Science.gov

Sample records for mass accumulation rates

  1. Mass accumulation rates in Asia during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Métivier, François; Gaudemer, Yves; Tapponnier, Paul; Klein, Michel

    1999-05-01

    This work establishes estimates of mass accumulation rates in 18 mostly offshore sedimentary basins in Asia since the beginning of the Cenozoic, ~ 66 Ma. The estimates were derived from isopach maps, cross-sections and drill holes or stratigraphic columns assuming regional similarity of the strata. Average solid phase volumes and accumulation rates were calculated for nine epochs approximately corresponding to geological periods: Palaeocene ( ~ 66-58 Ma), Eocene ( ~ 58-37 Ma), Oligocene( ~ 37-30 and 30-24 Ma), Miocene ( ~ 24-17, 17-11 and 11-5 Ma), Pliocene ( ~ 5-2 Ma) and Quaternary ( ~ 2-0 Ma). These rates shed new light on the geological history of Asia since the onset of the collision of India with Asia ( ~ 50 Ma). The overall average accumulation rates curve for Asian sedimentary basins since the beginning of the Tertiary shows an exponential form with slow accumulation rates (less than 0.5 x 10^6 km^3 Myr^- 1) until the beginning of the Oligocene, more than 15 Myr after the onset of the collision. From the Oligocene onwards rates increase quickly in an exponential manner, reaching their maximum values in the Quaternary (more than 1.5 x 10^6 km^3 Myr^- 1). From these observations we suggest that extrusion and crustal shortening are complementary processes that have been successively dominant throughout the India-Eurasia collision history. At smaller scales one may distinguish between independent histories at the subcontinental and basin scales. This permits a comparison of the relative importance of tectonic and climatic erosion processes affecting the different mountain belts of Asia during the Cenozoic.

  2. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska

    USGS Publications Warehouse

    Roberts, H.M.; Muhs, D.R.; Wintle, A.G.; Duller, G.A.T.; Bettis, E. Arthur, III

    2003-01-01

    A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35-50 ??m quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil's Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr-much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values. ?? 2003 Elsevier Science (USA). All rights reserved.

  3. Constraining mass accumulation rates across the Cretaceous-Paleogene boundary clay layer using extraterrestrial helium-3

    NASA Astrophysics Data System (ADS)

    Giron, M.; Sepulveda, J.; Mukhopadhyay, S.; Alegret, L.; Summons, R. E.

    2012-12-01

    The extended duration of the negative δ13C excursion observed in marine carbonates spanning the Cretaceous-Paleogene (K-Pg) mass extinction event has lead to two main hypothesized post-extinction models ("Strangelove" and "Living Ocean";[1, 2]) for the status of marine primary productivity and the global carbon cycle. However, these models are largely inconsistent with recent paleontological and geochemical evidence suggesting heterogeneous changes in marine productivity and carbon export [3, 4]. While the analysis of lipid biomarkers in the cosmopolitan boundary clay layer allows us to assess changes in primary production by non-calcifying organisms in the immediate aftermath of the mass extinction [4], our poor understanding of the deposition of the clay layer precludes a more detailed reconstruction of short-term variations in marine ecosystem resilience. Here, we present data on extraterrestrial 3He derived from interplanetary dust particles used as a constant flux proxy to constrain fluctuations in mass accumulation rates (MARs) [5] and the duration of the boundary clay deposition in three classic and expanded K-Pg boundary sections: El Kef (Tunisia), Caravaca (Spain), and Kulstirenden (Denmark). Our results from different depositional environments indicate average durations for the sedimentation of the clay layer that are comparable (~10 kyr) to other localities [5], thus confirming its globally brief deposition. Early Paleogene MARs vary among locations when compared to background Late Cretaceous values and do not strictly follow carbonate content as traditionally assumed, thus suggesting variable depositional conditions at different locations. Changes in sediment MARs across the K-Pg will be used to calculate MARs of algal- and bacterial-derived biomarkers, as well as benthic foraminifera, in order to assess the timing and global nature of the recovery of marine primary production and carbon export. 1. Hsu, K.J., He, Q., Mckenzie, J.A., Weissert, H

  4. 210Pb mass accumulation rates in the depositional area of the Magra River (Mediterranean Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Delbono, I.; Barsanti, M.; Schirone, A.; Conte, F.; Delfanti, R.

    2016-08-01

    Nine sediment cores were collected between 2009 and 2012 in the inner continental shelf (Mediterranean Sea, Italy) mainly influenced by the Magra River, at water depths ranging from 11 to 64 m. Mass Accumulation Rates (MARs) were calculated through 210Pb analysed by Gamma spectrometry. Three different dating models (single and two-layer CF-CS, CRS) were applied to clay normalised 210Pbxs profiles and 137Cs was used to validate the 210Pb geochronology. The maximum MAR values (>2 g cm-2 yr-1) were found in the region adjacent to the Magra River mouth and outside the Gulf of La Spezia (0.9±0.1 g cm-2 yr-1 at St. 3-C6 and 4-C4). Results from 137Cs/210Pbxs ratios calculated in Surface Mixed Layers (SMLs) evidenced the coastal boundaries of the Magra River depositional area, which is very limited towards south. Differently, in the north-west sector, fine sediments are generally driven by the Ligurian Current and move towards north-west: at the deepest and most distant station from the River mouth, the MAR value is the lowest one in the study area. Few major Magra River floods occurred during the sediment core sampling period. By using the short-lived radioisotope 7Be as a tracer of river floods, a clear 7Be signature of 2009 flood is present at St. 1-SA1C. Finally, by analyzing the clay normalised 210Pbxs profiles, a decrease of its activity dating the years 1999 and 2000 is observed in four cores, corresponding to two major Magra River floods occurring in those years.

  5. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement. PMID:25434473

  6. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Kang, Shugang; Roberts, Helen M.; Wang, Xulong; An, Zhisheng; Wang, Min

    2015-12-01

    Sensitivity-corrected quartz optically stimulated luminescence (OSL) dating methods have been widely accepted as a promising tool for the construction of late Pleistocene chronology and mass or dust accumulation rates (MARs or DARs) on the Chinese Loess Plateau (CLP). Many quartz OSL ages covering marine isotope stage (MIS) 2 (equal to L1-1 in Chinese loess) have been determined for individual sites within the CLP in the past decade. However, there is still a lack of detailed MAR or DAR reconstruction during MIS 2 across the whole of the CLP. Here, we present detailed MARs determined for eight sites with closely-spaced quartz OSL ages covering ∼MIS 2, and relative MARs suggested by a probability density analysis of 159 quartz OSL ages ranging from ∼30 to 10 ka ago, from 15 sites on the CLP. The results show enhanced dust accumulation during the Last Glacial Maximum (LGM), with particularly rapid dust accumulation from ∼23 to 19 ka ago (the late LGM). In contrast, MARs determined for the last deglaciation (from ∼19 to 12 ka ago) are low. The MAR changes during MIS 2 in Chinese loess are mainly controlled by the East Asian winter monsoon (EAWM) intensity, which is forced by Northern Hemisphere ice volume. The MAR changes also indicate that dust accumulation during MIS 2 is generally continuous at millennial time scales on the CLP. Comparison of Asian-sourced aeolian dust MARs in Chinese loess with those preserved in Greenland ice cores and North Pacific Ocean sediments indicates that rapid dust accumulation occurred from ∼26 to 23 ka ago (the early LGM) in Greenland ice cores and North Pacific Ocean sediments, suggesting a several kilo-year difference in timing when compared with the rapid dust accumulation during the late LGM in Chinese loess. This asynchronous timing in enhanced dust accumulation is probably related to both changes in the EAWM intensity and changes in the mean position of zone axis of the Westerly jet, both of which are greatly influenced

  7. Accumulation Rate Variability and Winter Mass Balance Estimates using High Frequency Ground-Penetrating Radar and Snow Pit Stratigraphy on the Juneau Icefield, Alaska

    NASA Astrophysics Data System (ADS)

    Braddock, S. S.; Boucher, A. L.; Sandler, H. C.; McNeil, C.; Campbell, S. W.; Kreutz, K. J.

    2012-12-01

    In July 2012, 200 km of 400 MHz ground-penetrating radar (GPR) profiles were collected across the Juneau Icefield, Alaska. The goal was to determine if spatial accumulation rate variability and winter mass balance estimates could be improved by linking stratigraphic features between yearly-excavated snow pits through GPR. Profiles were collected along the centerline and cross sections of the main branch, northwest, and Southwest branch of the Taku Glacier as well as the Mathes, Llewellyn, and Demorest Glaciers. Over 650 km^2 of area and 1000 m of elevation range were covered during this pilot project linking sixteen snow pits with GPR data across the icefield. The field work was conducted as part of the Juneau Icefield Research Program (JIRP) with hopes of continuing this method in future years if first year results show promise. As an annually operated field research and education program, JIRP creates a unique opportunity to provide significant future contributions to Alaska mass balance records if the program is continued. Signal penetration reached ≤ 25 m with maximum depths reached at higher elevations of the icefield. Conversely, minimal penetration occurred in wetter regions at lower elevations, likely caused by volume scattering from free water within the firn and ice. Ice lenses and the annual layer located in mass balance snow pits correlated well with continuous stratigraphy imaged in GPR profiles suggesting that the lenses are relatively uninterrupted across the icefield and that GPR may be an appropriate tool for extrapolating point mass balance pit depths in this part of Alaska. The Northwest and Southwest Branches of the Taku Glacier show a strong stratigraphic thinning gradient, west to east; the main trunk of the Taku Glacier which originates from the Mathes-Llewellyn ice divide showed a similar thinning from the divide to the ELA. The thinning displayed by all three glacier systems matches a typical gradient from accumulation zone to ELA

  8. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2001-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.

  9. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  10. Mass accumulation rate of detrital materials in Lake Suigetsu as a potential proxy for heavy precipitation: a comparison of the observational precipitation and sedimentary record

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiaki; Tada, Ryuji; Yamada, Kazuyoshi; Irino, Tomohisa; Nagashima, Kana; Nakagawa, Takeshi; Omori, Takayuki

    2016-02-01

    In the densely populated region of East Asia, it is important to know the mechanism, scale, and frequency of heavy precipitation brought about during the monsoons and typhoons. However, observational data, which cover only several decades, are insufficient to examine the long-term trend of extreme precipitation and its background mechanism. In humid areas, the transport flux of a suspended detrital material through a river system is known to have an empirical power relationship with precipitation. Thus, the sedimentation flux of a fine detrital material could potentially be used as a proxy for reconstructing past heavy precipitation events. To test the idea that the sedimentation flux of detrital materials records past heavy precipitation events (e.g., typhoons), we focused on the detrital flux estimated from the annually laminated sediment of Lake Suigetsu, central Japan, which is capable of accurately correlating the age of detrital flux with the precipitation record. We first established a precise age model (error within ±1 year in average) beginning in 1920 A.D. on the basis of varve counting fine-tuned by correlation between event layers with historical floods. The flux of the detrital material (g/cm2/year) was estimated on the basis of Al2O3 content (wt%), dry bulk density (g/cm3), and sedimentation rate (cm/year) calculated from the age model. The detrital flux of background sedimentation showed a weak positive correlation with annual and monthly (June and September) precipitation excluding heavy precipitation that exceeded 100 mm/day. Furthermore, the thickness of instantaneous event layers, which corresponds to several maxima of detrital flux and is correlated with floods that occurred mainly during typhoons, showed a positive relationship with the total amount of precipitation that caused a flood event. This result suggests that the detrital flux maxima (deposition of event layers) record past extreme precipitation events that were likely associated with

  11. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    NASA Astrophysics Data System (ADS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  12. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  13. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence. PMID:24429523

  14. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  15. Rate of tree carbon accumulation increases continuously with tree size

    NASA Astrophysics Data System (ADS)

    Stephenson, N. L.; Das, A. J.; Condit, R.; Russo, S. E.; Baker, P. J.; Beckman, N. G.; Coomes, D. A.; Lines, E. R.; Morris, W. K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S. J.; Duque, Á.; Ewango, C. N.; Flores, O.; Franklin, J. F.; Grau, H. R.; Hao, Z.; Harmon, M. E.; Hubbell, S. P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L. R.; Pabst, R. J.; Pongpattananurak, N.; Su, S.-H.; Sun, I.-F.; Tan, S.; Thomas, D.; van Mantgem, P. J.; Wang, X.; Wiser, S. K.; Zavala, M. A.

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  16. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog

    SciTech Connect

    Ohlson, M.; Oekland, R.H.

    1998-12-01

    Although previous studies hint at the occurrence of substantial spatial variation in the accumulation rates of C and N in bogs, the extent to which rates may vary on high-resolution spatial and temporal scales is not known. A main reason for the lack of knowledge is that it is problematic to determine the precise age of peat at a given depth. The authors determined rates of carbon and nitrogen accumulation in the uppermost decimeters of a bog ecosystem using the pine method, which enables accurate dating of surface peat layers. They combined accumulation data with numerical and geostatistical analyses of the recent vegetation to establish the relationship between bog vegetation and rate of peat accumulation. Use of a laser technique for spatial positioning of 151 age-determined peat cores within a 20 x 20 m plot made it possible to give the first tine-scaled account of spatial and temporal variation in rates of mass, carbon, and nitrogen accumulation during the last century. Rates of C and N accumulation were highly variable at all spatial scales studied. For example, after {approximately}125 yr of peat growth, C and N accumulation varied by factors of five and four, respectively, from 25 to 125 g/dm{sup 2} for C, and from 0.7 to 2.6 g/dm{sup 2} for N. It takes 40 yr of peat accumulation before significant amounts of C are lost through decay. Hummocks built up by Sphagnum fuscum and S. rubellum were able to maintain average rates of C accumulation that exceed 2 g{center_dot}dm{sup {minus}2}{center_dot} yr{sup {minus}1} during 50 yr of growth. The authors argue that data on spatial variation in rates of C accumulation are necessary to understand the role of boreal peatlands in the greenhouse effect and global climate.

  17. Annual Greenland accumulation rates (2009-2012) from airborne Snow Radar

    NASA Astrophysics Data System (ADS)

    Koenig, L. S.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Fettweis, X.; Panzer, B.; Paden, J. D.; Forster, R. R.; Das, I.; McConnell, J.; Tedesco, M.; Leuschen, C.; Gogineni, P.

    2015-12-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS) through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB) in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR) shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  18. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  19. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-11-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  20. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  1. Accumulation rates of airborne heavy metals in wetlands

    USGS Publications Warehouse

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  2. Death rates reflect accumulating brain damage in arthropods.

    PubMed

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M J; Sheehy, Matt R J

    2005-09-22

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz-Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p < 0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence. PMID:16191601

  3. A flight experiment to determine GPS photochemical contamination accumulation rates

    NASA Technical Reports Server (NTRS)

    Tribble, A. C.; Haffner, J. W.

    1990-01-01

    It was recently suggested that photochemically deposited contamination, originating from volatiles outgassed by a spacecraft, may be responsible for the anomalous degradation in power seen on the GPS Block 1 vehicles. In an attempt to confirm, or deny, the photochemical deposition rates predicted, a study was undertaken to design a flight experiment to be incorporated on the GPS vehicles currently in production. The objective was to develop an inexpensive, light weight instrument package that would give information on the contamination levels within a few months of launch. Three types of apparatus were studied, Quartz Crystal Microbalances, (QCM's), modified solar cells, and calorimeters. A calorimeter was selected due primarily to its impact on the production schedule of the GPS vehicles. An analysis of the sensitivity of the final design is compared to the predicted contamination accumulation rates in order to determine how long after launch it will take the experiment to show the effects of photochemical contamination.

  4. Sedimentation rate determination by radionuclides mass balances

    NASA Astrophysics Data System (ADS)

    Cazala, C.; Reyss, J. L.; Decossas, J. L.; Royer, A.

    2003-04-01

    In the past, uranium mining activity took place in the area around Limoges, France. Even nowadays, this activity results in an increase in the input and availability of radionuclides in aquifer reservoirs, making of this area a suitable site to better understand the behaviour of radionuclides in the surficial environment. Water was sampled monthly over the entire year 2001 in a brook that collects mine water and in a lake fed by this brook. Samples were filtered through 0.45μm filters to remove particles. Activities of 238U, 226Ra, 210Pb, 228Th and 228Ra were measured on particulate (>0.45μm), dissolved (<0.45μm) and total (unfiltered) fractions by gamma spectrometry in the well of a high efficiency, low background, germanium detector settled in an underground laboratory, protected from cosmic rays by 1700 m of rocks (LSM, CNRS-CEA, French Alps). Activities measured in particulate and dissolved fractions were summed and compared to the one measured in unfiltered water to test the filtration yield. No significant loss or contamination were detected. In the brook water, 70% of 238U, 60% of 226Ra and 80% of 210Pb are associated with particles. Activities associated with particles decrease drastically along with the velocity of current when the stream enters the lake. An annual mass balance of radionuclides carried by particles from the stream to the lake was used to determine the sedimentation rate in the lake. The flux of particles deduced from mass balance calculations based on five isotopes corresponds to the thickness of sediment accumulated since the creation of this artificial lake (that is, 1976). This study emphasises the usefulness of radionuclides as tracers for environmental investigations.

  5. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates.

    PubMed

    Hansson, Sophia V; Kaste, James M; Olid, Carolina; Bindler, Richard

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides (210)Pb, (137)Cs, (241)Am, and (7)Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of (7)Be down to 18-20 cm for some cores, and the broad vertical distribution of (241)Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age-depth model leads to unrealistic peat mass accumulation rates (400-600 g m(-2) yr(-1)), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of (210)Pb through the uppermost peat layers, recent peat accumulation rates (200-300 g m(-2) yr(-1)) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using (7)Be, and if this information is incorporated into age-depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years. PMID:24946030

  6. Behavioral momentum and accumulation of mass in multiple schedules.

    PubMed

    Craig, Andrew R; Cunningham, Paul J; Shahan, Timothy A

    2015-05-01

    Behavioral momentum theory suggests that the relation between a discriminative-stimulus situation and reinforcers obtained in that context (i.e., the Pavlovian stimulus-reinforcer relation) governs persistence of operant behavior. Within the theory, a mass-like aspect of behavior has been shown to be a power function of predisruption reinforcement rates. Previous investigations of resistance to change in multiple schedules, however, have been restricted to examining response persistence following protracted periods of stability in reinforcer rates within a discriminative situation. Thus, it is unclear how long a stimulus-reinforcer relation must be in effect prior to disruption in order to affect resistance to change. The present experiment examined resistance to change of pigeon's key pecking following baseline conditions where reinforcer rates that were correlated with discriminative-stimulus situations changed. Across conditions, one multiple-schedule component arranged either relatively higher rates or lower rates of variable-interval food delivery, while the other component arranged the opposite rate. These schedules alternated between multiple-schedule components across blocks of sessions such that reinforcer rates in the components were held constant for 20, 5, 3, 2, or 1 session(s) between alternations. Resistance to extinction was higher in the component that most recently was associated with higher rates of food delivery in all conditions except when schedules alternated daily or every other day. These data suggest that resistance to change in multiple schedules is related to recently experienced reinforcer rates but only when multiple-schedule components are associated with specific reinforcer rates for several sessions. PMID:25787824

  7. Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development.

    PubMed

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C

    2015-02-01

    We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g(-1) to 3631 ng g(-1) during the period of 1978-2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development. PMID:25489746

  8. Accumulation-rate history at Siple Dome, West Antarctica, using bubble number-density

    NASA Astrophysics Data System (ADS)

    Spencer, M.; Dennison, A.; Alley, R. B.; Fitzpatrick, J. J.; Fegyveresi, J. M.

    2012-12-01

    Past allowable accumulation rate/temperature combinations at Siple Dome, West Antarctica, are estimated from the measured number-density of bubbles in ice core samples. Mass density increase and grain growth in polar firn both are controlled by temperature and accumulation rate, and their integrated effects are recorded in the number-density of bubbles as the firn changes to ice [1]. Accumulation-rate estimates from measured bubble number-density and additional constraints from numerical modeling of firn densification at Siple Dome are consistent with 1-D ice-flow model results that have little change in the thickness of the ice sheet in the central Ross Embayment of West Antarctica since the last glacial maximum [2]. Using methods developed to analyze late-Holocene bubble number-density samples from the West Antarctic Ice Sheet Divide Ice Core Project [3], Siple Dome bubble number-densities show an early-Holocene high in accumulation rate followed by an approximately 10% reduction in accumulation rate between 11.33 ka and 1.863 ka. [1] Spencer, M.K., R.B. Alley and J.J. Fitzpatrick. Developing a bubble number-density paleoclimatic indicator for glacier ice, J. Glaciol. 52(178), 358-364 (2006). [2] E.D. Waddington et al., Decoding the dipstick: thickness of Siple Dome, West Antarctica, at the last glacial maximum, Geology 33(4), 281-284 (2005). [3] J.M. Fegyveresi, et al., Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates, J. Glaciol., 57(204) , 629 - 638 (2011).

  9. Complex Wind-Induced Variations of Surface Snow Accumulation Rates over East Antarctica

    NASA Astrophysics Data System (ADS)

    Das, I.; Scambos, T. A.; Koenig, L.; van den Broeke, M.; Lenaerts, J.

    2015-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. Using airborne radar, lidar and thresholds of surface slope, modeled surface mass balance (SMB) and wind fields, we have predicted continent-wide distribution of wind-scour zones over Antarctica. These zones are located over relatively steep ice surfaces formed by ice flow over bedrock topography. Near-surface winds accelerate over these steeper slopes and erode and sublimate the snow. This results in numerous localized regions (typically ≤ 200 km2) with reduced or negative surface accumulation. Although small zones of re-deposition occur at the base of the steeper slope areas, the redeposited mass is small relative to the ablation loss. Total losses from wind-scour and wind-glaze areas amounts to tens of gigatons annually. Near the coast, winds often blow significant amounts of surface snow from these zones into the ocean. Large uncertainties remain in SMB estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss or redistribution over the wind-scour zones. In this study, we also use Operation IceBridge's snow radar data to provide evidence for a gradual ablation of ~16-18 m of firn (~200 years of accumulation) from wind-scour zones over the upper Recovery Ice Stream catchment. The maximum ablation rates observed in this region are ~ -54 kg m-2 a-1 (-54 mm water equivalent a-1). Our airborne radio echo-sounding analysis show snow redeposition downslope of the wind-scour zones is <10% of the cumulative mass loss. Our study shows that the local mass loss is dominated by sublimation to water vapor rather than wind-transport of snow.

  10. Accumulation rate and mixing of shelf sediments in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lewis, R.C.; Coale, K.H.; Edwards, B.D.; Marot, M.; Douglas, J.N.; Burton, E.J.

    2002-01-01

    The distribution of excess 210Pb in 31 sediment cores was used to determine modern (last 100 yr) mass accumulation rates and the depth of sediment mixing on the continental shelf between Pacifica and Monterey, California, USA. Apparent mass accumulation rates average 0.27 g cm-2 yr-1 and range from 0.42 g cm-2 yr-1 to 0.12 g cm-2 yr-1. Accumulation rates were highest at mid-shelf water depths (60-100 m) adjacent to major rivers and near the head of the Ascension submarine canyon. Cores from water depths of less than 65 m had low, uniform 210Pb activity profiles and sandy textures. The uppermost 5-13 cm of 15 cores had uniform 210Pb activity profiles above a region of steadily decreasing 210Pb activity. This phenomenon was attributed to sediment mixing. The thickness of this upper layer of uniform 210Pb activity decreased southward from 13 cm, west of Pacifica, to less than 5 cm, near Monterey Canyon. This southward decrease may be attributed to shallower bioturbation in the southern study area. Integrated excess 210Pb activities were generally higher where sedimentation rates were high. They were also higher with increasing distance from major rivers. Thus, sedimentation rate alone does not explain the distribution of integrated excess 210Pb in this study area. Excess 210Pb in the seafloor is controlled by other factors such as sediment texture, the atmospheric deposition rate of 210Pb, and the residence time of sediment particles in the water column. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica with airborne observations of snow accumulation (Invited)

    NASA Astrophysics Data System (ADS)

    Medley, B.; Joughin, I. R.; Smith, B. E.; Das, S. B.; Steig, E. J.; Conway, H.; Gogineni, P. S.; Criscitiello, A. S.; McConnell, J. R.; van den Broeke, M. R.; Lenaerts, J.; Bromwich, D. H.; Nicolas, J. P.

    2013-12-01

    One of the largest sources of uncertainty in quantifying ice-sheet mass balance originates from our lack of understanding of spatiotemporal snow accumulation rates. Traditional in situ measurements of the accumulation rate (i.e., firn cores, snow pits, and stake farms) do not adequately capture the complex spatial variations in regional accumulation and are not suitable for regional mass balance studies. Accumulation measurements using ground-based radar systems capture the spatial variability in accumulation over discrete (i.e., annual to multi-decadal) and consistent time intervals along hundreds of kilometers of survey paths but cannot access certain areas of the ice sheet (e.g., highly crevassed regions). On the other hand, spatiotemporally complete global and regional atmospheric models of the accumulation rate are increasingly being used in place of measurements, but few regional measurements exist to rigorously test the temporal skill of these models. Here, we use data from two airborne radar systems, developed by the Center for Remote Sensing of Ice Sheets, to calculate recent accumulation rates over the Pine Island and Thwaites drainage systems along the Amundsen Coast of West Antarctica. These measurements are then used to: (1) assess the skill of global and regional atmospheric models and (2) precisely determine basin-wide accumulation rates for mass balance estimates. The spatial coverage limitation that makes field measurements disadvantageous for regional mass balance studies is overcome by aerial survey designed for maximum spatial coverage of these drainage basins. We measure the snow accumulation rate using the ultra-wideband airborne radar data to track near-surface internal horizons. The horizon thickness is converted to a water-equivalent thickness using a regionally representative density profile. Accumulation rates are calculated by dividing the water-equivalent thickness by the horizon age, which is determined either by annual count or using

  12. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation

    NASA Astrophysics Data System (ADS)

    Medley, B.; Joughin, I.; Smith, B. E.; Das, S. B.; Steig, E. J.; Conway, H.; Gogineni, S.; Lewis, C.; Criscitiello, A. S.; McConnell, J. R.; van den Broeke, M. R.; Lenaerts, J. T. M.; Bromwich, D. H.; Nicolas, J. P.; Leuschen, C.

    2014-07-01

    In Antarctica, uncertainties in mass input and output translate directly into uncertainty in glacier mass balance and thus in sea level impact. While remotely sensed observations of ice velocity and thickness over the major outlet glaciers have improved our understanding of ice loss to the ocean, snow accumulation over the vast Antarctic interior remains largely unmeasured. Here, we show that an airborne radar system, combined with ice-core glaciochemical analysis, provide the means necessary to measure the accumulation rate at the catchment-scale along the Amundsen Sea coast of West Antarctica. We used along-track radar-derived accumulation to generate a 1985-2009 average accumulation grid that resolves moderate- to large-scale features (>25 km) over the Pine Island-Thwaites glacier drainage system. Comparisons with estimates from atmospheric models and gridded climatologies generally show our results as having less accumulation in the lower-elevation coastal zone but greater accumulation in the interior. Ice discharge, measured over discrete time intervals between 1994 and 2012, combined with our catchment-wide accumulation rates provide an 18-year mass balance history for the sector. While Thwaites Glacier lost the most ice in the mid-1990s, Pine Island Glacier's losses increased substantially by 2006, overtaking Thwaites as the largest regional contributor to sea-level rise. The trend of increasing discharge for both glaciers, however, appears to have leveled off since 2008.

  13. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica with airborne observations of snow accumulation

    NASA Astrophysics Data System (ADS)

    Medley, B.; Joughin, I.; Smith, B. E.; Das, S. B.; Steig, E. J.; Conway, H.; Gogineni, S.; Lewis, C.; Criscitiello, A. S.; McConnell, J. R.; van den Broeke, M. R.; Lenaerts, J. T. M.; Bromwich, D. H.; Nicolas, J. P.; Leuschen, C.

    2014-02-01

    In Antarctica, uncertainties in mass input and output translate directly into uncertainty in glacier mass balance and thus in sea level impact. While remotely sensed observations of ice velocity and thickness over the major outlet glaciers have improved our understanding of ice loss to the ocean, snow accumulation over the vast Antarctic interior remains largely unmeasured. Here, we show that an airborne radar system, combined with ice-core glaciochemical analysis, provide the means necessary to measure the accumulation rate at the catchment-scale along the Amundsen Sea Coast of West Antarctica. We used along-track radar-derived accumulation to generate a 1985-2009 average accumulation grid that resolves moderate- to large-scale features (> 25 km) over the Pine Island-Thwaites glacier drainage system. Comparisons with estimates from atmospheric models and gridded climatologies generally show our results as having less accumulation in lower-elevation coastal zone but greater accumulation in the interior. Ice discharge, measured over discrete time intervals between 1994 and 2012, combined with our catchment-wide accumulation rates provide an 18 yr mass balance history for the sector. While Thwaites Glacier lost the most ice in the mid-1990s, Pine Island Glacier's losses increased substantially by 2006, overtaking Thwaites as the largest regional contributor to sea-level rise. The trend of increasing discharge for both glaciers, however, appears to have leveled off since 2008.

  14. Iunconsistencies in Accumulation Rates of Black Sea Sediments Inferred from Records of Laminae and 210Pb

    NASA Astrophysics Data System (ADS)

    Crusius, J.; Anderson, R. F.

    1992-04-01

    Recently-published estimates for the age of the unit 1-unit 2 contact in Black Sea sediments based on accelerator mass spectrometry (AMS) 14C measurements [Jones, 1990; Calvert et al., 1991] appear to be older than those based on the previously published chronology based on lamina couplets [Degens et al., 1980; Hay, 1988] by a factor of 2 to 3. To help reconcile the differences, we compare sediment accumulation rates based on the 210Pb method with estimates based on lamina counts for two cores from the Black Sea abyssal plain. Accumulation rates estimated using the 210Pb technique have varied little over the last 150 years from the averages of 55 and 50 g m-2 yr-1 at stations in the western and eastern basins, respectively. These values are about a factor of 2 lower than accumulation rates derived by counting lamina couplets over the dated intervals. Close examination of the laminae suggests that the discrepancy exists both because it is difficult to count the very fine laminae and because a complete couplet is not deposited every year. In order to provide a useful stratigraphic horizon for future investigators studying sedimentary records of the Black Sea, we estimate the age of a distinct black marker horizon which can be easily identified across the entire abyssal plain to be 150±8 years (deposited in 1838±8 A.D.).

  15. Mass Loss Rates of Fasting Polar Bears.

    PubMed

    Pilfold, Nicholas W; Hedman, Daryll; Stirling, Ian; Derocher, Andrew E; Lunn, Nicholas J; Richardson, Evan

    2016-01-01

    Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009-2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%-63% of subadults and 18%-24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology. PMID:27617359

  16. Nickel accumulation by Streptanthus polygaloides (Brassicaceae) reduces floral visitation rate.

    PubMed

    Meindl, George A; Ashman, Tia-Lynn

    2014-02-01

    Hyperaccumulation is the phenomenon whereby plants take up and sequester in high concentrations elements that generally are excluded from above-ground tissues. It largely is unknown whether the metals taken up by these plants are transferred to floral rewards (i.e., nectar and pollen) and, if so, whether floral visitation is affected. We grew Streptanthus polygaloides, a nickel (Ni) hyperaccumulator, in short-term Ni supplemented soils and control soils to determine whether Ni is accumulated in floral rewards and whether floral visitation is affected by growth in Ni-rich soils. We found that while supplementation of soils with Ni did not alter floral morphology or reward quantity (i.e., anther size or nectar volume), Ni did accumulate in the nectar and pollen-filled anthers-providing the first demonstration that Ni is accumulated in pollinator rewards. Further, S. polygaloides grown in Ni-supplemented soils received fewer visits per flower per hour from both bees and flies (both naïve to Ni-rich floral resources in the study area) relative to plants grown in control soils, although the probability a plant was visited initially was unaffected by Ni treatment. Our findings show that while Ni-rich floral rewards decrease floral visitation, floral visitors are not completely deterred, so some floral visitors may collect and ingest potentially toxic resources from metal-hyperaccumulating plants. In addition to broadening our understanding of the effects of metal accumulation on ecological interactions in natural populations, these results have implications for the use of insect-pollinated plants in phytoremediation. PMID:24477333

  17. Meteorite infall as a function of mass - Implications for the accumulation of meteorites on Antarctic ice

    NASA Technical Reports Server (NTRS)

    Huss, Gary R.

    1990-01-01

    Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/sq km/1 million years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200,000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30,000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10,000 + or - 5,000 years.

  18. The ion mass loading rate at Io

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Strobel, Darrell F.; Neubauer, Fritz M.; Summers, Michael E.

    2003-06-01

    The Io plasma torus, composed of mostly heavy ions of oxygen and sulfur, is sustained by an Iogenic mass loading rate of ˜10 30 amu s -1 = 1.6 × 10 28 SO 2 s -1 or approximately 10 3 kg s -1(A.L. Broadfoot et al., 1979, Science 204, 979-982). We argue on the basis of available power sources, reanalysis of F. Bagenal (1997, Geophys. Res. Lett. 24, 2111-2114), HST UV remote sensing, and detailed model calculations that at most 20% of this mass leaves Io in the form of ions, i.e., ≤3 × 10 27 × ( ne,0 /3600 cm -3) ions s -1, where ne,0 is the average torus electron density. For the Galileo spacecraft Io pass in December 1995, the ion mass loading rate was ≤3 × 10 27 ions s -1, whereas for the Voyager epoch with lower ne,0 (=2000 cm -3), this rate would be ≤1.7 × 10 27 ions s -1, consistent with the D.E. Shemansky (1980, Astrophys. J. 242, 1266-1277) mass loading limit of ≤1 × 10 27 ions s -1. We investigate the processes that control Io's large scale electrodynamic interaction and find that the elastic collision rate exceeds the ionization/pickup rate by at least a factor of 5 for all atmospheric column densities considered (10 16-10 21 m -2) and by a factor of ˜100 for the most realistic column density. Consequently, elastic collisions are mostly responsible for Io's high conductances and thus generate Io's large scale electrodynamic interaction such as the generation of Io's electric current system and the slowing of the plasma flow. The electrodynamic part of Io's interaction is thus best described as an ionosphere-like interaction rather than a comet-like interaction. An analytic expression for total electron impact rates is derived for Io's atmosphere, which is independent of any particular model for the 3D interaction of torus electrons with its atmosphere.

  19. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass. PMID:24793822

  20. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  1. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: Rates, drivers, and sources of error

    NASA Astrophysics Data System (ADS)

    Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.; Hansen, Barbara C. S.; Stricker, Craig A.

    2012-09-01

    Tropical and subtropical wetlands are considered to be globally important sources of greenhouse gases, but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida in order to assess these problems and determine the factors that could govern carbon accumulation in this large subtropical wetland. Accelerator mass spectroscopy dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion (0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands.

  2. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error

    USGS Publications Warehouse

    Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.; Hansen, Barbara C. S.; Stricker, Craig A.

    2012-01-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. Accelerator mass spectroscopy dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands.

  3. Recent accumulation rates of an Alpine glacier derived from repeated airborne GPR and firn cores

    NASA Astrophysics Data System (ADS)

    Sold, Leo; Huss, Matthias; Eichler, Anja; Schwikowski, Margit; Hoelzle, Martin

    2014-05-01

    The topmost areas of glaciers contain a valuable record of their past accumulation rates. The water equivalent of annual firn layers can be used to initiate or extend existing time series of local mass balance and, ultimately, to consolidate the knowledge on the response of glaciers to changing climatic conditions. Measurements of the thickness and density of firn layers typically involve drilling in remote areas and core analysis and are thus expensive in terms of time and effort. Here, we discuss measurements from 2012 on Findelengletscher, Switzerland, a large Alpine valley glacier, using two in-situ firn cores and airborne Ground-Penetrating Radar (GPR). The firn cores were analysed regarding their density, major ions and deuterium concentration. The ammonium (NH4+) concentration is known to show seasonality due to a higher source activity and pronounced vertical transportation in the atmosphere in summer. The deuterium concentration serves as a proxy for air temperature during precipitation formation. Together, they provide depth and dating of annual summer surfaces. GPR has previously been used for a non-destructive assessment of internal layers in snow, firn and ice. Signal reflections indicate changes in the dielectric properties of the material, e.g. density changes at former summer surfaces. Airborne surveys allow measurements to be taken in remote and inaccessible areas. However, to transfer information from the GPR pulse travel time to the depth domain, the dielectric permittivity of the material is required, that changes with density of the firn. We observed a good agreement of the GPR signal with pronounced changes in the density profile, ice layers and peak contents of major ions. This underlines the high potential of GPR for detecting firn layers. However, not all peak-densities and thick ice layers represent a former glacier summer surface but can also be due to melting and refreezing during winter. We show that up to four years of annual

  4. The rate of aging: the rate of deficit accumulation does not change over the adult life span.

    PubMed

    Mitnitski, Arnold; Rockwood, Kenneth

    2016-02-01

    People age at different rates. We have proposed that rates of aging can be quantified by the rate at which individuals accumulate health deficits. Earlier estimates, using cross-sectional analyses suggested that deficits accumulated exponentially, at an annual rate of 3.5%. Here, we estimate the rate of deficit accumulation using longitudinal data from the Canadian National Population Health Survey. By analyzing age-specific trajectories of deficit accumulation in people aged 20 years and over (n = 13,668) followed biannually for 16 years, we found that the longitudinal average annual rate of deficit accumulation was 4.5% (±0.75%). This estimate was notably stable during the adult life span. The corresponding average doubling time in the number of deficits was 15.4 (95% CI 14.82-16.03) years, roughly 30% less than we had reported from the cross-sectional analysis. Earlier work also established that the average number of deficits accumulated by individuals (N), equals the product of the intensity of environmental stresses (λ) causing damage to the organism, by the average recovery time (W). At the individual level, changes in deficit accumulation can be attributed to both changes in environmental stresses and changes in recovery time. By contrast, at the population level, changes in the number of deficits are proportional to the changes in recovery time. In consequence, we propose here that the average recovery time, W doubles approximately every 15.4 years, independently of age. Such changes quantify the increase of vulnerability to stressors as people age that gives rise to increasing risk of frailty, disability and death. That deficit accumulation will, on average, double twice between ages 50 and 80 highlights the importance of health in middle age on late life outcomes. PMID:25972341

  5. Verification of International Space Station Component Leak Rates by Helium Accumulation Method

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D.; Smith, Sherry L.

    2003-01-01

    Discovery of leakage on several International Space Station U.S. Laboratory Module ammonia system quick disconnects (QDs) led to the need for a process to quantify total leakage without removing the QDs from the system. An innovative solution was proposed allowing quantitative leak rate measurement at ambient external pressure without QD removal. The method utilizes a helium mass spectrometer configured in the detector probe mode to determine helium leak rates inside a containment hood installed on the test component. The method was validated through extensive developmental testing. Test results showed the method was viable, accurate and repeatable for a wide range of leak rates. The accumulation method has been accepted by NASA and is currently being used by Boeing Huntsville, Boeing Kennedy Space Center and Boeing Johnson Space Center to test welds and valves and will be used by Alenia to test the Cupola. The method has been used in place of more expensive vacuum chamber testing which requires removing the test component from the system.

  6. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  7. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows

    NASA Astrophysics Data System (ADS)

    Miyajima, Toshihiro; Hori, Masakazu; Hamaguchi, Masami; Shimabukuro, Hiromori; Adachi, Hiroshi; Yamano, Hiroya; Nakaoka, Masahiro

    2015-04-01

    Organic carbon (OC) stored in the sediments of seagrass meadows has been considered a globally significant OC reservoir. However, the sparsity and regional bias of studies on long-term OC accumulation in coastal sediments have limited reliable estimation of the capacity of seagrass meadows as a global OC sink. We evaluated the amount and accumulation rate of OC in sediment of seagrass meadows and adjacent areas in East and Southeast Asia. In temperate sites, the average OC concentration in the top 30 cm of sediment was higher in seagrass meadows (780-1080 mmol g-1) than in sediments without seagrass cover (52-430 mmol g-1). The average OC in the top 30 cm of subtropical and tropical seagrass meadow sediments ranged from 140 to 440 mmol g-1. Carbon isotope mass balancing suggested that the contribution of seagrass-derived carbon to OC stored in sediments was often relatively minor (temperate: 10-40%; subtropical: 35-82%; tropical: 4-34%) and correlated to the habitat type, being particularly low in estuarine habitats. Stock of OC in the top meter of sediment of all the studied meadows ranged from 38 to 120 Mg ha-1. The sediment accumulation rates were estimated by radiocarbon dating of six selected cores (0.32-1.34 mm yr-1). The long-term OC accumulation rates calculated from the sediment accumulation rate and the top 30 cm average OC concentration for the seagrass meadows (24-101 kg ha-1 yr-1) were considerably lower than the OC accumulation rates previously reported for Mediterranean Posidonia oceanica meadows (580 kg ha-1 yr-1 on average). Current estimates for the global carbon sink capacity of seagrass meadows, which rely largely on Mediterranean studies, may be considerable overestimations.

  8. Peat Accumulation in the Everglades (USA) during the Past 4000 Years: Rates, Drivers, and Sources of Error

    NASA Astrophysics Data System (ADS)

    Glaser, P. H.; Volin, J. C.; Givnish, T. J.; Hansen, B. C.; Stricker, C. A.

    2012-12-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. AMS-14C dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands

  9. Using transplants to measure accumulation rates of epiphytic bryophytes in forests of western Oregon

    USGS Publications Warehouse

    Rosso, A.L.; Muir, Patricia S.; Rambo, T.

    2001-01-01

    We sought a simple and effective transplant method that could be used to measure biomass accumulation rates of epiphytic bryophytes. Trials were carried out in the Pseudotsuga menziesii-dominated forests of western Oregon. We tested multiple transplant methods over a 13-month period while comparing accumulation rates of Antitrichia curtipendula (Hedw.) Brid. and Isothecium myosuroides Brid. among an old-growth stand, a young stand, and a recent clearcut. In our study area, Antitrichia is considered to be an old-growth associate while Isothecium is a more ubiquitous species. Methods tested included containment in net bags, containment in hairnets, and directly tying mats to substrates. Three sizes of transplants were tested with both natural and inert artificial substrates. Transplants of approximately five g enclosed in plastic net bags and tied to either natural or artificial substrates worked well for our purposes. Only minor differences were found in mean accumulation rates between the old growth and young stand, though variation in accumulation rates was higher in the old growth. Neither species appeared capable of surviving in the clearcut. Antitrichia accumulated biomass 60% faster in the canopy than in the understory on average. Antitrichia also accumulated at a faster rate than Isothecium, with mean 13-month biomass increases of 11.8 and 3.7% respectively for 5 g transplants in the understory. Our results suggest that Antitrichia's association with old growth may be due more to dispersal or establishment limitations than to a decreased ability to grow in young stands.

  10. Advantages of external accumulation for electron capture dissociation in Fourier transform mass spectrometry.

    PubMed

    Haselmann, K F; Budnik, B A; Olsen, J V; Nielsen, M L; Reis, C A; Clausen, H; Johnsen, A H; Zubarev, R A

    2001-07-01

    A combination of external accumulation (XA) with electron capture dissociation (ECD) improves the electron capture efficiency, shortens the analysis time, and allows for rapid integration of multiple scans in Fourier transform mass spectrometry. This improves the signal-to-noise ratio and increases the number of detected products, including structurally important MS3 fragments. With XA-ECD, the range of the labile species amenable to ECD is significantly extended. Examples include the first-time determination of the positions of six GalNAc groups in a 60-residue peptide, five sialic acid and six O-linked GalNAc groups in a 25-residue peptide, and the sulfate group position in a 11-residue peptide. Even weakly bound supramolecular aggregates, including nonspecific peptide complexes, can be analyzed with XA-ECD. Preliminary results are reported on high-rate XA-ECD that uses an indirectly heated dispenser cathode as an electron source. This shortens the irradiation time to > or = 1 ms and increases the acquisition rate to 3 scans/s, an improvement by a factor of 10-100. PMID:11467546

  11. The value of thermochronometry to understanding mass accumulation in marine basins

    NASA Astrophysics Data System (ADS)

    Carter, A.; Yan, Y.

    2011-12-01

    Variations in sediment mass accumulation in marine basins are frequently assigned significance in terms of major changes in hinterland erosion rates as a consequence of climate change and/or tectonics. More often than not such interpretations are made on the basis of temporal associations with independent proxy records rather than direct evidence. A good example is the Cenozoic Song Hong-Yinggehai Basin in the South China Sea that contains large thicknesses of sedimentary rocks mostly deposited by outflow of a paleo Red River. Studies of seismic reflection data show basin sedimentation rates increased between 29.5-21 Ma, fell between 21 and 15.5 Ma, and rose once more between 15.5 and 10 .5 Ma with peak sedimentation rates in the Plio-Pleistocene. These changes have been widely seen as responses to shifts in the intensity of the East Asian monsoon (especially the changes that took place between 15.5-10 Ma) and/or local tectonics mainly connected to movements on the Red River Fault. The volume of sediment deposited in the Song Hong-Yinggehai Basin is equivalent to 504,350 km3 of eroded rock which if distributed across a drainage area similar to the present-day catchment of the Red River (~ 143,000 km2) represents about 3.53 km of denudation since 30 Ma, or less if the paleodrainage was once larger. To test if the palaeo Red River was once much larger or of similar size to the present apatite thermochronometry was used to define the long-term depths of erosion across northern Vietnam as well as more local sources such as Hainan Island. The long-term erosion rates derived from the thermochronometry show depths of erosion in northern Vietnam, averaged over an area similar to that of the modern Red River catchment, can account for 80% of the sediment deposited in the basin. The residual 20% can be explained by contributions from Hainan Island and the eastern margin of Vietnam. The results also show no major changes in erosion rates before or after 15 Ma thus shifts in

  12. Topographic control and accumulation rate of some Holocene coral reefs: south Florida and Dry Tortugas

    USGS Publications Warehouse

    Shinn, E.A.; Hudson, J.H.; Halley, R.B.; Lidz, B.H.

    1977-01-01

    Core drilling and examination of underwater excavation on 6 reef sites in south Florida and Dry Tortugas revealed that underlying topography is the major factor controlling reef morphology. Carbon-14 dating on coral recovered from cores enables calculation of accumulation rates. Accumulation rates were found to range from 0.38 m/1000 years in thin Holocene reefs to as much as 4.85 m/1000 years in thicker buildups. Cementation and alteration of corals were found to be more pronounced in areas of low buildup rates than in areas of rapid accumulation rates. Acropora palmata, generally considered the major reef builder in Florida, was found to be absent in most reefs drilled. At Dry Tortugas, the more than 13-meter thick Holocene reef did not contain A. palmata. The principal reef builders in this outer reef are the same as those which built the Pleistocene Key Largo formation, long considered to be fossilized patch reef complex.

  13. Adolescence: How do we increase intestinal calcium absorption to allow for bone mineral mass accumulation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in calcium absorptive efficiency (fractional absorption of dietary calcium) during adolescence is associated with a rapid increase in total body bone mineral mass (BMM) accumulation. This increase occurs across a range of calcium intakes. It appears to be principally mediated by hormonal...

  14. IMPACT OF PARTICLE AGGLOMERATION ON ACCUMULATION RATES IN THE GLASS DISCHARGE RISER OF HLW MELTER

    SciTech Connect

    Matyas, Josef; Jansik, Danielle P.; Owen, Antionette T.; Rodriguez, Carmen P.; Lang, Jesse B.; Kruger, Albert A.

    2013-08-05

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with X-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185±155 µm, and produced >3 mm thick layer after 120 h at 850 °C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  15. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    SciTech Connect

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.; Owen, A. T.; Jansik, D. P.; Lang, J. B.

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  16. Accumulation Rate of Microbial Biomass at Two Permeable Reactive Barrier Sites

    NASA Astrophysics Data System (ADS)

    Wilkin, R.; Sewell, G.; Puls, R.

    2001-12-01

    Accumulation of mineral precipitates and microbial biomass are key factors that impact the long term performance of in situ Permeable Reactive Barriers for treating contaminated groundwater. Both processes can impact remedial performance by decreasing zero valent iron reactivity and permeability. Results are presented from solid phase and groundwater monitoring studies conducted at two Permeable Reactive Barrier sites, U.S. Coast Guard Support Center (Elizabeth City, North Carolina) and the Denver Federal Center (Lakewood, Colorado). At both sites barrier installations have been in place for approximately five years. Over this period, consistent patterns of spatially heterogeneous microbial biomass accumulation are observed at these sites. The iron-aquifer interface witnesses the greatest accumulation of microbial biomass and mineral precipitates. There accumulation rates are a factor of 3 to 10 times greater than midwall or downgradient regions. Estimates of porosity loss due to mineral and biomass buildup range from about 1 to 5 percent per year of the initial available volume. Phospholipid fatty acid profiles indicate that the PRB biomass is dominated by biomarkers indicative of anaerobic sulfate reducing or iron reducing bacteria. This result is in agreement with acid volatile sulfide concentrations that strongly correlate with biomass concentrations. Upgradient groundwater chemistry and flow rate appear to be the main factors that control the rate (and type) of mineral precipitate formation as well as the rate of biomass accumulation. Notice, this is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  17. A quantitative study on accumulation of age mass around stagnation points in nested flow systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Ge, Shemin; Cao, Guo-Liang; Hou, Guang-Cai; Hu, Fu-Sheng; Wang, Xu-Sheng; Li, Hailong; Liang, Si-Hai

    2012-12-01

    The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.

  18. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  19. Spatial Accumulation-Rate Pattern Inferred from Radar Internal Layers and Point Measurements of Velocity and Accumulation near Taylor Mouth, Victoria Land

    NASA Astrophysics Data System (ADS)

    Waddington, E. D.; Neumann, T. A.; Morse, D. L.; Marshall, H.

    2002-12-01

    Internal layers in ice sheets, as measured by ice-penetrating radar, are most likely isochrones. The depth to a shallow internal layer is proportional to the local accumulation rate. However, low-frequency radars often do not record very shallow layers. High-frequency radars (GPR) record shallow layers, but cannot detect the deeper layers that reflect longer-term patterns of climate. Older, deeper layers are also influenced to an increasing degree by accumulated strain due to ice flow, and by the upstream accumulation rate. For this Geophysical Inverse Problem, our Forward Model is a steady-state ice-flow model with measured ice-sheet surface topography, ice thickness, and flowband width, which tracks particles to create modelled internal layers. Ice motion is driven by the input flux into the upper end of the flowband, and by the accumulation pattern along the flowband. To solve the Inverse Problem, our observations comprise depth of an internal layer, and point measurements of accumulation rate and surface velocity. Associated uncertainties are also required. We use Least-Squares or Singular-Value Decomposition to solve for model parameters (input ice flux, piece-wise linear accumulation-rate profile, and layer age) that minimize the mismatch between the data and the model estimates of the data. If the layer age and its uncertainty are known independently, they can also be used. Variable weights can be assigned to each type of data. The data-resolution matrix shows that, for shallow layers, we can resolve high-wavenumber variations in accumulation rate. For deeper layers, we resolve spatial averages of accumulation rates. We apply the model to a flowband at Taylor Mouth between Taylor Dome and Taylor Glacier. The model finds more variation in the inferred accumulation-rate profile than in the depth-profile of an internal layer. The new accumulation-rate profile produces an improved chronology for an ice core collected along the flowline.

  20. High Rates of Species Accumulation in Animals with Bioluminescent Courtship Displays.

    PubMed

    Ellis, Emily A; Oakley, Todd H

    2016-07-25

    One of the great mysteries of evolutionary biology is why closely related lineages accumulate species at different rates. Theory predicts that populations undergoing strong sexual selection will more quickly differentiate because of increased potential for genetic isolation [1-6]. Whether or not these population genetic processes translate to more species at macroevolutionary scales remains contentious [7]. Here we show that lineages with bioluminescent courtship, almost certainly a sexually selected trait, have more species and faster rates of species accumulation than their non-luminous relatives. In each of ten distantly related animal lineages from insects, crustaceans, annelid worms, and fishes, we find more species in lineages with bioluminescent courtship compared to their sister groups. Furthermore, we find under a Yule model that lineages with bioluminescent courtship displays have significantly higher rates of species accumulation compared to a larger clade that includes them plus non-luminous relatives. In contrast, we do not find more species or higher rates in lineages that use bioluminescence for defense, a function presumably not under sexual selection. These results document an association between the origin of bioluminescent courtship and increased accumulation of species, supporting theory predicting sexual selection increases rates of speciation at macroevolutionary scales to influence global patterns of biodiversity. PMID:27345160

  1. High bit rate mass data storage device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.

  2. Holocene Carbon Accumulation Rates in the SPRUCE Bog Prior to Warming and Elevated CO2 Treatment

    NASA Astrophysics Data System (ADS)

    McFarlane, K. J.; Iversen, C. M.; Phillips, J. R.; Brice, D. J.; Hanson, P. J.

    2015-12-01

    In the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experiment warming and elevated CO2 treatments are being applied to an ombrotrophic spruce bog: the S1 Bog (S1) at Marcell Experimental Forest in northern Minnesota. To provide a historical context for recent and expected experimentally-induced changes in the bog's belowground carbon balance, we reconstructed historical carbon accumulation rates in peat using radiocarbon from 19 peat cores collected from randomly distributed SPRUCE plots. This unusually high number of cores allows us to assess spatial variability in age-depth profiles and accumulation rates across the SPRUCE study area within S1. This data, along with recent C flux measurements, show that the bog has been accumulating carbon for at least 12,0000 years and has continued to be a sink for atmospheric carbon of approximately 150 g C m-2 yr-1 in recent decades. Early Holocene accumulation rates are similar to those reported for other northern peatlands (approximately 25 g C m-2 yr-1), but apparent carbon accumulation decreased substantially around 3,000 years ago (to 5-15 g C m-2 yr-1) and stayed low until the last century. This decrease is considerably larger than that reported for other peatlands and is therefore unlikely to result only from cooling during the Holocene or bog succession. Although no charcoal has been found in peat at this site, evidence from a neighboring bog indicates a considerable amount of peat formed during this period was consumed by fire and it is possible that smoldering fires consumed peat, resulting in low apparent accumulation rates. Past droughts may have also contributed to observed trends by lowering the acrotelm/catotelm boundary, allowing for enhanced aerobic peat decomposition. This work provides important background information on spatial variability and carbon biogeochemistry that will aid in interpretation of climate change simulation experiments at S1.

  3. Nutritive Value and Herbage Accumulation Rates of Pasture Sown to Grass, Legume, and Chicory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting pastures to mixtures of forages may benefit herbage production; however, wide fluctuations in botanical composition could cause unstable nutritive value. A grazing study was conducted to examine how forage mixture complexity influenced nutritive value and accumulation rate during spring, su...

  4. Distinct mutation accumulation rates among tissues determine the variation in cancer risk

    PubMed Central

    Hao, Dapeng; Wang, Li; Di, Li-jun

    2016-01-01

    Cancer is believed to be a result of accumulated mutations. However, this concept has not been fully confirmed owing to the impossibility of tracking down the ancestral somatic cell. We sought to verify the concept by exploring the correlation between cancer risk and mutation accumulation among different tissues. We hypothesized that the detected mutations through bulk tumor sequencing are commonly shared in majority, if not all, of tumor cells and are therefore largely a reflection of the mutations accumulated in the ancestral cell that gives rise to tumor. We collected a comprehensive list of mutation frequencies revealed by bulk tumor sequencing, and investigated its correlation with cancer risk to mirror the correlation between mutation accumulation and cancer risk. This revealed an approximate 1:1 relationship between mutation frequency and cancer risk in 41 different cancer types based on the sequencing data of 5,542 patients. The correlation strongly suggests that variation in cancer risk among tissues is mainly attributable to distinct mutation accumulation rates. Moreover, the correlation establishes a baseline to evaluate the effect of non-mutagenic carcinogens on cancer risk. Finally, our mathematic modeling provides a reasonable explanation to reinforce that cancer risk is predominantly determined by the first rate-limiting mutation. PMID:26785814

  5. Distinct mutation accumulation rates among tissues determine the variation in cancer risk.

    PubMed

    Hao, Dapeng; Wang, Li; Di, Li-jun

    2016-01-01

    Cancer is believed to be a result of accumulated mutations. However, this concept has not been fully confirmed owing to the impossibility of tracking down the ancestral somatic cell. We sought to verify the concept by exploring the correlation between cancer risk and mutation accumulation among different tissues. We hypothesized that the detected mutations through bulk tumor sequencing are commonly shared in majority, if not all, of tumor cells and are therefore largely a reflection of the mutations accumulated in the ancestral cell that gives rise to tumor. We collected a comprehensive list of mutation frequencies revealed by bulk tumor sequencing, and investigated its correlation with cancer risk to mirror the correlation between mutation accumulation and cancer risk. This revealed an approximate 1:1 relationship between mutation frequency and cancer risk in 41 different cancer types based on the sequencing data of 5,542 patients. The correlation strongly suggests that variation in cancer risk among tissues is mainly attributable to distinct mutation accumulation rates. Moreover, the correlation establishes a baseline to evaluate the effect of non-mutagenic carcinogens on cancer risk. Finally, our mathematic modeling provides a reasonable explanation to reinforce that cancer risk is predominantly determined by the first rate-limiting mutation. PMID:26785814

  6. Modelling of processes of damage accumulation and multiscale fracture in rock mass with excavations at mining

    NASA Astrophysics Data System (ADS)

    Eremin, M. O.; Makarov, P. V.; Peryshkin, A. Yu.; Evtushenko, E. P.; Orlov, S. A.

    2015-10-01

    The results of 2D and 3D modelling of damage accumulation in rock mass elements are represented in the paper. The estimations of the initial (general) and set steps of roof caving are obtained for the lava conditions of Alardinskaya mine, OAS "YuzhKuzbassUgol". The results of modelling give a good agreement with empirical estimations of roof caving steps for the flat-dipping coal seams.

  7. Jets at lowest mass accretion rates

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar; Cantrell, Andrew; Markoff, Sera; Falcke, Heino; Miller, Jon; Bailyn, Charles

    2011-02-01

    We present results of recent observations and theoretical modeling of data from black holes accreting at very low luminosities (L/LEdd <~ 10-8). We discuss our newly developed time-dependent model for episodic ejection of relativistic plasma within a jet framework, and a successful application of this model to describe the origin of radio flares seen in Sgr A*, the Galactic center black hole. Both the observed time lags and size-frequency relationships are reproduced well by the model. We also discuss results from new Spitzer data of the stellar black hole X-ray binary system A0620-00. Complemented by long term SMARTS monitoring, these observations indicate that once the contribution from the accretion disk and the donor star are properly included, the residual mid-IR spectral energy distribution of A0620-00 is quite flat and consistent with a non-thermal origin. The results above suggest that a significant fraction of the observed spectral energy distribution originating near black holes accreting at low luminosities could result from a mildly relativistic outflow. The fact that these outflows are seen in both stellar-mass black holes as well as in supermassive black holes at the heart of AGNs strengthens our expectation that accretion and jet physics scales with mass.

  8. Tracing the atomic mass unit to the kilogram by ion accumulation

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    2003-12-01

    An experimental approach for linking the atomic mass unit to the kilogram with an uncertainty sufficiently small for a future re-definition of the kilogram is described. The concept consists of accumulation of ions from an ion beam up to a weighable mass and measurable total charge. The main problems and influencing factors connected with ion beam technology, weighing and current measurement together with the corresponding experimental solutions are discussed in detail. The first experiments with consistent results, but still large uncertainty, are described.

  9. Avogadro constant and ion accumulation: steps towards a redefinition of the SI unit of mass

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Gläser, Michael

    2003-08-01

    This paper summarizes the activities of the several national metrology institutes and one transnational institute in replacing the kilogram artefact by the mass of a certain number of atoms. This task is based on two different experiments: a very accurate determination of the Avogadro constant, NA, and the accumulation of decelerated gold ions, which lead to the atomic mass of silicon and gold respectively. The relative uncertainties reached so far are in the first case two parts in 107, and in the latter of the order of 1% due to the early state of the research work.

  10. Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration

    PubMed Central

    Wiste, Heather J.; Knopman, David S.; Vemuri, Prashanthi; Mielke, Michelle M.; Weigand, Stephen D.; Senjem, Matthew L.; Gunter, Jeffrey L.; Lowe, Val; Gregg, Brian E.; Pankratz, Vernon S.; Petersen, Ronald C.

    2014-01-01

    Objective: To test the hypotheses predicted in a hypothetical model of Alzheimer disease (AD) biomarkers that rates of β-amyloid (Aβ) accumulation on PET imaging are not related to hippocampal neurodegeneration whereas rates of neurodegenerative brain atrophy depend on the presence of both amyloid and neurodegeneration in a population-based sample. Methods: A total of 252 cognitively normal (CN) participants from the Mayo Clinic Study of Aging had 2 or more serial visits with both amyloid PET and MRI. Subjects were classified into 4 groups based on baseline positive/negative amyloid PET (A+ or A−) and baseline hippocampal volume (N+ or N−). We compared rates of amyloid accumulation and rates of brain atrophy among the 4 groups. Results: At baseline, 148 (59%) were amyloid negative and neurodegeneration negative (A−N−), 29 (12%) amyloid negative and neurodegeneration positive (A−N+), 56 (22%) amyloid positive and neurodegeneration negative (A+N−), and 19 (8%) amyloid positive and neurodegeneration positive (A+N+). High rates of Aβ accumulation were found in those with abnormal amyloid at baseline and were not influenced by hippocampal neurodegeneration at baseline. In contrast, rates of brain atrophy were greatest in A+N+. Conclusions: We describe a 2-feature biomarker approach to classifying elderly CN subjects that is complementary to the National Institute on Aging–Alzheimer's Association preclinical staging criteria. Our results support 2 key concepts in a model of the temporal evolution of AD biomarkers. First, the rate of Aβ accumulation is not influenced by neurodegeneration and thus may be a biologically independent process. Second, Aβ pathophysiology increases or catalyzes neurodegeneration. PMID:24706010

  11. Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield

    NASA Astrophysics Data System (ADS)

    Schwikowski, M.; Schläppi, M.; Santibañez, P.; Rivera, A.; Casassa, G.

    2012-12-01

    Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.

  12. Hydroacoustic and spatial analysis of sediment fluxes and accumulation rates in two Virginia reservoirs, USA.

    PubMed

    Clark, E V; Odhiambo, B K; Yoon, S; Pilati, L

    2015-06-01

    Watershed sediment fluxes and reservoir sediment accumulation rates were analyzed in two contrasting reservoir systems in central and western Virginia. Lake Pelham, located in the Piedmont geologic province, is a human-impacted reservoir with a watershed dominated by agricultural, residential and industrial land uses. Conversely, Lake Moomaw has a largely undeveloped watershed characterized by very steep slopes and forested land use located in the Valley and Ridge province. The Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratios (SDRs) were used to estimate soil losses in the two watersheds. Bathymetric and sediment accumulation surveys of the two reservoirs were also conducted using a multi-frequency hydroacoustic surveying system. The RUSLE/SDR erosion model estimates 2150 kg ha(-1) year(-1) for Lake Pelham and 2720 kg ha(-1) year(-1) for Lake Moomaw, a 410 and 13 % increase from assumed pristine (100 % forested) land use for the respective basins. Mean sediment accumulation rates of 1.51 and 0.60 cm year(-1) were estimated from the hydroacoustic survey of Lake Pelham and Lake Moomaw, respectively. Overall, Lake Moomaw has relatively low sediment accumulation rates; however, the reservoir is vulnerable to increases in sediment fluxes with further human development due to the steep slopes and highly erodible colluvial soils that characterize the basin. Higher erosion and sediment accumulation rates in Lake Pelham are most likely reflecting the impact of human development on sedimentation processes, where the loss of vegetal buffers and increase in impervious surfaces exacerbates both the surficial soil losses as well as intrinsic stream sediment production leading to the current annual reservoir capacity loss of 0.4 %. PMID:25563837

  13. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  14. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  15. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  16. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.

    PubMed

    Myung, Jaewook; Kim, Minkyu; Pan, Ming; Criddle, Craig S; Tang, Sindy K Y

    2016-05-01

    Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase. PMID:26896714

  17. Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity with sites across the Tibetan Plateau on 50-100 year timescales

    NASA Astrophysics Data System (ADS)

    Kaspari, Susan; Hooke, Roger Leb.; Mayewski, Paul Andrew; Kang, Shichang; Hou, Shugui; Qin, Dahe

    Annual-layer thickness data, spanning AD 1534-2001, from an ice core from East Rongbuk Col on Qomolangma (Mount Everest, Himalaya) yield an age-depth profile that deviates systematically from a constant accumulation-rate analytical model. The profile clearly shows that the mean accumulation rate has changed every 50-100 years. A numerical model was developed to determine the magnitude of these multi-decadal-scale rates. The model was used to obtain a time series of annual accumulation. The mean annual accumulation rate decreased from ˜0.8 m ice equivalent in the 1500s to ˜0.3 m in the mid-1800s. From ˜1880 to ˜1970 the rate increased. However, it has decreased since ˜1970. Comparison with six other records from the Himalaya and the Tibetan Plateau shows that the changes in accumulation in East Rongbuk Col are broadly consistent with a regional pattern over much of the Plateau. This suggests that there may be an overarching mechanism controlling precipitation and mass balance over this area. However, a record from Dasuopu, only 125 km northwest of Qomolangma and 700 m higher than East Rongbuk Col, shows a maximum in accumulation during the 1800s, a time during which the East Rongbuk Col and Tibetan Plateau ice-core and tree-ring records show a minimum. This asynchroneity may be due to altitudinal or seasonal differences in monsoon versus westerly moisture sources or complex mountain meteorology.

  18. Synthesis of passive microwave and radar altimeter data for estimating accumulation rates of polar snow

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1993-01-01

    In this paper, we compare dry-snow extinction coefficients derived from radar altimeter data with brightness temperature data from passive microwave measurements over a portion of the East Antarctic plateau. The comparison between the extinction coefficients and the brightness temperatures shows a strong negative correlation, where the correlation coefficients ranged from -0.87 to -0.95. The extinction coefficient of the dry polar snow decreases with increasing surface elevation, while the average brightness temperature increases with surface elevation. Our analysis shows that the observed trends are related to geographic variations in scattering coefficient of snow, which in turn are controlled by variations in surface temperature and snow accumulation rate. By combining information present in the extinction coefficient and brightness temperature data sets, we develop a model that can be used to obtain quantitative estimates of the accumulation rate of dry polar snow.

  19. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates. PMID:25454561

  20. Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.

    2015-12-01

    Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.

  1. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  2. Understanding the rates of nonpolar organic chemical accumulation into passive samplers deployed in the environment: Guidance for passive sampler deployments.

    PubMed

    Apell, Jennifer N; Tcaciuc, A Patricia; Gschwend, Philip M

    2016-07-01

    Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC. PMID:26426907

  3. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise

    USGS Publications Warehouse

    Bacon, M.P.; Rosholt, J.N.

    1982-01-01

    Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33??41.2???N, 57??36.9???W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex 230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in ??g/cm2-1000 y, are: 4300 ?? 1100 for Mn, 46 ?? 16 for Ni and 76 ?? 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater. ?? 1982.

  4. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    SciTech Connect

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-11-20

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed /sup 134/Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of /sup 137/Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm/sup 2//yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm/sup 2//yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation.

  5. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  6. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nakatsubo, Takayuki; Uchida, Masaki; Sasaki, Akiko; Kondo, Miyuki; Yoshitake, Shinpei; Kanda, Hiroshi

    2015-06-01

    Moss tundra that accumulates a thick peat layer is one of the most important ecosystems in the High Arctic, Svalbard. The importance of this ecosystem for carbon sequestration was estimated from the apparent rates of carbon accumulation based on the 14C age and amount of peat in the active layer. The study site at Stuphallet, Brøgger Peninsula, northwestern Svalbard was covered with a thick peat layer dominated by moss species such as Calliergon richardsonii, Paludella squarrosa, Tomenthypnum nitens, and Warnstorfia exannulata. The average thickness of the active layer (brown moss and peat) was approximately 28 cm in 1 August 2011. The calibrated (cal) age of peat from the bottom of the active layer (20-30 cm below the peatland surface) ranged from 81 to 701 cal yr BP (median value of 2σ range). Based on the total carbon (4.5-9.2 kg C m-2), the apparent rate of carbon accumulation in the active layer was 9.0-19.2 (g C m-2 yr-1), which is similar to or greater than the net ecosystem production or net primary production reported for other vegetation types in this area. Our data suggest that moss tundra plays an important role in carbon sequestration in this area.

  7. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxmass accretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  8. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  9. Ice sheet mass loss caused by dust and black carbon accumulation

    NASA Astrophysics Data System (ADS)

    Goelles, T.; Bøggild, C. E.; Greve, R.

    2015-09-01

    Albedo is the dominant factor governing surface melt variability in the ablation area of ice sheets and glaciers. Aerosols such as mineral dust and black carbon (soot) accumulate on the ice surface and cause a darker surface and therefore a lower albedo. The darkening effect on the ice surface is currently not included in sea level projections, and the effect is unknown. We present a model framework which includes ice dynamics, aerosol transport, aerosol accumulation and the darkening effect on ice albedo and its consequences for surface melt. The model is applied to a simplified geometry resembling the conditions of the Greenland ice sheet, and it is forced by several temperature scenarios to quantify the darkening effect of aerosols on future mass loss. The effect of aerosols depends non-linearly on the temperature rise due to the feedback between aerosol accumulation and surface melt. According to our conceptual model, accounting for black carbon and dust in future projections of ice sheet changes until the year 3000 could induce an additional volume loss of 7 %. Since we have ignored some feedback processes, the impact might be even larger.

  10. LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates?

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2004-05-01

    Accumulation rates of terrestrial sediment have increased in the past few million years both on and adjacent to continents, although not everywhere. Apparently, erosion has increased in elevated terrain regardless of when last tectonically active or what the present-day climate. In many regions, sediment coarsened abruptly in late Pliocene time. Sparser data suggest increased sedimentation rates at 15 Ma, approximately when oxygen isotopes in benthic foraminifera imply high-latitude cooling. If climate change effected accelerated erosion, understanding how it did so remains the challenge. Some obvious candidates, such as lowered sea level leading to erosion of continental shelves or increased glaciation, account for increased sedimentation in some, but not all, areas. Perhaps stable climates that varied slowly allowed geomorphic processes to maintain a state of equilibrium with little erosion until 34 Ma, when large oscillations in climate with periods of 20,00040,000 years developed and denied the landscape the chance to reach equilibrium.

  11. [Dynamics simulation on plant growth, N accumulation and utilization of processing tomato at different N fertilization rates].

    PubMed

    Wang, Xin; Ma, Fu-Yu; Diao, Ming; Fan, Huam; Cui, Jing; Jia, Biao; He, Hai-Bing; Liu, Qi

    2014-04-01

    Three field experiments were conducted to simulate the dynamics of aboveground biomass, N accumulation and utilization of drip-irrigated processing tomatoes at different N fertilization rates (0, 75, 150, 300, 450, or 600 kg x hm(-2)). The results showed that Logistic models best described the changes in aboveground biomass, N accumulation, and utilization of accumulated N efficiency with the physiological development time (PDT). Rapid accumulation of N began about 4-6 d (PDT) earlier than the rapid accumulation of aboveground biomass. The momentary utilization rate of N (NMUR) increased after emergence, reached a single peak, and then decreased. The N accumulation, aboveground biomass and yield were highest in the 300 kg x hm(-2) treatment. The quadratic model indicated that application rate of 349 to 382 kg N x hm(-2) was optimum for drip-irrigated processing tomatoes in northern Xinjiang. PMID:25011297

  12. An integral method to estimate the moment accumulation rate on the Creeping Section of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Tong, Xiaopeng; Sandwell, David T.; Smith-Konter, Bridget

    2015-10-01

    Moment accumulation rate (also referred to as moment deficit rate) is a fundamental quantity for evaluating seismic hazard. The conventional approach for evaluating moment accumulation rate of creeping faults is to invert for the slip distribution from geodetic measurements, although even with perfect data these slip-rate inversions are non-unique. In this study, we show that the slip-rate versus depth inversion is not needed because moment accumulation rate can be estimated directly from surface geodetic data. We propose an integral approach that uses dense geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS) to constrain the moment accumulation rate. The moment accumulation rate is related to the integral of the product of the along-strike velocity and the distance from the fault. We demonstrate our methods by studying the Creeping Section of the San Andreas fault observed by GPS and radar interferometry onboard the ERS and ALOS satellites. Along-strike variation of the moment accumulation rate is derived in order to investigate the degree of partial locking of the Creeping Section. The central Creeping Segment has a moment accumulation rate of 0.25-3.1 × 1015 Nm yr-1 km-1. The upper and lower bounds of the moment accumulation rates are derived based on the statistics of the noise. Our best-fitting model indicates that the central portion of the Creeping Section is accumulating seismic moment at rates that are about 5 per cent to 23 per cent of the fully locked Carrizo segment that will eventually be released seismically. A cumulative moment budget calculation with the historical earthquake catalogue (M > 5.5) since 1857 shows that the net moment deficit at present is equivalent to a Mw 6.3 earthquake.

  13. Accumulation rates of biogenous silica and terrigenous detritus in late Miocene-early Pliocene Santa Maria basin, California

    SciTech Connect

    Ramiriz, P.C.

    1988-03-01

    The upper-Miocene-lower Pliocene laminated to massive diatomaceous strata of the Santa Maria basin encompass portions of the Monterey and overlying conformable to nonconformable Sisquoc Formations and record the continued accumulation of admixed siliceous (mostly diatoms) and terrigenous (silt and clay) components in a Neogene borderland basin. Lithologies, which vary from diatomite to diatomaceous mudstone, are the result of fluctuations in slope-accumulating silica and terrigenous debris. Bulk accumulation rates, as well as silica and terrigenous component accumulation rates, were calculated for four measured sections using accurate stratal thicknesses, absolute ages, rock compositions, and bulk densities. Bulk accumulation rates range from less than 20 to greater than 70 mg/cm/sup 2//year and are comparable to bulk accumulation rates in the present-day Santa Barbara basin and Gulf o f California. Silica accumulation rates (20-30 mg/cm/sup 2//year) suggest that sedimentation took place beneath productive waters and they exceed those encountered in other high-productivity oceanic areas, such as the Bering Sea and Peruvian coastal waters. Relatively high terrigenous accumulation rates (18-35 mg/cm/sup 2//year) reflect the dilution of these high-productivity waters by continentally derived detritus. Comparison of calculated accumulation rates with rates determined for similarly aged strata of the Santa Barbara basin reveals that silica and terrigenous debris were accumulating at higher rates within the Santa Maria basin. These differences are due to the complex interplay of tectonics and oceanographics and to the proximity of the basins relative to the strandline.

  14. Rapid Changes on Sediment Accumulation Rates within Submarine Canyons Caused By Bottom Trawling Activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Masque, P.; Martin, J.; Paradis, S.; Juan, X.; Toro, M.; Palanques, A.

    2014-12-01

    The physical disturbance of the marine sedimentary environments by commercial bottom trawling is a matter of concern. The direct physical effects of this fishing technique include scraping and ploughing of the seabed and increases of the near-bottom water turbidity by sediment resuspension. However, the quantification of the sediment that has been resuspended by this anthropogenic activity over years and has been ultimately exported across the margin remains largely unaddressed. The analysis of sediment accumulation rates from sediment cores collected along the axes of several submarine canyons in the Catalan margin (northwestern Mediterranean) has allowed to estimate the contribution of this anthropogenic activity to the present-day sediment dynamics. 210Pb chronologies, occasionally supported by 137Cs dating, indicate a rapid increase of sediment accumulation rates since the 1970s, in coincidence with a strong impulse in the industrialization of the trawling fleets of this region. Such increase has been associated to the enhanced delivery of sediment resuspended by trawlers from the shelves and upper slope regions towards the canyon's interior, and to the rapid technical development at that time, in terms of engine power and gear size. This change has been observed in La Fonera (or Palamós) Canyon at depths greater than 1700 m, while in other canyons it is restricted to shallower regions (~1000 m in depth) closer to fishing grounds. Two sampling sites from La Fonera and Foix submarine canyons that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied several years after the first chronological analyses. These two new cores reveal a second and more rapid increase of sediment accumulation rates in both canyons occurring circa 2002 and accounting for about 2 cm/y. This second change at the beginning of the XXI century has been attributed to a preferential displacement of the trawling fleet towards slope fishing grounds surrounding submarine

  15. Ages and Accumulation Rates of the Martian Polar Layered Deposits Estimated from Orbital Tuning

    NASA Astrophysics Data System (ADS)

    Sori, M.; Bailey, E. A.; Perron, J.; Huybers, P. J.; Aharonson, O.; Limaye, A.

    2013-12-01

    Layers of dusty water ice in the polar caps of Mars have been hypothesized to record climate changes driven by variation of the planet's orbit and spin axis, but the time interval over which the polar layered deposits (PLDs) formed is unknown, and an orbital influence has not been conclusively demonstrated. We performed orbital tuning of reconstructed PLD stratigraphic sequences in an attempt to constrain the accumulation interval and test for the presence of an orbital signal. Our procedure uses dynamic time warping (DTW) to search for a match between two time series - the polar insolation history and brightness or topographic information in the PLDs - and then assesses the significance of potential matches using a Monte Carlo procedure. We selected 30 images of the northern PLDs from the Mars Orbiter Camera (MOC) aboard the Mars Global Surveyor spacecraft and used Mars Orbiter Laser Altimeter profiles to transform each image into a record of image brightness as a function of vertical depth. To constrain the PLD age and accumulation rate, we tuned each image record to Martian insolation records for varying time intervals. If a particular insolation interval produced the strongest match to an image, and if the match became weaker as the image was tuned to progressively longer or shorter intervals, we chose the best-fitting interval as an estimated accumulation time for that PLD sequence, and used the depth range to estimate a corresponding PLD accumulation rate. We also tuned the insolation records to synthetic records containing no orbital influence to test whether the image matches were spurious. Of the 30 MOC images analyzed, 16 produce insolation intervals that we consider strong matches. These images yield an average deposition rate of 0.5 × 0.2 mm/yr for the northern PLDs. The images represent only a fraction of the entire stratigraphy; extrapolating that deposition rate farther back in time yields an age of ~4 Ma for the entire PLD sequence present in the

  16. Universal temperature and body-mass scaling of feeding rates

    PubMed Central

    Rall, Björn C.; Brose, Ulrich; Hartvig, Martin; Kalinkat, Gregor; Schwarzmüller, Florian; Vucic-Pestic, Olivera; Petchey, Owen L.

    2012-01-01

    Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure. PMID:23007080

  17. Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    NASA Technical Reports Server (NTRS)

    Anschuetz, H.; Sinisalo, A.; Isaksson, E.; McConnell, J. R.; Hamran, S.-E.; Bisiaux, M. M.; Pasteris, D.; Neumann, T. A.; Winther, J.-G.

    2011-01-01

    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

  18. Field studies using the oyster Crassostrea virginica to determine mercury accumulation and depuration rates

    SciTech Connect

    Palmer, S.J.; Presley, B.J.; Powell, E.N. ); Taylor, R.J. )

    1993-09-01

    Mercury as an environmental hazard, especially with regard to human health, has been of concern since the Minamata disaster. From 1966 to 1970 a chlor-alkali plant in Point Comfort, Texas released mercury-enriched wastewater (up to 29.9 kgHg/day) into Lavaca Bay (TWQB 1977). Since 1970 the Texas Department of Health (TDH) has periodically closed and then re-opened portions of Lavaca Bay to the harvesting of crabs and finfish based on their levels (<>0.5 ppm Hg wet weight) of mercury. A 1988 closure remains in effect as of this writing. Mercury contamination in Lavaca Bay organisms thus continues to be a problem 22 years after the chlor-alkali plant ceased releasing mercury into the bay. The goal of the following research was to better understand the behavior of mercury in Lavaca Bay. Oysters have been widely used as indicator species in metal pollution studies. Most such programs have focused on the concentrations of metals in oysters from different geographic areas. This study, however, investigated the rate and amount of mercury a [open quotes]clean[close quotes] oyster would accumulate when transplanted to a contaminated estuary and the rate of mercury depuration by contaminated oysters placed in a clean environment. The oysters were additionally analyzed for Ba, Cu, Fe, P, and Zn to test for the possible involvement of these metals in mercury accumulation and depuration. 17 refs., 3 figs., 2 tabs.

  19. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments.

    PubMed

    Adhikari, Puspa L; Maiti, Kanchan; Overton, Edward B; Rosenheim, Brad E; Marx, Brian D

    2016-05-01

    Sediment samples collected from shelf, slope and interior basin of the northern Gulf of Mexico during 2011-2013, 1-3 years after the Deepwater Horizon (DWH) oil spill, were utilized to characterize PAH pollution history, in this region. Results indicate that the concentrations of surface ΣPAH43 and their accumulation rates vary between 44 and 160 ng g(-1) and 6-55 ng cm(-2) y(-1), respectively. ΣPAH43 concentration profiles, accumulation rates and Δ(14)C values are significantly altered only for the sediments in the immediate vicinity of the DWH wellhead. This shows that the impact of DWH oil input on deep-sea sediments was generally limited to the area close to the spill site. Further, the PAHs source diagnostic analyses suggest a noticeable change in PAHs composition from higher to lower molecular weight dominance which reflects a change in source of PAHs in the past three years, back to the background composition. Results indicate low to moderate levels of PAH pollution in this region at present, which are unlikely to cause adverse effects on benthic communities. PMID:26895564

  20. [Heavy metal mass accumulation of urban surface dust in Shanghai City].

    PubMed

    Chang, Jing; Liu, Min; Li, Xian-hua; Yu, Jie; Lin, Xiao; Wang, Li-li; Gao, Lei

    2008-12-01

    This paper investigated heavy metal accumulative process of road dust on paved urban surfaces of Shanghai City in April, 2006. The data indicate that the surface dust load mean value for traffic area is 12.4 g/m and the range is 5.04-23.2 g/m; the mean value for the university area is 6.1 g/m with the range of 3.8-10.0 g/m. The research indicated that long duration and high intensity rainfall has the obvious reduction function to the dust particles load, but the light rain can enable it to increase. Land use and road traffic conditions are the important factors controlling "source-sink" effect of surface dust particulate emission. Dust load buildup occurs and the particles become coarser over the dry days. In high-traffic flow area, the dust displays "source effect" on atmospheric particulate with heavy metal concentration decreasing, while in low-traffic area, the dust displays "sink effect" on atmospheric particulate with heavy metal concentration increasing. The results also show that over the dry days, with S-type growth tendency, pollutant load depends on the couple-variation of dust load and pollutant concentrations. After the rainfall, the rate of accumulation of heavy metal load remain slow within 10 days, and during the following period of 5 days, pollution load increase rapidly. Then after 15 days, the load accumulation rate of heavy metal decrease due to the equilibrium of dust deposition and emission. PMID:19256389

  1. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  2. Mass flow rate measurement in abrasive jets using acoustic emission

    NASA Astrophysics Data System (ADS)

    Ivantsiv, V.; Spelt, J. K.; Papini, M.

    2009-09-01

    The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

  3. Bounding the rate of moment deficit accumulation along the Tohoku segment using GEONET GPS data

    NASA Astrophysics Data System (ADS)

    Segall, P.; Johnson, K. M.; Miyazaki, S.

    2011-12-01

    Geodetic estimates of strain accumulation compared to the rate of past moment release provide important input to earthquake hazard forecasts. Prior to the March 2011 Tohoku earthquake a number of studies investigated plate coupling along the Japan Trench in NE Japan using GEONET GPS data. Most of these assumed an elastic back-slip framework, and regularized the underdetermined inverse problem by minimizing some norm of the back-slip rate. All studies apparently smoothed to zero coupling at the trench and therefore infer the highest coupling just offshore. In contrast, we estimate rigorous bounds on the maximum and minimum permissible rates of moment deficit (MDR) accumulation, not a ``favored'' model according to some ad hoc regularization, using methods of Johnson et al [1994] and Murray and Segall [2002]. Given a domain of interest (the Tohoku rupture segment) and Green's functions G relating slip to data, we solve the following optimization problem for back-slip rate m: {minimize}\\ || G m - d ||22 \\ {subject to} \\ A m = M0 \\ \\ {and} \\ \\ 0 ≤ mi ≤ vplate, where A = [1,1, ... 1], such that A m yields the (normalized) moment-rate. on the model domain. Preliminary results find that || G m - d ||22 exhibits a broad minimum over a factor of 2 in MDR. For the minimum MDR the locked zone is just offshore, while the plate-boundary near the trench slips at the plate rate. At the maximum MDR the locked zone is much larger, including the entire fault near the trench. This clearly demonstrates that the shallow fault is completely in the null-space for onshore data, and that there is at least a factor of two uncertainty in MDR. We will present results employing a bootstrap procedure that is independent of an assumed error distribution in the GPS data. We also extend the method to include viscoelastic earthquake cycle effects, including time-dependence due both to past earthquakes and steady backslip. In these models, fault locking near the trench induces flow which

  4. Proposal for a novel method of precisely determining the atomic mass unit by the accumulation of ions

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    1991-10-01

    An experiment for direct measurement of the atomic mass unit is proposed. A mononuclidic ion flux is collected and accumulated to an amount that can be weighed with high accuracy. Simultaneously, the ion current is measured and integrated. By means of voltage and resistance references based on the Josephson and the quantum Hall effect, the mass is then related to atomic mass by frequency counting over a certain time interval. This experiment may enable a new, physical definition of the kilogram.

  5. Rapid electron capture dissociation of mass-selectively accumulated oligodeoxynucleotide dications

    NASA Astrophysics Data System (ADS)

    Schultz, Kristin N.; Håkansson, Kristina

    2004-05-01

    We have performed extended characterization of the fragmentation patterns of oligodeoxynucleotide dications following electron capture dissociation (ECD) utilizing improved instrumentation. Our current results from a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer equipped with mass-selective external ion accumulation and an indirectly heated dispenser cathode electron source demonstrate much richer fragmentation than from a previous 7 T instrument with a directly heated filament electron source. We propose the previous absence of backbone product ions from purine-containing oligonucleotides is a result of intramolecular hydrogen bonding, preventing product ions from separating. Similar behavior is observed at non-optimized ECD conditions with the current instrumentation. However, infrared laser heating of the resulting charge-reduced radical species results in extensive backbone fragmentation (different from infrared multiphoton dissociation) of the oligonucleotide dA6, demonstrating potential for ECD to characterize nucleic acid secondary structure. Under more optimized conditions, rich fragmentation, mostly in terms of w, (a/z-B), and (c/x-B) products, is observed for dA6, dC6, dG5, and d(GCATGC) following ECD only, allowing complete sequencing in several cases. The current ECD spectra contain some doubly charged products, indicating that populations of gas-phase oligodeoxynucleotide dications are zwitterionic.

  6. The Mass Accretion Rate of Galaxy Clusters: A Measurable Quantity

    NASA Astrophysics Data System (ADS)

    De Boni, C.; Serra, A. L.; Diaferio, A.; Giocoli, C.; Baldi, M.

    2016-02-01

    We explore the possibility of measuring the mass accretion rate (MAR) of galaxy clusters from their mass profiles beyond the virial radius R200. We derive the accretion rate from the mass of a spherical shell whose inner radius is 2R200, whose thickness changes with redshift, and whose infall velocity is assumed to be equal to the mean infall velocity of the spherical shells of dark matter halos extracted from N-body simulations. This approximation is rather crude in hierarchical clustering scenarios where both smooth accretion and aggregation of smaller dark matter halos contribute to the mass accretion of clusters. Nevertheless, in the redshift range z = [0, 2], our prescription returns an average MAR within 20%-40% of the average rate derived from the merger trees of dark matter halos extracted from N-body simulations. The MAR of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real universe. Since the measurement of the mass profile of clusters beyond their virial radius can be performed with the caustic technique applied to dense redshift surveys of the cluster outer regions, our result suggests that measuring the mean MAR of a sample of galaxy clusters is actually feasible. We thus provide a new potential observational test of the cosmological and structure formation models.

  7. Observation of Accumulated Metal Cation Distribution in Fish by Novel Stigmatic Imaging Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Aoki, Jun; Ikeda, Shinichiro; Toyoda, Michisato

    2014-02-01

    The accumulation of radioactive substances in biological organisms is a matter of great concern since the incident at the nuclear power plant in Fukushima, Japan. We have developed a novel technique for observing the distribution of accumulated metal cations in fish that employs a new imaging mass spectrometer, MULTUM-IMG2. Distributions of 133Cs and 88Sr in a sliced section of medaka (Oryzias latipes) are obtained with spatial resolution of µm-scale.

  8. Comparisons of 210Pb and pollen methods for determining rates of estuarine sediment accumulation

    USGS Publications Warehouse

    Brush, G.S.; Martin, E.A.; DeFries, R.S.; Rice, C.A.

    1982-01-01

    Comparisons of sedimentation rates obtained by 210Pb and pollen analyses of 1-m cores collected throughout the Potomac Estuary show good agreement in the majority of cores that can be analyzed by both methods. Most of the discrepancy between the methods can be explained by the analytical precision of the 210Pb method and by the exactness with which time horizons can be identified and dated for the pollen method. X-radiographs of the cores and the distinctness of the pollen horizons preclude significant displacement by reworking and/or mixing of sediments. Differences between the methods are greatest where uncertainties exist in assigning a rate by one or both methods (i.e., 210Pb trends and/or "possible" horizon assignments). Both methods show the same relative rates, with greater sediment accumulation more common in the upper and middle estuary and less toward the mouth. The results indicate that geochronologic studies of estuarine sediments should be preceded by careful observation of sedimentary structures, preferably by X-radiography, to evaluate the extent of mixing of the sediments. Time horizons, whether paleontologic or isotopic, are generally blurred where mixing has occurred, precluding precise identification. Whenever possible, two methods should be used for dating sediments because a rate, albeit erroneous, can be obtained isotopically in sediments that are mixed; accurate sedimentation rates are also difficult to determine where the time boundary is a zone rather than a horizon, where the historical record does not provide a precise date for the pollen horizon, or where scouring has removed some of the sediment above a dated pollen horizon. ?? 1982.

  9. The Role of Inflammation Resolution Speed in Airway Smooth Muscle Mass Accumulation in Asthma: Insight from a Theoretical Model

    PubMed Central

    Chernyavsky, Igor L.; Croisier, Huguette; Chapman, Lloyd A. C.; Kimpton, Laura S.; Hiorns, Jonathan E.; Brook, Bindi S.; Jensen, Oliver E.; Billington, Charlotte K.; Hall, Ian P.; Johnson, Simon R.

    2014-01-01

    Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models. PMID:24632688

  10. Speeding up Growth: Selection for Mass-Independent Maximal Metabolic Rate Alters Growth Rates.

    PubMed

    Downs, Cynthia J; Brown, Jessi L; Wone, Bernard W M; Donovan, Edward R; Hayes, Jack P

    2016-03-01

    Investigations into relationships between life-history traits, such as growth rate and energy metabolism, typically focus on basal metabolic rate (BMR). In contrast, investigators rarely examine maximal metabolic rate (MMR) as a relevant metric of energy metabolism, even though it indicates the maximal capacity to metabolize energy aerobically, and hence it might also be important in trade-offs. We studied the relationship between energy metabolism and growth in mice (Mus musculus domesticus Linnaeus) selected for high mass-independent metabolic rates. Selection for high mass-independent MMR increased maximal growth rate, increased body mass at 20 weeks of age, and generally altered growth patterns in both male and female mice. In contrast, there was little evidence that the correlated response in mass-adjusted BMR altered growth patterns. The relationship between mass-adjusted MMR and growth rate indicates that MMR is an important mediator of life histories. Studies investigating associations between energy metabolism and life histories should consider MMR because it is potentially as important in understanding life history as BMR. PMID:26913943

  11. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants. PMID:24590204

  12. Gravity, body mass and composition, and metabolic rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1984-01-01

    The scale effects of increased gravitational loading by chronic centrifugation on metabolic rate and body composition in metabolically mature mammals were investigated. Individual oxygen consumption rates in groups of 12 each, 8-month-old, hamster, rats, guinea pigs, and rabbits were measured at weekly intervals at 1.0 g, then 2.0 g for 6 weeks. Metabolic rate was increased significantly in all species, and stabilized after 2 weeks at 2.0 g. Statistical analysis of the data revealed that the larger the animal the greater was the increase in mass-specific metabolic rate, or metabolic intensity, over the 1.0 g value for the same animal, with the result that the interspecies allometric scaling relationship between metabolic rate and total body mass is different at 2.0 g compared 10 1.0 g. Analysis of covariance shows that the postioning constant at 2.0 g is increased by 17% at 2.0 g at the P .001 level, and the exponent is increased by 8% at the P = 0.008 level. Thus, the hypothesis that augmented gravitational loading should shift the allometric relationship between metabolic rate and body size by an increase in both parameters is supported.

  13. Sexual difference in polychlorinated biphenyl accumulation rates of walleye (Stizostedion vitreum)

    USGS Publications Warehouse

    Madenjian, Charles P.; Noguchi, George E.; Haas, Robert C.; Schrouder, Kathrin S.

    1998-01-01

    Adult male walleye (Stizostedion vitreum) exhibited significantly higher polychlorinated biphenyl (PCB) concentrations than similarly aged female walleye from Saginaw Bay (Lake Huron). To explain this difference, we tested the following three hypotheses: (i) females showed a considerably greater reduction in PCB concentration immediately following spawning than males, (ii) females grew at a faster rate and therefore exhibited lower PCB concentrations than males, and (iii) males spent more time in the Saginaw River system than females, and therefore received a greater exposure to PCBs. The first hypothesis was tested by comparing PCB concentration in gonadal tissue with whole-body concentration, the second hypothesis was tested via bioenergetics modeling, and we used mark-recapture data from the Saginaw Bay walleye fishery to address the third hypothesis. The only plausible explanation for the observed difference in PCB accumulation rate was that males spent substantially more time in the highly contaminated Saginaw River system than females, and therefore were exposed to greater environmental concentrations of PCBs. Based on the results of our study, we strongly recommend a stratified random sampling design for monitoring PCB concentration in Saginaw Bay walleye, with fixed numbers of females and males sampled each year.

  14. Constraints on the Recent Rate of Lunar Regolith Accumulation from Diviner Observations

    NASA Technical Reports Server (NTRS)

    Ghent, R. R.; Hayne, P. O.; Bandfield, J. L.; Campbell, B. A.; Carter, L. M.

    2012-01-01

    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances pre dicted to be covered by continuous ejecta. However, most of these sur faces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrar ed observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperat ures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highla nds), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth . Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differen ces in the thickness of accumulated regolith. However, away from youn g craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculat ed H values for young craters show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42, abstract 2437). This method could, in principle, be extended to other

  15. Target Selection Signals Influence Perceptual Decisions by Modulating the Onset and Rate of Evidence Accumulation.

    PubMed

    Loughnane, Gerard M; Newman, Daniel P; Bellgrove, Mark A; Lalor, Edmund C; Kelly, Simon P; O'Connell, Redmond G

    2016-02-22

    Computational and neurophysiological research has highlighted neural processes that accumulate sensory evidence for perceptual decisions [1]. These processes have been studied in the context of highly simplified perceptual discrimination paradigms in which the physical evidence appears at times and locations that are either entirely predictable or exogenously cued (e.g., by the onset of the stimulus itself). Yet, we are rarely afforded such certainty in everyday life. For example, when driving along a busy motorway, we must continually monitor the movements of surrounding vehicles for events that call for a lane change. In such scenarios, it is unknown which of the continuously present information sources will become relevant or when. Although it is well established that evidence integration provides an effective mechanism for countering the impact of noise [2], the question of how this mechanism is implemented in the face of uncertain evidence onsets has yet to be answered. Here, we show that when monitoring two potential sources of information for evidence occurring unpredictably in both time and space, the human brain employs discrete, early target selection signals that significantly modulate the onset and rate of neural evidence accumulation, and thereby the timing and accuracy of perceptual reports. These selection signals share many of the key characteristics of the N2pc component highlighted in the literature on visual search [3, 4] yet are present even in the absence of distractors and under situations of low temporal and spatial uncertainty. These data provide novel insights into how target selection supports decision making in uncertain environments. PMID:26853360

  16. SHAPING THE DUST MASS-STAR-FORMATION RATE RELATION

    SciTech Connect

    Hjorth, Jens; Gall, Christa; Michałowski, Michał J. E-mail: cgall@phys.au.dk

    2014-02-20

    There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of Sloan Digital Sky Survey galaxies, M {sub dust} ∝ SFR{sup 1.11}. Here we extend the M {sub dust}-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) a star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the M {sub dust}-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the M {sub dust}-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., ∼0.9) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original M {sub dust}-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.

  17. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  18. Mass gathering medicine: event factors predicting patient presentation rates.

    PubMed

    Locoh-Donou, Samuel; Yan, Guofen; Berry, Thomas; O'Connor, Robert; Sochor, Mark; Charlton, Nathan; Brady, William

    2016-08-01

    This study was conducted to identify the event characteristics of mass gatherings that predict patient presentation rates held in a southeastern US university community. We conducted a retrospective review of all event-based emergency medical services (EMS) records from mass gathering patient presentations over an approximate 23 month period, from October 24, 2009 to August 27, 2011. All patrons seen by EMS were included. Event characteristics included: crowd size, venue percentage filled seating, venue location (inside/outside), venue boundaries (bounded/unbounded), presence of free water (i.e., without cost), presence of alcohol, average heat index, presence of climate control (i.e., air conditioning), and event category (football, concerts, public exhibitions, non-football athletic events). We identified 79 mass gathering events, for a total of 670 patient presentations. The cumulative patron attendance was 917,307 persons. The patient presentation rate (PPR) for each event was calculated as the number of patient presentations per 10,000 patrons in attendance. Overdispersed Poisson regression was used to relate this rate to the event characteristics while controlling for crowd size. In univariate analyses, increased rates of patient presentations were strongly associated with outside venues [rate ratio (RR) = 3.002, p < 0.001], unbounded venues (RR = 2.839, p = 0.001), absence of free water (RR = 1.708, p = 0.036), absence of climate control (RR = 3.028, p < 0.001), and a higher heat index (RR = 1.211 per 10-unit heat index increase, p = 0.003). The presence of alcohol was not significantly associated with the PPR. Football events had the highest PPR, followed sequentially by public exhibitions, concerts, and non-football athletic events. In multivariate models, the strong predictors from the univariate analyses retained their predictive significance for the PPR, together with heat index and percent seating. In the setting of mass event

  19. Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland

    NASA Astrophysics Data System (ADS)

    Coggins, A. M.; Jennings, S. G.; Ebinghaus, R.

    The vertical distributions of three heavy metals: Hg, Pb and Cd were determined in 3 cores sampled from two ombrotrophic bogs in the west of Ireland, one at Knockroe Co. Mayo, and the second at Letterfrack National Park, Co. Galway. Core chronologies were established using 210Pb dating techniques and were checked with fallout radionuclides from weapons testing. Variations were found in metal concentrations and cumulative inventories of each of the metals within each site and between the two sites. Maximum accumulation rates of the anthropogenically derived elements Hg, Pb, and Cd, were found in peat sediments dated between 1950 and 1970s at both sites. Pb and Hg accumulation rates are slightly lower than those found in similar studies from remote sites in Europe. Hg accumulation rates are fairly similar to those found in peatlands in America. Unlike the Pb and Hg concentration profiles, the Cd concentration profiles at the Letterfrack site were dominated by a surface enrichment, thought to be due to biological cycling of Cd in the peat. However Cd accumulation rates calculated at the Knockroe site are lower than those observed in Eastern Europe. Local meteorological conditions at the sites chosen for this study may account for the lower concentrations profiles observed when compared with some of the European studies. The similarity between the timing of the increase in metal accumulation rates in peat bogs in Northern America and this study could indicate that long range transportation of trace metals from Northern America may be occurring. Lead accumulations in the surface peat sediments (1993-1996) were between 1.5-3.0 mg m -2 yr -1 and 4-5 mg m -2 yr -1 at Knockroe and Letterfrack, respectively. Mercury accumulation rates for the same period at Knockroe were found to be between 6-11 μg m -2 yr -1, and between 19-24 μg m -2 yr -1 at Letterfrack. A greater variation in surface Cd accumulation rates was observed at both sites, with surface layer accumulation

  20. Impacts of timber harvesting on historic sediment accumulation rates in the Coos Bay estuary, Oregon

    NASA Astrophysics Data System (ADS)

    Mathabane, N.; Roering, J. J.

    2014-12-01

    The expansion and development of human infrastructure along the coastline of the Pacific Northwest has profound consequences for the habitability and general ecological health of coastal ecosystems. Coos County, one of the most economically critical regions of the Oregon Coast, experienced vigorous timber harvest activity in the aftermath of WWII that declined in the last several decades. This period of extractive land use may have drastically altered the sediment supply in the major catchments of the Coos and Millicoma Rivers and lead to variations in sediment flux into the Coos Bay estuary. Accurate sediment flux histories are critical data for deciphering the relative importance of climate and land use factors such as logging and road construction on sediment production. Reduction of root reinforcement following timber harvest increases the likelihood of shallow landsliding and debris flows. In addition, forest roads increase sediment production due to overland flow and entrainment of fine sediments on hydrologically connected roads. Although these processes have been documented in small watersheds, their compounded effect on estuaries and coastal settings has not been well documented. We use Pb-210 activities derived from sediment cores taken at various locations in the Coos Bay estuary to establish temporal variations in sediment accumulation rates (SARs). Our cores will also be analyzed to assess dissolved oxygen and other proxies for ecosystem functioning. By correlating these SARs with quantitative metrics for timber extraction rate such as board feet per year and qualitative evaluations from historical photos, we propose to document the cumulative effect of historic forest practices. The temporal resolution provided by this technique should allow us to link changes in estuarine sedimentation to changes in land use as well as climatic triggers such as storms. The conclusions of this study will add valuable information regarding the ultimate impact of

  1. BIOACCUMULATION OF KEPONE BY SPOT ('LEIOSTOMUS XANTHURUS'): IMPORTANCE OF DIETARY ACCUMULATION AND INGESTION RATE

    EPA Science Inventory

    The relative extent of dietary accumulation and bioconcentration of Kepone by spot (Leiostomus xanthurus) was quantitatively evaluated at food rations of 4, 8, or 20% of the average wet weight of fish. 14C-Kepone was utilized to determine bioconcentration and dietary accumulation...

  2. Constraints on the recent rate of lunar regolith accumulation from Diviner observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Hayne, P. O.; Bandfield, J. L.; Campbell, B. A.; Carter, L. M.; Allen, C.; Paige, D. A.

    2012-12-01

    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances predicted to be covered by continuous ejecta. However, most of these surfaces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrared observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperatures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highlands), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth. Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differences in the thickness of accumulated regolith. However, away from young craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculated H values for young craters (Giordano Bruno, Moore F, Byrgius A, Necho, Tycho, Jackson, King, and Copernicus) show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42

  3. Binary accretion rates: dependence on temperature and mass ratio

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2015-09-01

    We perform a series of 2D smoothed particle hydrodynamics simulations of gas accretion on to binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios (q). We show that increasing the gas temperature increases the accretion rate on to the primary for all values of the binary mass ratio: for example, for q = 0.1 and a fixed binary separation, an increase of normalized sound speed by a factor of 5 (from our `cold' to `hot' simulations) changes the fraction of the accreted gas that flows on to the primary from 10 to ˜40 per cent. We present a simple parametrization for the average accretion rate of each binary component accurate to within a few per cent and argue that this parametrization (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of q during circumbinary disc accretion and argue that the period distribution of stellar `twin' binaries is strong evidence for the importance of circumbinary accretion. We also show that our parametrization of binary accretion increases the minimum mass ratio needed for spin alignment of supermassive black holes to q ˜ 0.4, with potentially important implications for the magnitude of velocity kicks acquired during black hole mergers.

  4. Corotation lag limit on mass-loss rate from Io

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Siscoe, G. L.

    1987-01-01

    Considering rapid escape of H2O from Io during an early hot evolutionary epoch, an H2O plasma torus is constructed by balancing dissociation and ionization products against centrifugally driven diffusion, including for the first time the effects of corotation lag resulting from mass loading. Two fundamental limits are found as the mass injection rate increases: (1) an 'ignition' limit of 1.1 x 10 to the 6th kg/s, beyond which the torus cannot ionize itself and photoionization dominates; and (2) the ultimate mass loading limit of 1.3 x 10 to the 7th kg/s, which occurs when neutrals newly created by charge exchange and recombination cannot leave the torus, thereby bringing magnetospherically driven transport to a halt. Connecting this limit with the variations of Io's temperature in its early evolution epoch gives an estimate of the upper limit on the total mass loss from Io, about 3.0 x 10 to the 20th kg (for high-opacity nebula) and about 8.9 x 10 to the 20th kg (for low-opacity nebula). These limits correspond to eroding 8 km and 22 km of H2O from the surface. It is concluded that compared to the other Galilean satellites, Io was created basically dry.

  5. Estimation of the mass outflow rates around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata

    We consider steady, advective, rotating, inviscid accretion disc around the spinning black holes to compute the mass outflow rate (R_{dot{m}}) defined as the ratio of mass flux of outflowing to the inflowing matter. Due to centrifugal barrier, accreting matter suffers discontinuous shock transition and because of shock compression, the post-shock matter becomes hot and denser than the pre-shock matter. We call the post-shock disc as Post Shock Corona (PSC). During accretion, a part of the inflowing matter deflects as bipolar outflows due to the presence of excess thermal gradient force at PSC. We find that R_{dot{m}}is directly correlated with the spin of the black hole (a_{k}) for the same set of inflow parameter, namely specific energy (E) and specific angular momentum (λ). We observe that the maximum outflow rate(R_{dot{m}}^{max}) weakly depends on spin (a_{k}) that lies in the range˜ 17% - 18% of the inflow rate.

  6. Does Rock Mass Strength Control the Rate of Alpine Cliff Erosion?

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Sanders, J. W.; Dietrich, W. E.; Glaser, S. D.

    2007-12-01

    Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and plays a controlling role in mass removal from these systems. In this work we investigate the influence of rock mass strength on the retreat rate of alpine rock slopes. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, which combines numerous factors that affect the strength of a rock mass, such as intact rock strength, joint frequency, joint condition, and more. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back onto the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing LGM glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated erosion rates for each site. Our study area included a portion of the Sierra Nevada from Yosemite National Park in the south to Lake Tahoe in the north. Rockwall recession rates determined for 40 alpine cliffs in this region varied from 0.02 to 1.22 mm/year, with an average value of 0.28 mm/year. We found good correlation between rockwall recession rate and SMR that is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlation between the measured rockwall retreat rate and environmental attributes (such as site elevation, aspect, cliff slope length

  7. A Stellar-mass-dependent Drop in Planet Occurrence Rates

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R ⊕) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ~10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.

  8. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    SciTech Connect

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.

  9. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  10. Observe Z sources at High Mass Accretion Rates

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2008-09-01

    We propose to test a new interpretation that links mass accretion rate to observed spectral changes in Z-sources in a diffwrent way than previously though. Integral part of the test is to catch Z-source on the horizontal branch (HB). There are a few sources where RXTE and previous observatories established a fairly accurate record of how often they appear on a specific spectral branch. 4 observations for 8 ks each has a 50% chance to observe GX 5-1 on the HB.

  11. ESTIMATING THE BREAKDOWN AND ACCUMULATION OF EMERGENT MACROPHYTE LITTER: A MASS-BALANCE APPROACH

    EPA Science Inventory

    Litter accumulation within emergent macrophyte marshes may significantly influence abiotic conditions and biota but litter is rarely considered in emergent macrophyte studies. Litter is defined here as the standing and fallen dead plant material that can be collected using harv...

  12. Mass-loss Rates for Very Massive Stars Up to 300 Solar Masses

    NASA Astrophysics Data System (ADS)

    Vink, J. S.

    2011-06-01

    One of the key questions in Astrophysics concerns the issue of whether there exists an upper mass limit to stars and if so, what physical mechanism determines this upper limit. Here we present the latest mass-loss predictions for the most massive stars in our Universe - in the mass range up to 300 solar masses - using a novel hydrodynamic method that includes the important effects of multiple photons interactions, allowing us to predict the rate of mass loss and the wind terminal velocity simultaneously. Our model stars have a high Eddington factor (Γ) and we find an upturn in the mass-loss versus Γ dependence, where the model winds become optically thick. This is also the point where our wind efficiency numbers - defined as the wind momentum over the photon momentum - surpass the single-scattering limit (of η = 1), reaching wind efficiency numbers up to η ≃ 2.5. Our modelling indicates a natural transition from common O-type stars to Wolf-Rayet characteristics when the wind becomes optically thick. This "transitional" behaviour is also reflected in the wind acceleration parameter β, which naturally reaches values as high as 1.5-2, as well as in the spectral morphology of the He II line at 4686Å - characteristic for Of and late WN stars. In Wolf-Rayet galaxy research, the feature is sometimes referred to as "the blue bump".

  13. Off-river waterbodies on tidal rivers: Human impact on rates of infilling and the accumulation of pollutants

    NASA Astrophysics Data System (ADS)

    Woodruff, Jonathan D.; Martini, Anna P.; Elzidani, Emhmed Z. H.; Naughton, Thomas J.; Kekacs, Daniel J.; MacDonald, Daniel G.

    2013-02-01

    Cut-off meanders, backwater ponds, and blocked valley coves are all common features along the tidal reaches of lowland rivers. While significant progress has been made to understand sediment dynamics in similar off-river environments above the head of tides, less is known about the processes driving transport and sedimentation within these systems when tidally influenced. To provide insight we combine sedimentological observations with flux analyses for a series of tidal off-river waterbodies along the Lower Connecticut River spanning the river's entire 100 km tidal reach. Sedimentation rates exhibit a clear seaward increase with growing tidal influence, and are an order of magnitude higher than accumulation rates obtained previously from neighboring marsh and subtidal environments. A simplified mass balance can relate time-series measurements of water level and suspended sediment concentration to observed trends in sedimentation, and support flood-dominated asymmetry in tidal sediment flux (i.e. tidal pumping) as the primary mechanism for enhanced trapping. Relatively steady rates of deposition are observed in off-river waterbodies over the last century, with little evidence of deposition dominated by extreme events. Suspended sediment concentrations rise significantly in the main tidal river with increasing river discharge, while tidal range is damped with rising freshwater flow. The net result is an optimal freshwater discharge for maximizing the tidal pumping of sediment from the main river into tidal off-river waterbodies, with more routine discharge events largely responsible for driving long-term trends in deposition. A sudden shift in lithology towards more inorganic, fluvial derived sediment is commonly observed towards the end of the 19th century, along with over an order of magnitude increase in the rate of deposition. The timing of the onset of rapid infilling occurs contemporaneous with the documented creation and/or deepening of tidal tie

  14. Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes.

    PubMed

    Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell

    2007-04-01

    Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total. PMID:17217968

  15. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  16. On determining ice accumulation rates in the past 40,000 years using in situ cosmogenic C-14

    NASA Technical Reports Server (NTRS)

    Lal, D.; Jull, A. J. T.

    1990-01-01

    Radiocarbon is produced in situ in ice by nuclear spallations of oxygen by cosmic ray neutrons. As the firn accumulates, it acquires a predictable concentration of in situ C-14, inversely proportional to the rate of accumulation. Most of this production occurs when the amount of overlying ice is less than (2-3) Lambda, where lambda is the absorption mean free path for cosmic radiation in ice, about 150 g/sq cm, i.e. within the top 10 m. In most accumulation areas, this is firn. In situ produced C-14 is added to the firn as it accumulates, and is not expected to be lost by diffusion. During the firn-ice transition, atmospheric CO2 is trapped, adding (C-14)02 to the ice. The signature of in situ C-14 is however not obliterated since about 60 percent of in situ C-14 is instantly oxidized to (C-14)O in the ice. The results available to date are discussed, and it is proposed that this in situ (C-14)O can be used to determine ice accumulation rates back to 40,000 yrs in the past.

  17. Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.

    USGS Publications Warehouse

    Drexler, Judith; Fuller, Christopher C.; Orlando, James; Moore, Peggy E.

    2016-01-01

    Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.

  18. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be

  19. ACCUMULATION RATE OF MICROBIAL BIOMASS AT TWO PERMEABLE REACTIVE BARRIER SITES

    EPA Science Inventory

    Accumulation of mineral precipitates and microbial biomass are key factors that impact the long-term performance of in-situ Permeable Reactive Barriers for treating contaminated groundwater. Both processes can impact remedial performance by decreasing zero-valent iron reactivity...

  20. Laboratory Determination of Molybdenum Accumulation Rates as a Measure of Hypoxic Conditions

    EPA Science Inventory

    Redox sensitive metals, such as molybdenum (Mo), are enriched in reducing sediments due to authigenic fixation in anoxic interstitial waters of sediments. This study tested whether the process of fixation and accumulation of Mo in sediments could provide a geochemical indicator o...

  1. Gravity, Body Mass and Composition, and Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1985-01-01

    Metabolic rate and body composition as a function of sex and age were defined in 5 species of common laboratory mammals, the mouse, hamster, rat, guinea pig and rabbit. Oxygen consumption and carbon dioxide production rates were measured individually in 6 male and 6 female animals for each of 8 age cohorts ranging from 1 month to 2 years, and for each of the species. From the results it is evident that among these small mammals there is no indication of scaling of muscularity to body size, despite the 100-fold difference in body mass represented by the skeletal musculature seems to reach a pronounced peak value at age 2 to 3 months and then declines, the fraction of the fat-free body represented by other body components in older animals must increase complementarily. Under normal gravity conditions muscularity in small laboratory mammals displays large, systematic variation as a function both of species and age. This variation must be considered when such animals are subjects of experiments to study the effects of altered gravitational loading on the skeletal musculature of the mammal.

  2. A novel method of determining accumulation rates during the last glacial period at Berkner Island, West Antarctica

    NASA Astrophysics Data System (ADS)

    Massam, Ashleigh; Sneed, Sharon; Mulvaney, Robert; Mayewski, Paul; Whitehouse, Pippa

    2015-04-01

    Current standard laboratory methods offer a relatively coarse resolution for trace element analysis of deep ice cores (around 10mm). Sub-annual measurements, which reveal a seasonal profile of ions trapped within the ice matrix of a core, are principally reserved for the upper depths of ice cores where compaction due to vertical strain has not reduced the annual layer thickness to values smaller than the typical sampling resolution. Recent improvements in the resolution of direct elemental analysis were demonstrated during a pilot experiment undertaken at the WM Keck Laser Ice Facility using a prototype Sayre CellTM combined with a laser ablation inductively-coupled plasma mass spectrometer (LA ICP-MS), which was used to carry out ultra-high resolution trace element analysis of ice. As part of this study, this technique was used to obtain a sub-annual view of the onset of the current interglacial period, at circa 11.6 ka BP, as recorded in the Greenland Ice Sheet Project II (GISP2) ice core. Results demonstrated the viability of this method as a technique to extract ultra-high resolution, sub-annual signals of multiple trace elements along an ice core with minimal damage. We have extended the remit of these studies by undertaking ultra-high resolution analysis of ice originally deposited during the Holocene and the last glacial period at the low-accumulation site at Berkner Island, in the Weddell Sea, Antarctica. Sections of ice, taken from two depths (494-498m; 694-696m) from the Berkner Island ice core, were analysed in order to assess the viability of the LA ICP-MS method on ice from a low-accumulation site. A full climate profile has been obtained at sub-annual view for both Holocene and glacial conditions, where layer thickness is estimated to be ~5mm and hence beyond the current limit of standard chemical analysis. One potential outcome of this development in direct elemental analysis is the ability to directly determine layer thicknesses at greater depths

  3. Chloride-Mass-Balance: Cautions in Predicting Increased Recharge Rates

    SciTech Connect

    Gee, Glendon W.; Zhang, Z. F.; Tyler , S. W.; Albright , W. H.; Singleton , M. J.

    2005-02-01

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6 m deep lysimeter at a simulated waste-burial ground, located on the Department of Energy’s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20% of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  4. T1 Relaxation Rate (R1) Indicates Nonlinear Mn Accumulation in Brain Tissue of Welders With Low-Level Exposure.

    PubMed

    Lee, Eun-Young; Flynn, Michael R; Du, Guangwei; Lewis, Mechelle M; Fry, Rebecca; Herring, Amy H; Van Buren, Eric; Van Buren, Scott; Smeester, Lisa; Kong, Lan; Yang, Qing; Mailman, Richard B; Huang, Xuemei

    2015-08-01

    Although the essential element manganese (Mn) is neurotoxic at high doses, the effects of lower exposure are unclear. MRI T1-weighted (TIW) imaging has been used to estimate brain Mn exposure via the pallidal index (PI), defined as the T1W intensity ratio in the globus pallidus (GP) versus frontal white matter (FWM). PI may not, however, be sensitive to Mn in GP because Mn also may accumulate in FWM. This study explored: (1) whether T1 relaxation rate (R1) could quantify brain Mn accumulation more sensitively; and (2) the dose-response relationship between estimated Mn exposure and T1 relaxation rate (R1). Thirty-five active welders and 30 controls were studied. Occupational questionnaires were used to estimate hours welding in the past 90 days (HrsW) and lifetime measures of Mn exposure. T1W imaging and T1-measurement were utilized to generate PI and R1 values in brain regions of interest (ROIs). PI did not show a significant association with any measure of Mn and/or welding-related exposure. Conversely, in several ROIs, R1 showed a nonlinear relationship to HrsW, with R1 signal increasing only after a critical exposure was reached. The GP had the greatest rate of Mn accumulation. Welders with higher exposure showed significantly higher R1 compared either with controls or with welders with lower exposure. Our data are additional evidence that Mn accumulation can be assessed more sensitively by R1 than by PI. Moreover, the nonlinear relationship between welding exposure and Mn brain accumulation should be considered in future studies and policies. PMID:25953701

  5. T1 Relaxation Rate (R1) Indicates Nonlinear Mn Accumulation in Brain Tissue of Welders With Low-Level Exposure

    PubMed Central

    Lee, Eun-Young; Flynn, Michael R.; Du, Guangwei; Lewis, Mechelle M.; Fry, Rebecca; Herring, Amy H.; Van Buren, Eric; Van Buren, Scott; Smeester, Lisa; Kong, Lan; Yang, Qing; Mailman, Richard B.; Huang, Xuemei

    2015-01-01

    Although the essential element manganese (Mn) is neurotoxic at high doses, the effects of lower exposure are unclear. MRI T1-weighted (TIW) imaging has been used to estimate brain Mn exposure via the pallidal index (PI), defined as the T1W intensity ratio in the globus pallidus (GP) versus frontal white matter (FWM). PI may not, however, be sensitive to Mn in GP because Mn also may accumulate in FWM. This study explored: (1) whether T1 relaxation rate (R1) could quantify brain Mn accumulation more sensitively; and (2) the dose-response relationship between estimated Mn exposure and T1 relaxation rate (R1). Thirty-five active welders and 30 controls were studied. Occupational questionnaires were used to estimate hours welding in the past 90 days (HrsW) and lifetime measures of Mn exposure. T1W imaging and T1-measurement were utilized to generate PI and R1 values in brain regions of interest (ROIs). PI did not show a significant association with any measure of Mn and/or welding-related exposure. Conversely, in several ROIs, R1 showed a nonlinear relationship to HrsW, with R1 signal increasing only after a critical exposure was reached. The GP had the greatest rate of Mn accumulation. Welders with higher exposure showed significantly higher R1 compared either with controls or with welders with lower exposure. Our data are additional evidence that Mn accumulation can be assessed more sensitively by R1 than by PI. Moreover, the nonlinear relationship between welding exposure and Mn brain accumulation should be considered in future studies and policies. PMID:25953701

  6. DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses

    NASA Astrophysics Data System (ADS)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2015-10-01

    Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.

  7. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  8. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent "Pimonidazole" in Hypoxia.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Feng, Fei; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Kuge, Yuji

    2016-01-01

    Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH. PMID:27580239

  9. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal

  10. Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2013-10-01

    Spores of coprophilous fungi, and in particular those of Sporormiella, are a routinely used proxy for detecting late Quaternary herbivore extinction events in sedimentary records. Spore abundance is typically quantified as a percentage of the total, or dryland, pollen sum. Although this is a quick method that does not require the development of site-specific age-depth models, it relies on stable pollen accumulation rates and is therefore highly sensitive to changes in vegetation. This may lead to incorrect placement of extinction events in sedimentary records, particularly when they occur contemporaneously with major climatic/vegetation transitions. We suggest that the preferred method of quantification should be accumulation rate, and that pollen abundance data should also be presented, particularly for periods of major vegetation change. This approach provides a more reliable record of past herbivore abundance independent of vegetation change, allowing extinction events to be more accurately placed in stratigraphic sequences.

  11. On the Effect of Ramp Rate in Damage Accumulation of the CPV Die-Attach: Preprint

    SciTech Connect

    Bosco, N. S.; Silverman, T. J.; Kurtz, S. R.

    2012-06-01

    It is commonly understood that thermal cycling at high temperature ramp rates may activate unrepresentative failure mechanisms. Increasing the temperature ramp rate of thermal cycling, however, could dramatically reduce the test time required to achieve an equivalent amount of thermal fatigue damage, thereby reducing overall test time. Therefore, the effect of temperature ramp rate on physical damage in the CPV die-attach is investigated. Finite Element Model (FEM) simulations of thermal fatigue and thermal cycling experiments are made to determine if the amount of damage calculated results in a corresponding amount of physical damage measured to the die-attach for a variety of fast temperature ramp rates. Preliminary experimental results are in good agreement with simulations and reinforce the potential of increasing temperature ramp rates. Characterization of the microstructure and resulting fatigue crack in the die-attach suggest a similar failure mechanism across all ramp rates tested.

  12. Soil weathering and accumulation rates of oxalate-extractable phases derived from alpine chronosequences of up to 1 Ma in age

    NASA Astrophysics Data System (ADS)

    Dahms, Dennis; Favilli, Filippo; Krebs, Rolf; Egli, Markus

    2012-05-01

    In this study we compare newly-developed chemical weathering data with previously published data from soils developed along two chronosequences of glacial deposits in the European Alps and the Rocky Mountains (Wind River Range, USA). By combining these chronosequences, we are able to present a comprehensive dataset that represents a time period of > 1 Ma. We describe weathering trends of important elements using a number of weathering indices (e.g., K + Ca/Ti ratio, the weathering 'index B' of Kronberg and Nesbitt (1981) and the open mass transport function). Further, we describe the accumulation of Al, Fe, Si and Mn oxyhydroxides (including partially organic phases) as a function of time, and derive the corresponding accumulation rates. We calculated pedogenetically formed oxyhydroxides using an approach based on immobile elements. Our study represents one of only a few studies that describe rates of soil chemical weathering over a period as long as ~ 1 Ma. Results show that rates of chemical weathering clearly decrease along the chronosequences with increasing age of the soils. We find weathering rates are nearly four orders of magnitude lower in the 1 Ma-old soils than in the young soils. Our results suggest that the older soils may be reaching a steady state for these chemical properties in their present environments. A power function best explains the measured time-trends of the 'index B' and (K + Ca)/Ti) ratios in the soils. The best time-trend model for pedogenic weakly- to poorly crystalline phases and the relative losses/gains (based on the open-system mass transport function) were obtained with an exponential decay model function. In terms of the soil system, the decreases in the accumulation rate of the oxyhydroxides appears to be influenced not only by the factor of time but by climate as well (increased precipitation at higher altitudes slows the decrease in weathering rate over time). Thus, our ~ 1 Ma chronosequences also become pedogenic gradients

  13. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  14. Slip rate of the Calico fault: Implications for anomalous geodetic strain accumulation across the Eastern California shear zone

    NASA Astrophysics Data System (ADS)

    Oskin, M.; Perg, L.; Blumentritt, D.; Mukhopadhyay, S.; Iriondo, A.

    2004-12-01

    Recent earthquake activity and high geodetically derived fault-slip rates across the Eastern California shear zone motivate comparisons with long-term geologic deformation rates to test for transient strain accumulation. We report new geologic slip-rate results from a transect at 34.8° N across the central Mojave Desert where six dextral faults (Helendale, Lenwood, Camp Rock, Calico, Pisgah-Bullion, and Ludlow) accommodate all late Quaternary right-lateral displacement. High-resolution LIDAR topography data have been successfully acquired across all six faults as part of a project to measure a complete budget of long-term geologic fault slip rates. Field investigations of the northern Rodman Mountains conducted with the aid of the new topography data identified several surfaces dextrally offset by the Calico fault. A preliminary slip rate of 1.3±0.3 mm/yr is calculated from an 800± 200 m offset of alluvial fan deposits containing clasts of the ca. 600 ka Pipkin basalt flow. Cosmogenic surface exposure age dating of offset geomorphic surfaces and refined Ar/Ar dating of the basalt flow, in progress, will provide multiple constraints of this fault slip rate. The slip rate of the Calico fault is more than twice that of the Blackwater fault, located on strike with the Calico fault in the northwest Mojave Desert. This discrepancy supports that strain is transferred away from the Calico fault and other adjacent northwest-striking dextral faults onto domino-style rotating blocks bounded by sinistral faults in the Fort Irwin region. A newly identified active thrust fault and fault-related fold bounding the northern Rodman mountains accommodates shortening east of the Calico fault that may be caused by space problems at the intersection of these conjugate fault systems. Overall, slip rate on the Calico fault, together with existing paleoseismic histories on adjacent faults, does not account for more than 5 mm/yr of strain accumulation across the Eastern California shear

  15. Processes and Rates of Sediment and Wood Accumulation in Headwater Streams of the Oregon Coast Range, U.S.A.

    NASA Astrophysics Data System (ADS)

    May, C. L.; Gresswell, R. E.

    2001-12-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow in unlogged basins in the central Oregon Coast Range. Changes in sediment and wood storage were quantified for 13 streams that ranged from 4 to 135 years post-disturbance. The volume of wood in the channel was strongly correlated with the time since the previous debris flow, and the accumulation rate was linear. The pattern of sediment accumulation was non-linear and appeared to increase as the storage capacity of the channel increased through time. Wood recruited from the local hillslopes and riparian areas functioned to store the majority sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for a longer period of time. With an adequate supply of wood, low-order channels have the potential for storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  16. Comparison of annual accumulation rates derived from in situ and ground penetrating radar methods across Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Gusmeroli, A.; Oneel, S.; Sass, L. C.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2013-12-01

    Constraining annual snowfall accumulation in mountain glacier environments is essential for determining the annual mass balance of individual glaciers and predicting seasonal meltwater runoff to river and marine ecosystems. However, large spatial and elevation gradients, coupled with sparse point measurements preclude accurate quantification of this variable using traditional methods. Here, we report on an extensive field campaign conducted in March-May 2013 on key benchmark glaciers in Alaska, including Taku Glacier near Juneau, Scott Glacier near Cordova, both Eklutna and Wolverine Glacier near Anchorage and Gulkana Glacier in the interior Alaska Range. Over 50 km of 500 MHz common-offset ground penetrating radar (GPR) surveys were collected on each glacier, with an emphasis on capturing spatial variability in the accumulation zone. Frequent in situ observations were collected for comparison with the GPR, including probe depths, snow pits and shallow firn cores (~8 m). We report on spatial and elevation gradients across this suite of glaciers and across numerous climatic zones and discuss differences between GPR and in situ derived annual accumulation estimates. This comparison is an essential first step in order to effectively evaluate regional atmospheric re-analysis products.

  17. Spatial and temporal variability of snow chemical composition and accumulation rate at Talos Dome site (East Antarctica).

    PubMed

    Caiazzo, Laura; Becagli, Silvia; Frosini, Daniele; Giardi, Fabio; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-15

    Five snow pits and five firn cores were sampled during the 2003-2004 Italian Antarctic Campaign at Talos Dome (East Antarctica), where a deep ice core (TALDICE, TALos Dome Ice CorE, 1650m depth) was drilled in 2005-2008 and analyzed for ionic content. Particular attention is spent in applying decontamination procedures to the firn cores, as core sections were stored for approximately 10years before analysis. By considering the snow pit samples to be unperturbed, the comparison with firn core samples from the same location shows that ammonium, nitrate and MSA are affected by storage post-depositional losses. All the other measured ions are confirmed to be irreversibly deposited in the snow layer. The removal of the most external layers (few centimeters) from the firn core sections is proved to be an effective decontamination procedure. High-resolution profiles of seasonal markers (nitrate, sulfate and MSA) allow a reliable stratigraphic dating and a seasonal characterization of the samples. The calculated mean accumulation-rate values range from 70 to 85mmw.e.year(-1), in the period 2003-1973 with small differences between two sectors: 70-74mmw.e.year(-1) in the NNE sector (spanning 2003-1996years) and 81-92mmw.e.year(-1) in the SSW sector (spanning 2003-1980years). This evidence is interpreted as a coupled effect of wind-driven redistribution processes in accumulation/ablation areas. Statistical treatment applied to the concentration values of the snow pits and firn cores samples collected in different points reveals a larger temporal variability than spatial one both in terms of concentration of chemical markers and annual accumulation. The low spatial variability of the accumulation rate and chemical composition measured in the five sites demonstrates that the TALDICE ice core paleo-environmental and paleo-climatic stratigraphies can be considered as reliably representative for the Talos Dome area. PMID:26849319

  18. End-of-life nickel-cadmium accumulators: characterization of electrode materials and industrial Black Mass.

    PubMed

    Hazotte, Claire; Leclerc, Nathalie; Diliberto, Sébastien; Meux, Eric; Lapicque, Francois

    2015-01-01

    The aim of this paper is the characterization of spent NiCd batteries and the characterization of an industrial Black Mass obtained after crushing spent NiCd batteries and physical separation in a treatment plant. The characterization was first performed with five cylindrical NiCd batteries which were manually dismantled. Their characterization includes mass balance of the components, active powders elemental analysis and phase identification by X-ray powder diffraction. Chemical speciation of the two metals was also investigated. For cadmium, speciation was previously developed on solid synthetic samples. In a spent battery, the active powders correspond to about 43% of the battery weight. The other components are the separator and polymeric pieces (5%), the support plates (25%) and the carbon steel external case (27%). The sequential procedure shows that the nickel in the positive powders from the dismantled Ni-Cd batteries is distributed between Ni0 (39.7%), Ni(OH)2 (58.5%) and NiOOH (1.8%). Cadmium in the negative powder is about 99.9% as the Cd(OH)2 form with 0.1% of metal cadmium. In the industrial Black Mass, the distribution of cadmium is the same, whereas the distribution of nickel is Ni0 (46.9%), Ni(OH)2 (43.2%) and NiOOH (9.9%). This material contains also 1.8% cobalt and approx. 1% iron. PMID:25192032

  19. Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance

    NASA Technical Reports Server (NTRS)

    Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; Neumann, T.; Albert, M.; Winther, J.-G.

    2012-01-01

    Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.

  20. A closer look at the Neogene erosion and accumulation rate increase

    NASA Astrophysics Data System (ADS)

    Willenbring, J.; von Blanckenburg, F.

    2008-12-01

    Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.

  1. Sediment accumulation rates in Conowingo Reservoir as determined by man-made and natural radionuclides

    SciTech Connect

    McLean, R.I.; Domotor, S.L. ); Summers, J.K.; Wilson, H. ); Olsen, C.R.; Larsen, I.L. )

    1991-05-01

    The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-210 were used to estimate rates of sediment accretion in the Conowingo Reservoir,an impoundmment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr{sup {minus}1} downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr{sup {minus}1} at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load retained by the reservoir is estimated to be 0.4 {times} 10{sup 6} to 1.5 {times} 10{sup 6} metric tons yr{sup {minus}1}. The retained sediment load represents about 8-23% of the long-time average sediment input to the reservoir.

  2. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass...

  3. Seasonal variation of meteorological variables and recent surface ablation / accumulation rates on Davies Dome and Whisky Glacier, James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Láska, K.; Nývlt, D.; Engel, Z.; Budík, L.

    2012-04-01

    In this study, surface mass balance data of two glaciers on James Ross Island, Antarctica, and its spatial and temporal variations are evaluated using snow ablation stakes, ground-penetrating radar, and dGPS measurements. The investigated glaciers are located on the Ulu Peninsula, northern part of James Ross Island. Davies Dome is an ice dome, which originates on the surface of a flat volcanic mesa at elevations >400 m a.s.l. and terminates with a single 700 m wide outlet in the Whisky Bay. Davies Dome has an area of ~6.5 km2 and lies in the altitude range of 0-514 m a.s.l. Whisky Glacier is a cold-based land-terminating valley glacier surrounded by an extensive moraine ridges made of debris-covered ice. The glacier has an area of ~2.4 km2 and lies in the altitude range of 215-520 m a.s.l. Within several summer austral summers, extensive field programme were carried out on both glaciers including the operation of two automatic weather stations, field mapping and mass balance measurements. Each station was equipped with albedometer CM7B (Kipp-Zonen, Netherlands), air temperature and humidity sensor EMS33 (EMS, Czech Republic), propeller anemometer 05103 (Young, USA), and snow depth sensors (Judd, USA). In the period 2009-2011, high seasonal and interdiurnal variability of incoming solar radiation and near-surface air temperature was found as a result of changes in the circulation patterns and synoptic-scale weather systems moving in the Circumpolar Trough. High ablation and accumulation rates were recorded mainly in the spring and summer seasons (October-February), while negligible changes were found in winter (May-September). The effects of positive degree-day temperatures on the surface ablation rates were examined using a linear regression model. In this approach, near-surface air temperature maps on the glacier surfaces were derived from digital elevation model according to actual temperature lapse rates. Mass balance investigations started in 2006 on Davies

  4. Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.

    2014-05-01

    The mass concentration, chemical composition and sources of quasi-ultrafine (quasi-UFP, PM0.25), accumulation (PM0.25-2.5) and coarse mode (PM2.5-10) particles were determined in indoor and outdoor air at 39 schools in Barcelona (Spain). Quasi-UFP mass concentrations measured (25.6 μg m-3 outdoors, 23.4 μg m-3 indoors) are significantly higher than those reported in other studies, and characterised by higher carbonaceous and mineral matter contents and a lower proportion of secondary inorganic ions. Results suggest that quasi-UFPs in Barcelona are affected by local sources in the schools, mainly human activity (e.g. organic material from textiles, etc., contributing 23-46% to total quasi-UFP mass) and playgrounds (in the form of mineral matter, contributing about 9% to the quasi-UFP mass). The particle size distribution patterns of toxicologically relevant metals and major aerosol components was characterised, displaying two modes for most elements and components, and one mode for inorganic salts (ammonium nitrate and sulfate) and elemental carbon (EC). Regarding metals, Ni and Cr were partitioned mainly in quasi-UFPs and could thus be of interest for epidemiological studies, given their high redox properties. Exposure of children to quasi-UFP mass and chemical species was assessed by comparing the concentrations measured at urban background and traffic areas schools. Finally, three main indoor sources across all size fractions were identified by assessing indoor / outdoor ratios (I / O) of PM species used as their tracers: human activity (organic material), cleaning products, paints and plastics (Cl- source), and a metallic mixed source (comprising combinations of Cu, Zn, Co, Cd, Pb, As, V and Cr). Our results support the need to enforce targeted legislation to determine a minimum "safe" distance between major roads and newly built schools to reduce exposure to traffic-derived metals in quasi-UFPs.

  5. Influence of mileage accumulation on the particle mass and number emissions of two gasoline direct injection vehicles.

    PubMed

    Maricq, M Matti; Szente, Joseph J; Adams, Jack; Tennison, Paul; Rumpsa, Todd

    2013-10-15

    Gasoline direct injection (GDI) is a new engine technology intended to improve fuel economy and greenhouse gas emissions as required by recently enacted legislative and environmental regulations. The development of this technology must also ensure that these vehicles meet new LEV III and Tier 3 emissions standards as they phase in between 2017 and 2021. The aim of the present paper is to examine, at least for a small set, how the PM emissions from GDI vehicles change over their lifetime. The paper reports particle mass and number emissions of two GDI vehicles as a function of mileage up to 150K miles. These vehicles exhibit PM emissions that are near or below the upcoming 3 mg/mi FTP and 10 mg/mi US06 mass standards with little, if any, deterioration over 150K miles. Particle number emissions roughly follow the previously observed 2 × 10(12) particles/mg correlation between solid particle number and PM mass. They remained between the interim and final EU stage 6 solid particle count standard for gasoline vehicles throughout the mileage accumulation study. These examples demonstrate feasibility to meet near-term 3 mg/mi and interim EU solid particle number standards, but continued development is needed to ensure that this continues as further fuel economy improvements are made. PMID:24040936

  6. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater. PMID:26595097

  7. Rate of denitrification and the accumulation of intermediates in a denitrifying bioreactor

    NASA Astrophysics Data System (ADS)

    Parsignault, D. R.; Gursky, H.; Kellogg, E. M.; Matilsky, T.; Murray, S.; Schreier, E.; Tananbaum, H.; Giacconi, R.; Brinkman, A. C.

    2012-12-01

    Denitrifying bioreactors (DNBRs) are an emerging mechanism to mitigate the impact of excess reactive nitrogen by harnessing the activity of ubiquitous denitrifying soil microbes. DNBRs fundamentally consist of an organic carbon energy source sufficiently saturated to develop anaerobic conditions and support heterotrophic reduction of nitrate to dinitrogen. Although recent research has well established achievable nitrate removal in DNBRs upwards of 90%, few studies experimentally determine the fate of nitrogen in these systems. This study differentiates between denitrification to inert nitrogen gas, which permanently removes reactive nitrogen from an enriched ecosystem, and transformation of nitrate to another bioavailable form (such as N2O or NOX, powerful greenhouse gases). Previous research has failed to make this distinction and as both are perceived as a reduction in nitrate concentration at the outlet, the utility of DNBRs in reducing downstream reactive nitrogen has not been sufficiently established. In order to quantify the rate of nitrate removal and the products produced, dissolved gas samples are collected from the DNBR with passive diffusion gas samplers while the influent and effluent nitrate concentration and chemical oxygen demand are monitored in real time with spectrometer probes. Nitrate removal is compared with the denitrification rate and the ratio of dinitrogen to nitrous oxide is reported. Denitrification is quantified from the proportion of nitrogen gas products produced from the nitrate pool, indicated by the negative congruence of the regression of 15N enrichment in the nitrate pool and temporal depletion in the gaseous products. The proportion of nitrous oxide to dinitrogen is examined with respect to saturation and redox potential. This research informs the interpretation of previous studies as well as advises the focus of long-term system level monitoring that will provide further information on the design and application of DNBRs to

  8. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains

    PubMed Central

    Kametani, Fuyuki; Obi, Tomokazu; Shishido, Takeo; Akatsu, Hiroyasu; Murayama, Shigeo; Saito, Yuko; Yoshida, Mari; Hasegawa, Masato

    2016-01-01

    TDP-43 is the major disease-associated protein involved in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions linked to TDP-43 pathology (FTLD-TDP). Abnormal phosphorylation, truncation and cytoplasmic mis-localization are known to be the characteristics for the aggregated forms of TDP-43, and gain of toxic abnormal TDP-43 or loss of function of physiological TDP-43 have been suggested as the cause of neurodegeneration. However, most of the post-translational modifications or truncation sites in the abnormal TDP-43 in brains of patients remain to be identified by protein chemical analysis. In this study, we carried out a highly sensitive liquid chromatography-mass spectrometry analysis of Sarkosyl-insoluble pathological TDP-43 from brains of ALS patients and identified several novel phosphorylation sites, deamidation sites, and cleavage sites. Almost all modifications were localized in the Gly-rich C-terminal half. Most of the cleavage sites identified in this study are novel and are located in N-terminal half, suggesting that these sites may be more accessible to proteolytic enzymes. The data obtained in this study provide a foundation for the molecular mechanisms of TDP-43 aggregation and ALS pathogenesis. PMID:26980269

  9. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains.

    PubMed

    Kametani, Fuyuki; Obi, Tomokazu; Shishido, Takeo; Akatsu, Hiroyasu; Murayama, Shigeo; Saito, Yuko; Yoshida, Mari; Hasegawa, Masato

    2016-01-01

    TDP-43 is the major disease-associated protein involved in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions linked to TDP-43 pathology (FTLD-TDP). Abnormal phosphorylation, truncation and cytoplasmic mis-localization are known to be the characteristics for the aggregated forms of TDP-43, and gain of toxic abnormal TDP-43 or loss of function of physiological TDP-43 have been suggested as the cause of neurodegeneration. However, most of the post-translational modifications or truncation sites in the abnormal TDP-43 in brains of patients remain to be identified by protein chemical analysis. In this study, we carried out a highly sensitive liquid chromatography-mass spectrometry analysis of Sarkosyl-insoluble pathological TDP-43 from brains of ALS patients and identified several novel phosphorylation sites, deamidation sites, and cleavage sites. Almost all modifications were localized in the Gly-rich C-terminal half. Most of the cleavage sites identified in this study are novel and are located in N-terminal half, suggesting that these sites may be more accessible to proteolytic enzymes. The data obtained in this study provide a foundation for the molecular mechanisms of TDP-43 aggregation and ALS pathogenesis. PMID:26980269

  10. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    USGS Publications Warehouse

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  11. ACCURACY OF REMOTELY SENSED SO2 MASS EMISSION RATES

    EPA Science Inventory

    Remote sensing data of single-stack power plant emissions and local wind speed have been analyzed to determined SO2 mass flux for comparison with EPA referenced methods. Four days of SO2 data were gathered from a moving platform by three upward-viewing remote sensors -- two ultra...

  12. First evidence for accumulation of protein-bound and protein-free pyrraline in human uremic plasma by mass spectrometry.

    PubMed

    Odani, H; Shinzato, T; Matsumoto, Y; Takai, I; Nakai, S; Miwa, M; Iwayama, N; Amano, I; Maeda, K

    1996-07-01

    Glucose-derived advanced glycation end products (AGEs) cross-link proteins and cause various biological tissue damage. One of them, pyrraline [epsilon-2-(formyl-5-hydroxymethyl-pyrrol-1-yl) -L-norleucine], has been demonstrated by utilizing antibody to accumulate in plasma and sclerosed matrix of diabetic individuals, suggesting responsibility for diabetic complications. To elucidate the involvement of pyrraline in uremia, we examined the pyrraline levels in patients with chronic renal failure by a mass spectrometric approach. Here we show that protein-free pyrraline as well as pyrraline with binding protein are significantly increased in non-diabetic uremic plasma compared to healthy subjects. Our results suggest that circulating pyrraline could be a substance contributing to complications in uremia. PMID:8694819

  13. Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex.

    PubMed

    Méndez-Fernández, Leire; De Jonge, Maarten; Bervoets, Lieven

    2014-12-01

    Metal bioaccumulation and toxicity in the aquatic oligochaete Tubifex tubifex exposed to three metal-contaminated field-sediments was studied in order to assess whether sediment-geochemistry (AVS, TOC) plays a major role in influencing these parameters, and to assess if the biodynamic concept can be used to explain observed effects in T. tubifex tissue residues and/or toxicity. An active autotomy promotion was observed in three studied sediments at different time points and reproduction impairment could be inferred in T. tubifex exposed to two of the tested sites after 28 days. The present study showed that sediment metal concentration and tissue residues followed significant regression models for four essential metals (Cu, Co, Ni and Zn) and one non-essential metal (Pb). Organic content normalization for As also showed a significant relationship with As tissue residue. Porewater was also revealed to be an important source of metal uptake for essential metals (e.g. Cu, Ni and Zn) and for As, but AVS content was not relevant for metal uptake in T. tubifex in studied sediments. Under the biodynamic concept, it was shown that influx rate from food (IF, sediment ingestion) in T. tubifex, in a range of sediment geochemistry, was able to predict metal bioaccumulation, especially of the essential metals Cu, Ni and Zn, and for the non-essential metal Pb. Additionally, IF appeared to be a better predictor for metal bioaccumulation in T. tubifex compared to sediment geochemistry normalization. PMID:25456225

  14. Biogenic silica fluxes and accumulation rates in the Gulf of California

    SciTech Connect

    Thunell, R.C.; Pride, C.J.; Tappa, E. ); Muller-Karger, F.E. )

    1994-04-01

    The Gulf of California, though small in size, plays an important role in the global silica cycle. The seasonal pattern of biogenic silica flux in the gulf is closely related to that of phytoplankton biomass levels and is controlled by changes in weather and hydrographic conditions. The highest opal fluxes ([approximately] 0.35 g[center dot]m[sup [minus]2][center dot]d[sup [minus]1]) occur during winter and spring, and they are comparable to those measured in some of the most productive ecosystems of the world. Approximately 15%-25% of the biogenic silica produced in surface waters is preserved in gulf sediments, a figure significantly higher than the average global ocean preservation rate. However, the flux of opal at 500 m water depth is less than 25% of that being produced at the surface, suggesting that most of the recycling of biogenic silica in the Gulf of California occurs in the upper water column. 28 refs., 3 figs.

  15. Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA

    NASA Astrophysics Data System (ADS)

    Davis, Jesse W.; Coleman, Drew S.; Gracely, John T.; Gaschnig, Richard; Stearns, Michael

    2012-03-01

    Zircon U-Pb geochronology results indicate that the John Muir Intrusive Suite of the central Sierra Nevada batholith, California, was assembled over a period of at least 12 Ma between 96 and 84 Ma. Bulk mineral thermochronology (U-Pb zircon and titanite, 40Ar/39Ar hornblende and biotite) of rocks from multiple plutons comprising the Muir suite indicates rapid cooling through titanite and hornblende closure following intrusion and subsequent slow cooling through biotite closure. Assembly of intrusive suites in the Sierra Nevada and elsewhere over millions of years favors growth by incremental intrusion. Estimated long-term pluton assembly rates for the John Muir Intrusive Suite are on the order of 0.001 km3 a-1 which is inconsistent with the rapid magma fluxes that are necessary to form large-volume magma chambers capable of producing caldera-forming eruptions. If large shallow crustal magma chambers do not typically develop during assembly of large zoned intrusive suites, it is doubtful that the intrusive suites represent cumulates left behind following caldera-forming eruptions.

  16. Methane leakage from evolving petroleum systems: Masses, rates and inferences for climate feedback

    NASA Astrophysics Data System (ADS)

    Berbesi, L. A.; di Primio, R.; Anka, Z.; Horsfield, B.; Wilkes, H.

    2014-02-01

    The immense mass of organic carbon contained in sedimentary systems, currently estimated at 1.56×1010 Tg (Des Marais et al., 1992), bears the potential of affecting global climate through the release of thermally or biologically generated methane to the atmosphere. Here we investigate the potential of naturally-occurring gas leakage, controlled by petroleum generation and degradation as a forcing mechanism for climate at geologic time scales. We addressed the potential methane contributions to the atmosphere during the evolution of petroleum systems in two different, petroliferous geological settings: the Western Canada Sedimentary Basin (WCSB) and the Central Graben area of the North Sea. Besides 3D numerical simulation, different types of mass balance and theoretical approaches were applied depending on the data available and the processes taking place in each basin. In the case of the WCSB, we estimate maximum thermogenic methane leakage rates in the order of 10-2-10-3 Tg/yr, and maximum biogenic methane generation rates of 10-2 Tg/yr. In the case of the Central Graben, maximum estimates for thermogenic methane leakage are in the order in 10-3 Tg/yr. Extrapolation of our results to a global scale suggests that, at least as a single process, thermal gas generation in hydrocarbon kitchen areas would not be able to influence climate, although it may contribute to a positive feedback. Conversely, only the sudden release of subsurface methane accumulations, formed over geologic timescales, can possibly allow for petroleum systems to exert an effect on climate.

  17. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico

    USGS Publications Warehouse

    Brown, Erik Thorson; Stallard, Robert F.; Larsen, Matthew C.; Raisbeck, Grant M.; Yiou, Francoise

    1995-01-01

    We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of ≈ 43 m Ma −1, consistent with mass balance results. 

  18. Using Cyclic Variations Of Early Pliocene Diatom Assemblages To Determine Sediment Accumulation Rates In The ANDRILL AND-1B Core

    NASA Astrophysics Data System (ADS)

    Konfirst, M. A.; Scherer, R. P.; Monien, D.; Kuhn, G.; Winter, D.; Sjunneskog, C. M.

    2009-12-01

    In the 2006-2007 Antarctic field season, the ANDRILL MIS project recovered a 1,285m record of Miocene through Plio-Pleistocene sediments near Ross Island in the Ross Sea region of Antarctica. Diatom biostratigraphy, radiometric dating and magnetostratigraphy were used in conjunction with the evaluation of glacial surfaces of erosion (GSEs) to produce a well-constrained age model for the core. However, within the Plio-Pleistocene interval (the upper ~620m), the ANDRILL record also included 13 discrete intervals composed of nearly pure diatomite, the longest of which is over 80m thick. The lack of GSEs during periods of high diatom accumulation has created limitations in assigning ages to specific core depths within the diatomite intervals. In this study, data were collected on abundance of key diatom species present within 290 samples from the long Early Pliocene diatomite unit (DU XI- 363.37-459.24 mbsf) as well as ~15m of diatom-rich mudstone immediately overlying it. We analyzed diatom records at high resolution (as high as ca. 600 year sample interval, according to the chronostratigraphic correlations established by this study). This approximately 100m section was then subdivided into five units based on major diatom assemblage shifts and changes in both geochemical properties and clast abundance counts (Pompilio et al., 2007). Cyclic changes in relative diatom abundance were identified within each unit using characteristic species and matched to variations in the oxygen isotope record (Lisiecki & Raymo, 2005) using the chronostratigraphic framework established by Naish et al. (2007), which included the assignment of an oxygen isotope age to specific core depths. Additionally, the core ages provided by the correlation of diatom abundance with the isotope record allowed the calculation of sediment accumulation rates through the interval. The results presented here provide a further refinement to the ANDRILL age model and allow interpretation of the interaction

  19. The initial mass function and global rates of mass, momentum, and energy input to the interstellar medium via stellar winds

    NASA Technical Reports Server (NTRS)

    Van Buren, D.

    1985-01-01

    Published observational data are compiled and analyzed, using theoretical stellar-evolution models to determine the global rates of mass, momentum, and energy injected into the interstellar medium (ISM) by stellar winds. Expressions derived include psi = 0.00054 x (M to the -1.03) stars formed/sq kpc yr log M (where M is the initial mass function in solar mass units) and mass-loss = (2 x 10 to the -13th) x (L to the 1.25) solar mass/yr (with L in solar luminosity units). It is found that the wind/supernova injection of energy into the ISM and the mass loss from stars of 5 solar mass or more are approximately balanced by the dissipation of energy by cloud-cloud collisions and the formation of stars, respectively.

  20. Biomass Accumulation Rates of Amazonian Secondary Forest and Biomass of Old-Growth Forests from Landsat Time Series and GLAS

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Lefsky, M. A.; Roberts, D.

    2009-12-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover

  1. Accumulation of Cd by the marine sponge Halichondria panicea pallas: Effects upon filtration rate and its relevance for biomonitoring

    SciTech Connect

    Olesen, T.M.E.; Weeks, J.M. )

    1994-05-01

    The marine demosponge Halichondria panicea Pallas, is a cosmopolitan species occurring in coastal waters with varied conditions of light, current, salinity and turbidity. H. panicea has a leuconoid structure and is composed of siliceous spicules and spongin fibers. Sponges are important members of many shallow water marine benthic communities, but comparatively little is known of their trace metal biology. Sponge architecture is constructed around a system of water canals and the physiology of the sponge is largely dependent on the currents of water flowing through their bodies. The volume of water pumped by a sponge is remarkable, ca. 100-1200 ml h[sup [minus]1] g[sup [minus]1]. This large volume of water passing through the body of a sponge means that most cells are in direct contact with the external medium. Many sponges are able to accumulate trace metals and are highly tolerant of such pollutants. This has led to the proposal that a [open quotes]sponge watch[close quotes] program be initiated supplementary to the existing [open quotes]mussel watch[close quotes] program. In view of the large volume of water passing through the bodies of sponges such as H. panicea, the suitability of this species as a biomonitoring organism was further investigated. This study describes the accumulation strategy of the demosponge H. panicea exposed to dissolved cadmium (Cd) and the effect of Cd upon sponge filtration rate.

  2. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    PubMed Central

    2011-01-01

    Previous research indicates that animals fed a high fat (HF) diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP) exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C). To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA) in the presence and absence of unesterified phytosterols (PS), and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group). In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation. PMID:21711516

  3. The Impact of Mass Media on Fertility Rates: An Exploration

    ERIC Educational Resources Information Center

    Williams, J. Sherwood; Singh, B. Krishna

    1976-01-01

    Cites research which indicates that newspapers have a relatively strong impact on fertility rates and that television, radio and cinema have a significant impact on their target population when they are used specifically as information or education sources. (Available from the Journal of Applied Communications Research, Ed., Drawer NJ, Mississippi…

  4. Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars

    NASA Astrophysics Data System (ADS)

    Guandalini, R.

    2010-04-01

    Context. The asymptotic giant branch (AGB) phase marks the end of the evolution for low- and intermediate-mass stars, which are fundamental contributors to the mass return to the interstellar medium and to the chemical evolution of galaxies. The detailed understanding of mass loss processes is hampered by the poor knowledge of the luminosities and distances of AGB stars. Aims: In a series of papers we are trying to establish criteria permitting a more quantitative determination of luminosities for the various types of AGB stars, using the infrared (IR) fluxes as a basis. An updated compilation of the mass loss rates is also required, as it is crucial in our studies of the evolutionary properties of these stars. In this paper we concentrate our analysis on the study of the mass loss rates for a sample of galactic S stars. Methods: We reanalyze the properties of the stellar winds for a sample of galactic MS, S, SC stars with reliable estimates of the distance on the basis of criteria previously determined. We then compare the resulting mass loss rates with those previously obtained for a sample of C-rich AGB stars. Results: Stellar winds in S stars are on average less efficient than those of C-rich AGB stars of the same luminosity. Near-to-mid infrared colors appear to be crucial in our analysis. They show a good correlation with mass loss rates in particular for the Mira stars. We suggest that the relations between the rates of the stellar winds and both the near-to-mid infrared colors and the periods of variability improve the understanding of the late evolutionary stages of low mass stars and could be the origin of the relation between the rates of the stellar winds and the bolometric magnitudes.

  5. Using beryllium-10 to test the validity of past accumulation rate reconstruction from water isotope records in East Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Landais, A.; Raisbeck, G. M.; Jouzel, J.; Bazin, L.; Kageyama, M.; Peterschmitt, J.-Y.; Werner, M.; Bard, E.; Aster Team

    2014-08-01

    Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 ka in Antarctica. Inferring the variations of past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high resolution beryllium-10 (10Be) as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high resolution 10Be record covering a full climatic cycle over the period 269 to 355 kyr BP from MIS 9 to MIS 10 (Marine Isotope Stages). After correcting 10Be for the estimated effect of the paleomagnetic field, we deduce that the classical estimation of accumulation rate variations from records of water isotopes agrees, with a possible underestimation of 16%, with the uncertainty on the temperature reconstruction from water isotopes in Antarctic ice cores. This is within their uncertainty of -10 to +30%. Finally, we show that the relationship between temperature and accumulation rate is comparable when using ice core data and results from several AGCM simulations run on glacial-interglacial conditions despite a larger spread in model outputs. These results indicate that the thermodynamic law linking moisture content in the air and temperature, as implemented in the different models, leads to realistic results even in polar regions, at the end of the water distillation trajectory.

  6. Belowground carbon balance and carbon accumulation rate in the successional series of monsoon evergreen broad-leaved forest

    USGS Publications Warehouse

    Zhou, G.; Liu, S.; Tang, X.; Ouyang, X.; Zhang, Dongxiao; Liu, J.; Yan, J.; Zhou, C.; Luo, Y.; Guan, L.; Liu, Yajing

    2006-01-01

    The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem - monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration - coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ?? 2538 g ?? m-2, 16889 ?? 1936 g ?? m-2 and 12680 ?? 1854 g ?? m-2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ?? 97 g ?? m-2 ?? a-1, 193 ?? 85 g ?? m-2 ?? a-1 and 213 ?? 86 g ?? m-2 ?? a-1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March. ?? Science in China Press 2006.

  7. The total rate of mass return to the interstellar medium from red giants and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Rauch, K. P.; Wilcots, E. M.

    1990-01-01

    High luminosity post main sequence stars are observed to be losing mass in large amounts into the interstellar medium. The various methods used to estimate individual and total mass loss rates are summarized. Current estimates give MT 0.3 - 0.6 solar mass per year for the whole Galaxy.

  8. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.

    PubMed

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non

  9. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids

    PubMed Central

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    1. Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. 2. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. 3. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. 4. All 55 species studied had earlier first flight trends at rate of β = −0·611 ± SE 0·015 days year−1. Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = −0·010 ± SE 0·022 days year−1). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year−1), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year−1). 5. The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were

  10. Chemical composition of short sediment cores from Thermaikos Gulf (Eastern Mediterranean): Sediment accumulation rates, trawling and winnowing effects

    NASA Astrophysics Data System (ADS)

    Karageorgis, A. P.; Kaberi, H.; Price, N. B.; Muir, G. K. P.; Pates, J. M.; Lykousis, V.

    2005-12-01

    Four cores recovered within the framework of the INTERPOL Project have been analysed for their grain size and geochemistry; sediment accumulation rates (SARs) were also determined from 210Pb and 137Cs profiles. Two cores are representative of the Axios and Aliakmon Rivers depositional environment, whilst the third core represents the Pinios River province; the fourth core represents an environment of outer shelf relict sands. Apparent SARs ranged between 0.667 g cm -2 yr -1 (Axios and Aliakmon Rivers) and 0.414 g cm -2 yr -1 (Pinios River). Trawling activities and biomixing are critical processes that may be responsible for the mixing of the surface sediments, as observed from the excess 210Pb profiles. The thickness of the surface mixed layer was 4.5 cm in the vicinity of Axios and Aliakmon Rivers and in the area of Pinios River, 3.75 cm on the outer shelf and 1 cm in the area where no trawling was observed. Sediment accumulation appeared to be regulated by variations in the riverine discharge, shelf transport pathways and winnowing processes. Major element variations, such as Si, Al, Ti, V and Ni, were dominated by terrigenous supply as aluminosilicate minerals and quartz, whereas most Ca and Sr were biogenic. Si/Al and Ca/Al ratios have been used to express changes in sediment accumulation and winnowing. Redox processes were depicted by Mn, which showed an increase in the depth of its redoxcline, from ˜1 cm in inshore stations to ˜2 cm on the outer shelf. Si/Al ratios follow the Ca/Al ratios and can be used to assess percentage winnowing in the sediment. Increases in these ratios indicate a decrease in sediment input rates and are seen in the upper parts of most of the cores. Anthropogenic or 'excess' metal contents have been calculated from Zn/V and Pb/V ratios. Their distributions in the cores showed that by far the highest contamination is associated with the Axios River output, whilst sediments influenced by the Pinios River were relatively uncontaminated.

  11. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  12. Determining seed cotton mass flow rate by pressure drop across a blowbox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed cotton mass flow rate sensor would offer useful feedback for gin managers and provide a critical input for advanced process control systems. Several designs of seed cotton mass flow rate sensors have been evaluated in the laboratory, but none have found acceptance in commercial gins. The obje...

  13. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  14. Determining seed cotton mass flow rate by pressure drop across a blowbox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed cotton mass flow rate sensor would offer useful feedback for gin managers and provide a critical input for advanced process control systems. Several designs of seed cotton mass flow rate sensors have been evaluated in the laboratory, but none have found acceptance in commercial gins. The ob...

  15. Rates and technologies for mass-market demand response

    SciTech Connect

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-07-21

    Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

  16. Rates and technologies for mass-market demand response

    SciTech Connect

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-07-21

    Demand response programs are often quickly and poorlycrafted in reaction to an energy crisis and disappear once the crisissubsides, ensuring that the electricity system will be unprepared whenthe next crisis hits. In this paper, we propose to eliminate theevent-driven nature of demand response programs by considering demandresponsiveness a component of the utility obligation to serve. As such,demand response can be required as a condition of service, and theoffering of demand response rates becomes a requirement of utilities asan element of customer service. Using this foundation, we explore thecosts and benefits of a smart thermostat-based demand response systemcapable of two types of programs: (1) a mandatory, system-operatorcontrolled, contingency program, and (2) a voluntary, customercontrolled, bill management program with rate-based incentives. Anydemand response program based on this system could consist of either orboth of these components. Ideally, these programs would be bundled,providing automatic load management through customer-programmed priceresponse, plus up to 10 GW of emergency load shedding capability inCalifornia. Finally, we discuss options for and barriers toimplementation of such a program in California.

  17. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  18. Comparing past accumulation rate reconstructions in East Antarctic ice cores using 10Be, water isotopes and CMIP5-PMIP3 models

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Landais, A.; Raisbeck, G. M.; Jouzel, J.; Bazin, L.; Kageyama, M.; Peterschmitt, J.-Y.; Werner, M.; Bard, E.; Aster Team

    2015-03-01

    Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 kyr in Antarctica. Inferring the variations in past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic Plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such an assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high-resolution beryllium-10 (10Be) as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high-resolution 10Be record covering a full climatic cycle over the period 269 to 355 ka from Marine Isotope Stage (MIS) 9 to 10, including a period warmer than pre-industrial (MIS 9.3 optimum). After correcting 10Be for the estimated effect of the palaeomagnetic field, we deduce that the 10Be reconstruction is in reasonably good agreement with EDC3 values for the full cycle except for the period warmer than present. For the latter, the accumulation is up to 13% larger (4.46 cm ie yr-1 instead of 3.95). This result is in agreement with the studies suggesting an underestimation of the deuterium-based accumulation for the optimum of the Holocene (Parrenin et al. 2007a). Using the relationship between accumulation rate and surface temperature from the saturation vapour relationship, the 10Be-based accumulation rate reconstruction suggests that the temperature increase between the MIS 9.3 optimum and present day may be 2.4 K warmer than estimated by the water isotopes reconstruction. We compare these reconstructions to the available model results from CMIP5-PMIP3 for a glacial and an interglacial state, i

  19. Long-term reliability of single-crystal silicon thin films: the influence of environment on the fatigue damage accumulation rate

    NASA Astrophysics Data System (ADS)

    Pierron, Olivier N., II; Muhlstein, Christopher L.

    2004-12-01

    Single-crystal silicon thin films were forced to resonate at high frequency (~40 kHz) in different environments to study the long-term durability of this structural material used in microelectromechanical (MEMS) devices. The fatigue characterization structure consists of a notched cantilever beam attached to a plate shaped mass and is actuated at resonance, creating fully reversed, constant amplitude, sinusoidal stresses at the notch root. The dynamic behavior of the resonating structure has been meticulously quantified to allow accurate stress measurements from the knowledge of the driving voltage amplitude and the calculation of the quality factors in air and vacuum. In addition, the change in resonant frequency is periodically monitored for long-life specimens. Fatigue failure was observed for specimens tested in humid air and medium vacuum. In air, the stress-life (S-N) curve confirms the unique fatigue behavior already attributed to silicon thin films. In vacuum, the strength of the specimens appears to increase, and fatigue failure is delayed. Fracture surface examination reveals distinct features on the fracture surfaces of long-life fatigued specimens, not found in quasistatic failure, that are clear indications of initiation regions. The decrease rate in resonant frequency during cycling is demonstrated to be related to damage accumulation rate, and is strongly sensitive to both stress amplitude and humidity. The different currently proposed mechanisms are discussed in light of this new set of experimental evidence.

  20. Long-term reliability of single-crystal silicon thin films: the influence of environment on the fatigue damage accumulation rate

    NASA Astrophysics Data System (ADS)

    Pierron, Olivier N.; Muhlstein, Christopher L.

    2005-01-01

    Single-crystal silicon thin films were forced to resonate at high frequency (~40 kHz) in different environments to study the long-term durability of this structural material used in microelectromechanical (MEMS) devices. The fatigue characterization structure consists of a notched cantilever beam attached to a plate shaped mass and is actuated at resonance, creating fully reversed, constant amplitude, sinusoidal stresses at the notch root. The dynamic behavior of the resonating structure has been meticulously quantified to allow accurate stress measurements from the knowledge of the driving voltage amplitude and the calculation of the quality factors in air and vacuum. In addition, the change in resonant frequency is periodically monitored for long-life specimens. Fatigue failure was observed for specimens tested in humid air and medium vacuum. In air, the stress-life (S-N) curve confirms the unique fatigue behavior already attributed to silicon thin films. In vacuum, the strength of the specimens appears to increase, and fatigue failure is delayed. Fracture surface examination reveals distinct features on the fracture surfaces of long-life fatigued specimens, not found in quasistatic failure, that are clear indications of initiation regions. The decrease rate in resonant frequency during cycling is demonstrated to be related to damage accumulation rate, and is strongly sensitive to both stress amplitude and humidity. The different currently proposed mechanisms are discussed in light of this new set of experimental evidence.

  1. Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.W.

    2009-01-01

    An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.

  2. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    PubMed Central

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question. PMID:25604947

  3. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  4. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis

    PubMed Central

    Kuroda, Katsushi; Fujiwara, Takeshi; Hashida, Koh; Imai, Takanori; Kushi, Masayoshi; Saito, Kaori; Fukushima, Kazuhiko

    2014-01-01

    Background and Aims Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem. Methods The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy. Key Results Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared wiht the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water. Conclusions TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells

  5. Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans

    PubMed Central

    Thomsen, Jens K.; Geest, Torben; Cox, Raymond P.

    1994-01-01

    We have used a quadrupole mass spectrometer with a gas-permeable membrane inlet for continuous measurements of the production of N2O and N2 from nitrate or nitrite by cell suspensions of Paracoccus denitrificans. The use of nitrate and nitrite labeled with 15N was shown to simplify the interpretation of the results when these gases were measured. This approach was used to study the effect of pH on the production of denitrification intermediates from nitrate and nitrite under anoxic conditions. The kinetic patterns observed were quite different at acidic and alkaline pH values. At pH 5.5, first nitrate was converted to nitrite, then nitrite was converted to N2O, and finally N2O was converted to N2. At pH 8.5, nitrate was converted directly to N2, and the intermediates accumulated to only low steady-state concentrations. The sequential usage of nitrate, nitrite, and nitrous oxide observed at pH 5.5 was simulated by using a kinetic model of a branched electron transport chain in which alternative terminal reductases compete for a common reductant. PMID:16349183

  6. Modern rates of glacial sediment accumulation along a 15° S-N transect in fjords from the Antarctic Peninsula to southern Chile

    NASA Astrophysics Data System (ADS)

    Boldt, Katherine V.; Nittrouer, Charles A.; Hallet, Bernard; Koppes, Michele N.; Forrest, Brittany K.; Wellner, Julia S.; Anderson, John B.

    2013-12-01

    of glacial erosion in temperate climates rank among the highest worldwide, and the sedimentary products of such erosion record climatic and tectonic signals in many glaciated settings, as well as temporal changes in glacier behavior. Glacial sediment yields are expected to decrease with increasing latitude because decreased temperature and meltwater production reduce glacial sliding, erosion, and sediment transfer; however, this expectation lacks a solid supportive database. Herein we present modern 210Pb-derived sediment accumulation rates on decadal to century time scales for 12 fjords spanning 15° of latitude from the Antarctic Peninsula to southern Chile and interpret the results in light of glacimarine sediment accumulation worldwide. 210Pb records from the Antarctic Peninsula show surprisingly steady sediment accumulation throughout the past century at rates of 1-7 mm yr-1, despite rapid warming and glacial retreat. Cores from the South Shetland Islands reveal accelerated sediment accumulation over the past few decades, likely due to changes in the thermal state of the glaciers in this region, which straddles the boundary between subpolar and temperate conditions. In Patagonia and Tierra del Fuego, sediment accumulates faster (11-24 mm yr-1), and previously collected seismic profiles show that rates reach meters per year close to the glacier termini. This increase in sediment accumulation rates with decreasing latitude reflects the gradient from subpolar to temperate climates and is consistent with glacial erosion being much faster in the temperate climate of southern Chile than in the polar climate of the Antarctic Peninsula.

  7. The null hypothesis: steady rates of erosion, weathering and sediment accumulation during Late Cenozoic mountain uplift and glaciation

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Jerolmack, D. J.

    2015-12-01

    At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for weathering fluxes, global sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that global rates of landscape change have remained constant over the last ten million years, despite global climate change and massive mountain building events. Two important implications are: (1) global climate change may not change global denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased weathering due to late Cenozoic mountain building or climate change was the primary agent for a decrease in global temperatures.

  8. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  9. A Comparison of Mass Rate and Steam Quality Reductions to Optimize Steamflood Performance

    SciTech Connect

    Messner, Gregory L.

    1999-08-09

    Many operators of steamdrive projects will reduce the heat injection rate as the project matures. The major benefit of this practice is to reduce the fuel costs and thus extend the economic life of the project. However, there is little industry consensus on whether the heat cuts should take the form of: (1) mass rate reductions while maintaining the same high steam quality, or (2) steam quality decreases while keeping the same mass rate. Through the use of a commercial three-phase, three-dimensional simulator, the oil recovery schedules obtained when reducing the injected steam mass rate or quality with time were compared under a variety of reservoir and operating conditions. The simulator input was validated for Kern River Field conditions by using the guidelines developed by Johnson, et at. (1989) for four steamflood projects in Kern River. The results indicate that for equivalent heat injection rates, decreasing the steam injection mass rate at a constant high quality will yield more economic oil than reducing the steam quality at a constant mass rate. This conclusion is confirmed by a sensitivity analysis which demonstrates the importance of the gravity drainage/steam zone expansion mechanism in a low-pressure, heavy oil steamflood with gravity segregation. Furthermore, the impact of discontinuous silts and nonuniform initial temperatures within the steamflood zone was studied, indicating again that a decreasing mass rate injection strategy is a superior operating practice.

  10. Export Production Fluctuations in the Eastern Equatorial Pacific during the Pliocene-Pleistocene: Reconstruction Using Barite Accumulation Rates

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Ma, Z.; Ravelo, A. C.; Liu, Z.

    2014-12-01

    Over the last 5 million years, Earth has experienced a transition from warmer climates to cooler climates. It is not clear how these changes affected export productivity in the Equatorial Pacific (EEP) and what are the potential feedbacks between ocean productivity and climate? To address these questions we use barite accumulation rates to reconstruct export productivity in the eastern equatorial Pacific (ODP Site 849) and compare the record to sea surface temperature (SST) fluctuations and other productivity proxies over the past 5.3 Ma. We find that export productivity fluctuated considerably on multiple time scales. During the Pliocene between 4.5 and 3 Ma, export productivity was on average higher (~50 g C m-2 yr-1) than during the Pleistocene (~ 35 g C m-2 yr-1). In the Pleistocene a trend of decreasing export production occurred between 3 Ma and 1 Ma (from ~60 to ~20 g C m-2 yr-1) followed by an increase over the last million years. Our record reveal decoupling between export productivity and SST on long (million year) time scales as previously suggested. Throughout this time interval shorter orbital-scale large amplitude fluctuations (between 10 and 100 g C m-2 yr-1) in export productivity are observed and export production was generally higher during cold periods or during transitions. Results from this study suggest that in the EEP mechanisms that affect carbon export on orbital time scales differed from those operating on longer time scales.

  11. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

  12. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  13. Studies of the black hole mass and the eddington rate of AGNs

    NASA Astrophysics Data System (ADS)

    Bao, Y. Y.; Zhang, X.; Chen, L. E.; Zhang, H. J.; Peng, Z. Y.; Zheng, Y. G.

    2008-04-01

    Many people have discussed the property of AGNs (active galactic nuclei). The variation of spectrum, the correlation of multi-wave bands and the property of polarization give good information for studying intrinsic correlation of components and its position. To date, the redshift and the Eddington rate and the masses of black hole are the basic properties of active galactic nuclei. In this paper, firstly calculated the mass of black hole and the Eddington rate of 172 samples using the reverberation mapping method, secondly statistical distribution of the black hole masses and the Eddington rate of Seyfert Galaxies and Quasars, thirdly investigated the relation between redshift and Eddington rate and analysed the relation between Eddington rate and the black hole mass and discussed the relation between the redshift and the masses of black hole as well as the relation between the redshift and the Eddington rate, since the evolution essential of AGNs is the change on the timescales of the universe, and the redshift plays an important role in the evolution of AGNs. From these analyses, this paper found that the black hole masses and the redshift of AGNs change with the development of Eddington rate. Through these results, the paper has made an initial statistical research for the AGNs evolution, and found the transformation from Quasar to Seyfert galaxy.

  14. Mass-Specific Metabolic Rate and Sperm Competition Determine Sperm Size in Marsupial Mammals

    PubMed Central

    Tourmente, Maximiliano; Gomendio, Montserrat; Roldan, Eduardo R. S.

    2011-01-01

    Two complementary hypotheses have been proposed to explain variation in sperm size. The first proposes that post-copulatory sexual selection favors an increase in sperm size because it enhances sperm swimming speed, which is an important determinant of fertilization success in competitive contexts. The second hypothesis proposes that mass-specific metabolic rate acts as a constraint, because large animals with low mass-specific metabolic rates will not be able to process resources at the rates needed to produce large sperm. This constraint is expected to be particularly pronounced among mammals, given that this group contains some of the largest species on Earth. We tested these hypotheses among marsupials, a group in which mass-specific metabolic rates are roughly 30% lower than those of eutherian mammals of similar size, leading to the expectation that metabolic rate should be a major constraint. Our findings support both hypotheses because levels of sperm competition are associated with increases in sperm size, but low mass-specific metabolic rate constrains sperm size among large species. We also found that the relationship between sperm size and mass-specific metabolic rate is steeper among marsupials and shallower among eutherian mammals. This finding has two implications: marsupials respond to changes in mass-specific metabolic rate by modifying sperm length to a greater extent, suggesting that they are more constrained by metabolic rate. In addition, for any given mass-specific metabolic rate, marsupials produce longer sperm. We suggest that this is the consequence of marsupials diverting resources away from sperm numbers and into sperm size, due to their efficient sperm transport along the female tract and the existence of mechanisms to protect sperm. PMID:21731682

  15. A GIS TECHNIQUE FOR ESTIMATING NATURAL ATTENUATION RATES AND MASS BALANCES: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-01308 Durant, ND, Srinivasan, P, Faust, CR, Burnell, DK, Klein, KL, and Burden*, D.S. A GIS Technique for Estimating Natural Attenuation Rates and Mass Balances. Battelle's Sixth International ...

  16. Attribution of halo merger mass ratio and star formation rate density

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Jo, Jeong-woon; Hwang, Jihe; Youn, Soyoung; Park, Boha

    2016-06-01

    We have used codes for implementing the merger tree algorithm by Cole et al. (2007) and Parkinson et al. (2008) and derived the halo merger mass ratio of protocluster of galaxies across the cosmic time. The authors compare the observed and simulated star formation rates reported by the various groups and derive the star formation rate densities at different red-shifts. This study implies that an investigation of different mass variables should be incorporated into the analysis in order to accurately estimate cumulative star formation rates of galaxies and star formation rate densities as a function of red-shifts.

  17. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    USGS Publications Warehouse

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  18. A record of barite accumulation rate for marine export productivity changes in the tropical Indian Ocean during the Mid-Pliocene--Early-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Zhou, Liping; Ma, Zhongwu; Ding, Xuan

    2016-04-01

    One of the most interesting features in the marine oxygen isotope records is the gradual shift towards heavier 18O from the Mid-Pliocene, which ends with the initiation of Northern Hemisphere glaciation (NHG) around 2.7 Ma. The lack of significant change in sea surface temperature in the tropical Indian Ocean as revealed in the previous studies does not rule out their possible contributions to this dramatic climate change during the Mid-Pliocene transition. Changing circulation systems in the region will control the supply of nutrients for the water masses which in turn determine the marine productivity. In the areas of high productivity, ocean export productivity may potentially provide a mechanism of CO2 draw-down into the deep ocean, through which contributing to the lowering of the global temperature. In this study, we present a record of barite accumulation rate (BAR) for DSDP Site 214 drilled on the Ninetyeast Ridge. Here we use the marine barite, which is formed during the decay of organism in the twilight zone, as a proxy for ocean export productivity. Our results show that the BAR of Site 214 varies between 0.25 and 1.25 mg/cm2/kyr during the period between 4 Ma and 2 Ma. Five intervals of increased BAR from 3.6 Ma to 2.4 Ma are identified with the most distinct peak centred around 3 Ma. The overall pattern does not follow either the oxygen isotope record for the Site or the sea surface temperature and subsurface temperature reconstructed with the Mg/Ca of foraminifera. This suggests that regional changes in ocean circulation and water masses may have played more important role than temperature in controlling the productivity change in the tropical Indian Ocean. The relative higher productivity around 3 Ma may imply a biogenetic process towards the intensification of NHGs.

  19. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia)

    NASA Astrophysics Data System (ADS)

    Dommain, René; Cobb, Alexander R.; Joosten, Hans; Glaser, Paul H.; Chua, Amy F. L.; Gandois, Laure; Kai, Fuu-Ming; Noren, Anders; Salim, Kamariah A.; Su'ut, N. Salihah H.; Harvey, Charles F.

    2015-04-01

    Peatlands of Southeast Asia store large pools of carbon but the mechanisms of peat accumulation in tropical forests remain to be resolved. Patch dynamics and forest disturbance have seldom been considered as drivers that can amplify or dampen rates of peat accumulation. Here we used a modified piston corer, noninvasive geophysical measurements, and geochemical and paleobotanical techniques to establish the effect of tree fall on carbon accumulation rates in a peat swamp forest dominated by Shorea albida in Brunei (Borneo). Carbon initially accumulated in a mangrove forest at over 300 g C m-2 yr-1 but declined to less than 50 g C m-2 yr-1 with the establishment of a peat swamp forest. A rapid accumulation pulse of 720-960 g C m-2 yr-1 occurred around 1080 years ago as a tip-up pool infilled. Tip-up pools are common in the peatlands of northwest Borneo where windthrow and lightning strikes produce tree falls at a rate of 4 trees ha-1 every decade. A simulation model indicates that tip-up pools, which are formed across the entire forested peat dome, produce local discontinuities in the peat deposit, when peat is removed to create a pool that is rapidly filled with younger material. The resulting discontinuities in peat age at the base and sides of pool deposits obscure linkages between carbon accumulation rates and climate and require new approaches for paleoenvironmental reconstructions. Our results suggest that carbon accumulation in tropical peat swamps may be based on fundamentally different peat-forming processes than those of northern peatlands.

  20. Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation.

    PubMed

    Chen, Yiming; Hou, Deyi; Lu, Chunhui; Spain, Jim C; Luo, Jian

    2016-09-01

    Most of the models for simulating vapor intrusion accept the local equilibrium assumption for multiphase concentration distributions, that is, concentrations in solid, liquid and vapor phases are in equilibrium. For simulating vapor transport with aerobic biodegradation controlled by counter-diffusion processes, the local equilibrium assumption combined with dual-Monod kinetics and biomass decay may yield near-instantaneous behavior at steady state. The present research investigates how predicted concentration profiles and fluxes change as interphase mass transfer resistances are increased for vapor intrusion with aerobic biodegradation. Our modeling results indicate that the attenuation coefficients for cases with and without mass transfer limitations can be significantly different by orders of magnitude. Rate-limited mass transfer may lead to larger overlaps of contaminant vapor and oxygen concentrations, which cannot be simulated by instantaneous reaction models with local equilibrium mass transfer. In addition, the contaminant flux with rate-limited mass transfer is much smaller than that with local equilibrium mass transfer, indicating that local equilibrium mass transfer assumption may significantly overestimate the biodegradation rate and capacity for mitigating vapor intrusion through the unsaturated zone. Our results indicate a strong research need for field tests to examine the validity of local equilibrium mass transfer, a widely accepted assumption in modeling vapor intrusion. PMID:27486832

  1. The Specific Star Formation Rate and Stellar Mass Fraction of Low-mass Central Galaxies in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Avila-Reese, V.; Colín, P.; González-Samaniego, A.; Valenzuela, O.; Firmani, C.; Velázquez, H.; Ceverino, D.

    2011-08-01

    By means of cosmological N-body + hydrodynamics simulations of galaxies in the context of the Λ cold dark matter (ΛCDM) scenario we explore the specific star formation rates (SSFR = SFR/Ms , Ms is the stellar mass) and stellar mass fractions (Fs ≡ Ms /Mh , Mh is the halo mass) for sub-M* field galaxies at different redshifts (0 <~ z <~ 1.5). Distinct low-mass halos (2.5 <~ Mh /1010 M sun <~ 50 at z = 0) were selected for the high-resolution re-simulations. The Hydrodynamics Adaptive Refinement Tree (ART) code was used and some variations of the sub-grid parameters were explored. Most simulated galaxies, specially those with the highest resolutions, have significant disk components and their structural and dynamical properties are in reasonable agreement with observations of sub-M* field galaxies. However, the SSFRs are 5-10 times smaller than the averages of several (compiled and homogenized here) observational determinations for field blue/star-forming galaxies at z < 0.3 (at low masses, most observed field galaxies are actually blue/star forming). This inconsistency seems to remain even at z ~ 1-1.5, although it is less drastic. The Fs of simulated galaxies increases with Mh as semi-empirical inferences show. However, the values of Fs at z ≈ 0 are ~5-10 times larger in the simulations than in the inferences; these differences increases probably to larger factors at z ~ 1-1.5. The inconsistencies reported here imply that simulated low-mass galaxies (0.2 <~ Ms /109 M sun <~ 30 at z = 0) assembled their stellar masses much earlier than observations suggest. Our results confirm the predictions found by means of ΛCDM-based models of disk galaxy formation and evolution for isolated low-mass galaxies, and highlight that our understanding and implementation of astrophysics into simulations and models are still lacking vital ingredients.

  2. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  3. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  4. Exotic tree leaf litter accumulation and mass loss dynamics compared with two sympatric native species in South Florida, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive tree Melaleuca quinquenervia (melaleuca) forms dense forests in ecologically sensitive habitats, including portions of the Florida Everglades. Within these stands, forest understories are characterized by low species diversity and a dense layer of accumulated melaleuca litter. However...

  5. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  6. Rates of post-fire vegetation recovery and fuel accumulation as a function of burn severity and time-since-burn in four western U.S. ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation recovery and fuel accumulation rates following wildfire are useful measures of ecosystem resilience, yet few studies have quantified these variables over 10 years post-fire. Conventional wisdom is that recovery time to pre-fire condition will be slower as a function of burn severity, as i...

  7. False-negative rate of combined mammography and ultrasound for women with palpable breast masses.

    PubMed

    Chan, Carlos H F; Coopey, Suzanne B; Freer, Phoebe E; Hughes, Kevin S

    2015-10-01

    Mammography and ultrasound are often used concurrently for patients with palpable breast masses. While mammography has a false-negative rate of approximately 15 %, the addition of breast ultrasound decreases this rate among patients with palpable breast masses. There are no recent outcome data regarding the use of combined reporting of ultrasound and mammography (CRUM) for palpable breast masses. In this study, female patients presenting with a palpable breast mass were retrospectively reviewed in a prospectively entered database at a single institution from June 2010 to July 2013. All cancer cases and false-negative cases using CRUM were identified. Cancer rates, false-negative rates, and negative predictive values were calculated based on CRUM breast imaging-reporting and data system (BI-RADS) categories. One thousand two hundreds and twelve female patients presenting with a palpable breast mass were identified; 77 % of patients had CRUM and 73 % (682/932) were BI-RADS 1-2. Despite negative or benign BI-RADS, 9.5 % of patients with BI-RADS 1-2 (65/682) underwent biopsy, compared to 96 % of patients with a BI-RADS 4-5 designation. Eighty-one patients were found to have cancers; 2 had BI-RADS 1-2 imaging. The false-negative rate of CRUM was 2.4 % (2/81). Since 69 % (428/617) of BI-RADS 1-2 patients without tissue diagnosis had follow-up imaging and/or clinical exam (median: 27 months, range: 2-62 months) and none developed cancers, the cancer rate and negative predictive value of a palpable breast mass of BI-RADS 1-2 were estimated to be 0.3 % (2/682) and 99.7 %, respectively. In the modern era of combined imaging for breast masses, a patient with a low suspicion exam can be reassured with a negative CRUM report. PMID:26341750

  8. A 9000 year perspective on carbon accumulation rates under changing hydro-climate and vegetation conditions in a mountain peatland, northern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Panait, Andrei; Gałka, Mariusz; Diaconu, Andrei; Hutchinson, Simon; Mulch, Andreas; Tantau, Ioan; Hickler, Thomas

    2016-04-01

    Peatlands, in particular ombrogenous bogs, which entirely depend on water from precipitation, are sensitive to changes in the balance between precipitation and evapotranspiration; and therefore highly suitable for hydro-climatological reconstruction. Peatlands also represent a large carbon pool in the terrestrial biosphere. However, little is known about the C sequestration processes in mountain peatlands under various competing drivers of change (climate, vegetation, fire). We applied a multi-proxy approach (bulk density, loss on ignition, total organic carbon, testate amoebae, δ13C in Sphagnum, plant macrofossils, pollen and charcoal) to a peat sequence from a mountain ombrogenous bog (Tǎul Muced) to explore how changes in hydro-climate conditions, peat plant composition and fire have affected long-term physical peat properties and the rate of carbon accumulation over the last 9000 years. Carbon accumulation at this site ranged from 7 to 105 g C cm2 yr1 (mean 23 ± 14 g C cm2 yr_1). We found that high moisture availability (P-E) as inferred from testate amoebae and δ13C values in Sphagnum increased the carbon sink capacity of peatland. The strength of the relationship between the rate of carbon accumulation and climate appears particularly evident over the last millennium when high C accumulation rates correlated with the warm and wet conditions of the Medieval Climate Anomaly and lower C accumulation rates with the dry conditions of the Little Ice Age. We also found a significant positive correlation between the rate of C accumulation and changes in vegetation; rates were lowest (17 g C cm2 yr_1), during periods of mixed Sphagnum (primarily S. magellanicum and S. angustifolium) and vascular plant (Cyperaceae, Eriophorum vaginatum) growth and increased (31 g C cm2 yr_1) during the accumulation of Sphagnum peat, regardless the dominant Sphagnum species. We did not find indication of peatland fire during the investigated interval. Our study represents one of the

  9. On the stream-accretion disk interaction - Response to increased mass transfer rate

    NASA Technical Reports Server (NTRS)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  10. On the upscaling of mass transfer rate expressions for interpretation of source zone partitioning tracer tests

    NASA Astrophysics Data System (ADS)

    Boroumand, Ali; Abriola, Linda M.

    2015-02-01

    Analysis of partitioning tracer tests conducted in dense nonaqueous phase liquid (DNAPL) source zones relies on conceptual models that describe mass exchange between the DNAPL and aqueous phases. Such analysis, however, is complicated by the complex distribution of entrapped DNAPL mass and formation heterogeneity. Due to parameter uncertainty in heterogeneous regions and the desire to reduce model complexity, the effect of mass transfer limitations is often neglected, and an equilibrium-based model is typically used to interpret test results. This work explores the consequences of that simplifying assumption on test data interpretation and develops an alternative upscaled modeling approach to quantify effective mass transfer rates. To this end, a series of partitioning tracer tests is numerically simulated in heterogeneous two-dimensional PCE-DNAPL source zones, representative of a range of hydraulic conductivity and DNAPL mass distribution characteristics. The effective mass transfer coefficient corresponding to each test is determined by fitting an upscaled model to the simulated data, and regression analysis is performed to explore the correlation between various source zone metrics and the effective mass transfer coefficient. Results suggest that vertical DNAPL spreading, Reynolds number, pool fraction, and the effective organic phase saturation are the most significant parameters controlling tracer partitioning rates. Finally, a correlation for prediction of the effective (upscaled) mass transfer coefficient is proposed and verified using existing experimental data. The developed upscaled model incorporates the influence of physical heterogeneity on the rate of tracer partitioning and, thus, can be used for the estimation of source zone mass distribution characteristics from tracer test results.

  11. The relationship between body mass and field metabolic rate among individual birds and mammals.

    PubMed

    Hudson, Lawrence N; Isaac, Nick J B; Reuman, Daniel C

    2013-09-01

    1. The power-law dependence of metabolic rate on body mass has major implications at every level of ecological organization. However, the overwhelming majority of studies examining this relationship have used basal or resting metabolic rates, and/or have used data consisting of species-averaged masses and metabolic rates. Field metabolic rates are more ecologically relevant and are probably more directly subject to natural selection than basal rates. Individual rates might be more important than species-average rates in determining the outcome of ecological interactions, and hence selection. 2. We here provide the first comprehensive database of published field metabolic rates and body masses of individual birds and mammals, containing measurements of 1498 animals of 133 species in 28 orders. We used linear mixed-effects models to answer questions about the body mass scaling of metabolic rate and its taxonomic universality/heterogeneity that have become classic areas of controversy. Our statistical approach allows mean scaling exponents and taxonomic heterogeneity in scaling to be analysed in a unified way while simultaneously accounting for nonindependence in the data due to shared evolutionary history of related species. 3. The mean power-law scaling exponents of metabolic rate vs. body mass relationships were 0.71 [95% confidence intervals (CI) 0.625-0.795] for birds and 0.64 (95% CI 0.564-0.716) for mammals. However, these central tendencies obscured meaningful taxonomic heterogeneity in scaling exponents. The primary taxonomic level at which heterogeneity occurred was the order level. Substantial heterogeneity also occurred at the species level, a fact that cannot be revealed by species-averaged data sets used in prior work. Variability in scaling exponents at both order and species levels was comparable to or exceeded the differences 3/4-2/3 = 1/12 and 0.71-0.64. 4. Results are interpreted in the light of a variety of existing theories. In particular, results

  12. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  13. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates. PMID:26413663

  14. Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1986-01-01

    Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.

  15. Elucidating effects of atmospheric deposition and peat decomposition processes on mercury accumulation rates in a northern Minnesota peatland over last 10,000 cal years

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.

    2014-12-01

    Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.

  16. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. PMID:25842318

  17. Measurement of mass-transfer rates for surfactant-enhanced solubilization of nonaqueous phase liquids

    SciTech Connect

    Mayer, A.S.; Zhong, L.; Pope, G.A.

    1999-09-01

    Surfactant-enhanced solubilization of residual, non-aqueous-phase liquid (NAPL) contaminants is an emerging, subsurface remediation technology. The potential for nonequilibrium conditions is investigated for surfactant-enhanced solubilization of a NAPL, trichlorethylene (TCE), in a model porous medium. The surfactant formulation consists of an anionic surfactant, sodium dihexyl sulfosuccinate, an alcohol, and an electrolyte in aqueous solution. Batch solubilization experiments are conducted to assess the significant of chemical rate limitations. Surfactant flood experiments are conducted in packed columns with residual TCE. Mass-transfer rate coefficients are determined as a function of aqueous-phase pore velocity, NAPL volumetric fraction, and surfactant concentration. A correlation for predicting mass-transfer rate coefficients as a function of system properties is developed. The mass-transfer rate coefficients and correlation are obtained by fitting a transport simulator to the column effluent concentration results. Significant differences are found between the correlation developed here and correlations developed for other NAPL--surfactant systems. The correlation predicts near-linear dependences of mass-transfer rates on the NAPL volumetric fraction and pore velocity. Using the Damkohler number, the degree of nonequilibrium behavior in surfactant-enhanced NAPL solubilization is analyzed for a range of conditions. Nonequilibrium conditions are found to be significant at relatively low NAPL volumetric fractions.

  18. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals.

    PubMed

    Frasier, Charles C

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass) (b) . Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal's characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal's means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals' skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  19. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals

    PubMed Central

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass)b. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  20. Three hen strains fed photoisomerized trans,trans CLA-rich soy oil exhibit different yolk accumulation rates and source-specific isomer deposition.

    PubMed

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicholas B

    2015-04-01

    Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA-rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10-12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA-rich soybean oil produced by photoisomerization. Diets of 30-week Leghorns, broilers, and jungle fowl were supplemented with 15% CLA-rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC-FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55% of total yolk CLA during CLA feeding. However, t-10,c-12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c-9,t-11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation. PMID:25771890

  1. OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida

    NASA Astrophysics Data System (ADS)

    Rink, W. J.; López, G. I.

    2010-11-01

    Vertical sediment cores in five separate beach ridge complexes along the north-east Gulf of Mexico Coast were recovered and dated using optically stimulated luminescence (OSL) dating of quartz: these are located on Cape San Blas (CSB), Little St. George Island (LSGI), Richardson's Hammock (RH), St. Joseph Peninsula (SJP) and Saint Vincent Island (SVI). All of these landforms are coastal barrier systems situated along a 100 km stretch of the Florida Panhandle, U.S.A. Two samples were collected for dating from each core. Ridge accumulation rates (RAR) associated with lateral progradation were calculated from the dated samples. We also determined average sediment accumulation rates (ASAR) for two intervals within each sediment core. All OSL ages within the sediment cores were found to be in stratigraphic order or in a few cases statistically indistinguishable. Moreover, all dated ridges were found to be in correct temporal sequence based on their geomorphic positions. Rapidly accreted sequences were found to be backed by St. Joseph Bay in the western region of the study area. More slowly accreted sequences were associated with the more eastern stretches of the study area backed by St. Vincent Sound and Apalachicola Bay. Our ASAR results are in accord with an Australian study of modern dune accumulation. Perhaps our most important finding is that in the barrier island environments of this north-eastern Gulf Coast region, aeolian sedimentation continues well after full vegetative cover develops and stranding of landward ridges takes place. This confirms our similar earlier observation on SVI (López and Rink, 2008). We find that up to approximately one order of magnitude lower sedimentation rates occur after an initial period of more rapid aeolian accumulation for the vertical intervals studied in foredune ridges. Lateral progradation rates of ridge sequences were highly variable within the study area, ranging from 92 to 848 m/100 years, but we did find agreement

  2. Five years' gravity observation with the superconducting gravimeter OSG#058 at Syowa Station, East Antarctica: gravitational effects of accumulated snow mass

    NASA Astrophysics Data System (ADS)

    Aoyama, Yuichi; Doi, Koichiro; Ikeda, Hiroshi; Hayakawa, Hideaki; Shibuya, Kazuo

    2016-05-01

    Continuous gravimetric observations have been made with three successive generations of superconducting gravimeter over 20 yr at Syowa Station (39.6°E, 69.0°S), East Antarctica. The third-generation instrument, OSG#058, was installed in January 2010 and was calibrated by an absolute gravimeter during January and February, 2010. The estimated scale factor was -73.823 ± 0.053 μGal V-1 (1 μGal = 10-8 m s-2). The first 5 yr of OSG#058 data from 2010 January 7 to 2015 January 10 were decomposed into tidal waves (M3 to Ssa) and other non-tidal components by applying the Bayesian tidal analysis program BAYTAP. Long-term non-tidal gravity residuals, which were obtained by subtracting annual and 18.6 year tidal waves and the predicted gravity response to the Earth's variable rotation, showed significant correlation with the accumulated snow depth measured at Syowa Station. The greatest correlation occurred when the gravity variations lagged the accumulated snow depth by 21 d. To estimate the gravitational effect of the accumulated snow mass, we inferred a conversion factor of 3.13 ± 0.08 μGal m-1 from this relation. The accumulated snow depth at Syowa Station was found to represent an extensive terrestrial water storage (the snow accumulation) around Syowa Station, which was estimated from the Gravity Recovery and Climate Experiment satellite gravity data. The snow accumulation around Syowa Station was detectable by the superconducting gravimeter.

  3. Five years' gravity observation with the superconducting gravimeter OSG#058 at Syowa Station, East Antarctica: Gravitational effects of accumulated snow mass

    NASA Astrophysics Data System (ADS)

    Aoyama, Yuichi; Doi, Koichiro; Ikeda, Hiroshi; Hayakawa, Hideaki; Shibuya, Kazuo

    2016-02-01

    Continuous gravimetric observations have been made with three successive generations of superconducting gravimeter over 20 years at Syowa Station (39.6°E, 69.0°S), East Antarctica. The third-generation instrument, OSG#058, was installed in January 2010 and was calibrated by an absolute gravimeter during January and February, 2010. The estimated scale factor was -73.823 ± 0.053 μGal/V (1 μGal = 10-8 m/s2). The first five years of OSG#058 data from January 7, 2010 to January 10, 2015 were decomposed into tidal waves (M3 to Ssa) and other non-tidal components by applying the Bayesian tidal analysis program BAYTAP. Long-term non-tidal gravity residuals, which were obtained by subtracting annual and 18.6 year tidal waves and the predicted gravity response to the Earth's variable rotation, showed significant correlation with the accumulated snow depth measured at Syowa Station. The greatest correlation occurred when the gravity variations lagged the accumulated snow depth by 21 days. To estimate the gravitational effect of the accumulated snow mass, we inferred a conversion factor of 3.13 ± 0.08 μGal/m from this relation. The accumulated snow depth at Syowa Station was found to represent an extensive terrestrial water storage (the snow accumulation) around Syowa Station, which was estimated from the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data. The snow accumulation around Syowa Station was detectable by the superconducting gravimeter.

  4. A comparison of conventional /sup 60/Co testing and low dose-accumulation-rate exposure of metal-gate CMOS IC'S

    SciTech Connect

    Roeske, S.B.; Edwards, W.H.; Gammill, P.E.; Puariea, J.W.; Zipay, J.W.

    1984-12-01

    Data are presented for the CD4000 family of Hi-Rel, rad-hard, metal-gate CMOS ICs which show a much greater tolerance to low dose-rate ionizing radiation than that observed with ''conventional rate'' (approximately 10/sup 6/ rad(Si)/hr) /sup 60/Co testing. Data obtained using conventional rate /sup 60/Co irradiations followed by either a 24-hour, high-temperature (100/sup 0/C) anneal or a 65-day, room temperature anneal are in good agreement with data obtained by exposing similar parts at a low dose-accumulation rate (daily 17second, 5000 rad(Si) exposures) for 200 consecutive days. Graphs of thresholds, output drive, and propagation delay for both low doseaccumulation rate and conventional rate exposures are included.

  5. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  6. Mathematical equivalence between time-dependent single-rate and multirate mass transfer models

    NASA Astrophysics Data System (ADS)

    Fernández-Garcia, D.; Sanchez-Vila, X.

    2015-05-01

    The often observed tailing of tracer breakthrough curves is caused by a multitude of mass transfer processes taking place over multiple scales. Yet, in some cases, it is convenient to fit a transport model with a single-rate mass transfer coefficient that lumps all the non-Fickian observed behavior. Since mass transfer processes take place at all characteristic times, the single-rate mass transfer coefficient derived from measurements in the laboratory or in the field vary with time ω>(t>). The literature review and tracer experiments compiled by Haggerty et al. (2004) from a number of sites worldwide suggest that the characteristic mass transfer time, which is proportional to ω>(t>)-1, scales as a power law of the advective and experiment duration. This paper studies the mathematical equivalence between the multirate mass transfer model (MRMT) and a time-dependent single-rate mass transfer model (t-SRMT). In doing this, we provide new insights into the previously observed scale-dependence of mass transfer coefficients. The memory function, g(t), which is the most salient feature of the MRMT model, determines the influence of the past values of concentrations on its present state. We found that the t-SRMT model can also be expressed by means of a memory function φ>(t,τ>). In this case, though the memory function is nonstationary, meaning that in general it cannot be written as φ>(t-τ>). Nevertheless, the full behavior of the concentrations using a single time-dependent rate ω>(t>) is approximately analogous to that of the MRMT model provided that the equality ω>(t>)=-dln⁡g>(t>)/dt holds and the field capacity is properly chosen. This relationship suggests that when the memory function is a power law, g>(t>)˜t1-k, the equivalent mass transfer coefficient scales as ω>(t>)˜t-1, nicely fitting without calibration the estimated mass transfer coefficients compiled by Haggerty et al. (2004).

  7. Scaling of metabolic rate on body mass in small laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1980-01-01

    The scaling of metabolic heat production rate on body mass is investigated for five species of small laboratory mammal in order to define selection of animals of metabolic rates and size range appropriate for the measurement of changes in the scaling relationship upon exposure to weightlessness in Shuttle/Spacelab experiment. Metabolic rates were measured according to oxygen consumption and carbon dioxide production for individual male and female Swiss-Webster mice, Syrian hamsters, Simonsen albino rats, Hartley guinea pigs and New Zealand white rabbits, which range in mass from 0.05 to 5 kg mature body size, at ages of 1, 2, 3, 5, 8, 12, 18 and 24 months. The metabolic intensity, defined as the heat produced per hour per kg body mass, is found to decrease dramatically with age until the animals are 6 to 8 months old, with little or no sex difference. When plotted on a logarithmic graph, the relation of metabolic rate to total body mass is found to obey a power law of index 0.676, which differs significantly from the classical value of 0.75. When the values for the mice are removed, however, an index of 0.749 is obtained. It is thus proposed that six male animals, 8 months of age, of each of the four remaining species be used to study the effects of gravitational loading on the metabolic energy requirements of terrestrial animals.

  8. Volatile organic compound emission rate from diffused aeration systems. 1: Mass transfer modeling

    SciTech Connect

    Chern, J.M.; Yu, C.F.

    1995-08-01

    The activated sludge process is one of the most commonly used biochemical oxidation process for the secondary treatment of municipal and industrial wastewaters. The release of volatile organic compounds (VOCs) from wastewater treatment plants has recently caused great concern. In wastewater treatment plants, many operation units such s equalization and aeration involve oxygen transfer between wastewater and air. While oxygen is transferred from air to wastewater, VOCs are stripped from wastewater to air. Due to increasingly stringent environmental regulations, wastewater treatment operators have to do VOC inventory of their facilities. A mass transfer model for VOCs is therefore called for to assess VOC emission rates from wastewater treatment processes. Almost all existing methods adopt an oxygen mass transfer model standardized by the American Society of Civil Engineers (ASCE) to evaluate VOC emission rates. A new and more fundamental oxygen mass transfer model for diffused aeration systems was developed to assess the VOC emission rates. The new model provides better insight of the VOC mass transfer process and requires only aeration performance data to predict the VOC emission rates. The results and implications of both models were discussed and compared.

  9. The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites

    PubMed Central

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-01-01

    18F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules. PMID:26582591

  10. Brightest group galaxies: stellar mass and star formation rate (paper I)

    NASA Astrophysics Data System (ADS)

    Gozaliasl, Ghassem; Finoguenov, Alexis; Khosroshahi, Habib G.; Mirkazemi, Mohammad; Erfanianfar, Ghazaleh; Tanaka, Masayuki

    2016-05-01

    We study the distribution and evolution of the stellar mass and the star formation rate (SFR) of the brightest group galaxies (BGGs) over 0.04 < z < 1.3 using a large sample of 407 X-ray galaxy groups selected from the COSMOS, AEGIS, and XMM-LSS fields. We compare our results with predictions from the semi-analytic models based on the Millennium simulation. In contrast to model predictions, we find that, as the Universe evolves, the stellar mass distribution evolves towards a normal distribution. This distribution tends to skew to low-mass BGGs at all redshifts implying the presence of a star-forming population of the BGGs with MS ˜ 1010.5 M⊙ which results in the shape of the stellar mass distribution deviating from a normal distribution. In agreement with the models and previous studies, we find that the mean stellar mass of BGGs grows with time by a factor of ˜2 between z = 1.3 and z = 0.1, however, the significant growth occurs above z = 0.4. The BGGs are not entirely a dormant population of galaxies, as low-mass BGGs in low-mass haloes are more active in forming stars than the BGGs in more massive haloes, over the same redshift range. We find that the average SFR of the BGGs evolves steeply with redshift and fraction of the passive BGGs increases as a function of increasing stellar mass and halo mass. Finally, we show that the specific SFR of the BGGs within haloes with M200 ≤ 1013.4 M⊙ decreases with increasing halo mass at z < 0.4.

  11. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and

  12. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    SciTech Connect

    Abramson, Louis E.; Gladders, Michael D.; Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr.; Poggianti, Bianca; Vulcani, Benedetta

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  13. Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Martín, J.; Masqué, P.; Palanques, A.

    2015-10-01

    Previous studies conducted in La Fonera (Palamós) submarine canyon (NW Mediterranean) found that trawling activities along the canyon flanks cause resuspension and transport of sediments toward the canyon axis. 210Pb chronology supported by 137Cs dating applied to a sediment core collected at 1750 m in 2002 suggested a doubling of the sediment accumulation rate since the 1970s, coincident with the rapid industrialization of the local trawling fleet. The same canyon area has been revisited a decade later, and new data are consistent with a sedimentary regime shift during the 1970s and also suggest that the accumulation rate during the last decade could be greater than expected, approaching ~2.4 cm yr-1 (compared to ~0.25 cm yr-1 pre-1970s). These results support the hypothesis that commercial bottom trawling can substantially affect sediment dynamics and budgets on continental margins, eventually initiating the formation of anthropogenic depocenters in submarine canyon environments.

  14. The Gas Phase Mass Metallicity Relation for Dwarf Galaxies: Dependence on Star Formation Rate and H I Gas Mass

    NASA Astrophysics Data System (ADS)

    Jimmy; Tran, Kim-Vy; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola

    2015-10-01

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMRSFR) as well as HI-gas mass (FMRHI). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMRSFR and FMRHI across the stellar mass range 106.6-108.8 M⊙, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMRSFR (0.02 dex) is significantly lower than that of the MZR. The FMRSFR is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10-2.4 M⊙ yr-1, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMRHI. We also find that the FMRHI is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FMLSFR) and HI-gas mass (FMLHI). We find that the FMLHI relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FMLHI relation is not improved over the FMRHI scenario. This leads us to conclude that the FMRHI is the best candidate for a physically motivated fundamental metallicity relation. Based on VLT service mode observations (Programs 081.B-0649 and 083.B-0662) gathered at the European Southern Observatory, Chile.

  15. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate.

    PubMed

    Yang, HongKun; Meng, YaLi; Chen, BingLin; Zhang, XingYue; Wang, YouHua; Zhao, WenQing; Zhou, ZhiGuo

    2016-01-01

    Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen. PMID:27532007

  16. How Integrated Management Strategies Promote Protein Quality of Cotton Embryos: High Levels of Soil Available N, N Assimilation and Protein Accumulation Rate

    PubMed Central

    Yang, HongKun; Meng, YaLi; Chen, BingLin; Zhang, XingYue; Wang, YouHua; Zhao, WenQing; Zhou, ZhiGuo

    2016-01-01

    Cottonseed is widely used as a source of ruminant feed and for industrial purposes. Therefore, there is a tremendous need to improve the nutritional value of cotton embryos. In this study, a conventional management (CM) and two integrated cotton management strategies (IMS1, IMS2) were performed at two soil fertility levels to study the relationships among soil N, N assimilation, embryonic protein accumulation and protein quality. The levels of proteins, essential amino acids, and semi-essential amino acids, especially those of glutamate, lysine, and methionine, were higher in IMS1 and IMS2 embryos than in CM embryos. These changes were significantly positively correlated with the soil-available N content, glutamine synthetase activity and peak value of protein accumulation rate and were negatively correlated with the free amino acid level. These results illustrated that integrated management strategies, especially the rates and timing of N application, raise the level of soil available N, which is beneficial for N assimilation in developing cotton embryos. The protein content was limited by the rate of protein accumulation rather than by the free amino acid content. The combination of target yield fertilization, a growth-driven N application schedule, a high plant density and the seedling raising with bio-organic fertilizer can substantially improve protein quality in cotton embryos, especially at a soil with low soil organic matter and total nitrogen. PMID:27532007

  17. In situ cosmogenic H-3, C-14, and Be-10 for determining the net accumulation and ablation rates of ice sheets

    NASA Technical Reports Server (NTRS)

    Lal, D.; Nishiizumi, K.; Arnold, J. R.

    1987-01-01

    The usefulness of the in situ cosmogenic H-3, C-14, and Be-10 produced by spallation of oxygen nuclei in ice, as tracers to determine net accumulation/ablation rates of ice sheets is explored. The application of the in situ H-3 and Be-10 is severely constrained because at deposition, ice contains appreciable amounts of these isotopes from the atmosphere. The case is much more favorable for C-14, which is not carried with wet precipitations; atmospheric C-14 gets mechanically trapped in the ice during deposition. It is pointed out that cosmogenic C-14 would probably exist as (C-14)O in ice. This seems to be supported by the published results of Fireman and Norris (1981). Considering their inherent amounts in the ice and the expected in situ production rates, conditions under which these isotopes can be used to study net accumulation and ablation rates are discussed. Available data on C-14 and Be-10 on polar ice from accumulation and ablation zones is also discussed. It is concluded that H-3 and C-14 should find wide applications in studying ice dynamics and Be-10 in very special circumstances.

  18. Does seed mass drive the differences in relative growth rate between growth forms?

    PubMed

    Houghton, Jennie; Thompson, Ken; Rees, Mark

    2013-07-01

    The idea that herbaceous plants have higher relative growth rates (RGRs) compared with woody plants is fundamental to many of the most influential theories in plant ecology. This difference in growth rate is thought to reflect systematic variation in physiology, allocation and leaf construction. Previous studies documenting this effect have, however, ignored differences in seed mass. As woody species often have larger seeds and RGR is negatively correlated with seed mass, it is entirely possible the lower RGRs observed in woody species is a consequence of having larger seeds rather than different growth strategies. Using a synthesis of the published literature, we explored the relationship between RGR and growth form, accounting for the effects of seed mass and study-specific effects (e.g. duration of study and pot volume), using a mixed-effects model. The model showed that herbaceous species do indeed have higher RGRs than woody species, and that the difference was independent of seed mass, thus at all seed masses, herbaceous species on average grow faster than woody ones. PMID:23677351

  19. Monitoring the Mass Accretion Rate in Scorpius X-1 Using the Optical Johnson B Filter

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Norwood, J.; Harrison, T. E.; Holtzman, J.; Dukes, R.; Barker, T.

    2005-04-01

    The emission from low-mass X-ray binaries (LMXBs) arises from the accretion of mass onto a neutron star or black hole. A knowledge of the amount of mass being accreted as well as changes in this value are therefore essential inputs into models of these systems. Despite the need for this information, we currently lack an easily applied method that allows the accretion rate to be measured. X-ray color-color plots and UV observations can be used for this purpose, but these methods require access to oversubscribed satellites. Even if time is granted on these facilities, there is no guarantee that the source will be in a desired state when the observations take place. In this paper we show that an estimate of the ratio of the mass accretion rate to the Eddington rate can be obtained for Sco X-1 by using the Johnson B magnitude. Based on correlated X-ray and ground-based observations, we find that for Sco X-1, M˙/M˙E=-(0.123+/-0.007)B+2.543+/-0.085. This relation is valid when the system is on its normal and lower flaring branches. Based on theoretical models, we suggest that similar relations should also exist for other LMXBs.

  20. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site

    NASA Astrophysics Data System (ADS)

    Bockelmann, Alexander; Ptak, Thomas; Teutsch, Georg

    2001-12-01

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day -1, whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day -1 were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds.

  1. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site.

    PubMed

    Bockelmann, A; Ptak, T; Teutsch, G

    2001-12-15

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day(-1) whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day(-1) were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds. PMID:11820481

  2. Conditions for Circumstellar Disc Formation II: Effects of Initial Cloud Stability and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-09-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate onto the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brake the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with nonuniform densities.

  3. Effect of radiator position and mass flux on the dryer room heat transfer rate

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.

    A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.

  4. THE MOSDEF SURVEY: MASS, METALLICITY, AND STAR-FORMATION RATE AT z ∼ 2.3

    SciTech Connect

    Sanders, Ryan L.; Shapley, Alice E.; Kriek, Mariska; Price, Sedona H.; Reddy, Naveen A.; Freeman, William R.; Siana, Brian; Mobasher, Bahram; Shivaei, Irene; De Groot, Laura; Coil, Alison L.

    2015-02-01

    We present results on the z ∼ 2.3 mass-metallicity relation (MZR) using early observations from the MOSFIRE Deep Evolution Field survey. We use an initial sample of 87 star-forming galaxies with spectroscopic coverage of Hβ, [O III] λ5007, Hα, and [N II] λ6584 rest-frame optical emission lines, and estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators. We find a positive correlation between stellar mass and metallicity among individual z ∼ 2.3 galaxies using both the N2 and O3N2 indicators. We also measure the emission-line ratios and corresponding oxygen abundances for composite spectra in bins of stellar mass. Among composite spectra, we find a monotonic increase in metallicity with increasing stellar mass, offset ∼0.15-0.3 dex below the local MZR. When the sample is divided at the median star-formation rate (SFR), we do not observe significant SFR dependence of the z ∼ 2.3 MZR among either individual galaxies or composite spectra. We furthermore find that z ∼ 2.3 galaxies have metallicities ∼0.1 dex lower at a given stellar mass and SFR than is observed locally. This offset suggests that high-redshift galaxies do not fall on the local ''fundamental metallicity relation'' among stellar mass, metallicity, and SFR, and may provide evidence of a phase of galaxy growth in which the gas reservoir is built up due to inflow rates that are higher than star-formation and outflow rates. However, robust conclusions regarding the gas-phase oxygen abundances of high-redshift galaxies await a systematic reappraisal of the application of locally calibrated metallicity indicators at high redshift.

  5. Shallow Sediment Trace Metal Concentrations and Short-Term Accumulation Rates in the Neponset River Estuary, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Spencer, J. R.; Zhu, J.; Olsen, C. R.

    2010-12-01

    The Neponset River estuary is a small estuary that drains into the Boston Harbor on the east coast of the United States. It is also a highly urbanized estuary and has a long history of urban development over 450 years. In July 2006, six sediment cores were collected in the Neponset River estuary to examine particle dynamics and sediment accumulation via radionuclide (Beryllium-7) dating, and to determine sediment metal concentrations (As, Cu, Pb, and Zn) via ED-XRF measurements. Measured sediment Be-7 profiles indicate various sedimentation environments, where sediment accumulation, resuspension or redeposition is likely to occur. High metal concentrations were often corresponding to high Be-7 inventories in sediment cores. Possible sources of trace metal contaminants in the water column include: storm water run-off, Combined Sewer Overflows (CSOs), a well-documented industrial pollution event that occurred upstream in the early to mid twentieth century, and the resuspension of sediment. Existing and future data will provide baseline information for quantifying the effects of the proposed and pending environmental restoration project, which includes the removal of the Baker Dam. The combined pre- and post-Dam removal data may then be used in cost-benefit analyses for other similar estuarine restoration projects.

  6. ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. III. TIME DEPENDENCE AND STAR FORMATION RATE

    SciTech Connect

    Hennebelle, Patrick

    2013-06-20

    The present paper extends our previous theory of the stellar initial mass function (IMF) by including time dependence and by including the impact of the magnetic field. The predicted mass spectra are similar to the time-independent ones with slightly shallower slopes at large masses and peak locations shifted toward smaller masses by a factor of a few. Assuming that star-forming clumps follow Larson-type relations, we obtain core mass functions in good agreement with the observationally derived IMF, in particular, when taking into account the thermodynamics of the gas. The time-dependent theory directly yields an analytical expression for the star formation rate (SFR) at cloud scales. The SFR values agree well with the observational determinations of various Galactic molecular clouds. Furthermore, we show that the SFR does not simply depend linearly on density, as is sometimes claimed in the literature, but also depends strongly on the clump mass/size, which yields the observed scatter. We stress, however, that any SFR theory depends, explicitly or implicitly, on very uncertain assumptions like clump boundaries or the mass of the most massive stars that can form in a given clump, making the final determinations uncertain by a factor of a few. Finally, we derive a fully time dependent model for the IMF by considering a clump, or a distribution of clumps accreting at a constant rate and thus whose physical properties evolve with time. In spite of its simplicity, this model reproduces reasonably well various features observed in numerical simulations of converging flows. Based on this general theory, we present a paradigm for star formation and the IMF.

  7. Influence of Mass Transfer on Bioavailability and Kinetic Rate of Uranium(VI) Biotransformation

    SciTech Connect

    Chongxuan Liu; Zheming Wang; John M. Zachara; James K. Fredrickson

    2006-06-01

    This research is investigating the influence of mass transfer process on the rate and extent of microbial reduction of U(VI) associated with intragrain domains in the Hanford subsurface sediments. The project will develop instrumental techniques to characterize microscopic mass transfer process at the sediment grain scale and to develop kinetic data and process models that describe microbial reduction of intragrain U(VI). Scientific knowledge and process models developed from this research will enhance our understanding on the future behavior of in-ground U(VI) at Hanford and other DOE sites where sediments contain U(VI) in intragrain domains or fracture-matrix systems.

  8. Mass loss rates of uranium-zirconium carbide in flowing hydrogen and hydrogen-hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    MacMillan, Donald P.

    1991-01-01

    The results of experimental determinations of mass loss rates from (U,Zr)C exposed to flowing hydrogen at high temperature are reported. Two experimental techniques were used: isothermal heating of samples by arc jet and heating of long, porous, tubular samples by electrical self-resistance. Total mass losses as high as 20% were obtained, and the composition of the residue was determined. The results of these experiments were encouraging and led to the decision to use (U,Zr)C fuel elements in the next test reactor, Nuclear Furnace 2.

  9. Predictions for mass-loss rates and terminal wind velocities of massive O-type stars

    NASA Astrophysics Data System (ADS)

    Muijres, L. E.; Vink, Jorick S.; de Koter, A.; Müller, P. E.; Langer, N.

    2012-01-01

    Context. Mass loss from massive stars forms an important aspect of the evolution of massive stars, as well as for the enrichment of the surrounding interstellar medium. Aims: Our goal is to predict accurate mass-loss rates and terminal wind velocities. These quantities can be compared to empirical values, thereby testing radiation-driven wind models. One specific topical issue is that of the so-called "weak-wind problem", where empirically derived mass-loss rates and (modified) wind momenta fall orders of magnitude short of predicted values. Methods: We employ an established Monte Carlo model and a recently suggested new line acceleration formalism to solve the wind dynamics more consistently. Results: We provide a new grid of mass-loss rates and terminal wind velocities of O-type stars, and compare the values to empirical results. Our models fail to provide mass-loss rates for main-sequence stars below a luminosity of log(L/L⊙) = 5.2, where we appear to run into a fundamental limit. At luminosities below this critical value there is insufficient momentum transferred to the wind in the region below the sonic point in order to kick-start the acceleration of the flow. This problem occurs at almost the exact location of the onset of the weak-wind problem. For O dwarfs, the boundary between being able to start a wind, and failing to do so, is at spectral type O6/O6.5. The direct cause of this failure for O6.5 stars is a combination of the lower luminosity and a lack of Fe v lines at the base of the wind. This might indicate that - in addition to radiation pressure - another mechanism is required to provide the necessary driving to initiate the wind acceleration. Conclusions: For stars more luminous than 105.2 L⊙, our new mass-loss rates are in excellent agreement with the mass-loss prescription by Vink et al. (2000, A&A, 362, 295) using our terminal wind velocities as input to this recipe. This implies that the main assumption entering the method of the Vink et al

  10. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction.

    PubMed

    Halliday, Thomas John Dixon; Upchurch, Paul; Goswami, Anjali

    2016-06-29

    The effect of the Cretaceous-Palaeogene (K-Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K-Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K-Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K-Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene. PMID:27358361

  11. Empirical mass-loss rates for 25 O and early B stars, derived from Copernicus observations

    NASA Technical Reports Server (NTRS)

    Gathier, R.; Lamers, H. J. G. L. M.; Snow, T. P.

    1981-01-01

    Ultraviolet line profiles are fitted with theoretical line profiles in the cases of 25 stars covering a spectral type range from O4 to B1, including all luminosity classes. Ion column densities are compared for the determination of wind ionization, and it is found that the O VI/N V ratio is dependent on the mean density of the wind and not on effective temperature value, while the Si IV/N V ratio is temperature-dependent. The column densities are used to derive a mass-loss rate parameter that is empirically correlated against the mass-loss rate by means of standard stars with well-determined rates from IR or radio data. The empirical mass-loss rates obtained are compared with those derived by others and found to vary by as much as a factor of 10, which is shown to be due to uncertainties or errors in the ionization fractions of models used for wind ionization balance prediction.

  12. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction

    PubMed Central

    Upchurch, Paul; Goswami, Anjali

    2016-01-01

    The effect of the Cretaceous–Palaeogene (K–Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K–Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K–Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K–Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene. PMID:27358361

  13. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  14. Tracing the origin of nitrate accumulation in a deep groundwater reservoir in the Sahara desert using mass dependent and non-mass-dependent isotopic signatures

    NASA Astrophysics Data System (ADS)

    Leis, A.; Dietzel, M.; Abdalla, R.; Savarino, J.; Böttcher, M.; Köhler, S. J.

    2010-05-01

    Accumulation of nitrate in groundwater is a well known problem and mostly due to anthropogenic activities. However, in desert regions far from any anthropogenic pollution the accumulation of nitrate in groundwaters has to be related to other processes. In the present study an integrative hydrogeochemical and isotopic approach is used to identify the origin of nitrate in the Hasouna basin. The Jabal Hasouna wellfields are located in Libyan desert about 700 kilometers south of Tripoli. In the groundwater samples aqueous major and trace elements as well as traditional and non-traditional environmental isotopes were analyzed. Stable hydrogen and oxygen isotopic composition of the groundwater indicate that the ancient groundwater was recharged under cooler and more humid climate conditions. Nitrogen (δ15N) and oxygen isotopes (δ17O, δ18O) of dissolved nitrate as well as sulphur (δ34S) and oxygen (δ18O) isotopes in sulphate were measured to identify nitrate and sulphate sources and accumulation mechanisms. Our results indicate that nitrate in groundwater of the study area is of natural origin. Moreover, all investigated samples yield positive ?17O values of nitrate, which clearly indicate that every groundwater contains an individual degree of atmospheric nitrate within dissolved nitrate. ?17O values are strongly correlated with nitrate concentration, whereas the trend for δ18O is less diagnostic. A similar but more ambiguous trend can be also found for δ18O of sulphate. Our investigations indicate that ?17O signatures of nitrate can be applied as a powerful tool to trace the origin and fate of nitrate in deep groundwater reservoirs. Involving ?17O signatures in groundwater studies may provide enhanced understanding of ancient and recent recharge conditions in arid areas.

  15. The Gas Phase Mass Metallicity Relation for Dwarf Galaxies: Dependence on Star Formation Rate and H I Gas Mass

    NASA Astrophysics Data System (ADS)

    Jimmy; Tran, Kim-Vy; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola

    2015-10-01

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the Very Large Telescope, we investigate the mass–metallicity relation (MZR) as a function of star formation rate (FMRSFR) as well as HI-gas mass (FMRHI). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey (SDSS) to study the FMRSFR and FMRHI across the stellar mass range 106.6–108.8 M⊙, with metallicities as low as 12 + log(O/H) = 7.67. We find the 1σ mean scatter in the MZR to be 0.05 dex. The 1σ mean scatter in the FMRSFR (0.02 dex) is significantly lower than that of the MZR. The FMRSFR is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10‑2.4 M⊙ yr‑1, however, this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMRHI. We also find that the FMRHI is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FMLSFR) and HI-gas mass (FMLHI). We find that the FMLHI relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However, the 1σ scatter for the FMLHI relation is not improved over the FMRHI scenario. This leads us to conclude that the FMRHI is the best candidate for a physically motivated fundamental metallicity relation. Based on VLT service mode observations (Programs 081.B-0649 and 083.B-0662) gathered at the European Southern Observatory, Chile.

  16. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  17. A SEMI-EMPIRICAL MASS-LOSS RATE IN SHORT-PERIOD CATACLYSMIC VARIABLES

    SciTech Connect

    Sirotkin, Fedir V.; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.k

    2010-10-01

    The mass-loss rate of donor stars in cataclysmic variables (CVs) is of paramount importance in the evolution of short-period CVs. Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T{sub 2}, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M-dot{sub 2} of CVs as a function of P. The derived M-dot{sub 2} is at {approx}10{sup -9.5}-10{sup -10} M{sub sun} yr{sup -1} and weakly depends on P when P>90 minutes, while it declines very rapidly toward the minimum period when P < 90 minutes, emulating the P-T{sub 2} relation. Due to strong deviation from thermal equilibrium caused by the mass loss, the semi-empirical M-dot{sub 2} is significantly different from and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P- M-dot{sub 2} relation is consistent with the angular momentum loss due to gravitational wave emission and strongly suggests that CV secondaries with 0.075 M{sub sun} < M{sub 2} < 0.2 M{sub sun} are less than 2 Gyr old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T{sub 1} of white dwarfs, suggesting that M-dot{sub 2} can be used to reliably infer T{sub 2} from T{sub 1}. Based on the semi-empirical M-dot{sub 2}, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.

  18. Denudation rates from mass balance on alluvial fans in the chinese Tian Shan

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Barrier, Laurie; Métivier, François; Jolivet, Marc; Fu, Bihong

    2015-04-01

    Denudation is a key process for mountain ranges evolution as it is an essential parameter to study the mass transfer over the Earth surface, the evolution of reliefs, or the complex relationships between climate, erosion and landscape changes. Several methods have been develop to quantify denudation such as the estimation of paleo-sediment fluxes from mass budget. In fact, markers of erosion within drainage areas are often scarce, temporary and difficult to reach. At the outlet of mountain belts, more continuous and perennial records of deposition can be found in sedimentary basins. Sediment budget is thus a powerful approach, generally used at the scale of sedimentary basins. However, this method can also be applied on smaller sedimentary systems, such as alluvial fans. Yet, it is seldom used on these systems, and consequently, its accuracy is barely questioned. We propose to implement such a method on several alluvial fan systems in the Chinese part of the Tian Shan Range, where estimations of denudation rates have already been proposed. Based on the reconstruction of two generations of alluvial fans, we estimate the volume of sediment exported out of the drainage system of the range for the Middle- Late Pleistocene (300 000 to ~11 000 y) and for the Holocene (~11 000 y to present). From these volumes, we derive denudation rates of ~135 m/My at maximum for these two periods, in good agreement with previous mass balance studies. Despite a strong change in the morphology of the piedmont at the onset of the Holocene, denudation rate seems quite stable within the hinterland mountains. This value is quite low for such a range. Based on a comparison of denudation rates observed in other areas over the world with comparable shortening or precipitation rates, we suggest that the low denudation rate observed in the chinese Tian Shan is related to the limited amount of precipitation.

  19. Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate

    USGS Publications Warehouse

    Mastin, Larry G.

    2014-01-01

    During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.

  20. Scaling of metabolic rate on body mass in small mammals at 2.0 g

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1983-01-01

    It is postulated that augmentation of gravitational loading should produce a shift in the classic Kleiber mammalian allometric relationship between metabolic rate and total body mass by an increase in both these parameters. Oxygen consumption rate and body mass measurements of 10 male rabbits 8 months of age were obtained initially for 1.0 g, and then over a 9-week period of chronic centrifugation at 2.0 g. Analysis of covariance showed that the positioning constant at 2.0 g is increased by 17 percent from that at 1.0 g at the P less than 0.001 level, and the exponent is increased by 8 percent at the P = 0.008 level. It is concluded that abatement of gravitational loading in spaceflight will result in a lowering of both allometric parameters.

  1. Burst mode with ps- and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation

    NASA Astrophysics Data System (ADS)

    Neuenschwander, B.; Kramer, Th.; Lauer, B.; Jaeggi, B.

    2015-03-01

    The burst mode for ps and fs pulses for steel and copper is investigated. It is found that the reduction of the energy in a single pulse (in the burst) represents the main factor for the often reported gain in the removal rate using the burst mode e.g. for steel no investigated burst sequence lead to a higher removal rate compared to single pulses at higher repetition rate. But for copper a situation was found where the burst mode leads to a real increase of the removal rate in the range of 20%. Further the burst mode offers the possibility to generate slightly melted flat surfaces with good optical properties in the case of steel. Temperature simulations indicate that the surface state during the burst mode could be responsible for the melting effect or the formation of cavities in clusters which reduces the surface quality.

  2. Accumulated occupational class and self-rated health. Can information on previous experience of class further our understanding of the social gradient in health?

    PubMed

    Kjellsson, Sara

    2013-03-01

    Previous research has shown a social gradient in health with better health for people in more advantaged positions in society. This research has mainly been on the relationship between current position and health, or social position in childhood and health, but less is known about the potential accumulative impact of positions held in adulthood. In this paper I use the economic activity histories from the Swedish Level of Living survey to examine the relationship between accumulated occupational class positions and health. Step-wise linear probability models are used to investigate how to best capture the potential association between class experience and self-rated health (SRH), and whether the effect of current class is modified when measures of accumulated class are included. I then further test the potentially lasting association between previous exposure to the health risk of working class by analysing only individuals currently in higher or intermediate level service class; the classes under least exposure. I find a positive association between accumulated experiences of working class and less than good SRH. Furthermore, even for employees currently in non-manual positions the risk for less than good SRH increases with each added year of previous experience within working class. This suggests that the social gradient can be both accumulative and lasting, and that more information on the mechanisms of health disparities can be found by taking detailed information on peoples' pasts into account. Although gender differences in health are not a focus in this paper, results also indicate that the influence of class experiences on health might differ between men and women. PMID:23422057

  3. Covariance between Star Formation Rates and Dust Mass of KINGFISH Galaxies

    NASA Astrophysics Data System (ADS)

    Rojas Bolivar, Randall; Calzetti, Daniela; Dale, Daniel A.; Cook, David

    2016-01-01

    We present the initial results for a study of the potential covariance between galaxy physical parameters (e.g., the star formation rate and dust mass) derived from the infrared spectral energy distributions (SEDs) of galaxies. With the emergence of powerful facilities and instruments in the millimeter and sub-millimeter wavelengths, which complement data from infrared space telescopes like Herschel, scientists have been able to observe the infrared SEDs of faraway galaxies (with redshifts between 2 and 5). These SEDs are being used to derive both star formation rates (SFR) and dust masses, the latter related to gas masses. The relationship between SFRs and gas masses determine the fundamental scaling laws of star formation (the Schmidt Kennicutt Law). Thus, it is fundamental to ascertain whether derivation of these quantities from IR SEDs may be affected by covariance. We will use the Spitzer and Herschel data from the nearby survey: Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH), which includes 61 nearby galaxies observed between 3.6 and 500 micron.

  4. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-12-31

    This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

  5. Sensitivity of β -decay rates to the radial dependence of the nucleon effective mass

    NASA Astrophysics Data System (ADS)

    Severyukhin, A. P.; Margueron, J.; Borzov, I. N.; Van Giai, N.

    2015-03-01

    We analyze the sensitivity of β -decay rates in 78Ni and Sn,132100 to a correction term in Skyrme energy-density functionals (EDFs) which modifies the radial shape of the nucleon effective mass. This correction is added on top of several Skyrme parametrizations which are selected from their effective mass properties and predictions about the stability properties of 132Sn . The impact of the correction on high-energy collective modes is shown to be moderate. From the comparison of the effects induced by the surface-peaked effective mass in the three doubly magic nuclei, it is found that 132Sn is largely impacted by the correction, while 78Ni and 100Sn are only moderately affected. We conclude that β -decay rates in these nuclei can be used as a test of different parts of the nuclear EDF: 78Ni and 100Sn are mostly sensitive to the particle-hole interaction through the B (GT) values, while 132Sn is sensitive to the radial shape of the effective mass. Possible improvements of these different parts could therefore be better constrained in the future.

  6. Modeling of the mass transfer rates of metal ions across supported liquid membranes. 1: Theory

    SciTech Connect

    Elhassadi, A.A.; Do, D.D.

    1999-01-01

    This paper deals with the modeling of the transport and separation of metal ions across supported liquid membranes. The mass transfer resistance at the liquid-membrane interfaces and the interfacial chemical reactions at both the extracting side and the stripping side are taken into account in the model equations. Simple analysis of the time scale of the system shows the influence of various important parameters and their interactions on the overall transport rate. Parametric studies are also dealt with in this paper.

  7. Mass loss rates from protostars and OI(63 micron) shock luminosities

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.

    1985-01-01

    The high-velocity ejection of material from protostars results in a wind shock which may be observable in OI(63 micron) emission. It is shown that for a wide range of conditions, the OI(63 micron) luminosity is proportional to the mass loss rate from the protostar. Application is made to shock OI(63 micron) emission observed around IRc2 in the BN-KL region of Orion.

  8. Low-mass, high-rate cylindrical MWPC's for the MEGA experiment

    SciTech Connect

    Mischke, R.E.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.W.; Hogan, G.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Stanislaus, S.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C. )

    1990-01-01

    The construction of MWPCs for the MEGA experiment at LAMPF are described. The chambers are cylindrical, low mass (3 {times} 10{sup {minus}4} radiation lengths), and are designed to operate at high rates (3 {times} 10{sup 4} /mm{sup 2}/s). Several novel construction techniques have been developed and custom electronics have been designed to help achieve the required performance, which corresponds to that needed at high luminosity colliders. 4 refs., 3 figs.

  9. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.; Soszyński, I.; Petersen, E. A.

    2009-11-01

    Context: Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims: To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods: Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 μm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results: We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to “astronomical silicates”. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 μm window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 μm. Relations between mass-loss rates and luminosity and pulsation

  10. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  11. Volatile organic compound emission rates from mechanical surface aerators: Mass-transfer modeling

    SciTech Connect

    Chern, J.M.; Chou, S.R.

    1999-08-01

    In wastewater treatment plants, many operation units such as equalization and aeration involve oxygen transfer between wastewater and air. While oxygen is transferred from air to wastewater, volatile organic compounds (VOCs) are stripped from wastewater to air. Because of increasingly stringent environmental regulations, wastewater treatment operators have to do VOC inventory of their facilities. A new mass-transfer model has been developed to predict the VOC emission rates from batch and continuous aeration tanks with mechanical surface aerators. The model takes into consideration that the VOC mass transfer occurs in two separate mass-transfer zones instead of lumping the overall VOC transfer in the whole aeration tank as is done in the conventional ASCE-based model. The predictive capabilities of the two-zone and the ASCE-based models were examined by calculating the emission rates of 10 priority pollutants from aeration tanks. The effects of the hydraulic retention time, the Henry`s law constant, gas-phase resistance, and the water and air environmental conditions on the VOC emission rates were predicted by the two models.

  12. Geologic ages and accumulation rates of basalt-flow groups and sedimentary interbeds in selected wells at the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Anderson, S.R.; Liszewski, M.J.; Cecil, L.D.

    1997-01-01

    Geologic ages and accumulation rates, estimated from regressions, were used to evaluate measured ages and interpreted stratigraphic and structural relations of basalt and sediment in the unsaturated zone and the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) in eastern Idaho. Geologic ages and accumulation rates were estimated from standard linear regressions of 21 mean potassium-argon (K-Ar) ages, selected mean paleomagnetic ages, and cumulative depths of a composite stratigraphic section composed of complete intervals of basalt and sediment that were deposited in areas of past maximum subsidence. Accumulation rates also were estimated from regressions of stratigraphic intervals in three wells in and adjacent to an area of interpreted uplift at and near the Idaho Chemical Processing Plant (ICPP) and the Test Reactor Area (TRA) to allow a comparison of rates in areas of past uplift and subsidence. Estimated geologic ages range from about 200 thousand to 1.8 million years before present and are reasonable approximations for the interval of basalt and sediment above the effective base of the aquifer, based on reported uncertainties of corresponding measured ages. Estimated ages between 200 and 800 thousand years are within the range of reported uncertainties for all 15 K-Ar ages used in regressions and two out of three -argon ({sup 40}Ar/{sup 39}Ar) ages of duplicate argon samples. Two sets of estimated ages between 800 thousand and 1.8 million years are within the range of reported uncertainties for all seven K-Ar ages used in regressions, which include one shared age of about 800 thousand years. Two sets of ages were estimated for this interval because K-Ar ages make up two populations that agree with previous and revised ages of three paleomagnetic subchrons. The youngest set of ages is consistent with a K-Ar age from the effective base of the aquifer that agrees with previous ages of the Olduvai Normal-Polarity Subchron.

  13. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface.

    PubMed

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-08-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3-5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. PMID:27132250

  14. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets. PMID:15503054

  15. The MOSDEF Survey: Mass, Metallicity, and Star-formation Rate at z~2.3

    NASA Astrophysics Data System (ADS)

    Sanders, Ryan Lee

    2015-08-01

    We present results on the z~2.3 mass-metallicity relation (MZR) using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. We use a sample of star-forming galaxies with spectroscopic coverage of Hβ, [OIII]λ5007, Hα, and [NII]λ6584 rest-frame optical emission lines, and estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators. We find a positive correlation between stellar mass and metallicity among individual z ˜ 2.3 galaxies using both the N2 and O3N2 indicators. We also measure the emission-line ratios and corresponding oxygen abundances for composite spectra in bins of stellar mass. Among composite spectra, we find a monotonic increase in metallicity with increasing stellar mass, offset ~0.15 - 0.3 dex below the local MZR. When the sample is divided at the median star-formation rate (SFR), we do not observe significant SFR dependence of the z~2.3 MZR among either individual galaxies or composite spectra. By directly comparing bins of local and high-redshift galaxies with similar stellar mass and SFR, we furthermore find that z~2.3 galaxies have metallicities ~0.1 dex lower at a given stellar mass and SFR than is observed locally. This offset suggests that high-redshift galaxies do not fall on the local “fundamental metallicity relation” among stellar mass, metallicity, and SFR, and may provide evidence of a phase of galaxy growth in which the gas reservoir is built up due to inflow rates that are higher than star-formation and outflow rates. However, robust conclusions regarding the gas-phase oxygen abundances of high-redshift galaxies await a systematic reappraisal of the application of locally calibrated metallicity indicators at high redshift. Using the MOSDEF dataset and photoionization models, we can also constrain the physical conditions (density, ionization state, hardness of the ionizing spectrum, metallicity) of high-redshift star-forming regions, providing one method of producing calibrations

  16. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  17. Mass accretion rates from multiband photometry in the Carina Nebula: the case of Trumpler 14

    NASA Astrophysics Data System (ADS)

    Beccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, G.; Romaniello, M.; Zoccali, M.; Weidner, C.

    2015-01-01

    Context. We present a study of the mass accretion rates of pre-main sequence (PMS) stars in the cluster Trumpler 14 (Tr 14) in the Carina Nebula. Using optical multiband photometry we were able to identify 356 PMS stars showing Hα excess emission with equivalent width EW(Hα) > 20 Å. We interpret this observational feature as an indication that these objects are still actively accreting gas from their circumstellar medium. From a comparison of the HR diagram with PMS evolutionary models we derive ages and masses of the PMS stars. We find that most of the PMS objects are younger than 10 Myr with a median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we determine the mass accretion rate (Ṁacc) and discuss its dependence on mass and age. We finally combine the optical photometry with near-IR observations to build the spectral energy distribution (SED) for each PMS star in Tr 14. The analysis of the SEDs suggests the presence of transitional discs in which a large amount of gas is still present and sustains accretion onto the PMS object at ages older than 10 Myr. Our results, discussed in light of recent recent discoveries with Herschel of transitional discs containing a massive gas component around the relatively old PMS stars TW Hydrae, 49 Ceti, and HD 95086, support a new scenario n which old and evolved debris discs still host a significant amount of gas. Aims: Methods: Results:

  18. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  19. Heat and mass transfer analysis for paraffin/nitrous oxide burning rate in hybrid propulsion

    NASA Astrophysics Data System (ADS)

    Ben-Basat (Sisi), Shani; Gany, Alon

    2016-03-01

    This research presents a physical-mathematical model for the combustion of liquefying fuels in hybrid combustors, accounting for blowing effect on the heat transfer. A particular attention is given to a paraffin/nitrous oxide hybrid system. The use of a paraffin fuel in hybrid propulsion has been considered because of its much higher regression rate enabling significantly higher thrust compared to that of common polymeric fuels. The model predicts the overall regression rate (melting rate) of the fuel and the different mechanisms involved, including evaporation, entrainment of droplets of molten material, and mass loss due to melt flow on the condensed fuel surface. Prediction of the thickness and velocity of the liquid (melt) layer formed at the surface during combustion was done as well. Applying the model for an oxidizer mass flux of 45 kg/(s m2) as an example representing experimental range, it was found that 21% of the molten liquid undergoes evaporation, 30% enters the gas flow by the entrainment mechanism, and 49% reaches the end of the combustion chamber as a flowing liquid layer. When increasing the oxidizer mass flux in the port, the effect of entrainment increases while that of the flowing liquid layer along the surface shows a relatively lower contribution. Yet, the latter is predicted to have a significant contribution to the overall mass loss. In practical applications it may cause reduced combustion efficiency and should be taken into account in the motor design, e.g., by reinforcing the paraffin fuel with different additives. The model predictions have been compared to experimental results revealing good agreement.

  20. A Robust Measurement of the Mass Outflow Rate of the Galactic Outflow from NGC 6090

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei

    2016-08-01

    To evaluate the impact of stellar feedback, it is critical to estimate the mass outflow rates of galaxies. Past estimates have been plagued by uncertain assumptions about the outflow geometry, metallicity, and ionization fraction. Here we use Hubble Space Telescope ultraviolet spectroscopic observations of the nearby starburst NGC 6090 to demonstrate that many of these quantities can be constrained by the data. We use the Si IV absorption lines to calculate the scaling of velocity (v), covering fraction (Cf), and density with distance from the starburst (r), assuming the Sobolev optical depth and a velocity law of the form: v~∝(1 - Ri/r)β (where Ri is the inner outflow radius). We find that the velocity (β=0.43) is consistent with an outflow driven by an r-2 force with the outflow radially accelerated, while the scaling of the covering fraction (Cf∝r-0.82) suggests that cool clouds in the outflow are in pressure equilibrium with an adiabatically expanding medium. We use the column densities of four weak metal lines and CLOUDY photoionization models to determine the outflow metallicity, the ionization correction, and the initial density of the outflow. Combining these values with the profile fitting, we find Ri = 63 pc, with most of the mass within 300 pc of the starburst. Finally, we find that the maximum mass outflow rate is 2.3 M⊙ yr-1 and the mass loading factor (outflow divided by the star formation rate) is 0.09, a factor of 10 lower than the value calculated using common assumptions for the geometry, metallicity and ionization structure of the outflow.

  1. Dependence of the outer density profiles of halos on their mass accretion rate

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2014-07-01

    We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.

  2. Post-bubble close-off fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure

    NASA Astrophysics Data System (ADS)

    Kobashi, T.; Ikeda-Fukazawa, T.; Suwa, M.; Schwander, J.; Kameda, T.; Lundin, J.; Hori, A.; Motoyama, H.; Döring, M.; Leuenberger, M.

    2015-12-01

    Gases in ice cores are invaluable archives of past environmental changes (e.g., the past atmosphere). However, gas fractionation processes after bubble closure in the firn are poorly understood, although increasing evidence indicates preferential leakages of smaller molecules (e.g., neon, oxygen, and argon) from the closed bubbles through the ice matrix. These fractionation processes are believed to be responsible for the observed millennial δO2/N2 variations in ice cores, linking ice core chronologies with orbital parameters. In this study, we investigated high-resolution δAr/N2 of the GISP2 (Greenland Ice Sheet Project 2), NGRIP (North Greenland Ice Core Project), and Dome Fuji ice cores for the past few thousand years. We find that δAr/N2 at multidecadal resolution on the "gas-age scale" in the GISP2 ice core has a significant negative correlation with accumulation rate and a positive correlation with air contents over the past 6000 years, indicating that changes in overloading pressure induced δAr/N2 fractionation in the firn. Furthermore, the GISP2 temperature and accumulation rate for the last 4000 years have nearly equal effects on δAr/N2 with sensitivities of 0.72 ± 0.1 ‰ °C-1 and -0.58 ± 0.09 ‰ (0.01 m ice year-1)-1, respectively. To understand the fractionation processes, we applied a permeation model for two different processes of bubble pressure build-up in the firn, "pressure sensitive process" (e.g., microbubbles: 0.3-3 % of air contents) with a greater sensitivity to overloading pressures and "normal bubble process". The model indicates that δAr/N2 in the bubbles under the pressure sensitive process are negatively correlated with the accumulation rate due to changes in overloading pressure. On the other hand, the normal bubbles experience only limited depletion (< 0.5 ‰) in the firn. Colder temperatures in the firn induce more depletion in δAr/N2 through thicker firn. The pressure sensitive bubbles are so depleted in δAr/N2 at the

  3. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers

  4. Mass Loss Rates for Solar-like Stars Measured from Lyα Absorption

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Müller, H.-R.; Linsky, J. L.

    2003-10-01

    We present a number of mass loss rate measurements for solar-like stars with coronal winds, computed using a Lyα absorption technique. The collision between the solar wind and the interstellar wind seen by the Sun defines the large scale structure of our heliosphere. Similar structures, ``astrospheres,'' exist around other solar-like stars. The deceleration of the interstellar wind at the solar or stellar bow shock heats the interstellar material. Heated neutral hydrogen in the outer astrosphere (and/or heliosphere) produces a broad Lyα absorption profile that is often detectable in high resolution Hubble Space Telescope spectra. The amount of absorption is dependent upon the strength of the stellar wind. With guidance from hydrodynamic models of astrospheres, we use detected astrospheric Lyα absorption to estimate the stellar mass loss rates. For the solar-like GK stars in our sample, mass loss appears to increase with stellar activity, suggesting that young, active stars have stronger winds than old, inactive stars. However, Proxima Cen (M5.5 Ve) and λ And (G8 IV-III+M V) appear to be inconsistent with this relation.

  5. One-Mile Run Performance and Body Mass Index in Asian and Pacific Islander Youth: Passing Rates for the FITNESSGRAM.

    ERIC Educational Resources Information Center

    Bungum, Timothy J.; Jackson, Allen W.; Weiller, Karen H.

    1998-01-01

    Used FITNESSGRAM fitness standards to compare passing rates of Asian and Pacific Islander (API) students with passing rates of National Children and Youth Fitness Study participants, examining body mass index (BMI) and 1-mile run (OMR) rates. The groups had similar BMI but differing OMR passing rates. There were gender- and age-related BMI and OMR…

  6. 78 FR 29131 - Electricity MASS, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Electricity MASS, LLC; Supplemental Notice that Initial Market- Based Rate...-referenced proceeding, of Electricity MASS, LLC's application for market-based rate authority, with...

  7. Reassessing the Relation Between Stellar Mass, Metallicity, and Star Formation Rate in the Local Universe

    NASA Astrophysics Data System (ADS)

    Telford, Olivia Grace; Dalcanton, Julianne; Skillman, Evan D.; Conroy, Charlie

    2015-01-01

    There is considerable evidence that the well-established mass-metallicity relation in galaxies depends on a third parameter: star formation rate (SFR). The observed strength of this dependence varies substantially depending on the choice of metallicity calibration, but has significant implications for theories of galaxy evolution, as it constrains the interplay between infall of pristine gas, metal production due to star formation, and ejection of enriched gas from galaxies. We present a new analysis of the relation between stellar mass, gas phase metallicity and SFR for ~140,000 star-forming galaxies in the Sloan Digital Sky Survey. Using a new set of theoretically calibrated abundance diagnostics from Dopita et al. (2013), we find a weaker dependence of metallicity on SFR at fixed stellar mass than was found by previous studies using different calibration techniques for gas phase metallicity. We analyze possible biases in the derivation of mass, metallicity, and SFR that could cause the observed strength of the metallicity dependence on SFR to differ from reality, as the calculation of each of these quantities is subject to systematic errors. Chemical evolution models must carefully consider these sources of potential bias when accounting for metallicity dependence on SFR.

  8. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  9. Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California

    USGS Publications Warehouse

    Snyder, N.P.; Rubin, D.M.; Alpers, C.N.; Childs, J. R.; Curtis, J.A.; Flint, L.E.; Wright, S.A.

    2004-01-01

    Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The

  10. The rate of mass loss and variations in the wind from the Be star delta Centauri

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Oegerle, W. R.; Polidan, R. S.

    1980-01-01

    Copernicus ultraviolet scans of the Be star delta Centauri obtained in 1976 and 1979, show a significant variation in the Si III lambda 1206 profile, The strong asymmetry that was present in 1976 had disappeared by 1979. The Si IV lambda 1400 doublet was also asymmetric in 1976, but was not observed in 1979. A quantitative fit of the line shapes to theoretical wind profiles shows that the mass-loss rate in 1976 was 2 x 10 to the minus 8th power/yr, and that the rate of mass loss in Si III was at least one order of magnitude less in 1979. It is not possible to determine whether the variation represented an overall change in the lass-loss rate, or whether it was due to a change in the ionization balance. The profile fitting procedure resulted in the adoption of assumed underlying photospheric Si III and Si IV profiles, and the equivalent widths measured from these profiles are most consistent with T sub eff between 30,000 and 35,000 K, somewhat hotter than implied by the spectral classification normally assigned to this star. The ultraviolet photospheric line widths, coupled wit published theoretical analyses of rotational gravitational darkening, imply an intrinsic equatorial velocity of about 310 km/sec and an angle of inclination of the rotational axis to the line of sight of i is less than or equal to 44 deg.

  11. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-04-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von-Zeipel surfaces and projected the jet equations of motion onto the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≲ 0.06 in the general relativistic prescription, but is lower if massloss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock. The jet terminal speed increases with stronger shocks, quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6% of the mass accretion rate.

  12. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-08-01

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  13. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  14. Comparison of nonmesonic hypernuclear decay rates computed in laboratory and center-of-mass coordinates

    SciTech Connect

    De Conti, C.; Barbero, C.; Galeão, A. P.; Krmpotić, F.

    2014-11-11

    In this work we compute the one-nucleon-induced nonmesonic hypernuclear decay rates of {sub Λ}{sup 5}He, {sub Λ}{sup 12}C and {sub Λ}{sup 13}C using a formalism based on the independent particle shell model in terms of laboratory coordinates. To ascertain the correctness and precision of the method, these results are compared with those obtained using a formalism in terms of center-of-mass coordinates, which has been previously reported in the literature. The formalism in terms of laboratory coordinates will be useful in the shell-model approach to two-nucleon-induced transitions.

  15. Mass flow rate of granular material in silos with lateral exit holes

    NASA Astrophysics Data System (ADS)

    Medina, Abraham; Serrano, Armando; Sanchez, Florencio

    2014-11-01

    In this work we have analyzed experimentally the mass flow rate, m', of the lateral outflow of cohesionless granular material through circular orifices of diameter D and rectangular and triangular slots of hydraulic diameter DH made in vertical walls of bins. Experiments were made in order to determine also the influence of the wall thickness of the bin, w. Geometrical and physical arguments, are given to get a general correlation for m' embracing both quantities, D (DH) and w. The angle of repose is also an important factor characterizing these flows.

  16. Myotubes from Severely Obese Type 2 Diabetic Subjects Accumulate Less Lipids and Show Higher Lipolytic Rate than Myotubes from Severely Obese Non-Diabetic Subjects

    PubMed Central

    Bakke, Siril S.; Kase, Eili T.; Moro, Cedric; Stensrud, Camilla; Damlien, Lisbeth; Ludahl, Marianne O.; Sandbu, Rune; Solheim, Brita Marie; Rustan, Arild C.; Hjelmesæth, Jøran; Thoresen, G. Hege; Aas, Vigdis

    2015-01-01

    About 80% of patients with type 2 diabetes are classified as overweight. However, only about 1/3 of severely obese subjects have type 2 diabetes. This indicates that several severely obese individuals may possess certain characteristics that protect them against type 2 diabetes. We therefore hypothesized that this apparent paradox could be related to fundamental differences in skeletal muscle lipid handling. Energy metabolism and metabolic flexibility were examined in human myotubes derived from severely obese subjects without (BMI 44±7 kg/m2) and with type 2 diabetes (BMI 43±6 kg/m2). Lower insulin sensitivity was observed in myotubes from severely obese subjects with type 2 diabetes. Lipolysis rate was higher, and oleic acid accumulation, triacylglycerol content, and fatty acid adaptability were lower in myotubes from severely obese subjects with type 2 diabetes compared to severely obese non-diabetic subjects. There were no differences in lipid distribution and mRNA and protein expression of the lipases HSL and ATGL, the lipase cofactor CGI-58, or the lipid droplet proteins PLIN2 and PLIN3. Glucose and oleic acid oxidation were also similar in cells from the two groups. In conclusion, myotubes established from severely obese donors with established type 2 diabetes had lower ability for lipid accumulation and higher lipolysis rate than myotubes from severely obese donors without diabetes. This indicates that a difference in intramyocellular lipid turnover might be fundamental in evolving type 2 diabetes. PMID:25790476

  17. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    PubMed

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable. PMID:21123926

  18. Intracellular accumulation of AMP as a cause for the decline in rate of ethanol production by Saccharomyces cerevisiae during batch fermentation

    SciTech Connect

    Dombek, K.M.; Ingram, L.O.

    1988-01-01

    A general hypothesis is presented for the decline in the rate of ethanol production (per unit of cell protein) during batch fermentation. Inhibition of ethanol production is proposed to result from the intracellular accumulation of AMP during the transition from growth to the stationary phase. AMP acts as a competitive inhibitor of hexokinase with respect to ATP. When assayed in vitro in the presence of ATP and AMP concentration equivalent to those within cells at different stages of fermentation, hexokinase activity declined in parallel with the in vivo decline in the rate of ethanol production. The coupling of glycolytic flux and fermentation to cell growth via degradation products of RNA may be of evolutionary advantage for Saccharomyces cerevisiae. Such a coupling would reduce the exposure of nongrowing cells to potentially harmful concentrations of waste products from metabolism and would conserve nutrients for future growth under more favorable conditions.

  19. Determination of nicotine and its metabolites accumulated in fish tissue using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Chang, Yun-Wei; Nguyen, Hien P; Chang, Mike; Burket, S Rebekah; Brooks, Bryan W; Schug, Kevin A

    2015-07-01

    The determination of nicotine and its major metabolites (cotinine and anabasine) in fish tissue was performed using liquid chromatography and tandem mass spectrometry. Marine and freshwater fish were purchased from local grocery stores and were prepared based on a quick, easy, cheap, effective, rugged, and safe sample preparation protocol. To determine the highly polar compounds, hydrophilic interaction liquid chromatography was also used. There were modest suppressions on measured nicotine signals (10%) due to the matrix effects from marine fish but no obvious effects on freshwater fish signals. Method validation was incorporated with internal standards and carried out with matrix-matched calibration. The detection limits for nicotine, cotinine, and anabasine were 9.4, 3.0, and 1.5 ng/g in fish, respectively. Precision was quite acceptable returning less than 8% RSD at low, medium, and high concentrations. Acceptable and reproducible extraction recoveries (70-120%) of all three compounds were achieved, except for anabasine at low concentration (61%). The method was then applied to define nicotine bioaccumulation in a fathead minnow model, which resulted in rapid uptake with steady state internal tissue levels, reached within 12 h. This developed method offers a fast, easy, and sensitive way to evaluate nicotine and its metabolite residues in fish tissues. PMID:25953492

  20. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  1. NMR-based metabolic profiling in healthy individuals overfed different types of fat: links to changes in liver fat accumulation and lean tissue mass

    PubMed Central

    Elmsjö, A; Rosqvist, F; Engskog, M K R; Haglöf, J; Kullberg, J; Iggman, D; Johansson, L; Ahlström, H; Arvidsson, T; Risérus, U; Pettersson, C

    2015-01-01

    Background: Overeating different dietary fatty acids influence the amount of liver fat stored during weight gain, however, the mechanisms responsible are unclear. We aimed to identify non-lipid metabolites that may differentiate between saturated (SFA) and polyunsaturated fatty acid (PUFA) overfeeding using a non-targeted metabolomic approach. We also investigated the possible relationships between plasma metabolites and body fat accumulation. Methods: In a randomized study (LIPOGAIN study), n=39 healthy individuals were overfed with muffins containing SFA or PUFA. Plasma samples were precipitated with cold acetonitrile and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition techniques were used to overview the data, identify variables contributing to group classification and to correlate metabolites with fat accumulation. Results: We previously reported that SFA causes a greater accumulation of liver fat, visceral fat and total body fat, whereas lean tissue levels increases less compared with PUFA, despite comparable weight gain. In this study, lactate and acetate were identified as important contributors to group classification between SFA and PUFA (P<0.05). Furthermore, the fat depots (total body fat, visceral adipose tissue and liver fat) and lean tissue correlated (P(corr)>0.5) all with two or more metabolites (for example, branched amino acids, alanine, acetate and lactate). The metabolite composition differed in a manner that may indicate higher insulin sensitivity after a diet with PUFA compared with SFA, but this needs to be confirmed in future studies. Conclusion: A non-lipid metabolic profiling approach only identified a few metabolites that differentiated between SFA and PUFA overfeeding. Whether these metabolite changes are involved in depot-specific fat storage and increased lean tissue mass during overeating needs further investigation. PMID:26479316

  2. Particle mass emission rates from current-technology, light-duty gasoline vehicles.

    PubMed

    Chase, R E; Duszkiewicz, G J; Jensen, T E; Lewis, D; Schlaps, E J; Weibel, A T; Cadle, S; Mulawa, P

    2000-06-01

    Now that the U.S. Environmental Protection Agency has promulgated new National Ambient Air Quality Standards for PM2.5, work will begin on generating the data required to determine the sources of ambient PM2.5 and the magnitude of their contributions to air pollution. This paper summarizes the results of an Environmental Research Consortium program, carried out under the auspices of the U.S. Council for Automotive Research. The program focused on particulate matter (PM) emissions from representative, current-technology, light-duty gasoline vehicles produced by DaimlerChrysler Corp., Ford Motor Co., and General Motors Corp. The vehicles, for the most part taken from the manufacturer's certification and durability fleets, were dynamometer-tested using the three-phase Federal Test Procedure in the companies' laboratories. The test fleet was made up of a mixture of both low-mileage (2K-35K miles) and high-mileage (60K-150K miles) cars, vans, sport utility vehicles, and light trucks. For each vehicle tested, PM emissions were accumulated over 4 cold-start tests, which were run on successive days. PM emission rates from the entire fleet (22 vehicles total) averaged less than 2 mg/mile. All 18 vehicles tested using California Phase 2 reformulated gasoline had PM emission rates less than 2 mg/mile at both low and high mileages. PMID:10902385

  3. On the Enhanced Coronal Mass Ejection Detection Rate since the Solar Cycle 23 Polar Field Reversal

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2015-10-01

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  4. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kawasaki, Masaya; Okuhara, Koji

    In this paper, we try to model for ‘Naiji System’ which is a unique corporation between a maker and suppliers in Japan. We propose Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information, which is called ‘Naiji’. This model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to the set of probabilistic constraint and some linear production constraints. We propose the new upper bound SOn (ρmin) to estimate the unfulfilled-order-rate more strictly. The procedure to find a good solution is developed by solving the linear programming problem repeatedly on the basic solution strategy that is ‘relaxation’. A computational load to obtain a solution by the proposed indicator is shown to be very small. Finally, an availability of the procedure is shown.

  5. Thermoneutral zone and scaling of metabolic rate on body mass in small mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1983-01-01

    A 4-species animal model suitable for experimental study of the effect of change in gravitational loading on the scale relationship between metabolic rate and total body mass is used to study the effect of temperature on metabolic rate in six male animals, 8-10 months of age, of each of the four species in the ambient temperature range 20-36 C. The measurements taken permitted partitioning of total body heat output into sensible heat loss by radiation, conduction and convection, and into latent heat loss by evaporation of water from the body surface. It is shown that the condition of thermoneutrality is important for metabolic scale effect studies, and that the thermoneutral zone for the species considered here is a narrow one.

  6. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    SciTech Connect

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C.C. (Stanford Univ., CA

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay {mu} {yields} e{gamma} with a sensitivity of 10{sup {minus}13}. A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 {times} 10{sup 4} e{sup +}/mm{sup 2}/s and a thickness of 3 {times} 10{sup {minus}4} radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m{sup 2}) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources.

  7. The Enhanced Coronal Mass Ejection Detection Rate since the Solar Cycle 23 Polar Field Reversal

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2016-05-01

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  8. Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry.

    PubMed

    Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S; Park, Melvin A; Costello, Catherine E; Lin, Cheng

    2016-04-01

    One of the major challenges in structural characterization of oligosaccharides is the presence of many structural isomers in most naturally occurring glycan mixtures. Although ion mobility spectrometry (IMS) has shown great promise in glycan isomer separation, conventional IMS separation occurs on the millisecond time scale, largely restricting its implementation to fast time-of-flight (TOF) analyzers which often lack the capability to perform electron activated dissociation (ExD) tandem MS analysis and the resolving power needed to resolve isobaric fragments. The recent development of trapped ion mobility spectrometry (TIMS) provides a promising new tool that offers high mobility resolution and compatibility with high-performance Fourier transform ion cyclotron resonance (FTICR) mass spectrometers when operated under the selected accumulation-TIMS (SA-TIMS) mode. Here, we present our initial results on the application of SA-TIMS-ExD-FTICR MS to the separation and identification of glycan linkage isomers. PMID:26959868

  9. A METHODOLOGY FOR DETERMINING THE DOSE RATE FOR BOUNDING MASS LIMITS IN A 9977 PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-05-24

    The Small Gram Quantity (SGQ) concept is based on the understanding that the hazards associated with the shipment of a radioactive material are directly proportional to its mass. This study describes a methodology that estimates the acceptable masses for several neutron and gamma emitting isotopes that can be shipped in a 9977 Package compliant with the Title 10 of the Code of Federal Regulations, Part 71 (10CFR71) external radiation level limits. 10CFR71.33 states that a shipping application identifies the radioactive and fissile materials at their maximum quantity and provides an evaluation demonstrating compliance with the external radiation standards. Since rather small amounts of some isotopes emit sufficiently strong radiation to produce a large external dose rate, quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. A methodology was established for determining the dose rate for bounding mass limits for a set of isotopes in the Model 9977 Shipping Package. Calculations were performed to estimate external radiation levels using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per source particle' for each neutron and photon spectral group. The source spectrum from one gram of each isotope was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits for dose rate at the surface was determined. For a package containing a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily

  10. Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?

    PubMed

    Bundle, Matthew W; Hansen, Kacia S; Dial, Kenneth P

    2007-03-01

    Based on aerodynamic considerations, the energy use-flight speed relationship of all airborne animals and aircraft should be U-shaped. However, measures of the metabolic rate-flight speed relationship in birds have been available since Tucker's pioneering experiments with budgerigars nearly forty years ago, but this classic work remains the only study to have found a clearly U-shaped metabolic power curve. The available data suggests that the energetic requirements for flight within this species are unique, yet the metabolic power curve of the budgerigar is widely considered representative of birds in general. Given these conflicting results and the observation that the budgerigar's mass is less than 50% of the next smallest species to have been studied, we asked whether large and small birds have metabolic power curves of different shapes. To address this question we measured the rates of oxygen uptake and wingbeat kinematics in budgerigars and cockatiels flying within a variable-speed wind tunnel. These species are close phylogenetic relatives, have similar flight styles, wingbeat kinematics, and are geometrically similar but have body masses that differ by a factor of two. In contrast to our expectations, we found the metabolic rate-flight speed relationship of both species to be acutely U-shaped. We also found that neither budgerigars nor cockatiels used their normal intermittent flight style while wearing a respirometric mask. We conclude that species size differences alone do not explain the previously unique metabolic power curve of the budgerigar; however, due to the absence of comparable data we cannot evaluate whether the mask-related kinematic response we document influences the metabolic rate-flight speed relationship of these parrots, or whether the energetics of flight differ between this and other avian clades. PMID:17337719

  11. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  12. Effects of diet on rate of body mass gain by wintering canvasbacks

    USGS Publications Warehouse

    Jorde, D.G.; Haramis, G.M.; Bunck, C.M.; Pendleton, G.W.

    1995-01-01

    Because habitat degradation has led to the loss of submerged vegetation in Chesapeake Bay, wintering canvasbacks (Aythya valisineria) have shifted from a plant diet of American wildcelery (Vallisneria americana) to an animal diet of Baltic clams (Macoma balthica). We conducted experiments with pen-reared canvasbacks (n = 32, 1990; n = 32, 1991) to assess the effect of this diet change on mass recovery rate following a simulated period of food deprivation. During the recovery phase, canvasbacks were fed ad libitum either (1) Baltic clams (1991 only), (2) tubers of wildcelery, 3) corn, or (4) commercial control diet. Initial body mass of ducks did not differ between years (P = 0.754) or among pens (P > 0.264) or diets within years (1990, P = 0.520; 1991, P = 0.684). Body mass decline during food deprivation (x super(-) = 26.0 g/day plus or minus 0.6 SE) did not differ among diets (1990, P = 0.239; 1991, P = 0.062) or between sexes in 1990 (P = 0.197), but was greater (P = 0.039) for males (x super(-) = 28 g/day plus or minus 0.8 SE) than females (x super(-) = 25 g/day plus or minus 0.9) in 1991. Mass recovery rate differed between diets (clams excluded) in 1990 (P = 0.003) and 1991 (clams included) (P = 0.011); mean = 42 g/bird super(-1)/day super(-1) plus or minus 3.8 (SE) control diet, mean = 32 g/bird super(-1)/day super(-1) plus or minus 2.8 wildcelery tubers, mean = 24 g/bird super(-1)/day super(-1) plus or minus 4.9 whole corn, and mean = 23 g/bird super(-1)/day super(-1) plus or minus 1.0 Baltic clams. Canvasbacks consumed an average of 2,169 g/bird super(-1)/day super(-1) of Baltic clams, 1,158 g/bird super(-1)/day super(-1) of wildcelery tubers, 152 g/bird super(-1)/day super(-1) whole corn, and 208 g/bird super(-1)/day super(-1) (dry mass) control diet during recovery. Managers should restore and maintain aquatic plant foods that enhance winter survival of canvasbacks and other waterfowl in response to declining habitat quality.

  13. POISSON project. III. Investigating the evolution of the mass accretion rate

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  14. GX 3+1: THE STABILITY OF SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE

    SciTech Connect

    Seifina, Elena; Titarchuk, Lev E-mail: titarchuk@fe.infn.it

    2012-03-10

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and Beppo SAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component. We argue that the electron temperature kT{sub e} of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index {Gamma} is almost constant ({Gamma} = 2.00 {+-} 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index {Gamma} and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli and Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low

  15. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Technical Reports Server (NTRS)

    Seifana, Elena; Titarchuk, Lev

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram, We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites, We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and Gaussian component We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keY to 4.5 keY, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by factor four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+ I was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries. This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at

  16. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate II

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Okuhara, Koji

    In the previous paper, we proposed Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information which is called ‘Naiji System’ as an unique corporation between a maker and suppliers in Japan, and 3 indicators to estimate the unfulfilled-order-rate. Applying these indicators to the model, we investigated the behavior of unfulfilled-order-rate at the final period in the planning horizon. In this paper, we propose a new model for purchasing, and investigate the unfulfilled-order-rate at each period and the impact to the total inventory. We find that the total inventories become 5.9%-20.0% decreases by using SOn rather than by using SOn(0). And we enhance a base-stock policy to a new one with multi-period. We prove that the MCPS model for purchasing by using SOn(0) is equivalent to the base-stock policy with multi-period under the specified condition. Under this condition, the proposed model by using SOn decreases inventories more than the base-stock policy with multi-period.

  17. Cosmogenic nuclides in cometary materials: Implications for rate of mass loss and exposure history

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Englert, P. A. J.; Reedy, R. C.

    1989-01-01

    As planned, the Rosetta mission will return to earth with a 10-kg core and a 1-kg surface sample from a comet. The selection of a comet with low current activity will maximize the chance of obtaining material altered as little as possible. Current temperature and level of activity, however, may not reliably indicate previous values. Fortunately, from measurements of the cosmogenic nuclide contents of cometary material, one may estimate a rate of mass loss in the past and perhaps learn something about the exposure history of the comet. Perhaps the simplest way to estimate the rate of mass loss is to compare the total inventories of several long-lived cosmogenic radionuclides with the values expected on the basis of model calculations. Although model calculations have become steadily more reliable, application to bodies with the composition of comets will require some extension beyond the normal range of use. In particular, the influence of light elements on the secondary particle cascade will need study, in part through laboratory irradiations of volatile-rich materials. In the analysis of cometary data, it would be valuable to test calculations against measurements of short-lived isotopes.

  18. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    SciTech Connect

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups.

  19. Combination of CFD and DOE to analyze and improve the mass flow rate in urinary catheters.

    PubMed

    Frawley, Patrick; Geron, Marco

    2009-08-01

    The urinary catheter is a thin plastic tube that has been designed to empty the bladder artificially, effortlessly, and with minimum discomfort. The current CH14 male catheter design was examined with a view to optimizing the mass flow rate. The literature imposed constraints to the analysis of the urinary catheter to ensure that a compromise between optimal flow, patient comfort, and everyday practicality from manufacture to use was achieved in the new design. As a result a total of six design characteristics were examined. The input variables in question were the length and width of eyelets 1 and 2 (four variables), the distance between the eyelets, and the angle of rotation between the eyelets. Due to the high number of possible input combinations a structured approach to the analysis of data was necessary. A combination of computational fluid dynamics (CFD) and design of experiments (DOE) has been used to evaluate the "optimal configuration." The use of CFD couple with DOE is a novel concept, which harnesses the computational power of CFD in the most efficient manner for prediction of the mass flow rate in the catheter. PMID:19604024

  20. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate. [Triticum aestivum

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1987-06-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and /sup 32/P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.

  1. Mass accumulation beneath the summit of Kilauea Volcano, Hawai'i (2008-2012): new constraints from micro-gravity and deformation measurements

    NASA Astrophysics Data System (ADS)

    Bagnardi, M.; Poland, M. P.; Battaglia, M.; Amelung, F.

    2012-12-01

    Kilauea Volcano, Hawai'i, is currently erupting at two locations: from vents on the volcano's east rift zone (ERZ) since 1983 and at the summit, within Halema'uma'u Crater, since March 2008. A previous study that combined micro-gravity and deformation measurements acquired between 1975 and January 2008 revealed shallow magma accumulation ~1 km beneath the southeastern rim of Halema'uma'u Crater, near where the new eruptive vent opened. This vent is now occupied by a > 100 m diameter lava lake whose surface fluctuates between 60 and 150 meters below the vent rim. New gravity surveys of about 50 stations in the summit area of Kilauea have been performed since the start of the summit eruption. The measurements span a sequence of important volcanic events: (i) long-term deflation across the summit until March 2010, (ii) re-inflation until March 5, 2011, when (iii) an eruptive fissure opened along the ERZ causing rapid deflation at the summit of the volcano and, (iv) re-inflation from the end of the fissure eruption on March 9, 2011, through 2012. Microgravity measurements were performed using two Scintrex CG-5 gravimeters and following a double-looping procedure. GPS data and InSAR measurements from both the German Space Agency (DLR) TerraSAR-X satellite and the Italian Space Agency (ASI) satellite-constellation Cosmo-SkyMed are used to adjust the gravity measurements for the free-air effect and to constrain magmatic sources. Preliminary results show that, while no significant residual gravity changes are recorded from 2008 to March 2011, following the March 2011 eruption a positive gravity anomaly (> 100 ± 25 μGal) is present in the same area that showed signs of mass accumulation during 1975-2008. The positive residual gravity change is also accompanied by inflation of the summit (maximum uplift was about 0.12 m). We investigate the nature of this mass accumulation through the combined analysis of deformation and micro-gravity data.

  2. Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.

    2015-12-01

    The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates

  3. Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate.

    PubMed

    Sobierajski, Ryszard; Jacyna, Iwanna; Dłużewski, Piotr; Klepka, Marcin T; Klinger, Dorota; Pełka, Jerzy B; Burian, Tomáš; Hájková, Věra; Juha, Libor; Saksl, Karel; Vozda, Vojtěch; Makhotkin, Igor; Louis, Eric; Faatz, Bart; Tiedtke, Kai; Toleikis, Sven; Enkisch, Hartmut; Hermann, Martin; Strobel, Sebastian; Loch, Rolf A; Chalupsky, Jaromir

    2016-07-11

    The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm2. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm2) and liquid state (54 mJ/cm2), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes. PMID:27410821

  4. Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves.

    PubMed

    Lazova, Galia N; Naidenova, Tsveta; Velinova, Katya

    2004-03-01

    The enzyme carbonic anhydrase (CA) (EC 4.2.1.1) catalyzes the reversible conversion of CO2 to HCO3- and has been shown to be involved in photosynthesis. The enzyme has been shown in animals, plants, eubacteria and viruses, but similar reports on the evidence for CA activity in tree plants does not be appear to be available. In the preliminary analyses of the work, the CA activity in leaf extracts from the tree species Paulownia tomentosa Steud. (introduced in Bulgaria) is described. A connection between CA activity and the rate of photosynthetic CO2 fixation is shown. In the second portion of the work, the effect of 10(-4) mol/L and 10(-2) mol/L dimethylsulfoxide (DMSO) on the zinc accumulation in leaves is demonstrated. It is suggested that CA activity is an indicator of the level of physiologically active zinc in leaves of P. tomentosa Steud. A connection between the process of zinc accumulation in leaves and the activity of the enzymes CA and glycolate oxidase (GO) (EC 1.1.3.1) is established. PMID:15077628

  5. Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2015-02-01

    Geological evidence for extensive non-polar ice deposits of Amazonian age indicates that the current cold and dry climate of Mars has persisted for several billion years. The geological record and climate history of the Noachian, the earliest period of Mars history, is less certain, but abundant evidence for fluvial channels (valley networks) and lacustrine environments (open-basin lakes) has been interpreted to represent warm and wet conditions, including rainfall and runoff. Alternatively, recent atmospheric modeling results predict a "cold and icy" Late Noachian Mars in which moderate atmospheric pressure accompanied by a full water cycle produce an atmosphere where temperature declines with elevation following an adiabatic lapse rate, in contrast to the current situation on Mars, where temperature is almost completely determined by latitude. These results are formulated in the Late Noachian Icy Highlands (LNIH) model, in which these cold and icy conditions lead to the preferential deposition of snow and ice at high elevations, such as the southern uplands. What is the fate of this snow and ice and the nature of glaciation in such an environment? What are the prospects of melting of these deposits contributing to the observed fluvial and lacustrine deposits? To address these questions, we report on a glacial flow-modeling analysis using a Mars-adapted ice sheet model with LNIH climate conditions. The total surface/near-surface water inventory is poorly known for the Late Noachian, so we explore the LNIH model in a "supply-limited" scenario for a range of available water abundances and a range of Late Noachian geothermal fluxes. Our results predict that the Late Noachian icy highlands (above an equilibrium line altitude of approximately +1 km) were characterized by extensive ice sheets of the order of hundreds of meters thick. Due to extremely cold conditions, the ice-flow velocities in general were very low, less than a few mm/yr, and the regional ice

  6. The Properties of Low-Luminosity AGN: Variability, Accretion Rate, Black Hole Mass and Color

    NASA Astrophysics Data System (ADS)

    Oleas, Juan; Podjed, Stephanie; Sarajedini, Vicki

    2016-01-01

    We present the results from a study of ~5000 Broad-Line selected AGN from the Sloan Digital Sky Survey DR7. Galaxy and AGN templates have been fit to the SDSS spectra to isolate the AGN component. The sources have absolute magnitudes in the range -23 < Mi < -18 and lie at redshifts less than z ~ 0.8. A variability analysis reveals that the anti-correlation between luminosity and variability amplitude continues to the faintest AGN in our sample (Gallastegui-Aizpun & Sarajedini 2014), though the underlying cause of the relation is still poorly understood. To address this, we further explore the connection between AGN luminosity and variability through measurement of the Hβ line width to determine black hole mass and accretion rate. We find that AGN with the highest variability amplitudes at a given luminosity appear to have lower accretion rates compared to low amplitude variables. We also investigate correlations with AGN color and accretion rate among these low-luminosity AGN.

  7. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  8. The influence of structural features of marine humic substances on the accumulation rates of cadmium by a blue mussel Mytilus edulis

    SciTech Connect

    Pempkowiak, J.; Kozuch, J. ); Southon, T. )

    1994-01-01

    Laboratory experiments revealed that both concentration and origin of humic substances (HS) influence the accumulation rates of cadmium by the blue mussel Mytilus edulis. In the concentration of humic substances typical of seawater, the increase is about 60% and 100%, respectively, for aquatic and sedimentary humic substances. The phenomenon was attributed to the stimulation of cadmium uptake due to complexing properties of the substances toward cadmium. Complexing capacity of sedimentary humic substances was found to be 0.57 [mu]g/mg HS, that of aquatic substances 0.41 [mu]g/mg HS. Cross Polarization Magic Angle Spinning (CP/MAS) [sup 13]C NMR of the investigated humic substances revealed differences in the spectra at about 175, 100, 55 and 32 ppm. This was attributed to the varying content of oxygen containing functional groups involved in formation of complexes with metal ions. 8 refs., 4 figs., 3 tabs.

  9. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Helmer, Eileen H.; Lefsky, Michael A.; Roberts, Dar A.

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover.

  10. On the rates of coronal mass ejections: remote solar and in situ observations

    NASA Astrophysics Data System (ADS)

    Riley, P.; Cane, H.; Richardson, I. G.; Gopalswamy, N.; Linker, J. A.; Mikic, Z.; Lionello, R.

    2006-05-01

    In this study we compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulysses for almost an entire solar cycle (1996 through 2004). We find that, while the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen in situ at 1 AU. This divergence persists through 2004. We discuss several possible causes, including: (1) the appearance of mid-latitude active regions; (2) the increased rate of high-latitude CMEs; and (3) the strength of the global solar field. We conclude that the most likely interpretation is that this divergence is due to the birth of mid-latitude active regions, which are the sites of a distinct population of CMEs that are only partially intercepted by Earth. This conclusion is supported by the following points: (1) A similar divergence occurs between ICMEs in which magnetic clouds are observed (MCs), and those that are not; and (2) a number of pronounced enhancements in the CME rate, separated by approximately one year, are also mirrored and in ICME rate, but not obviously in the MC rate. We provide a simple geometric argument that shows that the computed CME and ICME rates are consistent with each other. The origins of the individual peaks can be traced back to unusually strong active regions on the Sun. Taken together, these results suggest that whether one observes a flux rope within an ICME is sensitive to the trajectory of the spacecraft through the ICME, i.e., an observational selection effect. This conclusion is supported by models of CME eruption and evolution, which: (1) are incapable of producing a CME that does not contain an embedded flux rope; and (2) demonstrate that glancing intercepts can produce ICME-like signatures

  11. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    SciTech Connect

    Loebner, Keith T. K. Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  12. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    NASA Astrophysics Data System (ADS)

    Loebner, Keith T. K.; Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-01

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  13. Biogeochemical cycling in an organic-rich coastal marine basin. 9. Sources and accumulation rates of vascular plant-derived organic material

    SciTech Connect

    Haddad, R.I.; Martens, C.S. )

    1987-11-01

    The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 {plus minus} 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 {plus minus} 17% of the total organic carbon buried over the past decade. When combined with a previously established sedimentary organic carbon budget for this site a vascular plant derived carbon burial rate of 26 {plus minus}20 mole C m{sup {minus}2} yr{sup {minus}1} is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

  14. Testing propagating mass accretion rate fluctuations model PROPFLUC on black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2016-05-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of black hole X-ray binaries. However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and a quasi-periodic oscillation (QPO) on the precession frequency. We recently applied systematically for the first time PROPFLUC on a black hole candidate (MAXI J1543-564) in order to compare the results of phenomenological and physical modeling of the source power spectrum and to give a physical interpretation of the rising phase of the source outburst. Here we resume the results of our study on MAXI J1543-564 and we discuss future PROPFLUC implementations.

  15. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    SciTech Connect

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-08-28

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of

  16. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L. )

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope (9,12,12-2H3)cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed.

  17. Mass concentration coupled with mass loading rate for evaluating PM(2.5) pollution status in the atmosphere: A case study based on dairy barns.

    PubMed

    Joo, HungSoo; Park, Kihong; Lee, Kwangyul; Ndegwa, Pius M

    2015-12-01

    This study investigated particulate matter (PM) loading rates and concentrations in ambient air from naturally ventilated dairy barns and also the influences of pertinent meteorological factors, traffic, and animal activities on mass loading rates and mass concentrations. Generally, relationships between PM2.5 concentration and these parameters were significantly poorer than those between the PM loading rate and the same parameters. Although ambient air PM2.5 loading rates correlated well with PM2.5 emission rates, ambient air PM2.5 concentrations correlated poorly with PM2.5 concentrations in the barns. A comprehensive assessment of PM2.5 pollution in ambient air, therefore, requires both mass concentrations and mass loading rates. Emissions of PM2.5 correlated strongly and positively with wind speed, temperature, and solar radiation (R(2) = 0.84 to 0.99) and strongly but negatively with relative humidity (R(2) = 0.93). Animal activity exhibited only moderate effect on PM2.5 emissions, while traffic activity did not significantly affect PM2.5 emissions. PMID:26452004

  18. On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Schatzman, C.; Cane, H. V.; Richardson, I. G.; Gopalswamy, N.

    2006-01-01

    We compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulyssses from 1996 through 2004. We also distinguish between those ICMEs that contain a magnetic cloud (MC) and those that do not. While the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen at 1 AU. This divergence persists through 2004. A similar divergence occurs between MCs and non-MC ICMEs. We argue that these divergences are due to the birth of midlatitude active regions, which are the sites of a distinct population of CMEs, only partially intercepted by Earth, and we present a simple geometric argument showing that the CME and ICME rates are consistent with one another. We also acknowledge contributions from (1) an increased rate of high-latitude CMEs and (2) focusing effects from the global solar field. While our analysis, coupled with numerical modeling results, generally supports the interpretation that whether one observes a MC within an ICME is sensitive to the trajectory of the spacecraft through the ICME (i.e., an observational selection effect), one result directly contradicts it. Specifically, we find no systematic offset between the latitudinal origin of ICMEs that contain MCs at 1 AU in the ecliptic plane and that of those that do not.

  19. Non-Fickian transport and multiple-rate mass transfer in porous media

    NASA Astrophysics Data System (ADS)

    Berkowitz, Brian; Emmanuel, Simon; Scher, Harvey

    2008-03-01

    Non-Fickian behavior is due to a broad spectrum of rates limiting the solute transport. There are two generic mechanisms that can generate these spectra: the complex flow field of a highly heterogeneous medium and the mass exchange between a mobile phase and a distribution of immobile states. We have developed a physical model that incorporates both of these mechanisms into the continuous time random walk (CTRW) framework. We study their interacting dynamics as a function of the spectra of advective-diffusive transition times and exchange times and the relative separation of their respective time domains. Examples of interacting transport in a dispersive medium with immobile states include tracer migration in a random fracture network with matrix diffusion and transport in a porous medium with adsorption/desorption sites. To date, non-Fickian transport has been quantified effectively using the CTRW in a wide variety of porous and fractured geological formations. The basis of the CTRW framework is the portrayal of transport as a sequence of transition rates (e.g., between pore spaces, fracture intersections) and the incorporation of the full spectrum of these rates into the transport equations. The emphasis herein is on systems in which the time domains of the two different types of spectra are distinguishable, so that a more complete characterization of the transport can be obtained (i.e., rather than lumping all the rates together). Experimental data are analyzed from two of these systems: (1) tracer transport in a fractured shear zone and (2) sorbing species transported through a heterogeneous porous domain. The CTRW framework is found to produce excellent fits to and predictions from the experimental data.

  20. Mass-loss rates of "hot-Jupiter" exoplanets with various types of gaseous envelopes

    NASA Astrophysics Data System (ADS)

    Cherenkov, A. A.; Bisikalo, D. V.; Kaigorodov, P. V.

    2014-10-01

    According to the compuations results obtained by Bisikalo et al. (2013) for the gas-dynamical effect of stellar winds on exoplanet atmospheres, three types of gaseous envelopes can form around hot Jupiters: closed, quasi-closed, and open. The type of envelope that forms depends on the position of the frontal collision point (where the dynamical pressure of the wind is equal to the pressure of the surrounding atmosphere) relative to the Roche-lobe boundaries. Closed envelopes are formed around planets whose atmospheres lie completely within their Roche lobes. If the frontal collision point is located outside the Roche lobe, the atmospheric material begins to flow out through the Lagrangian points L1 and L2, which can result in the formation of quasi-closed (if the dynamical pressure of the stellar wind stops the outflow through L1) or open gaseous envelopes. The example of the typical hot Jupiter HD 209458b is considered for four sets of atmospheric parameters, to determine the mass-loss rates for the different types of envelopes arising with these parameters. The mass-loss rates based on the modeling results were estimated to be Ṁ ≤ 109 g/s for a closed atmosphere, Ṁ ≃ 3 × 109 g/s for a quasi-closed atmosphere, and Ṁ ≃ 3 × 1010 g/s for an open atmosphere. The matter in the closed and quasi-closed atmospheres flows out mainly through L2, and the matter in open envelopes primarily through L1.

  1. Comparative estimation of use potentialities of salt-accumulating and salt-eliminating halophytes for inclusion of NaCl contained in human mineralized urine in BLSS's mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Ushakova, Sofya; Kudenko, Yurii; Griboskaya, Illiada; Shklavtsova, Ekaterina; Balnokin, Yurii; Popova, Larissa; Myasoedov, Nikolay; Gros, Jean-Bernard; Lasseur, Christophe

    Comparative potentialities of different halophytes' cultivation on a human mineralized urine containing NaCl with the aim of this salt inclusion into the intrasystem BLSS mass exchange were investigated. Two halophyte species were studied namely, salt-accumulating (Salicornia europaea) and salt-eliminating (Limonium gmelinii). During the first two vegetation weeks the plants had been grown on the Knop solution; then a daily norm of the human mineralized urine was gradually added in the experiment solutions. During vegetation the model solutions simulating the urine mineral composition were gradually added in the control solutions. The NaCl concentration in the experiment and control solutions of the first treatment was 9 g/l and that of the second treatment was 20 g/l. The mineralized human urine exposed some inhibitory action on Salicornia europaea and Limonium gmelinii plants. The experiment plants' productivity was lower in comparison with the control. As far as Limonium gmelinii appears to be a perennial plant the growth rate and productivity of this halophyte species was signifi- cantly lower in comparison with Salicornia europaea. Na content in Salicornia europaea plants was higher in comparison with sodium amount emitted by Limonium gmelinii. Consequently Salicornia europaea appears to be a more perspective halophyte for its further use in BLSS aiming at involvement of sodium chloride contained in human liquid wastes in intrasystem mass exchange.

  2. Mass transport around comets and its impact on the seasonal differences in water production rates

    SciTech Connect

    Rubin, M.; Altwegg, K.; Thomas, N.; Fougere, N.; Combi, M. R.; Tenishev, V. M.; Le Roy, L.

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  3. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  4. Estimates of mass eruption rates in Icelandic eruptions 1913-2015

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Dürig, Tobias; Larsen, Gudrún

    2016-04-01

    In the period from 1913 to 2015 about 35 eruptions occurred in Iceland, although some uncertainty exists about the number of the smallest events, particularly within the ice covered regions. For the smaller events in the earlier part of the period, only order of magnitude estimates of mass eruption rates (MER) are possible, based on the approximate amount of erupted products, duration of eruption, and information on eruption plume height in some cases. After 1947 estimates are more reliable. This is not least due to the detailed observations and interpretations of Sigurdur Thorarinsson and co-workers until the early 1980s. After 1980, various observations and instrumental data, e.g. on plume height, coupled with detailed mapping by several workers of tephra fallout and lava flow extent provide a good basis for MER estimates. The most frequent events are explosive eruptions producing tephra, often basaltic phreatomagmatic eruptions. A contributing factor to the large number of explosive eruptions is unusually frequent eruptions in Hekla since 1947. Eruptions under glaciers are also common, while a majority of these become explosive as they break through the ice. For the initially subglacial eruptions ice melting rates provide the best estimate of the MER in the first and usually most powerful phase. If the whole data set is considered, the magma volumes erupted in a single eruption span three orders of magnitude, ˜0.001 km3 to 1 km3. The range of intensity is similar, with the smallest Krafla or Askja events having maximum mass eruption rates (MER) of order 10-100 tonnes/second while the most powerful ones (Hekla 1947 and Katla 1918) had MER ˜50,000 tonnes/second (˜5 x 107 kg/s). All the events with the highest MER were explosive, including Katla 1918 where initial subglacial melting caused the largest volcanogenic flood observed since the 18th century. The period 1913-2015 had no events that belong to the class of the largest observed eruptions in Iceland. In

  5. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades.

    USGS Publications Warehouse

    Breithaupt, Josh L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.

    2014-01-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  6. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-10-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2 yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  7. Understanding of relationship between the average mass transport rate and the moments of permeability

    SciTech Connect

    Niibori, Y.; Tochiyama, O.; Chida, T.

    1999-07-01

    To estimate the transport rate of radionuclides in the geosphere, one must consider the spatial variability of permeability. However, the borehole data of permeability are limited and one can not determine the type of probability density function, though the measurement data reflect the most significant hydraulic properties about geologic media including innumerable cracks or fast flow paths. While the recent models describing radioactive nuclide transport in near/far-field have assumed a certain probability density function (typically a lognormal distribution) as a permeability distribution, one cannot always obtain sufficient measurement data to define the function. However, the available data of permeability at give one the moments such as the arithmetic mean, the standard deviation and the skewness for the distribution. The purpose of this paper is to get an understanding of the general relationship between the average mass transport rates and the moments. Using various types of probability density functions and pseudo random-numbers, hypothetical permeability distributions are generated. With these distributions, this paper obtains the average transport rates described as the numerical impulse-response based on the advection-dispersion model for a two-dimensional region. The calculated results show that, for the dimensionless standard deviation up to around 1, the three moments are enough to characterize the permeability distribution for the purposes of the nuclide transport prediction. In this work, for five specified probability density functions, the upper and lower bounds of skewness are derived as a function of the dimensionless arithmetic mean and standard deviation. The obtained upper and lower bounds explicitly show that the Bernoulli trials (a discrete probability density function) yield the widest range in the skewness against the standard deviation. since the response has lower peak and longer tail as the skewness goes to the lower bound value, the

  8. Predation and Parasitism Rates on Sentinel and Naturally Occurring Egg Masses of the Squash Bug (Hemiptera: Coreidae) in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal changes in egg predation and parasitism rates on sentinel and naturally occurring (wild) egg masses of the squash bug, Anasa tristis (DeGeer), were evaluated in squash fields in Maryland from June through September in 2013 and 2014. Rates of egg predation and parasitism were significantly ...

  9. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    PubMed Central

    Filipe, Laura N.S.

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  10. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate.

    PubMed

    Amos, William; Filipe, Laura N S

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  11. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  12. Coevaporation of Y, BaF sub 2 , and Cu utilizing a quadrupole mass spectrometer as a rate measuring probe

    SciTech Connect

    Hudner, J.; Oestling, M. ); Ohlsen, H.; Stolt, L. )

    1991-09-01

    An ultrahigh vacuum coevaporator equipped with three sources for preparation of Y--BaF{sub 2} --Cu--O thin films is described. Evaporation rates of Y, BaF{sub 2}, and Cu were controlled using a quadrupole mass spectrometer operating in a multiplexed mode. To evaluate the method depositions have been performed using different source configurations and evaporation rates. Utilizing Rutherford backscattering spectrometry absolute values of the actual evaporation rates were determined. It was observed that the mass-spectrometer sensitivity is highest for Y, followed by BaF{sub 2} (BaF{sup +} is the measured ion) and Cu. A partial pressure of oxygen during evaporation of Y, BaF{sub 2}, and Cu affected mainly the rate of Y. It is shown that the mass spectrometer can be utilized to precisely control the film composition.

  13. Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Le Borgne, D.; Pritchet, C. J.; Hodsman, A.; Neill, J. D.; Howell, D. A.; Carlberg, R. G.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Lusset, V.; Perlmutter, S.; Ripoche, P.; Tao, C.

    2006-09-01

    We show that Type Ia supernovae (SNe Ia) are formed within both very young and old stellar populations, with observed rates that depend on the stellar mass and mean star formation rates (SFRs) of their host galaxies. Models in which the SN Ia rate depends solely on host galaxy stellar mass are ruled out with >99% confidence. Our analysis is based on 100 spectroscopically confirmed SNe Ia, plus 24 photometrically classified events, all from the Supernova Legacy Survey (SNLS) and distributed over 0.2masses and SFRs for the SN Ia host galaxies by fitting their broadband spectral energy distributions with the galaxy spectral synthesis code PÉGASE.2. We show that the SN Ia rate per unit mass is proportional to the specific SFR of the parent galaxies-more vigorously star-forming galaxies host more SNe Ia per unit stellar mass, broadly equivalent to the trend of increasing SN Ia rate in later type galaxies seen in the local universe. Following earlier suggestions for a simple ``two-component'' model approximating the SN Ia rate, we find bivariate linear dependencies of the SN Ia rate on both the stellar masses and the mean SFRs of the host systems. We find that the SN Ia rate can be well represented as the sum of 5.3+/-1.1×10-14 SNe yr-1 Msolar-1 and 3.9+/-0.7×10-4 SNe yr-1 (Msolar yr-1)-1 of star formation. We also demonstrate a dependence of distant SN Ia light-curve shapes on star formation in the host galaxy, similar to trends observed locally. Passive galaxies, with no star formation, preferentially host faster declining/dimmer SNe Ia, while brighter events are found in systems with ongoing star formation.

  14. Body mass and weight thresholds for increased prosthetic joint infection rates after primary total joint arthroplasty.

    PubMed

    Lübbeke, Anne; Zingg, Matthieu; Vu, Diemlan; Miozzari, Hermes H; Christofilopoulos, Panayiotis; Uçkay, Ilker; Harbarth, Stephan; Hoffmeyer, Pierre

    2016-04-01

    Background and purpose - Obesity increases the risk of deep infection after total joint arthroplasty (TJA). Our objective was to determine whether there may be body mass index (BMI) and weight thresholds indicating a higher prosthetic joint infection rate. Patients and methods - We included all 9,061 primary hip and knee arthroplasties (mean age 70 years, 61% women) performed between March 1996 and December 2013 where the patient had received intravenous cefuroxime (1.5 g) perioperatively. The main exposures of interest were BMI (5 categories: < 24.9, 25-29.9, 30-34.9, 35-39.9, and ≥ 40) and weight (5 categories: < 60, 60-79, 80-99, 100-119, and ≥ 120 kg). Numbers of TJAs according to BMI categories (lowest to highest) were as follows: 2,956, 3,350, 1,908, 633, and 214, respectively. The main outcome was prosthetic joint infection. The mean follow-up time was 6.5 years (0.5-18 years). Results - 111 prosthetic joint infections were observed: 68 postoperative, 16 hematogenous, and 27 of undetermined cause. Incidence rates were similar in the first 3 BMI categories (< 35), but they were twice as high with BMI 35-39.9 (adjusted HR = 2.1, 95% CI: 1.1-4.3) and 4 times higher with BMI ≥ 40 (adjusted HR = 4.2, 95% CI: 1.8-9.7). Weight ≥ 100 kg was identified as threshold for a significant increase in infection from the early postoperative period onward (adjusted HR = 2.1, 95% CI: 1.3-3.6). Interpretation - BMI ≥ 35 or weight ≥ 100 kg may serve as a cutoff for higher perioperative dosage of antibiotics. PMID:26731633

  15. Corrigendum to "OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida" [Geomorphology 123 (2010) 330-342

    NASA Astrophysics Data System (ADS)

    Rink, W. J.; López, G. I.

    2015-07-01

    Correction: Sentence in Abstract. The correct version is: Lateral progradation rates of ridge sequences were highly variable within the study area, ranging from 92 to 691 m/100 years, but we did find an agreement between some of our slower ridge accumulation rates and these in other areas of Florida and around the world determined using OSL and 14C dating.

  16. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  17. A general procedure for predicting rates of inbreeding in populations undergoing mass selection.

    PubMed Central

    Bijma, P; Van Arendonk, J A; Woolliams, J A

    2000-01-01

    Predictions of rates of inbreeding (DeltaF), based on the concept of long-term genetic contributions assuming the infinitesimal model, are developed for populations with discrete or overlapping generations undergoing mass selection. Phenotypes of individuals are assumed to be recorded prior to reproductive age and to remain constant over time. The prediction method accounts for inheritance of selective advantage both within and between age classes and for changing selection intensities with age. Terms corresponding to previous methods that assume constant selection intensity with age are identified. Predictions are accurate (relative errors < or =8%), except for cases with extreme selection intensities in females in combination with high heritability. With overlapping generations DeltaF reaches a maximum when parents are equally distributed over age classes, which is mainly due to selection of the same individuals in consecutive years. DeltaF/year decreases much more slowly compared to DeltaF/generation as the number of younger individuals increases, whereas the decrease is more similar as the number of older individuals increases. The minimum DeltaF (per year or per generation) is obtained when most parents were in the later age classes, which is mainly due to an increased number of parents per generation. With overlapping generations, the relationship between heritability and DeltaF is dependent on the age structure of the population. PMID:10747075

  18. On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study

    NASA Astrophysics Data System (ADS)

    Villarreal D'Angelo, C. S.; Schneiter, M.; Costa, A.; Velázquez, P.; Raga, A.; Esquivel, A.

    2014-10-01

    We present a 3D hydrodynamic study of the effect that different stellar wind conditions and planetary wind structures have on the calculated Lyα absorptions during the transit of HD209458b. We approach the problem using 3D hydrodynamic simulations. Considering a range of stellar wind speeds ˜ [350-800] km s^{-1}, coronal temperature ˜ [3-7] × 10^{6} K and two values of the polytropic index Γ ˜ [1.01-1.13], while keeping fixed the stellar mass loss rate, we found a that a M_{p} range between ˜ [3-5] × 10^{10}g s^{-1} give account for the observational absorption in Lyα measured for the planetary system. Also, several models with anisotropic evaporation profiles for the planetary escaping atmosphere were carried out, showing that both, the escape through polar regions, resembling the emission associated with reconnection processes, and through the night side, produced by a strong stellar wind that compresses the planetary atmosphere and inhibits its escape from the day hemisphere yields larger absorptions than an isotropic planetary wind.

  19. Source mass eruption rate retrieved from satellite-based data using statistical modelling

    NASA Astrophysics Data System (ADS)

    Gouhier, Mathieu; Guillin, Arnaud; Azzaoui, Nourddine; Eychenne, Julia; Valade, Sébastien

    2015-04-01

    Ash clouds emitted during volcanic eruptions have long been recognized as a major hazard likely to have dramatic consequences on aircrafts, environment and people. Thus, the International Civil Aviation Organization (ICAO) established nine Volcanic Ash Advisory Centers (VAACs) around the world, whose mission is to forecast the location and concentration of ash clouds over hours to days, using volcanic ash transport and dispersion models (VATDs). Those models use input parameters such as plume height (PH), particle size distribution (PSD), and mass eruption rate (MER), the latter being a key parameter as it directly controls the amount of ash injected into the atmosphere. The MER can be obtained rather accurately from detailed ground deposit studies, but this method does not match the operational requirements in case of a volcanic crisis. Thus, VAACs use empirical laws to determine the MER from the estimation of the plume height. In some cases, this method can be difficult to apply, either because plume height data are not available or because uncertainties related to this method are too large. We propose here an alternative method based on the utilization of satellite data to assess the MER at the source, during explosive eruptions. Satellite-based techniques allow fine ash cloud loading to be quantitatively retrieved far from the source vent. Those measurements can be carried out in a systematic and real-time fashion using geostationary satellite, in particular. We tested here the relationship likely to exist between the amount of fine ash dispersed in the atmosphere and of coarser tephra deposited on the ground. The sum of both contributions yielding an estimate of the MER. For this purpose we examined 19 eruptions (of known duration) in detail for which both (i) the amount of fine ash dispersed in the atmosphere, and (ii) the mass of tephra deposited on the ground have been estimated and published. We combined these data with contextual information that may

  20. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian--African shield during the Cretaceous--Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation

    NASA Astrophysics Data System (ADS)

    Soudry, D.; Glenn, C. R.; Nathan, Y.; Segal, I.; VonderHaar, D.

    2006-09-01

    The evolution of Tethyan phosphogenesis during the Cretaceous-Eocene is examined to try to explain fluctuations of phosphogenesis through time, and whether or not they reflect long-term changes in ocean circulation or in continental weathering. Twenty-seven time-stratigraphic phosphate levels in various Tethyan sites, covering a time span of about 90 Myr from the Hauterivian to the Eocene, were analyzed for 44Ca/ 42Ca and 143Nd/ 144Nd in their carbonate fluorapatite (CFA) fraction. P and Ca accumulation rates and bulk sedimentation rates were quantified throughout the Cretaceous-Eocene Negev sequence to examine how changes in 44Ca/ 42Ca and 143Nd/ 144Nd are reflected in the intensity of phosphogenesis. A clear-cut change occurs in ɛNd( T) and δ44Ca and in the rates of P and Ca accumulation and bulk sedimentation through the time analyzed. ɛNd( T) is much lower in the Hauterivian-Lower Cenomanian (- 12.8 to - 10.9) than in the Upper Cenomanian-Eocene (- 7.8 to - 5.9). Much lower δ44Ca values occur in the Hauterivian-Turonian (- 0.22 to + 0.02) than in the Coniacian-Eocene (+ 0.23 to + 0.40). P accumulation rates in the Negev steeply increase from < 200 μmol cm - 2 k yr - 1 in the Albian-Coniacian to ˜ 1500 μmol cm - 2 k yr - 1 in the Campanian, whereas a strong decrease is concomitantly recorded in the rates of Ca accumulation and bulk sedimentation. In addition, distinct ɛNd( T) values are shown by the phosphorites of the Negev (- 6.7 to - 6.4) and Egypt (- 9.1 to - 7.6) during the Campanian, and by those of the Negev (- 7.8 to - 6.3) and North Africa (- 10.1 to - 8.9) during the Maastrichtian-Eocene. The culmination of P accumulation rates in the Negev during the Campanian, occurring with a high in ɛNd( T) and δ44Ca and a low in sedimentation rates, indicates that paleoceanographic and paleogeographical factors mostly governed phosphorite accumulation in this area. The abrupt ɛNd( T) rise after the Cenomanian is attributed to increased incursion of

  1. Relative impact of mate versus pollinator availability on pollen limitation and outcrossing rates in a mass-flowering species.

    PubMed

    Delmas, C E L; Escaravage, N; Cheptou, P-O; Charrier, O; Ruzafa, S; Winterton, P; Pornon, A

    2015-01-01

    Plant mating systems are driven by several pre-pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass-flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen-supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass-flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator-mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production. PMID:24942604

  2. A study of the mass loss rates of symbiotic star systems

    NASA Astrophysics Data System (ADS)

    Korreck, K. E.; Kellogg, E.; Sokoloski, J. L.

    2007-08-01

    The amount of mass loss in symbiotic systems is investigated, specifically mass loss via the formation of jets in R Aquarii (R Aqr). The jets in R Aqr have been observed in the X-ray by Chandra over a four year time period. The jet changes on times scales of a year and new outflows have been observed. Understanding the amount of mass and the frequency of ejection further constrain the ability of the white dwarf in the system to accrete enough mass to become a Type 1a supernova progenitor. The details of multi-wavelength studies, such as speed, density and spatial extent of the jets will be discussed in order to understand the mass balance in the binary system. We examine other symbiotic systems to determine trends in mass loss in this class of objects.

  3. A Study of the Mass Loss Rates of Symbiotic Star Systems

    NASA Technical Reports Server (NTRS)

    Korreck, K. E.; Kellogg, E.; Sokoloski, J. L.

    2007-01-01

    The amount of mass loss in symbiotic systems is investigated, specifically mass loss via the formation of jets in R Aquarii (R Aqr). The jets in R Aqr have been observed in the X-ray by Chandra over a four year time period. The jet changes on times scales of a year and new outflows have been observed. Understanding the amount of mass and the frequency of ejection further constrain the ability of the white dwarf in the system to accrete enough mass to become a Type la supernova progenitor. The details of multi-wavelength studies, such as speed, density and spatial extent of the jets will be discussed in order to understand the mass balance in the binary system. We examine other symbiotic systems to determine trends in mass loss in this class of objects.

  4. Light stop mass limits from Higgs rate measurements in the MSSM: is MSSM electroweak baryogenesis still alive after all?

    NASA Astrophysics Data System (ADS)

    Liebler, Stefan; Profumo, Stefano; Stefaniak, Tim

    2016-04-01

    We investigate the implications of the Higgs rate measurements from Run 1 of the LHC for the mass of the light scalar top partner (stop) in the Minimal Supersymmetric Standard Model (MSSM). We focus on light stop masses, and we decouple the second, heavy stop and the gluino to the multi-TeV range in order to obtain a Higgs mass of ˜ 125 GeV. We derive lower mass limits for the light stop within various scenarios, taking into account the effects of a possibly light scalar tau partner (stau) or chargino on the Higgs rates, of additional Higgs decays to undetectable "new physics", as well as of non-decoupling of the heavy Higgs sector. Under conservative assumptions, the stop can be as light as 123 GeV. Relaxing certain theoretical and experimental constraints, such as vacuum stability and model-dependent bounds on sparticle masses from LEP, we find that the light stop mass can be as light as 116 GeV. Our indirect limits are complementary to direct limits on the light stop mass from collider searches and have important implications for electroweak baryogenesis in the MSSM as a possible explanation for the observed matter-antimatter asymmetry of the Universe.

  5. Measurement of two-phase refrigerant liquid-vapor mass flow rate. Part 1: Venturi and void fraction meters

    SciTech Connect

    Abdul-Razzak, A.; Shoukri, M.; Chang, J.S.

    1995-12-31

    The use of a venturi meter for the measurement of refrigerant liquid-vapor mass flow rate in a horizontal pipe is presented. Various models that utilize the output of the venturi flowmeter and the measured void fraction and/or quality to calculate the two-phase mass flow rate were examined. It was found that the applicability of the various models is dependent on the quality range. When the quality is less than 50%, the use of the momentum density model provides the best accuracy. For higher qualities, the use of the homogeneous equilibrium model is recommended.

  6. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, B.J.; Harvey, J.W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI >> 1.0), solute exchange

  7. Body mass and weight thresholds for increased prosthetic joint infection rates after primary total joint arthroplasty

    PubMed Central

    Lübbeke, Anne; Zingg, Matthieu; Vu, Diemlan; Miozzari, Hermes H; Christofilopoulos, Panayiotis; Uçkay, Ilker; Harbarth, Stephan; Hoffmeyer, Pierre

    2016-01-01

    Background and purpose — Obesity increases the risk of deep infection after total joint arthroplasty (TJA). Our objective was to determine whether there may be body mass index (BMI) and weight thresholds indicating a higher prosthetic joint infection rate. Patients and methods — We included all 9,061 primary hip and knee arthroplasties (mean age 70 years, 61% women) performed between March 1996 and December 2013 where the patient had received intravenous cefuroxime (1.5 g) perioperatively. The main exposures of interest were BMI (5 categories: < 24.9, 25–29.9, 30–34.9, 35–39.9, and ≥ 40) and weight (5 categories: < 60, 60–79, 80–99, 100–119, and ≥ 120 kg). Numbers of TJAs according to BMI categories (lowest to highest) were as follows: 2,956, 3,350, 1,908, 633, and 214, respectively. The main outcome was prosthetic joint infection. The mean follow-up time was 6.5 years (0.5–18 years). Results — 111 prosthetic joint infections were observed: 68 postoperative, 16 hematogenous, and 27 of undetermined cause. Incidence rates were similar in the first 3 BMI categories (< 35), but they were twice as high with BMI 35–39.9 (adjusted HR = 2.1, 95% CI: 1.1–4.3) and 4 times higher with BMI ≥ 40 (adjusted HR = 4.2, 95% CI: 1.8–9.7). Weight ≥ 100 kg was identified as threshold for a significant increase in infection from the early postoperative period onward (adjusted HR = 2.1, 95% CI: 1.3–3.6). Interpretation — BMI ≥ 35 or weight ≥ 100 kg may serve as a cutoff for higher perioperative dosage of antibiotics. PMID:26731633

  8. WATER ICE IN HIGH MASS-LOSS RATE OH/IR STARS

    SciTech Connect

    Suh, Kyung-Won; Kwon, Young-Joo

    2013-01-10

    We investigate water-ice features in spectral energy distributions (SEDs) of high mass-loss rate OH/IR stars. We use a radiative transfer code which can consider multiple components of dust shells to make model calculations for various dust species including water ice in the OH/IR stars. We find that the model SEDs are sensitively dependent on the location of the water-ice dust shell. For two sample stars (OH 127.8+0.0 and OH 26.5+0.6), we compare the detailed model results with the infrared observational data including the spectral data from the Infrared Space Observatory (ISO). For the two sample stars, we reproduce the crystalline water-ice features (absorption at 3.1 {mu}m and 11.5 {mu}m; emission at 44 and 62 {mu}m) observed by ISO using a separate component of the water-ice dust shell that condensed at about 84-87 K (r {approx} 1500-1800 AU) as well as the silicate dust shell that condensed at about 1000 K (r {approx} 19-25 AU). For a sample of 1533 OH/IR stars, we present infrared two-color diagrams (2CDs) using the Infrared Astronomical Satellite and AKARI data compared with theoretical model results. We find that the theoretical models clearly show the effects of the crystalline water-ice features (absorption at 11.5 {mu}m and emission at 62 {mu}m) on the 2CDs.

  9. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    SciTech Connect

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.

  10. False-Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform

    NASA Astrophysics Data System (ADS)

    Strickland, Erin C.; Geer, M. Ariel; Hong, Jiyong; Fitzgerald, Michael C.

    2014-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2 % and <0.8 % are calculated for SPROX experiments using Q-TOF and Orbitrap mass spectrometer systems, respectively. Our results indicate that the false-positive rate is largely determined by random errors associated with the mass spectral analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

  11. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment.

    PubMed

    Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa

    2016-01-01

    A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater. PMID:27120652

  12. A METHOD FOR ESTIMATING DISTRIBUTIONS OF MASS TRANSFER RATE COEFFICIENTS WITH APPLICATION TO PURGING AND BATCH EXPERIMENTS. (R825825)

    EPA Science Inventory

    Mass transfer between aquifer material and groundwater is often modeled as first-order rate-limited sorption or diffusive exchange between mobile zones and immobile zones with idealized geometries. Recent improvements in experimental techniques and advances in our understanding o...

  13. Heating from free-free absorption and the mass-loss rate of the progenitor stars to supernovae

    SciTech Connect

    Björnsson, C.-I.; Lundqvist, P. E-mail: peter@astro.su.se

    2014-06-01

    An accurate determination of the mass-loss rate of the progenitor stars to core-collapse supernovae is often limited by uncertainties pertaining to various model assumptions. It is shown that under conditions when the temperature of the circumstellar medium is set by heating due to free-free absorption, observations of the accompanying free-free optical depth allow a direct determination of the mass-loss rate from observed quantities in a rather model-independent way. The temperature is determined self-consistently, which results in a characteristic time dependence of the free-free optical depth. This can be used to distinguish free-free heating from other heating mechanisms. Since the importance of free-free heating is quite model dependent, this also makes possible several consistency checks of the deduced mass-loss rate. It is argued that the free-free absorption observed in SN 1993J is consistent with heating from free-free absorption. The deduced mass-loss rate of the progenitor star is, approximately, 10{sup –5} M {sub ☉} yr{sup –1} for a wind velocity of 10 km s{sup –1}.

  14. Explaining the Three-decade Correlation between Star Formation Rate and Stellar Mass in Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric J.; Kurczynski, Peter; Acquaviva, Viviana; UVUDF Team, CANDELS Team

    2016-01-01

    In star-forming galaxies across cosmic time, a correlation has been found between the mass of stars already assembled and its time derivative, the star formation rate. This surprising correlation was not predicted by theory, but it can be reproduced within cosmological hydrodynamics simulations and semi-analytical models of galaxy formation. Here we use SpeedyMC, a Markov Chain Monte Carlo code for Spectral Energy Distribution fitting, to measure the star formation rates and stellar masses of 800 galaxies from the Ultraviolet Ultradeep Field (UVUDF) and CANDELS/GOODS-S field at redshift 1 < z < 1.5. This galaxy sample leverages the deepest images taken with the Hubble Space Telescope to extend the SFR-M* correlation a factor of 10-100X lower in M* than previous studies, down to values of 10^7 M_sun comparable to present-day dwarf galaxies. Accounting for each galaxy's parameter uncertainties, including their covariances, yields a power-law correlation across three decades with intrinsic scatter of 0.2 dex. Having assumed realistic star formation histories that can rise and fall with time, we are able to measure star formation rates on timescales varying from instantaneous to the "lifetime" average for each galaxy. As the timescale over which star formation rate is averaged increases, the power-law exponent of the correlation with stellar mass increases to unity, and the scatter decreases to 0.05 dex. We conclude that the observed correlation between star formation rate and stellar mass results from a tight correlation between recent and lifetime-average star formation rates and a narrow spread of galaxy ages at a given star formation rate. The resulting correlation provides crucial evidence that galaxy formation proceeds through self-regulated star formation. We gratefully acknowledge support from NSF grant AST-1055919 and grants from NASA via the Space Telescope Science Institute in support of programs 12060.57, 12445.56, and GO-12534.

  15. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    SciTech Connect

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie; Renzini, Alvio

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  16. A GIS TECHNIQUE FOR ESTIMATING NATURAL ATTENUATION RATES AND MASS BALANCES

    EPA Science Inventory

    ABSTRACT: Regulatory approval of monitored natural attenuation (MNA) as a component for site remediation often requires a demonstration that contaminant mass has decreased significantly over time. Successful approval of MNA also typically requires an estimate of past and future n...

  17. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    SciTech Connect

    Riebel, D.; Meixner, M.; Srinivasan, S.; Sargent, B.

    2012-07-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to {approx}30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, equivalent to a total mass injection rate (including the gas) into the ISM of {approx}6 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K{sub s} band as a function of J - K{sub s} color, BC{sub K{sub s}}= -0.40(J-K{sub s}){sup 2} + 1.83(J-K{sub s}) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot{sub d}) from C-rich AGB stars, such as log M-dot{sub d} = (-18.90/((K{sub s}-[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  18. The use of body mass loss to estimate metabolic rate in birds.

    PubMed

    Portugal, Steven J; Guillemette, Magella

    2011-03-01

    During starvation, energy production occurs at the expense of body reserve utilisation which results in body mass loss. Knowing the role of the fuels involved in this body mass loss, along with their energy density, can allow an energy equivalent of mass loss to be calculated. Therefore, it is possible to determine daily energy expenditure (DEE) if two body mass loss measurements at an interval of a few days are obtained. The technique can be cheap, minimally stressful for the animals involved, and the data relatively simple to gather. Here we review the use of body mass loss to estimate DEE in birds through critiquing the strengths and weaknesses of the technique, and detail the methodology and considerations that must be adhered to for accurate measures of DEE to be obtained. Owing to the biology of the species, the use of the technique has been used predominantly in Antarctic seabirds, particularly penguins and albatrosses. We demonstrate how reliable the technique can be in predicting DEE in a non-Antarctic species, common eiders (Somateria mollissima), the female of which undergoes a fasting period during incubation. We conclude that using daily body mass loss to estimate DEE can be a useful and effective approach provided that (1) the substrate being consumed during mass loss is known, (2) the kinetics of body mass loss are understood for the species in question and (3) only species that enter a full phase II of a fast (where substrate catabolism reaches a steady state) and are not feeding for a period of time are appropriate for this method. PMID:21144908

  19. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-01

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. PMID:24619858

  20. The proportion of genes in a functional category is linked to mass-specific metabolic rate and lifespan

    PubMed Central

    Takemoto, Kazuhiro; Kawakami, Yuko

    2015-01-01

    Metabolic rate and lifespan are important biological parameters that are studied in a wide range of research fields. They are known to correlate with body mass, but their association with gene (protein) functions is poorly understood. In this study, we collected data on the metabolic rate and lifespan of various organisms and investigated the relationship of these parameters with their genomes. We showed that the proportion of genes in a functional category, but not genome size, was correlated with mass-specific metabolic rate and maximal lifespan. In particular, the proportion of genes in oxic reactions (which occur in the presence of oxygen) was significantly associated with these two biological parameters. Additionally, we found that temperature, taxonomy, and mode-of-life traits had little effect on the observed associations. Our findings emphasize the importance of considering the biological functions of genes when investigating the relationships between genome, metabolic rate, and lifespan. Moreover, this provides further insights into these relationships, and may be useful for estimating metabolic rate and lifespan in individuals and the ecosystem using a combination of body mass measurements and genomic data. PMID:25943793

  1. Shell Model Based Reaction Rates for rp-PROCESS Nuclei in the Mass Range A=44-63

    NASA Astrophysics Data System (ADS)

    Fisker, J. L.; Barnard, V.; Görres, J.; Langanke, K.; Martínez-Pinedo, G.; Wiescher, M. C.

    2001-11-01

    We have used large-scale shell-model diagonalization calculations to determine the level spectra, proton spectroscopic factors, and electromagnetic transition probabilities for proton rich nuclei in the mass range A=44-63. Based on these results and the available experimental data, we calculated the resonances for proton capture reactions on neutron deficient nuclei in this mass range. We also calculated the direct capture processes on these nuclei in the framework of a Woods-Saxon potential model. Taking into account both resonant and direct contributions, we determined the ground-state proton capture reaction rates for these nuclei under hot hydrogen burning conditions for temperatures between 108 and 1010 K. The calculated compound-nucleus level properties and the reaction rates are presented here; the rates are also available in computer-readable format from the authors.

  2. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  3. Assessing the Sensitivity of Satellite-Derived Estimates of Ice Sheet Mass Balance to Regional Climate Model Simulations of Snow Accumulation and Firn Compaction

    NASA Astrophysics Data System (ADS)

    Briggs, K.; Shepherd, A.; Horwath, M.; Horvath, A.; Nagler, T.; Wuite, J.; Muir, A.; Gilbert, L.; Mouginot, J.

    2015-12-01

    Surface mass balance (SMB) estimates from Regional Climate Models (RCMs) are fundamental for assessing and understanding ice sheet mass trends. Mass budget and altimetry assessments rely on RCMs both directly for estimates of the SMB contribution to the total mass trend, and indirectly for ancillary data in the form of firn compaction corrections. As such, mass balance assessments can be highly sensitive to RCM outputs and therefore their accuracy. Here we assess the extent to which geodetic measurements of mass balance are sensitive to RCM model outputs at different resolutions. We achieve this by comparing SMB dependent estimates of mass balance from the mass budget method and altimetry, with those from satellite gravimetry that are independent of SMB estimates. Using the outputs of the RACMO/ANT 2.3 model at 5.5 km and 27 km horizontal spatial resolution, we generate estimates of mass balance using the mass budget method and altimetry for the Western Palmer Land region of the Antarctic Peninsula between 2003 and 2014. We find a 19% increase in the long-term (1980 to 2014) mean annual SMB for the region when enhancing the model resolution to 5.5 km. This translates into an approximate 50% reduction in the total mass loss from 2003 to 2014 calculated with the mass budget method and a 15% increase in the altimetry estimate. The use of the enhanced resolution product leads to consistency between the estimates of mass loss from the altimetry and the mass budget method that is not observed with the coarser resolution product, in which estimates of cumulative mass fall beyond the relative errors. Critically, when using the 5.5 km product, we find excellent agreement, both in pattern and magnitude, with the independent estimate derived from gravimetry. Our results point toward the crucial need for high resolution SMB products from RCMs for mass balance assessments, particularly in regions of high mass turnover and complex terrain as found over the Antarctic Peninsula.

  4. Improved Estimates of the Milky Way's Stellar Mass and Star Formation Rate from Hierarchical Bayesian Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Licquia, Timothy C.; Newman, Jeffrey A.

    2015-06-01

    We present improved estimates of several global properties of the Milky Way, including its current star formation rate (SFR), the stellar mass contained in its disk and bulge+bar components, as well as its total stellar mass. We do so by combining previous measurements from the literature using a hierarchical Bayesian (HB) statistical method that allows us to account for the possibility that any value may be incorrect or have underestimated errors. We show that this method is robust to a wide variety of assumptions about the nature of problems in individual measurements or error estimates. Ultimately, our analysis yields an SFR for the Galaxy of {{\\dot{M}}\\star }=1.65+/- 0.19 {{M}⊙ } y{{r}-1}, assuming a Kroupa initial mass function (IMF). By combining HB methods with Monte Carlo simulations that incorporate the latest estimates of the Galactocentric radius of the Sun, R0, the exponential scale length of the disk, Ld, and the local surface density of stellar mass, {{Σ}\\star }({{R}0}), we show that the mass of the Galactic bulge+bar is M\\star B=0.91+/- 0.07× {{10}10} {{M}⊙ }, the disk mass is M\\star D=5.17+/- 1.11× {{10}10} {{M}⊙ }, and their combination yields a total stellar mass of {{M}\\star }=6.08+/- 1.14× {{10}10} {{M}⊙ } (assuming a Kroupa IMF and an exponential disk profile). This analysis is based upon a new compilation of literature bulge mass estimates, normalized to common assumptions about the stellar IMF and Galactic disk properties, presented herein. We additionally find a bulge-to-total mass ratio for the Milky Way of B/T=0.150-0.019+0.028 and a specific SFR of {{\\dot{M}}\\star }/{{M}\\star }=2.71+/- 0.59× {{10}-11} yr-1.

  5. Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission imagesa)

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Hu, S. X.; Craxton, R. S.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Froula, D. H.

    2014-11-01

    A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface.

  6. Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images.

    PubMed

    Davis, A K; Michel, D T; Hu, S X; Craxton, R S; Epstein, R; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Froula, D H

    2014-11-01

    A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface. PMID:25430192

  7. e-MERLIN 21cm constraints on the mass-loss rates of OB stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, J. C.; Fenech, D. M.; Prinja, R. K.; Blomme, R.; Yates, J. A.

    2016-08-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the COBRaS Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ˜ 70 μJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ˜ 4.4 - 4.8 × 10-6 M⊙ yr -1 for O3 supergiants and ≲ 2.9 × 10-6 M⊙ yr -1 for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and LBV candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 days, we detect a ˜ 69% increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to the stellar surface (where Hα forms) is more clumped than the very extended geometric region sampled by our radio observations.

  8. Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin; Olechowski, Marek; Pokorski, Stefan

    2013-10-01

    It is shown that substantially enhanced Higgs to diphoton rate induced by light staus with large left-right mixing in MSSM requires at the GUT scale non-universal gaugino masses with bino and/or wino lighter than gluino. The possibility of such enhancement is investigated in MSSM models with arbitrary gaugino masses at the GUT scale with additional restriction of top-bottom-tau Yukawa unification, as predicted by minimal SO(10) GUTs. Many patterns of gaugino masses leading to enhanced Higgs to diphoton rate and the Yukawa unification are identified. Some of these patterns can be accommodated in a well-motivated scenarios such as mirage mediation or SUSY breaking F -terms being a non- singlet of SO(10). Phenomenological implications of a scenario with non-universal gaugino masses generated by a mixture of the singlet F -term and the F -term in a 24-dimensional representation of SU(5) ⊂ SO(10) are studied in detail. Possible non-universalities of other soft terms generated by such F-terms are discussed. The enhancement of Higgs to diphoton rate up to 30% can be obtained in agreement with all phenomenological constraints, including vacuum metastability bounds. The lightest sbottom and pseudoscalar Higgs are within easy reach of the 14 TeV LHC. The LSP can be either bino-like or wino-like. The thermal relic abundance in the former case may be in agreement with the cosmological data thanks to efficient stau coannihilation.

  9. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  10. Stellar Masses and Start Formation Rates of Lensed Dusty Star-Forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony; SPT SMG Collaboration

    2016-01-01

    To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from ALMA observations. We have conducted follow-up observations, obtaining multi-wavelength imaging data, using HST, Spitzer, Herschel and the Atacama Pathfinder EXperiment (APEX). We use the high-resolution HST/WFC3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and star formation rates (SFRs). The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ˜ 5 ×1010M⊙. The intrinsic IR luminosities range from 4×1012L⊙ to 4×1013L⊙. They all have prodigious intrinsic star formation rates of 510 to 4800 M⊙yr-1. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing the ongoing strong starburst events which may be driven by major mergers.

  11. The Relation between Star-Formation Rate and Stellar Mass of Galaxies at z ~ 1-4

    NASA Astrophysics Data System (ADS)

    Katsianis, A.; Tescari, E.; Wyithe, J. S. B.

    2016-07-01

    The relation between the star-formation Rate and stellar mass (M ⋆) of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, the observed amplitude of the star-formation rate-stellar mass relation has not been successfully reproduced in simulations, indicating either that the halo accretion history and baryonic physics are poorly understood/modelled or that observations contain biases. In this paper, we examine the evolution of the SFR - M ⋆ relation of z ~ 1-4 galaxies and display the inconsistency between observed relations that are obtained using different techniques. We employ cosmological hydrodynamic simulations from various groups which are tuned to reproduce a range of observables and compare these with a range of observed SFR - M ⋆ relations. We find that numerical results are consistent with observations that use Spectral Energy Distribution techniques to estimate star-formation rates, dust corrections, and stellar masses. On the contrary, simulations are not able to reproduce results that were obtained by combining only UV and IR luminosities (UV+IR). These imply star-formation rates at a fixed stellar mass that are larger almost by a factor of 5 than those of Spectral Energy Distribution measurements for z ~ 1.5-4. For z < 1.5, the results from simulations, Spectral Energy Distribution fitting techniques and IR+UV conversion agree well. We find that surveys that preferably select star-forming galaxies (e.g. by adopting Lyman-break or blue selection) typically predict a larger median/average star-formation rate at a fixed stellar mass especially for high mass objects, with respect to mass selected samples and hydrodynamic simulations. Furthermore, we find remarkable agreement between the numerical results from various authors who have employed different cosmological codes and run simulations with different resolutions. This is

  12. Effects of the LBV Primary's Mass-loss Rate on the 3D Hydrodynamics of eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Cocoran, M.; Okazaki, A.; Owocki, S.; Russell, C.; Hamaguchi, K.; Clementel, N; Groh, J.; Hillier, D. J.

    2013-01-01

    At the heart of eta Carinae's spectacular "Homunculus" nebula lies an extremely luminous (L(sub Total) greater than approximately 5 × 10(exp 6) solar luminosity) colliding wind binary with a highly eccentric (e approximately 0.9), 5.54-year orbit (Figure 1). The primary of the system, a Luminous Blue Variable (LBV), is our closest (D approximately 2.3 kpc) and best example of a pre-hypernova or pre-gamma ray burst environment. The remarkably consistent and periodic RXTE X-ray light curve surprisingly showed a major change during the system's last periastron in 2009, with the X-ray minimum being approximately 50% shorter than the minima of the previous two cycles1. Between 1998 and 2011, the strengths of various broad stellar wind emission lines (e.g. Halpha, Fe II) in line-of-sight (l.o.s.) also decreased by factors of 1.5 - 3 relative to the continuum2. The current interpretation for these changes is that they are due to a gradual factor of 2 - 4 drop in the primary's mass-loss rate over the last approximately 15 years1, 2. However, while a secular change is seen for a direct view of the central source, little to no change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigelt blobs"2, 3. Moreover, model spectra generated with CMFGEN predict that a factor of 2 - 4 drop in the primary's mass-loss rate should lead to huge changes in the observed spectrum, which thus far have not been seen. Here we present results from large- (plus or minus 1620 AU) and small- (plus or minus 162 AU) domain, full 3D smoothed particle hydrodynamics (SPH) simulations of eta Car's massive binary colliding winds for three different primary-star mass-loss rates (2.4, 4.8, and 8.5 × 10(exp -4) solar mass/yr). The goal is to investigate how the mass-loss rate affects the 3D geometry and dynamics of eta Car's optically-thick wind and spatially-extended wind-wind collision (WWC) regions, both of which are known sources of

  13. Importance of participation rate in sampling of data in population based studies, with special reference to bone mass in Sweden.

    PubMed Central

    Düppe, H; Gärdsell, P; Hanson, B S; Johnell, O; Nilsson, B E

    1996-01-01

    OBJECTIVE: To study the effects of participation rate in sampling on "normative" bone mass data. DESIGN: This was a comparison between two randomly selected samples from the same population. The participation rates in the two samples were 61.9% and 83.6%. Measurements were made of bone mass at different skeletal sites and of muscle strength, as well as an assessment of physical activity. SETTING: Malmö, Sweden. SUBJECTS: There were 230 subjects (117 men, 113 women), aged 21 to 42 years. RESULTS: Many subjects participated in both studies (163). Those who took part only in the study with the higher participation rate (67) almost invariably had higher values for bone mass density at the sites measured (up to 7.6% for men) than participants in the study with the lower participation rate. No differences in muscle strength were recorded. CONCLUSION: A high degree of compliance is important to achieve a reliable result in determining normal values in population based studies. PMID:8762383

  14. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-05-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• <~ 5 × 106 Modot (i.e. nuclei in the range of LISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ~10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ~250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ~102-7 × 102 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5 years

  15. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  16. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  17. MAJOR-MERGER GALAXY PAIRS IN THE COSMOS FIELD-MASS-DEPENDENT MERGER RATE EVOLUTION SINCE z = 1

    SciTech Connect

    Xu, C. Kevin; Zhao, Yinghe; Gao, Y.; Scoville, N.; Capak, P.; Drory, N.

    2012-03-10

    We present results of a statistical study of the cosmic evolution of the mass-dependent major-merger rate since z = 1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band-selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting function of f{sub pair} = 10{sup -1.88({+-}0.03)}(1 + z){sup 2.2({+-}0.2)}. The best-fitting function for the merger rate is R{sub mg} (Gyr{sup -1}) = 0.053 Multiplication-Sign (M{sub star}/10{sup 10.7} M{sub Sun} ){sup 0.3}(1 + z){sup 2.2}/(1 + z/8). This rate implies that galaxies of M{sub star} {approx} 10{sup 10}-10{sup 11.5} M{sub Sun} have undergone {approx}0.5-1.5 major mergers since z = 1. Our results show that, for massive galaxies (M{sub star} {>=} 10{sup 10.5} M{sub Sun }) at z {<=} 1, major mergers involving star-forming galaxies (i.e., wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs of M{sub star} {approx}< 10{sup 10.3} M{sub Sun }. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies (M{sub star} {>=} 10{sup 11.3} M{sub Sun }), but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass-dependent (ultra)luminous infrared galaxies ((U)LIRG) rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.

  18. Galaxy secular mass flow rate determination using the potential-density phase shift approach: Application to six nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Buta, Ronald J.

    2015-01-01

    Using the potential-density phase shift approach developed by the present authors in earlier publications, we estimate the magnitude of radial mass accretion/excretion rates across the disks of six nearby spiral galaxies (NGC 628, NGC 3351, NGC 3627, NGC 4321, NGC 4736, and NGC 5194) having a range of Hubble types. Our goal is to examine these rates in the context of bulge building and secular morphological evolution along the Hubble sequence. Stellar surface density maps of the sample galaxies are derived from SINGS 3.6 μm and SDSS i-band images using colors as an indicator of mass-to-light ratios. Corresponding molecular and atomic gas surface densities are derived from published CO (1-0) and HI interferometric observations of the BIMA SONG, THINGS, and VIVA surveys. The mass flow rate calculations utilize a volume-type torque integral to calculate the angular momentum exchange rate between the basic state disk matter and what we assume to be density wave modes in the observed galaxies. This volume-type integral contains the contributions from both the gravitational surface torque couple and the advective surface torque couple at the nonlinear, quasi-steady state of the wave modes, in sharp contrast to its behavior in the linear regime, where it contains only the contribution from the gravitational surface torque couple used by Lynden-Bell & Kalnajs in 1972. The potential-density phase shift approach yields angular momentum transport rates several times higher than those estimated using the Lynden-Bell and Kalnajs approach. And unlike Lynden-Bell and Kalnajs, whose approach predicts zero mass redistribution across the majority of the disk surface (apart from the isolated locations of wave-particle resonances) for quasi-steady waves, the current approach leads to predictions of significant mass redistribution induced by the quasi-steady density wave modes, enough for the morphological types of disks to evolve substantially within its lifetime. This difference

  19. A Method to Simultaneously Improve PCB Radiolysis Rates in Oil and to Close the Chlorine Mass Balance

    SciTech Connect

    Mincher, Bruce Jay; Curry, R. C.; Brey, R.

    2000-06-01

    The addition of alkaline 2-propanol to isooctane and transformer oil solutions of PCBs was found to increase the rate of PCB dechlorination by -radiolysis. Simultaneously, it facilitates the closure of the chlorine mass balance. The chlorine liberated from PCBs irradiated in alkaline 2-propanol-spiked solutions precipitated as an inorganic salt in a stoichiometric amount. This was demonstrated for an individual PCB congener (PCB 155) in isooctane and for Aroclor 1260 in transformer oil. Radiolysis rates are reported in terms of dose constants, d (kGy-1), the exponential rate constant for PCB decomposition with respect to absorbed dose. These are the highest decomposition rates yet reported for the radiolytic treatment of PCB-contaminated transformer oil.

  20. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    USGS Publications Warehouse

    Tesoriero, A.J.; Liebscher, H.; Cox, S.E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive

  1. Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Sangster, T. C.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-04-01

    Measurements of the conduction-zone length (110 ±20 μ m at t =2.8 ns ), the averaged mass ablation rate of the deuterated plastic (7.95 ±0.3 μ g /ns ), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ˜10 % and the length of the conduction zone by nearly a factor of 2.

  2. Measurements of the conduction-zone length and mass ablation rate in cryogenic direct-drive implosions on OMEGA

    SciTech Connect

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Sangster, T. C.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-04-14

    Measurements of the conduction-zone length (110 ± 20 μm at t = 2.8 ns), the averaged mass ablation rate of the deuterated plastic (7.95 ± 0.3 μg/ns), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ~10% and the length of the conduction zone by nearly a factor of 2.

  3. Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser

    SciTech Connect

    Burdt, Russell A.; Yuspeh, Sam; Najmabadi, Farrokh; Sequoia, Kevin L.; Tao Yezheng; Tillack, Mark S.

    2009-08-01

    The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3x10{sup 11} to 2x10{sup 12} W/cm{sup 2}. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z=50) used in these experiments.

  4. Microscale resolution of interfacial mass-transfer rates in electrode processes

    SciTech Connect

    Whitney, G.M.; Tobias, C.W.

    1987-06-01

    Results of four interrelated studies concerning the nature of electrolytic gas evolution are reported: (1) configurations of axisymmetric bubbles formed on curved surfaces are evaluated; (2) mass-transfer enhancement by a stream of bubbles rising near a mass-transfer surface is resolved spatially and temporally using a micro-mosaic electrode; (3) the onset of buoyancy-induced convection is investigated for a case in which the density profile develops in a semi-infinite fluid, due to a step change in surface concentration at a rigid, conducting boundary; (4) observations of galvanostatic growth and disengagement of hydrogen bubbles at a 127-..mu..m-diameter micro-electrode embedded in a large, coplanar, horizontal electrode in 1.0-M sulfuric acid are reported.

  5. Process and rate of dedolomitization: mass transfer and C14 dating in a regional carbonate aquifer.

    USGS Publications Warehouse

    Back, W.; Hanshaw, B.B.; Plummer, L.N.; Rahn, P.H.; Rightmire, C.T.; Rubin, M.

    1983-01-01

    Regional dedolomitization is the major process that controls the chemical character of water in the Mississippian Pahasapa Limestone (Madison equivalent) surrounding the Black Hills, South Dakota and Wyoming. The process of dedolomitization consists of dolomite dissolution and concurrent precipitation of calcite; it is driven by dissolution of gypsum. Deuterium and oxygen isotopic data from the ground water, coupled with regional potentiometric maps, show that recharge occurs on the western slope of the Black Hills and that the water flows N and W toward the Powder River Basin. Mass-balance and mass-transfer calculations were used to adjust 14C values to determine a range of groundwater flow velocities between 2 and 20 m/yr. The close agreement among the model results demonstrates that dedolomitization is controlling water-rock interactions in this regional carbonate aquifer system.-from Authors

  6. Experimental assessment and modeling of organic compound interphase mass-transfer rates in multiphase subsurface systems. Progress report

    SciTech Connect

    Weber, W.J. Jr.; Abriola, L.M.

    1990-03-15

    During the initial eight month period of this grant, work has been conducted on all facets of the project. Significant progress has been made in the design, construction and testing of the experimental apparatus. Investigation of methods for characterizing the physical forms of non-aqueous phase liquid (NAPL) residuals (globules or blobs) has led to a narrowing of possible approaches. Development of a numerical simulator that accomodates multiphase transport with mass transfer rate interactions is well underway.

  7. Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions

    NASA Astrophysics Data System (ADS)

    Diánez, M. J.; Pérez Maqueda, L. A.; Criado, J. M.

    2004-08-01

    Sample controlled thermal analysis equipment has been developed constituted by an electrobalance in which the mass output (TG signal) is directly used for monitoring the temperature of thermal decomposition reactions under constant rate thermal analysis (CRTA) or stepwise isothermal analysis (SIA) control. The sample weight is programmed to follow a preset linear decrease as a function of the time by means of a conventional controller, that at the time control a second conventional temperature programmer. The CRTA control is achieved by controlling the temperature is such a way that if the mass input is higher than the setpoint, the temperature increases at a predefined heating rate; while if the mass input is lower than the setpoint, the temperature decreases at a predefined cooling rate. The SIA control is achieved by selecting the run-hold command from the menu of the digital input of the temperature programmer. In such a case, the programmed linear heating schedule is in progress while the sample weight is higher than the setpoint and an isothermal dwell is maintained as soon as the weight becomes lower than the setpoint. The direct use of the mass output for the control provides a higher sensitivity for selecting very low values of constant reaction rates than the more conventional methods using the DTG output as control parameter. The thermal degradation of polyvinye chloride (PVC) has been used for checking the behavior of the equipment here developed, showing that the dehydrochlorination of PVC is controlled either by a nucleation and growth of nuclei or by a random scission of the main chain of the polymer.

  8. Measurement of the Si Mass Ablation Rate in Direct-Drive Implosions on the OMEGA Laser System

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Igumenshchev, I. V.; Craxton, R. S.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Sangster, T. C.; Froula, D. H.

    2014-10-01

    The Si mass ablation rate in direct-drive inertial confinement fusion implosions was measured using a pinhole x-ray framing camera on the OMEGA Laser System. In targets consisting of a Si layer over a CH layer, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher- Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers. The emergence of the interface peak was used to measure the burnthrough time of the outer layer, giving its average mass ablation rate. By repeating this experiment for different outer-layer thicknesses, time-resolved measurements of the mass ablation rate were obtained. Simulations validated the methods and verified that the measurement techniques are not sensitive to perturbation growth at the ablation surface. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Mass-loss Rate by the Mira in the Symbiotic Binary V1016 Cygni from Raman Scattering

    NASA Astrophysics Data System (ADS)

    Sekeráš, M.; Skopal, A.

    2015-10-01

    The mass-loss rate from Mira variables represents a key parameter in our understanding of their evolutionary tracks. We introduce a method for determining the mass-loss rate from the Mira component in D-type symbiotic binaries via the Raman scattering of atomic hydrogen in the wind from the giant. Using our method, we investigated Raman He ii λ 1025\\to λ 6545 conversion in the spectrum of the symbiotic Mira V1016 Cyg. We determined its efficiency, η = 0.102, 0.148, and the corresponding mass-loss rate, \\dot{M}={2.0}-0.2+0.1× {10}-6, {2.7}-0.1+0.2× {10}-6 {M}⊙ {{{yr}}}-1, using our spectra from 2006 April and 2007 July, respectively. Our values of \\dot{M} that we derived from Raman scattering are comparable with those obtained independently by other methods. Applying the method to other Mira-white dwarf binary systems can provide a necessary constraint in the calculation of asymptotic giant branch (AGB) evolution.

  10. Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand.

    PubMed

    Iino, Yoichi; Kojima, Takeji

    2016-01-01

    The purpose of this study was to investigate the effect of the racket mass and the rate of strokes on the kinematics and kinetics of the trunk and the racket arm in the table tennis topspin backhand. Eight male Division I collegiate table tennis players hit topspin backhands against topspin balls projected at 75 balls · min(-1) and 35 balls · min(-1) using three rackets varying in mass of 153.5, 176 and 201.5 g. A motion capture system was used to obtain trunk and racket arm motion data. The joint torques of the racket arm were determined using inverse dynamics. The racket mass did not significantly affect all the trunk and racket arm kinematics and kinetics examined except for the wrist dorsiflexion torque, which was significantly larger for the large mass racket than for the small mass racket. The racket speed at impact was significantly lower for the high ball frequency than for the low ball frequency. This was probably because pelvis and upper trunk axial rotations tended to be more restricted for the high ball frequency. The result highlights one of the advantages of playing close to the table and making the rally speed fast. PMID:26208598

  11. Improved Constraints on the Milky Way’s Star Formation Rate and Stellar Mass from Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Licquia, Timothy; Newman, J.

    2014-01-01

    We demonstrate a new method for improved estimates of several global properties of the Milky Way, including its current star formation rate (SFR), the stellar mass contained in its disk and bulge+bar components, as well as its total stellar mass. We do so by building upon the previous measurements found in the literature, combining the information contained in each of them using a hierarchical Bayesian (HB) statistical analysis that allows us to account for the possibility that any one of them may be incorrect or have underestimated its errors. In this application, the HB method yields similar estimates to a weighted average, but with more realistic error estimates. We show that this method is robust to a wide variety of assumptions about potential problems in individual measurements or error estimates. Ultimately, our analysis yields a SFR for the Galaxy of 1.66 ± 0.20 M⊙ yr-1. When calculating the stellar mass contained in each component of the Milky Way, we incorporate Monte Carlo simulations to reflect the latest estimates of the galactocentric radius of the sun and stellar mass surface density of the local neighborhood. We show that the mass of the Galactic bulge+bar is M*B = 0.91 ± 0.08 × 1010 M⊙, the disk mass is M*D = 4.89+0.98-0.82 × 1010 M⊙, and their combination yields a total stellar mass of M* = 5.76+0.98-0.82 × 1010 M⊙. This work displays the advantage of using HB meta-analysis to robustly combine a set of measurements that are prone to numerous systematic errors, while simultaneously providing information on the level of systematics that may be having an impact.

  12. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  13. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  14. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  15. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  16. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    SciTech Connect

    De Marchi, Guido; Beccari, Giacomo; Panagia, Nino E-mail: gbeccari@eso.org

    2013-09-20

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dot{sub acc}, as a function of the stellar parameters finding that log M-dot{sub acc}≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

  17. Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Zank, Gary P.; Linsky, Jeffrey L.

    2002-07-01

    Collisions between the winds of solar-like stars and the local interstellar medium result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high-resolution Lyα spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass-loss rate. We present new mass-loss rate measurements derived in this fashion for four stars (ɛ Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields M~F1.15+/-0.20X. The active M dwarf Proxima Cen and the very active RS CVn system λ And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power-law relation for solar-like stars suggests that mass loss decreases with time. We infer a power-law relation of M~t-2.00+/-0.52. This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. ESTIMATING THE RATE OF NATURAL BIOATTENUATION OF GROUND WATER CONTAMINANTS BY A MASS CONSERVATION APPROACH

    EPA Science Inventory

    Recent field and experimental research has shown that certain classes of subsurface contaminants can biodegrade at many sites. A number of site specific factors influences the rate of biodegradation, which helps determine the ultimate extent of contamination at these sites. The...

  19. High sedimentation rates in the Early Triassic after latest Permian mass extinction: Carbonate production is main factor in non-Arctic regions

    NASA Astrophysics Data System (ADS)

    Horacek, Micha; Brandner, Rainer

    2016-04-01

    A substantial change in sedimentation rates towards higher values has been documented from the Late Permian to the Lower Triassic. Although it is assumed and also has been shown that the deposition of siliciclastic material increased in the Lower Triassic due to stronger erosion because of loss of land cover and increased chemical and physical weathering with extreme climate warming, the main sediment production occurred by marine carbonate production. Still, carbonate production might have been significantly influenced by weathering and erosion in the hinterland, as the transport of dust by storms into the ocean water probably was a main nutrient source for microbial carbonate producers, because "normal" nutrient supply by ocean circulation, i. e. upwelling was strongly reduced due to the elevated temperatures resulting in water-column stratification . Sediment accumulation was also clearly influenced by the paleo-geographic and latitudinal position, with lower carbonate production and sedimentation rates in moderate latitudes. The existence of a "boundary clay" and microbial carbonate mounds and layers in the immediate aftermath of the latest Permian mass extinction points towards a development from a short-timed acid ocean water - resulting in a carbonate production gap and the deposition of the boundary clay towards the deposition of the microbial mounds and layers due to the microbial production of micro-environments with higher alkalinity allowing the production of carbonate. After the return of the ocean water to normal alkalinity planktic production of carbonate resulted in a very high sedimentation rate, especially taking into account the absence of carbonate producing eukaryotic algae and animals.

  20. Measurement of the sizes of circumstellar dust shells around evolved stars with high mass loss rates

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Knapp, G. R.

    1992-01-01

    The research supported by the NASA ADP contract NAG5-1153 has been completed. The attached paper, which will be submitted for publication in the Astrophysical Journal in January 1992, presents the results of this work. Here is a summary of the project and its results. A set of computer programs was developed to process the raw 60 micron and 100 micron IRAS survey data. The programs were designed to detect faint extended emission surrounding a bright unresolved source. Candidate objects were chosen from a list of red giant stars and young planetary nebulae which have been detected in millimeter/submillimeter lines of CO. Of the 279 stars examined, 55 were resolved at 60 microns. The principle results of the study are given. The average age for the shells surrounding the 9 Mira-type stars which are extended is 6 x 10(exp 4) yr. This suggests that the period during which these stars lose mass lasts for approx 10(exp 5) yr. The oldest shell found surrounds U Ori, and the youngest surrounds Mira itself. Some shells appear to be detached from the central star. This phenomenon is more common among older stars, suggesting that the mass loss becomes more episodic as the star sheds its envelope. Although all 8 stars less distant than 200 pc are resolved in the IRAS 60 micron data, 29 stars within 500 pc were not. These stars probably have younger circumstellar shells than those which were resolved. Almost all the carbon stars with distances of 500 pc or less have resolved shells, while only 1/2 of the oxygen-rich stars do. The resolved carbon star shells also are older on average than the oxygen-rich ones. These facts imply that carbon stars have been losing mass for a longer period, on average, than oxygen-rich red giants. Large circumstellar shells tend to be found at large distances from the galactic plane, confirming that the ISM density limits the size to which a dust shell can grow. Surprisingly, even very large shells seem to be nearly spherical, and do not appear to

  1. Simultaneous estimation of local- and flowpath-scale rate-limited mass transfer parameters using electrical-resistivity tomography

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Day-Lewis, F. D.; Ong, J. B.; Lane, J. W.; Curtis, G. P.

    2012-12-01

    In the presence of rate-limited mass transfer (RLMT), conventional chemical sampling of the subsurface preferentially pulls pore water from the mobile domain. Therefore, the characteristics of the immobile domain must be inferred from the mobile tracer signal, which is modified with transport and immobile exchange over a representative length. Because conventional chemical data are not directly sensitive to the immobile zone, this representative length must be sufficient to allow enough exchange between the two domains to inform immobile parameter estimation (e.g., optimal Damkohler range). Flowpath "averaged" RLMT parameters may not well describe the true field variability in the immobile domain size and exchange coefficient, parameters which control the retention and subsequent long-term release of contaminants. In contrast, bulk electrical conductivity is sensitive to the volume-weighted ionic tracer concentration in both the mobile and immobile domains. When co-located bulk conductivity and fluid conductivity are analyzed concurrently, estimates can be obtained for (1) effective RLMT parameters averaged along the upgradient flowpath and (2) local-scale RLMT parameters for the volume from which chemical samples and electrical measurements are taken. Here, we use electrical resistivity tomography (ERT), for the first time, to discriminate and identify effective flowpath and local-scale RLMT parameters, informing the true spatial variability in mass transfer. We apply this technique at the field scale at a uranium contamination site in Naturita, Colorado, USA. Inverse modeling was used to optimize parameter estimates to best simulate both the observed bulk and fluid conductivity, and objectively determine parameter sensitivity, correlation, and confidence. Local RLMT parameters were found to be most sensitive to changes in bulk conductivity, while effective flowpath parameters were most sensitive to changes in fluid conductivity. Observed non-linear hysteresis

  2. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    USGS Publications Warehouse

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  3. Do erosion rates control the long-term carbon isotope mass balance?

    NASA Astrophysics Data System (ADS)

    Shields-Zhou, G. A.

    2014-12-01

    The long-term marine carbon isotope record responds to changes in the proportional burial rates of organic carbon relative to carbonate carbon on a global scale. For this reason, high δ13C values in marine carbonate rocks are normally interpreted to reflect faster rates of organic burial and increased atmospheric oxygenation. Geochemical redox tracers fail to support this paradigm for sustained deviations from the long-term δ13C mean, indicating perhaps that proportionally high organic burial may be associated with lower overall flux rates. Here I propose that ~107-108 year trends in average δ13C, as with seawater 87Sr/86Sr, are driven by changes in the balance between volcanism and denudation (~uplift). In other words, high proportional organic burial may be related to increases in the net CO2 flux (= organic carbon burial + Ca-Mg silicate weathering) relative to the carbonate weathering flux. According to this model, high baseline δ13C values will be associated with periods of heightened volcanic activity and/or diminished tectonic uplift. Conversely, lower baseline δ13C values can be related to times when the global carbon cycle was dominated by carbonate and oxidative weathering due to high rates of physical erosion. Shorter 105-106 year positive δ13C excursions have also been interpreted as the 'smoking gun' to extreme oxygenation events. However, large increases in organic burial are difficult to sustain under steady-state conditions without very high volcanic fluxes, indicating that some of these excursions might be better explained by transient changes to the isotopic composition of carbon sources and sinks.

  4. Study on three-dimensional printing using electrohydrodynamic inkjet by analysis of mass flow rate

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Lee, Soo-Hong; Lee, Pil-Ho; Lee, Sang Won

    2014-11-01

    An electrohydrodynamic (EHD) jet can produce much smaller droplets than nozzle sizes even for highly viscous liquid. Micro scale patterns are produced by a direct patterning of the EHD inkjet printing technique to obtain lamination layers. A cone-jet mode shows good performance for line and surface printings. A prediction method for a flow rate was proposed by performing experiments and deriving an equation. The calculation was carried out by dividing the electric field and the fluid regions. Dielectric liquids were used as the working fluid, whose flow rate was measured at the applied voltage of 1.5 kV to 2.5 kV. The measured flow rate was affected by viscosity, surface tension, and density as fluid properties, and dielectric constant and electric conductivity as properties of electric fields for the voltage. Then, parameters of the printing were investigated by printed line width and thickness at various conditions. As a result, the applied static pressure had more effect on the line printing although the line width was affected by the stage velocity. The significant role of the parameters was confirmed to produce scaffolds using the three-dimensional EHD printing. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).

  5. Compartmentation Analysis of Paraquat Fluxes in Maize Roots as a Means of Estimating the Rate of Vacuolar Accumulation and Translocation to Shoots.

    PubMed Central

    DiTomaso, J. M.; Hart, J. J.; Kochian, L. V.

    1993-01-01

    Efflux analysis conducted after five loading periods of various lengths (2, 6, 12, 18, or 24 h) was used to investigate uptake, compartmentation, and translocation of [14C]paraquat in maize (Zea mays L.) seedlings. The time course for net paraquat uptake (paraquat concentration in uptake solution = 25[mu]M) into maize roots was linear (56.7 nmol g-1 root fresh weight h-1) for 24 h. Estimates of changes in paraquat content in the vacuole, cytoplasm, and cell wall after 2-, 6-, 12-, 18-, and 24-h loading periods indicated that the cell wall saturated rapidly, whereas accumulation of paraquat into the vacuole increased linearly (12.4 nmol g-1 root fresh weight h-1) over 24 h. In contrast to vacuolar accumulation, cytoplasmic paraquat content appeared to approach saturation. The half-time for paraquat efflux from the cell wall (16.6 min [plus or minus] 1.2 SD) and cytoplasm (58.8 min [plus or minus] 8.9 SD remained relatively constant regardless of the length of the loading period, whereas the half-time for efflux from the vacuole was considerably longer and increased linearly with increased loading time (6.1-18.7 h). The time course for paraquat translocation to the shoot was linear within a 24-h exposure to radiolabeled herbicide, but translocation did not begin until 5 h after initiation of treatment. The experimental approach used in these experiments provides a valuable method for examining the movement of paraquat in maize seedlings. Results indicate that the herbicide slowly accumulates in the vacuole of root cells but is also translocated to the shoot. PMID:12231834

  6. Deep-sea spherules from Pacific clay - Mass distribution and influx rate. [extraterrestrial origins from optical and electron microscopy

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Davis, P. A., Jr.; Nishiizumi, K.; Millard, H. T., Jr.

    1980-01-01

    From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 microns were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of optical and electron microscopy and atomic absorption elemental analysis. An expression for the integral number of stony particles from this sediment in the mass range 20-300 micrograms was derived. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but no conclusions could be made.

  7. Using mass scaling of movement cost and resource encounter rate to predict animal body size-population density relationships.

    PubMed

    Nilsen, Erlend B; Finstad, Anders G; Næsje, Tor F; Sverdrup-Thygeson, Anne

    2013-06-01

    The negative relationship between body mass and population abundance was documented decades ago and forms one of the most fundamental scaling-laws in ecology. However, current theory fails to capture observed variations and the subject continues to raise controversy. Here we unify empirically observed size-abundance relationships with theory, by incorporating allometries in resource encounter rate and metabolic costs of movements. Fractal geometry is used to quantify the underlying resources distributions. Our model predicts that in environments packed with resources, body mass to population abundance relationships is less negative than the commonly assumed -3/4 power law. When resources are more patchily distributed, we predict a more negative exponent. These predictions are consistent with empirical observations. The current research provides an important step towards synthesizing metabolism, resource distribution and the global scaling of animal abundance, explaining why size-abundance relationships vary among feeding guilds and ecosystems. PMID:23548840

  8. Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Bingna; Xu, Zhen; Gao, Chao

    2016-01-01

    The output of graphene nanoscrolls (GNSs) has been greatly enhanced to the gram-level by using an improved spray-freeze-drying method without damaging the high transforming efficiency (>92%). The lowest bulk density of GNS foam reaches 0.10 mg cm-3. Due to the unique morphology and high specific surface area (386.4 m2 g-1), the specific capacitances of the GNSs (90-100 F g-1 at 1 A g-1) are all superior to those of multiwalled carbon nanotubes meanwhile maintaining excellent rate capabilities (60-80% retention at 50 A g-1). For the first time, all-graphene-based films (AGFs) are fabricated via the intercalation of GNSs into graphene layers. The AGF exhibits a capacitance of 166.8 F g-1 at 1 A g-1 and rate capability (83.9% retention at 50 A g-1) better than those of pure reduced graphene oxide (RGO) films and carbon nanotubes/graphene hybrid films (CGFs).The output of graphene nanoscrolls (GNSs) has been greatly enhanced to the gram-level by using an improved spray-freeze-drying method without damaging the high transforming efficiency (>92%). The lowest bulk density of GNS foam reaches 0.10 mg cm-3. Due to the unique morphology and high specific surface area (386.4 m2 g-1), the specific capacitances of the GNSs (90-100 F g-1 at 1 A g-1) are all superior to those of multiwalled carbon nanotubes meanwhile maintaining excellent rate capabilities (60-80% retention at 50 A g-1). For the first time, all-graphene-based films (AGFs) are fabricated via the intercalation of GNSs into graphene layers. The AGF exhibits a capacitance of 166.8 F g-1 at 1 A g-1 and rate capability (83.9% retention at 50 A g-1) better than those of pure reduced graphene oxide (RGO) films and carbon nanotubes/graphene hybrid films (CGFs). Electronic supplementary information (ESI) available: SEM image for GNS transformation efficiency assessment, images for GNS density modeling and calculation, tables for GNS specific capacitance and retention, figures and tables for AGF, CGF and RGO

  9. On the Inconsistency between Cosmic Stellar Mass Density and Star Formation Rate up to z ∼ 8

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wang, F. Y.

    2016-04-01

    In this paper, we test the discrepancy between the stellar mass density (SMD) and instantaneous star formation rate in the redshift range 0 < z < 8 using a large observational data sample. We first compile the measurements of SMDs up to z ∼ 8. Comparing the observed SMDs with the time-integral of instantaneous star formation history (SFH), we find that the observed SMDs are lower than that implied from the SFH at z < 4. We also use the Markov chain Monte Carlo (MCMC) method to derive the best-fitting SFH from the observed SMD data. At 0.5 < z < 6, the observed star formation rate densities are larger than the best-fitting one, especially at z ∼ 2 where they are larger by a factor of about two. However, at lower (z < 0.5) and higher redshifts (z > 6), the derived SFH is consistent with the observations. This is the first time that the discrepancy between the observed SMD and instantaneous star formation rate has been tested up to very high redshift z ≈ 8 using the MCMC method and a varying recycling factor. Several possible reasons for this discrepancy are discussed, such as underestimation of SMD, initial mass function, and evolution of cosmic metallicity.

  10. Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum

    PubMed Central

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Li, Bai-Lian; Chown, Steven L.; Reich, Peter B.; Gavrilov, Valery M.

    2008-01-01

    A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet—from bacteria to elephants, and algae to sapling trees—we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 1020-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg−1. This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole. PMID:18952839

  11. Determination of mass loss and mass transfer rates of Algol (Beta Persei) from the analysis of absorption lines in the UV spectra obtained by the IUE satellite

    NASA Astrophysics Data System (ADS)

    Wecht, Kristen

    The International Ultraviolet Explorer (IUE) archive of high-resolution ultraviolet spectra of the eclipsing semi-detached binary star, Algol ([beta] Persei, HD 19356), taken from September 1978 to September 1989, is analyzed in order to characterize the movement of gas within and from this system. Light curves are constructed, using a total of 1647 continuum level measurements. These results support the semidetached status of this interacting binary star. Radial velocities, residual intensities, full width half maxima (FWHM), line asymmetries, and equivalent widths of UV absorption lines for aluminum, magnesium, iron, and silicon in a range of ionization states are determined and analyzed. For selected epochs, we were able to isolate gas stream and photospheric contributions by an examination of the differences between spectral line shapes. We observed variations in line shape and strength, with orbital phase and epoch, indicating the presence of stable gas streams and circumstellar gas, and periods of increased mass-transfer activity associated with transient gas streams. The 1989 data indicates moderate activity. This epoch was examined most closely since it provides the greatest phase coverage. Spectral line profiles in 1978 and 1984 have the strongest gas-flow absorption components, indicating that these are the epochs of the greatest activity. The dense phase coverage in September 1989 allows us to measure the mass loss rate from Algol B into Algol A which is of order ~10 -14 [Special characters omitted.] /yr. Since the highest gas-flow velocities are in the 100 kilometer per second range, well below escape velocity, we conclude that systemic mass loss due to gas flow is small for the Algol system.

  12. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    SciTech Connect

    Willott, Chris J.; Omont, Alain; Bergeron, Jacqueline

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  13. Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors.