Science.gov

Sample records for mass concrete mixture

  1. Salado mass concrete: Mixture development and preliminary characterization

    SciTech Connect

    Wakeley, L.D.; Ernzen, J.J.; Neeley, B.D.; Hansen, F.D.

    1994-06-01

    A salt-saturated concrete proportioned with Class H oilwell cement, Class F fly ash, and a shrinkage compensating component was developed to meet performance requirements for mass placement as seal components at the Waste Isolation Pilot Plant. Target properties of the concrete included 8-in. slump 3 hr after mixing, no aggregate segregation, heat rise of < 25{degrees}F 4 hr after mixing, compressive strength of 4,500 psi at 180 days, minimal volume change, and probable geochemical stability for repository conditions. Thermal and mechanical properties of promising candidate concrete mixtures were measured. Modulus of elasticity and creep behavior were similar to those of ordinary portland cement mass concretes. Thermal expansion for the salt-saturated concrete developed here was typical of ordinary concrete with similar silicate aggregates. Thermal conductivity, diffusivity, and specific heat approximated values measured for other mass concretes and were similar to values of the host salt rock.

  2. The development of a lower heat concrete mixture for mass concrete placement conditions

    NASA Astrophysics Data System (ADS)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are

  3. Tracking traces of transition metals present in concrete mixtures by inductively-coupled plasma mass spectrometry studies.

    PubMed

    Bassioni, Ghada; Pillay, Alvin E; El Kadi, Mirella; Fegali, Fadi; Fok, Sai Cheong; Stephen, Sasi

    2010-01-01

    Transition metals can have a significant impact in research related to the dosage optimization of superplasticizers. It is known that the presence of transition metals can influence such doses, and the application of a contemporary instrumental method to obtain the profiles of subsisting transition elements in concrete mixtures would be useful. In this work, inductively-coupled plasma mass spectrometry (ICP-MS) is investigated as a possible tool to track traces of transition metals in concrete mixtures. Depth profiling using ICP-MS on proofed and unproofed concrete shows the presence of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn at trace intensities in the bulk of the samples under investigation. The study demonstrates that the transition metals present in the concrete sample are largely a part of the cement composition and, to a minor degree, a result of exposure to the seawater after curing. The coated concrete samples have a metal distribution pattern similar to the uncoated samples, but slight differences in intensity bear testimony to the very low levels that originate from the exposure to seawater. While X-ray diffraction fails to detect these traces of metals, ICP-MS is successful in detecting ultra-trace intensities to parts per trillion. This method is not only a useful application to track traces of transition metals in concrete, but also provides information to estimate the pore size distribution in a given sample by very simple means. PMID:21173466

  4. Use of waste plastic in concrete mixture as aggregate replacement.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics. PMID:17931848

  5. A statistical approach to optimizing concrete mixture design.

    PubMed

    Ahmad, Shamsad; Alghamdi, Saeid A

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (3(3)). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m(3)), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405

  6. A Statistical Approach to Optimizing Concrete Mixture Design

    PubMed Central

    Alghamdi, Saeid A.

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m3), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405

  7. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  8. Utilization of lignite ash in concrete mixture

    SciTech Connect

    Demirbas, A.; Karslioglu, S.; Ayas, A.

    1995-12-01

    In this article 11 ashes from various Turkish lignite sources were studied to show the effects upon lignite ash quality for use as a mineral admixture in concrete. The lignite ashes were classified into two general types (Class A and Class B) based on total of silica, alumina, and iron oxide. Total content of the three major oxides must be more than 50% for Class A lignite ash and more than 70% for Class B lignite ash. When 25% of the cement was replaced by LA-1 (Class A) lignite ash, based on 300 kg/m{sup 3} cementitious material, the 28-day compressive strength increased 24.3% compared to the control mix. The optimal lignite ash replacement was 25% at 300 kg/m{sup 3} cementitious material.

  9. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  10. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  11. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  12. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  13. Thermal behavior of crumb-rubber modified asphalt concrete mixtures

    NASA Astrophysics Data System (ADS)

    Epps, Amy Louise

    Thermal cracking is one of the primary forms of distress in asphalt concrete pavements, resulting from either a single drop in temperature to an extreme low or from multiple temperature cycles above the fracture temperature of the asphalt-aggregate mixture. The first mode described is low temperature cracking; the second is thermal fatigue. The addition of crumb-rubber, manufactured from scrap tires, to the binder in asphalt concrete pavements has been suggested to minimize both types of thermal cracking. Four experiments were designed and completed to evaluate the thermal behavior of crumb-rubber modified (CRM) asphalt-aggregate mixtures. Modified and unmodified mixture response to thermal stresses was measured in four laboratory tests. The Thermal Stress Restrained Specimen Test (TSRST) and the Indirect Tensile Test (IDT) were used to compare mixture resistance to low temperature cracking. Modified mixtures showed improved performance, and cooling rate did not affect mixture resistance according to the statistical analysis. Therefore results from tests with faster rates can predict performance under slower field rates. In comparison, predicted fracture temperatures and stresses (IDT) were generally higher than measured values (TSRST). In addition, predicted fracture temperatures from binder test results demonstrated that binder testing alone is not sufficient to evaluate CRM mixtures. Thermal fatigue was explored in the third experiment using conventional load-induced fatigue tests with conditions selected to simulate daily temperature fluctuations. Test results indicated that thermal fatigue may contribute to transverse cracking in asphalt pavements. Both unmodified and modified mixtures had a finite capacity to withstand daily temperature fluctuations coupled with cold temperatures. Modified mixtures again exhibited improved performance. The fourth experiment examined fracture properties of modified and unmodified mixtures using a common fracture toughness test

  14. Determination of test methods for the prediction of the behavior of mass concrete

    NASA Astrophysics Data System (ADS)

    Ferraro, Christopher C.

    Hydration at early ages results from chemical and physical processes that take place between Portland cement and water, and is an exothermic process. The resultant heat evolution and temperature rise for massive concrete placements can be so great that the temperature differentials between the internal concrete core and outer concrete stratum can cause cracking due to thermal gradients. Accurate prediction of temperature distribution and stresses in mass concrete is needed to determine if a given concrete mixture design may have problems in the field, so that adjustments to the design can be made prior to its use. This research examines calorimetric, strength, and physical testing methods in an effort to predict the thermal and physical behavior of mass concrete. Four groups of concrete mixture types containing different cementitious materials are examined. One group contains Portland cement, while the other three groups incorporate large replacements of supplementary cementitious materials: granulated blast furnace slag, fly ash, and a ternary blend (combining Portland cement, fly ash, and slag).

  15. Criteria for asphalt-rubber concrete in civil airport pavements: Mixture design

    NASA Astrophysics Data System (ADS)

    Roberts, F. L.; Lytton, R. L.; Hoyt, D.

    1986-07-01

    A mixture design procedure is developed to allow the use of asphalt-rubber binders in concrete for flexible airport pavement. The asphalt-rubber is produced by reacting asphalt with ground, scrap tire rubber to produce the binder for the asphalt-rubber concrete. Procedures for laboratory preparation of alsphalt-rubber binders using an equipment setup that was found by researchers to produce laboratory binders with similar properties to field processes are included. The rubber-asphalt concrete mixture design procedure includes adjustments to the aggregate gradation to permit space for the rubber particles in the asphalt-rubber binder as well as suggested mixing and compaction temperatures, and compaction efforts. While the procedure was used in the laboratory to successfully produce asphalt-rubber concrete mixtures, it should be evaluated in the field to ensure that consistent results can be achieved in a production environment.

  16. 13. MASS OF POURED CONCRETE IN IRREGULAR STEPPED LAYERS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. MASS OF POURED CONCRETE IN IRREGULAR STEPPED LAYERS AT THE BASE OF THE LEFT (EAST) BUTTRESS. CAMERA FACING SOUTHWEST. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA

  17. Influence of roofing shingles on asphalt concrete mixture properties. Final report, 1992-1993

    SciTech Connect

    Newcomb, D.; Stroup-Gardiner, M.; Weikle, B.; Drescher, A.

    1993-06-01

    The objective of the study was to evaluate the use of waste shingles from manufacturing and roof reconstruction projects in hot mix asphalt concrete mixtures. In dense-graded asphalt mixtures, it was hypothesized that the waste material might serve as an extender for the new asphalt in the mix as well as a fiber reinforcement. In the stone mastic asphalt (SMA), it could serve as the binder stiffener typically used to prevent the asphalt from draining out of these types of mixtures.

  18. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  19. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  20. Code System to Calculate Heat and Mass Transfer In Concrete

    Energy Science and Technology Software Center (ESTSC)

    1999-05-26

    Version 00 This version is designated USINTC and was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as watermore » and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.« less

  1. Tandem mass spectrometry: analysis of complex mixtures

    SciTech Connect

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.

  2. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens. PMID:12739723

  3. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete. PMID:12423053

  4. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  5. Estimating the mass of mutagens in indeterminate mixtures

    SciTech Connect

    Schaeffer, D.J.; Kerster, H.W.

    1985-10-01

    A method is shown for estimating the quantity (mass) of genotoxic compounds in complex mixtures without prior identification of components. This method uses fractiles of the probability distribution of responses from the assay of interest and dose-response of the mixture. The method depends upon the assumption of additivity, on average, in the interaction of mutagens and on lognormality of the distribution of mutagen molecular weights. Mass estimates are necessary for hazard characterization, risk estimation, and risk assessment. The method is illustrated using Ames assay results from a coke plant wastewater.

  6. Thermodynamic evaluation of mass diffusion in ionic mixtures

    SciTech Connect

    Kagan, Grigory; Tang, Xian-Zhu

    2014-02-15

    The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant.

  7. Performance of intact and partially degraded concrete barriers in limiting mass transport

    SciTech Connect

    Walton, J.C. )

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration.

  8. Higher-order mass defect analysis for mass spectra of complex organic mixtures.

    PubMed

    Roach, Patrick J; Laskin, Julia; Laskin, Alexander

    2011-06-15

    Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH(2), H(2), O, CH(2)O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher-order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulas that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a deisotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks. PMID:21526851

  9. Internal structure of shock waves in disparate mass mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.

  10. Effects of the air–steam mixture on the permeability of damaged concrete

    SciTech Connect

    Medjigbodo, Sonagnon; Darquennes, Aveline; Khelidj, Abdelhafid; Loukili, Ahmed

    2013-12-15

    Massive concrete structures such as the containments of nuclear power plant must maintain their tightness at any circumstances to prevent the escape of radioactive fission products into the environment. In the event of an accident like a Loss of Coolant Accident (LOCA), the concrete wall is submitted to both hydric and mechanical loadings. A new experimental device reproducing these extreme conditions (water vapor transfer, 140 °C and 5 bars) is developed in the GeM Laboratory to determine the effect of the saturation degree, the mechanical loading and the flowing fluid type on the concrete transfer properties. The experimental tests show that the previous parameters significantly affect the concrete permeability and the gas leakage rate. Their evolution as a function of the mechanical loading is characterized by two phases that are directly related to concrete microstructure and crack development.

  11. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  12. Mass effect on the Soret coefficient in n-alkane mixtures.

    PubMed

    Alonso de Mezquia, David; Bou-Ali, M Mounir; Madariaga, J Antonio; Santamaría, Carlos

    2014-02-28

    We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, the thermal expansion coefficient of the pure components, and the density of the equimolar mixture. PMID:24588181

  13. Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry

    PubMed Central

    Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna

    2015-01-01

    Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717

  14. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  15. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement.

    PubMed

    Hassani, Abolfazl; Ganjidoust, Hossein; Maghanaki, Amir Abedin

    2005-08-01

    One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy. PMID:16200982

  16. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  17. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.

    PubMed

    Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K

    2006-11-01

    An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895

  18. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    NASA Astrophysics Data System (ADS)

    House, Mitchell Wayne

    to evaluate performance of concrete specimens under conditions designed to accelerate MIC. Concrete specimens representing 12 mixture designs were inoculated with 5 species of Thiobacillus bacteria and placed in a biological growth chamber designed to encourage bacterial growth and sulfuric acid production by optimizing temperature, delivering necessary nutrients, and providing hydrogen sulfide gas. Results indicate that using supplementary cementitious materials, limestone aggregates, and sulfate resistant cement can improve resistance to MIC. It is interesting to note that this study showed that unlike many other durability problems the role of water to cement ratio was unclear. The second method presented is a sulfuric acid immersion study designed to evaluate the resistance of 12 concrete mixture designs to 5 concentrations of sulfuric acid. Experimental protocols (like those in ASTM) previously considered trivial were found to have a dramatic effect on experimental results. It was found that using supplementary cementitious materials, limestone coarse aggregate, and sulfate resistant cement can increase concrete resistance to moderate sulfuric acid concentrations. The primary damage mechanism was observed to change depending on sulfuric acid concentration. Rapid deterioration of specimens exposed to aggressive sulfuric acid solutions indicates that degradation of concrete under the most severe MIC conditions (i.e., a pH < 1.0) cannot be prevented by strictly manipulating concrete mixture proportions. A holistic approach is needed for these situations that considers environmental conditions as well.

  19. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  20. Direct analysis by electrospray ionization tandem mass spectrometry of mixtures of phosphatidyldiacylglycerols from Lactobacillus.

    PubMed

    Cabrera, G M; Murga, M L; de Valdez, G F; Seldes, A M

    2000-12-01

    Electrospray ionization followed by collision-induced dissociation in a quadrupole ion trap mass spectrometer of mixtures of deprotonated phosphatidyldiacylglycerols afforded a group of three diagnostic ions of convenient abundance for each phosphatidyldiacylglycerol (PG) present in the mixture. Thus, it was possible to determine unmistakably the identity and substitution positions (sn-1 or sn-2) for both acyl groups of each PG present in the mixture. The method also allows the study of isomeric mixtures of PG and mixtures containing minor amounts of some PG from crude extracts of Lactobacillus acidophillus. The present results improve those of previous studies using fast atom bombardment and electrospray ionization tanden mass spectrometry, in which it was reported that it was possible to differentiate the identity and position of the sn-2 acyl substituent only by the presence of one ion, with variable abundance. PMID:11180636

  1. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    PubMed

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown. PMID:25476391

  2. Mass flow of a volatile organic liquid mixture in soils

    SciTech Connect

    Gerstl, Z.; Galin, Ts.; Yaron, B.

    1994-05-01

    The flow of kerosene, a volatile organic liquid mixture (VOLM), was studied in loam and clay soils and in a medium sand. The kerosene residual capacity and conductivity were determined for all three media at different initial moisture contents and with kerosene of different compositions. The kerosene conductivity of the soil was found to be strongly influenced by the soil texture and initial moisture content as well as by the kerosene composition. The kerosene conductivity of the sand was two orders of magnitude greater than that of the soils and was unaffected by initial moisture contents as high as field capacity. The kerosene conductivity of the loam soil was similar in oven dry and air dry soils, but increased significantly in soils at 70% and fun field capacity due to the Yuster effect. In the clay soil the kerosene conductivity of the air dry sod was four times that of the oven dry sod and increased somewhat in the soil at 70% field capacity. No kerosene flow was observed in the oven dry soil at full field capacity. The differences in kerosene conductivity in these soils and the effect of moisture content were attributed to the different pore-sin distributions of the soil& Changes in the composition of the kerosene due to volatilization of the light fractions resulted in increased viscosity of the residual kerosene. This increased viscosity affected the fluid properties of kerosene, which resulted in decreased kerosene conductivity in the sand and the soils. 29 refs., 4 figs., 4 tabs.

  3. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  4. Evaluation of ASTM test method D 4867, effect of moisture on asphalt concrete paving mixtures. Final report, May 1995--May 1997

    SciTech Connect

    Stuart, K.D.

    1998-09-01

    The moisture sensitivities of 21 dense-graded asphalt pavements were predicted in 1987 using American Society for Testing and Materials (ASTM) Test Method D 4867, Effect of Moisture on Asphalt Concrete Paving Mixtures. Tests were performed on cores taken from the pavements. The air-void levels of the cores varied from pavement to pavement. In 1995 and 1996, cores were again taken from the pavements to ascertain whether the test method correctly predicted performance. Pavement distress surveys were also performed.

  5. Numerical Analysis of Simultaneous Heat and Mass Transfer in Cork Lightweight Concretes Used in Building Envelopes

    NASA Astrophysics Data System (ADS)

    Sotehi, Nassima; Chaker, Abla

    A numerical study was carried out in order to investigate the behaviour of building envelopes made of lightweight concretes. In this work, we are particularly interested to the building envelopes which are consist of cement paste with incorporation of cork aggregates in order to obtain small thermal conductivity and low-density materials. The mathematical formulation of coupled heat and mass transfer in wet porous materials has been made using Luikov's model, the system describing temperature and moisture transfer processes within building walls is solved numerically with the finite elements method. The obtained results illustrate the temporal evolutions of the temperature and the moisture content, and the distributions of the temperature and moisture content inside the wall for several periods of time. They allow us to specify the effect of the nature and dosage of fibre on the heat and mass transfer.

  6. Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes.

    PubMed

    Un, Adem; Demir, Faruk

    2013-10-01

    Total mass attenuation coefficients, effective atomic numbers and effective electron numbers values for different 16 heavy-weight and normal-weight concretes are calculated in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients used in calculations are taken from the WinXCom computer program. The obtained results for heavy-weight concretes are compared with the results for normal-weight concretes. The results of heavy-weight concretes fairly differ from results for normal-weight concretes. PMID:23838359

  7. Mass spectral similarity for untargeted metabolomics data analysis of complex mixtures

    PubMed Central

    Garg, Neha; Kapono, Clifford; Lim, Yan Wei; Koyama, Nobuhiro; Vermeij, Mark J.A; Conrad, Douglas; Rohwer, Forest; Dorrestein, Pieter C.

    2014-01-01

    While in nucleotide sequencing, the analysis of DNA from complex mixtures of organisms is common, this is not yet true for mass spectrometric data analysis of complex mixtures. The comparative analyses of mass spectrometry data of microbial communities at the molecular level is difficult to perform, especially in the context of a host. The challenge does not lie in generating the mass spectrometry data, rather much of the difficulty falls in the realm of how to derive relevant information from this data. The informatics based techniques to visualize and organize datasets are well established for metagenome sequencing; however, due to the scarcity of informatics strategies in mass spectrometry, it is currently difficult to cross correlate two very different mass spectrometry data sets from microbial communities and their hosts. We highlight that molecular networking can be used as an organizational tool of tandem mass spectrometry data, automated database search for rapid identification of metabolites, and as a workflow to manage and compare mass spectrometry data from complex mixtures of organisms. To demonstrate this platform, we show data analysis from hard corals and a human lung associated with cystic fibrosis. PMID:25844058

  8. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry.

    PubMed

    Fenz, W; Mryglod, I M; Prytula, O; Folk, R

    2009-08-01

    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio mu, including the limiting case mu = infinity, for different mole fractions x. Within a large range of x and mu the product of the diffusion coefficient of the heavy species D(2) and the total shear viscosity of the mixture eta(m) is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function. PMID:19792112

  9. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry

    NASA Astrophysics Data System (ADS)

    Fenz, W.; Mryglod, I. M.; Prytula, O.; Folk, R.

    2009-08-01

    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio μ , including the limiting case μ=∞ , for different mole fractions x . Within a large range of x and μ the product of the diffusion coefficient of the heavy species D2 and the total shear viscosity of the mixture ηm is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function.

  10. Estimation of explosive charge mass used for explosions on concrete surface for the forensic purpose.

    PubMed

    Bjelovuk, Ivana D; Jaramaz, Slobodan; Mickovic, Dejan

    2012-03-01

    The method of choice used by most terrorists for achieving political goals remains the utilization of explosive devices and there is always visible evidence at a crime scene after the deployment of such devices. Given favorable circumstances, forensic analysis can determine the cause of the explosion - the type of the explosive device, the means of detonation, the type and mass of the explosive charge that has been used and perhaps provide information to lead to the identity of the individual who may have constructed or deployed the explosive device, etc. Evidence of an explosion may take the form of a crater or other damage which may provide some information facilitating and estimating the mass of explosive material used. This paper reports the findings obtained by performing experimental explosions of known charges on a concrete surface, in order to establish the correlation between the charge weight and the effects of the explosion. Known masses of explosives were fired and the dimensions of craters made by explosions were measured. Five empirical equations for estimation of the explosive charge mass from crater dimensions were used. PMID:22325907

  11. Protein mixture analysis by MALDI/mobility/time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, David H.; Gillig, Kent J.; Stone, Earle; Park, Zee-Yong; Fuhrer, K.; Gonon, M.; Schultz, A. J.

    2000-03-01

    Progress in the development of ion mobility (IM) orthogonal time-of-flight (oTOF) mass spectrometry for rapid analysis of biological samples is presented. The IM-oTOF apparatus described consists of a short drift tube (1 to 15 cm) designed for ion mobility measurement in the low-field limit and a low resolution linear (20 cm) TOF mass spectrometer. Proof of concept is demonstrated by analysis of peptide mixtures generated by proteolytic digestion of proteins.

  12. MALDI-TOF Mass Spectrometry of Naturally-Occurring Mixtures of Mono- and Di-rhamnolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed for high-throughput screening of naturally-occurring mixtures of rhamnolipids from Pseudomonas spp. Mono- and di-rhamnolipids are readily distinguished by characteristic molecular adduct i...

  13. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  14. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    NASA Astrophysics Data System (ADS)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  15. Evaluation and performance based mix design of rubber modified mixtures: Laboratory evaluation of asphalt concrete mixtures using waste tires. Final report

    SciTech Connect

    Goulias, D.G.; Ali, A.H.M.

    1997-02-01

    New Jersey Department of Transportation has been investigating the use of rubber modified materials over the last few years with the design and use of dense and gap graded mixtures, and in some cases the incorporation of RAP materials, in selected projects. While the short term field performance of these materials is satisfactory, their long term performance is unknown. These mixtures were designed with the traditional Marshall mixture design method, and thus is was not considered design criteria related to mixture behavior and performance into mixture selection. The main objective of this study is the development of a mixture design methodology for rubber modified materials that considers mixture behavior and performance. In order to achieve this objective researchers conducted a laboratory investigation which was able to evaluate mixture properties that can be related to mixture performance, (in terms of rutting, low temperature cracking, and fatigue), and simulating the actual field loading conditions that the material is being exposed to. The possibility of coupling the traditional Marshall mix design method with parameters related to mixture behavior and performance was investigated since this technique has been used over the years by the agency, and the necessary testing apparatus is available to both the agency and material laboratories. The SHRP SUPERPAVE mix design methodology was reviewed and considered in this study for the development of an integrated performance based design procedure. However, its applicability and use on routine bases was not considered at this time since it requires specific equipment with ongoing evaluation for its repeatability and precision. Finally, for the conduct of this investigation materials and mixtures used by NJDOT in rubber modified paving projects were used.

  16. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.

    PubMed

    Garrabrants, Andrew C; Kosson, David S; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist. PMID:24359922

  17. Linked Gas Chromatography/Fourier Transform Infrared Spectrometry/Fourier Transform Mass Spectrometry For Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Laude, David A., Jr.; Johlman, Carolyn; Wilkins, Charles L.

    1985-12-01

    During the past few years it has been demonstrated that linkage of multiple spectrometry systems with gas chromatography (GC) offers significant advantages for structural analysis of mixture components as they are sepa-rated. In the work to be described, a Fourier transform mass spectrometer (FTMS) has been linked in parallel with a Fourier transform infrared (FTIR) spectrometer for concurrent analysis of GC eluants from a fused silica capillary column. This system provides FTIR, electron impact, and chemical ionization mass spectral analysis of each mixture component as it emerges from the GC. Furthermore, mass measurement accuracy in the low ppm range in the absence of calibrant is made possible by the FTMS. Effective use of the com-plementary information obtained is shown to produce more reliable analytical performance than for any individual measurement.

  18. High resolution mass spectroscopy for the characterization of complex, fossil organic mixtures

    SciTech Connect

    Winans, R.E.; Haas, G.W.; Kim, Y.L.; Hunt, J.E.

    1995-12-31

    The nature of molecules with heteroatom functionality in the Argonne Premium Coal Samples and petroleum samples is being explored using high resolution mass spectrometry (HRMS). Both desorption electron impact and desorption chemical ionization (DCI) are used to sample the mixtures. Structural information is obtained from tandem MS experiments using high resolution to select the ions to fragment. The first DCI HRMS spectra of complex mixtures will be shown. Quantitative aspects and the method for obtaining precise mass measurements in chemical ionization will be discussed. Molecular weight distribution determined by DCI are similar to those determined by laser desorption and field ionization mass spectrometry with very little ion intensity observed at greater than 1000 Daltons. Results will be correlated with other techniques such as NMR, XPS, and XANES.

  19. Automated reduction and interpretation of multidimensional mass spectra for analysis of complex peptide mixtures

    NASA Astrophysics Data System (ADS)

    Gambin, Anna; Dutkowski, Janusz; Karczmarski, Jakub; Kluge, Boguslaw; Kowalczyk, Krzysztof; Ostrowski, Jerzy; Poznanski, Jaroslaw; Tiuryn, Jerzy; Bakun, Magda; Dadlez, Michal

    2007-01-01

    Here we develop a fully automated procedure for the analysis of liquid chromatography-mass spectrometry (LC-MS) datasets collected during the analysis of complex peptide mixtures. We present the underlying algorithm and outcomes of several experiments justifying its applicability. The novelty of our approach is to exploit the multidimensional character of the datasets. It is common knowledge that highly complex peptide mixtures can be analyzed by liquid chromatography coupled with mass spectrometry, but we are not aware of any existing automated MS spectra interpretation procedure designed to take into account the multidimensional character of the data. Our work fills this gap by providing an effective algorithm for this task, allowing for automated conversion of raw data to the list of masses of peptides.

  20. Tetramethylammonium hydroxide as a reagent for complex mixture analysis by negative ion electrospray ionization mass spectrometry.

    PubMed

    Lobodin, Vladislav V; Juyal, Priyanka; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G

    2013-08-20

    Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) enables the direct characterization of complex mixtures without prior fractionation. High mass resolution can distinguish peaks separated by as little as 1.1 mDa), and high mass accuracy enables assignment of elemental compositions in mixtures that contain tens of thousands of individual components (crude oil). Negative electrospray ionization (ESI) is particularly useful for the speciation of the most acidic petroleum components that are implicated in oil production and processing problems. Here, we replace conventional ammonium hydroxide by tetramethylammonium hydroxide (TMAH, a much stronger base, with higher solubility in toluene) to more uniformly deprotonate acidic components of complex mixtures by negative ESI FTICR MS. The detailed compositional analysis of four crude oils (light to heavy, from different geographical locations) reveals that TMAH reagent accesses 1.5-6 times as many elemental compositions, spanning a much wider range of chemical classes than does NH4OH. For example, TMAH reagent produces abundant negative electrosprayed ions from less acidic and neutral species that are in low abundance or absent with NH4OH reagent. More importantly, the increased compositional coverage of TMAH-modified solvent systems maintains, or even surpasses, the compositional information for the most acidic species. The method is not limited to petroleum-derived materials and could be applied to the analysis of dissolved organic matter, coal, lipids, and other naturally occurring compositionally complex organic mixtures. PMID:23919350

  1. Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.

    PubMed

    Puxty, Graeme; Rowland, Robert

    2011-03-15

    The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding about the underlying processes that are occurring. In this work a new software tool has been used to model CO(2) absorption into aqueous piperazine (PZ) and binary mixtures of PZ with 2-amino-2-methyl-1-propanol (AMP) or methyldiethanolamine (MDEA). The tool solves partial differential and simultaneous equations describing diffusion and chemical reaction automatically derived from reactions written using chemical notation. It has been demonstrated that by using reactions that are chemically plausible the mass transfer in binary mixtures can be fully described by combining the chemical reactions and their associated parameters determined for single amines. The observed enhanced mass transfer in binary mixtures can be explained through chemical interactions occurring in the mixture without need to resort to using additional reactions or unusual transport phenomena such as the "shuttle mechanism". PMID:21329341

  2. BCS to BEC evolution for mixtures of fermions with unequal masses

    NASA Astrophysics Data System (ADS)

    de Melo, Carlos A. R. Sa

    2009-03-01

    I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx

  3. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    SciTech Connect

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-03-15

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C{sub 3} hydrocarbons (<50 ppm of initial methane) in methane/hydrogen plasmas and the possible trapping of thermally unstable C-N compounds in N{sub 2} containing deposition plasmas are addressed as representative examples of specific applications of the technique.

  4. Molar mass and temperature dependence of the thermodiffusion of polyethylene oxide in water/ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Zilin; Afanasenkau, Dzmitry; Dong, Minjie; Huang, Danni; Wiegand, Simone

    2014-08-01

    In this work, we study the molar mass dependence of the thermodiffusion of polyethylene oxide at different temperatures in ethanol, water/ethanol mixture (cwater = 0.7), and water in a molar mass range up to Mw = 180 000 g/mol. Due to the low solubility of polyethylene oxide oligomers in ethanol the measurements are limited up to Mw = 2200 g/mol. The specific water/ethanol concentration 0.7 has been chosen, because at this weight fraction the thermal diffusion coefficient, DT, of water/ethanol vanishes so that the system can be treated as a pseudo binary mixture. The addition of ethanol will degrade the solvent quality, so that we expect a change of the interaction energies between polymer and solvent. The analysis of the experimental data within a theoretical model shows the need of a refined model, which takes specific interactions into account.

  5. Experimental investigations of trimer ion contributions in the low resolution mass spectrometry of hydrogen isotope mixtures.

    PubMed

    Bidica, Nicolae

    2012-01-01

    This paper reports on some preliminary experimental results of a work in progress regarding a problem involving the quantitative analysis of hydrogen isotopes by mass spectrometry of low resolution: the triatomic (trimer) ions interferences with the isotopic hydrogen species having the same mass/charge. These results indicate that, in complex mixtures of hydrogen isotopes, trimer ions are strongly affected by the presence of other species, and a new approach that takes into account the destruction mechanism of trimer ions is necessary for a proper determination of their contributions. PMID:23149602

  6. Coupling Charge Reduction Mass Spectrometry to Liquid Chromatography for Complex Mixture Analysis.

    PubMed

    Stutzman, John R; Crowe, Matthew C; Alexander, James N; Bell, Bruce M; Dunkle, Melissa N

    2016-04-01

    Electrospray ionization (ESI) of solution mixtures often generates complex mass spectra, even following liquid chromatography (LC), due to analyte multiple charging. Multiple charge state distributions can lead to isobaric interferences, mass spectral congestion, and ambiguous ion identification. As a consequence, data interpretation increases in complexity. Several charge reduction mass spectrometry (MS) approaches have been previously developed to reduce the average charge state of gaseous ions; however, all of these techniques have been restricted to direct infusion MS. In this study, synthetic polyols and surfactants separated by liquid chromatography and ionized by positive mode ESI have been subjected to polonium-210 α-particle radiation to reduce the average charge state to singly charged cations prior to mass analysis. LC/MS analysis of 5000 molecular weight poly(ethylene glycol) (PEG5000) generated an average charge state of 5.88+; whereupon, liquid chromatography/electrospray ionization/charge reduction/mass spectrometry (LC/CR/MS) analysis of PEG 5000 generated an average charge state of 1.00+. The PEG5000 results demonstrated a decrease in spectral complexity and enabled facile interpretation. Other complex solution mixtures representing specific MS challenges (i.e., competitive ionization and isobaric ion overlap) were explored and analyzed with LC/CR/MS to demonstrate the benefits of coupling LC to CR/MS. For example, polyol information related to initiator, identity/relative amount of monomer, and estimated molecular weight was characterized in random and triblock ethylene oxide/propylene oxide polyols using LC/CR/MS. LC/CR/MS is a new analytical technique for the analysis of complex mixtures. PMID:26971559

  7. Capillary Liquid Chromatography Mass Spectrometry Analysis of Intact Monolayer-Protected Gold Clusters in Complex Mixtures.

    PubMed

    Black, David M; Bach, Stephan B H; Whetten, Robert L

    2016-06-01

    In some respects, large noble-metal clusters protected by thiolate ligands behave as giant molecules of definite composition and structure; however, their rigorous analysis continues to be quite challenging. Analysis of complex mixtures of intact monolayer-protected clusters (MPCs) by liquid chromatography mass spectrometry (LC-MS) could provide quantitative identification of the various components present. This advance is critical for biomedical and toxicological research, as well as in fundamental studies that rely on the identification of selected compositions. This work expands upon the separate LC and MS results previously achieved, by interfacing the capillary liquid chromatograph directly to the electrospray source of the mass spectrometer, in order to provide an extremely sensitive, quantitative, and rapid means to characterize MPCs and their derivatives far beyond that of earlier reports. Here, we show that nonaqueous reversed-phase chromatography can be coupled to mass-spectrometry detection to resolve complex mixtures in minute (∼100 ng) samples of gold MPCs, of molecular masses up to ∼40 kDa, and with single-species sensitivity easily demonstrated for components on the level of sub-10 ng or picomole (1 pmol). PMID:27216373

  8. [A study on the chemical components of essential oil of oak moss concrete by gas chromatography/mass spectrometry].

    PubMed

    Gao, Y; Liu, B Z; Zhu, X L; Shi, L; Chen, J L; Gong, M; Zhang, L G

    2000-05-01

    The essential oil of oak moss concrete was extracted by volatile oil content equipment. The chemical compositions and their relative contents were analyzed by GC and GC/MS. A Supelco-5 fused silica capillary column (30 m x 0.32 mm i.d.; 0.25 micron thickness) and a flame ionization detector (FID) were employed in GC analysis. The temperature program included temperature increase of 4 degrees C/min from 50 degrees C to 250 degrees C, and a 10 min isothermal period at 250 degrees C. Mass spectra were obtained by electron impact at 70 eV and a source temperature of 170 degrees C. Twenty-four volatile compounds of oak mass concrete were identified, which comprised more than 83% of volatile fraction. The major components were diethyl phthalate, alpha-terpineol, cedrane and linalool. PMID:12541566

  9. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    PubMed Central

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  10. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    NASA Astrophysics Data System (ADS)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  11. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ. PMID:26508443

  12. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  13. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  14. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and

  15. Chemical analysis of complex organic mixtures using reactive nanospray desorption electrospray ionization mass spectrometry.

    PubMed

    Laskin, Julia; Eckert, Peter A; Roach, Patrick J; Heath, Brandi S; Nizkorodov, Sergey A; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies have shown that LSOA constituents are multifunctional compounds containing at least one aldehyde or ketone groups. In this study, we used the selectivity of the Girard's reagent T (GT) toward carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 μM GT solutions were used as the working solvents for reactive nano-DESI analysis. Abundant products from the single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 μM. We found that LSOA dimeric and trimeric compounds react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in the formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the time scale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at the ~0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ~11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and for the quantification of compounds possessing

  16. Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis.

    PubMed

    Kaiser, Nathan K; Savory, Joshua J; McKenna, Amy M; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2011-09-01

    Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance. PMID:21838231

  17. Effect of insulating concrete forms in concrete compresive strength

    NASA Astrophysics Data System (ADS)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  18. Development of a rapid test method for asphalt concrete content determination in hot-mix paving mixtures

    NASA Astrophysics Data System (ADS)

    Chavez, J. J. M.

    1984-01-01

    A rapid test method was developed for the determination of asphalt cement content in hot-mix bituminous paving mixtures. It is based on the extraction of asphalt cement from mixtures with trichloroethylene and subsequent measurement of the transmittance of light through the extracted solution. A good correlation was found between the results obtained using the rapid test and those obtained using the standard test (ASTM D-2172, Method E1) for samples tested in the field at asphalt mix plants. The test uses a portable spectrophotometer and a metal can for extraction. The asphalt content can be determined in less than ten minutes. The possibility of using the rapid test on materials containing emulsified asphalt, slag aggregate, unusually high amounts of fine material and recycled material was also studied.

  19. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  20. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.

    PubMed

    Groenewold, Gary S; Williams, John M; Appelhans, Anthony D; Gresham, Garold L; Olson, John E; Jeffery, Mark T; Rowland, Brad

    2002-11-15

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min(-1) at 25 degrees C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 degrees C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol(-1). This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface. PMID:12487301

  1. Hydrolysis of VX on Concrete: Rate of Degradation by Direct Surface Interrogation using an Ion Trap Secondary Ion Mass Spectrometer

    SciTech Connect

    Groenewold, Gary Steven; Appelhans, Anthony David; Gresham, Garold Linn; Olson, John Eric; Rowland, B.; Williams, j.; Jeffery, M. T.

    2002-09-01

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min-1 at 25 C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol-1. This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  2. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  3. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  4. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  5. Assessment of actinide mass embedded in large concrete waste packages by photon interrogation and photofission.

    PubMed

    Gmar, M; Jeanneau, F; Lainé, F; Makil, H; Poumarède, B; Tola, F

    2005-01-01

    This paper describes a method based on photofission developed in our laboratory to characterize in depth large waste packages. The method consists in using photons of high-energy (Bremsstrahlung radiation) in order to induce reactions of photofission on the heavy nuclei present in the wastes. The measurement of the delayed neutrons allows quantifying the actinides in the wastes. We present the first results of measurement performed with a concrete mock-up of 870l and two real waste packages. PMID:15982895

  6. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; Fang, Qin; He, Li-Lin

    2014-12-01

    The initial oblique and attacking angles as well as the asymmetrical nose abrasion may lead to bending or even fracture of a projectile, and the penetration efficiency decreases distinctly. The structural stability of a high-speed projectile non-normally penetrating into concrete and the parametric influences involved are analyzed with the mass abrasion taken into account. By considering the symmetrical or asymmetrical nose abrasion as well as the initial oblique and attacking angles, both the axial and the transverse drag forces acting on the projectile are derived. Based on the ideal elastic-plastic yield criterion, an approach is proposed for predicting the limit striking velocity (LSV) that is the highest velocity at which no yielding failure has occurred and the projectile can still maintain its integral structural stability. Furthermore, some particular penetration scenarios are separately discussed in detail. Based on the engineering model for the mass loss and nose-blunting of ogive-nose projectiles established in Part I of this study, the above approach is validated by several high-speed penetration tests. The analysis on parametric influences indicates that the LSV is reduced with an increase in the asymmetrical nose abrasion, the length-diameter-ratio, and the concrete strength, as well as the oblique and attacking angles. Also, the LSV raises with an increase in the initial caliber-radius-head (CRH) and the dimensionless cartridge thickness of a projectile.

  7. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  8. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  9. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  10. Measurement of virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture

    SciTech Connect

    Kamath, P.S.; Harris, D.R.; Lahey, R.T.

    1984-06-01

    This paper presents an experimental determination of the virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant water. The purpose of this experiment was to determine the importance of virtual mass on the transient response of an INEL-type drag-disk flow meter. The results indicate that for a given void fraction, the virtual mass coefficient increases, and the drag coefficient decreases, with increasing amplitude parameter. Also, for a given amplitude parameter, the virtual mass coefficient decreases, and the drag coefficient increases, with increasing void fraction. Based on the measured virtual mass coefficients, it was concluded that when an INEL-type drag-disk is used for the measurement of transient two-phase flows, virtual mass effects may be neglected in the analysis of its response without appreciable error.

  11. Ion-molecule reactions for the characterization of polyols and polyol mixtures by ESI/FT-ICR mass spectrometry.

    PubMed

    Watkins, Michael A; Winger, Brian E; Shea, Ryan C; Kenttämaa, Hilkka I

    2005-03-01

    A mass spectrometric method is described for the identification and counting of hydroxyl groups in an analyte. Analytes introduced into a FT-ICR mass spectrometer and ionized by positive mode ESI were allowed to react with the neutral reagent diethylmethoxyborane. This results in derivatization of the hydroxyl groups of the analytes by replacement of a proton with a diethylborenium ion. Protonated polyols react by consecutive derivatization reactions, wherein all, or nearly all, of the hydroxyls are derivatized. The polyol derivatization products are separated by 68 mass units in the mass spectrum. This 68 Da mass shift, along with 30 Da mass shifts arising from intramolecular derivatization of the primary derivatization products, makes it easy to count the number of functional groups present in the analyte. The utility of this method for the analysis of polyols as single-component solutions, as mixtures, or in HPLC effluent (LC-MS analysis) is demonstrated. PMID:15732922

  12. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors. PMID:21591743

  13. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  14. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry.

    PubMed

    Fanood, Mohammad M Rafiee; Ram, N Bhargava; Lehmann, C Stefan; Powis, Ivan; Janssen, Maurice H M

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  15. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fanood, Mohammad M. Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-06-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ~1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

  16. Mass Flux Stability at the T_d Conductance Transition in Solid ^3He-^4He Mixtures

    NASA Astrophysics Data System (ADS)

    Vekhov, Yegor; Hallock, R. B.

    2016-05-01

    Measurements of the ^4He mass flux through a cell filled with solid ^3He-^4He mixtures in the ^3He concentration range 0.17-220 ppm have demonstrated a reversible dramatic decrease in the flux on cooling through a concentration-dependent temperature T_d, close to the mixture phase separation temperature. For low ^3He concentrations, the flux change transition is complete within 2 mK. We report on the stability of the flux for fixed temperatures in this transition region.

  17. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Pullockaran, Jose D.; Knox, Lerry

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  18. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  19. Characterization of Evaporating Species from B2O3, B6O, and Their Mixtures by Knudsen Cell Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sasaki, Hideaki; Kobashi, Yoshifumi; Maeda, Masafumi

    2016-02-01

    Species evaporating from B2O3(l), B6O(s) and their mixtures were observed by a multiple Knudsen cell mass spectrometer between 1373 K and 1573 K (1100 °C and 1300 °C). Ions with mass-to-charge ratios of 70, 54, and 27 from the samples were observable, indicating the formations of B2O3(g), B2O2(g), and BO(g). The vapor pressures of the gas species were estimated by referring to thermodynamic information previously reported on B6O(s). Evaporation of B2O2(g) from a mixture [ p_{B}_{2} O_{2} }} = 6 Pa at 1473 K (1200 °C)] was observed, and it was consistent with a preceding study by a different method.

  20. Ion chemistry in germane/fluorocompounds gaseous mixtures: a mass spectrometric and theoretical study.

    PubMed

    Antoniotti, Paola; Rabezzana, Roberto; Turco, Francesca; Borocci, Stefano; Giordani, Maria; Grandinetti, Felice

    2008-10-01

    The ion-molecule reactions occurring in GeH(4)/NF(3), GeH(4)/SF(6), and GeH(4)/SiF(4) gaseous mixtures have been investigated by ion trap mass spectrometry and ab initio calculations. While the NF(x)(+) (x=1-3) react with GeH(4) mainly by the exothermic charge transfer, the open-shell Ge(+) and GeH(2)(+) undergo the efficient F-atom abstraction from NF(3) and form GeF(+) and F-GeH(2)(+) as the only ionic products. The mechanisms of these two processes are quite similar and involve the formation of the fluorine-coordinated complexes Ge-F-NF(2)(+) and H(2)Ge-F-NF(2)(+), their subsequent crossing to the significantly more stable isomers FGe-NF(2)(+) and F-GeH(2)-NF(2)(+), and the eventual dissociation of these ions into GeF(+) (or F-GeH(2)(+)) and NF(2). The closed-shell GeH(+) and GeH(3)(+) are instead much less reactive towards NF(3), and the only observed process is the less efficient formation of GeF(+) from GeH(+). The theoretical investigation of this unusual H/F exchange reaction suggests the involvement of vibrationally-hot GeH(+). Passing from NF(3) to SF(6) and SiF(4), the average strength of the M-F bond increases from 70 to 79 and 142 kcal mol(-1), and in fact the only process observed by reacting GeH(n)(+) (n=0-3) with SF(6) and SiF(4) is the little efficient F-atom abstraction from SF(6) by Ge(+). Irrespective of the experimental conditions, we did not observe any ionic product of Ge-N, Ge-S, or Ge-Si connectivity. This is in line with the previously observed exclusive formation of GeF(+) from the reaction between Ge(+) and C-F compounds such as CH(3)F. Additionally observed processes include in particular the conceivable formation of the elusive thiohypofluorous acid FSH from the reaction between SF(+) and GeH(4). PMID:18366143

  1. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    SciTech Connect

    Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Douglas R.; Goldstein, Allen H.

    2012-01-30

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  2. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  3. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  4. A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory



    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

  5. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss.

    PubMed

    Pan, Xu; Berg, Matty P; Butenschoen, Olaf; Murray, Phil J; Bartish, Igor V; Cornelissen, Johannes H C; Dong, Ming; Prinzing, Andreas

    2015-05-01

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability. PMID:25876845

  6. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  7. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss

    PubMed Central

    Pan, Xu; Berg, Matty P.; Butenschoen, Olaf; Murray, Phil J.; Bartish, Igor V.; Cornelissen, Johannes H. C.; Dong, Ming; Prinzing, Andreas

    2015-01-01

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability. PMID:25876845

  8. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  9. METALLURGICAL PROGRAMS: CALCULATION OF MASS FROM VOLUME, DENSITY OF MIXTURES, AND CONVERSION OF ATOMIC TO WEIGHT PERCENT

    NASA Technical Reports Server (NTRS)

    Degroh, H.

    1994-01-01

    The Metallurgical Programs include three simple programs which calculate solutions to problems common to metallurgical engineers and persons making metal castings. The first program calculates the mass of a binary ideal (alloy) given the weight fractions and densities of the pure components and the total volume. The second program calculates the densities of a binary ideal mixture. The third program converts the atomic percentages of a binary mixture to weight percentages. The programs use simple equations to assist the materials staff with routine calculations. The Metallurgical Programs are written in Microsoft QuickBASIC for interactive execution and have been implemented on an IBM PC-XT/AT operating MS-DOS 2.1 or higher with 256K bytes of memory. All instructions needed by the user appear as prompts as the software is used. Data is input using the keyboard only and output is via the monitor. The Metallurgical programs were written in 1987.

  10. Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles?

    PubMed

    Sedlák, Marián; Rak, Dmytro

    2013-02-28

    In textbooks, undersaturated solutions of low molar mass compounds and mixtures of freely miscible liquids are considered as homogeneous at larger length scales exceeding appreciably dimensions of individual molecules. However, growing experimental evidence reveals that it is not the case. Large-scale structures with sizes on the order of 100 nm are present in solutions and mixtures used in everyday life and research practice, especially in aqueous systems. These mesoscale inhomogeneities are long-lived, and (relatively slow) kinetics of their formation can be monitored upon mixing the components. Nevertheless, the nature of these structures and mechanisms behind their formation are not clear yet. Since it was previously suggested that these can be nanobubbles stabilized by adsorbed solute at the gas/solvent interface, we devote the current study to addressing this question. Static and dynamic light scattering was used to investigate solutions and mixtures prepared at ordinary conditions (equilibrated with air at 1 atm), prepared with degassed solvent, and solutions and mixtures degassed after formation of large structures. The behavior of large structures in strong gravitational centrifugal fields was also investigated. Systems from various categories were chosen for this study: aqueous solutions of an inorganic ionic compound (MgSO4), organic ionic compound (citric acid), uncharged organic compound (urea), and a mixture of water with organic solvent freely miscible with water (tert-butyl alcohol). Obtained results show that these structures are not nanobubbles in all cases. Visualization of large-scale structures via nanoparticle tracking analysis is presented. NTA results confirm conclusions from our previous light scattering work. PMID:23373595

  11. Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products.

    PubMed

    Qi, Yulin; Hempelmann, Rolf; Volmer, Dietrich A

    2016-07-01

    Lignin is the second most abundant natural biopolymer, and lignin wastes are therefore potentially significant sources for renewable chemicals such as fuel compounds, as alternatives to fossil fuels. Waste valorisation of lignin is currently limited to a few applications such as in the pulp industry, however, because of the lack of effective extraction and characterisation methods for the chemically highly complex mixtures after decomposition. Here, we have implemented high resolution mass spectrometry and developed two-dimensional mass defect matrix plots as a data visualisation tool, similar to the Kendrick mass defect plots implemented in fields such as petroleomics. These 2D matrix plots greatly simplified the highly convoluted lignin mass spectral data acquired from Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, and the derived metrics provided confident peak assignments and strongly improved structural mapping of lignin decomposition product series from the various linkages within the lignin polymer after electrochemical decomposition. Graphical Abstract 2D mass defect matrix plot for a lignin sample after decomposition. PMID:27178557

  12. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  13. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    SciTech Connect

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  14. Frost resistance of concrete surfaces coated with waterproofing materials

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Dauksys, M.; Ciuprovaite, G.

    2015-03-01

    Present research lays emphasis on the problem of concrete surface exposed to aggressive surrounding quality. The test was conducted with concrete surfaces coated with different waterproofing materials exposed in solution of 3 % of sodium sulphate. Research was performed according to LST EN 1338:2003 standard requirements. Technological properties of concrete mixture as well as physical-mechanical properties of formed concrete specimens were established. The resistance of concrete to freezing - thawing cycles was prognosticated according to the porosity parameters established by the kinetic of water absorption. Five different waterproofing materials (coatings) such as liquid bitumen-rubber based, elastic fiber-strengthened, silane-siloxane based emulsion, mineral binder based and liquid rubber (caoutchouc) based coatings were used. Losses by mass of coating materials and specimens surface fractures were calculated based on the results of frost resistance test. Open code program "ImageJ" was used for visual analysis of concrete specimens. Based on the results, aggressive surrounding did not influence specimens coated with elastic, fibre-strengthened, mineral materials. On the other hand, specimens coated with liquid rubber (caoutchouc) based material were greatly influenced by aggressive surrounding. The biggest losses of specimen surface concrete (fractures) were obtained with silane-siloxane based emulsion coating. Generally, specimens coated with waterproofing materials were less influenced by aggressive surrounding compared with those without.

  15. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids.

    PubMed

    Losito, I; Facchini, L; Diomede, S; Conte, E; Megli, F M; Cataldi, T R I; Palmisano, F

    2015-11-27

    A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ɷ-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems. PMID:26508677

  16. Two dimensional mass mapping as a general method of data representation in comprehensive analysis of complex molecular mixtures.

    PubMed

    Artemenko, Konstantin A; Zubarev, Alexander R; Samgina, Tatiana Yu; Lebedev, Albert T; Savitski, Mikhail M; Zubarev, Roman A

    2009-05-15

    A recent proteomics-grade (95%+ sequence reliability) high-throughput de novo sequencing method utilizes the benefits of high resolution, high mass accuracy, and the use of two complementary fragmentation techniques collision-activated dissociation (CAD) and electron capture dissociation (ECD). With this high-fidelity sequencing approach, hundreds of peptides can be sequenced de novo in a single LC-MS/MS experiment. The high productivity of the new analysis technique has revealed a new bottleneck which occurs in data representation. Here we suggest a new method of data analysis and visualization that presents a comprehensive picture of the peptide content including relative abundances and grouping into families. The 2D mass mapping consists of putting the molecular masses onto a two-dimensional bubble plot, with the relative monoisotopic mass defect and isotopic shift being the axes and with the bubble area proportional to the peptide abundance. Peptides belonging to the same family form a compact group on such a plot, so that the family identity can in many cases be determined from the molecular mass alone. The performance of the method is demonstrated on the high-throughput analysis of skin secretion from three frogs, Rana ridibunda, Rana arvalis, and Rana temporaria. Two dimensional mass maps simplify the task of global comparison between the species and make obvious the similarities and differences in the peptide contents that are obscure in traditional data presentation methods. Even biological activity of the peptide can sometimes be inferred from its position on the plot. Two dimensional mass mapping is a general method applicable to any complex mixture, peptide and nonpeptide alike. PMID:19382811

  17. Mass loss rates of uranium-zirconium carbide in flowing hydrogen and hydrogen-hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    MacMillan, Donald P.

    1991-01-01

    The results of experimental determinations of mass loss rates from (U,Zr)C exposed to flowing hydrogen at high temperature are reported. Two experimental techniques were used: isothermal heating of samples by arc jet and heating of long, porous, tubular samples by electrical self-resistance. Total mass losses as high as 20% were obtained, and the composition of the residue was determined. The results of these experiments were encouraging and led to the decision to use (U,Zr)C fuel elements in the next test reactor, Nuclear Furnace 2.

  18. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    SciTech Connect

    Johnson, S.

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  19. Mass and size effects in three-dimensional vibrofluidized granular mixtures

    NASA Astrophysics Data System (ADS)

    Krouskop, Peter E.; Talbot, Julian

    2003-08-01

    We examine the steady state properties of binary systems of driven inelastic hard spheres. The spheres, which move under the influence of gravity, are contained in a vertical cylinder with a vibrating base. We computed the trajectories of the spheres using an event-driven molecular dynamics algorithm. In the first part of the study, we chose simulation parameters that match those of experiments published by Wildman and Parker. Various properties computed from the simulation including the density profile, granular temperature, and circulation pattern are in good qualitative agreement with the experiments. We then studied the effect of varying the mass ratio and the size ratio independently while holding the other parameters constant. The mass and size ratio are shown to affect the distribution of the energy. The changes in the energy distributions affect the packing fraction and temperature of each component. The temperature of the heavier component has a nonlinear dependence on the mass of the lighter component, while the temperature of the lighter component is approximately proportional to its mass. The temperature of both components is inversely dependent on the size of the smaller component.

  20. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  1. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  2. Electrospray-ionization mass spectrometry of mixtures of triterpene glycosides with paracetamol

    NASA Astrophysics Data System (ADS)

    Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.

    2010-11-01

    Molecular complexation of paracetamol with hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranoside (α-hederin) and its 28-O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-O-β-Dglucopyranosyl ether (hederasaponin C) was investigated for the first time using electrospray-ionization mass spectrometry (ESI-MS). The glycosides form complexes with paracetamol in a 1:1 molar ratio. The hederasaponin C complex is more stable. The structures of the glycosides and paracetamol are concluded to have an impact on the complexation process.

  3. Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Kim, Hyoungchul; Yoon, Kyung Joong; Lee, Jong-Ho; Kim, Byung-Kook; Choi, Wonjoon; Lee, Jong-Heun; Hong, Jongsup

    2015-04-01

    High temperature co-electrolysis of steam/CO2 mixtures using solid oxide cells has been proposed as a promising technology to mitigate climate change and power fluctuation of renewable energy. To make it viable, it is essential to control the complex reacting environment in their fuel electrode. In this study, dominant reaction pathway and species transport taking place in the fuel electrode and their effect on the cell performance are elucidated. Results show that steam is a primary reactant in electrolysis, and CO2 contributes to the electrochemical performance subsequently in addition to the effect of steam. CO2 reduction is predominantly governed by thermochemical reactions, whose influence to the electrochemical performance is evident near limiting currents. Chemical kinetics and mass transport play a significant role in co-electrolysis, given that the reduction reactions and diffusion of steam/CO2 mixtures are slow. The characteristic time scales determined by the kinetics, diffusion and materials dictate the cell performance and product compositions. The fuel electrode design should account for microstructure and catalysts for steam electrolysis and thermochemical CO2 reduction in order to optimize syngas production and store electrical energy effectively and efficiently. Syngas yield and selectivity are discussed, showing that they are substantially influenced by operating conditions, fuel electrode materials and its microstructure.

  4. Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Son, Jeongjin; Lee, Gwangbin; Cha, Sangwon

    2014-05-01

    Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.

  5. Durability of concrete materials in high-magnesium brine

    SciTech Connect

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  6. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    SciTech Connect

    Flores, O.; Castillo, F.; Martinez, H.; Villa, M.; Reyes, P. G.; Villalobos, S.

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  7. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  8. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  9. Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases.

    PubMed

    Lange, Britta; Matschat, Ralf; Kipphardt, Heinrich

    2007-12-01

    Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas. PMID:17940753

  10. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  11. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part I: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; He, Li-Lin; Fang, Qin

    2014-12-01

    The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator, obviously reducing the penetration efficiency of penetrator. Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface, an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile. A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile. The critical value V {0/c} of the initial striking velocity is formulated, and the mass loss of projectile tends to increase weakly nonlinearly with I/ N when V 0 < V {0/c}, whilst the mass loss is proportional to the initial kinetic energy of projectile when V 0 < V {0/c}. The theoretical prediction of V {0/c} is further confirmed to be very close to the experimental value of 1.0 km/s based on 11 sets of different penetration tests. Also the validity of the proposed expressions of mass loss and nose-blunting coefficients of a projectile are verified by the tests. Therefore, a theoretical basis is for the empirical conclusions drawn in previous publications. Regarding the completely empirical determinations of the mass loss and nose-blunting coefficients given in previous papers, the present analysis reveals its physical characteristic and also guarantees its prediction accuracy. The engineering model established in the present paper forms the basis for further discussions on the structural stability and the terminal ballistic stability of ogive-nosed projectiles high-speed penetrating into concrete targets, which will respectively be elaborated in Part II and Part III of the present study.

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  14. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

    SciTech Connect

    Aerosol Dynamics Inc; Aerodyne Research, Inc.,; Tofwerk AG, Thun; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Doug R.; Goldstein, Allen H.

    2011-09-13

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  15. Estimation of Concrete's Porosity by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Benouis, A.; Grini, A.

    Durability of concrete depends strongly on porosity; this conditions the intensity of the interactions of the concrete with the aggressive agents. The pores inside the concrete facilitate the process of damage, which is generally initiated on the surface. The most used measurement is undoubtedly the measurement of porosity accessible to water. The porosimetry by intrusion with mercury constitutes a tool for investigation of the mesoporosity. The relationship between concrete mixtures, porosity and ultrasonic velocity of concrete samples measured by ultrasonic NDT is investigated. This experimental study is interested in the relations between the ultrasonic velocity measured by transducers of 7.5 mm and 49.5 mm diameter and with 54 kHz frequency. Concrete specimens (160 mm diameter and 320 mm height) are fabricated with concrete of seven different mixtures (various W/C and S/S + G ratios), which gave porosities varying between 7% and 16%. Ultrasonic velocities in concrete were measured in longitudinal direction. Finally the results showed the influence of ratio W/C, where the porosity of the concretes of a ratio W/C _0,5 have correctly estimated by ultrasonic velocity. The integration of the concretes of a lower ratio, in this relation, caused a great dispersion. Porosity estimation of concretes with a ratio W/C lower than 0,5 became specific to each ratio.

  16. Marine concrete

    SciTech Connect

    Marshall, A.L.

    1990-01-01

    This book examines how the chemical and physical properties of the oceans affect the durability, fatigue, and corrosion of structures. Structure types addressed include oil platforms, arctic structures, and sea walls. Reviews qualities of plain, reinforced, prestressed, and floating concrete. Discusses the inspection, maintenance, and repair of concrete structures.

  17. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    USGS Publications Warehouse

    Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.

    2001-01-01

    A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.

  18. Mass Transport Properties of LiD-U Mixtures from Orbital Free Molecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    SciTech Connect

    Burakovsky, Leonid; Kress, Joel D.; Collins, Lee A.

    2012-05-31

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD){sub x}U{sub (1-x)} compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, {rho}, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk{sub B}T/V + P{sub e}, is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species {alpha}, D{sub {alpha}}, the mutual diffusion coefficient for species {alpha} and {beta}, D{alpha}{beta}, and the shear viscosity, {eta}, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  19. Micro Environmental Concrete

    NASA Astrophysics Data System (ADS)

    Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.

    Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

  20. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures.

    PubMed

    Dumlao, Morphy C; Jeffress, Laura E; Gooding, J Justin; Donald, William A

    2016-06-21

    Solid-phase microextraction (SPME) is directly integrated with low temperature plasma ionisation mass spectrometry to rapidly detect organophosphate chemical warfare agent simulants and their hydrolysis products in chemical mixtures, including urine. In this sampling and ionization method, the fibre serves: (i) to extract molecules from their native environment, and (ii) as the ionization electrode that is used to desorb and ionize molecules directly from the SPME surface. By use of a custom fabricated SPME fibre consisting of a stainless steel needle coated with a Linde Type A (LTA) zeolitic microporous material and low temperature plasma mass spectrometry, protonated dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP) and pinacolyl methylphosphonic acid (PinMPA) can be detected at less than 100 ppb directly in water and urine. Organophosphates were not readily detected by this approach using an uncoated needle in negative control experiments. The use of the LTA coating significantly outperformed the use of a high alumina Zeolite Socony Mobil-5 (ZSM-5) coating of comparable thickness that is significantly less polar than LTA. By conditioning the LTA probe by immersion in an aqueous CuSO4 solution, the ion abundance for protonated DMMP increased by more than 300% compared to that obtained without any conditioning. Sample recovery values were between 96 and 100% for each analyte. The detection of chemical warfare agent analogues and hydrolysis products required less than 2 min per sample. A key advantage of this sampling and ionization method is that analyte ions can be directly and rapidly sampled from chemical mixtures, such as urine and seawater, without sample preparation or chromatography for sensitive detection by mass spectrometry. This ion source should prove beneficial for portable mass spectrometry applications because relatively low detection limits can be obtained without the use of compressed gases, fluid pumps, and lasers. Moreover, the

  1. Combustion of a Methane-Air Mixture in a Slot Burner with an Inert Insert in Mass Transfer to the Environment

    NASA Astrophysics Data System (ADS)

    Krainov, A. Yu.; Moiseeva, K. M.

    2016-03-01

    A problem on combustion of a methane-air mixture in a slot burner with an internal insert in mass transfer from the burner's exterior wall to the environment has been solved. A mathematical formulation of the problem takes account of the dependence of the diffusion, thermal-conductivity, and heat-transfer coefficients on temperature, and also of the heat removal from the gas to the environment by convective and radiant heat transfer. A numerical investigation has been carried out in a one-dimensional mathematical formulation of the problem in dimensional variables. The boundary of existence of a stable high-temperature regime of combustion of the methane-air mixture has been determined as a function of the rate of feed of the gas, the environmental temperature, and the width of the flow area of the burner.

  2. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  3. AB INITIO EQUATION OF STATE FOR HYDROGEN-HELIUM MIXTURES WITH RECALIBRATION OF THE GIANT-PLANET MASS-RADIUS RELATION

    SciTech Connect

    Militzer, B.; Hubbard, W. B.

    2013-09-10

    Using density functional molecular dynamics simulations, we determine the equation of state (EOS) for hydrogen-helium mixtures spanning density-temperature conditions typical of giant-planet interiors, {approx}0.2-9 g cm{sup -3} and 1000-80,000 K for a typical helium mass fraction of 0.245. In addition to computing internal energy and pressure, we determine the entropy using an ab initio thermodynamic integration technique. A comprehensive EOS table with 391 density-temperature points is constructed and the results are presented in the form of a two-dimensional free energy fit for interpolation. Deviations between our ab initio EOS and the semi-analytical EOS model by Saumon and Chabrier are analyzed in detail, and we use the results for initial revision of the inferred thermal state of giant planets with known values for mass and radius. Changes are most pronounced for planets in the Jupiter mass range and below. We present a revision to the mass-radius relationship that makes the hottest exoplanets increase in radius by {approx}0.2 Jupiter radii at fixed entropy and for masses greater than {approx}0.5 Jupiter mass. This change is large enough to have possible implications for some discrepant ''inflated giant exoplanets''.

  4. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  5. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  6. Quality evaluation of aged concrete by ultrasound

    NASA Astrophysics Data System (ADS)

    Tavossi, H. M.; Tittmann, Bernhard R.; Cohen-Tenoudji, Frederic

    1999-02-01

    The velocity, attenuation and scattering of ultrasonic waves measured in concrete, mortar and cement structures can be used to evaluate their quality with weathering and aging. In this investigation the hardening of concrete mixture with time is monitored by ultrasonic waves under different conditions of temperature and water to cement ratio. The measured ultrasonic parameters can then be utilized to determine the final quality of the completely cured concrete structure from initial measurement. The quality of a concrete structure is determined by its resistance to compression and its rigidity, which should be within the acceptable values required by the design specifications. The internal and external flaws that could lower its strength can also be detected by ultrasonic technique. Aging process of concrete by weathering can be simulated in the laboratory by subjecting the concrete to extremes of cold and hot cycles in the range of temperatures normally encountered in summer and winter. In this research ultrasonic sensors in low frequency range of 40 to 100 kHz are used to monitor the quality of concrete. Ultrasonic pulses transmitted through the concrete sample are recorded for analysis in time and frequency domains. ULtrasonic waves penetration in concrete of the order of few feet has been achieved in laboratory. Data analyses on ultrasonic signal velocity, spectral content, phase and attenuation, can be utilized to evaluate, in situ, the quality and mechanical strength of concrete.

  7. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening.

    PubMed

    Qin, Shanshan; Ren, Yiran; Fu, Xu; Shen, Jie; Chen, Xin; Wang, Quan; Bi, Xin; Liu, Wenjing; Li, Lixin; Liang, Guangxin; Yang, Cheng; Shui, Wenqing

    2015-07-30

    Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery. PMID:26320641

  8. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  9. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  10. Contribution to the benchmark for ternary mixtures: Measurement of the Soret, diffusion and thermodiffusion coefficients in the ternary mixture THN/IBB/nC12 with 0.8/0.1/0.1 mass fractions in ground and orbital laboratories.

    PubMed

    Mialdun, A; Legros, J-C; Yasnou, V; Sechenyh, V; Shevtsova, V

    2015-04-01

    We have determined the Soret (ST), diffusion (D, and thermodiffusion (DT) coefficients in a ternary mixture of tetralin-isobutylbenzene-n-dodecane with a composition of 0.80/0.10/0.10 by mass fraction at a temperature of 298K. The Soret coefficients were measured in the microgravity experiment DCMIX1 and on the ground by optical digital interferometry (ODI) using two lasers with different wavelengths. The values of the Soret coefficients were determined from the stationary separation of the components using two- and six-parameter fits. The diffusion coefficients were independently measured using the Taylor Dispersion Technique in the ground laboratory, and the thermodiffusion coefficients were derived from known ST and matrix D. The processing of the data from the DCMIX experiment conducted on the International Space Station is discussed in detail. The multi-user design of the on-board instrument causes perturbations in the component separation. Several recommendations are suggested for improving the quality of the microgravity results. For example, we demonstrated that the tomography reconstruction of the 3-D concentration field allows to restore the underestimated component separation resulting from the spatial non-linearity of the temperature field. Furthermore, to avoid errors in component separation due to mass exchange between the working liquid volume and the expansion volume at the top of the cell, we suggest considering the evolution of the separation only in the lower half of the cell. The results of this study displayed reasonable quantitative agreement between the microgravity and ground experiments. PMID:25916232

  11. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA

  12. A Novel Dual-Pressure Linear Ion Trap Mass Spectrometer Improves the Analysis of Complex Protein Mixtures

    PubMed Central

    Pekar, Tonya; Blethrow, Justin D.; Schwartz, Jae C.; Merrihew, Gennifer E.; MacCoss, Michael J.; Swaney, Danielle L.; Russell, Jason D.; Coon, Joshua J.; Zabrouskov, Vlad

    2009-01-01

    The considerable progress in high throughput proteomics analysis via liquid chromatography-electrospray ionization-tandem mass spectrometry over the last decade has been fueled to a large degree by continuous improvements in instrumentation. High throughput identification experiments are based on peptide sequencing and are largely accomplished through the use of tandem mass spectrometry, with ion trap and trap-based instruments having become broadly adopted analytical platforms. To satisfy increasingly demanding requirements for depth of characterization and throughput, we present a newly developed dual-pressure linear ion trap mass spectrometer (LTQ Velos) that features increased sensitivity, afforded by a new source design, and demonstrates practical cycle times two times shorter than that of an LTQ XL, while improving or maintaining spectral quality for MS/MS fragmentation spectra. These improvements resulted in a substantial increase in the detection and identification of both proteins and unique peptides from the complex proteome of Caenorhabditis elegans, as compared to existing platforms. The greatly increased ion flux into the mass spectrometer in combination with improved isolation of low-abundance precursor ions resulted in increased detection of low-abundance peptides. These improvements cumulatively resulted in a substantially greater penetration into the baker’s yeast (Saccharomyces cerevisiae) proteome compared to LTQ XL. Alternatively, faster cycle times on the new instrument allowed for higher throughput for a given depth of proteome analysis, with more peptides and proteins identified in 60 min using an LTQ Velos than in 180 min using an LTQ XL. When mass analysis was carried out with resolution in excess of 25,000 FWHM, it became possible to isotopically resolve a small intact protein and its fragments, opening possibilities for top down experiments. PMID:19689114

  13. Identification of phosphorylated peptides from complex mixtures using negative-ion orifice-potential stepping and capillary liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Ding, J; Burkhart, W; Kassel, D B

    1994-01-01

    A rapid method for identifying and characterizing sites of phosphorylation of peptides and proteins is described. High-performance capillary liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) is used to distinguish non-phosphorylated and phosphorylated peptides originating from mixtures as complex as enzyme digests. The method relies on the ability to produce a fragment ion characteristic and unique to phosphopeptides (m/z 79, PO3) by stepping the orifice potential of the mass spectrometer as a function of mass. At low m/z values, a high orifice potential is applied to induce extensive fragmentation of the peptide, leading to the formation of the m/z 79 phosphate-derived ion. This method is analogous to that described by Carr et al. for the identification of glycopeptides from enzymatic digestion of glycoproteins (S.A. Carr, M.J. Huddleston, M.F. Bean, Protein Science 2, 183 (1993)). The method was first evaluated and validated for a mixture of non-, mono- and di-phosphorylated synthetic peptides. Both mono- and di-phosphorylated peptides were found to generate fragment ions characteristic of PO3 whereas the non-phosphorylated peptide did not. Application of the method was extended to identifying phosphopeptides generated from an endoprotease Lys-C digestion of beta-casein. Both the expected mono- and tetra-phosphorylated Lys-C peptides were observed and identified rapidly in the LC/SEI-MS analysis. The procedure was used additionally to identify the site(s) of phosphorylation of the cytosolic non-receptor tyrosine kinase, pp60(c-src). PMID:8118063

  14. Mass spectrometric investigation of the ionic species in a dielectric barrier discharge operating in helium-water vapour mixtures

    NASA Astrophysics Data System (ADS)

    Abd-Allah, Z.; Sawtell, D. A. G.; McKay, K.; West, G. T.; Kelly, P. J.; Bradley, J. W.

    2015-03-01

    Using advanced mass spectrometry the chemistry of ionic species present in an atmospheric-pressure parallel plate dielectric barrier discharge (DBD) with a single dielectric on the powered electrode have been identified. The discharge was driven in helium with controllable concentrations of water vapour using an excitation frequency of 10 kHz and an applied voltage of 1.2 kV. Both negative and positive ions were identified and their relative intensity determined with variation of water concentration in the discharge, inter-electrode spacing, gas residence time and nominal applied power. The most abundant negative ions were of the family \\text{O}{{\\text{H}}-}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} , while the positive ions were dominated by those of the form {{{H}}^ + }{{{(}}{{{H}}_2}{{O)}}_n} , with n up to 9 in both cases. Negative and positive ions responded in a similar way to changes in the operating parameters, with the particular response depending on the ion mass. Increasing the inter-electrode spacing and the water concentration in the discharge led to an increase in the intensity of large mass ionic water clusters. However, increasing the residence time of the species in the plasma region and increasing the applied power resulted in fragmentation of large water clusters to produce smaller ions.

  15. Aerated concrete with mineral dispersed reinforcing additives

    NASA Astrophysics Data System (ADS)

    Berdov, G. I.; Ilina, L. V.; Mukhina, I. N.; Rakov, M. A.

    2015-01-01

    To guarantee the production of aerated concrete with the lowest average density while ensuring the required strength it is necessary to use a silica component with a surface area of 250-300 m2 / kg. The article presents experimental data on grinding the silica component together with clinker to the optimum dispersion. This allows increasing the strength of non-autoclaved aerated concrete up to 33%. Furthermore, the addition to aerated concrete the mixture of dispersed reinforcing agents (wollastonite, diopside) and electrolytes with multiply charged cations and anions (1% Fe2 (SO4)3; Al2 (SO4)3) provides the growth of aerated concrete strength at 30 - 75%. As a cohesive the clinker, crushed together with silica and mineral supplements should be used. This increases the strength of aerated concrete at 65% in comparing with Portland cement.

  16. Characterization of a mixture of lobster digestive cysteine proteinases by ionspray mass spectrometry and tryptic mapping with LC--MS and LC--MS--MS

    NASA Astrophysics Data System (ADS)

    Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.

    1991-12-01

    An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).

  17. Mass Flux Stability in the Presence of Temperature Excursions and Perturbations in Solid ^3 He-^4 He Mixtures

    NASA Astrophysics Data System (ADS)

    Vekhov, Ye.; Hallock, R. B.

    2016-03-01

    The DC superfluid ^4 He mass flux through a cell filled with solid ^4 He diluted by ppm amounts of ^3 He is susceptible to flux changes when perturbations of the solid sample are imposed. We report on the details of the reproducibility of the flux following excursions in temperature and cryostat helium transfer-induced apparatus vibration, particularly including excursions to temperatures above which the flux is immeasurably small. And we report on behavior following an annealing, partial melting, and re-freezing of the sample at temperatures and pressures close to and on the melting curve.

  18. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  19. Propagation characteristics of electromagnetic waves in concrete

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo

    1989-03-01

    This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.

  20. Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode

    SciTech Connect

    Mollah, Sahana

    1999-11-08

    Suppression of mass spectral peaks due to matrix problem is a major hurdle to overcome during identification work. So far, preliminary studies have been done in investigating solutions containing various percentages of nitric and hydrochloric acid. Since other anions would also be present in real samples, also needed to be examined is how the extent of suppression of metal complexes by Cl{sup {minus}} compares with suppression by other anions such as PO{sub 4}{sup 3{minus}} or SO{sub 4}{sup 2{minus}}. If suppression of other anions is as severe as that of the chloride ion, then it would be virtually impossible to analyze unknown samples containing large amount of such anions by direct infusion electrospray mass spectrometry. It seems like a separation step is needed to separate these matrix anions from the metal complexes prior to putting the solution through the electrospray. However, separation of inorganic complexes can be difficult and has not been studied thoroughly as LC separation of bioorganic compounds. Both zinc and copper chloro complexes have been observed to be more tolerant to higher amount of chloride ion present in a solution compared to the group I and II metal chloro complexes. Other transition metals including the lanthanide complexes need to be examined more intensively to see how they fare against other transition metal complexes. So far, only preliminary work has been done in identifying inorganic species in solutions using both ICP-MS and ES-MS. The solution contained a number of metals but only one major anion, NO{sub 3}{sup {minus}}. Therefore, complex solutions containing a number of anions and metals can be examined to see if identification is still feasible. This identification work can be continued on into investigating real samples.

  1. Sulfate attack on concrete with mineral admixtures

    SciTech Connect

    Irassar, E.F.; Di Maio, A.; Batic, O.R.

    1996-01-01

    The sulfate resistance of concretes containing fly ash, natural pozzolan and slag is investigated in a field test in which concrete specimens were half-buried in sulfate soil for five years. Mineral admixtures were used as a partial replacement for ordinary portland cement (C{sub 3}A = 8.5%), and the progress of sulfate attack was evaluated by several methods (visual rating, loss in mass, dynamic modulus, strength, X-ray analysis). Results of this study show that mineral admixtures improved the sulfate resistance when the concrete is buried in the soil. However, concretes with high content of mineral admixtures exhibit a greater surface scaling over soil level due to the sulfate salt crystallization. In this zone, capillary suction of concrete is the main mechanism of water and salt transportation. Concrete with 20% fly ash provides an integral solution for half-buried structures.

  2. Mass-fractal growth in niobia/silsesquioxane mixtures: a small-angle X-ray scattering study

    PubMed Central

    Besselink, Rogier; ten Elshof, Johan E.

    2014-01-01

    The nucleation and growth of niobium pentaethoxide (NPE)-derived clusters in ethanol, through acid-catalyzed hydrolysis/condensation in the presence and absence of the silsesquioxane 1,2-bis(triethoxysilyl)ethane (BTESE), was monitored at 298–333 K by small-angle X-ray scattering. The data were analyzed with a newly derived model for polydisperse mass-fractal-like structures. At 298–313 K in the absence of BTESE the data indicated the development of relatively monodisperse NPE-derived structures with self-preserving polydispersity during growth. The growth exponent was consistent with irreversible diffusion-limited cluster agglomeration. At 333 K the growth exponent was characteristic for fast-gelling reaction-limited cluster agglomeration. The reaction yielded substantially higher degrees of polydispersity. In the presence of BTESE the growth exponents were substantially smaller. The smaller growth exponent in this case is not consistent with irreversible Smoluchowski-type agglomeration. Instead, reversible Lifshitz–Slyozov-type agglomeration seems to be more consistent with the experimental data. PMID:25294980

  3. High temperature behaviour of self-consolidating concrete

    SciTech Connect

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-03-15

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  4. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  5. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  6. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  7. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  8. Measurement of mass attenuation coefficients in some Cr, Co and Fe compounds around the absorption edge and the validity of the mixture rule

    NASA Astrophysics Data System (ADS)

    Turgut, U.; Simsek, O.; Büyükkasap, E.

    2007-08-01

    The total mass attenuation coefficients for elements Cr, Co and Fe and compounds CrCl_{2}, CrCl_{3}, Cr_{2}(SO_{4})_{3}K_{2}SO_{4}\\cdot24H_{2}O, CoO, CoCl_{2}, Co(CH_{3}COO)_{2}, FePO_{4}, FeCl_{3}\\cdot6H_{2}O, Fe(SO_{4})_{2}NH_{4}\\cdot12H_{2}O were measured at different energies between 4.508 and 14.142 keV using secondary excitation method. Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr were chosen as secondary exciters. 59.5 keV γ-rays emitted from a ^{241}Am annular source were used to excite a secondary exciter and K_{α}(K-L_{3}, L_{2}) lines emitted by the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. It was observed that mixture rule method is not a suitable method for determination of the mass attenuation coefficients of compounds, especially at an energy that is near the absorption edge. The obtained values were compared with theoretical values.

  9. Matrix-Assisted Ionization-Ion Mobility Spectrometry-Mass Spectrometry: Selective Analysis of a Europium-PEG Complex in a Crude Mixture

    NASA Astrophysics Data System (ADS)

    Fischer, Joshua L.; Lutomski, Corinne A.; El-Baba, Tarick J.; Siriwardena-Mahanama, Buddhima N.; Weidner, Steffen M.; Falkenhagen, Jana; Allen, Matthew J.; Trimpin, Sarah

    2015-12-01

    The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed.

  10. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    USGS Publications Warehouse

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  11. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their

  12. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  13. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  14. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  15. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  16. Concrete Materials and Structures

    SciTech Connect

    Wilby, C.B.

    1991-12-31

    Concrete Materials and Structures provides one of the most comprehensive treatments on the topic of concrete engineering. The author covers a gamut of concrete subjects ranging from concrete mix design, basic reinforced concrete theory, prestressed concrete, shell roofs, and two-way slabs-including a through presentation of Hillerborg`s strip method. Prior to Wilby`s book, the scope of these topics would require at least four separate books to cover. With this new book he has succeeded, quite remarkably, in condensing a fairly complete knowledge of concrete engineering into one single easy-to-carry volume.

  17. Polymer concrete patching manual

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Bartholomew, J.

    1982-06-01

    The practicality of using polymer concrete to repair deteriorated portland cement concrete bridge decks and pavements was demonstrated. This manual outlines the procedures for using polymer concrete as a rapid patching material to repair deteriorated concrete. The process technology, materials, equipment, and safety provisions used in manufacturing and placing polymer concrete are discussed. Potential users are informed of the various steps necessary to insure successful field applications of the material.

  18. The Apparent Thermal Conductivity of Pozzolana Concrete

    NASA Astrophysics Data System (ADS)

    Bessenouci, M. Z.; Triki, N. E. Bibi; Khelladi, S.; Draoui, B.; Abene, A.

    The recent development of some lightweight construction materials, such as light concrete, can play an important role as an insulator, while maintaining sufficient levels of mechanical performance. The quality of insulation to provide depends on the climate, the exposure of the walls and also the materials used in the construction. The choice of a material to be used as an insulator, obviously, depends on its availability and its cost. This is a study of natural pozzolanas as basic components in building materials. It is intended to highlight their thermal advantage. It is economically advantageous to use pozzolana in substitution for a portion of the clinker as hydraulically active additions, as well as in compositions of lightweight concretes in the form of pozzolanic aggregate mixtures, which provide mechanical strengths that comply with current standards. A theoretical study is conducted on the apparent thermal conductivity of building materials, namely concrete containing pozzolana. Thermal modeling, apparent to that commonly used for porous materials, has been applied to pozzolana concrete. Experimental results on measurements of the apparent thermal conductivity of pozzolana concrete are reported in this study, using an approach that considers that concrete is composed of two solid ingredients, a binding matrix (hydrated cement paste) and all aggregates. A second comparative theoretical approach is used for the case where concrete consists of a solid phase and a fluid phase (air).

  19. Monitoring durability of new concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Aktan, Haluk M.; Yaman, Ismail O.; Staton, John F.

    2001-08-01

    The ND durability monitoring procedure, which measures the soundness of field concrete, is based on the fundamental relationship between ultrasonic pulse velocity (UPV) and permeability of an elastic medium. An experimental study documented adequate sensitivity between UPV and concrete permeability. The durability monitoring procedure is based on a parameter developed as part of this study and called paste quality loss (PQL) which is computed from the probability density function parameters of ultrasonic pulse velocity measurements taken from standard and field concrete. For PQL computation, measurements taken on standard concrete specimens, which are made from field concrete mixture, are compared to field measurements. The verification tests on 1000 mm x 1500 mm x 230 mm lab-deck specimens indicated that the PQL parameter computed from the UPV measurements as early as the 28th day is a good predictor of soundness. The UPV measurements made at increasing age of concrete very clearly document the rapid loss of soundness of improperly cured concrete decks. Deck replacement projects on three NHS bridges were used in the implementation of durability monitoring by PQL (paste quality loss) evaluation. The respective 56-day PQL's were calculated as 15%, 31% and 9% indicating a significant variability in the three bridges.

  20. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.

    PubMed

    Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay

    2010-02-01

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving. PMID:19853433

  1. Evaluation of ternary blended cements for use in transportation concrete structures

    NASA Astrophysics Data System (ADS)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  2. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  3. Identification of a radical formed in the reaction mixtures of ram seminal vesicle microsomes with arachidonic Acid using high performance liquid chromatography-electron spin resonance spectrometry and high performance liquid chromatography-electron spin resonance-mass spectrometry.

    PubMed

    Minakata, Katsuyuki; Iwahashi, Hideo

    2010-03-01

    The reaction of ram seminal vesicle (RSV) microsomes with arachidonic acid (AA) was examined using electron spin resonance (ESR), high performance liquid chromatography-electron spin resonance spectrometry (HPLC-ESR), and high performance liquid chromatography-electron spin resonance-mass spectrometry (HPLC-ESR-MS) combined use of spin trapping technique. A prominent ESR spectrum (alpha(N) = 1.58 mT and alpha(H)beta = 0.26 mT) was observed in the complete reaction mixture of ram seminal vesicle microsomes with arachidonic acid containing 2.0 mg protein/ml ram seminal vesicle (RSV) microsomal suspension, 0.8 mM arachidonic acid, 0.1 M 4-POBN, and 24 mM tris/HCl buffer (pH 7.4). The ESR spectrum was hardly observed for the complete reaction mixture without the RSV microsomes. The formation of the radical appears to be catalyzed by the microsomal components. In the absence of AA, the intensity of the ESR signal decreased to 16 +/- 15% of the complete reaction mixture, suggesting that the radical is derived from AA. For the complete reaction mixture with boiled microsomes, the intensity of the ESR signal decreased to 49 +/- 4% of the complete reaction mixture. The intensity of the ESR signal of the complete reaction mixture with indomethacin decreased to 74 +/- 20% of the complete reaction mixture, suggesting that cyclooxygenese partly participates in the reaction. A peak was detected on the elution profile of HPLC-ESR analysis of the complete reaction mixture. To determine the structure of the peak, an HPLC-ESR-MS analysis was performed. The HPLC-ESR-MS analysis of the peak showed two prominent ions, m/z 266 and m/z 179, suggesting that the peak is a 4-POBN/pentyl radical adduct. An HPLC-ESR analysis of the authentic 4-POBN/pentyl radical adduct comfirmed the identification. PMID:20216946

  4. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. PMID:24316812

  5. Cast-concrete products made with FBC ash and wet-collected coal-ash

    SciTech Connect

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D.

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  6. Effective field use of high range water reduced concrete

    NASA Astrophysics Data System (ADS)

    Sprinkel, M. M.

    1981-11-01

    The experience of the Virginia Department of Highways and Transportation with the use of high range water reduced (HRWR) concrete is described as well as the installation of the HRWR concrete in two pavements and four bridge decks. The results of evaluative tests are included along with recommendations concerning the further use of HRWR concrete. On the average the HRWR concrete placed in the field with conventional equipment was properly consolidated and controlled. However, because of the unanticipated variability of the concrete, portions of the concrete exhibited inadequate consolidation, segregated mixture components, improperly entrained air, shrinkage cracks, and poor finishes. Specimens subjected to cycles of freezing and thawing showed low durability factors that were attributed to an unsatisfactory air void system. Subsequent laboratory work revealed that HRWR admixtures satisfied the requirements of ASTM C494.

  7. Nature of unresolved complex mixture in size-distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hays, Michael D.; Smith, N. Dean; Dong, Yuanji

    2004-08-01

    Unresolved complex mixture (UCM) is an analytical artifact of gas chromatographs of combustion source-related fine aerosol extracts. In this study the UCM is examined in size-resolved fine aerosol emissions from residential wood combustion. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). A semiquantitative system for predicting the branched alkane, cycloalkane, alkylbenzene, C3-, C4-, C5-alkylbenzene, methylnaphthalene, C3-, C4-, C5-alkylnaphthalene, methylphenanthrene C2-, C3-alkylphenanthrene, and dibenzothiophene concentrations in the UCM is introduced. Analysis by TD/GS/MS detects UCM on each ELPI stage for all six combustion tests. The UCM baseline among the different fuel types is variable. In particular, the UCM of Pseudotsuga sp. is enriched in later-eluting compounds of lower volatility. A high level of reproducibility is achieved in determining UCM areas. UCM fractions (UCM ion area/total extracted ion chromatograph area) by individual ELPI stage return a mean relative standard deviation of 19.1% over the entire combustion test set, indicating a highly consistent UCM fraction across the ELPI size boundaries. Among the molecular ions investigated, branched alkane (m/z 57) and dibenzothiophene (m/z 212 and 226) constituents are most abundant in UCM emissions from RWC, collectively accounting for 64-95% of the targeted chemical species. The total UCM emissions span 446-756 mg/kg of dry biomass burned and correspond to an upper limit of 7.1% of the PM2.5 mass. The UCM emissions are primarily accumulation mode (0.1 μm ≤ aerodynamic diameter (da) ≤ 1 μm), with a geometric mean diameter (dg) range of 120.3-518.4 nm. UCM in PM2.5 is chemically asymmetric (shifted to finer da), typically clustering at da ≤ 1 μm. Measurable shifts in dg and changes in distribution widths (σg) on an intratest basis suggest that the particle density

  8. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  9. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    SciTech Connect

    Butler, L. West, J.S.; Tighe, S.L.

    2011-10-15

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  10. Lunar concrete for construction

    SciTech Connect

    Cullingford, H.S.; Keller, M.D.

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base. 10 refs., 3 figs., 2 tabs.

  11. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  12. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  13. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi

    2014-12-29

    The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. PMID:25482852

  14. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  15. Controlling chloride ions diffusion in concrete

    PubMed Central

    Zeng, Lunwu; Song, Runxia

    2013-01-01

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle. PMID:24285220

  16. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  17. Porosity estimation of concrete by ultrasonic NDE

    PubMed

    Hernandez; Izquierdo; Ibanez; Anaya; Ullate

    2000-03-01

    The increasing number of concrete structures with symptoms of premature deterioration due to environmental action demands procedures to estimate the durability of this type of component. Concrete durability is related to porosity, which determines the intensity of interactions of the material with aggressive agents. The pores and capillaries inside the structure facilitate the destructive processes that generally begin in the surface. In this work, an ultrasonic NDE technique to estimate the porosity of concrete is developed. The method is based on the analysis of the mechanical behaviour of mortar probes built with calibrated sand, in which the concentration of water-cement mixture has been varied. In this sense, data of sound velocity are correlated with data of porosity, which have been previously measured by destructive measurements. PMID:10829720

  18. Lunar concrete: Prospects and challenges

    NASA Astrophysics Data System (ADS)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  19. Biomarker- and similarity coefficient-based approaches to bacterial mixture characterization using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)

    PubMed Central

    Zhang, Lin; Smart, Sonja; Sandrin, Todd R

    2015-01-01

    MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that has previously been shown to be useful in identification of individual bacteria in pure cultures and simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively applied to identification of individual bacteria in pure cultures. Both strategies were developed and evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed that most peaks in mixture spectra could be assigned to those found in spectra of each component bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-coded samples containing more than two isolates, bacteria were more effectively identified using a biomarker-based strategy. PMID:26537565

  20. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  1. Characterization and genesis interpretation of charcoal-bearing concretions from the early Eocene Ione Formation, CA

    NASA Astrophysics Data System (ADS)

    Bair, D.; Aburto, F.

    2013-12-01

    Charcoal core concretions have been discovered in the kaolinitic soil horizons of the Ione formation (early Eocene epoch ~52Ma BP). It is thought that the Ione Formation in the Ione Basin was deposited in delta and estuarine waters that were subsequently exhumed and exposed to a warmer, humid, tropical-like environment during the early Eocene. The formation of concretions is indicative of seasonal dryness, and the charcoal cores are evidence of wildfires and of the existence of a forest ecosystem. The mineral outer shells of the concretions have been characterized by powder X-ray diffraction, Electron Microprobe and Laser Ablation Quadruple Mass Spectrometry (LA-ICP-MS). Micro-computed tomography (MCT) scans indicate that these concretions have at least three distinct shells and a inner core with fragments of charcoal without apparent internal organization. The outer shell is mainly composed of a layered mix of kaolinite, quartz, goethite, hematite and birnessite. Some pyrite and jarosite have also been found, which could indicate that goethite may be post-depositional and a product of the bacteria-mediated oxidation of pyrite. The central shell has a similar composition, but with a higher content of iron oxyhydroxides and jarosite. The inner cores of the concretions are mainly composed of a mixture of kaolinite and quartz which correspond to the layer in which the concretions were found. The concretion cores contain loose charcoal fragments in a unsolidified kaolinite matrix. The charcoal fragments have been characterized by Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), C/N isotope analysis, and Synchrotron radiation FTIR (SR-FTIR). Analysis of the ATR-FTIR spectra showed significant absorbance peaks at wavenumbers that coincided with the chemical functionality of other wood biochars. Charcoal from different concretions display (n =12) extremely similar spectra which suggest that they were originated from similar species and

  2. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  3. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  4. Early-age volume changes of extrudable reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Cherkaoui, K.; Courtial, M.; Dunstetter, F.; Khelidj, A.; Mounanga, P.; de Noirfontaine, M. N.

    2010-06-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  5. Investigation of gamma-ray shielding properties of concrete containing different percentages of lead.

    PubMed

    Rezaei-Ochbelagh, D; Azimkhani, S

    2012-10-01

    In this work, concrete mixed with different percentages of lead is used to study gamma-ray shielding properties. The transmitted fluxes of gamma-rays that were emitted from (137)Cs and (60)Co sources were detected by a NaI(Tl) detector and analyzed by a MCA analyzer. Then, linear attenuation coefficients (LAC) and compressive strength of concrete specimens were experimentally investigated. By comparing the obtained data from concrete specimens with and without lead, it was observed that, if the powder of lead to cement ratio of 90% by weight is added in the concrete mixture, the concrete can be used as a suitable shield against gamma rays. PMID:22854173

  6. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  7. Waste tyre rubberized concrete: properties at fresh and hardened state.

    PubMed

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997). PMID:20207128

  8. Applications for concrete offshore

    SciTech Connect

    Not Available

    1982-01-01

    The report collects and summarizes the various proposals for development offshore which have in common the use of concrete as the main structural material, and where possible, indicates their relative feasibility. A study encompassing such diverse schemes as offshore windmills, concrete LNG carriers, hydrocarbon production platforms and floating airports cannot be completely exhaustive on each subject, so references to sources of further information have been given wherever possible. Details of individual projects and proposals are included for Power plants, Hydrocarbon production platforms, Concrete ships, Storage systems and industrial plants, Subsea systems, Offshore islands, Coastal works and Other concrete structures.

  9. Some engineering properties of heavy concrete added silica fume

    SciTech Connect

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  10. Analyzing the influence of manufacturing conditions of reclaimed asphalt concrete on the characteristics of the asphalt binder: development of a gradual binder extraction method

    NASA Astrophysics Data System (ADS)

    Navaro, J.; Bruneau, D.; Drouadaine, I.; Pouteau, B.; Colin, J.; Dony, A.

    2012-05-01

    When asphalt concrete is manufactured incorporating a high percentage (almost 70%) of reclaimed materials from the deconstruction of road surfaces under renovation, and when the corresponding production device is designed specifically to reduce the energy input need (lowering the production temperature), the resulting manufacturing process contributes to the protection of the environment and reduces production costs. However, to meet the quality requirements of the finished product, virgin materials of appropriate quality and quantity must also be added (mineral aggregates and new asphalt binder) and control systems set up to quantify and optimize the parameters involved (thus avoiding the guess work which still often prevails today). It was for this reason that a new experimental technique described here was devised, which will ultimately be used in asphalt concrete production plants. The technique involves lixiviating reclaimed asphalt concrete using a chlorinated solvent; the resulting solute is collected gradually, then the mixture of binders (virgin and reclaimed asphalt concrete) can be characterized and their mass fractions quantified using a combination of UV and IR spectrometry. With this experimental technique we were able to assess the extent to which the reclaimed asphalt pavement binder participates in the agglomeration and cohesion of the reclaimed asphalt concrete. This assessment was made in terms of the main parameters in the production process, temperature of the materials and mixing time.

  11. Aggregate assesment and durability evaluation of optimized graded concrete in the state of Oklahoma

    NASA Astrophysics Data System (ADS)

    Ghaeezadeh, Ashkan

    This research is a part of a larger project that emphasizes on creating a more scientific approach to designing concrete mixtures for concrete pavements that use less cement and more aggregate which is called optimized graded concrete. The most challenging obstacle in optimized mixtures is reaching enough workability so that one doesn't have to add more cement or super-plasticizer to reach the desired level of flowability. Aggregate gradation and characteristics have found to be very important when it comes to the workabaility of optimized graded concrete. In this research a new automated method of aggregate assessment was used to compare the shape and the surface of different aggregates as well as their influence on the concrete flowability. At the end, the performance of optimized graded concrete against drying shrinkage and freezing and thawing condition were investigated.

  12. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  13. Pedogenic Carbonate Concretions in the Russian Chernozem

    SciTech Connect

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  14. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  15. Properties of high-performance concrete containing shrinkage-reducing admixture

    SciTech Connect

    Folliard, K.J.; Berke, N.S.

    1997-09-01

    The effects of a recently developed shrinkage-reducing admixture on high-performance concrete properties are described. High-performance concrete mixtures containing silica fume were cast with and without shrinkage-reducing admixture. The mechanical properties, drying shrinkage, and resistance to restrained shrinkage cracking were investigated. The results show that the shrinkage-reducing admixture effectively reduced the shrinkage of high-performance concrete, and resulted in a significant decrease in restrained shrinkage cracking.

  16. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  17. The Structure of Concrete Operational Thought.

    ERIC Educational Resources Information Center

    Tomlinson-Keasey, C.: And Others

    1979-01-01

    In a four-year longitudinal study of the development of concrete operational thought, children were administered tests assessing seriation; numeration; class inclusion; hierarchical classification; and conservation of mass, weight, and volume. Levels of seriation and numeration skills in kindergarten were powerful predictors of the acquisition of…

  18. Sensitivity of concrete properties to the pore structure of hardened cement paste

    SciTech Connect

    Oktar, O.N.; Moral, H.; Tasdemir, M.A.

    1996-11-01

    Coefficients and degrees of sensitivity are introduced to define quantitatively the sensitivity of concrete properties to the pore structure of cement paste. Proposed parameters have been applied to experimental data obtained from 60 different concrete mixtures, measuring eight properties for each mix and the results obtained have been discussed and evaluated.

  19. Concrete sample point: 304 Concretion Facility

    SciTech Connect

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  20. Promoting the use of crumb rubber concrete in developing countries.

    PubMed

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes. PMID:18956487

  1. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  2. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.

    PubMed

    Kockal, Niyazi Ugur; Ozturan, Turan

    2010-07-15

    Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. PMID:20399557

  3. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. PMID:27016667

  4. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  5. Compressive strength and hydration processes of concrete with recycled aggregates

    SciTech Connect

    Koenders, Eduardus A.B.; Pepe, Marco; Martinelli, Enzo

    2014-02-15

    This paper deals with the correlation between the time evolution of the degree of hydration and the compressive strength of Recycled Aggregate Concrete (RAC) for different water to cement ratios and initial moisture conditions of the Recycled Concrete Aggregates (RCAs). Particularly, the influence of such moisture conditions is investigated by monitoring the hydration process and determining the compressive strength development of fully dry or fully saturated recycled aggregates in four RAC mixtures. Hydration processes are monitored via temperature measurements in hardening concrete samples and the time evolution of the degree of hydration is determined through a 1D hydration and heat flow model. The effect of the initial moisture condition of RCAs employed in the considered concrete mixtures clearly emerges from this study. In fact, a novel conceptual method is proposed to predict the compressive strength of RAC-systems, from the initial mixture parameters and the hardening conditions. -- Highlights: •The concrete industry is more and more concerned with sustainability issues. •The use of recycled aggregates is a promising solution to enhance sustainability. •Recycled aggregates affect both hydration processes and compressive strength. •A fundamental approach is proposed to unveil the influence of recycled aggregates. •Some experimental comparisons are presented to validate the proposed approach.

  6. Recovery of MSWI and soil washing residues as concrete aggregates.

    PubMed

    Sorlini, Sabrina; Abbà, Alessandro; Collivignarelli, Carlo

    2011-02-01

    The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production. Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes. Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m(3) of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation. PMID:20537523

  7. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  8. Effective Young's modulus estimation of concrete

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Li, Y.

    1999-09-01

    A two-step analytical procedure is proposed to evaluate the quantitative influence of the maximum aggregate size and aggregate gradation on the effective Young's modulus of concrete. In the first step, the effective Young's modulus of a specified basic element, which is composed of an aggregate coated with interfacial transition zone and again covered with cement paste, is obtained based on a proposed four-phase sphere model. The theory of elasticity and Eshelby's equivalent medium theory are used to achieve the goal. In the second step, the rule of mixture method is used to estimate the effective Young's modulus of concrete. Following the two-step procedure, the maximum aggregate size and aggregate gradation are included in the formulations for the effective Young's modulus of concrete. The calculated results are compared with experimental results from the literature. The comparison results show a reasonable agreement when isostrain is assumed for every basic element in the second step. Parameters influencing the effective Young's modulus of concrete are discussed via calculated results.

  9. Production of high strength concrete

    SciTech Connect

    Peterman, M.B.; Carrasquillo, R.L.

    1986-01-01

    The criteria for selection of concrete materials and their proportions to producer uniform, economical, high strength concrete are presented in this book. The recommendations provided are based on a study of the interactions among components of plain concrete and mix proportions, and of their contribution to the compressive strength of high strength concrete. These recommendations will serve as guidelines to practicing engineers, in the selection of materials and their proportions for the production of high strength concrete. Increasing demands for improved efficiency and reduced construction costs have resulted in engineers beginning to design large structures using higher strength concrete at higher stress levels. There are definite advantages, both technical and economical, in using high strength concrete. For example, for a given cross section, prestresses concrete bridge girders can carry greater service loads across longer spans if made using high strength concrete. In addition, cost comparisons have shown that the savings obtained are significantly greater than the added cost of the higher quality concrete.

  10. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  11. Concrete decontamination scoping tests

    SciTech Connect

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete.

  12. Concrete production floating platforms

    SciTech Connect

    Letourneur, O.; Falcimaigne, J.

    1981-01-01

    The floating production platforms operating in the North Sea are adapted from drilling semisubmersibles which allow only a limited payload capacity. Experience of concrete production platforms constructed for the North Sea has led Sea Tank Co. to propose a floating platform which offers large payload and oil storage capacities similar to those of existing fixed platforms. Sea Tank Co. and Institut Francais du Petrole joined forces in early 1976 to study the feasibility of a concrete floating production platform incorporating the structure and the production riser together. The results of this 3-yr program show that the concrete floating structure is economically attractive for permanent utilization on a production site. Furthermore, concrete has definite advantages over other materials, in its long term behavior.

  13. An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures

    SciTech Connect

    Leemann, Andreas; Merz, Christine

    2013-07-15

    There is little knowledge about the relation between AAR-induced damage observed in structures and the expansion potential obtained with accelerated tests. In this study, aggregates used in structures damaged by AAR were tested with the microbar test (MBT/AFNOR XP 18-594) and the concrete performance test (CPT/AFNOR P18-454). After the tests, the samples were examined using optical and scanning electron microscopy. Based on the results, the significance of the microbar test has to be examined very critically. The agreement of measured expansion, reacted rock types and the composition of the reaction products between the on-site concrete and the reproduced concrete subjected to the CPT clearly indicates that the reaction mechanisms in the structure and in the concrete performance test are comparable. As such, the concrete performance test seems to be an appropriate tool to test the potential reactivity of specific concrete mixtures.

  14. Segregation of a binary mixture of granular particles

    NASA Astrophysics Data System (ADS)

    Yoon, Kook-Young

    Kinetic theory for a binary mixture of slightly inelastic particles, based on Maxwellian velocity distribution with corrections due to high density, is used to predict segregation of a binary mixture with species differing in sizes and material densities. The relative mean species velocities indicates segregation for a mixture uniformly agitated under gravity. Molecular dynamics simulations of elastic hard spheres and physical experiments with inelastic spheres in a cylindrical container vibrated at high normalized acceleration support this prediction. An analysis for a non-uniformly agitated mixture under gravity provides a general criterion for segregation. We establish the validity of equipartition assumption in this problem. Then, we introduce kinetic theory for mono-disperse disks with a friction model differentiating sticking and sliding collisions and derive a simple way of incorporating friction into theory with effective normal restitution coefficient. We linearize Revised Enskog Theory for a binary mixture of disks with small differences in sizes and masses. By solving a boundary value problem of the mixture sheared between two bumpy circular cells, we provide experimenters a concrete way of testing the theory. We then compare dense Maxwellian theory, from the first problem, with Revised Enskog Theory to see differences and their consequences on the prediction of segregation. In the absence of temperature gradient, with gravity present, they yield similar predictions. However, in the presence of temperature gradient, with gravity absent, they only agree at high volume fractions. Then, we describe a steady fully-developed flow on a bumpy incline, with a kinetic theory for mono-disperse spheres. We test the theory by attempting to reproduce three features of inclined flows from physical experiments and numerical simulations. On failing this, we describe modifications that may salvage the core of the theory with a few assumptions. A chain theory is

  15. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  16. Blast impact behaviour of concrete with different fibre reinforcement

    NASA Astrophysics Data System (ADS)

    Drdlová, Martina; Čechmánek, René; Řídký, Radek

    2015-09-01

    The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer) of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load). The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  17. Wooden concrete: High thermal efficiency using waste wood

    SciTech Connect

    Kosny, J.

    1994-09-01

    Wood concrete mixture of wood shavings, lime and cement is widely used in European building construction. In spite of many advantages, this material is almost unknown in the US. Eventual application of wooden concrete in building block production is discussed in this paper. Based on finite difference computer modeling, the thermal performance of several masonry wall systems and their components have been analyzed. The total wall system thermal performance for a typical single-story ranch house also has been determined. At present, typical experimental wall measurements and calculations do not include the effects of building envelope subsystems such as comers, window and door openings, and structural joints with roofs, floors, ceilings, and other walls. In masonry wall systems, these details may represent significant thermal bridges because of the highly conductive structural concrete. Many of the typical thermal bridges may be reduced by application of wood concrete elements.

  18. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  19. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  20. Versatile inlet system for on-line compound-specific deltaD and delta13C gas chromatography-oxidation/reduction-isotope ratio mass spectrometry analysis of gaseous mixtures.

    PubMed

    Henning, Mark; Strapoć, Dariusz; Lis, Grzegorz P; Sauer, Peter; Fong, Jon; Schimmelmann, Arndt; Pratt, Lisa M

    2007-01-01

    Compound-specific deltaD and delta13C analyses of gas mixtures are useful indicators of geochemical and environmental factors. However, the relative concentrations of individual components in gas mixtures (e.g., H2, CO2, methane, ethane, propane, i-butane, n-butane) may vary over several orders of magnitude. The determination of hydrogen and carbon compound-specific stable isotope ratios requires that the hydrogen and carbon dioxide produced from each separated component has a concentration adjusted to match the dynamic range of the stable isotope mass spectrometer. We present a custom-built gas sampling and injection system (GASIS) linked with a Delta Plus XP mass spectrometer that provides flexibility, ease of operation, and economical use of small gas samples with wide ranges of analyte concentrations. The overall on-line GC-ox/red-IRMS (Gas Chromatography - oxidation/reduction - Isotope Ratio Mass Spectrometry) system consists of (i) a customized GASIS inlet system and (ii) two alternative reactors, namely an oxidative Cu-Ni-Pt reactor at 950 degrees C for production of CO2 and a reductive graphitized Al2O3 reactor at 1420 degrees C for production of H2. In addition, the system is equipped with (iii) a liquid nitrogen spray-cooling unit for cryo-GC-focusing at -20 degrees C, and (iv) a Nafion dryer for removal of water vapor from product CO2. The three injection loops of the GASIS inlet allow flexibility in the volume of injected analyte gas (e.g., from 0.06 to 500 microL) in order to measure reproducible deltaD and delta13C values for gases at concentrations ranging from 100% down to 10 ppm. We calibrate our GC-ox/red-IRMS system with two isotopically distinct methane references gases that are combusted off-line and characterized using dual-inlet IRMS. PMID:17577874

  1. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  2. Effect of processing cement to concrete on hexavalent chromium levels.

    PubMed

    Turk, K; Rietschel, R L

    1993-04-01

    Hexavalent chromium sensitization is known to occur from exposure to cement. Concrete is a mixture of cement, sand, rock, and water. Admixtures are compounds used to retard or accelerate concrete setting time. Some countries use ferrous sulfate to reduce hexavalent chromium in cement. We evaluated and compared hexavalent chromium levels in cement, rock (aggregate), and wet and dry concrete in samples from Singapore, Ireland, Denmark, Australia, and the United States. Cement from Denmark contains ferrous sulfate. The effect of representative admixtures on hexavalent chromium concentration in concrete was also evaluated, but technical limitations made evaluation difficult. Soluble chromium levels in cement ranged from 0.225 mg/kg in the US sample to 0.036 mg/kg in the Singapore sample. Aggregate chromium levels ranged from 0.083 mg/kg in the Denmark sample to < 0.002 mg/kg in the Ireland sample. Fresh US concrete, with 1.27 mg/kg hexavalent chromium, contained the highest level. The Denmark sample, with ferrous sulfate added, was lowest (< 0.01 mg/kg). Hardened concrete levels ranged from 0.104 mg/kg from the Ireland sample to 0.002 mg/kg from the Singapore sample. Therefore, hexavalent chromium levels do appear to be influenced by admixtures and by processing from powdered cement to dry concrete. Ferrous sulfate significantly reduced hexavalent chromium levels in fresh cement. PMID:8508629

  3. Proportioning and performance evaluation of self-consolidating concrete

    NASA Astrophysics Data System (ADS)

    Wang, Xuhao

    A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages

  4. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  5. Chloride contamination of concrete by interaction with PVC combustion gases

    SciTech Connect

    Climent-Llorca, M.A.; Viqueira-Perez, E.; Vera-Almenar, G. de; Lopez-Atalaya, M.M.

    1998-02-01

    Chloride contamination of concrete by interaction with PVC combustion gases has been studied in a small-scale testing chamber, which allows simulating the conditions probably prevailing in PVC fires of different magnitude through variation of the quotient between mass of burnt PVC and exposed concrete surface (PVC/S). In all cases, a steep gradient of chloride concentration with depth is found after the fire: most chloride is detected in the outermost layer at depths below 5 mm. Surface chloride contents (within 5 mm) for prestressed and reinforced concretes, tested with a high (PVC/S) ratio, are as high as 2.5 and 5% by weight of cement, respectively. Chloride concentrations in concrete near the steels are below the corrosion thresholds after the fire, but they can rise by diffusion to values able to induce rebar corrosion, especially if concrete is exposed to a humid atmosphere.

  6. Reclamation chain of waste concrete: A case study of Shanghai.

    PubMed

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit. PMID:26452425

  7. Resin systems for producing polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    When plastics are combined with mixtures of inorganic materials, high-strength, durable, fast-setting composites are produced. These materials are used in structural engineering and other applications, and as a result of the many commercial successes that have been achieved, considerable research and development work is in progress throughout the world. One family of polymer-based composites receiving considerable attention is called polymer concrete. Work in this area is directed toward developing new high-strength durable materials by combining cement and concrete technology with that of polymer chemistry. The purpose of this paper is to discuss the types of resins that can be used to form polymer concretes. Resin selection is normally based upon the desired properties for the composite and cost. However, the physical and chemical properties of the resins before and during curing are also important, particularly for field-applied materials. Currently, for normal temperature (0/degree/ to 30/degree/C) applications, epoxy resins, vinyl monomers such as polyester-styrene, methylmethacrylate, furfuryl alcohol, furan derivatives, urethane, and styrene, are being used. Styrene-trimethylolpropane trimethacrylate (TMPTMA) mixtures and styrene-acrylamide-TMPTMA mixtures yield composites with excellent hydrothermal stability at temperatures up to 150/degree/ and 250/degree/C, respectively, and organosiloxane resins have been successfully tested at 300/degree/C. Of equal importance is the selection of the composition of the inorganic phase of the composite, since chemical interactions between the two phases can significantly enhance the final properties. Further work to elucidate the mechanisms of these interactions is needed. 6 refs.

  8. Generation of sub-ppb level vapor phase mixtures of biogenic volatile organic compounds from liquid phase standards and stepwise characterization of their volatilization properties by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun

    2014-12-19

    In the analysis of biogenic volatile organic compounds (BVOCs) in ambient air, preparation of a sub-ppb level standard is an important factor. This task is very challenging as most BVOCs (e.g., monoterpenes) are highly volatile and reactive in nature. As a means to produce sub-ppb gaseous standards for BVOCs, we investigated the dynamic headspace (HS) extraction technique through which their vapors are generated from a liquid standard (mixture of 10 BVOCs: (1) α-pinene, (2) β-pinene, (3) 3-carene, (4) myrcene, (5) α-phellandrene, (6) α-terpinene, (7) R-limonene, (8) γ-terpinene, (9) p-cymene, and (10) Camphene) spiked into a chamber-style impinger. The quantification of BVOCs was made by collection on multiple-bed sorbent tubes (STs) and subsequent analysis by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Using this approach, sub-ppb level mixtures of gaseous BVOCs were generated at different sweep cycles. The mean concentrations of 10 BVOCs generated from the most stable conditions (i.e., in the third sweep cycle) varied in the range of 0.37±0.05 to 7.27±0.86ppb depending on the initial concentration of liquid standard spiked into the system. The reproducibility of the gaseous BVOCs generated as mixture standards, if expressed in terms of relative standard error using the concentration datasets acquired under stable conditions, ranged from 1.64 (α-phellandrene) to 9.67% (R-limonene). PMID:25464998

  9. Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction.

    PubMed

    Bou-Ali, M M; Ahadi, A; Alonso de Mezquia, D; Galand, Q; Gebhardt, M; Khlybov, O; Köhler, W; Larrañaga, M; Legros, J C; Lyubimova, T; Mialdun, A; Ryzhkov, I; Saghir, M Z; Shevtsova, V; Van Vaerenbergh, S

    2015-04-01

    With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions. PMID:25916233

  10. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  12. Comminution and sizing processes of concrete block waste as recycled aggregates.

    PubMed

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. PMID:26168872

  13. Effect of monomer composition on the properties of high temperature polymer concretes

    SciTech Connect

    Zeldin, A.; Kukacka, L.E.; Carciello, N.

    1980-01-01

    The effects of organic monomer composition on the thermomechanical properties of polymer concrete (PC) containing sand-cement mixtures as an agregate filler were investigated. The effects of various monomer mixtures on compressive strength and hydrolytic stability are discussed. Composites were fabricated in the same way as ordinary concrete, with monomer solutions of various compositions and concentrations used to bind the sand-cement mixture. The compressive strengths of th composites before and after exposure to air and to brine solutions at 240/sup 0/C are discussed.

  14. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  15. Reinforced concrete offshore platform

    SciTech Connect

    Martyshenko, J.P.; Martyshenko, S.J.; Kotelnikov, J.S.; Kutukhtin, E.G.; Petrosian, M.S.; Ilyasova, N.I.; Volkov, J.S.; Vardanian, A.M.

    1987-10-20

    A reinforced concrete offshore platform is described comprising a honeycomb foundation (A), a supporting structure (B) and an above-surface section (C) carrying appropriate equipment. The honeycomb foundation (A) and the supporting structure (B) are made of prefabricated reinforced concrete elements which are polyhedral hollow prisms arranged with gaps between the external sides thereof and joined by a system of prestressed vertical diaphragm walls and horizontal diaphragm walls formed by pre-tensioning reinforcing bars placed in the gaps between the faces of the prisms and casting in-situ the gaps later on.

  16. High temperature chemically resistant polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  17. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  18. Insulating polymer concrete for LNG impounding dikes. [Polymer concretes

    SciTech Connect

    Fontana, J.J.; Steinberg, M.

    1986-03-01

    An insulating polymer concrete (IPC) composite has been developed under contract to the Gas Research Institute for possible use as a dike insulation material at Liquid Natural Gas (LNG) storage facilities. In the advent of an LNG spill into the impounding dike area, the boiloff rate of the LNG can be substantially reduced if the surfaces of the dike are insulated. This increased safety at the LNG facility will tend to reduce the hazardous explosive mixture with atmospheric air in the surrounding region. The dike insulation material must have a low thermal conductivity and be unaffected by environmental conditions. The IPC composites developed consist of perlite or glass nodule aggregates bound together as a closed cell structure with a polyester resin. In addition to low thermal conductivity and porosity, these composites have correspondingly high strengths and, therefore, can carry transient loads of workmen and maintenance equipment. Prefabricated IPC panels have been installed experimentally and at least one utility is currently considering a complete installation at its LNG facility. 5 refs., 5 tabs.

  19. High-performance, high-volume fly ash concrete

    SciTech Connect

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  20. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. PMID:25885756

  1. Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment.

    PubMed

    Ropartz, David; Lemoine, Jérôme; Giuliani, Alexandre; Bittebière, Yann; Enjalbert, Quentin; Antoine, Rodolphe; Dugourd, Philippe; Ralet, Marie-Christine; Rogniaux, Hélène

    2014-01-01

    Carbohydrates have a wide variety of structures whose complexity and heterogeneity challenge the field of analytical chemistry. Tandem mass spectrometry, with its remarkable sensitivity and high information content, provides key advantages to addressing the structural elucidation of polysaccharides. Yet, classical fragmentation by collision-activated dissociation (CAD) in many cases fails to reach a comprehensive structural determination, especially when isomers have to be differentiated. In this work, for the first time, vacuum ultra-violet (VUV) synchrotron radiation is used as the activation process in tandem mass spectrometry of large oligosaccharides. Compared to low energy CAD (LE-CAD), photon activated dissociation brought more straightforward and valuable structural information. The outstanding feature was that complete series of informative ions were produced, with only minor neutral losses. Moreover, systematic fragmentation rules could be drawn thus facilitating the definitive assignments of fragment identities. As a result, most of the structures present in a complex mixture of oligogalacturonans could be comprehensively resolved, including many isomers differing in the position of methyl groups along the galacturonic acid backbone. PMID:24356224

  2. Use of selected waste materials in concrete mixes

    SciTech Connect

    Batayneh, Malek Marie, Iqbal; Asi, Ibrahim

    2007-07-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  3. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  4. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  5. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  6. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  7. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete

    SciTech Connect

    Nehdi, M.; Duquette, J.; El Damatty, A

    2003-08-01

    This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, and particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete.

  8. Diffusion method of seperating gaseous mixtures

    DOEpatents

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  9. High Modulus Asphalt Concrete with Dolomite Aggregates

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Smirnovs, J.

    2015-11-01

    Dolomite is one of the most widely available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1,000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality, mainly, its LA index (The Los Angeles abrasion test). Therefore, mostly the imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used, which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue, and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance with EN 13108-1 standard.

  10. Contribution to the benchmark for ternary mixtures: Measurement of the Soret and thermodiffusion coefficients of tetralin+isobutylbenzene+n-dodecane at a composition of (0.8/0.1/0.1) mass fractions by two-color optical beam deflection.

    PubMed

    Gebhardt, M; Köhler, W

    2015-04-01

    Within the framework of an international benchmark test we have performed measurements of the Soret and thermodiffusion coefficients of the organic ternary mixture (0.8/0.1/0.1 mass fraction) of 1,2,3,4-tetrahydronaphthaline (THN), isobutylbenzene (IBB) and n -dodecane (n C12) at 298.15K by means of a two-color optical beam deflection technique (OBD). The data evaluation procedure is based on a least squares fitting routine for an approximate analytical solution for the Soret cell problem. The condition number of the contrast factor matrix and standard error propagation are used for an error estimation for the measured Soret and thermodiffusion coefficients. The Soret coefficients obtained are S (') T(THN) = (1.20±0.09)×10(-3) K^-1, S (') T(IBB) = (- 0.34±0.14)×10(-3) K^-1, and S (') T(nC12) = (- 0.86±0.06)×10(-3) K^-1 and the corresponding thermodiffusion coefficients are D (') T(THN) = (0.72±0.26)×10(-12) m^2(s K)^-1, D (') T(IBB) = (- 0.22±0.42)×10(-12) m^2(s K)^-1, and D (') T(nC12) = (- 0.50±0.16)×10(-12) m^2(s K)^-1. These results will be used as ground-based reference data for the DCMIX project, where thermodiffusion experiments of ternary mixtures are measured in a microgravity environment aboard the International Space Station (ISS). PMID:25904305

  11. Development of steel-fiber-reinforced concrete cribs to replace wood cribs in underground coal mines

    SciTech Connect

    Tanious, N.S.; Becket, R.D.; Bollinger, E.R.

    1984-02-01

    The need to provide better mine roof support and control in longwall tailgate entries prompted the Bureau of Mines to search for a replacement product for wood cribs. Their search isolated steel-fiber-reinforced concrete (SFC) as the most effective replacement. Through successful laboratory and underground mine tests, handmade SFC cribs proved to be a viable and more effective roof support system. However, to ensure wider usage, U.S. Steel Mining Co. initiated a joint development and evaluation program with Burrell Construction Company in order to mass produce SFC blocks of reasonable dimension, weight, and cost. Small specimens and full-size cribs were evaluated during this program to determine their compressive strength and post failure characteristics. After considerable testing and adjusting of various concrete mixtures, a final formulation for the SFC crib blocks was selected. That formulation permitted the construction of SFC cribs possessing a nominal crib strength of 3200 psi (22.1 x 10/sup 6/ Pa) and a nominal modulus of elasticity of 1.0 x 10/sup 6/ psi (6894.76 x 10/sup 6/ Pa). These SFC cribs can support from 3.5 to 14.5 times as much load as a wood crib, depending on the size of the wood crib being replaced. Both laboratory and limited mine tests, conducted by U.S. Steel Mining Co. have shown the SFC crib to be an economical and effective means of roof control.

  12. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion

  13. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    NASA Astrophysics Data System (ADS)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  14. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5'-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats.

    PubMed

    Li, Qiang; Wang, Liping; Dai, Peimin; Zeng, Xuejun; Qi, Xiaoxiao; Zhu, Lijun; Yan, Tongmeng; Wang, Ying; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2015-05-22

    The use of dietary flavones is becoming increasingly popular for their prevention of cancers, cardiovascular diseases, and other diseases. Despite many pharmacokinetic studies on flavone mixtures, the position(s) of glucuronidation sites on the flavone skeleton in vivo remain(s) uncertain because of the lack of a convenient method to differentiate the isomers in biological samples. Accordingly, this study aimed to develop a new strategy to identify the position of the mono-O-glucuronide of flavones in vivo and to simultaneously determine the parent agent and its major metabolites responsible for complex pharmacokinetic characteristics. The novel strategy involves accurate mass measurements of flavone glucuronides, their [Co(II) (flavone glucuronide-H) (4,7-diphenyl-1,10-phenanthroline)2](+) complexes generated via the post-column addition of CoBr2 and 4,7-diphenyl-1,10-phenanthroline, and their mass spectrometric fragmentation by UPLC-DAD-Q-TOF and the comparison of retention times with biosynthesized standards of different isomers that were identified by analyzing the shift in UV spectra compared with the spectra of their respective aglycones. We successfully generated a metabolite profiling of flavones in rat plasma after oral administration of a flavone mixture from Dracocephalum moldavica L., which was used here as the model to demonstrate the strategy. Twelve flavone glucuronides, which were glucuronidated derivatives of acacetin, apigenin, luteolin, diosmetin, chrysoeriol and cirsimaritin, were detected and identified. Glucuronidation of the flavone skeleton at the 3'-/7-position was more prevalent, however, luteolin 4'-glucuronide levels exceeded luteolin 7-glucuronide levels. Based on the UDP-glucuronosyltransferase (UGT) metabolism profiling of flavones in rat plasma, six main compounds (tilianin, acacetin 7-glucuronide, apigenin 7-glucuronide, luteolin 3'-glucuronide, acacetin, and apigenin) were selected as pharmacokinetic markers. Pharmacokinetic

  15. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  16. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  17. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  18. Testing of action of direct flame on concrete.

    PubMed

    Bodnarova, Lenka; Valek, Jaroslav; Novosad, Petr

    2015-01-01

    The paper states results of experimental exposition of concrete test specimens to direct flame. Concrete test specimens made from various mixtures differing in the type of aggregate, binder, dispersed reinforcement, and technological procedure were subjected to thermal load. Physicomechanical and other properties of all test specimens were tested before exposition to open flame: density, compressive strength, flexural strength, moisture content, and surface appearance. The specimens were visually observed during exposition to open flame and changes were recorded. Exposed surface was photographically documented before thermal load and at 10-minute intervals. Development of temperature of the specimens was documented with a thermocamera. After exposition to thermal load and cooling down, concrete specimens were visually observed, network of cracks was photographically documented, and maximal depth of spalled area was measured. PMID:25830162

  19. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  20. Testing of Action of Direct Flame on Concrete

    PubMed Central

    Valek, Jaroslav; Novosad, Petr

    2015-01-01

    The paper states results of experimental exposition of concrete test specimens to direct flame. Concrete test specimens made from various mixtures differing in the type of aggregate, binder, dispersed reinforcement, and technological procedure were subjected to thermal load. Physicomechanical and other properties of all test specimens were tested before exposition to open flame: density, compressive strength, flexural strength, moisture content, and surface appearance. The specimens were visually observed during exposition to open flame and changes were recorded. Exposed surface was photographically documented before thermal load and at 10-minute intervals. Development of temperature of the specimens was documented with a thermocamera. After exposition to thermal load and cooling down, concrete specimens were visually observed, network of cracks was photographically documented, and maximal depth of spalled area was measured. PMID:25830162

  1. Recycled lightweight concrete made from footwear industry waste and CDW.

    PubMed

    Lima, Paulo Roberto Lopes; Leite, Mônica Batista; Santiago, Ediela Quinteiro Ribeiro

    2010-06-01

    In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW-25% EVA and 50% CDW-50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties. PMID:20189792

  2. Penetration of concrete targets

    SciTech Connect

    Forrestal, M.J.; Cargile, J.D.; Tzou, R.D.Y.

    1993-08-01

    We developed penetration equations for ogive-nosed projectiles that penetrated concrete targets after normal impact. Our penetration equations predict axial force on the projectile nose, rigid-body motion, and final penetration depth. For target constitutive models, we conducted triaxial material experiments to confining pressures of 600 MPa and curve-fit these data with a linear pressure-volumetric strain relation and with a linear Mohr-Coulomb, shear strength-pressure relation. To verify our penetration equations, we conducted eleven penetration experiments with 0.90 kg, 26.9-mm-diameter, ogive-nosed projectiles into 1.37-m-diameter concrete targets with unconfined compressive strengths between 32-40 MPa. Predictions from our penetration equation are compared with final penetration depth measurements for striking velocities between 280--800 m/s.

  3. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  4. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  5. Characterization of gas concrete materials used in buildings of Turkey.

    PubMed

    Damla, N; Cevik, U; Kobya, A I; Celik, A; Van Grieken, R; Kobya, Y

    2009-09-15

    The activity concentration of (226)Ra, (232)Th and (40)K in gas concrete samples collected from different suppliers and some provinces in Turkey were measured using gamma-ray spectrometry. Knowledge of radioactivity in gas concrete used in building materials enables one to assess any possible radiological risks to human health. The mean activity concentrations observed in the gas concrete samples were 82.0, 28.2 and 383.9 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The radium equivalent activity, external and internal hazard indices as well as terrestrial absorbed dose and annual effective dose rate was calculated. The results indicate that the radium equivalent activity values of gas concrete samples are lower than the limit of 370 Bq kg(-1), equivalent to a gamma-dose of 1.5 mSv y(-1). Moreover, mass attenuation coefficients were measured in some gas concrete samples. It was found that the mass attenuation coefficients decreased with increasing photon energies. Also, chemical compositions and structural analysis (XRD and SEM) of the gas concrete samples were investigated. PMID:19297097

  6. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  7. Used Cylinder Oil Modified Cold-Mix Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Nazri Borhan, Muhamad; Suja, Fatihah; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.

    The purpose of this study is to evaluate mechanical properties of control and modified asphalt mixtures. The modified asphalt mixtures were studied on cold-mix asphalt. Used Cylinder Oil (UCO) was used as a modifier in this study. The modification efficiency was evaluated by the improvement in the performance of prepared asphalt concrete mixes. Physical analysis of the UCO was then performed. Asphalt concrete mixes having different percentages of UCO (0, 20, 25 and 30%) as a modifier were prepared. These samples were characterized using the Marshall Stability, indirect tension test, static creep and dynamic creep test. As a result, the addition of oil to the asphalt has reduced the solvency of maltenes. The higher the added percentages of oil are seen, the softer the asphalt-UCO binders happen. It is believed that the higher the percentages of the UCO were existed, the lower the ability of the mixes to resist deformation occurred.

  8. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOEpatents

    Zeldin, Arkady; Carciello, Neal; Kukacka, Lawrence; Fontana, Jack

    1980-01-01

    This invention relates to high temperature polymer concrete composites comprising about 10-30% by weight of a liquid monomer mixture consisting essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures theroef; and about 70-90% by weight of an inert inorganic filler system containing silica sand and preferably a member selected from the group consisting of portland cement, Fe.sub.2 O.sub.3, carbon black and mixtures thereof; and optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  9. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOEpatents

    Zeldin, A.; Carciello, N.; Kukacka, L.; Fontana, J.

    High temperature polymer concrete composites comprising about 10 to 30% by weight of a liquid monomer mixture is described. It consists essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures thereof. About 70 to 90% by weight of an inert inorganic filler system containing silica sand and portland cement, Fe/sub 2/O/sub 3/, carbon black or mixtures thereof. Optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobyutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides are used to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  10. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  11. Thermal-hydraulic studies on molten core-concrete interactions

    SciTech Connect

    Greene, G.A.

    1986-10-01

    This report discusses studies carried out in connection with light water power reactor accidents. Recent assessments have indicated that the consequences of molten-core concrete interactions dominate the considerations of severe accidents. The two areas of interest that have been investigated are interlayer heat and mass transfer and liquid-liquid boiling. Interlayer heat and mass transfer refers to processes that occur within a core melt between the stratified, immiscible phases of core oxides and metals. Liquid-liquid boiling refers to processes that occur at the melt-concrete on melt-coolant interface. (JDH)

  12. Evaluating damage potential of cryogenic concrete using acoustic emission sensors and permeability testing

    NASA Astrophysics Data System (ADS)

    Kogbara, Reginald B.; Parsaei, Boback; Iyengar, Srinath R.; Grasley, Zachary C.; Masad, Eyad A.; Zollinger, Dan G.

    2014-04-01

    This study evaluates the damage potential of concrete of different mix designs subjected to cryogenic temperatures, using acoustic emission (AE) and permeability testing. The aim is to investigate design methodologies that might be employed to produce concrete that resists damage when cooled to cryogenic temperatures. Such concrete would be suitable for primary containment of liquefied natural gas (LNG) and could replace currently used 9% Ni steel, thereby leading to huge cost savings. In the experiments described, concrete cubes, 150 mm x 150 mm x 150 mm, were cast using four different mix designs. The four mixes employed siliceous river sand as fine aggregate. Moreover, limestone, sandstone, trap rock and lightweight aggregate were individually used as coarse aggregates in the mixes. The concrete samples were then cooled from room temperature (20°C) to cryogenic temperature (-165°C) in a temperature chamber. AE sensors were placed on the concrete cubes during the cryogenic freezing process. The damage potential was evaluated in terms of the growth of damage as determined from AE, as a function of temperature and concrete mixture design. The damage potential observed was validated with water permeability testing. Initial results demonstrate the effects of the coefficient of thermal expansion (CTE) of the aggregates on damage growth. Concrete damage (cracking) resistance generally decreased with increasing coarse aggregate CTE, and was in the order, limestone ≥ trap rock << lightweight aggregate ≥ sandstone. Work is in progress to fully understand thermal dilation and damage growth in concrete due to differential CTE of its components.

  13. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    SciTech Connect

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-02-15

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  14. A multiscale model for predicting the viscoelastic properties of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Garcia Cucalon, Lorena; Rahmani, Eisa; Little, Dallas N.; Allen, David H.

    2016-08-01

    It is well known that the accurate prediction of long term performance of asphalt concrete pavement requires modeling to account for viscoelasticity within the mastic. However, accounting for viscoelasticity can be costly when the material properties are measured at the scale of asphalt concrete. This is due to the fact that the material testing protocols must be performed recursively for each mixture considered for use in the final design.

  15. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  16. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    PubMed

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. PMID:26856445

  17. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    PubMed

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. PMID:26687102

  18. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. PMID:26218450

  19. Investigation of high-volume fly ash concrete systems. Final report

    SciTech Connect

    Berry, E.E.; Hemmings, R.T.; Zhang, M.H.; Malhotra, V.M.; Bilodeau, A.; Carette, G.G.

    1993-10-01

    This report presents the findings of an extensive scientific and engineering investigation of the properties of high-volume fly ash (HVFA) concretes prepared from a broad range of portland cement and fly ash materials from sources throughout the United States. The purpose of the project was to support commercialization of HVFA concretes, and hence enhance the beneficial use of fly ash in value-added products. A total of sixteen HVFA concrete mixtures incorporating 8 widely different fly ashes and 2 cements of high and low alkali content were investigated. The proportion of fly ash in all the concrete mixtures was 58% by weight of the cementitious materials, with a water-to-binder (cement + fly ash) ratio of 0.33 for all the mixtures, and a high degree of workability maintained by use of a superplasticizer. All test concretes were air entrained. A broad range of engineering properties was evaluated including compressive strength, Young`s modulus of elasticity, flexural strength, splitting-tensile strength, abrasion resistance, drying shrinkage, creep, air-void parameters of the hardened concrete, resistance to freezing and thawing cycling, de-icing salt scaling resistance, resistance to chloride-ion penetration, water permeability, and sulphate resistance.

  20. Concrete with carpet recyclates: suitability assessment by surface energy evaluation.

    PubMed

    Schmidt, H; Cieślak, M

    2008-01-01

    Worn out textile floor coverings are burdensome wastes that are degraded in landfill sites after a very long period of time. One of the ways to manage this kind of waste may be the use of carpet recyclate (CR) as an additive for concrete reinforcement. Therefore, an attempt was made to predict the effects of recyclate additives on the durability a concrete-carpet mixture by employing the method of assessing surface properties of components in the concrete-carpet recyclates composite. Testing was performed on carpet wastes, containing polyamide (PA) and polypropylene (PP) piles and butadiene-styrene resin with chalk filler (BSC) as back coating, to assess the suitability of CR additive for concrete reinforcement by surface energy evaluation. Based on the measurements of contact angles, the free surface energy of recyclate components was determined. The reversible work of adhesion at the interface between these components in dry and wet states was also calculated. The results show that CR with both PA and PP fibers form a strong and water-resistant bond with concrete. PMID:17611097

  1. Prolong the life of concrete

    SciTech Connect

    Ilaria, J.E.

    1995-07-01

    The most widely used construction materials are concrete and related cement-based products, such as common building block. The excellent reputation of concrete as a durable material of construction has been questioned i modern times. The expanded use of Portland cement concrete, the increase in corrosive environments, and lack of understanding of the composition of concrete all indicate a need for methods to increase life expectancy. Chemical and mechanical factors can shorten service life. Understanding these properties will lead to the proper application of protective coatings.

  2. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  3. Recycling of rubble from building demolition for low-shrinkage concretes.

    PubMed

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated. PMID:20022737

  4. Relating damage evolution of concrete cooled to cryogenic temperatures to permeability

    NASA Astrophysics Data System (ADS)

    Kogbara, Reginald B.; Iyengar, Srinath R.; Grasley, Zachary C.; Rahman, Syeda; Masad, Eyad A.; Zollinger, Dan G.

    2014-11-01

    Typically, 9% Ni steel is used for primary containment of liquefied natural gas (LNG). Utilization of concrete in place of 9% Ni steel for primary containment would lead to significant cost savings. Hence, this study investigates changes in the microstructure of concrete due to cryogenic freezing that would affect its relevant engineering properties for containment. The study also evaluates the effect of aggregate type on the damage potential of concrete subjected to cryogenic freezing. The aim is to investigate design methodologies to produce damage-resistant cryogenic concrete. The study employed four concrete mixture designs involving river sand as fine aggregate, and coarse aggregates with different coefficient of thermal expansion (CTE) values. Specifically, the coarse aggregates were limestone, sandstone, trap rock and lightweight aggregate. Concrete cubes were cured under water for at least 28 days and thereafter frozen from ambient (20 °C) to cryogenic temperature (-165 °C). Acoustic emission (AE) sensors were placed on the concrete cubes during freezing. X-ray computed tomography (XRCT) was employed to study the microstructure of concrete cores, before and after cryogenic freezing. The impact of the microstructural evolution thus obtained from AE and XRCT on relevant engineering properties was determined via water and chloride permeability tests. Microcrack propagation determined from AE correlated with changes in permeability. There were no observable cracks in majority of the concrete mixtures after freezing. This implies that microcracks detected via AE and increased permeability was very well distributed and smaller than the XRCT's resolution. Damage (microcracking) resistance of the concrete with different aggregates was in the order limestone ⩾ trap rock ≫ lightweight aggregate ⩾ sandstone.

  5. Temperature and pore pressure distribution in a concrete slab during the microwave decontamination process

    SciTech Connect

    Li, W.; Ebadian, M.A.; White, T.L.; Grubb, R.G.; Foster, D. Jr.

    1994-10-01

    As an application of microwave engineering, the new technology of concrete decontamination and decommissioning using microwave energy has been recently developed. The temperature and pore pressure within the concrete are studied theoretically in this paper. The heat and mass transfer within the porous concrete, coupled with temperature dependent dielectric property are investigated. The effects of microwave frequency (f), microwave power intensity (Q{sub 0,ave}), concrete porosity ({phi}) on the temperature and pore pressure distributions and their variations are fully discussed. The effects of the variation of complex dielectric permittivity ({epsilon}) and presentation of different steel reinforcements are also illustrated.

  6. Concrete Mixing Methods and Concrete Mixers: State of the Art.

    PubMed

    Ferraris, C F

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  7. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined.

  8. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  9. Gaseous mercury release during steam curing of aerated concretes that contain fly ash and activated carbon sorbent

    SciTech Connect

    Danold W. Golightly; Chin-Min Cheng; Ping Sun; Linda K. Weavers; Harold W. Walker; Panuwat Taerakul; William E. Wolfe

    2008-09-15

    Gaseous mercury released from aerated concrete during both presteam curing at 25{sup o}C and steam curing at 80{sup o}C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg{sup -1} h{sup -1}) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m{sup -2} h{sup -1}, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m{sup -2} h{sup -1} reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete. 31 refs., 4 figs., 2 tabs.

  10. Coal fly ash: the most powerful tool for sustainability of the concrete industry

    SciTech Connect

    Mehta, P.K.

    2008-07-01

    In the last 15 years the global cement industry has almost doubled its annual rate of direct emissions of carbon dioxide. These can be cut back by reducing global concrete consumption, reducing the volume of cement paste in mixtures and reducing the proportion of portland clinker in cement. It has recently been proved that use of high volumes of coal fly ash can produce low cost, durable, sustainable cement and concrete mixtures that would reduce the carbon footprint of both the cement and the power generation industries. 2 photos.

  11. Influence of slab thickness on responses of concrete walls under fire

    SciTech Connect

    Huang, C.L.D.; Ahmed, G.N. )

    1991-01-01

    Of considerable concern in safety assessments of high-temperature nuclear reactors and of tall buildings is the ability to determine the concrete response, and, in turn, its structural integrity after exposure, to a severe thermal environment. Under hostile environmental conditions, the concrete structure could be exposed to extremely high temperatures. The induced gradients of temperature, pressure, and moisture content in concrete provoke internal stresses that may cause microcracks, macrocracks, and explosive spalling of concrete. Thus the integrity of concrete may be questionable, and the prediction of coupled heat and mass transport in concrete under high temperature (fire, for instance) is becoming more and more important. For the purpose of fire safety, concrete walls with different thicknesses exposed to the fire course described by ASTM E119 and the following decay stage specified in ISO 834 standard are considered. A mathematical model, simulating the coupled heat and mass transfer in concrete walls under time-dependent boundary conditions, has been developed and numerically solved. The results predict the pore pressure, temperature, and moisture histories for different concrete wall thicknesses at various depth thickness ratios. The results show that, under fire, thinner slabs are more vulnerable to damages and ruptures than thicker ones.

  12. Alkali-silica reaction resistant concrete using pumice blended cement

    NASA Astrophysics Data System (ADS)

    Ramasamy, Uma

    Durability of structures is a major challenge for the building industry. One of the many types of concrete deterioration that can affect durability is alkali-silica reaction (ASR). ASR has been found in most types of concrete structures, including dams, bridges, pavements, and other structures that are 20 to 50 years old. The degradation mechanism of ASR produces a gel that significantly expands in the presence of water as supplied from the surrounding environment. This expansion gel product can create high stresses and cracking of the concrete, which can lead to other forms of degradation and expensive structural replacement costs. The four essential factors that produce an expansive ASR gel in concrete are the presence of alkalis, siliceous aggregate, moisture, and free calcium hydroxide (CH). If concrete is starved of any one of these essential components, the expansion can be prevented. Reducing CH through the use of a supplementary cementitious material (SCM) such as natural pozzolan pumice is the focus of this research. By using a pozzolan, the amount of CH is reduced with time based on the effectiveness of the pozzolan. Many pozzolans exist, but one such naturally occurring pozzolanic material is pumice. This research focuses on determining the effect of a finely ground pumice as a SCM in terms of its resistance to ASR expansion, as well as improving resistance to other potential concrete durability mechanisms. In spite of having high alkali contents in the pumice, mixtures containing the SCM pumice more effectively mitigated the ASR expansion reaction than other degradation mechanisms. Depending on the reactivity of the aggregates and fineness of the pumice, 10-15% replacement of cement with the pumice was found to reduce the ASR expansion to the acceptable limits. The amount of CH remaining in the concrete was compared to the ASR expansion in order to improve understanding of the role of CH in the ASR reaction. Thermo-gravimetric analysis (TGA) and X

  13. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-12-31

    The US Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. The primary objective was to demonstrate the feasibility of this approach as a means to achieve ``release levels`` which could be consistent with unrestricted use of a decontaminated building. The secondary objectives were: To establish process parameters; to quantify the economics; to ascertain the ALARA considerations; and to evaluate wasteform and waste volume. The work carried out to this point has achieved promising results to the extent that ISOTRON{reg_sign} has been authorized to expand the planned activity to include the fabrication of a prototype version of a commercial device.

  14. LASER ABLATION STUDIES OF CONCRETE

    EPA Science Inventory

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  15. Concrete Masonry Designs: Educational Issue.

    ERIC Educational Resources Information Center

    Hertzberg, Randi, Ed.

    2001-01-01

    This special journal issue addresses concrete masonry in educational facilities construction. The issue's feature articles are: (1) "It Takes a Village To Construct a Massachusetts Middle School," describing a middle school constructed almost entirely of concrete masonry and modeled after a typical small New England village; (2) "Lessons Learned,"…

  16. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  17. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  18. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  19. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry.

    PubMed

    Brown, Veronica M; Crump, Derrick R; Plant, Neil T; Pengelly, Ian

    2014-07-11

    The standard method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air (ISO 16000-6:2011) specifies sampling onto the sorbent Tenax TA followed by analysis using thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The informative Annex D to the standard suggests the use of multi-sorbent samplers to extend the volatility range of compounds which can be determined. The aim of this study was to investigate the storage performance of Tenax TA and two multi-sorbent tubes loaded with a mixture of nine VOCs of relevance for material emissions testing. The sorbent combinations tested were quartz wool/Tenax TA/Carbograph™ 5TD and quartz wool/Tenax TA/Carbopack™ X. A range of loading levels, loading conditions (humidities and air volume), storage times (1-4 weeks) and storage conditions (refrigerated and ambient) were investigated. Longer term storage trials (up to 1 year) were conducted with Tenax TA tubes to evaluate the stability of tubes used for proficiency testing (PT) of material emissions analyses. The storage performance of the multi-sorbent tubes tested was found to be equal to that for Tenax TA, with recoveries after 4 weeks storage of within about 10% of the amounts loaded. No consistent differences in recoveries were found for the different loading or storage conditions. The longer term storage trials also showed good recovery for these compounds, although two other compounds, hexanal and BHT, were found to be unstable when stored on Tenax TA. The results of this study provide confidence in the stability of nine analytes for up to 4 weeks on two multi-sorbent tubes for material emissions testing and the same compounds loaded on Tenax TA sorbent for a recently introduced PT scheme for material emissions testing. PMID:24877978

  20. Relativistic mixtures of charged and uncharged particles

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.

    2014-01-01

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad's moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick's law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad's distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  1. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  2. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  3. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  4. The Puzzle of Septarian Concretions

    NASA Astrophysics Data System (ADS)

    John, C. M.; Dale, A.; Mozley, P.; Smalley, P. C.; Muggeridge, A. H.

    2014-12-01

    Carbonate concretions in clastic rocks and their septarian fracture fills act as 'time capsules', capturing the signatures of chemical and biological processes during diagenesis. However, many aspects of the formation of concretions and septarian fractures remain poorly understood, for although concretions occur in clastic rocks throughout the geological record, they are rarely documented in recent shallow-burial environments. Consequently, the depth and temperature at which concretion-forming processes occur are often poorly constrained. Carbonate clumped isotopes have recently been applied successfully to concretions and fracture fills that begin to unravel the conditions for the formation of concretions and septarian fractures. Here, we present carbonate clumped isotope results of fracture fills from eight different concretions from various locations, including multiple phases of fill in 4 concretions. Our results suggest that they precipitated over a range of temperatures (22°C - 85°C) from d18Oporewater values between -12‰ to 3‰ and within different d13Ccarbonate zones. The majority of fills precipitated at lower (<50°C) temperatures, although the fluids were not always meteoric. For 3 concretions containing fractures with multiple phases, the d18Oporewater becomes progressively heavier with each later phase and increasing temperature. The one exception to this is in the Barton Clay Formation (UK) where the fractures must have been continuously filled during exhumation as the latest cement phase is the coolest with a d18Oporewater more 18O-depleted than the earliest phase. Therefore, concretion growth must usually initiate early on (<~1 km burial), and subsequent fracturing is also usually early. However, the fracture infilling can occur over a range of depths and can record the diagenetic history of a formation. We gratefully acknowledge a BP and EPSRC Case Studentship for funding this project, and the Natural History Museum London for providing

  5. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    SciTech Connect

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  6. Reuse of waste iron as a partial replacement of sand in concrete.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes. PMID:17928216

  7. Influence of the dosage of super plasticizer on properties of high performance concrete

    NASA Astrophysics Data System (ADS)

    Baroninsh, J.; Lagzdina, S.; Krage, L.; Shahmenko, G.

    2011-12-01

    High-performance concrete (HPC) is defined as concrete that meets special combinations of performance and uniformity requirements. That cannot always be achieved routinely using conventional constituents and ordinary mixing, placing, and curing practices. The objective of this study is to provide some experimental data that can be useful in engineering practice for producing HPC using conventional constituents and ordinary mixing and curing practices using less expensive raw materials. In the given study, the influence of the polycarboxylates based super plasticizer (SP) (high-range water reducer) at different dosages to the properties of HPC was investigated. SP in concrete mixtures was added with ratios of 1.0%, 1.5%, and 2.5% by weight of cement. The samples characteristics of produced concrete were compared with each other. Performance of the concrete mixes was determined for fresh and hardened concrete, which included cone test, compressive strength and porosity measurements. Obtained results indicated that increasing dosage of SP to 2.5% by weight of cement improved the performance of concrete and contributed more to the improvement of its transportability properties as well as mechanical properties, but at the same time has considerably reduced water/cement (W/C) ratio. Porosity tests of hardened concrete showed influence of SP dosage to the volume of pores accessible to water.

  8. TECHNICAL NOTE: A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements

    NASA Astrophysics Data System (ADS)

    Chang, Christiana; Ho, Michelle; Song, Gangbing; Mo, Yi-Lung; Li, Hui

    2009-12-01

    This paper presents the development of an electric, self-heating concrete system that uses embedded carbon nanofiber paper as electric resistance heating elements. The proposed system utilizes the conductive properties of carbon fiber materials to heat a surface overlay of concrete with various admixtures to improve the concrete's thermal conductivity. The development and laboratory scale testing of the system were conducted for the various compositions of concrete containing, separately, carbon fiber, fly ash, and steel shavings as admixtures. The heating performances of these concrete mixtures with the carbon fiber heating element were experimentally obtained in a sub-freezing ambient environment in order to explore the use of such a system for deicing of concrete roadways. Analysis of electric power consumption, heating rate, and obtainable concrete surface temperatures under typical power loads was performed to evaluate the viability of a large scale implementation of the proposed heating system for roadway deicing applications. A cost analysis is presented to provide a comparison with traditional deicing methods, such as salting, and other integrated concrete heating systems.

  9. Properties of concrete blocks prepared with low grade recycled aggregates.

    PubMed

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks. PMID:19398196

  10. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  11. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  12. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  13. Concrete density estimation by rebound hammer method

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  14. Migrating corrosion inhibitor protection of concrete

    SciTech Connect

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  15. Measurement of Workability of Fresh Concrete Using a Mixing Truck

    PubMed Central

    Amziane, Sofiane; Ferraris, Chiara F.; Koehler, Eric P.

    2005-01-01

    The main objective of this study is to evaluate the workability of fresh portland cement concrete while it is still in the mixing truck by determining fundamental rheological parameters (plastic viscosity and yield stress). Nine concrete mixtures with different values of yield stress and plastic viscosity were tested in a concrete truck. The measurements made with the truck were based on the typical method of determining the flow behavior in a traditional fluid rheometer; that is, the shear rate in the mixing truck was swept from high to low by varying the rotation speed of the drum. The results of these experiments are discussed and compared with data provided by the ICAR rheometer, a portable rheometer designed for measuring concrete rheology. The test results indicate that the mixing truck equipment is sufficiently sensitive to detect differences in yield stress, slump, and plastic viscosity. However, the plastic viscosity determined by the truck measurement did not correlate with plastic viscosity as measured by the ICAR rheometer, while the yield stress determined by the truck measurement did correlate well with the measured slump and the ICAR rheometer results Suggestions are given on how to improve the mixing truck for better use as a rheometer. PMID:27308103

  16. Optimizing the use of fly ash in concrete

    SciTech Connect

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  17. Damage detection and artificial healing of asphalt concrete after trafficking with a load simulator

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Arraigada, M.; Partl, M. N.

    2016-08-01

    Artificial healing of asphalt concrete by induction heating requires the addition of electrically conductive and/or magnetic materials into the asphalt mixture. Hence, bitumen can be heated up by an alternating electromagnetic field, decreasing therefore its viscosity and allowing it to flow for closing cracks and recover bonding among the mineral aggregates.

  18. Electrically conductive polymer concrete overlays

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Webster, R. P.

    1984-08-01

    The use of cathodic protection to prevent the corrosion of reinforcing steel in concrete structures has been well established. Application of a durable, skid-resistant electrically conductive polymer concrete overlay would advance the use of cathodic protection for the highway industry. Laboratory studies indicate that electrically conductive polymer concrete overlays using conductive fillers, such as calcined coke breeze, in conjunction with polyester or vinyl ester resins have resistivities of 1 to 10 ohm-cm. Both multiple-layer and premixed mortar-type overlays were made. Shear bond strengths of the conductive overlays to concrete substrates vary from 600 to 1300 psi, with the premixed overlays having bond strengths 50 to 100% higher than the multiple-layer overlays.

  19. Near azeotropic mixture substitute

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1996-01-01

    The present invention comprises a refrigerant mixture consisting of a first mole fraction of 1,1,1,2-tetrafluoroethane (R134a) and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 (R124) and CH.sub.3 CClF.sub.2 (R142b); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CHClFCF.sub.3 (R124); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CH.sub.3 CClF.sub.2 (R142b); and a mixture of CHClFCF.sub.3 (R124), CH.sub.3 CClF.sub.2 (R142b) and CHF.sub.2 CH.sub.3 (R152a).

  20. Effects of fertilizer and pesticides on concrete

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.; Harner, A.L.

    1994-12-31

    Concrete is the most common material of construction for secondary containment of fertilizers and pesticides because of its relative low cost and structural properties. Concrete, however, is porous to some products it is designed to contain and is subject to corrosion. In this paper, concrete deterioration mechanisms and corrosion resistant concrete formulation are discussed, as well as exposure tests of various concrete mixes to some common liquid fertilizers and herbicides.

  1. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  2. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  3. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  4. Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Revathi, P.; Selvi, R. S.; Velin, S. S.

    2013-09-01

    In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.

  5. Feasibility study on cross-linked biopolymeric concrete encapsulating selenium glass wastes.

    PubMed

    Kim, Daeik; Park, Joon-Seok; Yen, Teh Fu

    2012-08-01

    Feasibility study was conducted to encapsulate the selenium (Se) contained in glass waste, using the biopolymer-modified concrete. Biopolymer has unique characteristics to provide the chemical sites to metals or toxic compounds through the three-dimensional cross-linked structure. Very minute amount of biopolymer enhanced the characteristics of cementitious material. The resulting biopolymeric composite with selenium glass waste showed 20% higher compressive strength than ordinary concrete and the lower leaching concentration than the equipment detection limit. For a qualitative measurement, X-ray diffraction (XRD; X-ray powder diffractogram) was used to characterize the biopolymeric concrete. The optimum waste content percentage with appropriate biopolymer concrete mixture ratio was identified for its possible commercial use. PMID:22916437

  6. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  7. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  8. Concrete waterproofing in nuclear industry.

    PubMed

    Scherbyna, Alexander N; Urusov, Sergei V

    2005-01-01

    One of the main points of aggregate safety during the transportation and storage of radioactive materials is to supply waterproofing for all constructions having direct contact with radiating substances and providing strength, seismic shielding etc. This is the problem with all waterside structures in nuclear industry and concrete installations in the treatment and storage of radioactive materials. In this connection, the problem of developing efficient techniques both for the repair of operating constructions and the waterproofing of new objects of the specified assignment is genuine. Various techniques of concrete waterproofing are widely applied in the world today. However, in conditions of radiation many of these techniques can bring not a profit but irreparable damage of durability and reliability of a concrete construction; for instance, when waterproofing materials contain organic constituents, polymers etc. Application of new technology or materials in basic construction elements requires in-depth analysis and thorough testing. The price of an error might be very large. A comparative analysis shows that one of the most promising types of waterproofing materials for radiation loaded concrete constructions is "integral capillary systems" (ICS). The tests on radiation, thermal and strength stability of ICS and ICS-treated concrete samples were initiated and fulfilled in RFNC-VNIITF. The main result is--ICS applying is increasing of waterproofing and strength properties of concrete in conditions of readiation The paper is devoted to describing the research strategy, the tests and their results and also to planning of new tests. PMID:16604701

  9. Protective coatings for concrete

    SciTech Connect

    NAGY, KATHRYN L.; CYGAN, RANDALL T.; BRINKER, C. JEFFREY; SELLINGER, ALAN

    2000-05-01

    The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

  10. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  11. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  12. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  13. Concrete-polymer composites: current status and future research needs

    SciTech Connect

    Kukacka, L E

    1981-04-01

    When plastics are combined with mixtures of inorganic materials, high-strength, durable, fast-setting composites are produced. These materials are used in structural engineering and other applications, and as a result of the successes obtained to date, considerable research and development work is in progress throughout the world. One family of polymer-based composites receiving considerable attention is the concrete-polymer materials. Work in this area is directed toward developing new high-strength durable materials by combining cement and concrete technology with that of polymer chemistry. In addition to the significant property enhancement, many combinations of siliceous materials with polymers require lower energy inputs per unit of performance than either component alone.

  14. Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments.

    PubMed

    Correia, S L; Souza, F L; Dienstmann, G; Segadães, A M

    2009-11-01

    Recycling of industrial wastes and by-products can help reduce the cost of waste treatment prior to disposal and eventually preserve natural resources and energy. To assess the recycling potential of a given waste, it is important to select a tool capable of giving clear indications either way, with the least time and work consumption, as is the case of modelling the system properties using the results obtained from statistical design of experiments. In this work, the aggregate reclaimed from the mud that results from washout and cleaning operations of fresh concrete mixer trucks (fresh concrete waste, FCW) was recycled into new concrete with various water/cement ratios, as replacement of natural fine aggregates. A 3(2) factorial design of experiments was used to model fresh concrete consistency index and hardened concrete water absorption and 7- and 28-day compressive strength, as functions of FCW content and water/cement ratio, and the resulting regression equations and contour plots were validated with confirmation experiments. The results showed that the fresh concrete workability worsened with the increase in FCW content but the water absorption (5-10 wt.%), 7-day compressive strength (26-36 MPa) and 28-day compressive strength (32-44 MPa) remained within the specified ranges, thus demonstrating that the aggregate reclaimed from FCW can be recycled into new concrete mixtures with lower natural aggregate content. PMID:19596189

  15. Panel zone behavior of moment connections between rectangular concrete-filled steel tubes and wide flange beams

    NASA Astrophysics Data System (ADS)

    Koester, Bradley Donald

    2000-10-01

    During the 1990s, guidelines for the detailing of composite joints for seismic safety have been proposed and adopted. Such guidelines were based on the testing of composite joint subassemblies under cyclic loads. The role of the confined concrete core in composite joints has been documented and quantified for systems using steel shapes encased in concrete, as well as for other mixtures of reinforced concrete and structural steel. The need to understand the role of the concrete core in moment connections utilizing concrete-fined tube (CFT) columns still exists. In this research program, the split-tee through-bolted moment connection between wide-flange steel beams and concrete-filled tubes was studied. The aim of the study was to understand the role of the confined concrete core in transferring forces through the joint. Fifteen half-scale panel-zone specimens were designed and tested to model the shear behavior of the split-tee connection. Following an analysis of the results of the panel-zone tests, six fun-scale moment connections were designed and tested. Variables studied were: concrete compressive strength, the b/t ratio (slenderness) of the steel tube walls, and the split-tee contact area against the steel tube. Following an analysis of the test data, design criteria for the concrete contribution to the joint strength are presented, and recommendations are made for the inclusion of CFT systems in the design recommendations for composite joints. Suggestions are made for further research.

  16. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  17. SEPARATION OF FLUID MIXTURES

    DOEpatents

    Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

    1958-10-28

    An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

  18. The effects of sulfate ion on concrete and reinforced concrete

    SciTech Connect

    Yilmaz, A.B.; Yazici, B.; Erbil, M.

    1997-08-01

    The effects of the sulfate ions and the pH on the strength of concrete and reinforcement steel have been investigated. Concrete and reinforced concrete samples prepared by using mixing water having different sulfate ion concentrations (standard, 400 ppm and 3,500 ppm) were cured in a water bath containing the same ion concentrations of mixing water or distilled water at two different pH values (8 and 5). The samples were exposed to the environments for 90 days. The compressive strength of concrete, pH values of bath, galvanic current changes and potentials (vs. Ag/AgCl) of reinforcing steel were measured. It was observed that the compressive strength of the concrete decreases as the SO{sub 4}{sup {minus}2} ion concentration increases. The galvanic currents were high for the first 28 days and then these currents decreased steadily. It was found that the potentials have been rising up to the passive potential of the reinforcing steel where the SO{sub 4}{sup {minus}2} concentration is low.

  19. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion

  20. Kinematic separation of mixtures

    SciTech Connect

    Goldshtik, M.; Husain, H.S.; Hussain, F. )

    1992-06-15

    A phenomenon of spontaneous separation of components in an initially uniform fluid mixture is found experimentally. A qualitative explanation of the effect is proposed in terms of nonparallel streamlines in the medium.

  1. A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches

    NASA Astrophysics Data System (ADS)

    Bilgehan, Mahmut

    2011-03-01

    In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of

  2. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  3. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  4. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  5. 27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, A SHORT DISTANCE WEST OF D STREET ABOUT ONE-QUARTER MILE SOUTH OF 9TH AVENUE (SECTION 26). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  6. Temperature-Dependent Thermal Conductivity of High Strength Lightweight Raw Perlite Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Tandiroglu, Ahmet

    2010-06-01

    Twenty-four types of high strength lightweight concrete have been designed with raw perlite aggregate (PA) from the Erzincan Mollaköy region as new low-temperature insulation material. The effects of the water/cement ratio, the amount of raw PA, and the temperature on high strength lightweight raw perlite aggregate concrete (HSLWPAC) have been investigated. Three empirical equations were derived to correlate the thermal conductivity of HSLWPAC as a function of PA percentage and temperature depending on the water/cement ratio. Experimentally observed thermal conductivities of concrete samples were predicted 92 % of the time for each set of concrete matrices within 97 % accuracy and over the range from 1.457 W · m-1 · K-1 to 1.777 W · m-1 · K-1. The experimental investigation revealed that the usage of raw PA from the Erzincan Mollaköy region in concrete production reduces the concrete unit mass, increases the concrete strength, and furthermore, the thermal conductivity of the concrete has been improved. The proposed empirical correlations of thermal conductivity were considered to be applicable within the range of temperatures 203.15 K ≤ T ≤ 303.15 K in the form of λ = a( PAP b ) + c( T d ).

  7. Properties of concrete containing scrap-tire rubber--an overview.

    PubMed

    Siddique, Rafat; Naik, Tarun R

    2004-01-01

    Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete. PMID:15219914

  8. Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment

    NASA Astrophysics Data System (ADS)

    Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang

    2015-07-01

    During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.

  9. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  10. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal

    SciTech Connect

    Walton, J.C.; Plansky, L.E.; Smith, R.W. )

    1990-09-01

    Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

  11. Using a centrifuge for quality control of pre-wetted lightweight aggregate in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Miller, Albert E.

    Early age shrinkage of cementitious systems can result in an increased potential for cracking which can lead to a reduction in service life. Early age shrinkage cracking can be particularly problematic for high strength concretes, which are often specified due to their high strength and low permeability. However, these high strength concretes frequently exhibit a reduction in the internal relative humidity (RH) due to the hydration reaction (chemical shrinkage) and self-desiccation which results in a bulk shrinkage, termed autogenous shrinkage, which is substantial at early ages. Due to the low permeability of these concretes, standard external curing is not always efficient in addressing this reduction in internal RH since the penetration of water can be limited. Internal curing has been developed to reduce autogenous shrinkage. Internally cured mixtures use internal reservoirs filled with fluid (generally water) that release this fluid at appropriate times to counteract the effects of self-desiccation thereby maintaining a high internal RH. Internally cured concrete is frequently produced in North America using pre-wetted lightweight aggregate. One important aspect associated with preparing quality internally cured concrete is being able to determine the absorbed moisture and surface moisture associated with the lightweight aggregate which enables aggregate moisture corrections to be made for the concrete mixture. This thesis represents work performed to develop a test method using a centrifuge to determine the moisture state of pre-wetted fine lightweight aggregate. The results of the test method are then used in a series of worksheets that were developed to assist field technicians when performing the tests and applying the results to a mixture design. Additionally, research was performed on superabsorbent polymers to assess their ability to be used as an internal curing reservoir.

  12. RECENT BIOGENIC PHOSPHORITE: CONCRETIONS IN MOLLUSK KIDNEYS

    EPA Science Inventory

    Phosphorite concretions have been detected in the kidneys of two widespread species of mollusks. Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are the first documentation of the direct biogenic formation of phos...

  13. Preliminary report on the correlations among pineal concretions, prostatic calculi and age in human adult males.

    PubMed

    Mori, Ryoichi; Kodaka, Tetsuo; Sano, Tsuneyoshi

    2003-09-01

    By using quantitative image analysis of soft X-ray photographs on the bulk of extracted pineal glands and prostates, we made a preliminary investigation into the correlations among pineal concretions (% by mass), prostatic calculi (% by mass) and age (years) in 40 human adult males, ranging in age from 31 to 95 years (mean (+/-SD) 69.9 +/- 15.2 years), who died and underwent the routine dissection course. The mass concentrations of pineal concretions and prostatic calculi were 17.68 +/- 13.56% (range 0-51.34%) and 0.93 +/- 1.31% (range 0-5.82%), respectively. There was no correlation between the mass concentration of pineal concretions and aging (r = 0.03; P < 1.0). There was no correlation between mass concentration of prostatic calculi and aging (r = 0.28; P < 0.5). No pineal concretions and no prostatic calculi were observed in seven and 10 cases, respectively; in addition, in one case, neither-concretions nor calculi were seen. From such data and from the previously reported suggestion on the counteracting functions between the pineal gland and prostate, a negative correlation between the mass concentrations of pineal concretions and prostatic calculi was expected. This was certainly obtained, but the correlation was low (r = -0.39; P < 0.05). Such a low correlation and no correlations between the concentrations of pineal concretions and aging or between prostatic calculi and aging may have been caused by the examination of relatively older humans. Therefore, further investigations using a number of pair samples collected from males including younger age generations will be necessary. PMID:14527133

  14. Carbonation and its effects in reinforced concrete

    SciTech Connect

    Broomfield, J.P.

    2000-01-01

    Carbonation is the result of interaction of carbon dioxide (CO{sub 2}) gas in the atmosphere with the alkaline hydroxides in the concrete. CO{sub 2} diffuses through the concrete and rate of movement of the carbonation front roughly follows Fick's law of diffusion. Carbonation depth can be measured by exposing fresh concrete and spraying it with phenolphthalein indicator solution. An example of the test on a reinforced concrete mullion is given.

  15. Influence of Humidity on the Apparent Thermal Conductivity of Concrete Pozzolan

    NASA Astrophysics Data System (ADS)

    Bessenouci, M. Z.; Bibi-Triki, N. E.; Bendimerad, S.; Nakoul, Z.; Khelladi, S.; Hakem, A.

    This work is a study of natural pozzolans as basic components in building materials. It is intended to highlight the thermal advantage of these materials. It is economically advantageous to the pozzolan used in lightweight concrete compositions as a mixture of aggregate pozzolan which provides mechanical strength that complies with current standards. The impact of humidity on the apparent thermal conductivity of concrete pozzolan considered as a porous material requires the best description of the phenomena which surrounds the heat transfer of different phases (liquid- solid-and air). The use of mixed model extended to three phases as a prediction of the thermal conductivity, highlights the importance of the liquid phase

  16. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  17. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  18. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  19. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  20. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  1. RADON GENERATION AND TRANSPORT IN AGED CONCRETE

    EPA Science Inventory

    The report gives results of a characterization of radon generation and transport in Florida concretes sampled from 12- to 45-year-old residential slabs. It also compares measurements from old concrete samples to previous measurements on newly poured Florida residential concretes....

  2. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  3. FIELD STUDIES OF IMPREGNATED CONCRETE PIPE

    EPA Science Inventory

    The follow-on study (initiated in June 1980) continued to monitor performance of 1,400 ft of impregnated concrete pipe installed in several Texas cities. The performance of concrete pipe has been compared with that of sulfur-impregnated concrete pipe; hydrofluoric acid (HF)-treat...

  4. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.

  5. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.

    PubMed

    Nagwani, Naresh Kumar; Deo, Shirish V

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939

  6. Estimating the Concrete Compressive Strength Using Hard Clustering and Fuzzy Clustering Based Regression Techniques

    PubMed Central

    Nagwani, Naresh Kumar; Deo, Shirish V.

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939

  7. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    PubMed

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures. PMID:17408942

  8. Concrete Finisher Program. Apprenticeship Training.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the concrete finishing program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the apprenticeship and industry training committee structure; local…

  9. Early Reading and Concrete Operations.

    ERIC Educational Resources Information Center

    Polk, Cindy L. Howes; Goldstein, David

    1980-01-01

    Indicated that early readers are more likely to be advanced in cognitive development than are nonearly-reading peers. After one year of formal reading instruction, early readers maintained their advantage in reading achievement. Measures of concrete operations were found to predict reading achievement for early and nonearly readers. (Author/DB)

  10. Concrete platforms for Southeast Asia

    SciTech Connect

    Hoff, G.C.; Reusswig, G.H.

    1995-10-01

    The use of concrete offshore structures for hydrocarbon resource developments in SE Asia has, to-date, had little precedent but their potential across the region seems unlimited. The interest is continuing to grow because the structures can be built using local materials and local labor in the countries where the platforms are to be used. For many applications, they are cost competitive with steel structures. The concrete substructure requires little or no maintenance throughout the life of the structure, thus reducing operating costs. The concrete structures can be self-installing without the use of crane barges or heavy-lift vessels. They are re-floatable and can be used again in other locations. They also can be designed to include oil or condensate storage within the structure, thus eliminating the need for additional floating storage in areas where offshore pipelines do not exist. The paper describes a few concrete structure concepts that are applicable for Indonesia, Malaysia, Vietnam and Australia and considerations for their use.

  11. Hot Mix Asphalt Using Light Weight Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Awwad, Mohammad T.

    Hot mix asphalt concrete is produced by properly blending asphalt, coarse and fine aggregates in addition to filler at temperatures ranging from 80 to 165°C. This research is directed to study the effect of replacing the conventional aggregates by the recycled Light Weight Aggregate Concrete (LWAC) on the properties of the produced asphalt mix. The research studied the optimum asphalt content and the effect of some parameters on the properties of the recycled LWAC. The research included studying thirty-six Marshal Specimens lie in four main groups. Each group was made from crushed LWAC in addition to a comparison group used the pumice instead of the crushed LWAC. The LWAC mixes contained (0, 10, 15 and 20%) of silica powder content. The density, stability, flow, percentages of the air Voids in the Compacted Mixture (VTM), compacted mineral aggregate (VMA) and the Voids Filled by Asphalt (VFA) were investigated for all the studied specimens. The main conclusions drawn from the current research implies that the optimum percent of asphalt was 7.5% for the different percentages of silica powder ratios. The presence of voids in the light weight aggregates and the porosity of the obtained concrete affected largely the behavior of the obtained mix.

  12. Terahertz spectroscopy of concrete for evaluating the critical hydration level

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Nallappan, Kathirvel; Sasmal, Saptarshi; Pesala, Bala

    2014-03-01

    Concrete, a mixture of cement, coarse aggregate, sand and filler material (if any), is widely used in the construction industry. Cement, mainly composed of Tricalcium Silicate (C3S) and Dicalcium Silicate (C2S) reacts readily with water, a process known as hydration. The hydration process forms a solid material known as hardened cement paste which is mainly composed of Calcium Silicate Hydrate (C-S-H), Calcium Hydroxide and Calcium Carbonate. To quantify the critical hydration level, an accurate and fast technique is highly desired. However, in conventional XRD technique, the peaks of the constituents of anhydrated and hydrated cement cannot be resolved properly, where as Mid-infrared (MIR) spectroscopy has low penetration depth and hence cannot be used to determine the hydration level of thicker concrete samples easily. Further, MIR spectroscopy cannot be used to effectively track the formation of Calcium Hydroxide, a key by-product during the hydration process. This paper describes a promising approach to quantify the hydration dynamics of cement using Terahertz (THz) spectroscopy. This technique has been employed to track the time dependent reaction mechanism of the key constituents of cement that react with water and form the products in the hydrated cement, viz., C-S-H, Calcium Hydroxide and Calcium Carbonate. This study helps in providing an improved understanding on the hydration kinetics of cement and also to optimise the physio-mechanical characteristics of concrete.

  13. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  14. Performance evaluation of high modulus asphalt concrete mixes

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Zaumanis, M.

    2016-04-01

    Dolomite is one of the most available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality (mainly, LA index). Therefore, mostly imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance to EN 13108-1 standard.

  15. Hematite ``Blueberry`` Concretion Doublet and Triplets on Mars: Iron Oxide Twin Analogs From Utah

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Parry, W. T.; Park, A. S.

    2005-12-01

    Spherical concretions on Earth and Mars comprise a record of diagenetic history that may not otherwise be preserved in the more common host rock. Hematite spherules of Meridiani Planum show some joined forms of twos and threes. Joined iron oxide concretions making doublets and triplets also occur in the Jurassic Navajo Sandstone of southern Utah, and can serve as an analog to understanding why joined forms occur on Mars. The geometries of in situ Utah examples suggest two processes for creating connected forms. In one concretion growth mechanism, occasional coalescing of single forms may result from the growth of doublets or triplets in overly close proximity (typically less than 15% of a population). Joined concretions of roughly equal sizes can be aligned in a row; unequal size concretions take on the shapes of ``snowmen``, or attached ``satellites``. Where cementation is pervasive, individual concretions may grow and coalesce into a lumpy layer or cemented mass along preferential flow paths or preferential nucleation sites. In the second mechanism, nearly all (more than 75%) of the concretions form doublets that are conjoined. The occurrence of dominant twins indicates that these concretions are not coincidental as in the first mechanism. Dominant twin concretions occur regularly and evenly throughout fairly homogeneous host rock. More unusual twins show additional small twin warts suggesting duplicated nucleation and precipitation. Normally, iron oxide concretion precipitation begins when the oxide saturation reaches a precipitation threshold. Precipitation produces chemical gradients, and competition between reaction and diffusion rates determines the spacing between concretions. These factors in combination with reactant supply, competitive growth phenomena and a complex self-organizing processes may contribute to development of internal structure with varying layers of iron-depleted zones to resistant iron-cemented shells. The pervasive nature of sandstone

  16. Liquid chromatography-time-of-flight mass spectrometry analysis of 1-(2-chloroethoxy)-2-[(2-chloroethyl)thio] ethane and related compounds: separation of an eleven component mixture.

    PubMed

    Winemiller, Mark D; Bae, Sue Y

    2008-11-14

    A method of separation for an eleven component mixture comprised of 1-(2-chloroethoxy)-2-[(2-chloroethyl)thio] ethane (4) and its derivatives has been developed using LC-time-of-flight-MS. All analytical figures of merit for compounds 1-11 have been determined. Compound 4 was examined in a substrate extraction study consisting of different sand and soil matrices, and a hydrolysis study of 4 on sand revealed an extremely complex degradation pathway which appeared to be concentration dependent. Substrate extraction and hydrolysis results where compared with sulfur mustard (HD). PMID:18834989

  17. MIXTURES FEASIBILITY STUDY

    EPA Science Inventory

    A number of studies have been conducted to address questions concerning the toxicity of "real world" mixtures of DBPs. These studies, which used either concentrates of drinking water or humic acid preparations treated with various disinfectants, were largely negative and had a nu...

  18. Microbiologically induced deterioration of concrete - A Review

    PubMed Central

    Wei, Shiping; Jiang, Zhenglong; Liu, Hao; Zhou, Dongsheng; Sanchez-Silva, Mauricio

    2013-01-01

    Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed. PMID:24688488

  19. Performance of concrete under different curing conditions

    SciTech Connect

    Tan, K.; Gjorv, O.E.

    1996-03-01

    The effect of curing conditions on strength and permeability of concrete was studied. Test results showed that after 3 and 7 days moist curing only the concretes with w/c ratios equal to or less than 0.4 were accepted, while after 28 days of moist curing however, even the concrete with w/c of 0.6 could be accepted. Silica fume has a significant effect on the resistance to water penetration. For the concretes both with and without silica fume and with w/c + s of 0.5, the 28-day compressive strengths of 3 and 7 days moist curing were higher than those of 28 days moist curing, and the silica fume concrete seemed to be less sensitive to early drying. The curing temperatures did not affect the water penetration of concrete, but affected the chloride penetration and compressive strength of concrete significantly.

  20. Toxicological evaluation of the effects of waste-to-energy ash-concrete on two marine species

    SciTech Connect

    Hamilton, K.L.; Nelson, W.G.; Curley, J.L. )

    1993-10-01

    The toxicological effects of waste-to-energy ash-concrete on survivorship, growth, and fecundity (end-point parameters) of Mysidopsis bahia and on survivorship and growth of Menidia beryllina were evaluated with the 7-d static-renewal toxicity test. Leachate and elutriate solutions were prepared from experimental ash-concrete test cylinders constructed from concrete with additions of either bottom ash (mix BA), mixed bottom ash and scrubber residue, or mixed bottom ash and fly ash (60:40%, mix BA:FA). Control experiments with concrete (without ash) and pH (7-9.5) were conducted to assess any toxic effects of the stabilization process. pH did not affect end-point parameters of Mysidopsis bahia or Menidia beryllina. However, the 100% elutriate solution made from concrete reduced survivorship of Mysidopsis bahia. For experiments with ash-concrete test cylinders with the BA mixture, 10-d leachate solution reduced survivorship of Mysidopsis bahia and the 100% elutriate solutions reduced survivorship of Mysidopsis bahia and Manidia beryllina. With the BA:SR mixture, the 100 and 50% elutriate solutions reduced survivorship of Menidia beryllina. The BA:FA 10- and 5-d leachate solutions and the 100, 50, and 25% elutriate solutions reduced survivorship of Menidia beryllina. The BA:FA 10- and 5-d leachate solutions and the 100, 50, 25% elutriate solutions reduced survivorship of Mysidopsis bahia.

  1. Formwork pressure exerted by self-consolidating concrete

    NASA Astrophysics Data System (ADS)

    Omran, Ahmed Fathy

    Self-consolidating concrete (SCC) is an emerging technology that utilizes flowable concrete that eliminates the need for consolidation. The advantages of SCC lie in a remarkable reduction of the casting time, facilitating the casting of congested and complex structural elements, possibility to reduce labor demand, elimination of mechanical vibrations and noise, improvement of surface appearance, producing a better and premium concrete product. The research focussed on capturing existing knowledge and making recommendations for current practice. An experimental program was undertaken at the Universite de Sherbrooke to evaluate the lateral pressure developed by SCC mixtures. A portable devise (UofS2 pressure column) for measuring and predicting lateral pressure and its rate of decay of SCC was developed and validated. The UofS2 pressure column is cast with 0.5 m high fresh concrete and air pressure is introduced from the top to simulate casting depth up to 13 m. Then, develop and implement test method for field evaluation of relevant plastic and thixotropic properties of SCC that affect formwork pressure were done. Portable vane (PV) test based on the hand-held vane test method used to determine the undrained shear strength property of clay soil was the first setup as well as the inclined plane (IP) test. The IP device involves slumping a small concrete cylinder on a horizontal plate and then lifting up the plate at different durations of rest until the slumped sample starts to move. Identifying role of material constituents, mix design, concrete placement characteristics (casting rate, waiting periods between lifts, and casting depth), temperature, and formwork characteristics that have major influence on formwork pressure exerted by SCC were evaluated in laboratory and validated by actual field measurements. Relating the maximum lateral pressure and its rate of decay to the plastic properties of SCC were established. In the analytical part of the research

  2. Relativistic mixtures of charged and uncharged particles

    SciTech Connect

    Kremer, Gilberto M.

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  3. Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    PubMed Central

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete. PMID:25133259

  4. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    PubMed

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete. PMID:25133259

  5. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    NASA Astrophysics Data System (ADS)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  6. Reinforcement of asphalt concrete pavement by segments of exhausted fiber used for sorption of oil spill

    NASA Astrophysics Data System (ADS)

    Lukashevich, V. N.; Efanov, I. N.

    2015-01-01

    The paper is aimed at construction of the experimental road pavement made of dispersed reinforced asphalt concrete. Electronic paramagnetic resonance, infrared spectroscopy and fluorescent bitumen studies were used to prove that disperse reinforcement of asphalt concrete mixtures with fibers of exhausted sorbents reduce the selective filtration of low polymeric fractions of petroleum bitumen and improve its properties in the adsorption layer. Sesquioxides are neutralized as catalysts aging asphalt binder. This leads to improvement in the elasticity of bitumen films at low temperatures and provide better crack resistance of coatings to reduce the intensity of the aging of asphalt binder, and, therefore, to increase the durability of road pavements. The experimental road pavement made of dispersed reinforced asphalt concrete operated during 4 years and demonstrated better transport- performance properties in comparison with the analogue pavements.

  7. Combustion of Gaseous Mixtures

    NASA Technical Reports Server (NTRS)

    Duchene, R

    1932-01-01

    This report not only presents matters of practical importance in the classification of engine fuels, for which other means have proved inadequate, but also makes a few suggestions. It confirms the results of Withrow and Boyd which localize the explosive wave in the last portions of the mixture burned. This being the case, it may be assumed that the greater the normal combustion, the less the energy developed in the explosive form. In order to combat the detonation, it is therefore necessary to try to render the normal combustion swift and complete, as produced in carbureted mixtures containing benzene (benzol), in which the flame propagation, beginning at the spark, yields a progressive and pronounced darkening on the photographic film.

  8. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  9. Fracture properties of lightweight concrete

    SciTech Connect

    Chang, T.P.; Shieh, M.M.

    1996-02-01

    This study presents the experimental results of fracture properties of concrete incorporating two kinds of domestic lightweight aggregate (LWA) manufactured through either a cold-bonding or a sintering process. The cold-bonded aggregates were mainly made of pulverized fly-ash through a cold-pelletization process at ambient temperature, while the sintered aggregates were made of clay and shale expanded by heat at a temperature near 1,200 C. Experimental results show that the 28-day compressive strengths of {phi} 100 x 200 mm cylindrical concrete specimen made of those LWAs range from 30.1 (sintered) to 33.9 MPa (cold-bonded). By means of size effect law, it is found that the fracture energies, G{sub f}, were 34.42 N/m (sintered) and 37.2 N/m (cold-bonded), respectively.

  10. Hydrodynamic gas mixture separation

    SciTech Connect

    Stolyarov, A.A.

    1982-02-10

    The separation of gas mixtures is the basis of many chemical, petrochemical, and gas processes. Classical separation methods (absorption, adsorption, condensation, and freezing) require cumbersome and complex equipment. No adequate solution is provided by the cheapening and simplification of gas-processing apparatus and separation methods by hydration and diffusion. For example, an apparatus for extracting helium from natural gas by diffusion has a throughput of gas containing 0.45% helium of 117,000 m/sup 3//h and in the first stage has teflon membranes working at a pressure difference of 63.3x10/sup 5/ Pa of area 79,000 m/sup 2/, and the specific cost of the apparatus was 8500 dollars per m/sup 3//h of helium. Therefore, vigorous studies are being conducted on new ways of efficient separation of gas mixtures that are cheaper and simpler. Here we consider a novel method of physically essentially reversible separation of gas mixtures, which involves some features of single-phase supersonic flows.

  11. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  12. The influence of high performance matrices on fracture behavior of concrete

    NASA Astrophysics Data System (ADS)

    Lertwattanaruk, Pusit

    Modification of cement matrices by the addition of micro particle pozzolanic materials such as silica fume and fly ash is known to improve the strength of concrete, but its contributions to fracture behavior remains unclear. In this study, the influence of replacing cement by silica fume and fly ash on the cement matrix-coarse aggregate interfacial bond, compressive stress-strain behavior and fracture behavior of concrete is investigated. While the linear elastic fracture mechanics (LEFM) concept is not appropriate for concrete, a non-linear fracture model based on the load vs. load-line deflection and the load vs. crack-mouth-opening displacement (CMOD) responses of the three-point bend tests on notched beams is proposed and validated. Instead of using the LEFM based Two-Parameter Fracture Model that cannot adequately describes fracture processes in concrete, the proposed model is capable of generating the load vs. crack growth curve and the fracture resistance curve, and seems to be more appropriate for studying fracture behavior of concrete. Incorporating silica fume in concrete mixture is found to have many beneficial effects on cement matrix-coarse aggregate interface, but less likely to improve the toughness of the cement matrix itself. The enhanced interfacial bond due to silica fume produces a more homogeneous concrete, which is responsible for the high strength, but more brittle concrete. It is shown that improving interfacial bond has positive effect on the pre-peak fracture behavior of concrete (e.g. the critical energy release rate, GC), but does not necessarily improve the overall fracture behavior (e.g. the fracture energy, GF, and the brittleness). In this study, coal fly ashes were fractionated into various size ranges by the air classifier method. It is found that replacing cement by very fine fly ash (with average particle size less than 3 microns) can enhance both the toughness of cement matrix and the interfacial bond, which results in high

  13. Sodium Exposure Tests on Limestone Concrete Used as Sacrificial Protection Layer in FBR

    SciTech Connect

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Rao, P.M.; Ramesh, S.S.; Somayajulu, P.A.; Malarvizhi, B.; Kasinathan, N.

    2006-07-01

    Hot sodium coming in contact with structural concrete in case of sodium leak in FBR system cause damage as a result of thermo-chemical attack by burning sodium. In addition, release of free and bound water from concrete leads to generation of hydrogen gas, which is explosive in nature. Hence limestone concrete, as sacrificial layer on the structural concrete in FBR, needs to be qualified. Four concrete blocks of dimension 600 mm x 600 mm x 300 mm with 300 mm x 300 mm x 150 mm cavity were cast and subjected to controlled sodium exposure tests. They have composition of ordinary portland cement, water, fine and coarse aggregate of limestone in the ratio of 1: 0.58: 2.547: 3.817. These blocks were subjected to preliminary inspection by ultrasonic pulse velocity technique and rebound hammer tests. Each block was exposed for 30 minutes to about 12 kg of liquid sodium ({approx} 120 mm liquid column) at 550 deg. C in open air, after which sodium was sucked back from the cavity of the concrete block into a sodium tank. On-line temperature monitoring was carried out at strategic locations of sodium pool and concrete block. After removing sodium from the cavity and cleaning the surfaces, rebound hammer testing was carried out on each concrete block at the same locations where data were taken earlier at pre-exposed stage. The statistical analysis of rebound hammer data revealed that one of the concrete block alone has undergone damage to the extent of 16%. The loss of mass occurred for all the four blocks varied from 0.6 to 2.4% due to release of water during the test duration. Chemical analysis of sodium in concrete samples collected from cavity floor of each block helped in generation of depth profiles of sodium monoxide concentration for each block. From this it is concluded that a bulk penetration of sodium up to 30 mm depth has taken place. However it was also observed that at few local spots, sodium penetrated into concrete up to 50 mm. Cylindrical core samples of 50 mm

  14. Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent

    PubMed Central

    Al Bakri Abdullah, Mohd Mustafa; Hussin, Kamarudin; Bnhussain, Mohamed; Ismail, Khairul Nizar; Yahya, Zarina; Razak, Rafiza Abdul

    2012-01-01

    In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity. PMID:22837687

  15. Fly ash-based geopolymer lightweight concrete using foaming agent.

    PubMed

    Al Bakri Abdullah, Mohd Mustafa; Hussin, Kamarudin; Bnhussain, Mohamed; Ismail, Khairul Nizar; Yahya, Zarina; Razak, Rafiza Abdul

    2012-01-01

    In this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity. PMID:22837687

  16. Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations

    SciTech Connect

    Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV; Powers, Laura; Whyatt, Greg A.; Wellman, Dawn M.

    2014-11-06

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the

  17. DURABILILTY ANALYSIS OF POTHOLE PATCHING MIXTURE IN SNOWY REGIONS

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kiyoshi; Kaito, Kiyoyuki; Fujiwara, Eigo; Mori, Hisashi; Yamamoto, Shingo; Fujioka, Yoshiyuki; Yamada, Masaru

    On the pavement in snowy regions, water spray is carried out as a snow removal activity in winter. Therefore in most cases, pavement surface is in water-soaked condition, and it causes the occurrence of a lot of potholes. Usually, for the potholes, urgent repair is immediately conducted using patching mixtures. However under these circumstances, the patching mixture falls away soon due to the constraint in the construction works. Consequently, as for the maintenance in snowy regions, it is important to develop the optimal repair method or patching mixture material for such regions. In order to provide the basic investigation of this issue, this study statistically evaluates the durability of the patching mixtures of potholes. Concretely, the occurrence process of potholes are modeled by the Weibull hazard model, and the durability performance of the patching mixtures is veried by estimating the hazard model based on the inspection data of actual potholes on the national road in snowy regions and monitoring data after repairing them.

  18. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  19. Gamma and neutron attenuation properties of barite-cement mixture

    NASA Astrophysics Data System (ADS)

    Picha, R.; Channuie, J.; Khaweerat, S.; Liamsuwan, T.; Promping, J.; Ratanatongchai, W.; Silva, K.; Wonglee, S.

    2015-05-01

    For the neutron radiography facility renovation plan at Thai Research Reactor, mixed barite-concrete blocks of different compositions were tested for their photon and neutron radiation attenuation properties. 60Co and 137Cs isotopes were used as the gamma sources; 241Am-Be was used as the neutron source. For detection, a scintillation counter and a BF3 tube were used. The intensities at various energies were measured and attenuation coefficients were calculated. Samples of barite mixture were analyzed with X-ray. The results involving the effects of barite are reported and discussed.

  20. Influence of the porosity on the ²²²Rn exhalation rate of concrete.

    PubMed

    de Jong, Peter; van Dijk, Willem; de Rooij, Mario

    2011-02-01

    The composition of 23 concrete mixtures was varied in five separate series to evaluate the influence of porosity on the ²²²Rn exhalation rate. In each series, a range in porosities is obtained by varying (1) the amount of cement, (2) type of cement (Portland or blast furnace slag cement), (3) the amount of water at a fixed cement level, (4) addition of an air entraining agent, or (5) the amount of recycled aggregates. The porosities ranged from 1% to 16%. The ²²²Rn exhalation rate is normalized to the ²²⁶Ra activity concentration and expressed as the ²²²Rn release factor to eliminate the effect of differences in ²²⁶Ra activity concentrations among the various concrete mixtures. Since most ²²²Rn originates from the cement, a ²²²Rn release factor based on the amount of ²²⁶Ra introduced by the cements appeared to be more adequate. Although the methods to attain the porosities in the concrete mixtures differ widely, this cement-related factor corresponds well with the capillary porosity of the mixtures. Since the water-to-cement ratio of the fresh paste is a good indicator of the capillary porosity, this is the guiding factor in the fabrication of concretes low in ²²²Rn exhalation. The lower the water-to-cement ratio, the less capillary pore area will be available from which ²²²Rn can emanate from the mineral matrix into the pore system. The good correlation between the cement-based ²²²Rn release factor and literature data on the internal capillary pore area support the results of this study. PMID:21399427

  1. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  2. Poisson's ratio of high-performance concrete

    SciTech Connect

    Persson, B.

    1999-10-01

    This article outlines an experimental and numerical study on Poisson's ratio of high-performance concrete subjected to air or sealed curing. Eight qualities of concrete (about 100 cylinders and 900 cubes) were studied, both young and in the mature state. The concretes contained between 5 and 10% silica fume, and two concretes in addition contained air-entrainment. Parallel studies of strength and internal relative humidity were carried out. The results indicate that Poisson's ratio of high-performance concrete is slightly smaller than that of normal-strength concrete. Analyses of the influence of maturity, type of aggregate, and moisture on Poisson's ratio are also presented. The project was carried out from 1991 to 1998.

  3. Square concrete culvert and concrete retaining wall, 1/2 mile east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Square concrete culvert and concrete retaining wall, 1/2 mile east of Indigo Tunnel, milepost 128. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  4. Phase 2 microwave concrete decontamination results

    SciTech Connect

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-04-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

  5. Analyzing environmental and structural charactersitics of concrete for carbon mitigation and climate adaptation in urban areas: A case study in Rajkot, India

    NASA Astrophysics Data System (ADS)

    Solis, Andrea Valdez

    Increasing temperatures, varying rain events accompanied with flooding or droughts coupled with increasing water demands, and decreasing air quality are just some examples of stresses that urban systems face with the onset of climate change and rapid urbanization. Literature suggests that greenhouse gases are a leading cause of climate change and are of a result of anthropogenic activities such as infrastructure development. Infrastructure development is heavily dependent on the production of concrete. Yet, concrete can contribute up to 7% of total CO29 emissions globally from cement manufacturing alone. The goal of this dissertation was to evaluate current concrete technologies that could contribute to carbon mitigation and climate adaptation in cities. The objectives used to reach the goal of the study included (1) applying a material flow and life cycle analysis (MFA-LCA) to determine the environmental impacts of pervious and high volume fly ash (HVFA) concrete compared to ordinary portland cement (OPC) concrete in a developing country; (2) performing a comparative assessment of pervious concrete mixture designs for structural and environmental benefits across the U.S. and India; and (3) Determining structural and durability benefits from HVFA concrete mixtures when subjected to extreme hot weather conditions (a likely element of climate change). The study revealed that cities have a choice in reducing emissions, improving stormwater issues, and developing infrastructure that can sustain higher temperatures. Pervious and HVFA concrete mixtures reduce emissions by 21% and 47%, respectively, compared to OPC mixtures. A pervious concrete demonstration in Rajkot, India showed improvements in water quality (i.e. lower levels of nitrogen by as much as 68% from initial readings), and a reduction in material costs by 25%. HVFA and OPC concrete mixtures maintained compressive strengths above a design strength of 27.6 MPa (4000 psi), achieved low to moderate permeability

  6. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks: Free shrinkage tests, restrained ring tests, construction experience, and crack survey results

    NASA Astrophysics Data System (ADS)

    Yuan, Jiqiu

    2011-12-01

    The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks are described based on laboratory test results and experiences gained during the construction of 13 LC-HPC bridge decks in Kansas, along with another deck bid under the LC-HPC specifications but for which the owner did not enforce the specification. This study is divided into four parts covering (1) an evaluation of the free shrinkage properties of LC-HPC candidate mixtures, (2) an investigation of the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete, (3) a study of the restrained shrinkage performance of concrete using restrained ring tests, and (4) a description of the construction and preliminary evaluation of LC-HPC and control bridge decks constructed in Kansas. The first portion of the study involves evaluating the effects of the duration of curing, fly ash, and a shrinkage reducing admixture (SRA) on the free-shrinkage characteristics of concrete mixtures. The results indicate that an increase of curing period reduces free shrinkage. With 7 days of curing, concretes containing fly ash as a partial replacement for cement exhibit higher free shrinkage than concretes with 100% portland cement. When the curing period is increased to 14, 28, and 56 days, the adverse effect of adding fly ash on free shrinkage is minimized and finally reversed. The addition of an SRA significantly reduces free shrinkage for both the 100% portland cement mixture and the mixture containing fly ash. The second portion of the study investigates the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete. A linear relationship between free shrinkage and evaporable water content in the cement paste is observed. For a given mixture, specimens cured for a longer period contain less evaporable water and exhibit lower free shrinkage and less weight loss in the free shrinkage

  7. Innovative mixture of salts in the quick, easy, cheap, effective, rugged, and safe method for the extraction of residual macrolides in milk followed by analysis with liquid chromatography and tandem mass spectrometry.

    PubMed

    da Costa, Rafaela Pinto; Spisso, Bernardete Ferraz; Pereira, Mararlene Ulberg; Monteiro, Mychelle Alves; Ferreira, Rosana Gomes; da Nóbrega, Armi Wanderley

    2015-11-01

    A simple extraction technique has been developed for seven macrolide antibiotics in milk. The procedure involves a modified quick, easy, cheap, effective, rugged, and safe method based on acetonitrile extraction, followed by the addition of a mixture of salts (sodium sulfate, sodium chloride, and potassium carbonate) not yet reported in literature. The method was validated for tylosin and was selective, free of matrix effect, and linear in the range of 0.78-18.75 ng/mL in the final extract, corresponding to 0.125-3 times the maximum residue limit. The limit of detection, limit of quantification, decision limit, and detection capability were, respectively, 0.84, 2.79, 58.4, and 71.7 μg/kg. The overall average recovery at 25, 50, and 75 μg/kg ranged from 89-97%. Repeatability and intermediate precision expressed by relative standard deviations were below 10.5 and 12%, respectively. The extension of the validation for spiramycin, throleandomycin, oleandomycin, roxithromycin, erythromycin, and clarithromycin is under consideration since the procedure proved to be able to efficiently extract all studied macrolides, with recoveries from 74-104% at 50 μg/kg for tylosin, erythromycin, spiramycin, and oleandomycin and 20 μg/kg for throleandomycin, roxithromycin, and clarithromycin. PMID:26340418

  8. Ion/ion proton transfer reactions for protein mixture analysis.

    PubMed

    Stephenson, J L; McLuckey, S A

    1996-11-15

    Ion/ion proton transfer reactions are shown to be an effective means to facilitate the resolution of ions in electrospray mass spectrometry that differ in mass and charge but are similar in mass-to-charge ratio. Examples are shown in which a minor contaminant protein in a ribonuclease B solution is clearly apparent after ion/ion proton transfer but not in the conventional electrospray mass spectrum. A further example involving a mixture of bovine serum albumin and bovine transferrin also showed the identification of previously unnoticed "contaminant" polymer. The latter mixture also illustrated important issues in the use of the quadrupole ion trap as a reaction vessel and mass analyzer for high mass-to-charge ratio ions. The results suggest that the use of ion trap operating parameters specifically tailored for storage, ejection, detection, and mass-to-charge analysis of high mass-to-charge ratio ions can have attractive analytical figures of merit for determining mixtures of relatively high-mass proteins and, by extension, other types of high-mass biopolymers. PMID:8916454

  9. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  10. Design and fabrication of polymer concrete pipe

    SciTech Connect

    Schroeder, J.E.; Abdelgawad, A.T.

    1982-10-08

    Polymer concrete is a composite material which has strength and durability characteristics greatly superior to those of portland cement concrete and better durability in hot brine than steel. polymer concrete has been successfully tested in brine and steam at temperatures up to 260 C. Exposures were as long as 960 days. Glass filament wound polymer concrete pipe was developed with excellent strength, low weight, and a cost comparable to or less than schedule 40 steel. Connections can be made with slip joints for low pressure applications and flanged joints for high pressure applications.

  11. Economic analysis of recycling contaminated concrete

    SciTech Connect

    Stephen, A.; Ayers, K.W.; Boren, J.K.; Parker, F.L.

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  12. Pentek concrete scabbling system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek concrete scabbling system consists of the MOOSE{reg_sign} scabbler, the SQUIRREL{reg_sign}-I and SQUIRREL{reg_sign}-III scabblers, and VAC-PAC. The scabblers are designed to scarify concrete floors and slabs using cross section, tungsten carbide tipped bits. The bits are designed to remove concrete in 3/8 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  13. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  14. Experimental needs of high temperature concrete

    SciTech Connect

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370/sup 0/C for operating reactor conditions and to about 900/sup 0/C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs.

  15. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    SciTech Connect

    Tanny, S; Parsai, E

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  16. Evaluating Whole Chemical Mixtures and Sufficient Similarity

    EPA Science Inventory

    This powerpoint presentation supports apresentation describing dose-response assessment for complex chemical mixtures including deriving reference doses for mixtures evaluating sufficient similarity among chemical mixtures.

  17. The preparation and calibration of calcium synthetic isotope mixtures

    NASA Astrophysics Data System (ADS)

    Berglund, M.; Hennessy, C.; Richter, S.; Fortunato, G.; Wunderli, S.

    2010-12-01

    Calcium is one of the most-abundant elements but still there is no calibrated measurement of its isotopic composition. In this work a set of six mixtures were gravimetrically prepared from highly enriched calcium isotopes. The purification of the enriched calcium material was done by vacuum distillation. Solutions of the now highly enriched metallic 40Ca, 42Ca, 44Ca and 48Ca where prepared in an inert atmosphere. Mixtures were then made gravimetrically with the isotope ratios in Table 1. The measurements of the mixtures were done by a total evaporation method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS). This work describes the preparation, measurement and the calibrated results of the mixtures and mother solutions.Table 1: Isotope ratios of calcium isotope mixtures

  18. High temperature polymer concrete compositions

    DOEpatents

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  19. An approach based on ultrahigh performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry allowing the quantification of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures.

    PubMed

    Scholz, Birgit; Menzel, Nicole; Lander, Vera; Engel, Karl-Heinz

    2016-01-15

    A method for the analysis of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures was established. The approach was based on a previously not described combination of three elements: (i) the formation of [M-FA+H](+) fragment ions via APCI (atmospheric pressure chemical ionization), (ii) a highly efficient UHPLC-based separation on a 1.7 μ C8 column, previously established for phytostanyl fatty acid esters, allowing the distinction of individual fatty acid esters sharing the same sterol/stanol nucleus and of isotope peaks of phytosteryl fatty acid esters and corresponding phytostanyl fatty acid esters based on these [M-FA+H](+) fragment ions, and (iii) the adjustment of the APCI conditions allowing the differential APCI-MS-SIM (single ion monitoring) detection of phytostanyl esters of linoleic and linolenic acid based on their distinct formation of a [M+H](+) ion. The usefulness of the methodology was demonstrated by the analysis of a commercially available enriched margarine. Two runs per sample allowed the quantification of 35 target analytes; the total amounts of esters were between 124.7 and 125.3g/kg, being in good agreement with the labelled 125 g/kg. Validation data were elaborated for 35 individual fatty acid esters of sitosterol, campesterol, brassicasterol, stigmasterol, sitostanol and campestanol. Recovery rates ranged from 95 to 106%; the coefficients of variation were consistently <5%, except for stigmasteryl-18:1. The approach describes for the first time a quantification of both individual phytosteryl and phytostanyl fatty acid esters and thus closes an analytical gap related to this class of health-relevant food constituents. PMID:26718186

  20. Application of concrete in marine structures

    SciTech Connect

    Rashid, A.; Nygaard, C.

    1997-07-01

    The use of concrete in marine environment has gained tremendous popularity in the past decade and is continued to be a very popular material for marine industry in the world today. It has a very diversified use from large offshore platforms and floating structures in the North Sea, Canada and South America to offshore loading terminals and junction platforms in shallow waters in the marshes of southern Louisiana in the Gulf of Mexico. Also, precast concrete sections are extensively used all over the world in the construction of marine structures. Because of their large variety of shapes and sizes, they can be tailored to fit multiple applications in marine environment. The added quality control in the fabrication yard and the ease of installation by lifting makes them a very attractive option. The use of precast concrete sections is gaining a lot of popularity in South America. A lot of fabrication yards are manufacturing these sections locally. There are hundreds of offshore concrete platforms utilizing these sections in Lake Maracaibo, Venezuela. The paper discusses the use of concrete for offshore structures including floaters. It describes some general concepts and advantages to be gained by the use of concrete (precast and cast-in-place) in marine environment. It also discusses some general design considerations required for the use of different types of precast concrete sections that can be utilized for oil and gas platforms and loading terminals. Lastly the paper describes some typical examples of concrete platforms built out of concrete piles, precast concrete girders and beam sections and concrete decking.

  1. 36. VAL, DETAIL OF TYPICAL INTERIOR OF CONCRETE 'A' FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VAL, DETAIL OF TYPICAL INTERIOR OF CONCRETE 'A' FRAME STRUCTURE SHOWING PAINTED CONCRETE WALLS, CONCRETE STAIRS AND INTERIOR WOOD DOOR. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. A Gross Way to Teach Relative Mass.

    ERIC Educational Resources Information Center

    Horsch, Elizabeth; Burnett, Diane

    1995-01-01

    Describes an activity designed to give students practice in generating, analyzing, and interpreting class data to create a concrete representation of relative mass and atomic mass unit. The activity uses rice, corn, and beans and employs a historical approach to engage students. (DDR)

  3. Assessing the performance of novel software Strain Solution on automated discrimination of Escherichia coli serotypes and their mixtures using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Iijima, Yoshio; Tamura, Hiroto

    2015-12-01

    O157, O26, and O111 are the most important O serogroups of enterohemorrhagic Escherichia coli worldwide. Recently we reported a strategy for discriminating these serotypes from the others using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) based on the S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum (S10-GERMS) method. To realize the fully automated identification of microorganisms at species- or serotype-level with the concept of S10-GERMS method, novel software named Strain Solution for MALDI-TOF MS was developed. In this study, the Strain Solution was evaluated with a total of 45 E. coli isolates including O26, O91, O103, O111, O115, O121, O128, O145, O157, O159, and untyped serotypes. The Strain Solution could accurately discriminate 92% (11/12) of O157 strains, 100% (13/13) of O26 and O111 strains from the others with three biomarkers in an automated manner. In addition, this software could identify 2 different E. coli strains (K-12 as a non-O157 representative and O157) in mixed samples. The results suggest that Strain Solution will be useful for species- or serotype-level classification of microorganisms in the fields of food safety and diagnostics. PMID:26554940

  4. Durability and behavior of prestressed concrete beams. Posttensioned concrete beam investigation, supplemental laboratory tests of beams exposed from 1961 to 1982

    NASA Astrophysics Data System (ADS)

    Oneil, E. F.; Odom, G. L.

    1984-10-01

    This report is the sixth in a series describing a study being conducted to develop information on the durability of prestressed concrete beams. This phase of the study is concerned with field and laboratory testing and with observation of posttensioning systems including end anchorages, end anchorage protection, posttensioning conduit, and posttensioning wires. In June 1961, 20 air-entrained, posttensioned concrete beams were placed at the Treat Island, Maine, exposure station. The beams were fabricated using four different types of posttensioning systems with 12 different types of end anchorage protection over external and flush anchorages. End anchorage protection was attached to the beams using six different types of joint preparation: bush-hammering, epoxy adhesive on sandblasted surface, retarding agent, sandblasted, sandblasted with primer, and no preparation. The end protections were made from three different mixtures: portland-cement concrete, epoxy concrete, and sand mortar. Eight beams were returned to the Waterways Experiment Station (WES) for autopsy and testing in September 1973 and December 1974. These beams were tested to determine the effects of severe environment described above on the posttensioning system. In January 1983, three more beams were returned to WES from Treat Island for autopsy and additional testing. The results of these additional tests are the subject of this investigation. If no further tests are made on the nine posttensioned beams that remain at Treat Island, this report will be the final report in the series.

  5. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    SciTech Connect

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-07-01

    wall considering the time-dependent temperature distribution that evolves following the LOCA. The pressure distribution at each time increment is balanced for mass diffusion using Darcy's Law for mass flux under a pressure gradient. The total mass for the free water, the water vapor, and the non-condensable gases in the pore volumes is tracked to maintain conservation of mass. The evolution of liner back-pressure with time is then based on detailed finite element modeling that incorporates the pore pressure model into a concrete cracking analysis with full coupling between the temperatures, pressures, and liner displacements. (authors)

  6. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    SciTech Connect

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs.

  7. Wash off of imidacloprid and fipronil from turf and concrete surfaces using simulated rainfall.

    PubMed

    Thuyet, Dang Quoc; Jorgenson, Brant C; Wissel-Tyson, Christopher; Watanabe, Hirozumi; Young, Thomas M

    2012-01-01

    The surface runoff of imidacloprid granular product (GR) from turf surfaces, and imidacloprid emulsifiable concentrate (EC), fipronil suspension concentrate (SC) products and fipronil byproducts from concrete surfaces was investigated during 1h rainfall simulations at 50 mm/h or 25 mm/h with product incubation times of 1.5 h, 1 d, 7 d, and 14 d. About 57.3% of the applied mass of imidacloprid, corresponding to an event mean concentration of 392.0 μg/L, was washed off from the concrete surfaces after 1.5h of incubation. After 1 d, 7 d, and 14 d of incubation on either turf or concrete surfaces, up to 5.9% of the applied mass of pesticide was removed in each of the run-off events. The maximum concentrations of pesticides were observed in the initial fraction of the runoff collected in the first rainfall event. They were 157.8, 3267.8 and 143.3 μg/L for imidacloprid GR, imidacloprid EC and fipronil SC, respectively. Imidacloprid was not persistent on concrete surfaces, with run-off concentrations below detection limits in 7d incubation experiments. The cumulative mass losses of imidacloprid from turf and fipronil from concrete had a linear relation with cumulative surface run-off depth, while cumulative mass losses of imidacloprid from concrete surfaces were better fit by a power function of the cumulative surface run-off depth. The concentrations of fipronil in the runoff from the third rainfall event at 14 d incubation time were still relatively high and ranged from 12.0 to 31.0 μg/L. A toxicity unit approach was also employed to evaluate the potential acute toxicity of fipronil and its byproducts to aquatic organisms. PMID:22119037

  8. Toxicological evaluation of chemical mixtures.

    PubMed

    Feron, V J; Groten, J P

    2002-06-01

    This paper addresses major developments in the safety evaluation of chemical mixtures during the past 15 years, reviews today's state of the art of mixture toxicology, and discusses challenges ahead. Well-thought-out tailor-made mechanistic and empirical designs for studying the toxicity of mixtures have gradually substituted trial-and-error approaches, improving the insight into the testability of joint action and interaction of constituents of mixtures. The acquired knowledge has successfully been used to evaluate the safety of combined exposures and complex mixtures such as, for example, the atmosphere at hazardous waste sites, drinking water disinfection by-products, natural flavouring complexes, and the combined intake of food additives. To consolidate the scientific foundation of mixture toxicology, studies are in progress to revisit the biological concepts and mathematics underlying formulas for low-dose extrapolation and risk assessment of chemical mixtures. Conspicuous developments include the production of new computer programs applicable to mixture research (CombiTool, BioMol, Reaction Network Modelling), the application of functional genomics and proteomics to mixture studies, the use of nano-optochemical sensors for in vivo imaging of physiological processes in cells, and the application of optical sensor micro- and nano-arrays for complex sample analysis. Clearly, the input of theoretical biologists, biomathematicians and bioengineers in mixture toxicology is essential for the development of this challenging branch of toxicology into a scientific subdiscipline of full value. PMID:11983277

  9. Toxicological approaches to complex mixtures.

    PubMed Central

    Mauderly, J L

    1993-01-01

    This paper reviews the role of toxicological studies in understanding the health effects of environmental exposures to mixtures. The approach taken is to review mixtures that have received the greatest emphasis from toxicology; major mixtures research programs; the toxicologist's view of mixtures and approaches to their study; and the complementary roles of toxicological, clinical, and epidemiological studies. Studies of tobacco smoke, engine exhaust, combustion products, and air pollutants comprise most of the past research on mixtures. Because of their great experimental control over subjects, exposures, and endpoints, toxicologists tend to consider a wider range of toxic interactions among mixture components and sequential exposures than is practical for human studies. The three fundamental experimental approaches used by toxicologists are integrative (studying the mixture as a whole), dissective (dissecting a mixture to determine causative constituents), and synthetic (studying interactions between agents in simple combinations). Toxicology provides information on potential hazards, mechanisms by which mixture constituents interact to cause effects, and exposure dose-effect relationships; but extrapolation from laboratory data to quantitative human health risks is problematic. Toxicological, clinical, and epidemiological approaches are complementary but are seldom coordinated. Fostering synergistic interactions among the disciplines in studying the risks from mixtures could be advantageous. PMID:7515806

  10. RCC for seismic design. [Roller-Compacted Concrete

    SciTech Connect

    Wong, N.C.; Forrest, M.P.; Lo, S.H. )

    1994-09-01

    This article describes how the use of roller-compacted concrete is saving $10 million on the seismic retrofit of Southern California's historic multiple-arch Littlerock Dam. Throughout its 70-year existence, the Littlerock Dam in Southern California's Angeles National Forest has been a subject of the San Andreas Fault, could this 28-arch dam withstand any major movement from that fault line, much less the big one'' Working with the state's Division of Safety of Dams, Woodward-Clyde Consultants, Oakland, Calif., performed stability and stress analyses to find the answer. The evaluation showed that, as feared, the dam failed to meet required seismic safety criteria, principally due to its lack of lateral stability, a deficiency inherent in multiple-arch dams. To provide adequate seismic stability the authors developed a rehabilitation design centered around the use of roller-compacted concrete (RCC) to construct a gravity section between and around the downstream portions of the existing buttresses. The authors also proposed that the arches be resurfaced and stiffened with steel-fiber-reinforced silica fume. The alternative design would have required filling the arch bays between the buttresses with mass concrete at a cost of $22.5 million. The RCC buttress repair construction, scheduled for completion this fall, will cost about $13 million.

  11. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  12. Concrete and abstract Voronoi diagrams

    SciTech Connect

    Klein, R. )

    1989-01-01

    The Voronoi diagram of a set of sites is a partition of the plane into regions, one to each site, such that the region of each site contains all points of the plane that are closer to this site than to the other ones. Such partitions are of great importance to computer science and many other fields. The challenge is to compute Voronoi diagrams quickly. The problem is that their structure depends on the notion of distance and the sort of site. In this book the author proposes a unifying approach by introducing abstract Voronoi diagrams. These are based on the concept of bisecting curves which are required to have some simple properties that are actually possessed by most bisectors of concrete Voronoi diagrams. Abstract Voronoi diagrams can be computed efficiently and there exists a worst-case efficient algorithm of divide-and-conquer type that applies to all abstract Voronoi diagrams satisfying a certain constraint. The author shows that this constraint is fulfilled by the concrete diagrams based no large classes of metrics in the plane.

  13. Stabilizer for fuel mixtures

    SciTech Connect

    Abe, M.; Moriyama, N.; Yamamura, M.

    1981-02-24

    A stabilizer for fuel mixtures of finely divided coal and fuel oil is composed of an active ingredient, a non-ionic surface active agent consisting of a block copolymer represented by the following general formula (I): R/sub 1/O-(C/sub 2/H/sup 4/O)l-(C/sub 3/H/sup 6/O)m-(C/sub 2/H/sup 4/O)n-R/sub 2/ (I) wherein r/sub 1/ and r/sub 2/ stand for a hydrogen atom or an alklyl group having 1 to 6 carbon atoms, the mole number (L+n) of added ethylene oxide is in the range of from 30 to 300, the mole number (M) of added propylene oxide is in the range of from 15 to 80, and the content of ethylene oxide in the whole molecule is 40 to 85% by weight.

  14. Construction Cluster Volume IV: [Concrete Work].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the fourth of a series, to be integrated with a G.E.D. program, containing instructional materials for the construction cluster. The volume focuses on concrete work and consists of 20 instructional units which require a month of study. The units include: (1) uses of concrete and occupational information; (2) soils, drainage, and…

  15. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  16. SUSTAINABLE CONCRETE FILTRATION SYSTEM FOR DEVELOPING COMMUNITIES

    EPA Science Inventory

    The project will demonstrate that a non-traditional yet omnipresent material such as concrete can serve as an effective medium to remove harmful single celled organisms from water. Further, concrete can be fabricated and maintained with minimal environmental impact.

  17. Assessing the Concreteness of Relational Representation

    ERIC Educational Resources Information Center

    Rein, Jonathan R.; Markman, Arthur B.

    2010-01-01

    Research has shown that people's ability to transfer abstract relational knowledge across situations can be heavily influenced by the concrete objects that fill relational roles. This article provides evidence that the concreteness of the relations themselves also affects performance. In 3 experiments, participants viewed simple relational…

  18. "Concreteness Fading" Promotes Transfer of Mathematical Knowledge

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Fyfe, Emily R.

    2012-01-01

    Recent studies have suggested that educators should avoid concrete instantiations when the goal is to promote transfer. However, concrete instantiations may benefit transfer in the long run, particularly if they are "faded" into more abstract instantiations. Undergraduates were randomly assigned to learn a mathematical concept in one of three…

  19. Properties and uses of concrete, appendix B

    NASA Technical Reports Server (NTRS)

    Corley, Gene

    1992-01-01

    Concretes that can now be formed have properties which may make them valuable for lunar or space construction. These properties include high compressive strength, good flexural strength (when reinforced), and favorable responses to temperature extremes (even increased strength at low temperatures). These and other properties of concrete are discussed.

  20. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  1. Use of waste toner in asphaltic concrete. Research report (Final)

    SciTech Connect

    Solaimanian, M.; Kennedy, T.W.; McGennis, R.B.

    1997-02-01

    Every year, a tremendous amount of toner is produced for copiers and printers by toner manufacturing companies throughout the United States. Some of this toner does not meet quality specifications and consequently becomes a waste product of the manufacturing process. This manufacturing waste, along with the spent toner (residue) from copiers and printer cartridges, is dumped into landfills for lack of a better way utilizing the material. A cooperative research project undertaken by the Texas Department of Transportation and The University of Texas at Austin investigated the feasibility and potential benefits of utilizing waste toner in hot-mix asphalt concrete. The research program included procuring a number of different waste and spent toners, blending them with asphalt cement at different ratios, and evaluating the binder and mixtures properties resulting from the waste toner addition.

  2. Recent biogenic phosphorite: Concretions in mollusk kidneys

    USGS Publications Warehouse

    Doyle, L.J.; Blake, N.J.; Woo, C.C.; Yevich, P.

    1978-01-01

    Phosphorite concretions have been detected in the kidneys of two widespread species ofmollusks, Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are thefirst documentation of the direct biogenic formation of phosphorite grains. The concretions are principally amorphous calcium phosphate, which upon being heated yields an x-ray diffraction pattern which is essentially that of chlorapatite. These concretions appear to be a normal formation of the excretory process of mollusks under reproductive, environmental, or pollutant-induced stress. Biogenic production of phosphorite concretions over long periods of time and diagenetic change from amorphous to crystalline structure, coupled with secondary enrichment, may account for the formation of some marine phosphorite desposits which are not easily explained by the chemical precipitation- replacement hypothesis. Copyright ?? 1978 AAAS.

  3. Autoclave foam concrete: Structure and properties

    NASA Astrophysics Data System (ADS)

    Mestnikov, Alexei; Semenov, Semen; Strokova, Valeria; Nelubova, Viktoria

    2016-01-01

    This paper describes the technology and properties of autoclaved foam concrete taking into account practical experience and laboratory studies. The results of study of raw materials and analysis of structure and properties of foam-concrete before and after autoclave treatment are basic in this work. Experimental studies of structure and properties of foam concrete are carried out according to up-to-date methods and equipment on the base of the shared knowledge centers. Results of experimental studies give a deep understanding of properties of raw materials, possible changes and new formations in inner layers of porous material providing the improvement of constructional and operational properties of autoclaved foam concrete. Principal directions of technology enhancement as well as developing of production of autoclave foam concretes under cold-weather conditions in Russia climate are justified.

  4. Electrical Resistance Tomography imaging of concrete

    SciTech Connect

    Karhunen, Kimmo; Seppaenen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-15

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete.

  5. Requirements for construction of offshore concrete platforms

    SciTech Connect

    Gudmestad, O.T.; Pollard, N.

    1994-12-31

    For development of offshore fields, the operator must select production concepts. As several options like subsea templates, floating production and storage concepts, semisubmersibles and steel platforms etc. are available, this paper will review the specifics of one of the possible concepts, the concrete platform. The application of offshore concrete platforms is gaining renewed interest world wide. Several operators are presently carrying out comparisons between offshore concrete structures and jacket support structures. This evaluation includes considerations related to constructability incorporating studies of potential construction sites, and infrastructures as well as availability of materials. This paper summarizes requirements for carrying out an offshore concrete platform construction project and will be useful to those interested in concrete projects.

  6. Semi lightweight concretes produced by volcanic slags

    SciTech Connect

    Topcu, I.B.

    1997-01-01

    The properties of the semi-lightweight concretes produced by using volcanic slags as coarse aggregate were investigated. The volcanic slags were brought from the quarry crushed and then classified according to their aggregate sizes of 0--8, 0--16, 0--31.5, 4--8, and 8--16 mm. The concrete series of five different volcanic slag sizes were produced by addition of a specific cement paste in volume fractions of 0.15, 0.30, 0.45 and 0.60. The cubic, cylindrical and prismatic specimens were made from each of the concrete series. The physical and mechanical properties of the concrete series were determined by conducting unit weight, slump, ultrasound velocity, Schmidt hardness, cylindrical and cubic compressive, bending and splitting tensile strength tests. The results indicated that the volcanic slags can be safely used in the production of semi lightweight concrete.

  7. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.

    SciTech Connect

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-03-22

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

  8. Evaluation of alternative concrete cutting techniques for massive concrete structures

    SciTech Connect

    Craig, K.; Boing, L.

    1994-12-31

    Various methods for removing massive concrete structures during decontamination and decommissioning (D&D), such as the map tube facility and waste storage vaults located in the 317 Area of Argonne National Laboratory, have been evaluated by NES, Inc./integrated Environmental Services. Five of the most feasible cutting technologies are described in terms of their ability to perform the required tasks; their performance characteristics; radiological, safety, and environmental impacts; and cost and schedule considerations. These cutting techniques are consequential in the D&D process for reducing the amount of radioactive waste requiring disposal and decreasing worker exposure to contamination. Table I lists the cutting technologies that were analyzed and the key parameters of each. This synopsis permits a rapid comparison of the techniques. For each cutting technique, the cutting speed is based on compilation of vendor information. Costs are given for the individual cutting system.

  9. A multiscale model for predicting the viscoelastic properties of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Garcia Cucalon, Lorena; Rahmani, Eisa; Little, Dallas N.; Allen, David H.

    2016-04-01

    It is well known that the accurate prediction of long term performance of asphalt concrete pavement requires modeling to account for viscoelasticity within the mastic. However, accounting for viscoelasticity can be costly when the material properties are measured at the scale of asphalt concrete. This is due to the fact that the material testing protocols must be performed recursively for each mixture considered for use in the final design. In this paper, a four level multiscale computational micromechanics methodology is utilized to determine the accuracy of micromechanics versus directly measured viscoelastic properties of asphalt concrete pavement. This is accomplished by first measuring the viscoelastic dynamic modulus of asphalt binder, as well as the elastic properties of the constituents, and this comprised the first scale analysis. In the second scale analysis, the finite element method is utilized to predict the effect of mineral fillers on the dynamic modulus. In the third scale analysis, the finite element method is again utilized to predict the effect of fine aggregates on the dynamic modulus. In the fourth and final scale analysis, the finite element method is utilized to predict the effect of large aggregates on the dynamic modulus of asphalt concrete. This final predicted result is then compared to the experimentally measured dynamic modulus of two different asphalt concretes for various volume fractions of the constituents. Results reveal that the errors in predictions are on the order of 60 %, while the ranking of the mixtures was consistent with experimental results. It should be noted that differences between the "final predicted results" and the experimental results can provide fruitful ground for understanding the effect of interactions not considered in the multiscale approach, most importantly, chemical interactions.

  10. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  11. Mutual diffusion in a binary isotopic mixture.

    PubMed

    Sharma, Raman; Tankeshwar, K

    2010-11-17

    The mass dependence of the mutual diffusion coefficient, in a binary equimolar mixture of Lennard-Jones fluids, is studied within Mori's memory function formalism. A phenomenological form of the memory function is used to study the time evolution of the self- and relative velocity correlation functions. The diffusion coefficients are calculated from the relevant velocity correlation functions using the Green-Kubo integral formula. Like the self-diffusion coefficient, the mutual diffusion coefficient is also found to be weakly dependent on the mass ratio. The present study shows that the minimum value that the mutual diffusion coefficient in an equimolar mixture of isotopic fluids can have is √(1/2) times the self-diffusion coefficient of any of the species when in isolation. Further, the contribution of the dynamic/distinct cross correlations to the mutual diffusion coefficient is found to be small and positive for the whole range of the mass ratio which is consistent with earlier molecular dynamics results. PMID:21339621

  12. Special concrete shield selection using the analytic hierarchy process

    SciTech Connect

    Abulfaraj, W.H. . Nuclear Engineering Dept.)

    1994-08-01

    Special types of concrete radiation shields that depend on locally available materials and have improved properties for both neutron and gamma-ray attenuation were developed by using plastic materials and heavy ores. The analytic hierarchy process (AHP) is implemented to evaluate these types for selecting the best biological radiation shield for nuclear reactors. Factors affecting the selection decision are degree of protection against neutrons, degree of protection against gamma rays, suitability of the concrete as building material, and economic considerations. The seven concrete alternatives are barite-polyethylene concrete, barite-polyvinyl chloride (PVC) concrete, barite-portland cement concrete, pyrite-polyethylene concrete, pyrite-PVC concrete, pyrite-portland cement concrete, and ordinary concrete. The AHP analysis shows the superiority of pyrite-polyethylene concrete over the others.

  13. Fatigue of concrete beams and slabs

    NASA Astrophysics Data System (ADS)

    Roesler, Jeffrey Raphael

    Traditionally, simply supported concrete beam (SSB) fatigue results have been used to characterize the fatigue resistance of fully supported concrete slabs (FSS). SSB concrete fatigue tests have been assumed to be equivalent to the fatigue resistance of concrete slabs in the field. The effect specimen size, boundary conditions, and loading configurations have on the fatigue of concrete beams and slabs have not been considered in the design of concrete pavements against fatigue. A laboratory study was undertaken to determine if the fatigue behavior of FSS and SSB were similar. A fully supported beam (FSB) was also tested under repeated loading, since it represented an intermediate specimen size and testing configuration between SSB and FSS. The best way to present fatigue results for all specimens was a stress ratio (S) to number of cycles to failure (N) curve (S-N curve). SSB fatigue behavior was similar to results obtained from the literature. FSB had similar fatigue behavior to SSB. The fatigue curve derived from repeated loading of FSS was 30 percent higher than the SSB fatigue curve. This suggested for a given number of cycles to failure, FSS could take a 30 percent higher bending stress as compared to SSB and FSB. The concrete modulus of rupture from a FSS test configuration was 30 percent greater than the concrete modulus of rupture from a SSB test setup. If the concrete modulus of rupture from a FSS test configuration was used in the slab's stress ratio, the slab's fatigue curve was the same as the SSB and FSB. This meant concrete behaved the same under fatigue loading, irrespective of specimen size and test configuration, as long as the correct concrete modulus of rupture was used in the stress ratio. Strain gages, attached to all specimens tested, indicated cracking in concrete occurred in a narrow band. Regions of high plastic strain were found in the plane of cracking, while adjacent areas experienced decreases in strain levels with cracking. Strain

  14. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  15. Modeling of anisotropic ablation of the concrete during Molten Core Concrete Interaction

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Min

    This work proposes a model to explain concrete anisotropic ablation by corium during a Molten Corium Concrete Interaction (MCCI). As a result of recent MCCI prototypic material experiments, CCI and VULCANO tests, one observes that concrete ablation behavior consistently depends on the concrete materials used in the experiments. Specifically, tests with Limestone-Common-Sand (LCS) concrete yielded isotropic concrete ablation; i.e., equal axial and radial concrete erosion. This is in comparison to anisotropic ablation in tests with Siliceous (SIL) concrete, where radial ablation was much larger than axial ablation. This was an unexpected result, because prior results of many MCCI simulant experiments indicated that nearly isotropic ablation was expected in prototypic material experiments regardless of concrete type. A new phenomenological model is proposed in this work based on a hypothesis that unifies the result of both previous simulant and prototypic material experiments; i.e., heat transfer area enhancement and delayed gas release caused by the presence of un-melted solid aggregate material that enters the molten pool. This model offers a logical and phenomenological explanation concerning anisotropic ablation as well as the capability to simulate anisotropic ablation. This model is implemented into the CORQUENCH code as part of this work. Comparisons of simulation results obtained with this new model to the CCI experiments for cases with siliceous concrete and anisotropic ablation show better agreement with the test data than the existing model.

  16. SA-based concrete seismic stress monitoring: a case study for normal strength concrete

    NASA Astrophysics Data System (ADS)

    Hou, S.; Zhang, H. B.; Ou, J. P.

    2016-09-01

    The stress history of concrete structures that have survived an earthquake can serve as a critical index to evaluate the health of the structure. There are currently few reliable monitoring methods to assess concrete stress after a seismic event. Piezoelectric-based smart aggregate (SA) provides an innovative experimental approach to monitor stress on concrete. The principle of SA-based concrete seismic stress monitoring is based on the assumption that concrete stress can be reliably predicted by the average output voltages of limited SAs with an acceptable margin of error. In this study, the meso-scale randomness of concrete was evaluated throughout the overall stress range of concrete and the influence of different load paths was considered. Four cylindrical specimens of normal strength concrete were embedded with a total of 24 SAs. The SA output sensitivity curve in the paths of loading–unloading with different amplitudes and monotonic loading up to failure was obtained. Monitoring errors were analyzed during pre- and post-peak stages from the experimental results. This research suggests that SA-based concrete seismic stress monitoring for normal strength concrete is reliable.

  17. Mixture design and multivariate analysis in mixture research.

    PubMed Central

    Eide, I; Johnsen, H G

    1998-01-01

    Mixture design has been used to identify possible interactions between mutagens in a mixture. In this paper the use of mixture design in multidimensional isobolographic studies is introduced. Mutagenicity of individual nitro-polycyclic aromatic hydrocarbons (PAH) was evaluated is an organic extract of diesel exhaust particles (DEPs). The particles were extracted with dichloromethane (DCM). After replacing DCM with dimethyl sulfoxide, the extract was spiked with three individual nitro-PAH: 1-nitropyrene, 2-nitrofluorene, and 1,8-dinitropyrene. The nitro-PAH were added separately and in various combinations to the extract to determine the effects of each variable and to identify possible interactions between the individual nitro-PAH and between the nitro-PAH and the extract. The composition of the mixtures was determined by mixture design (linear axial normal) with four variables (the DEP extract and the three nitro-PAH, giving 8 different mixtures plus a triplicate centerpoint, i.e., a total of 11. The design supports a model with linear and interaction (product) terms. Two different approaches were used: traditional mixture design within a well-defined range on the linear part of the dose-response curves and an isobolographic mixture design with equipotent doses of each variable. The mixtures were tested for mutagenicity in the Ames assay using the TA98 strain of Salmonella typhimurium. The data were analyzed with projections to latent structures (PLS). The three individual nitro-PAH and the DEP extract acted additively in the Ames test. The use of mixture design either within a well-defined range of the linear part on the dose-response curve or with equipotent doses saves experiments and reduces the possibility of false interaction terms in situations with dose additivity or response additivity. Images Figure 1 Figure 2 PMID:9860895

  18. Mixture design and multivariate analysis in mixture research.

    PubMed

    Eide, I; Johnsen, H G

    1998-12-01

    Mixture design has been used to identify possible interactions between mutagens in a mixture. In this paper the use of mixture design in multidimensional isobolographic studies is introduced. Mutagenicity of individual nitro-polycyclic aromatic hydrocarbons (PAH) was evaluated is an organic extract of diesel exhaust particles (DEPs). The particles were extracted with dichloromethane (DCM). After replacing DCM with dimethyl sulfoxide, the extract was spiked with three individual nitro-PAH: 1-nitropyrene, 2-nitrofluorene, and 1,8-dinitropyrene. The nitro-PAH were added separately and in various combinations to the extract to determine the effects of each variable and to identify possible interactions between the individual nitro-PAH and between the nitro-PAH and the extract. The composition of the mixtures was determined by mixture design (linear axial normal) with four variables (the DEP extract and the three nitro-PAH, giving 8 different mixtures plus a triplicate centerpoint, i.e., a total of 11. The design supports a model with linear and interaction (product) terms. Two different approaches were used: traditional mixture design within a well-defined range on the linear part of the dose-response curves and an isobolographic mixture design with equipotent doses of each variable. The mixtures were tested for mutagenicity in the Ames assay using the TA98 strain of Salmonella typhimurium. The data were analyzed with projections to latent structures (PLS). The three individual nitro-PAH and the DEP extract acted additively in the Ames test. The use of mixture design either within a well-defined range of the linear part on the dose-response curve or with equipotent doses saves experiments and reduces the possibility of false interaction terms in situations with dose additivity or response additivity. PMID:9860895

  19. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  20. Self-cleaning geopolymer concrete - A review

    NASA Astrophysics Data System (ADS)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  1. Damage detection in concrete using Lamb waves

    NASA Astrophysics Data System (ADS)

    Jung, Young-Chul; Na, Won-Bae; Kundu, Tribikram; Ehsani, Mohammad R.

    2000-06-01

    The feasibility of detecting defects in concrete beams using Lamb waves is investigated in this paper. The Lamb wave can propagate a long distance along the specimen as the guided wave and is sensitive to defects that are smaller than its wavelength. The traditional ultrasonic methods for inspecting defects in concrete use reflection, transmission and scattering of longitudinal waves by internal defects. In traditional techniques signal amplitude and time of flight measurements provide information about the internal defects in concrete. These methods are time consuming and often fail to detect a variety of defects, such as internal corrosion, honeycombs, closed cracks and small inclusions. In this paper Lamb waves are used to detect those defects in concrete beams with and without reinforcement. The Lamb wave technique is found to be reliable for detecting such defects. The effect of separation or delamination between concrete and reinforcing steel bars on the Lamb wave propagation characteristics is also investigated. Corrosion of rebars can cause this delamination. It is found that the cylindrical guided waves propagating along the steel rebars are very sensitive to the degree of delamination between the concrete and the rebars. This investigation shows that the Lamb wave inspection technique is an efficient and effective tool for health monitoring of concrete structures.

  2. Unbonded capping for concrete masonry units

    SciTech Connect

    Crouch, L.K.; Knight, M.L.; Henderson, R.C.; Sneed, W.A. Jr.

    1999-07-01

    Due to the manufacturing process, the bearing surfaces of concrete masonry units are often somewhat rough and uneven. Therefore, concrete masonry units must be capped when tested in compression according to ASTM C 140-96, Standard Test Methods of Sampling and Testing Concrete Masonry Units. Capping of concrete masonry units is time consuming and expensive. Several studies of compression tests on concrete cylinders indicate that use of elastic pads in rigid retaining caps give similar compressive strength results to approved capping methods.An unbonded capping system for concrete masonry units similar to that described in ASTM C 1231-93, Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders, was developed. The average compressive strength results obtained when using the unbonded capping system ranged from 92--94% of the average compressive strength results obtained when using ASTM C 140-96 approved methods. Further, use of the unbonded capping system was found to increase productivity and substantially reduce testing cost.

  3. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  4. NONSAP-C. Nonlinear Stress Concrete Structures

    SciTech Connect

    Anderson, C.A.; Smith, P.D.; Carruthers, L.M.; Taylor, C.

    1992-01-13

    NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete is assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.

  5. Thermophysical Properties of Hydrocarbon Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  6. Thermobaric investigation of coal mixtures

    SciTech Connect

    Kosinskii, V.A.

    1983-01-01

    An examination of the dynamics of gas emission during the heating in vacuo of different grades of Donbass coal included a study of binary and ternary mixtures of these coals. Discrete gas emission was established at temperatures depending principally on the ratio of coals within the mixtures. The data obtained could be used as a basis for commercial processes.

  7. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  8. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  9. Latent classiness and other mixtures.

    PubMed

    Neale, Michael C

    2014-05-01

    The aim of this article is to laud Lindon Eaves' role in the development of mixture modeling in genetic studies. The specification of models for mixture distributions was very much in its infancy when Professor Eaves implemented it in his own FORTRAN programs, and extended it to data collected from relatives such as twins. It was his collaboration with the author of this article which led to the first implementation of mixture distribution modeling in a general-purpose structural equation modeling program, Mx, resulting in a 1996 article on linkage analysis in Behavior Genetics. Today, the popularity of these methods continues to grow, encompassing methods for genetic association, latent class analysis, growth curve mixture modeling, factor mixture modeling, regime switching, marginal maximum likelihood, genotype by environment interaction, variance component twin modeling in the absence of zygosity information, and many others. This primarily historical article concludes with some consideration of some possible future developments. PMID:24477932

  10. Latent Classiness and Other Mixtures

    PubMed Central

    Neale, Michael C.

    2014-01-01

    The aim of this article is to laud Lindon Eaves’ role in the development of mixture modeling in genetic studies. The specification of models for mixture distributions was very much in its infancy when Professor Eaves implemented it in his own FORTRAN programs, and extended it to data collected from relatives such as twins. It was his collaboration with the author of this article which led to the first implementation of mixture distribution modeling in a general-purpose structural equation modeling program, Mx, resulting in a 1996 article on linkage analysis in Behavior Genetics. Today, the popularity of these methods continues to grow, encompassing methods for genetic association, latent class analysis, growth curve mixture modeling, factor mixture modeling, regime switching, marginal maximum likelihood, genotype by environment interaction, variance component twin modeling in the absence of zygosity information, and many others. This primarily historical article concludes with some consideration of some possible future developments. PMID:24477932

  11. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    NASA Astrophysics Data System (ADS)

    Miller, Sabbie A.; Horvath, Arpad; Monteiro, Paulo J. M.; Ostertag, Claudia P.

    2015-11-01

    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO2-eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California.

  12. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides.

    PubMed

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-05-17

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates. PMID:27087275

  13. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  14. LDRD summary report. Part 1: initiation studies of thin film explosvies used for scabbling concrete. Part 2: investigation of spray techniques for use in explosive scabbling of concrete

    SciTech Connect

    Benham, R.A.; Bickes, R.W. Jr.; Grubelich, M.C.; Wackerbarth, D.E.; Brock, J.L.

    1996-11-01

    We describe a new method for the scabbling of concrete surfaces using a thin layer of explosive material sprayed onto the surfaces. We also developed a new explosive mixture that could be applied with commercial spray painting equipment. The first part of our record describes experiments that studied methods for the initiation of the sprayed explosive. We successfully initiated layers 0.36 mm thick using a commercial EBW detonator, a flying plate detonator, and by pellet impact. The second part of our report describes a survey of spray methods and tests with two commercial spray systems that we believe could be used for developing a robotic spray system.

  15. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  16. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  17. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  18. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  19. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  20. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...