S.

    2015-01-01

    Continuous-time Markov processes over finite state-spaces are widely used to model dynamical processes in many fields of natural and social science. Here, we introduce a maximum likelihood estimator for constructing such models from data observed at a finite time interval. This estimator is dramatically more efficient than prior approaches, enables the calculation of deterministic confidence intervals in all model parameters, and can easily enforce important physical constraints on the models such as detailed balance. We demonstrate and discuss the advantages of these models over existing discrete-time Markov models for the analysis of molecular dynamics simulations. PMID:26203016

  9. Fitting complex population models by combining particle filters with Markov chain Monte Carlo.

    PubMed

    Knape, Jonas; de Valpine, Perry

    2012-02-01

    We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm. PMID:22624307

  10. The monoculture vs. rotation strategies in forestry: formalization and prediction by means of Markov-chain modelling.

    PubMed

    Feldman, Olga; Korotkov, Vladimir N; Logofet, Dmitrii O

    2005-10-01

    The monoculture strategy of forest management, where the same tree species (e.g., Picea abies) is cultivated in a number of successive planting-growing-felling cycles, is generally considered to be economically efficient, yet not sustainable as it reduces biodiversity in the forest. The sound alternative suggests a long-term strategy of forest management in which different forest types rotate either with planting after clear cutting, or by natural forest succession, yet the commercial output remains dubious. We suggest an approach to formalization and modelling forest dynamics in the long-term by means of Markov chains, the monoculture strategy resulting in an absorbing chain and the rotation one in a regular chain. The approach is illustrated with a case study of Russkii Les, a managed forest located in the Moscow Region, Russia, and the nearby forest reserve having been used as a data source for undisturbed forest dynamics. Starting with conceptual schemes of transitions among certain forest types (states of the chain) in the monoculture and rotation cases, we estimated the transition probabilities by an original method based on average duration of the corresponding states and on the likelihood of alternative transitions from a state into the next one. Formal analysis of the regular chain reveals an opportunity to achieve particular management objectives within the rotation strategy, in particular, to get the distribution of forest types in accordance with an adopted hierarchy of their commercial values, i.e. more valuable types have greater shares. PMID:16111801

  11. Landmine detection using ensemble discrete hidden Markov models with context dependent training methods

    NASA Astrophysics Data System (ADS)

    Hamdi, Anis; Missaoui, Oualid; Frigui, Hichem; Gader, Paul

    2010-04-01

    We propose a landmine detection algorithm that uses ensemble discrete hidden Markov models with context dependent training schemes. We hypothesize that the data are generated by K models. These different models reflect the fact that mines and clutter objects have different characteristics depending on the mine type, soil and weather conditions, and burial depth. Model identification is based on clustering in the log-likelihood space. First, one HMM is fit to each of the N individual sequence. For each fitted model, we evaluate the log-likelihood of each sequence. This will result in an N x N log-likelihood distance matrix that will be partitioned into K groups. In the second step, we learn the parameters of one discrete HMM per group. We propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we will investigate the maximum likelihood, and the MCE-based discriminative training approaches. Results on large and diverse Ground Penetrating Radar data collections show that the proposed method can identify meaningful and coherent HMM models that describe different properties of the data. Each HMM models a group of alarm signatures that share common attributes such as clutter, mine type, and burial depth. Our initial experiments have also indicated that the proposed mixture model outperform the baseline HMM that uses one model for the mine and one model for the background.

  12. A recursive model-reduction method for approximate inference in Gaussian Markov random fields.

    PubMed

    Johnson, Jason K; Willsky, Alan S

    2008-01-01

    This paper presents recursive cavity modeling--a principled, tractable approach to approximate, near-optimal inference for large Gauss-Markov random fields. The main idea is to subdivide the random field into smaller subfields, constructing cavity models which approximate these subfields. Each cavity model is a concise, yet faithful, model for the surface of one subfield sufficient for near-optimal inference in adjacent subfields. This basic idea leads to a tree-structured algorithm which recursively builds a hierarchy of cavity models during an "upward pass" and then builds a complementary set of blanket models during a reverse "downward pass." The marginal statistics of individual variables can then be approximated using their blanket models. Model thinning plays an important role, allowing us to develop thinned cavity and blanket models thereby providing tractable approximate inference. We develop a maximum-entropy approach that exploits certain tractable representations of Fisher information on thin chordal graphs. Given the resulting set of thinned cavity models, we also develop a fast preconditioner, which provides a simple iterative method to compute optimal estimates. Thus, our overall approach combines recursive inference, variational learning and iterative estimation. We demonstrate the accuracy and scalability of this approach in several challenging, large-scale remote sensing problems. PMID:18229805

  13. Complexity of Kronecker Operations on Sparse Matrices with Applications to the Solution of Markov Models

    NASA Technical Reports Server (NTRS)

    Buchholz, Peter; Ciardo, Gianfranco; Donatelli, Susanna; Kemper, Peter

    1997-01-01

    We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then, we use our results to define new algorithms for the solution of large structured Markov models. In addition to a comprehensive overview of existing approaches, we give new results with respect to: (1) managing certain types of state-dependent behavior without incurring extra cost; (2) supporting both Jacobi-style and Gauss-Seidel-style methods by appropriate multiplication algorithms; (3) speeding up algorithms that consider probability vectors of size equal to the "actual" state space instead of the "potential" state space.

  14. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    SciTech Connect

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-10-22

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%.

  15. Integrating Decision Tree and Hidden Markov Model (HMM) for Subtype Prediction of Human Influenza A Virus

    NASA Astrophysics Data System (ADS)

    Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing

    Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.

  16. Theory of Distribution Estimation of Hyperparameters in Markov Random Field Models

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hirotaka; Nakanishi-Ohno, Yoshinori; Okada, Masato

    2016-06-01

    We investigated the performance of distribution estimation of hyperparameters in Markov random field models proposed by Nakanishi-Ohno et al., J. Phys. A 47, 045001 (2014) when used to evaluate the confidence of data. We analytically calculated the configurational average, with respect to data, of the negative logarithm of the posterior distribution, which is called free energy based on an analogy with statistical mechanics. This configurational average of free energy shrinks as the amount of data increases. Our results theoretically confirm the numerical results from that previous study.

  17. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Benítez, M. C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ˜100 m of the station, and produced ˜3500-5500 events per hour with mean durations of ˜0.35-0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  18. HMM-DM: identifying differentially methylated regions using a hidden Markov model.

    PubMed

    Yu, Xiaoqing; Sun, Shuying

    2016-03-01

    DNA methylation is an epigenetic modification involved in organism development and cellular differentiation. Identifying differential methylations can help to study genomic regions associated with diseases. Differential methylation studies on single-CG resolution have become possible with the bisulfite sequencing (BS) technology. However, there is still a lack of efficient statistical methods for identifying differentially methylated (DM) regions in BS data. We have developed a new approach named HMM-DM to detect DM regions between two biological conditions using BS data. This new approach first uses a hidden Markov model (HMM) to identify DM CG sites accounting for spatial correlation across CG sites and variation across samples, and then summarizes identified sites into regions. We demonstrate through a simulation study that our approach has a superior performance compared to BSmooth. We also illustrate the application of HMM-DM using a real breast cancer dataset. PMID:26887041

  19. Switched Fault Diagnosis Approach for Industrial Processes based on Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Yang, Chunjie; Sun, Youxian; Pan, Yijun; An, Ruqiao

    2015-11-01

    Traditional fault diagnosis methods based on hidden Markov model (HMM) use a unified method for feature extraction, such as principal component analysis (PCA), kernel principal component analysis (KPCA) and independent component analysis (ICA). However, every method has its own limitations. For example, PCA cannot extract nonlinear relationships among process variables. So it is inappropriate to extract all features of variables by only one method, especially when data characteristics are very complex. This article proposes a switched feature extraction procedure using PCA and KPCA based on nonlinearity measure. By the proposed method, we are able to choose the most suitable feature extraction method, which could improve the accuracy of fault diagnosis. A simulation from the Tennessee Eastman (TE) process demonstrates that the proposed approach is superior to the traditional one based on HMM and could achieve more accurate classification of various process faults.

  20. Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model.

    PubMed

    Khorasani, Abed; Daliri, Mohammad Reza; Pooyan, Mohammad

    2016-02-01

    Amyotrophic lateral sclerosis (ALS) is a common disease among neurological disorders that can change the pattern of gait in human. One of the effective methods for recognition and analysis of gait patterns in ALS patients is utilizing stride interval time series. With proper preprocessing for removing unwanted artifacts from the raw stride interval times and then extracting meaningful features from these data, the factorial hidden Markov model (FHMM) was used to distinguish ALS patients from healthy subjects. The results of classification accuracy evaluated using the leave-one-out (LOO) cross-validation algorithm showed that the FHMM method provides better recognition of ALS and healthy subjects compared to standard HMM. Moreover, comparing our method with a state-of-the art method named least square support vector machine (LS-SVM) showed the efficiency of the FHMM in distinguishing ALS subjects from healthy ones. PMID:26110481

  1. MBPpred: Proteome-wide detection of membrane lipid-binding proteins using profile Hidden Markov Models.

    PubMed

    Nastou, Katerina C; Tsaousis, Georgios N; Papandreou, Nikos C; Hamodrakas, Stavros J

    2016-07-01

    A large number of modular domains that exhibit specific lipid binding properties are present in many membrane proteins involved in trafficking and signal transduction. These domains are present in either eukaryotic peripheral membrane or transmembrane proteins and are responsible for the non-covalent interactions of these proteins with membrane lipids. Here we report a profile Hidden Markov Model based method capable of detecting Membrane Binding Proteins (MBPs) from information encoded in their amino acid sequence, called MBPpred. The method identifies MBPs that contain one or more of the Membrane Binding Domains (MBDs) that have been described to date, and further classifies these proteins based on their position in respect to the membrane, either as peripheral or transmembrane. MBPpred is available online at http://bioinformatics.biol.uoa.gr/MBPpred. This method was applied in selected eukaryotic proteomes, in order to examine the characteristics they exhibit in various eukaryotic kingdoms and phyla. PMID:27048983

  2. Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Hongchao; Yuan, Haodong

    2016-01-01

    Due to the important role rolling element bearings play in rotating machines, condition monitoring and fault diagnosis system should be established to avoid abrupt breakage during operation. Various features from time, frequency and time-frequency domain are usually used for bearing or machinery condition monitoring. In this study, NCA-based feature extraction (FE) approach is proposed to reduce the dimensionality of original feature set and avoid the "curse of dimensionality". Furthermore, coupled hidden Markov model (CHMM) based on multichannel data acquisition is applied to diagnose bearing or machinery fault. Two case studies are presented to validate the proposed approach both in bearing fault diagnosis and fault severity classification. The experiment results show that the proposed NCA-CHMM can remove redundant information, fuse data from different channels and improve the diagnosis results.

  3. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    USGS Publications Warehouse

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  4. Statistical Mechanics of Transcription-Factor Binding Site Discovery Using Hidden Markov Models

    PubMed Central

    Mehta, Pankaj; Schwab, David J.; Sengupta, Anirvan M.

    2011-01-01

    Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the “inverse” statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is low. We then use techniques from statistical mechanics to derive a scaling principle relating the specificity (binding energy) of a TF to the minimum amount of training data necessary to learn it. PMID:22851788

  5. Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Solis-Trapala, Ivonne L.

    2010-01-01

    We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…

  6. Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.

    PubMed

    Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung

    2016-08-01

    A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737

  7. A Markov Chain Model for Changes in Users’ Assessment of Search Results

    PubMed Central

    Zhitomirsky-Geffet, Maayan; Bar-Ilan, Judit; Levene, Mark

    2016-01-01

    Previous research shows that users tend to change their assessment of search results over time. This is a first study that investigates the factors and reasons for these changes, and describes a stochastic model of user behaviour that may explain these changes. In particular, we hypothesise that most of the changes are local, i.e. between results with similar or close relevance to the query, and thus belong to the same”coarse” relevance category. According to the theory of coarse beliefs and categorical thinking, humans tend to divide the range of values under consideration into coarse categories, and are thus able to distinguish only between cross-category values but not within them. To test this hypothesis we conducted five experiments with about 120 subjects divided into 3 groups. Each student in every group was asked to rank and assign relevance scores to the same set of search results over two or three rounds, with a period of three to nine weeks between each round. The subjects of the last three-round experiment were then exposed to the differences in their judgements and were asked to explain them. We make use of a Markov chain model to measure change in users’ judgments between the different rounds. The Markov chain demonstrates that the changes converge, and that a majority of the changes are local to a neighbouring relevance category. We found that most of the subjects were satisfied with their changes, and did not perceive them as mistakes but rather as a legitimate phenomenon, since they believe that time has influenced their relevance assessment. Both our quantitative analysis and user comments support the hypothesis of the existence of coarse relevance categories resulting from categorical thinking in the context of user evaluation of search results. PMID:27171426

  8. Predicting community structure of ground-foraging ant assemblages with Markov models of behavioral dominance.

    PubMed

    Wittman, Sarah E; Gotelli, Nicholas J

    2011-05-01

    Although interference competition is a conspicuous component of many animal communities, it is still uncertain whether the competitive ability of a species determines its relative abundance and patterns of association with other species. We used replicated arena tests to quantify behavioral dominance of eight common species of co-occurring ground-foraging ants in the Siskiyou Mountains of southern Oregon. We found that behavior recorded in laboratory assays was an accurate representation of a colony's ability to monopolize resources in the field. We used interaction frequencies from the behavioral tests to estimate transition probabilities in a simple Markov chain model to predict patterns of relative abundance in a metacommunity that is dominated by behavioral interactions. We also tested whether behavioral interactions between each pair of species could be used to predict patterns of species co-occurrence. We found that the Markov model did not accurately predict patterns of observed relative abundance on either the local or the regional scale. However, we did detect a significant negative correlation at the local scale in which behaviorally dominant species occupied relatively few baits. Pairwise behavioral data also did not predict species co-occurrence in any site. Although interference competition is a conspicuous process in ant communities, our results suggest that it may not contribute much to patterns of relative abundance and species co-occurrence in the system studied here. However, the negative correlation between behavioral dominance and bait occupancy at the local scale suggests that competition-colonization trade-offs may be important in resource acquisition and persistence of behaviorally subordinate species. PMID:20978797

  9. A Markov Chain Model for Changes in Users' Assessment of Search Results.

    PubMed

    Zhitomirsky-Geffet, Maayan; Bar-Ilan, Judit; Levene, Mark

    2016-01-01

    Previous research shows that users tend to change their assessment of search results over time. This is a first study that investigates the factors and reasons for these changes, and describes a stochastic model of user behaviour that may explain these changes. In particular, we hypothesise that most of the changes are local, i.e. between results with similar or close relevance to the query, and thus belong to the same"coarse" relevance category. According to the theory of coarse beliefs and categorical thinking, humans tend to divide the range of values under consideration into coarse categories, and are thus able to distinguish only between cross-category values but not within them. To test this hypothesis we conducted five experiments with about 120 subjects divided into 3 groups. Each student in every group was asked to rank and assign relevance scores to the same set of search results over two or three rounds, with a period of three to nine weeks between each round. The subjects of the last three-round experiment were then exposed to the differences in their judgements and were asked to explain them. We make use of a Markov chain model to measure change in users' judgments between the different rounds. The Markov chain demonstrates that the changes converge, and that a majority of the changes are local to a neighbouring relevance category. We found that most of the subjects were satisfied with their changes, and did not perceive them as mistakes but rather as a legitimate phenomenon, since they believe that time has influenced their relevance assessment. Both our quantitative analysis and user comments support the hypothesis of the existence of coarse relevance categories resulting from categorical thinking in the context of user evaluation of search results. PMID:27171426

  10. A Hidden Markov Model for avalanche forecasting on Chowkibal-Tangdhar road axis in Indian Himalayas

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish Chandra; Srivastava, Sunita

    2014-12-01

    A numerical avalanche prediction scheme using Hidden Markov Model (HMM) has been developed for Chowkibal-Tangdhar road axis in J&K, India. The model forecast is in the form of different levels of avalanche danger (no, low, medium, and high) with a lead time of two days. Snow and meteorological data (maximum temperature, minimum temperature, fresh snow, fresh snow duration, standing snow) of past 12 winters (1992-2008) have been used to derive the model input variables (average temperature, fresh snow in 24 hrs, snow fall intensity, standing snow, Snow Temperature Index (STI) of the top layer, and STI of buried layer). As in HMMs, there are two sequences: a state sequence and a state dependent observation sequence; in the present model, different levels of avalanche danger are considered as different states of the model and Avalanche Activity Index (AAI) of a day, derived from the model input variables, as an observation. Validation of the model with independent data of two winters (2008-2009, 2009-2010) gives 80% accuracy for both day-1 and day-2. Comparison of various forecasting quality measures and Heidke Skill Score of the HMM and the NN model indicate better forecasting skill of the HMM.

  11. MaxMod: a hidden Markov model based novel interface to MODELLER for improved prediction of protein 3D models.

    PubMed

    Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K

    2015-02-01

    Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/. PMID:25636267

  12. Study on the calculation models of bus delay at bays using queueing theory and Markov chain.

    PubMed

    Sun, Feng; Sun, Li; Sun, Shao-Wei; Wang, Dian-Hai

    2015-01-01

    Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays. PMID:25759720

  13. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Ter Braak, Cajo J. F.; Clark, Martyn P.; Hyman, James M.; Robinson, Bruce A.

    2008-12-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled differential evolution adaptive Metropolis (DREAM), that is especially designed to efficiently estimate the posterior probability density function of hydrologic model parameters in complex, high-dimensional sampling problems. This MCMC scheme adaptively updates the scale and orientation of the proposal distribution during sampling and maintains detailed balance and ergodicity. It is then demonstrated how DREAM can be used to analyze forcing data error during watershed model calibration using a five-parameter rainfall-runoff model with streamflow data from two different catchments. Explicit treatment of precipitation error during hydrologic model calibration not only results in prediction uncertainty bounds that are more appropriate but also significantly alters the posterior distribution of the watershed model parameters. This has significant implications for regionalization studies. The approach also provides important new ways to estimate areal average watershed precipitation, information that is of utmost importance for testing hydrologic theory, diagnosing structural errors in models, and appropriately benchmarking rainfall measurement devices.

  14. A new method for direction finding based on Markov random field model

    NASA Astrophysics Data System (ADS)

    Ota, Mamoru; Kasahara, Yoshiya; Goto, Yoshitaka

    2015-07-01

    Investigating the characteristics of plasma waves observed by scientific satellites in the Earth's plasmasphere/magnetosphere is effective for understanding the mechanisms for generating waves and the plasma environment that influences wave generation and propagation. In particular, finding the propagation directions of waves is important for understanding mechanisms of VLF/ELF waves. To find these directions, the wave distribution function (WDF) method has been proposed. This method is based on the idea that observed signals consist of a number of elementary plane waves that define wave energy density distribution. However, the resulting equations constitute an ill-posed problem in which a solution is not determined uniquely; hence, an adequate model must be assumed for a solution. Although many models have been proposed, we have to select the most optimum model for the given situation because each model has its own advantages and disadvantages. In the present study, we propose a new method for direction finding of the plasma waves measured by plasma wave receivers. Our method is based on the assumption that the WDF can be represented by a Markov random field model with inference of model parameters performed using a variational Bayesian learning algorithm. Using computer-generated spectral matrices, we evaluated the performance of the model and compared the results with those obtained from two conventional methods.

  15. Study on the Calculation Models of Bus Delay at Bays Using Queueing Theory and Markov Chain

    PubMed Central

    Sun, Li; Sun, Shao-wei; Wang, Dian-hai

    2015-01-01

    Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays. PMID:25759720

  16. A hidden Markov model approach to analyze longitudinal ternary outcomes when some observed states are possibly misclassified.

    PubMed

    Benoit, Julia S; Chan, Wenyaw; Luo, Sheng; Yeh, Hung-Wen; Doody, Rachelle

    2016-04-30

    Understanding the dynamic disease process is vital in early detection, diagnosis, and measuring progression. Continuous-time Markov chain (CTMC) methods have been used to estimate state-change intensities but challenges arise when stages are potentially misclassified. We present an analytical likelihood approach where the hidden state is modeled as a three-state CTMC model allowing for some observed states to be possibly misclassified. Covariate effects of the hidden process and misclassification probabilities of the hidden state are estimated without information from a 'gold standard' as comparison. Parameter estimates are obtained using a modified expectation-maximization (EM) algorithm, and identifiability of CTMC estimation is addressed. Simulation studies and an application studying Alzheimer's disease caregiver stress-levels are presented. The method was highly sensitive to detecting true misclassification and did not falsely identify error in the absence of misclassification. In conclusion, we have developed a robust longitudinal method for analyzing categorical outcome data when classification of disease severity stage is uncertain and the purpose is to study the process' transition behavior without a gold standard. PMID:26782946

  17. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model

    PubMed Central

    Neuwald, Andrew F; Liu, Jun S

    2004-01-01

    Background Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN) analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. Results Here we describe a hidden Markov model (HMM), an algebraic system, and Markov chain Monte Carlo (MCMC) sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Giα subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97) AAA+ ATPases. Conclusion While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can provide a better measure of

  18. [A Hyperspectral Imagery Anomaly Detection Algorithm Based on Gauss-Markov Model].

    PubMed

    Gao, Kun; Liu, Ying; Wang, Li-jing; Zhu, Zhen-yu; Cheng, Hao-bo

    2015-10-01

    With the development of spectral imaging technology, hyperspectral anomaly detection is getting more and more widely used in remote sensing imagery processing. The traditional RX anomaly detection algorithm neglects spatial correlation of images. Besides, it does not validly reduce the data dimension, which costs too much processing time and shows low validity on hyperspectral data. The hyperspectral images follow Gauss-Markov Random Field (GMRF) in space and spectral dimensions. The inverse matrix of covariance matrix is able to be directly calculated by building the Gauss-Markov parameters, which avoids the huge calculation of hyperspectral data. This paper proposes an improved RX anomaly detection algorithm based on three-dimensional GMRF. The hyperspectral imagery data is simulated with GMRF model, and the GMRF parameters are estimated with the Approximated Maximum Likelihood method. The detection operator is constructed with GMRF estimation parameters. The detecting pixel is considered as the centre in a local optimization window, which calls GMRF detecting window. The abnormal degree is calculated with mean vector and covariance inverse matrix, and the mean vector and covariance inverse matrix are calculated within the window. The image is detected pixel by pixel with the moving of GMRF window. The traditional RX detection algorithm, the regional hypothesis detection algorithm based on GMRF and the algorithm proposed in this paper are simulated with AVIRIS hyperspectral data. Simulation results show that the proposed anomaly detection method is able to improve the detection efficiency and reduce false alarm rate. We get the operation time statistics of the three algorithms in the same computer environment. The results show that the proposed algorithm improves the operation time by 45.2%, which shows good computing efficiency. PMID:26904830

  19. A phylogenetic and Markov model approach for the reconstruction of mutational pathways of drug resistance

    PubMed Central

    Buendia, Patricia; Cadwallader, Brice; DeGruttola, Victor

    2009-01-01

    Motivation: Modern HIV-1, hepatitis B virus and hepatitis C virus antiviral therapies have been successful at keeping viruses suppressed for prolonged periods of time, but therapy failures attributable to the emergence of drug resistant mutations continue to be a distressing reminder that no therapy can fully eradicate these viruses from their host organisms. To better understand the emergence of drug resistance, we combined phylogenetic and statistical models of viral evolution in a 2-phase computational approach that reconstructs mutational pathways of drug resistance. Results: The first phase of the algorithm involved the modeling of the evolution of the virus within the human host environment. The inclusion of longitudinal clonal sequence data was a key aspect of the model due to the progressive fashion in which multiple mutations become linked in the same genome creating drug resistant genotypes. The second phase involved the development of a Markov model to calculate the transition probabilities between the different genotypes. The proposed method was applied to data from an HIV-1 Efavirenz clinical trial study. The obtained model revealed the direction of evolution over time with greater detail than previous models. Our results show that the mutational pathways facilitate the identification of fast versus slow evolutionary pathways to drug resistance. Availability: Source code for the algorithm is publicly available at http://biorg.cis.fiu.edu/vPhyloMM/ Contact: pbuendia@miami.edu PMID:19654117

  20. Dynamic change monitoring of forest resource by using Remote Sensing and Markov Process in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Qiao Yuliang, Q.; Zhao Shangmin, Z.

    Forest resource is the main body of ecosystem on the earth land which is indispensable regenerated resource in improving the entironment and boosting the quality of habitation At present with rapid development of society and economy the grim challenge has to be faced with because of decrease of forest resource and gradually aggravation of entironment Application of earth observation technology to monitoring the dynamic change of forest resource in Loess Plateau with quite fragile zoology and badly erosive soil therefore has increasingly important significance in developing Chinese national economy reserving zoology and forecasting the change of world environment This study applies remote sensing technology combined with Markov process to monitor and forecast the dynamic change of forest resource in Chinese Loess Plateau At first according to the dynamic change maps of the forest resource from remote sensing data in three different periods--1978 cent1987 and 2000 the transitions among the forest resource types in the Daning County --- a key pilot area of the Three North Protection Forest Project in Chinese Loess Plateau are acquired by combining the different remote sensing information sources during those different periods Then the transition probability matrices at two primary states 1978 and 1987 are established easily Based on the transition probability matrices we can simulate and forecast the forest dynamic transformation pattern and the forest-transforming tendency in the future periods The results of the

  1. Hypovigilance detection for UCAV operators based on a hidden Markov model.

    PubMed

    Choi, Yerim; Kwon, Namyeon; Lee, Sungjun; Shin, Yongwook; Ryo, Chuh Yeop; Park, Jonghun; Shin, Dongmin

    2014-01-01

    With the advance of military technology, the number of unmanned combat aerial vehicles (UCAVs) has rapidly increased. However, it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs), two of which are used to indicate the operators' dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can be addressed. PMID:24963338

  2. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.

    PubMed

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing. PMID:26710073

  3. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data

    PubMed Central

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing. PMID:26710073

  4. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  5. Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Barhoumi, Abdessatar; Souissi, Abdessatar

    2016-05-01

    The main aim of the present paper is to prove the existence of a phase transition in quantum Markov chain (QMC) scheme for the Ising type models on a Cayley tree. Note that this kind of models do not have one-dimensional analogous, i.e. the considered model persists only on trees. In this paper, we provide a more general construction of forward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Our main result states the existence of a phase transition for the Ising model with competing interactions on a Cayley tree of order two. By the phase transition we mean the existence of two distinct QMC which are not quasi-equivalent and their supports do not overlap. We also study some algebraic property of the disordered phase of the model, which is a new phenomena even in a classical setting.

  6. Adaptive hidden Markov model with anomaly States for price manipulation detection.

    PubMed

    Cao, Yi; Li, Yuhua; Coleman, Sonya; Belatreche, Ammar; McGinnity, Thomas Martin

    2015-02-01

    Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models. PMID:25608293

  7. Capturing the state transitions of seizure-like events using Hidden Markov models.

    PubMed

    Guirgis, Mirna; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L

    2011-01-01

    The purpose of this study was to investigate the number of states present in the progression of a seizure-like event (SLE). Of particular interest is to determine if there are more than two clearly defined states, as this would suggest that there is a distinct state preceding an SLE. Whole-intact hippocampus from C57/BL mice was used to model epileptiform activity induced by the perfusion of a low Mg(2+)/high K(+) solution while extracellular field potentials were recorded from CA3 pyramidal neurons. Hidden Markov models (HMM) were used to model the state transitions of the recorded SLEs by incorporating various features of the Hilbert transform into the training algorithm; specifically, 2- and 3-state HMMs were explored. Although the 2-state model was able to distinguish between SLE and nonSLE behavior, it provided no improvements compared to visual inspection alone. However, the 3-state model was able to capture two distinct nonSLE states that visual inspection failed to discriminate. Moreover, by developing an HMM based system a priori knowledge of the state transitions was not required making this an ideal platform for seizure prediction algorithms. PMID:22254742

  8. Hypovigilance Detection for UCAV Operators Based on a Hidden Markov Model

    PubMed Central

    Kwon, Namyeon; Shin, Yongwook; Ryo, Chuh Yeop; Park, Jonghun

    2014-01-01

    With the advance of military technology, the number of unmanned combat aerial vehicles (UCAVs) has rapidly increased. However, it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs), two of which are used to indicate the operators' dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can be addressed. PMID:24963338

  9. On Markov parameters in system identification

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.

  10. Forest cover change prediction using hybrid methodology of geoinformatics and Markov chain model: A case study on sub-Himalayan town Gangtok, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anirban; Mondal, Arun; Mukherjee, Sandip; Khatua, Dipam; Ghosh, Subhajit; Mitra, Debasish; Ghosh, Tuhin

    2014-08-01

    In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.

  11. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  12. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization

    PubMed Central

    Stifter, Cynthia A.; Rovine, Michael

    2016-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.

  13. Real-time classification of humans versus animals using profiling sensors and hidden Markov tree model

    NASA Astrophysics Data System (ADS)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2015-07-01

    Linear pyroelectric array sensors have enabled useful classifications of objects such as humans and animals to be performed with relatively low-cost hardware in border and perimeter security applications. Ongoing research has sought to improve the performance of these sensors through signal processing algorithms. In the research presented here, we introduce the use of hidden Markov tree (HMT) models for object recognition in images generated by linear pyroelectric sensors. HMTs are trained to statistically model the wavelet features of individual objects through an expectation-maximization learning process. Human versus animal classification for a test object is made by evaluating its wavelet features against the trained HMTs using the maximum-likelihood criterion. The classification performance of this approach is compared to two other techniques; a texture, shape, and spectral component features (TSSF) based classifier and a speeded-up robust feature (SURF) classifier. The evaluation indicates that among the three techniques, the wavelet-based HMT model works well, is robust, and has improved classification performance compared to a SURF-based algorithm in equivalent computation time. When compared to the TSSF-based classifier, the HMT model has a slightly degraded performance but almost an order of magnitude improvement in computation time enabling real-time implementation.

  14. Detecting Gait Phases from RGB-D Images Based on Hidden Markov Model

    PubMed Central

    Heravi, Hamed; Ebrahimi, Afshin; Olyaee, Ehsan

    2016-01-01

    Gait contains important information about the status of the human body and physiological signs. In many medical applications, it is important to monitor and accurately analyze the gait of the patient. Since walking shows the reproducibility signs in several phases, separating these phases can be used for the gait analysis. In this study, a method based on image processing for extracting phases of human gait from RGB-Depth images is presented. The sequence of depth images from the front view has been processed to extract the lower body depth profile and distance features. Feature vector extracted from image is the same as observation vector of hidden Markov model, and the phases of gait are considered as hidden states of the model. After training the model using the images which are randomly selected as training samples, the phase estimation of gait becomes possible using the model. The results confirm the rate of 60–40% of two major phases of the gait and also the mid-stance phase is recognized with 85% precision. PMID:27563572

  15. Classification of EEG Single Trial Microstates Using Local Global Graphs and Discrete Hidden Markov Models.

    PubMed

    Michalopoulos, Kostas; Zervakis, Michalis; Deiber, Marie-Pierre; Bourbakis, Nikolaos

    2016-09-01

    We present a novel synergistic methodology for the spatio-temporal analysis of single Electroencephalogram (EEG) trials. This new methodology is based on the novel synergy of Local Global Graph (LG graph) to characterize define the structural features of the EEG topography as a global descriptor for robust comparison of dominant topographies (microstates) and Hidden Markov Models (HMM) to model the topographic sequence in a unique way. In particular, the LG graph descriptor defines similarity and distance measures that can be successfully used for the difficult comparison of the extracted LG graphs in the presence of noise. In addition, hidden states represent periods of stationary distribution of topographies that constitute the equivalent of the microstates in the model. The transitions between the different microstates and the formed syntactic patterns can reveal differences in the processing of the input stimulus between different pathologies. We train the HMM model to learn the transitions between the different microstates and express the syntactic patterns that appear in the single trials in a compact and efficient way. We applied this methodology in single trials consisting of normal subjects and patients with Progressive Mild Cognitive Impairment (PMCI) to discriminate these two groups. The classification results show that this approach is capable to efficiently discriminate between control and Progressive MCI single trials. Results indicate that HMMs provide physiologically meaningful results that can be used in the syntactic analysis of Event Related Potentials. PMID:27255799

  16. Detecting Gait Phases from RGB-D Images Based on Hidden Markov Model.

    PubMed

    Heravi, Hamed; Ebrahimi, Afshin; Olyaee, Ehsan

    2016-01-01

    Gait contains important information about the status of the human body and physiological signs. In many medical applications, it is important to monitor and accurately analyze the gait of the patient. Since walking shows the reproducibility signs in several phases, separating these phases can be used for the gait analysis. In this study, a method based on image processing for extracting phases of human gait from RGB-Depth images is presented. The sequence of depth images from the front view has been processed to extract the lower body depth profile and distance features. Feature vector extracted from image is the same as observation vector of hidden Markov model, and the phases of gait are considered as hidden states of the model. After training the model using the images which are randomly selected as training samples, the phase estimation of gait becomes possible using the model. The results confirm the rate of 60-40% of two major phases of the gait and also the mid-stance phase is recognized with 85% precision. PMID:27563572

  17. Exceptional motifs in different Markov chain models for a statistical analysis of DNA sequences.

    PubMed

    Schbath, S; Prum, B; de Turckheim, E

    1995-01-01

    Identifying exceptional motifs is often used for extracting information from long DNA sequences. The two difficulties of the method are the choice of the model that defines the expected frequencies of words and the approximation of the variance of the difference T(W) between the number of occurrences of a word W and its estimation. We consider here different Markov chain models, either with stationary or periodic transition probabilities. We estimate the variance of the difference T(W) by the conditional variance of the number of occurrences of W given the oligonucleotides counts that define the model. Two applications show how to use asymptotically standard normal statistics associated with the counts to describe a given sequence in terms of its outlying words. Sequences of Escherichia coli and of Bacillus subtilis are compared with respect to their exceptional tri- and tetranucleotides. For both bacteria, exceptional 3-words are mainly found in the coding frame. E. coli palindrome counts are analyzed in different models, showing that many overabundant words are one-letter mutations of avoided palindromes. PMID:8521272

  18. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion

    NASA Astrophysics Data System (ADS)

    Jokar Arsanjani, Jamal; Helbich, Marco; Kainz, Wolfgang; Darvishi Boloorani, Ali

    2013-04-01

    This research analyses the suburban expansion in the metropolitan area of Tehran, Iran. A hybrid model consisting of logistic regression model, Markov chain (MC), and cellular automata (CA) was designed to improve the performance of the standard logistic regression model. Environmental and socio-economic variables dealing with urban sprawl were operationalised to create a probability surface of spatiotemporal states of built-up land use for the years 2006, 2016, and 2026. For validation, the model was evaluated by means of relative operating characteristic values for different sets of variables. The approach was calibrated for 2006 by cross comparing of actual and simulated land use maps. The achieved outcomes represent a match of 89% between simulated and actual maps of 2006, which was satisfactory to approve the calibration process. Thereafter, the calibrated hybrid approach was implemented for forthcoming years. Finally, future land use maps for 2016 and 2026 were predicted by means of this hybrid approach. The simulated maps illustrate a new wave of suburban development in the vicinity of Tehran at the western border of the metropolis during the next decades.

  19. A Markov chain model for image ranking system in social networks

    NASA Astrophysics Data System (ADS)

    Zin, Thi Thi; Tin, Pyke; Toriu, Takashi; Hama, Hiromitsu

    2014-03-01

    In today world, different kinds of networks such as social, technological, business and etc. exist. All of the networks are similar in terms of distributions, continuously growing and expanding in large scale. Among them, many social networks such as Facebook, Twitter, Flickr and many others provides a powerful abstraction of the structure and dynamics of diverse kinds of inter personal connection and interaction. Generally, the social network contents are created and consumed by the influences of all different social navigation paths that lead to the contents. Therefore, identifying important and user relevant refined structures such as visual information or communities become major factors in modern decision making world. Moreover, the traditional method of information ranking systems cannot be successful due to their lack of taking into account the properties of navigation paths driven by social connections. In this paper, we propose a novel image ranking system in social networks by using the social data relational graphs from social media platform jointly with visual data to improve the relevance between returned images and user intentions (i.e., social relevance). Specifically, we propose a Markov chain based Social-Visual Ranking algorithm by taking social relevance into account. By using some extensive experiments, we demonstrated the significant and effectiveness of the proposed social-visual ranking method.

  20. Techniques for modeling the reliability of fault-tolerant systems with the Markov state-space approach

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Johnson, Sally C.

    1995-01-01

    This paper presents a step-by-step tutorial of the methods and the tools that were used for the reliability analysis of fault-tolerant systems. The approach used in this paper is the Markov (or semi-Markov) state-space method. The paper is intended for design engineers with a basic understanding of computer architecture and fault tolerance, but little knowledge of reliability modeling. The representation of architectural features in mathematical models is emphasized. This paper does not present details of the mathematical solution of complex reliability models. Instead, it describes the use of several recently developed computer programs SURE, ASSIST, STEM, and PAWS that automate the generation and the solution of these models.

  1. Numerical research of the optimal control problem in the semi-Markov inventory model

    SciTech Connect

    Gorshenin, Andrey K.

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.

  2. A hidden Markov model that finds genes in E. coli DNA.

    PubMed Central

    Krogh, A; Mian, I S; Haussler, D

    1994-01-01

    A hidden Markov model (HMM) has been developed to find protein coding genes in E. coli DNA using E. coli genome DNA sequence from the EcoSeq6 database maintained by Kenn Rudd. This HMM includes states that model the codons and their frequencies in E. coli genes, as well as the patterns found in the intergenic region, including repetitive extragenic palindromic sequences and the Shine-Delgarno motif. To account for potential sequencing errors and or frameshifts in raw genomic DNA sequence, it allows for the (very unlikely) possibility of insertions and deletions of individual nucleotides within a codon. The parameters of the HMM are estimated using approximately one million nucleotides of annotated DNA in EcoSeq6 and the model tested on a disjoint set of contigs containing about 325,000 nucleotides. The HMM finds the exact locations of about 80% of the known E. coli genes, and approximate locations for about 10%. It also finds several potentially new genes, and locates several places were insertion or deletion errors/and or frameshifts may be present in the contigs. PMID:7984429

  3. Bayesian hidden Markov models to identify RNA-protein interaction sites in PAR-CLIP.

    PubMed

    Yun, Jonghyun; Wang, Tao; Xiao, Guanghua

    2014-06-01

    The photoactivatable ribonucleoside enhanced cross-linking immunoprecipitation (PAR-CLIP) has been increasingly used for the global mapping of RNA-protein interaction sites. There are two key features of the PAR-CLIP experiments: The sequence read tags are likely to form an enriched peak around each RNA-protein interaction site; and the cross-linking procedure is likely to introduce a specific mutation in each sequence read tag at the interaction site. Several ad hoc methods have been developed to identify the RNA-protein interaction sites using either sequence read counts or mutation counts alone; however, rigorous statistical methods for analyzing PAR-CLIP are still lacking. In this article, we propose an integrative model to establish a joint distribution of observed read and mutation counts. To pinpoint the interaction sites at single base-pair resolution, we developed a novel modeling approach that adopts non-homogeneous hidden Markov models to incorporate the nucleotide sequence at each genomic location. Both simulation studies and data application showed that our method outperforms the ad hoc methods, and provides reliable inferences for the RNA-protein binding sites from PAR-CLIP data. PMID:24571656

  4. Analysis of the Trajectory Surface Hopping Method from the Markov State Model Perspective

    NASA Astrophysics Data System (ADS)

    Akimov, Alexey V.; Trivedi, Dhara; Wang, Linjun; Prezhdo, Oleg V.

    2015-09-01

    We analyze the applicability of the seminal fewest switches surface hopping (FSSH) method of Tully to modeling quantum transitions between electronic states that are not coupled directly, in the processes such as Auger recombination. We address the known deficiency of the method to describe such transitions by introducing an alternative definition for the surface hopping probabilities, as derived from the Markov state model perspective. We show that the resulting transition probabilities simplify to the quantum state populations derived from the time-dependent Schrödinger equation, reducing to the rapidly switching surface hopping approach of Tully and Preston. The resulting surface hopping scheme is simple and appeals to the fundamentals of quantum mechanics. The computational approach is similar to the FSSH method of Tully, yet it leads to a notably different performance. We demonstrate that the method is particularly accurate when applied to superexchange modeling. We further show improved accuracy of the method, when applied to one of the standard test problems. Finally, we adapt the derived scheme to atomistic simulation, combine it with the time-domain density functional theory, and show that it provides the Auger energy transfer timescales which are in good agreement with experiment, significantly improving upon other considered techniques.

  5. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  6. A Markov Random Field Model-Based Approach To Image Interpretation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Modestino, James W.

    1989-11-01

    In this paper, a Markov random field (MRF) model-based approach to automated image interpretation is described and demonstrated as a region-based scheme. In this approach, an image is first segmented into a collection of disjoint regions which form the nodes of an adjacency graph. Image interpretation is then achieved through assigning object labels, or interpretations, to the segmented regions, or nodes, using domain knowledge, extracted feature measurements and spatial relationships between the various regions. The interpretation labels are modeled as a MRF on the corresponding adjacency graph and the image interpretation problem is formulated as a maximum a posteriori (MAP) estimation rule. Simulated annealing is used to find the best realization, or optimal MAP interpretation. Through the MRF model, this approach also provides a systematic method for organizing and representing domain knowledge through the clique functions of the pdf of the underlying MRF. Results of image interpretation experiments performed on synthetic and real-world images using this approach are described and appear promising.

  7. A New Hidden Markov Model for Protein Quality Assessment Using Compatibility Between Protein Sequence and Structure

    PubMed Central

    He, Zhiquan; Ma, Wenji; Zhang, Jingfen; Xu, Dong

    2015-01-01

    Protein structure Quality Assessment (QA) is an essential component in protein structure prediction and analysis. The relationship between protein sequence and structure often serves as a basis for protein structure QA. In this work, we developed a new Hidden Markov Model (HMM) to assess the compatibility of protein sequence and structure for capturing their complex relationship. More specifically, the emission of the HMM consists of protein local structures in angular space, secondary structures, and sequence profiles. This model has two capabilities: (1) encoding local structure of each position by jointly considering sequence and structure information, and (2) assigning a global score to estimate the overall quality of a predicted structure, as well as local scores to assess the quality of specific regions of a structure, which provides useful guidance for targeted structure refinement. We compared the HMM model to state-of-art single structure quality assessment methods OPUSCA, DFIRE, GOAP, and RW in protein structure selection. Computational results showed our new score HMM.Z can achieve better overall selection performance on the benchmark datasets. PMID:26221066

  8. A wavelet-based Markov random field segmentation model in segmenting microarray experiments.

    PubMed

    Athanasiadis, Emmanouil; Cavouras, Dionisis; Kostopoulos, Spyros; Glotsos, Dimitris; Kalatzis, Ioannis; Nikiforidis, George

    2011-12-01

    In the present study, an adaptation of the Markov Random Field (MRF) segmentation model, by means of the stationary wavelet transform (SWT), applied to complementary DNA (cDNA) microarray images is proposed (WMRF). A 3-level decomposition scheme of the initial microarray image was performed, followed by a soft thresholding filtering technique. With the inverse process, a Denoised image was created. In addition, by using the Amplitudes of the filtered wavelet Horizontal and Vertical images at each level, three different Magnitudes were formed. These images were combined with the Denoised one to create the proposed SMRF segmentation model. For numerical evaluation of the segmentation accuracy, the segmentation matching factor (SMF), the Coefficient of Determination (r(2)), and the concordance correlation (p(c)) were calculated on the simulated images. In addition, the SMRF performance was contrasted to the Fuzzy C Means (FCM), Gaussian Mixture Models (GMM), Fuzzy GMM (FGMM), and the conventional MRF techniques. Indirect accuracy performances were also tested on the experimental images by means of the Mean Absolute Error (MAE) and the Coefficient of Variation (CV). In the latter case, SPOT and SCANALYZE software results were also tested. In the former case, SMRF attained the best SMF, r(2), and p(c) (92.66%, 0.923, and 0.88, respectively) scores, whereas, in the latter case scored MAE and CV, 497 and 0.88, respectively. The results and support the performance superiority of the SMRF algorithm in segmenting cDNA images. PMID:21531035

  9. Temporal structure analysis of broadcast tennis video using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Kijak, Ewa; Oisel, Lionel; Gros, Patrick

    2003-01-01

    This work aims at recovering the temporal structure of a broadcast tennis video from an analysis of the raw footage. Our method relies on a statistical model of the interleaving of shots, in order to group shots into predefined classes representing structural elements of a tennis video. This stochastic modeling is performed in the global framework of Hidden Markov Models (HMMs). The fundamental units are shots and transitions. In a first step, colors and motion attributes of segmented shots are used to map shots into 2 classes: game (view of the full tennis court) and not game (medium, close up views, and commercials). In a second step, a trained HMM is used to analyze the temporal interleaving of shots. This analysis results in the identification of more complex structures, such as first missed services, short rallies that could be aces or services, long rallies, breaks that are significant of the end of a game and replays that highlight interesting points. These higher-level unit structures can be used either to create summaries, or to allow non-linear browsing of the video.

  10. Dynamic alignment models for neural coding.

    PubMed

    Kollmorgen, Sepp; Hahnloser, Richard H R

    2014-03-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  11. Evaluation of various feature extraction methods for landmine detection using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Hamdi, Anis; Frigui, Hichem

    2012-06-01

    Hidden Markov Models (HMM) have proved to be eective for detecting buried land mines using data collected by a moving-vehicle-mounted ground penetrating radar (GPR). The general framework for a HMM-based landmine detector consists of building a HMM model for mine signatures and a HMM model for clutter signatures. A test alarm is assigned a condence proportional to the probability of that alarm being generated by the mine model and inversely proportional to its probability in the clutter model. The HMM models are built based on features extracted from GPR training signatures. These features are expected to capture the salient properties of the 3-dimensional alarms in a compact representation. The baseline HMM framework for landmine detection is based on gradient features. It models the time varying behavior of GPR signals, encoded using edge direction information, to compute the likelihood that a sequence of measurements is consistent with a buried landmine. In particular, the HMM mine models learns the hyperbolic shape associated with the signature of a buried mine by three states that correspond to the succession of an increasing edge, a at edge, and a decreasing edge. Recently, for the same application, other features have been used with dierent classiers. In particular, the Edge Histogram Descriptor (EHD) has been used within a K-nearest neighbor classier. Another descriptor is based on Gabor features and has been used within a discrete HMM classier. A third feature, that is closely related to the EHD, is the Bar histogram feature. This feature has been used within a Neural Networks classier for handwritten word recognition. In this paper, we propose an evaluation of the HMM based landmine detection framework with several feature extraction techniques. We adapt and evaluate the EHD, Gabor, Bar, and baseline gradient feature extraction methods. We compare the performance of these features using a large and diverse GPR data collection.

  12. A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates.

    PubMed

    Bartolucci, Francesco; Farcomeni, Alessio

    2015-03-01

    Mixed latent Markov (MLM) models represent an important tool of analysis of longitudinal data when response variables are affected by time-fixed and time-varying unobserved heterogeneity, in which the latter is accounted for by a hidden Markov chain. In order to avoid bias when using a model of this type in the presence of informative drop-out, we propose an event-history (EH) extension of the latent Markov approach that may be used with multivariate longitudinal data, in which one or more outcomes of a different nature are observed at each time occasion. The EH component of the resulting model is referred to the interval-censored drop-out, and bias in MLM modeling is avoided by correlated random effects, included in the different model components, which follow common latent distributions. In order to perform maximum likelihood estimation of the proposed model by the expectation-maximization algorithm, we extend the usual forward-backward recursions of Baum and Welch. The algorithm has the same complexity as the one adopted in cases of non-informative drop-out. We illustrate the proposed approach through simulations and an application based on data coming from a medical study about primary biliary cirrhosis in which there are two outcomes of interest, one continuous and the other binary. PMID:25227970

  13. Identifying the role of typhoons as drought busters in South Korea based on hidden Markov chain models

    NASA Astrophysics Data System (ADS)

    Yoo, Jiyoung; Kwon, Hyun-Han; So, Byung-Jin; Rajagopalan, Balaji; Kim, Tae-Woong

    2015-04-01

    This study proposed a hidden Markov chain model-based drought analysis (HMM-DA) tool to understand the beginning and ending of meteorological drought and to further characterize typhoon-induced drought busters (TDB) by exploring spatiotemporal drought patterns in South Korea. It was found that typhoons have played a dominant role in ending drought events (EDE) during the typhoon season (July-September) over the last four decades (1974-2013). The percentage of EDEs terminated by TDBs was about 43-90% mainly along coastal regions in South Korea. Furthermore, the TDBs, mainly during summer, have a positive role in managing extreme droughts during the subsequent autumn and spring seasons. The HMM-DA models the temporal dependencies between drought states using Markov chain, consequently capturing the dependencies between droughts and typhoons well, thus, enabling a better performance in modeling spatiotemporal drought attributes compared to traditional methods.

  14. An open Markov chain scheme model for a credit consumption portfolio fed by ARIMA and SARMA processes

    NASA Astrophysics Data System (ADS)

    Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.

    2016-06-01

    We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.

  15. Learning to maximize reward rate: a model based on semi-Markov decision processes

    PubMed Central

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R.

    2014-01-01

    When animals have to make a number of decisions during a limited time interval, they face a fundamental problem: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible “conditions.” A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each “condition” being a “state” and the value of decision thresholds being the “actions” taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values. PMID:24904252

  16. Application of hidden Markov models to biological data mining: a case study

    NASA Astrophysics Data System (ADS)

    Yin, Michael M.; Wang, Jason T.

    2000-04-01

    In this paper we present an example of biological data mining: the detection of splicing junction acceptors in eukaryotic genes. Identification or prediction of transcribed sequences from within genomic DNA has been a major rate-limiting step in the pursuit of genes. Programs currently available are far from being powerful enough to elucidate the gene structure completely. Here we develop a hidden Markov model (HMM) to represent the degeneracy features of splicing junction acceptor sites in eukaryotic genes. The HMM system is fully trained using an expectation maximization (EM) algorithm and the system performance is evaluated using the 10-way cross- validation method. Experimental results show that our HMM system can correctly classify more than 94% of the candidate sequences (including true and false acceptor sites) into right categories. About 90% of the true acceptor sites and 96% of the false acceptor sites in the test data are classified correctly. These results are very promising considering that only the local information in DNA is used. The proposed model will be a very important component of an effective and accurate gene structure detection system currently being developed in our lab.

  17. A Hidden Markov model web application for analysing bacterial genomotyping DNA microarray experiments.

    PubMed

    Newton, Richard; Hinds, Jason; Wernisch, Lorenz

    2006-01-01

    Whole genome DNA microarray genomotyping experiments compare the gene content of different species or strains of bacteria. A statistical approach to analysing the results of these experiments was developed, based on a Hidden Markov model (HMM), which takes adjacency of genes along the genome into account when calling genes present or absent. The model was implemented in the statistical language R and applied to three datasets. The method is numerically stable with good convergence properties. Error rates are reduced compared with approaches that ignore spatial information. Moreover, the HMM circumvents a problem encountered in a conventional analysis: determining the cut-off value to use to classify a gene as absent. An Apache Struts web interface for the R script was created for the benefit of users unfamiliar with R. The application may be found at http://hmmgd.cryst.bbk.ac.uk/hmmgd. The source code illustrating how to run R scripts from an Apache Struts-based web application is available from the corresponding author on request. The application is also available for local installation if required. PMID:17140267

  18. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect

    Silva, Consuelo Juanita

    2006-12-01

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  19. Detection and inpainting of facial wrinkles using texture orientation fields and Markov random field modeling.

    PubMed

    Batool, Nazre; Chellappa, Rama

    2014-09-01

    Facial retouching is widely used in media and entertainment industry. Professional software usually require a minimum level of user expertise to achieve the desirable results. In this paper, we present an algorithm to detect facial wrinkles/imperfection. We believe that any such algorithm would be amenable to facial retouching applications. The detection of wrinkles/imperfections can allow these skin features to be processed differently than the surrounding skin without much user interaction. For detection, Gabor filter responses along with texture orientation field are used as image features. A bimodal Gaussian mixture model (GMM) represents distributions of Gabor features of normal skin versus skin imperfections. Then, a Markov random field model is used to incorporate the spatial relationships among neighboring pixels for their GMM distributions and texture orientations. An expectation-maximization algorithm then classifies skin versus skin wrinkles/imperfections. Once detected automatically, wrinkles/imperfections are removed completely instead of being blended or blurred. We propose an exemplar-based constrained texture synthesis algorithm to inpaint irregularly shaped gaps left by the removal of detected wrinkles/imperfections. We present results conducted on images downloaded from the Internet to show the efficacy of our algorithms. PMID:24968171

  20. Hidden Markov Model and Support Vector Machine based decoding of finger movements using Electrocorticography

    PubMed Central

    Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg

    2013-01-01

    Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504

  1. Classifying movement behaviour in relation to environmental conditions using hidden Markov models.

    PubMed

    Patterson, Toby A; Basson, Marinelle; Bravington, Mark V; Gunn, John S

    2009-11-01

    1. Linking the movement and behaviour of animals to their environment is a central problem in ecology. Through the use of electronic tagging and tracking (ETT), collection of in situ data from free-roaming animals is now commonplace, yet statistical approaches enabling direct relation of movement observations to environmental conditions are still in development. 2. In this study, we examine the hidden Markov model (HMM) for behavioural analysis of tracking data. HMMs allow for prediction of latent behavioural states while directly accounting for the serial dependence prevalent in ETT data. Updating the probability of behavioural switches with tag or remote-sensing data provides a statistical method that links environmental data to behaviour in a direct and integrated manner. 3. It is important to assess the reliability of state categorization over the range of time-series lengths typically collected from field instruments and when movement behaviours are similar between movement states. Simulation with varying lengths of times series data and contrast between average movements within each state was used to test the HMMs ability to estimate movement parameters. 4. To demonstrate the methods in a realistic setting, the HMMs were used to categorize resident and migratory phases and the relationship between movement behaviour and ocean temperature using electronic tagging data from southern bluefin tuna (Thunnus maccoyii). Diagnostic tools to evaluate the suitability of different models and inferential methods for investigating differences in behaviour between individuals are also demonstrated. PMID:19563470

  2. FOAM (Functional Ontology Assignments for Metagenomes): A Hidden Markov Model (HMM) database with environmental focus

    DOE PAGESBeta

    Prestat, Emmanuel; David, Maude M.; Hultman, Jenni; Ta , Neslihan; Lamendella, Regina; Dvornik, Jill; Mackelprang, Rachel; Myrold, David D.; Jumpponen, Ari; Tringe, Susannah G.; et al

    2014-09-26

    A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associatedmore » functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/.« less

  3. Optimal capacity and buffer size estimation under Generalized Markov Fluids Models and QoS parameters

    NASA Astrophysics Data System (ADS)

    Bavio, José; Marrón, Beatriz

    2014-03-01

    Quality of service (QoS) for internet traffic management requires good traffic models and good estimation of sharing network resource. A link of a network processes all traffic and it is designed with certain capacity C and buffer size B. A Generalized Markov Fluid model (GMFM), introduced by Marrón (2011), is assumed for the sources because describes in a versatile way the traffic, allows estimation based on traffic traces, and also consistent effective bandwidth estimation can be done. QoS, interpreted as buffer overflow probability, can be estimated for GMFM through the effective bandwidth estimation and solving the optimization problem presented in Courcoubetis (2002), the so call inf-sup formulas. In this work we implement a code to solve the inf-sup problem and other optimization related with it, that allow us to do traffic engineering in links of data networks to calculate both, minimum capacity required when QoS and buffer size are given or minimum buffer size required when QoS and capacity are given.

  4. Discovering short linear protein motif based on selective training of profile hidden Markov models.

    PubMed

    Song, Tao; Gu, Hong

    2015-07-21

    Short linear motifs (SLiMs) in proteins are relatively conservative sequence patterns within disordered regions of proteins, typically 3-10 amino acids in length. They play an important role in mediating protein-protein interactions. Discovering SLiMs by computational methods has attracted more and more attention, most of which were based on regular expressions and profiles. In this paper, a de novo motif discovery method was proposed based on profile hidden Markov models (HMMs), which can not only provide the emission probabilities of amino acids in the defined positions of SLiMs, but also model the undefined positions. We adopted the ordered region masking and the relative local conservation (RLC) masking to improve the signal to noise ratio of the query sequences while applying evolutionary weighting to make the important sequences in evolutionary process get more attention by the selective training of profile HMMs. The experimental results show that our method and the profile-based method returned different subsets within a SLiMs dataset, and the performance of the two approaches are equivalent on a more realistic discovery dataset. Profile HMM-based motif discovery methods complement the existing methods and provide another way for SLiMs analysis. PMID:25791288

  5. Using hidden Markov models to characterize termite traveling behavior in tunnels with different curvatures.

    PubMed

    Sim, SeungWoo; Kang, Seung-Ho; Lee, Sang-Hee

    2015-02-01

    Subterranean termites live underground and build tunnel networks to obtain food and nesting space. After obtaining food, termites return to their nests to transfer it. The efficiency of termite movement through the tunnels is directly connected to their survival. Tunnels should therefore be optimized to ensure highly efficient returns. An optimization factor that strongly affects movement efficiency is tunnel curvature. In the present study, we investigated traveling behavior in tunnels with different curvatures. We then characterized traveling behavior at the level of the individual using hidden Markov models (HMMs) constructed from the experimental data. To observe traveling behavior, we designed 5-cm long artificial tunnels that had different curvatures. The tunnels had widths (W) of 2, 3, or 4mm, and the linear distances between the two ends of the tunnels were (D) 20, 30, 40, or 50mm. High values of D indicate low curvature. We systematically observed the traveling behavior of Coptotermes formosanus shiraki and Reticulitermes speratus kyushuensis and measured the time (τ) required for a termite to pass through the tunnel. Using HMM models, we calculated τ for different tunnels and compared the results with the τ of real termites. We characterized the traveling behavior in terms of transition probability matrices (TPM) and emission probability matrices (EPM) of HMMs. We briefly discussed the construction of a sinusoidal-like tunnels in relation to the energy required for termites to pass through tunnels and provided suggestions for the development of more sophisticated HMMs to better understand termite foraging behavior. PMID:25562190

  6. An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals.

    PubMed

    Song, Changyue; Liu, Kaibo; Zhang, Xi; Chen, Lili; Xian, Xiaochen

    2016-07-01

    Obstructive sleep apnea (OSA) syndrome is a common sleep disorder suffered by an increasing number of people worldwide. As an alternative to polysomnography (PSG) for OSA diagnosis, the automatic OSA detection methods used in the current practice mainly concentrate on feature extraction and classifier selection based on collected physiological signals. However, one common limitation in these methods is that the temporal dependence of signals are usually ignored, which may result in critical information loss for OSA diagnosis. In this study, we propose a novel OSA detection approach based on ECG signals by considering temporal dependence within segmented signals. A discriminative hidden Markov model (HMM) and corresponding parameter estimation algorithms are provided. In addition, subject-specific transition probabilities within the model are employed to characterize the subject-to-subject differences of potential OSA patients. To validate our approach, 70 recordings obtained from the Physionet Apnea-ECG database were used. Accuracies of 97.1% for per-recording classification and 86.2% for per-segment OSA detection with satisfactory sensitivity and specificity were achieved. Compared with other existing methods that simply ignore the temporal dependence of signals, the proposed HMM-based detection approach delivers more satisfactory detection performance and could be extended to other disease diagnosis applications. PMID:26560867

  7. Identifying spatiotemporal migration patterns of non-volcanic tremors using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Zhuang, J.; Wang, T.; Obara, K.; Tsuruoka, H.

    2015-12-01

    Tremor activity has been recently detected in various tectonic areas worldwide, and is spatially segmented and temporally recurrent. We design a type of hidden Markov models (HMMs) to investigate this phenomenon, where each state represents a distinct segment of tremor sources. We systematically analyze the tremor data from the Tokai region in southwest Japan using this model and find that tremors in this region concentrate around several distinct centers. We find: (1) The system is classified into three classes, background (quiescent), quasi-quiescent, and active states; (2) The region can be separated into two subsystems, the southwest and northeast parts, with most of the active transitions being among the states in each subsystem and the other transitions mainly to the quiescent/quasi-quiescent states; and (3) Tremor activity lasts longer in the northeastern part than in the southwest part. The success of this analysis indicates the power of HMMs in revealing the underlying physical process that drives non-volcanic tremors. Figure: The migration pattern for the HMM with 8 states. Top panel: Observed distances with the center μi of each state overlayed as the red line and ±σi on the left-hand side of the panel in green lines; Middle panel: the tracked most likely state sequence of the 8-state HMM; Bottom panel: the estimated probability of the data being in each state, with blank representing the probability of being in State 1 (the null state).

  8. Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model.

    PubMed

    Glas, Julia; Dümcke, Sebastian; Zacher, Benedikt; Poron, Don; Gagneur, Julien; Tresch, Achim

    2016-03-18

    Hidden Markov models (HMMs) have been extensively used to dissect the genome into functionally distinct regions using data such as RNA expression or DNA binding measurements. It is a challenge to disentangle processes occurring on complementary strands of the same genomic region. We present the double-stranded HMM (dsHMM), a model for the strand-specific analysis of genomic processes. We applied dsHMM to yeast using strand specific transcription data, nucleosome data, and protein binding data for a set of 11 factors associated with the regulation of transcription.The resulting annotation recovers the mRNA transcription cycle (initiation, elongation, termination) while correctly predicting strand-specificity and directionality of the transcription process. We find that pre-initiation complex formation is an essentially undirected process, giving rise to a large number of bidirectional promoters and to pervasive antisense transcription. Notably, 12% of all transcriptionally active positions showed simultaneous activity on both strands. Furthermore, dsHMM reveals that antisense transcription is specifically suppressed by Nrd1, a yeast termination factor. PMID:26578558

  9. Automatic sleep staging based on ECG signals using hidden Markov models.

    PubMed

    Ying Chen; Xin Zhu; Wenxi Chen

    2015-08-01

    This study is designed to investigate the feasibility of automatic sleep staging using features only derived from electrocardiography (ECG) signal. The study was carried out using the framework of hidden Markov models (HMMs). The mean, and SD values of heart rates (HRs) computed from each 30-second epoch served as the features. The two feature sequences were first detrended by ensemble empirical mode decomposition (EEMD), formed as a two-dimensional feature vector, and then converted into code vectors by vector quantization (VQ) method. The output VQ indexes were utilized to estimate parameters for HMMs. The proposed model was tested and evaluated on a group of healthy individuals using leave-one-out cross-validation. The automatic sleep staging results were compared with PSG estimated ones. Results showed accuracies of 82.2%, 76.0%, 76.1% and 85.5% for deep, light, REM and wake sleep, respectively. The findings proved that HRs-based HMM approach is feasible for automatic sleep staging and can pave a way for developing more efficient, robust, and simple sleep staging system suitable for home application. PMID:26736316

  10. Study of environmental sound source identification based on hidden Markov model for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2003-10-01

    Humans communicate with each other through speech by focusing on the target speech among environmental sounds in real acoustic environments. We can easily identify the target sound from other environmental sounds. For hands-free speech recognition, the identification of the target speech from environmental sounds is imperative. This mechanism may also be important for a self-moving robot to sense the acoustic environments and communicate with humans. Therefore, this paper first proposes hidden Markov model (HMM)-based environmental sound source identification. Environmental sounds are modeled by three states of HMMs and evaluated using 92 kinds of environmental sounds. The identification accuracy was 95.4%. This paper also proposes a new HMM composition method that composes speech HMMs and an HMM of categorized environmental sounds for robust environmental sound-added speech recognition. As a result of the evaluation experiments, we confirmed that the proposed HMM composition outperforms the conventional HMM composition with speech HMMs and a noise (environmental sound) HMM trained using noise periods prior to the target speech in a captured signal. [Work supported by Ministry of Public Management, Home Affairs, Posts and Telecommunications of Japan.

  11. Characterization of the crawling activity of Caenorhabditis elegans using a Hidden Markov model.

    PubMed

    Lee, Sang-Hee; Kang, Seung-Ho

    2015-12-01

    The locomotion behavior of Caenorhabditis elegans has been studied extensively to understand the respective roles of neural control and biomechanics as well as the interaction between them. Constructing a mathematical model is helpful to understand the locomotion behavior in various surrounding conditions that are difficult to realize in experiments. In this study, we built three hidden Markov models (HMMs) for the crawling behavior of C. elegans in a controlled environment with no chemical treatment and in a formaldehyde-treated environment (0.1 and 0.5 ppm). The organism's crawling activity was recorded using a digital camcorder for 20 min at a rate of 24 frames per second. All shape patterns were quantified by branch length similarity (BLS) entropy and classified into four groups using the self-organizing map (SOM). Comparison of the simulated behavior generated by HMMs and the actual crawling behavior demonstrated that the HMM coupled with the SOM was successful in characterizing the crawling behavior. In addition, we briefly discussed the possibility of using the HMM together with BLS entropy to develop bio-monitoring systems to determine water quality. PMID:26319806

  12. Segmentation of complementary DNA microarray images by wavelet-based Markov random field model.

    PubMed

    Athanasiadis, Emmanouil I; Cavouras, Dionisis A; Glotsos, Dimitris Th; Georgiadis, Pantelis V; Kalatzis, Ioannis K; Nikiforidis, George C

    2009-11-01

    A wavelet-based modification of the Markov random field (WMRF) model is proposed for segmenting complementary DNA (cDNA) microarray images. For evaluation purposes, five simulated and a set of five real microarray images were used. The one-level stationary wavelet transform (SWT) of each microarray image was used to form two images, a denoised image, using hard thresholding filter, and a magnitude image, from the amplitudes of the horizontal and vertical components of SWT. Elements from these two images were suitably combined to form the WMRF model for segmenting spots from their background. The WMRF was compared against the conventional MRF and the Fuzzy C means (FCM) algorithms on simulated and real microarray images and their performances were evaluated by means of the segmentation matching factor (SMF) and the coefficient of determination (r2). Additionally, the WMRF was compared against the SPOT and SCANALYZE, and performances were evaluated by the mean absolute error (MAE) and the coefficient of variation (CV). The WMRF performed more accurately than the MRF and FCM (SMF: 92.66, 92.15, and 89.22, r2 : 0.92, 0.90, and 0.84, respectively) and achieved higher reproducibility than the MRF, SPOT, and SCANALYZE (MAE: 497, 1215, 1180, and 503, CV: 0.88, 1.15, 0.93, and 0.90, respectively). PMID:19783509

  13. Weight loss interventions for morbidly obese patients with compensated cirrhosis: a Markov decision analysis model.

    PubMed

    Bromberger, Bianca; Porrett, Paige; Choudhury, Rashikh; Dumon, Kristoffel; Murayama, Kenric M

    2014-02-01

    Many transplant centers require that patients maintain a BMI below 40 kg/m(2) in order to be eligible for listing, rendering many morbidly obese patients with end-stage liver disease unable to access liver transplantation as a method of treatment. In order to determine the safest and most efficacious weight loss regimen in this challenging population, Roux-en-Y gastric bypass (RYGB), adjustable gastric banding (AGB), and diet and exercise were modeled to assess their impact on life expectancy in morbidly obese patients with cirrhosis. A Markov state transition model was developed to assess the survival benefit of undergoing RYGB, AGB, or 1 year of diet and exercise in morbidly obese patients with compensated cirrhosis. A base case analysis of no weight loss intervention in a 45-year-old patient with compensated cirrhosis and a BMI of 45 kg/m(2) revealed an average survival of 7.93 years. The average survival for the weight loss simulations was 9.14, 8.84, and 8.16 years for RYGB, AGB, and diet and exercise, respectively. In morbidly obese patients with compensated cirrhosis, RYGB allows patients to lose more weight more rapidly than is probable with either AGB or diet and exercise, thus having the greatest impact on survival. PMID:23918085

  14. A hidden Markov model for investigating recent positive selection through haplotype structure.

    PubMed

    Chen, Hua; Hey, Jody; Slatkin, Montgomery

    2015-02-01

    Recent positive selection can increase the frequency of an advantageous mutant rapidly enough that a relatively long ancestral haplotype will be remained intact around it. We present a hidden Markov model (HMM) to identify such haplotype structures. With HMM identified haplotype structures, a population genetic model for the extent of ancestral haplotypes is then adopted for parameter inference of the selection intensity and the allele age. Simulations show that this method can detect selection under a wide range of conditions and has higher power than the existing frequency spectrum-based method. In addition, it provides good estimate of the selection coefficients and allele ages for strong selection. The method analyzes large data sets in a reasonable amount of running time. This method is applied to HapMap III data for a genome scan, and identifies a list of candidate regions putatively under recent positive selection. It is also applied to several genes known to be under recent positive selection, including the LCT, KITLG and TYRP1 genes in Northern Europeans, and OCA2 in East Asians, to estimate their allele ages and selection coefficients. PMID:25446961

  15. A Hidden Markov Model for Investigating Recent Positive Selection through Haplotype Structure

    PubMed Central

    Hey, Jody; Slatkin, Montgomery

    2014-01-01

    Recent positive selection can increase the frequency of an advantageous mutant rapidly enough that a relatively long ancestral haplotype will be remained intact around it. We present a hidden Markov model (HMM) to identify such haplotype structures. With HMM identified haplotype structures, a population genetic model for the extent of ancestral haplotypes is then adopted for parameter inference of the selection intensity and the allele age. Simulations show that this method can detect selection under a wide range of conditions and has higher power than the existing frequency spectrum-based method. In addition, it provides good estimate of the selection coefficients and allele ages for strong selection. The method analyzes large data sets in a reasonable amount of running time. This method is applied to HapMap III data for a genome scan, and identifies a list of candidate regions putatively under recent positive selection. It is also applied to several genes known to be under recent positive selection, including the LCT, KITLG and TYRP1 genes in Northern Europeans, and OCA2 in East Asians, to estimate their allele ages and selection coefficients. PMID:25446961

  16. CR image filter methods research based on wavelet-domain hidden markov models

    NASA Astrophysics Data System (ADS)

    Wang, Jun-li; Wang, Yun-peng; Li, Da-yi; Li, Shi-wu; Kui, Hai-lin

    2006-01-01

    In the procedure of computed radiography imaging, we should firstly get across the characters of kinds of noises and the relationship between the image signals and noises. Based on the specialties of computed radiography (CR) images and medical image processing, we have study the filtering methods for computed radiography images noises. On the base of analyzing computed radiography imaging system in detail, the author think that the major two noises are Gaussian white noise and Poisson noise. Then, the different relationship of between two kinds of noises and signal were studied completely. By considering both the characteristics of computed radiography images and the statistical features of wavelet transformed images, a multiscale image filtering algorithm, which based on two-state hidden markov model (HMM) and mixture Gaussian statistical model, has been used to decrease the Gaussian white noise in computed images. By using EM (Expectation Maximization) algorithm to estimate noise coefficients in each scale and obtain power spectrum matrix, then this carried through the syncretized two Filter that are IIR(infinite impulse response) Wiener Filter and HMM, according to scale size ,and achieve the experiments as well as the comparison with other denoising methods were presented at last.

  17. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  18. Elucid—exploring the local universe with the reconstructed initial density field. I. Hamiltonian Markov chain Monte Carlo method with particle mesh dynamics

    SciTech Connect

    Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; Lin, W. P.; Jing, Y. P.

    2014-10-10

    Simulating the evolution of the local universe is important for studying galaxies and the intergalactic medium in a way free of cosmic variance. Here we present a method to reconstruct the initial linear density field from an input nonlinear density field, employing the Hamiltonian Markov Chain Monte Carlo (HMC) algorithm combined with Particle-mesh (PM) dynamics. The HMC+PM method is applied to cosmological simulations, and the reconstructed linear density fields are then evolved to the present day with N-body simulations. These constrained simulations accurately reproduce both the amplitudes and phases of the input simulations at various z. Using a PM model with a grid cell size of 0.75 h {sup –1} Mpc and 40 time steps in the HMC can recover more than half of the phase information down to a scale k ∼ 0.85 h Mpc{sup –1} at high z and to k ∼ 3.4 h Mpc{sup –1} at z = 0, which represents a significant improvement over similar reconstruction models in the literature, and indicates that our model can reconstruct the formation histories of cosmic structures over a large dynamical range. Adopting PM models with higher spatial and temporal resolutions yields even better reconstructions, suggesting that our method is limited more by the availability of computer resource than by principle. Dynamic models of structure evolution adopted in many earlier investigations can induce non-Gaussianity in the reconstructed linear density field, which in turn can cause large systematic deviations in the predicted halo mass function. Such deviations are greatly reduced or absent in our reconstruction.

  19. A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences.

    PubMed

    Mill, Robert; Coath, Martin; Wennekers, Thomas; Denham, Susan L

    2011-08-01

    Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response. PMID:21876661

  20. A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis

    NASA Astrophysics Data System (ADS)

    Liu, Qinming; Dong, Ming; Lv, Wenyuan; Geng, Xiuli; Li, Yupeng

    2015-12-01

    Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis.

  1. Context-Sensitive Markov Models for Peptide Scoring and Identification from Tandem Mass Spectrometry

    PubMed Central

    Grover, Himanshu; Wallstrom, Garrick; Wu, Christine C.

    2013-01-01

    Abstract Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation process, thus contributing to loss of potential identifications. We present a novel probabilistic scoring algorithm called Context-Sensitive Peptide Identification (CSPI) based on highly flexible Input-Output Hidden Markov Models (IO-HMM) that capture the influence of peptide physicochemical properties on their observed MS/MS spectra. We use several local and global properties of peptides and their fragment ions from literature. Comparison with two popular algorithms, Crux (re-implementation of SEQUEST) and X!Tandem, on multiple datasets of varying complexity, shows that peptide identification scores from our models are able to achieve greater discrimination between true and false peptides, identifying up to ∼25% more peptides at a False Discovery Rate (FDR) of 1%. We evaluated two alternative normalization schemes for fragment ion-intensities, a global rank-based and a local window-based. Our results indicate the importance of appropriate normalization methods for learning superior models. Further, combining our scores with Crux using a state-of-the-art procedure, Percolator, we demonstrate the utility of using scoring features from intensity-based models, identifying ∼4-8 % additional identifications over Percolator at 1% FDR. IO-HMMs offer a scalable and flexible framework with several modeling choices to learn complex patterns embedded in MS/MS data. PMID:23289783

  2. Cosmological constraints on generalized Chaplygin gas model: Markov Chain Monte Carlo approach

    SciTech Connect

    Xu, Lixin; Lu, Jianbo E-mail: lvjianbo819@163.com

    2010-03-01

    We use the Markov Chain Monte Carlo method to investigate a global constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a non-flat universe, the constraint results for GCG model are, Ω{sub b}h{sup 2} = 0.0235{sup +0.0021}{sub −0.0018} (1σ) {sup +0.0028}{sub −0.0022} (2σ), Ω{sub k} = 0.0035{sup +0.0172}{sub −0.0182} (1σ) {sup +0.0226}{sub −0.0204} (2σ), A{sub s} = 0.753{sup +0.037}{sub −0.035} (1σ) {sup +0.045}{sub −0.044} (2σ), α = 0.043{sup +0.102}{sub −0.106} (1σ) {sup +0.134}{sub −0.117} (2σ), and H{sub 0} = 70.00{sup +3.25}{sub −2.92} (1σ) {sup +3.77}{sub −3.67} (2σ), which is more stringent than the previous results for constraint on GCG model parameters. Furthermore, according to the information criterion, it seems that the current observations much support ΛCDM model relative to the GCG model.

  3. Application of the Viterbi Algorithm in Hidden Markov Models for Exploring Irrigation Decision Series

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2014-12-01

    Anticipating farmers' irrigation decisions can provide the possibility of improving the efficiency of canal operations in on-demand irrigation systems. Although multiple factors are considered during irrigation decision making, for any given farmer there might be one factor playing a major role. Identification of that biophysical factor which led to a farmer deciding to irrigate is difficult because of high variability of those factors during the growing season. Analysis of the irrigation decisions of a group of farmers for a single crop can help to simplify the problem. We developed a hidden Markov model (HMM) to analyze irrigation decisions and explore the factor and level at which the majority of farmers decide to irrigate. The model requires observed variables as inputs and the hidden states. The chosen model inputs were relatively easily measured, or estimated, biophysical data, including such factors (i.e., those variables which are believed to affect irrigation decision-making) as cumulative evapotranspiration, soil moisture depletion, soil stress coefficient, and canal flows. Irrigation decision series were the hidden states for the model. The data for the work comes from the Canal B region of the Lower Sevier River Basin, near Delta, Utah. The main crops of the region are alfalfa, barley, and corn. A portion of the data was used to build and test the model capability to explore that factor and the level at which the farmer takes the decision to irrigate for future irrigation events. Both group and individual level behavior can be studied using HMMs. The study showed that the farmers cannot be classified into certain classes based on their irrigation decisions, but vary in their behavior from irrigation-to-irrigation across all years and crops. HMMs can be used to analyze what factor and, subsequently, what level of that factor on which the farmer most likely based the irrigation decision. The study shows that the HMM is a capable tool to study a process

  4. An Economic Evaluation of Home Management of Malaria in Uganda: An Interactive Markov Model

    PubMed Central

    Lubell, Yoel; Mills, Anne J.; Whitty, Christopher J. M.; Staedke, Sarah G.

    2010-01-01

    Background Home management of malaria (HMM), promoting presumptive treatment of febrile children in the community, is advocated to improve prompt appropriate treatment of malaria in Africa. The cost-effectiveness of HMM is likely to vary widely in different settings and with the antimalarial drugs used. However, no data on the cost-effectiveness of HMM programmes are available. Methods/Principal Findings A Markov model was constructed to estimate the cost-effectiveness of HMM as compared to conventional care for febrile illnesses in children without HMM. The model was populated with data from Uganda, but is designed to be interactive, allowing the user to adjust certain parameters, including the antimalarials distributed. The model calculates the cost per disability adjusted life year averted and presents the incremental cost-effectiveness ratio compared to a threshold value. Model output is stratified by level of malaria transmission and the probability that a child would receive appropriate care from a health facility, to indicate the circumstances in which HMM is likely to be cost-effective. The model output suggests that the cost-effectiveness of HMM varies with malaria transmission, the probability of appropriate care, and the drug distributed. Where transmission is high and the probability of appropriate care is limited, HMM is likely to be cost-effective from a provider perspective. Even with the most effective antimalarials, HMM remains an attractive intervention only in areas of high malaria transmission and in medium transmission areas with a lower probability of appropriate care. HMM is generally not cost-effective in low transmission areas, regardless of which antimalarial is distributed. Considering the analysis from the societal perspective decreases the attractiveness of HMM. Conclusion Syndromic HMM for children with fever may be a useful strategy for higher transmission settings with limited health care and diagnosis, but is not appropriate for all

  5. A Structural Parametrization of the Brain Using Hidden Markov Models-Based Paths in Alzheimer's Disease.

    PubMed

    Martinez-Murcia, Francisco J; Górriz, Juan M; Ramírez, Javier; Ortiz, Andres

    2016-11-01

    The usage of biomedical imaging in the diagnosis of dementia is increasingly widespread. A number of works explore the possibilities of computational techniques and algorithms in what is called computed aided diagnosis. Our work presents an automatic parametrization of the brain structure by means of a path generation algorithm based on hidden Markov models (HMMs). The path is traced using information of intensity and spatial orientation in each node, adapting to the structure of the brain. Each path is itself a useful way to characterize the distribution of the tissue inside the magnetic resonance imaging (MRI) image by, for example, extracting the intensity levels at each node or generating statistical information of the tissue distribution. Additionally, a further processing consisting of a modification of the grey level co-occurrence matrix (GLCM) can be used to characterize the textural changes that occur throughout the path, yielding more meaningful values that could be associated to Alzheimer's disease (AD), as well as providing a significant feature reduction. This methodology achieves moderate performance, up to 80.3% of accuracy using a single path in differential diagnosis involving Alzheimer-affected subjects versus controls belonging to the Alzheimer's disease neuroimaging initiative (ADNI). PMID:27354189

  6. Detection of short protein coding regions within the cyanobacterium genome: application of the hidden Markov model.

    PubMed

    Yada, T; Hirosawa, M

    1996-12-31

    The gene-finding programs developed so far have not paid much attention to the detection of short protein coding regions (CDSs). However, the detection of short CDSs is important for the study of photosynthesis. We utilized GeneHacker, a gene-finding program based on the hidden Markov model (HMM), to detect short CDSs (from 90 to 300 bases) in a 1.0 mega contiguous sequence of cyanobacterium Synechocystis sp. strain PCC6803 which carries a complete set of genes for oxygenic photosynthesis. GeneHacker differs from other gene-finding programs based on the HMM in that it utilizes di-codon statistics as well. GeneHacker successfully detected seven out of the eight short CDSs annotated in this sequence and was clearly superior to GeneMark in this range of length. GeneHacker detected 94 potentially new CDSs, 9 of which have counterparts in the genetic databases. Four of the nine CDSs were less than 150 bases and were photosynthesis-related genes. The results show the effectiveness of GeneHacker in detecting very short CDSs corresponding to genes. PMID:9097038

  7. Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle

    PubMed Central

    Zacher, Benedikt; Lidschreiber, Michael; Cramer, Patrick; Gagneur, Julien; Tresch, Achim

    2014-01-01

    DNA replication, transcription and repair involve the recruitment of protein complexes that change their composition as they progress along the genome in a directed or strand-specific manner. Chromatin immunoprecipitation in conjunction with hidden Markov models (HMMs) has been instrumental in understanding these processes, as they segment the genome into discrete states that can be related to DNA-associated protein complexes. However, current HMM-based approaches are not able to assign forward or reverse direction to states or properly integrate strand-specific (e.g., RNA expression) with non-strand-specific (e.g., ChIP) data, which is indispensable to accurately characterize directed processes. To overcome these limitations, we introduce bidirectional HMMs which infer directed genomic states from occupancy profiles de novo. Application to RNA polymerase II-associated factors in yeast and chromatin modifications in human T cells recovers the majority of transcribed loci, reveals gene-specific variations in the yeast transcription cycle and indicates the existence of directed chromatin state patterns at transcribed, but not at repressed, regions in the human genome. In yeast, we identify 32 new transcribed loci, a regulated initiation–elongation transition, the absence of elongation factors Ctk1 and Paf1 from a class of genes, a distinct transcription mechanism for highly expressed genes and novel DNA sequence motifs associated with transcription termination. We anticipate bidirectional HMMs to significantly improve the analyses of genome-associated directed processes. PMID:25527639

  8. An Enhanced Informed Watermarking Scheme Using the Posterior Hidden Markov Model

    PubMed Central

    2014-01-01

    Designing a practical watermarking scheme with high robustness, feasible imperceptibility, and large capacity remains one of the most important research topics in robust watermarking. This paper presents a posterior hidden Markov model (HMM-) based informed image watermarking scheme, which well enhances the practicability of the prior-HMM-based informed watermarking with favorable robustness, imperceptibility, and capacity. To make the encoder and decoder use the (nearly) identical posterior HMM, each cover image at the encoder and each received image at the decoder are attacked with JPEG compression at an equivalently small quality factor (QF). The attacked images are then employed to estimate HMM parameter sets for both the encoder and decoder, respectively. Numerical simulations show that a small QF of 5 is an optimum setting for practical use. Based on this posterior HMM, we develop an enhanced posterior-HMM-based informed watermarking scheme. Extensive experimental simulations show that the proposed scheme is comparable to its prior counterpart in which the HMM is estimated with the original image, but it avoids the transmission of the prior HMM from the encoder to the decoder. This thus well enhances the practical application of HMM-based informed watermarking systems. Also, it is demonstrated that the proposed scheme has the robustness comparable to the state-of-the-art with significantly reduced computation time. PMID:24574883

  9. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    PubMed

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE. PMID:12784210

  10. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  11. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.

    PubMed

    Selvaraj, Lokesh; Ganesan, Balakrishnan

    2014-01-01

    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy. PMID:25478588

  12. Prediction of feather damage in laying hens using optical flows and Markov models

    PubMed Central

    Lee, Hyoung-joo; Roberts, Stephen J.; Drake, Kelly A.; Dawkins, Marian Stamp

    2011-01-01

    Feather pecking in laying hens is a major welfare and production problem for commercial egg producers, resulting in mortality, loss of production as well as welfare issues for the damaged birds. Damaging outbreaks of feather pecking are currently impossible to control, despite a number of proposed interventions. However, the ability to predict feather damage in advance would be a valuable research tool for identifying which management or environmental factors could be the most effective interventions at different ages. This paper proposes a framework for forecasting the damage caused by injurious pecking based on automated image processing and statistical analysis. By frame-by-frame analysis of video recordings of laying hen flocks, optical flow measures are calculated as indicators of the movement of the birds. From the optical flow datasets, measures of disturbance are extracted using hidden Markov models. Based on these disturbance measures and age-related variables, the levels of feather damage in flocks in future weeks is predicted. Applying the proposed method to real-world datasets, it is shown that the disturbance measures offer improved predictive values for feather damage thus enabling an identification of flocks with probable prevalence of damage and injury later in lay. PMID:20659929

  13. Automatic segmentation of lymph vessel wall using optimal surface graph cut and hidden Markov Models.

    PubMed

    Jones, Jonathan-Lee; Essa, Ehab; Xie, Xianghua

    2015-08-01

    We present a novel method to segment the lymph vessel wall in confocal microscopy images using Optimal Surface Segmentation (OSS) and hidden Markov Models (HMM). OSS is used to preform a pre-segmentation on the images, to act as the initial state for the HMM. We utilize a steerable filter to determine edge based filters for both of these segmentations, and use these features to build Gaussian probability distributions for both the vessel walls and the background. From this we infer the emission probability for the HMM, and the transmission probability is learned using a Baum-Welch algorithm. We transform the segmentation problem into one of cost minimization, with each node in the graph corresponding to one state, and the weight for each node being defined using its emission probability. We define the inter-relations between neighboring nodes using the transmission probability. Having constructed the problem, it is solved using the Viterbi algorithm, allowing the vessel to be reconstructed. The optimal solution can be found in polynomial time. We present qualitative and quantitative analysis to show the performance of the proposed method. PMID:26736778

  14. Registration of coronary arteries in computed tomography angiography images using Hidden Markov Model.

    PubMed

    Luo, Yuxuan; Feng, Jianjiang; Xu, Miao; Zhou, Jie; Min, James K; Xiong, Guanglei

    2015-08-01

    Computed tomography angiography (CTA) allows for not only diagnosis of coronary artery disease (CAD) with high spatial resolution but also monitoring the remodeling of vessel walls in the progression of CAD. Alignment of coronary arteries in CTA images acquired at different times (with a 3-7 years interval) is required to visualize and analyze the geometric and structural changes quantitatively. Previous work in image registration primarily focused on large anatomical structures and leads to suboptimal results when applying to registration of coronary arteries. In this paper, we develop a novel method to directly align the straightened coronary arteries in the cylindrical coordinate system guided by the extracted centerlines. By using a Hidden Markov Model (HMM), image intensity information from CTA and geometric information of extracted coronary arteries are combined to align coronary arteries. After registration, the pathological features in two straightened coronary arteries can be directly visualized side by side by synchronizing the corresponding cross-sectional slices and circumferential rotation angles. By evaluating with manually labeled landmarks, the average distance error is 1.6 mm. PMID:26736676

  15. Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther.

    PubMed

    van de Kerk, Madelon; Onorato, David P; Criffield, Marc A; Bolker, Benjamin M; Augustine, Ben C; McKinley, Scott A; Oli, Madan K

    2015-03-01

    Animals must move to find food and mates, and to avoid predators; movement thus influences survival and reproduction, and ultimately determines fitness. Precise description of movement and understanding of spatial and temporal patterns as well as relationships with intrinsic and extrinsic factors is important both for theoretical and applied reasons. We applied hidden semi-Markov models (HSMM) to hourly geographic positioning system (GPS) location data to understand movement patterns of the endangered Florida panther (Puma concolor coryi) and to discern factors influencing these patterns. Three distinct movement modes were identified: (1) Resting mode, characterized by short step lengths and turning angles around 180(o); (2) Moderately active (or intermediate) mode characterized by intermediate step lengths and variable turning angles, and (3) Traveling mode, characterized by long step lengths and turning angles around 0(o). Males and females, and females with and without kittens, exhibited distinctly different movement patterns. Using the Viterbi algorithm, we show that differences in movement patterns of male and female Florida panthers were a consequence of sex-specific differences in diurnal patterns of state occupancy and sex-specific differences in state-specific movement parameters, whereas the differences between females with and without dependent kittens were caused solely by variation in state occupancy. Our study demonstrates the use of HSMM methodology to precisely describe movement and to dissect differences in movement patterns according to sex, and reproductive status. PMID:25251870

  16. Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model

    PubMed Central

    Selvaraj, Lokesh; Ganesan, Balakrishnan

    2014-01-01

    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy. PMID:25478588

  17. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    USGS Publications Warehouse

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a