Science.gov

Sample records for mass concrete mixture

  1. Salado mass concrete: Mixture development and preliminary characterization

    SciTech Connect

    Wakeley, L.D.; Ernzen, J.J.; Neeley, B.D.; Hansen, F.D.

    1994-06-01

    A salt-saturated concrete proportioned with Class H oilwell cement, Class F fly ash, and a shrinkage compensating component was developed to meet performance requirements for mass placement as seal components at the Waste Isolation Pilot Plant. Target properties of the concrete included 8-in. slump 3 hr after mixing, no aggregate segregation, heat rise of < 25{degrees}F 4 hr after mixing, compressive strength of 4,500 psi at 180 days, minimal volume change, and probable geochemical stability for repository conditions. Thermal and mechanical properties of promising candidate concrete mixtures were measured. Modulus of elasticity and creep behavior were similar to those of ordinary portland cement mass concretes. Thermal expansion for the salt-saturated concrete developed here was typical of ordinary concrete with similar silicate aggregates. Thermal conductivity, diffusivity, and specific heat approximated values measured for other mass concretes and were similar to values of the host salt rock.

  2. The development of a lower heat concrete mixture for mass concrete placement conditions

    NASA Astrophysics Data System (ADS)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are

  3. Tracking traces of transition metals present in concrete mixtures by inductively-coupled plasma mass spectrometry studies.

    PubMed

    Bassioni, Ghada; Pillay, Alvin E; El Kadi, Mirella; Fegali, Fadi; Fok, Sai Cheong; Stephen, Sasi

    2010-01-01

    Transition metals can have a significant impact in research related to the dosage optimization of superplasticizers. It is known that the presence of transition metals can influence such doses, and the application of a contemporary instrumental method to obtain the profiles of subsisting transition elements in concrete mixtures would be useful. In this work, inductively-coupled plasma mass spectrometry (ICP-MS) is investigated as a possible tool to track traces of transition metals in concrete mixtures. Depth profiling using ICP-MS on proofed and unproofed concrete shows the presence of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn at trace intensities in the bulk of the samples under investigation. The study demonstrates that the transition metals present in the concrete sample are largely a part of the cement composition and, to a minor degree, a result of exposure to the seawater after curing. The coated concrete samples have a metal distribution pattern similar to the uncoated samples, but slight differences in intensity bear testimony to the very low levels that originate from the exposure to seawater. While X-ray diffraction fails to detect these traces of metals, ICP-MS is successful in detecting ultra-trace intensities to parts per trillion. This method is not only a useful application to track traces of transition metals in concrete, but also provides information to estimate the pore size distribution in a given sample by very simple means. PMID:21173466

  4. Use of waste plastic in concrete mixture as aggregate replacement.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics. PMID:17931848

  5. A Statistical Approach to Optimizing Concrete Mixture Design

    PubMed Central

    Alghamdi, Saeid A.

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m3), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405

  6. A statistical approach to optimizing concrete mixture design.

    PubMed

    Ahmad, Shamsad; Alghamdi, Saeid A

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (3(3)). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m(3)), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405

  7. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  8. Utilization of lignite ash in concrete mixture

    SciTech Connect

    Demirbas, A.; Karslioglu, S.; Ayas, A.

    1995-12-01

    In this article 11 ashes from various Turkish lignite sources were studied to show the effects upon lignite ash quality for use as a mineral admixture in concrete. The lignite ashes were classified into two general types (Class A and Class B) based on total of silica, alumina, and iron oxide. Total content of the three major oxides must be more than 50% for Class A lignite ash and more than 70% for Class B lignite ash. When 25% of the cement was replaced by LA-1 (Class A) lignite ash, based on 300 kg/m{sup 3} cementitious material, the 28-day compressive strength increased 24.3% compared to the control mix. The optimal lignite ash replacement was 25% at 300 kg/m{sup 3} cementitious material.

  9. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  10. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  11. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  12. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  13. Thermal behavior of crumb-rubber modified asphalt concrete mixtures

    NASA Astrophysics Data System (ADS)

    Epps, Amy Louise

    Thermal cracking is one of the primary forms of distress in asphalt concrete pavements, resulting from either a single drop in temperature to an extreme low or from multiple temperature cycles above the fracture temperature of the asphalt-aggregate mixture. The first mode described is low temperature cracking; the second is thermal fatigue. The addition of crumb-rubber, manufactured from scrap tires, to the binder in asphalt concrete pavements has been suggested to minimize both types of thermal cracking. Four experiments were designed and completed to evaluate the thermal behavior of crumb-rubber modified (CRM) asphalt-aggregate mixtures. Modified and unmodified mixture response to thermal stresses was measured in four laboratory tests. The Thermal Stress Restrained Specimen Test (TSRST) and the Indirect Tensile Test (IDT) were used to compare mixture resistance to low temperature cracking. Modified mixtures showed improved performance, and cooling rate did not affect mixture resistance according to the statistical analysis. Therefore results from tests with faster rates can predict performance under slower field rates. In comparison, predicted fracture temperatures and stresses (IDT) were generally higher than measured values (TSRST). In addition, predicted fracture temperatures from binder test results demonstrated that binder testing alone is not sufficient to evaluate CRM mixtures. Thermal fatigue was explored in the third experiment using conventional load-induced fatigue tests with conditions selected to simulate daily temperature fluctuations. Test results indicated that thermal fatigue may contribute to transverse cracking in asphalt pavements. Both unmodified and modified mixtures had a finite capacity to withstand daily temperature fluctuations coupled with cold temperatures. Modified mixtures again exhibited improved performance. The fourth experiment examined fracture properties of modified and unmodified mixtures using a common fracture toughness test

  14. Determination of test methods for the prediction of the behavior of mass concrete

    NASA Astrophysics Data System (ADS)

    Ferraro, Christopher C.

    Hydration at early ages results from chemical and physical processes that take place between Portland cement and water, and is an exothermic process. The resultant heat evolution and temperature rise for massive concrete placements can be so great that the temperature differentials between the internal concrete core and outer concrete stratum can cause cracking due to thermal gradients. Accurate prediction of temperature distribution and stresses in mass concrete is needed to determine if a given concrete mixture design may have problems in the field, so that adjustments to the design can be made prior to its use. This research examines calorimetric, strength, and physical testing methods in an effort to predict the thermal and physical behavior of mass concrete. Four groups of concrete mixture types containing different cementitious materials are examined. One group contains Portland cement, while the other three groups incorporate large replacements of supplementary cementitious materials: granulated blast furnace slag, fly ash, and a ternary blend (combining Portland cement, fly ash, and slag).

  15. Criteria for asphalt-rubber concrete in civil airport pavements: Mixture design

    NASA Astrophysics Data System (ADS)

    Roberts, F. L.; Lytton, R. L.; Hoyt, D.

    1986-07-01

    A mixture design procedure is developed to allow the use of asphalt-rubber binders in concrete for flexible airport pavement. The asphalt-rubber is produced by reacting asphalt with ground, scrap tire rubber to produce the binder for the asphalt-rubber concrete. Procedures for laboratory preparation of alsphalt-rubber binders using an equipment setup that was found by researchers to produce laboratory binders with similar properties to field processes are included. The rubber-asphalt concrete mixture design procedure includes adjustments to the aggregate gradation to permit space for the rubber particles in the asphalt-rubber binder as well as suggested mixing and compaction temperatures, and compaction efforts. While the procedure was used in the laboratory to successfully produce asphalt-rubber concrete mixtures, it should be evaluated in the field to ensure that consistent results can be achieved in a production environment.

  16. 13. MASS OF POURED CONCRETE IN IRREGULAR STEPPED LAYERS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. MASS OF POURED CONCRETE IN IRREGULAR STEPPED LAYERS AT THE BASE OF THE LEFT (EAST) BUTTRESS. CAMERA FACING SOUTHWEST. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA

  17. Influence of roofing shingles on asphalt concrete mixture properties. Final report, 1992-1993

    SciTech Connect

    Newcomb, D.; Stroup-Gardiner, M.; Weikle, B.; Drescher, A.

    1993-06-01

    The objective of the study was to evaluate the use of waste shingles from manufacturing and roof reconstruction projects in hot mix asphalt concrete mixtures. In dense-graded asphalt mixtures, it was hypothesized that the waste material might serve as an extender for the new asphalt in the mix as well as a fiber reinforcement. In the stone mastic asphalt (SMA), it could serve as the binder stiffener typically used to prevent the asphalt from draining out of these types of mixtures.

  18. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  19. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  20. Code System to Calculate Heat and Mass Transfer In Concrete

    Energy Science and Technology Software Center (ESTSC)

    1999-05-26

    Version 00 This version is designated USINTC and was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as watermore » and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.« less

  1. Tandem mass spectrometry: analysis of complex mixtures

    SciTech Connect

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.

  2. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens. PMID:12739723

  3. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete. PMID:12423053

  4. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  5. Estimating the mass of mutagens in indeterminate mixtures

    SciTech Connect

    Schaeffer, D.J.; Kerster, H.W.

    1985-10-01

    A method is shown for estimating the quantity (mass) of genotoxic compounds in complex mixtures without prior identification of components. This method uses fractiles of the probability distribution of responses from the assay of interest and dose-response of the mixture. The method depends upon the assumption of additivity, on average, in the interaction of mutagens and on lognormality of the distribution of mutagen molecular weights. Mass estimates are necessary for hazard characterization, risk estimation, and risk assessment. The method is illustrated using Ames assay results from a coke plant wastewater.

  6. Thermodynamic evaluation of mass diffusion in ionic mixtures

    SciTech Connect

    Kagan, Grigory; Tang, Xian-Zhu

    2014-02-15

    The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant.

  7. Performance of intact and partially degraded concrete barriers in limiting mass transport

    SciTech Connect

    Walton, J.C. )

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration.

  8. Higher-order mass defect analysis for mass spectra of complex organic mixtures.

    PubMed

    Roach, Patrick J; Laskin, Julia; Laskin, Alexander

    2011-06-15

    Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH(2), H(2), O, CH(2)O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher-order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulas that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a deisotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks. PMID:21526851

  9. Internal structure of shock waves in disparate mass mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.

  10. Effects of the air–steam mixture on the permeability of damaged concrete

    SciTech Connect

    Medjigbodo, Sonagnon; Darquennes, Aveline; Khelidj, Abdelhafid; Loukili, Ahmed

    2013-12-15

    Massive concrete structures such as the containments of nuclear power plant must maintain their tightness at any circumstances to prevent the escape of radioactive fission products into the environment. In the event of an accident like a Loss of Coolant Accident (LOCA), the concrete wall is submitted to both hydric and mechanical loadings. A new experimental device reproducing these extreme conditions (water vapor transfer, 140 °C and 5 bars) is developed in the GeM Laboratory to determine the effect of the saturation degree, the mechanical loading and the flowing fluid type on the concrete transfer properties. The experimental tests show that the previous parameters significantly affect the concrete permeability and the gas leakage rate. Their evolution as a function of the mechanical loading is characterized by two phases that are directly related to concrete microstructure and crack development.

  11. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  12. Mass effect on the Soret coefficient in n-alkane mixtures.

    PubMed

    Alonso de Mezquia, David; Bou-Ali, M Mounir; Madariaga, J Antonio; Santamaría, Carlos

    2014-02-28

    We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, the thermal expansion coefficient of the pure components, and the density of the equimolar mixture. PMID:24588181

  13. Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry

    PubMed Central

    Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna

    2015-01-01

    Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717

  14. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  15. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement.

    PubMed

    Hassani, Abolfazl; Ganjidoust, Hossein; Maghanaki, Amir Abedin

    2005-08-01

    One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy. PMID:16200982

  16. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  17. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.

    PubMed

    Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K

    2006-11-01

    An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895

  18. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    NASA Astrophysics Data System (ADS)

    House, Mitchell Wayne

    to evaluate performance of concrete specimens under conditions designed to accelerate MIC. Concrete specimens representing 12 mixture designs were inoculated with 5 species of Thiobacillus bacteria and placed in a biological growth chamber designed to encourage bacterial growth and sulfuric acid production by optimizing temperature, delivering necessary nutrients, and providing hydrogen sulfide gas. Results indicate that using supplementary cementitious materials, limestone aggregates, and sulfate resistant cement can improve resistance to MIC. It is interesting to note that this study showed that unlike many other durability problems the role of water to cement ratio was unclear. The second method presented is a sulfuric acid immersion study designed to evaluate the resistance of 12 concrete mixture designs to 5 concentrations of sulfuric acid. Experimental protocols (like those in ASTM) previously considered trivial were found to have a dramatic effect on experimental results. It was found that using supplementary cementitious materials, limestone coarse aggregate, and sulfate resistant cement can increase concrete resistance to moderate sulfuric acid concentrations. The primary damage mechanism was observed to change depending on sulfuric acid concentration. Rapid deterioration of specimens exposed to aggressive sulfuric acid solutions indicates that degradation of concrete under the most severe MIC conditions (i.e., a pH < 1.0) cannot be prevented by strictly manipulating concrete mixture proportions. A holistic approach is needed for these situations that considers environmental conditions as well.

  19. Direct analysis by electrospray ionization tandem mass spectrometry of mixtures of phosphatidyldiacylglycerols from Lactobacillus.

    PubMed

    Cabrera, G M; Murga, M L; de Valdez, G F; Seldes, A M

    2000-12-01

    Electrospray ionization followed by collision-induced dissociation in a quadrupole ion trap mass spectrometer of mixtures of deprotonated phosphatidyldiacylglycerols afforded a group of three diagnostic ions of convenient abundance for each phosphatidyldiacylglycerol (PG) present in the mixture. Thus, it was possible to determine unmistakably the identity and substitution positions (sn-1 or sn-2) for both acyl groups of each PG present in the mixture. The method also allows the study of isomeric mixtures of PG and mixtures containing minor amounts of some PG from crude extracts of Lactobacillus acidophillus. The present results improve those of previous studies using fast atom bombardment and electrospray ionization tanden mass spectrometry, in which it was reported that it was possible to differentiate the identity and position of the sn-2 acyl substituent only by the presence of one ion, with variable abundance. PMID:11180636

  20. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  1. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    PubMed

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown. PMID:25476391

  2. Mass flow of a volatile organic liquid mixture in soils

    SciTech Connect

    Gerstl, Z.; Galin, Ts.; Yaron, B.

    1994-05-01

    The flow of kerosene, a volatile organic liquid mixture (VOLM), was studied in loam and clay soils and in a medium sand. The kerosene residual capacity and conductivity were determined for all three media at different initial moisture contents and with kerosene of different compositions. The kerosene conductivity of the soil was found to be strongly influenced by the soil texture and initial moisture content as well as by the kerosene composition. The kerosene conductivity of the sand was two orders of magnitude greater than that of the soils and was unaffected by initial moisture contents as high as field capacity. The kerosene conductivity of the loam soil was similar in oven dry and air dry soils, but increased significantly in soils at 70% and fun field capacity due to the Yuster effect. In the clay soil the kerosene conductivity of the air dry sod was four times that of the oven dry sod and increased somewhat in the soil at 70% field capacity. No kerosene flow was observed in the oven dry soil at full field capacity. The differences in kerosene conductivity in these soils and the effect of moisture content were attributed to the different pore-sin distributions of the soil& Changes in the composition of the kerosene due to volatilization of the light fractions resulted in increased viscosity of the residual kerosene. This increased viscosity affected the fluid properties of kerosene, which resulted in decreased kerosene conductivity in the sand and the soils. 29 refs., 4 figs., 4 tabs.

  3. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  4. Evaluation of ASTM test method D 4867, effect of moisture on asphalt concrete paving mixtures. Final report, May 1995--May 1997

    SciTech Connect

    Stuart, K.D.

    1998-09-01

    The moisture sensitivities of 21 dense-graded asphalt pavements were predicted in 1987 using American Society for Testing and Materials (ASTM) Test Method D 4867, Effect of Moisture on Asphalt Concrete Paving Mixtures. Tests were performed on cores taken from the pavements. The air-void levels of the cores varied from pavement to pavement. In 1995 and 1996, cores were again taken from the pavements to ascertain whether the test method correctly predicted performance. Pavement distress surveys were also performed.

  5. Numerical Analysis of Simultaneous Heat and Mass Transfer in Cork Lightweight Concretes Used in Building Envelopes

    NASA Astrophysics Data System (ADS)

    Sotehi, Nassima; Chaker, Abla

    A numerical study was carried out in order to investigate the behaviour of building envelopes made of lightweight concretes. In this work, we are particularly interested to the building envelopes which are consist of cement paste with incorporation of cork aggregates in order to obtain small thermal conductivity and low-density materials. The mathematical formulation of coupled heat and mass transfer in wet porous materials has been made using Luikov's model, the system describing temperature and moisture transfer processes within building walls is solved numerically with the finite elements method. The obtained results illustrate the temporal evolutions of the temperature and the moisture content, and the distributions of the temperature and moisture content inside the wall for several periods of time. They allow us to specify the effect of the nature and dosage of fibre on the heat and mass transfer.

  6. Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes.

    PubMed

    Un, Adem; Demir, Faruk

    2013-10-01

    Total mass attenuation coefficients, effective atomic numbers and effective electron numbers values for different 16 heavy-weight and normal-weight concretes are calculated in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients used in calculations are taken from the WinXCom computer program. The obtained results for heavy-weight concretes are compared with the results for normal-weight concretes. The results of heavy-weight concretes fairly differ from results for normal-weight concretes. PMID:23838359

  7. Mass spectral similarity for untargeted metabolomics data analysis of complex mixtures

    PubMed Central

    Garg, Neha; Kapono, Clifford; Lim, Yan Wei; Koyama, Nobuhiro; Vermeij, Mark J.A; Conrad, Douglas; Rohwer, Forest; Dorrestein, Pieter C.

    2014-01-01

    While in nucleotide sequencing, the analysis of DNA from complex mixtures of organisms is common, this is not yet true for mass spectrometric data analysis of complex mixtures. The comparative analyses of mass spectrometry data of microbial communities at the molecular level is difficult to perform, especially in the context of a host. The challenge does not lie in generating the mass spectrometry data, rather much of the difficulty falls in the realm of how to derive relevant information from this data. The informatics based techniques to visualize and organize datasets are well established for metagenome sequencing; however, due to the scarcity of informatics strategies in mass spectrometry, it is currently difficult to cross correlate two very different mass spectrometry data sets from microbial communities and their hosts. We highlight that molecular networking can be used as an organizational tool of tandem mass spectrometry data, automated database search for rapid identification of metabolites, and as a workflow to manage and compare mass spectrometry data from complex mixtures of organisms. To demonstrate this platform, we show data analysis from hard corals and a human lung associated with cystic fibrosis. PMID:25844058

  8. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry.

    PubMed

    Fenz, W; Mryglod, I M; Prytula, O; Folk, R

    2009-08-01

    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio mu, including the limiting case mu = infinity, for different mole fractions x. Within a large range of x and mu the product of the diffusion coefficient of the heavy species D(2) and the total shear viscosity of the mixture eta(m) is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function. PMID:19792112

  9. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry

    NASA Astrophysics Data System (ADS)

    Fenz, W.; Mryglod, I. M.; Prytula, O.; Folk, R.

    2009-08-01

    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio μ , including the limiting case μ=∞ , for different mole fractions x . Within a large range of x and μ the product of the diffusion coefficient of the heavy species D2 and the total shear viscosity of the mixture ηm is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function.

  10. Estimation of explosive charge mass used for explosions on concrete surface for the forensic purpose.

    PubMed

    Bjelovuk, Ivana D; Jaramaz, Slobodan; Mickovic, Dejan

    2012-03-01

    The method of choice used by most terrorists for achieving political goals remains the utilization of explosive devices and there is always visible evidence at a crime scene after the deployment of such devices. Given favorable circumstances, forensic analysis can determine the cause of the explosion - the type of the explosive device, the means of detonation, the type and mass of the explosive charge that has been used and perhaps provide information to lead to the identity of the individual who may have constructed or deployed the explosive device, etc. Evidence of an explosion may take the form of a crater or other damage which may provide some information facilitating and estimating the mass of explosive material used. This paper reports the findings obtained by performing experimental explosions of known charges on a concrete surface, in order to establish the correlation between the charge weight and the effects of the explosion. Known masses of explosives were fired and the dimensions of craters made by explosions were measured. Five empirical equations for estimation of the explosive charge mass from crater dimensions were used. PMID:22325907

  11. Protein mixture analysis by MALDI/mobility/time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, David H.; Gillig, Kent J.; Stone, Earle; Park, Zee-Yong; Fuhrer, K.; Gonon, M.; Schultz, A. J.

    2000-03-01

    Progress in the development of ion mobility (IM) orthogonal time-of-flight (oTOF) mass spectrometry for rapid analysis of biological samples is presented. The IM-oTOF apparatus described consists of a short drift tube (1 to 15 cm) designed for ion mobility measurement in the low-field limit and a low resolution linear (20 cm) TOF mass spectrometer. Proof of concept is demonstrated by analysis of peptide mixtures generated by proteolytic digestion of proteins.

  12. MALDI-TOF Mass Spectrometry of Naturally-Occurring Mixtures of Mono- and Di-rhamnolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed for high-throughput screening of naturally-occurring mixtures of rhamnolipids from Pseudomonas spp. Mono- and di-rhamnolipids are readily distinguished by characteristic molecular adduct i...

  13. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  14. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    NASA Astrophysics Data System (ADS)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  15. Evaluation and performance based mix design of rubber modified mixtures: Laboratory evaluation of asphalt concrete mixtures using waste tires. Final report

    SciTech Connect

    Goulias, D.G.; Ali, A.H.M.

    1997-02-01

    New Jersey Department of Transportation has been investigating the use of rubber modified materials over the last few years with the design and use of dense and gap graded mixtures, and in some cases the incorporation of RAP materials, in selected projects. While the short term field performance of these materials is satisfactory, their long term performance is unknown. These mixtures were designed with the traditional Marshall mixture design method, and thus is was not considered design criteria related to mixture behavior and performance into mixture selection. The main objective of this study is the development of a mixture design methodology for rubber modified materials that considers mixture behavior and performance. In order to achieve this objective researchers conducted a laboratory investigation which was able to evaluate mixture properties that can be related to mixture performance, (in terms of rutting, low temperature cracking, and fatigue), and simulating the actual field loading conditions that the material is being exposed to. The possibility of coupling the traditional Marshall mix design method with parameters related to mixture behavior and performance was investigated since this technique has been used over the years by the agency, and the necessary testing apparatus is available to both the agency and material laboratories. The SHRP SUPERPAVE mix design methodology was reviewed and considered in this study for the development of an integrated performance based design procedure. However, its applicability and use on routine bases was not considered at this time since it requires specific equipment with ongoing evaluation for its repeatability and precision. Finally, for the conduct of this investigation materials and mixtures used by NJDOT in rubber modified paving projects were used.

  16. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.

    PubMed

    Garrabrants, Andrew C; Kosson, David S; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist. PMID:24359922

  17. High resolution mass spectroscopy for the characterization of complex, fossil organic mixtures

    SciTech Connect

    Winans, R.E.; Haas, G.W.; Kim, Y.L.; Hunt, J.E.

    1995-12-31

    The nature of molecules with heteroatom functionality in the Argonne Premium Coal Samples and petroleum samples is being explored using high resolution mass spectrometry (HRMS). Both desorption electron impact and desorption chemical ionization (DCI) are used to sample the mixtures. Structural information is obtained from tandem MS experiments using high resolution to select the ions to fragment. The first DCI HRMS spectra of complex mixtures will be shown. Quantitative aspects and the method for obtaining precise mass measurements in chemical ionization will be discussed. Molecular weight distribution determined by DCI are similar to those determined by laser desorption and field ionization mass spectrometry with very little ion intensity observed at greater than 1000 Daltons. Results will be correlated with other techniques such as NMR, XPS, and XANES.

  18. Automated reduction and interpretation of multidimensional mass spectra for analysis of complex peptide mixtures

    NASA Astrophysics Data System (ADS)

    Gambin, Anna; Dutkowski, Janusz; Karczmarski, Jakub; Kluge, Boguslaw; Kowalczyk, Krzysztof; Ostrowski, Jerzy; Poznanski, Jaroslaw; Tiuryn, Jerzy; Bakun, Magda; Dadlez, Michal

    2007-01-01

    Here we develop a fully automated procedure for the analysis of liquid chromatography-mass spectrometry (LC-MS) datasets collected during the analysis of complex peptide mixtures. We present the underlying algorithm and outcomes of several experiments justifying its applicability. The novelty of our approach is to exploit the multidimensional character of the datasets. It is common knowledge that highly complex peptide mixtures can be analyzed by liquid chromatography coupled with mass spectrometry, but we are not aware of any existing automated MS spectra interpretation procedure designed to take into account the multidimensional character of the data. Our work fills this gap by providing an effective algorithm for this task, allowing for automated conversion of raw data to the list of masses of peptides.

  19. Linked Gas Chromatography/Fourier Transform Infrared Spectrometry/Fourier Transform Mass Spectrometry For Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Laude, David A., Jr.; Johlman, Carolyn; Wilkins, Charles L.

    1985-12-01

    During the past few years it has been demonstrated that linkage of multiple spectrometry systems with gas chromatography (GC) offers significant advantages for structural analysis of mixture components as they are sepa-rated. In the work to be described, a Fourier transform mass spectrometer (FTMS) has been linked in parallel with a Fourier transform infrared (FTIR) spectrometer for concurrent analysis of GC eluants from a fused silica capillary column. This system provides FTIR, electron impact, and chemical ionization mass spectral analysis of each mixture component as it emerges from the GC. Furthermore, mass measurement accuracy in the low ppm range in the absence of calibrant is made possible by the FTMS. Effective use of the com-plementary information obtained is shown to produce more reliable analytical performance than for any individual measurement.

  20. Tetramethylammonium hydroxide as a reagent for complex mixture analysis by negative ion electrospray ionization mass spectrometry.

    PubMed

    Lobodin, Vladislav V; Juyal, Priyanka; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G

    2013-08-20

    Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) enables the direct characterization of complex mixtures without prior fractionation. High mass resolution can distinguish peaks separated by as little as 1.1 mDa), and high mass accuracy enables assignment of elemental compositions in mixtures that contain tens of thousands of individual components (crude oil). Negative electrospray ionization (ESI) is particularly useful for the speciation of the most acidic petroleum components that are implicated in oil production and processing problems. Here, we replace conventional ammonium hydroxide by tetramethylammonium hydroxide (TMAH, a much stronger base, with higher solubility in toluene) to more uniformly deprotonate acidic components of complex mixtures by negative ESI FTICR MS. The detailed compositional analysis of four crude oils (light to heavy, from different geographical locations) reveals that TMAH reagent accesses 1.5-6 times as many elemental compositions, spanning a much wider range of chemical classes than does NH4OH. For example, TMAH reagent produces abundant negative electrosprayed ions from less acidic and neutral species that are in low abundance or absent with NH4OH reagent. More importantly, the increased compositional coverage of TMAH-modified solvent systems maintains, or even surpasses, the compositional information for the most acidic species. The method is not limited to petroleum-derived materials and could be applied to the analysis of dissolved organic matter, coal, lipids, and other naturally occurring compositionally complex organic mixtures. PMID:23919350

  1. Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.

    PubMed

    Puxty, Graeme; Rowland, Robert

    2011-03-15

    The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding about the underlying processes that are occurring. In this work a new software tool has been used to model CO(2) absorption into aqueous piperazine (PZ) and binary mixtures of PZ with 2-amino-2-methyl-1-propanol (AMP) or methyldiethanolamine (MDEA). The tool solves partial differential and simultaneous equations describing diffusion and chemical reaction automatically derived from reactions written using chemical notation. It has been demonstrated that by using reactions that are chemically plausible the mass transfer in binary mixtures can be fully described by combining the chemical reactions and their associated parameters determined for single amines. The observed enhanced mass transfer in binary mixtures can be explained through chemical interactions occurring in the mixture without need to resort to using additional reactions or unusual transport phenomena such as the "shuttle mechanism". PMID:21329341

  2. BCS to BEC evolution for mixtures of fermions with unequal masses

    NASA Astrophysics Data System (ADS)

    de Melo, Carlos A. R. Sa

    2009-03-01

    I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx

  3. Molar mass and temperature dependence of the thermodiffusion of polyethylene oxide in water/ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Zilin; Afanasenkau, Dzmitry; Dong, Minjie; Huang, Danni; Wiegand, Simone

    2014-08-01

    In this work, we study the molar mass dependence of the thermodiffusion of polyethylene oxide at different temperatures in ethanol, water/ethanol mixture (cwater = 0.7), and water in a molar mass range up to Mw = 180 000 g/mol. Due to the low solubility of polyethylene oxide oligomers in ethanol the measurements are limited up to Mw = 2200 g/mol. The specific water/ethanol concentration 0.7 has been chosen, because at this weight fraction the thermal diffusion coefficient, DT, of water/ethanol vanishes so that the system can be treated as a pseudo binary mixture. The addition of ethanol will degrade the solvent quality, so that we expect a change of the interaction energies between polymer and solvent. The analysis of the experimental data within a theoretical model shows the need of a refined model, which takes specific interactions into account.

  4. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    SciTech Connect

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-03-15

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C{sub 3} hydrocarbons (<50 ppm of initial methane) in methane/hydrogen plasmas and the possible trapping of thermally unstable C-N compounds in N{sub 2} containing deposition plasmas are addressed as representative examples of specific applications of the technique.

  5. Experimental investigations of trimer ion contributions in the low resolution mass spectrometry of hydrogen isotope mixtures.

    PubMed

    Bidica, Nicolae

    2012-01-01

    This paper reports on some preliminary experimental results of a work in progress regarding a problem involving the quantitative analysis of hydrogen isotopes by mass spectrometry of low resolution: the triatomic (trimer) ions interferences with the isotopic hydrogen species having the same mass/charge. These results indicate that, in complex mixtures of hydrogen isotopes, trimer ions are strongly affected by the presence of other species, and a new approach that takes into account the destruction mechanism of trimer ions is necessary for a proper determination of their contributions. PMID:23149602

  6. Coupling Charge Reduction Mass Spectrometry to Liquid Chromatography for Complex Mixture Analysis.

    PubMed

    Stutzman, John R; Crowe, Matthew C; Alexander, James N; Bell, Bruce M; Dunkle, Melissa N

    2016-04-01

    Electrospray ionization (ESI) of solution mixtures often generates complex mass spectra, even following liquid chromatography (LC), due to analyte multiple charging. Multiple charge state distributions can lead to isobaric interferences, mass spectral congestion, and ambiguous ion identification. As a consequence, data interpretation increases in complexity. Several charge reduction mass spectrometry (MS) approaches have been previously developed to reduce the average charge state of gaseous ions; however, all of these techniques have been restricted to direct infusion MS. In this study, synthetic polyols and surfactants separated by liquid chromatography and ionized by positive mode ESI have been subjected to polonium-210 α-particle radiation to reduce the average charge state to singly charged cations prior to mass analysis. LC/MS analysis of 5000 molecular weight poly(ethylene glycol) (PEG5000) generated an average charge state of 5.88+; whereupon, liquid chromatography/electrospray ionization/charge reduction/mass spectrometry (LC/CR/MS) analysis of PEG 5000 generated an average charge state of 1.00+. The PEG5000 results demonstrated a decrease in spectral complexity and enabled facile interpretation. Other complex solution mixtures representing specific MS challenges (i.e., competitive ionization and isobaric ion overlap) were explored and analyzed with LC/CR/MS to demonstrate the benefits of coupling LC to CR/MS. For example, polyol information related to initiator, identity/relative amount of monomer, and estimated molecular weight was characterized in random and triblock ethylene oxide/propylene oxide polyols using LC/CR/MS. LC/CR/MS is a new analytical technique for the analysis of complex mixtures. PMID:26971559

  7. Capillary Liquid Chromatography Mass Spectrometry Analysis of Intact Monolayer-Protected Gold Clusters in Complex Mixtures.

    PubMed

    Black, David M; Bach, Stephan B H; Whetten, Robert L

    2016-06-01

    In some respects, large noble-metal clusters protected by thiolate ligands behave as giant molecules of definite composition and structure; however, their rigorous analysis continues to be quite challenging. Analysis of complex mixtures of intact monolayer-protected clusters (MPCs) by liquid chromatography mass spectrometry (LC-MS) could provide quantitative identification of the various components present. This advance is critical for biomedical and toxicological research, as well as in fundamental studies that rely on the identification of selected compositions. This work expands upon the separate LC and MS results previously achieved, by interfacing the capillary liquid chromatograph directly to the electrospray source of the mass spectrometer, in order to provide an extremely sensitive, quantitative, and rapid means to characterize MPCs and their derivatives far beyond that of earlier reports. Here, we show that nonaqueous reversed-phase chromatography can be coupled to mass-spectrometry detection to resolve complex mixtures in minute (∼100 ng) samples of gold MPCs, of molecular masses up to ∼40 kDa, and with single-species sensitivity easily demonstrated for components on the level of sub-10 ng or picomole (1 pmol). PMID:27216373

  8. [A study on the chemical components of essential oil of oak moss concrete by gas chromatography/mass spectrometry].

    PubMed

    Gao, Y; Liu, B Z; Zhu, X L; Shi, L; Chen, J L; Gong, M; Zhang, L G

    2000-05-01

    The essential oil of oak moss concrete was extracted by volatile oil content equipment. The chemical compositions and their relative contents were analyzed by GC and GC/MS. A Supelco-5 fused silica capillary column (30 m x 0.32 mm i.d.; 0.25 micron thickness) and a flame ionization detector (FID) were employed in GC analysis. The temperature program included temperature increase of 4 degrees C/min from 50 degrees C to 250 degrees C, and a 10 min isothermal period at 250 degrees C. Mass spectra were obtained by electron impact at 70 eV and a source temperature of 170 degrees C. Twenty-four volatile compounds of oak mass concrete were identified, which comprised more than 83% of volatile fraction. The major components were diethyl phthalate, alpha-terpineol, cedrane and linalool. PMID:12541566

  9. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ. PMID:26508443

  10. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    PubMed Central

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  11. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    NASA Astrophysics Data System (ADS)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  12. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  13. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  14. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and

  15. Chemical analysis of complex organic mixtures using reactive nanospray desorption electrospray ionization mass spectrometry.

    PubMed

    Laskin, Julia; Eckert, Peter A; Roach, Patrick J; Heath, Brandi S; Nizkorodov, Sergey A; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies have shown that LSOA constituents are multifunctional compounds containing at least one aldehyde or ketone groups. In this study, we used the selectivity of the Girard's reagent T (GT) toward carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 μM GT solutions were used as the working solvents for reactive nano-DESI analysis. Abundant products from the single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 μM. We found that LSOA dimeric and trimeric compounds react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in the formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the time scale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at the ~0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ~11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and for the quantification of compounds possessing

  16. Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis.

    PubMed

    Kaiser, Nathan K; Savory, Joshua J; McKenna, Amy M; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2011-09-01

    Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance. PMID:21838231

  17. Effect of insulating concrete forms in concrete compresive strength

    NASA Astrophysics Data System (ADS)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  18. Development of a rapid test method for asphalt concrete content determination in hot-mix paving mixtures

    NASA Astrophysics Data System (ADS)

    Chavez, J. J. M.

    1984-01-01

    A rapid test method was developed for the determination of asphalt cement content in hot-mix bituminous paving mixtures. It is based on the extraction of asphalt cement from mixtures with trichloroethylene and subsequent measurement of the transmittance of light through the extracted solution. A good correlation was found between the results obtained using the rapid test and those obtained using the standard test (ASTM D-2172, Method E1) for samples tested in the field at asphalt mix plants. The test uses a portable spectrophotometer and a metal can for extraction. The asphalt content can be determined in less than ten minutes. The possibility of using the rapid test on materials containing emulsified asphalt, slag aggregate, unusually high amounts of fine material and recycled material was also studied.

  19. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  20. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.

    PubMed

    Groenewold, Gary S; Williams, John M; Appelhans, Anthony D; Gresham, Garold L; Olson, John E; Jeffery, Mark T; Rowland, Brad

    2002-11-15

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min(-1) at 25 degrees C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 degrees C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol(-1). This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface. PMID:12487301

  1. Hydrolysis of VX on Concrete: Rate of Degradation by Direct Surface Interrogation using an Ion Trap Secondary Ion Mass Spectrometer

    SciTech Connect

    Groenewold, Gary Steven; Appelhans, Anthony David; Gresham, Garold Linn; Olson, John Eric; Rowland, B.; Williams, j.; Jeffery, M. T.

    2002-09-01

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min-1 at 25 C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol-1. This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  2. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  3. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  4. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  5. Assessment of actinide mass embedded in large concrete waste packages by photon interrogation and photofission.

    PubMed

    Gmar, M; Jeanneau, F; Lainé, F; Makil, H; Poumarède, B; Tola, F

    2005-01-01

    This paper describes a method based on photofission developed in our laboratory to characterize in depth large waste packages. The method consists in using photons of high-energy (Bremsstrahlung radiation) in order to induce reactions of photofission on the heavy nuclei present in the wastes. The measurement of the delayed neutrons allows quantifying the actinides in the wastes. We present the first results of measurement performed with a concrete mock-up of 870l and two real waste packages. PMID:15982895

  6. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; Fang, Qin; He, Li-Lin

    2014-12-01

    The initial oblique and attacking angles as well as the asymmetrical nose abrasion may lead to bending or even fracture of a projectile, and the penetration efficiency decreases distinctly. The structural stability of a high-speed projectile non-normally penetrating into concrete and the parametric influences involved are analyzed with the mass abrasion taken into account. By considering the symmetrical or asymmetrical nose abrasion as well as the initial oblique and attacking angles, both the axial and the transverse drag forces acting on the projectile are derived. Based on the ideal elastic-plastic yield criterion, an approach is proposed for predicting the limit striking velocity (LSV) that is the highest velocity at which no yielding failure has occurred and the projectile can still maintain its integral structural stability. Furthermore, some particular penetration scenarios are separately discussed in detail. Based on the engineering model for the mass loss and nose-blunting of ogive-nose projectiles established in Part I of this study, the above approach is validated by several high-speed penetration tests. The analysis on parametric influences indicates that the LSV is reduced with an increase in the asymmetrical nose abrasion, the length-diameter-ratio, and the concrete strength, as well as the oblique and attacking angles. Also, the LSV raises with an increase in the initial caliber-radius-head (CRH) and the dimensionless cartridge thickness of a projectile.

  7. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  8. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  9. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  10. Measurement of virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture

    SciTech Connect

    Kamath, P.S.; Harris, D.R.; Lahey, R.T.

    1984-06-01

    This paper presents an experimental determination of the virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant water. The purpose of this experiment was to determine the importance of virtual mass on the transient response of an INEL-type drag-disk flow meter. The results indicate that for a given void fraction, the virtual mass coefficient increases, and the drag coefficient decreases, with increasing amplitude parameter. Also, for a given amplitude parameter, the virtual mass coefficient decreases, and the drag coefficient increases, with increasing void fraction. Based on the measured virtual mass coefficients, it was concluded that when an INEL-type drag-disk is used for the measurement of transient two-phase flows, virtual mass effects may be neglected in the analysis of its response without appreciable error.

  11. Ion-molecule reactions for the characterization of polyols and polyol mixtures by ESI/FT-ICR mass spectrometry.

    PubMed

    Watkins, Michael A; Winger, Brian E; Shea, Ryan C; Kenttämaa, Hilkka I

    2005-03-01

    A mass spectrometric method is described for the identification and counting of hydroxyl groups in an analyte. Analytes introduced into a FT-ICR mass spectrometer and ionized by positive mode ESI were allowed to react with the neutral reagent diethylmethoxyborane. This results in derivatization of the hydroxyl groups of the analytes by replacement of a proton with a diethylborenium ion. Protonated polyols react by consecutive derivatization reactions, wherein all, or nearly all, of the hydroxyls are derivatized. The polyol derivatization products are separated by 68 mass units in the mass spectrum. This 68 Da mass shift, along with 30 Da mass shifts arising from intramolecular derivatization of the primary derivatization products, makes it easy to count the number of functional groups present in the analyte. The utility of this method for the analysis of polyols as single-component solutions, as mixtures, or in HPLC effluent (LC-MS analysis) is demonstrated. PMID:15732922

  12. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors. PMID:21591743

  13. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry.

    PubMed

    Fanood, Mohammad M Rafiee; Ram, N Bhargava; Lehmann, C Stefan; Powis, Ivan; Janssen, Maurice H M

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  14. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fanood, Mohammad M. Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-06-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ~1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

  15. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  16. Mass Flux Stability at the T_d Conductance Transition in Solid ^3He-^4He Mixtures

    NASA Astrophysics Data System (ADS)

    Vekhov, Yegor; Hallock, R. B.

    2016-05-01

    Measurements of the ^4He mass flux through a cell filled with solid ^3He-^4He mixtures in the ^3He concentration range 0.17-220 ppm have demonstrated a reversible dramatic decrease in the flux on cooling through a concentration-dependent temperature T_d, close to the mixture phase separation temperature. For low ^3He concentrations, the flux change transition is complete within 2 mK. We report on the stability of the flux for fixed temperatures in this transition region.

  17. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Pullockaran, Jose D.; Knox, Lerry

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  18. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  19. Characterization of Evaporating Species from B2O3, B6O, and Their Mixtures by Knudsen Cell Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sasaki, Hideaki; Kobashi, Yoshifumi; Maeda, Masafumi

    2016-02-01

    Species evaporating from B2O3(l), B6O(s) and their mixtures were observed by a multiple Knudsen cell mass spectrometer between 1373 K and 1573 K (1100 °C and 1300 °C). Ions with mass-to-charge ratios of 70, 54, and 27 from the samples were observable, indicating the formations of B2O3(g), B2O2(g), and BO(g). The vapor pressures of the gas species were estimated by referring to thermodynamic information previously reported on B6O(s). Evaporation of B2O2(g) from a mixture [ p_{B}_{2} O_{2} }} = 6 Pa at 1473 K (1200 °C)] was observed, and it was consistent with a preceding study by a different method.

  20. Ion chemistry in germane/fluorocompounds gaseous mixtures: a mass spectrometric and theoretical study.

    PubMed

    Antoniotti, Paola; Rabezzana, Roberto; Turco, Francesca; Borocci, Stefano; Giordani, Maria; Grandinetti, Felice

    2008-10-01

    The ion-molecule reactions occurring in GeH(4)/NF(3), GeH(4)/SF(6), and GeH(4)/SiF(4) gaseous mixtures have been investigated by ion trap mass spectrometry and ab initio calculations. While the NF(x)(+) (x=1-3) react with GeH(4) mainly by the exothermic charge transfer, the open-shell Ge(+) and GeH(2)(+) undergo the efficient F-atom abstraction from NF(3) and form GeF(+) and F-GeH(2)(+) as the only ionic products. The mechanisms of these two processes are quite similar and involve the formation of the fluorine-coordinated complexes Ge-F-NF(2)(+) and H(2)Ge-F-NF(2)(+), their subsequent crossing to the significantly more stable isomers FGe-NF(2)(+) and F-GeH(2)-NF(2)(+), and the eventual dissociation of these ions into GeF(+) (or F-GeH(2)(+)) and NF(2). The closed-shell GeH(+) and GeH(3)(+) are instead much less reactive towards NF(3), and the only observed process is the less efficient formation of GeF(+) from GeH(+). The theoretical investigation of this unusual H/F exchange reaction suggests the involvement of vibrationally-hot GeH(+). Passing from NF(3) to SF(6) and SiF(4), the average strength of the M-F bond increases from 70 to 79 and 142 kcal mol(-1), and in fact the only process observed by reacting GeH(n)(+) (n=0-3) with SF(6) and SiF(4) is the little efficient F-atom abstraction from SF(6) by Ge(+). Irrespective of the experimental conditions, we did not observe any ionic product of Ge-N, Ge-S, or Ge-Si connectivity. This is in line with the previously observed exclusive formation of GeF(+) from the reaction between Ge(+) and C-F compounds such as CH(3)F. Additionally observed processes include in particular the conceivable formation of the elusive thiohypofluorous acid FSH from the reaction between SF(+) and GeH(4). PMID:18366143

  1. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    SciTech Connect

    Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Douglas R.; Goldstein, Allen H.

    2012-01-30

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  2. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  3. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  4. A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory



    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

  5. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss.

    PubMed

    Pan, Xu; Berg, Matty P; Butenschoen, Olaf; Murray, Phil J; Bartish, Igor V; Cornelissen, Johannes H C; Dong, Ming; Prinzing, Andreas

    2015-05-01

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability. PMID:25876845

  6. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss

    PubMed Central

    Pan, Xu; Berg, Matty P.; Butenschoen, Olaf; Murray, Phil J.; Bartish, Igor V.; Cornelissen, Johannes H. C.; Dong, Ming; Prinzing, Andreas

    2015-01-01

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability. PMID:25876845

  7. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  8. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  9. METALLURGICAL PROGRAMS: CALCULATION OF MASS FROM VOLUME, DENSITY OF MIXTURES, AND CONVERSION OF ATOMIC TO WEIGHT PERCENT

    NASA Technical Reports Server (NTRS)

    Degroh, H.

    1994-01-01

    The Metallurgical Programs include three simple programs which calculate solutions to problems common to metallurgical engineers and persons making metal castings. The first program calculates the mass of a binary ideal (alloy) given the weight fractions and densities of the pure components and the total volume. The second program calculates the densities of a binary ideal mixture. The third program converts the atomic percentages of a binary mixture to weight percentages. The programs use simple equations to assist the materials staff with routine calculations. The Metallurgical Programs are written in Microsoft QuickBASIC for interactive execution and have been implemented on an IBM PC-XT/AT operating MS-DOS 2.1 or higher with 256K bytes of memory. All instructions needed by the user appear as prompts as the software is used. Data is input using the keyboard only and output is via the monitor. The Metallurgical programs were written in 1987.

  10. Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles?

    PubMed

    Sedlák, Marián; Rak, Dmytro

    2013-02-28

    In textbooks, undersaturated solutions of low molar mass compounds and mixtures of freely miscible liquids are considered as homogeneous at larger length scales exceeding appreciably dimensions of individual molecules. However, growing experimental evidence reveals that it is not the case. Large-scale structures with sizes on the order of 100 nm are present in solutions and mixtures used in everyday life and research practice, especially in aqueous systems. These mesoscale inhomogeneities are long-lived, and (relatively slow) kinetics of their formation can be monitored upon mixing the components. Nevertheless, the nature of these structures and mechanisms behind their formation are not clear yet. Since it was previously suggested that these can be nanobubbles stabilized by adsorbed solute at the gas/solvent interface, we devote the current study to addressing this question. Static and dynamic light scattering was used to investigate solutions and mixtures prepared at ordinary conditions (equilibrated with air at 1 atm), prepared with degassed solvent, and solutions and mixtures degassed after formation of large structures. The behavior of large structures in strong gravitational centrifugal fields was also investigated. Systems from various categories were chosen for this study: aqueous solutions of an inorganic ionic compound (MgSO4), organic ionic compound (citric acid), uncharged organic compound (urea), and a mixture of water with organic solvent freely miscible with water (tert-butyl alcohol). Obtained results show that these structures are not nanobubbles in all cases. Visualization of large-scale structures via nanoparticle tracking analysis is presented. NTA results confirm conclusions from our previous light scattering work. PMID:23373595

  11. Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products.

    PubMed

    Qi, Yulin; Hempelmann, Rolf; Volmer, Dietrich A

    2016-07-01

    Lignin is the second most abundant natural biopolymer, and lignin wastes are therefore potentially significant sources for renewable chemicals such as fuel compounds, as alternatives to fossil fuels. Waste valorisation of lignin is currently limited to a few applications such as in the pulp industry, however, because of the lack of effective extraction and characterisation methods for the chemically highly complex mixtures after decomposition. Here, we have implemented high resolution mass spectrometry and developed two-dimensional mass defect matrix plots as a data visualisation tool, similar to the Kendrick mass defect plots implemented in fields such as petroleomics. These 2D matrix plots greatly simplified the highly convoluted lignin mass spectral data acquired from Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, and the derived metrics provided confident peak assignments and strongly improved structural mapping of lignin decomposition product series from the various linkages within the lignin polymer after electrochemical decomposition. Graphical Abstract 2D mass defect matrix plot for a lignin sample after decomposition. PMID:27178557

  12. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  13. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    SciTech Connect

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  14. Frost resistance of concrete surfaces coated with waterproofing materials

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Dauksys, M.; Ciuprovaite, G.

    2015-03-01

    Present research lays emphasis on the problem of concrete surface exposed to aggressive surrounding quality. The test was conducted with concrete surfaces coated with different waterproofing materials exposed in solution of 3 % of sodium sulphate. Research was performed according to LST EN 1338:2003 standard requirements. Technological properties of concrete mixture as well as physical-mechanical properties of formed concrete specimens were established. The resistance of concrete to freezing - thawing cycles was prognosticated according to the porosity parameters established by the kinetic of water absorption. Five different waterproofing materials (coatings) such as liquid bitumen-rubber based, elastic fiber-strengthened, silane-siloxane based emulsion, mineral binder based and liquid rubber (caoutchouc) based coatings were used. Losses by mass of coating materials and specimens surface fractures were calculated based on the results of frost resistance test. Open code program "ImageJ" was used for visual analysis of concrete specimens. Based on the results, aggressive surrounding did not influence specimens coated with elastic, fibre-strengthened, mineral materials. On the other hand, specimens coated with liquid rubber (caoutchouc) based material were greatly influenced by aggressive surrounding. The biggest losses of specimen surface concrete (fractures) were obtained with silane-siloxane based emulsion coating. Generally, specimens coated with waterproofing materials were less influenced by aggressive surrounding compared with those without.

  15. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids.

    PubMed

    Losito, I; Facchini, L; Diomede, S; Conte, E; Megli, F M; Cataldi, T R I; Palmisano, F

    2015-11-27

    A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ɷ-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems. PMID:26508677

  16. Two dimensional mass mapping as a general method of data representation in comprehensive analysis of complex molecular mixtures.

    PubMed

    Artemenko, Konstantin A; Zubarev, Alexander R; Samgina, Tatiana Yu; Lebedev, Albert T; Savitski, Mikhail M; Zubarev, Roman A

    2009-05-15

    A recent proteomics-grade (95%+ sequence reliability) high-throughput de novo sequencing method utilizes the benefits of high resolution, high mass accuracy, and the use of two complementary fragmentation techniques collision-activated dissociation (CAD) and electron capture dissociation (ECD). With this high-fidelity sequencing approach, hundreds of peptides can be sequenced de novo in a single LC-MS/MS experiment. The high productivity of the new analysis technique has revealed a new bottleneck which occurs in data representation. Here we suggest a new method of data analysis and visualization that presents a comprehensive picture of the peptide content including relative abundances and grouping into families. The 2D mass mapping consists of putting the molecular masses onto a two-dimensional bubble plot, with the relative monoisotopic mass defect and isotopic shift being the axes and with the bubble area proportional to the peptide abundance. Peptides belonging to the same family form a compact group on such a plot, so that the family identity can in many cases be determined from the molecular mass alone. The performance of the method is demonstrated on the high-throughput analysis of skin secretion from three frogs, Rana ridibunda, Rana arvalis, and Rana temporaria. Two dimensional mass maps simplify the task of global comparison between the species and make obvious the similarities and differences in the peptide contents that are obscure in traditional data presentation methods. Even biological activity of the peptide can sometimes be inferred from its position on the plot. Two dimensional mass mapping is a general method applicable to any complex mixture, peptide and nonpeptide alike. PMID:19382811

  17. Mass loss rates of uranium-zirconium carbide in flowing hydrogen and hydrogen-hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    MacMillan, Donald P.

    1991-01-01

    The results of experimental determinations of mass loss rates from (U,Zr)C exposed to flowing hydrogen at high temperature are reported. Two experimental techniques were used: isothermal heating of samples by arc jet and heating of long, porous, tubular samples by electrical self-resistance. Total mass losses as high as 20% were obtained, and the composition of the residue was determined. The results of these experiments were encouraging and led to the decision to use (U,Zr)C fuel elements in the next test reactor, Nuclear Furnace 2.

  18. Mass and size effects in three-dimensional vibrofluidized granular mixtures

    NASA Astrophysics Data System (ADS)

    Krouskop, Peter E.; Talbot, Julian

    2003-08-01

    We examine the steady state properties of binary systems of driven inelastic hard spheres. The spheres, which move under the influence of gravity, are contained in a vertical cylinder with a vibrating base. We computed the trajectories of the spheres using an event-driven molecular dynamics algorithm. In the first part of the study, we chose simulation parameters that match those of experiments published by Wildman and Parker. Various properties computed from the simulation including the density profile, granular temperature, and circulation pattern are in good qualitative agreement with the experiments. We then studied the effect of varying the mass ratio and the size ratio independently while holding the other parameters constant. The mass and size ratio are shown to affect the distribution of the energy. The changes in the energy distributions affect the packing fraction and temperature of each component. The temperature of the heavier component has a nonlinear dependence on the mass of the lighter component, while the temperature of the lighter component is approximately proportional to its mass. The temperature of both components is inversely dependent on the size of the smaller component.

  19. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    SciTech Connect

    Johnson, S.

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  20. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  1. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  2. Electrospray-ionization mass spectrometry of mixtures of triterpene glycosides with paracetamol

    NASA Astrophysics Data System (ADS)

    Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.

    2010-11-01

    Molecular complexation of paracetamol with hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranoside (α-hederin) and its 28-O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-O-β-Dglucopyranosyl ether (hederasaponin C) was investigated for the first time using electrospray-ionization mass spectrometry (ESI-MS). The glycosides form complexes with paracetamol in a 1:1 molar ratio. The hederasaponin C complex is more stable. The structures of the glycosides and paracetamol are concluded to have an impact on the complexation process.

  3. Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Kim, Hyoungchul; Yoon, Kyung Joong; Lee, Jong-Ho; Kim, Byung-Kook; Choi, Wonjoon; Lee, Jong-Heun; Hong, Jongsup

    2015-04-01

    High temperature co-electrolysis of steam/CO2 mixtures using solid oxide cells has been proposed as a promising technology to mitigate climate change and power fluctuation of renewable energy. To make it viable, it is essential to control the complex reacting environment in their fuel electrode. In this study, dominant reaction pathway and species transport taking place in the fuel electrode and their effect on the cell performance are elucidated. Results show that steam is a primary reactant in electrolysis, and CO2 contributes to the electrochemical performance subsequently in addition to the effect of steam. CO2 reduction is predominantly governed by thermochemical reactions, whose influence to the electrochemical performance is evident near limiting currents. Chemical kinetics and mass transport play a significant role in co-electrolysis, given that the reduction reactions and diffusion of steam/CO2 mixtures are slow. The characteristic time scales determined by the kinetics, diffusion and materials dictate the cell performance and product compositions. The fuel electrode design should account for microstructure and catalysts for steam electrolysis and thermochemical CO2 reduction in order to optimize syngas production and store electrical energy effectively and efficiently. Syngas yield and selectivity are discussed, showing that they are substantially influenced by operating conditions, fuel electrode materials and its microstructure.

  4. Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Son, Jeongjin; Lee, Gwangbin; Cha, Sangwon

    2014-05-01

    Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.

  5. Durability of concrete materials in high-magnesium brine

    SciTech Connect

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  6. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    SciTech Connect

    Flores, O.; Castillo, F.; Martinez, H.; Villa, M.; Reyes, P. G.; Villalobos, S.

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  7. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  8. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  9. Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases.

    PubMed

    Lange, Britta; Matschat, Ralf; Kipphardt, Heinrich

    2007-12-01

    Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas. PMID:17940753

  10. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  11. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part I: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; He, Li-Lin; Fang, Qin

    2014-12-01

    The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator, obviously reducing the penetration efficiency of penetrator. Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface, an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile. A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile. The critical value V {0/c} of the initial striking velocity is formulated, and the mass loss of projectile tends to increase weakly nonlinearly with I/ N when V 0 < V {0/c}, whilst the mass loss is proportional to the initial kinetic energy of projectile when V 0 < V {0/c}. The theoretical prediction of V {0/c} is further confirmed to be very close to the experimental value of 1.0 km/s based on 11 sets of different penetration tests. Also the validity of the proposed expressions of mass loss and nose-blunting coefficients of a projectile are verified by the tests. Therefore, a theoretical basis is for the empirical conclusions drawn in previous publications. Regarding the completely empirical determinations of the mass loss and nose-blunting coefficients given in previous papers, the present analysis reveals its physical characteristic and also guarantees its prediction accuracy. The engineering model established in the present paper forms the basis for further discussions on the structural stability and the terminal ballistic stability of ogive-nosed projectiles high-speed penetrating into concrete targets, which will respectively be elaborated in Part II and Part III of the present study.

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  14. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

    SciTech Connect

    Aerosol Dynamics Inc; Aerodyne Research, Inc.,; Tofwerk AG, Thun; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Doug R.; Goldstein, Allen H.

    2011-09-13

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  15. Estimation of Concrete's Porosity by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Benouis, A.; Grini, A.

    Durability of concrete depends strongly on porosity; this conditions the intensity of the interactions of the concrete with the aggressive agents. The pores inside the concrete facilitate the process of damage, which is generally initiated on the surface. The most used measurement is undoubtedly the measurement of porosity accessible to water. The porosimetry by intrusion with mercury constitutes a tool for investigation of the mesoporosity. The relationship between concrete mixtures, porosity and ultrasonic velocity of concrete samples measured by ultrasonic NDT is investigated. This experimental study is interested in the relations between the ultrasonic velocity measured by transducers of 7.5 mm and 49.5 mm diameter and with 54 kHz frequency. Concrete specimens (160 mm diameter and 320 mm height) are fabricated with concrete of seven different mixtures (various W/C and S/S + G ratios), which gave porosities varying between 7% and 16%. Ultrasonic velocities in concrete were measured in longitudinal direction. Finally the results showed the influence of ratio W/C, where the porosity of the concretes of a ratio W/C _0,5 have correctly estimated by ultrasonic velocity. The integration of the concretes of a lower ratio, in this relation, caused a great dispersion. Porosity estimation of concretes with a ratio W/C lower than 0,5 became specific to each ratio.

  16. Marine concrete

    SciTech Connect

    Marshall, A.L.

    1990-01-01

    This book examines how the chemical and physical properties of the oceans affect the durability, fatigue, and corrosion of structures. Structure types addressed include oil platforms, arctic structures, and sea walls. Reviews qualities of plain, reinforced, prestressed, and floating concrete. Discusses the inspection, maintenance, and repair of concrete structures.

  17. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    USGS Publications Warehouse

    Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.

    2001-01-01

    A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.

  18. Mass Transport Properties of LiD-U Mixtures from Orbital Free Molecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    SciTech Connect

    Burakovsky, Leonid; Kress, Joel D.; Collins, Lee A.

    2012-05-31

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD){sub x}U{sub (1-x)} compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, {rho}, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk{sub B}T/V + P{sub e}, is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species {alpha}, D{sub {alpha}}, the mutual diffusion coefficient for species {alpha} and {beta}, D{alpha}{beta}, and the shear viscosity, {eta}, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  19. Micro Environmental Concrete

    NASA Astrophysics Data System (ADS)

    Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.

    Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

  20. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures.

    PubMed

    Dumlao, Morphy C; Jeffress, Laura E; Gooding, J Justin; Donald, William A

    2016-06-21

    Solid-phase microextraction (SPME) is directly integrated with low temperature plasma ionisation mass spectrometry to rapidly detect organophosphate chemical warfare agent simulants and their hydrolysis products in chemical mixtures, including urine. In this sampling and ionization method, the fibre serves: (i) to extract molecules from their native environment, and (ii) as the ionization electrode that is used to desorb and ionize molecules directly from the SPME surface. By use of a custom fabricated SPME fibre consisting of a stainless steel needle coated with a Linde Type A (LTA) zeolitic microporous material and low temperature plasma mass spectrometry, protonated dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP) and pinacolyl methylphosphonic acid (PinMPA) can be detected at less than 100 ppb directly in water and urine. Organophosphates were not readily detected by this approach using an uncoated needle in negative control experiments. The use of the LTA coating significantly outperformed the use of a high alumina Zeolite Socony Mobil-5 (ZSM-5) coating of comparable thickness that is significantly less polar than LTA. By conditioning the LTA probe by immersion in an aqueous CuSO4 solution, the ion abundance for protonated DMMP increased by more than 300% compared to that obtained without any conditioning. Sample recovery values were between 96 and 100% for each analyte. The detection of chemical warfare agent analogues and hydrolysis products required less than 2 min per sample. A key advantage of this sampling and ionization method is that analyte ions can be directly and rapidly sampled from chemical mixtures, such as urine and seawater, without sample preparation or chromatography for sensitive detection by mass spectrometry. This ion source should prove beneficial for portable mass spectrometry applications because relatively low detection limits can be obtained without the use of compressed gases, fluid pumps, and lasers. Moreover, the

  1. Combustion of a Methane-Air Mixture in a Slot Burner with an Inert Insert in Mass Transfer to the Environment

    NASA Astrophysics Data System (ADS)

    Krainov, A. Yu.; Moiseeva, K. M.

    2016-03-01

    A problem on combustion of a methane-air mixture in a slot burner with an internal insert in mass transfer from the burner's exterior wall to the environment has been solved. A mathematical formulation of the problem takes account of the dependence of the diffusion, thermal-conductivity, and heat-transfer coefficients on temperature, and also of the heat removal from the gas to the environment by convective and radiant heat transfer. A numerical investigation has been carried out in a one-dimensional mathematical formulation of the problem in dimensional variables. The boundary of existence of a stable high-temperature regime of combustion of the methane-air mixture has been determined as a function of the rate of feed of the gas, the environmental temperature, and the width of the flow area of the burner.

  2. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  3. AB INITIO EQUATION OF STATE FOR HYDROGEN-HELIUM MIXTURES WITH RECALIBRATION OF THE GIANT-PLANET MASS-RADIUS RELATION

    SciTech Connect

    Militzer, B.; Hubbard, W. B.

    2013-09-10

    Using density functional molecular dynamics simulations, we determine the equation of state (EOS) for hydrogen-helium mixtures spanning density-temperature conditions typical of giant-planet interiors, {approx}0.2-9 g cm{sup -3} and 1000-80,000 K for a typical helium mass fraction of 0.245. In addition to computing internal energy and pressure, we determine the entropy using an ab initio thermodynamic integration technique. A comprehensive EOS table with 391 density-temperature points is constructed and the results are presented in the form of a two-dimensional free energy fit for interpolation. Deviations between our ab initio EOS and the semi-analytical EOS model by Saumon and Chabrier are analyzed in detail, and we use the results for initial revision of the inferred thermal state of giant planets with known values for mass and radius. Changes are most pronounced for planets in the Jupiter mass range and below. We present a revision to the mass-radius relationship that makes the hottest exoplanets increase in radius by {approx}0.2 Jupiter radii at fixed entropy and for masses greater than {approx}0.5 Jupiter mass. This change is large enough to have possible implications for some discrepant ''inflated giant exoplanets''.

  4. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  5. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  6. Quality evaluation of aged concrete by ultrasound

    NASA Astrophysics Data System (ADS)

    Tavossi, H. M.; Tittmann, Bernhard R.; Cohen-Tenoudji, Frederic

    1999-02-01

    The velocity, attenuation and scattering of ultrasonic waves measured in concrete, mortar and cement structures can be used to evaluate their quality with weathering and aging. In this investigation the hardening of concrete mixture with time is monitored by ultrasonic waves under different conditions of temperature and water to cement ratio. The measured ultrasonic parameters can then be utilized to determine the final quality of the completely cured concrete structure from initial measurement. The quality of a concrete structure is determined by its resistance to compression and its rigidity, which should be within the acceptable values required by the design specifications. The internal and external flaws that could lower its strength can also be detected by ultrasonic technique. Aging process of concrete by weathering can be simulated in the laboratory by subjecting the concrete to extremes of cold and hot cycles in the range of temperatures normally encountered in summer and winter. In this research ultrasonic sensors in low frequency range of 40 to 100 kHz are used to monitor the quality of concrete. Ultrasonic pulses transmitted through the concrete sample are recorded for analysis in time and frequency domains. ULtrasonic waves penetration in concrete of the order of few feet has been achieved in laboratory. Data analyses on ultrasonic signal velocity, spectral content, phase and attenuation, can be utilized to evaluate, in situ, the quality and mechanical strength of concrete.

  7. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening.

    PubMed

    Qin, Shanshan; Ren, Yiran; Fu, Xu; Shen, Jie; Chen, Xin; Wang, Quan; Bi, Xin; Liu, Wenjing; Li, Lixin; Liang, Guangxin; Yang, Cheng; Shui, Wenqing

    2015-07-30

    Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery. PMID:26320641

  8. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  9. Contribution to the benchmark for ternary mixtures: Measurement of the Soret, diffusion and thermodiffusion coefficients in the ternary mixture THN/IBB/nC12 with 0.8/0.1/0.1 mass fractions in ground and orbital laboratories.

    PubMed

    Mialdun, A; Legros, J-C; Yasnou, V; Sechenyh, V; Shevtsova, V

    2015-04-01

    We have determined the Soret (ST), diffusion (D, and thermodiffusion (DT) coefficients in a ternary mixture of tetralin-isobutylbenzene-n-dodecane with a composition of 0.80/0.10/0.10 by mass fraction at a temperature of 298K. The Soret coefficients were measured in the microgravity experiment DCMIX1 and on the ground by optical digital interferometry (ODI) using two lasers with different wavelengths. The values of the Soret coefficients were determined from the stationary separation of the components using two- and six-parameter fits. The diffusion coefficients were independently measured using the Taylor Dispersion Technique in the ground laboratory, and the thermodiffusion coefficients were derived from known ST and matrix D. The processing of the data from the DCMIX experiment conducted on the International Space Station is discussed in detail. The multi-user design of the on-board instrument causes perturbations in the component separation. Several recommendations are suggested for improving the quality of the microgravity results. For example, we demonstrated that the tomography reconstruction of the 3-D concentration field allows to restore the underestimated component separation resulting from the spatial non-linearity of the temperature field. Furthermore, to avoid errors in component separation due to mass exchange between the working liquid volume and the expansion volume at the top of the cell, we suggest considering the evolution of the separation only in the lower half of the cell. The results of this study displayed reasonable quantitative agreement between the microgravity and ground experiments. PMID:25916232

  10. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  11. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA

  12. A Novel Dual-Pressure Linear Ion Trap Mass Spectrometer Improves the Analysis of Complex Protein Mixtures

    PubMed Central

    Pekar, Tonya; Blethrow, Justin D.; Schwartz, Jae C.; Merrihew, Gennifer E.; MacCoss, Michael J.; Swaney, Danielle L.; Russell, Jason D.; Coon, Joshua J.; Zabrouskov, Vlad

    2009-01-01

    The considerable progress in high throughput proteomics analysis via liquid chromatography-electrospray ionization-tandem mass spectrometry over the last decade has been fueled to a large degree by continuous improvements in instrumentation. High throughput identification experiments are based on peptide sequencing and are largely accomplished through the use of tandem mass spectrometry, with ion trap and trap-based instruments having become broadly adopted analytical platforms. To satisfy increasingly demanding requirements for depth of characterization and throughput, we present a newly developed dual-pressure linear ion trap mass spectrometer (LTQ Velos) that features increased sensitivity, afforded by a new source design, and demonstrates practical cycle times two times shorter than that of an LTQ XL, while improving or maintaining spectral quality for MS/MS fragmentation spectra. These improvements resulted in a substantial increase in the detection and identification of both proteins and unique peptides from the complex proteome of Caenorhabditis elegans, as compared to existing platforms. The greatly increased ion flux into the mass spectrometer in combination with improved isolation of low-abundance precursor ions resulted in increased detection of low-abundance peptides. These improvements cumulatively resulted in a substantially greater penetration into the baker’s yeast (Saccharomyces cerevisiae) proteome compared to LTQ XL. Alternatively, faster cycle times on the new instrument allowed for higher throughput for a given depth of proteome analysis, with more peptides and proteins identified in 60 min using an LTQ Velos than in 180 min using an LTQ XL. When mass analysis was carried out with resolution in excess of 25,000 FWHM, it became possible to isotopically resolve a small intact protein and its fragments, opening possibilities for top down experiments. PMID:19689114

  13. Identification of phosphorylated peptides from complex mixtures using negative-ion orifice-potential stepping and capillary liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Ding, J; Burkhart, W; Kassel, D B

    1994-01-01

    A rapid method for identifying and characterizing sites of phosphorylation of peptides and proteins is described. High-performance capillary liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) is used to distinguish non-phosphorylated and phosphorylated peptides originating from mixtures as complex as enzyme digests. The method relies on the ability to produce a fragment ion characteristic and unique to phosphopeptides (m/z 79, PO3) by stepping the orifice potential of the mass spectrometer as a function of mass. At low m/z values, a high orifice potential is applied to induce extensive fragmentation of the peptide, leading to the formation of the m/z 79 phosphate-derived ion. This method is analogous to that described by Carr et al. for the identification of glycopeptides from enzymatic digestion of glycoproteins (S.A. Carr, M.J. Huddleston, M.F. Bean, Protein Science 2, 183 (1993)). The method was first evaluated and validated for a mixture of non-, mono- and di-phosphorylated synthetic peptides. Both mono- and di-phosphorylated peptides were found to generate fragment ions characteristic of PO3 whereas the non-phosphorylated peptide did not. Application of the method was extended to identifying phosphopeptides generated from an endoprotease Lys-C digestion of beta-casein. Both the expected mono- and tetra-phosphorylated Lys-C peptides were observed and identified rapidly in the LC/SEI-MS analysis. The procedure was used additionally to identify the site(s) of phosphorylation of the cytosolic non-receptor tyrosine kinase, pp60(c-src). PMID:8118063

  14. Mass spectrometric investigation of the ionic species in a dielectric barrier discharge operating in helium-water vapour mixtures

    NASA Astrophysics Data System (ADS)

    Abd-Allah, Z.; Sawtell, D. A. G.; McKay, K.; West, G. T.; Kelly, P. J.; Bradley, J. W.

    2015-03-01

    Using advanced mass spectrometry the chemistry of ionic species present in an atmospheric-pressure parallel plate dielectric barrier discharge (DBD) with a single dielectric on the powered electrode have been identified. The discharge was driven in helium with controllable concentrations of water vapour using an excitation frequency of 10 kHz and an applied voltage of 1.2 kV. Both negative and positive ions were identified and their relative intensity determined with variation of water concentration in the discharge, inter-electrode spacing, gas residence time and nominal applied power. The most abundant negative ions were of the family \\text{O}{{\\text{H}}-}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} , while the positive ions were dominated by those of the form {{{H}}^ + }{{{(}}{{{H}}_2}{{O)}}_n} , with n up to 9 in both cases. Negative and positive ions responded in a similar way to changes in the operating parameters, with the particular response depending on the ion mass. Increasing the inter-electrode spacing and the water concentration in the discharge led to an increase in the intensity of large mass ionic water clusters. However, increasing the residence time of the species in the plasma region and increasing the applied power resulted in fragmentation of large water clusters to produce smaller ions.

  15. Aerated concrete with mineral dispersed reinforcing additives

    NASA Astrophysics Data System (ADS)

    Berdov, G. I.; Ilina, L. V.; Mukhina, I. N.; Rakov, M. A.

    2015-01-01

    To guarantee the production of aerated concrete with the lowest average density while ensuring the required strength it is necessary to use a silica component with a surface area of 250-300 m2 / kg. The article presents experimental data on grinding the silica component together with clinker to the optimum dispersion. This allows increasing the strength of non-autoclaved aerated concrete up to 33%. Furthermore, the addition to aerated concrete the mixture of dispersed reinforcing agents (wollastonite, diopside) and electrolytes with multiply charged cations and anions (1% Fe2 (SO4)3; Al2 (SO4)3) provides the growth of aerated concrete strength at 30 - 75%. As a cohesive the clinker, crushed together with silica and mineral supplements should be used. This increases the strength of aerated concrete at 65% in comparing with Portland cement.

  16. Characterization of a mixture of lobster digestive cysteine proteinases by ionspray mass spectrometry and tryptic mapping with LC--MS and LC--MS--MS

    NASA Astrophysics Data System (ADS)

    Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.

    1991-12-01

    An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).

  17. Mass Flux Stability in the Presence of Temperature Excursions and Perturbations in Solid ^3 He-^4 He Mixtures

    NASA Astrophysics Data System (ADS)

    Vekhov, Ye.; Hallock, R. B.

    2016-03-01

    The DC superfluid ^4 He mass flux through a cell filled with solid ^4 He diluted by ppm amounts of ^3 He is susceptible to flux changes when perturbations of the solid sample are imposed. We report on the details of the reproducibility of the flux following excursions in temperature and cryostat helium transfer-induced apparatus vibration, particularly including excursions to temperatures above which the flux is immeasurably small. And we report on behavior following an annealing, partial melting, and re-freezing of the sample at temperatures and pressures close to and on the melting curve.

  18. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  19. Propagation characteristics of electromagnetic waves in concrete

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo

    1989-03-01

    This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.

  20. Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode

    SciTech Connect

    Mollah, Sahana

    1999-11-08

    Suppression of mass spectral peaks due to matrix problem is a major hurdle to overcome during identification work. So far, preliminary studies have been done in investigating solutions containing various percentages of nitric and hydrochloric acid. Since other anions would also be present in real samples, also needed to be examined is how the extent of suppression of metal complexes by Cl{sup {minus}} compares with suppression by other anions such as PO{sub 4}{sup 3{minus}} or SO{sub 4}{sup 2{minus}}. If suppression of other anions is as severe as that of the chloride ion, then it would be virtually impossible to analyze unknown samples containing large amount of such anions by direct infusion electrospray mass spectrometry. It seems like a separation step is needed to separate these matrix anions from the metal complexes prior to putting the solution through the electrospray. However, separation of inorganic complexes can be difficult and has not been studied thoroughly as LC separation of bioorganic compounds. Both zinc and copper chloro complexes have been observed to be more tolerant to higher amount of chloride ion present in a solution compared to the group I and II metal chloro complexes. Other transition metals including the lanthanide complexes need to be examined more intensively to see how they fare against other transition metal complexes. So far, only preliminary work has been done in identifying inorganic species in solutions using both ICP-MS and ES-MS. The solution contained a number of metals but only one major anion, NO{sub 3}{sup {minus}}. Therefore, complex solutions containing a number of anions and metals can be examined to see if identification is still feasible. This identification work can be continued on into investigating real samples.

  1. Sulfate attack on concrete with mineral admixtures

    SciTech Connect

    Irassar, E.F.; Di Maio, A.; Batic, O.R.

    1996-01-01

    The sulfate resistance of concretes containing fly ash, natural pozzolan and slag is investigated in a field test in which concrete specimens were half-buried in sulfate soil for five years. Mineral admixtures were used as a partial replacement for ordinary portland cement (C{sub 3}A = 8.5%), and the progress of sulfate attack was evaluated by several methods (visual rating, loss in mass, dynamic modulus, strength, X-ray analysis). Results of this study show that mineral admixtures improved the sulfate resistance when the concrete is buried in the soil. However, concretes with high content of mineral admixtures exhibit a greater surface scaling over soil level due to the sulfate salt crystallization. In this zone, capillary suction of concrete is the main mechanism of water and salt transportation. Concrete with 20% fly ash provides an integral solution for half-buried structures.

  2. Mass-fractal growth in niobia/silsesquioxane mixtures: a small-angle X-ray scattering study

    PubMed Central

    Besselink, Rogier; ten Elshof, Johan E.

    2014-01-01

    The nucleation and growth of niobium pentaethoxide (NPE)-derived clusters in ethanol, through acid-catalyzed hydrolysis/condensation in the presence and absence of the silsesquioxane 1,2-bis(triethoxysilyl)ethane (BTESE), was monitored at 298–333 K by small-angle X-ray scattering. The data were analyzed with a newly derived model for polydisperse mass-fractal-like structures. At 298–313 K in the absence of BTESE the data indicated the development of relatively monodisperse NPE-derived structures with self-preserving polydispersity during growth. The growth exponent was consistent with irreversible diffusion-limited cluster agglomeration. At 333 K the growth exponent was characteristic for fast-gelling reaction-limited cluster agglomeration. The reaction yielded substantially higher degrees of polydispersity. In the presence of BTESE the growth exponents were substantially smaller. The smaller growth exponent in this case is not consistent with irreversible Smoluchowski-type agglomeration. Instead, reversible Lifshitz–Slyozov-type agglomeration seems to be more consistent with the experimental data. PMID:25294980

  3. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  4. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  5. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  6. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  7. High temperature behaviour of self-consolidating concrete

    SciTech Connect

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-03-15

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  8. Measurement of mass attenuation coefficients in some Cr, Co and Fe compounds around the absorption edge and the validity of the mixture rule

    NASA Astrophysics Data System (ADS)

    Turgut, U.; Simsek, O.; Büyükkasap, E.

    2007-08-01

    The total mass attenuation coefficients for elements Cr, Co and Fe and compounds CrCl_{2}, CrCl_{3}, Cr_{2}(SO_{4})_{3}K_{2}SO_{4}\\cdot24H_{2}O, CoO, CoCl_{2}, Co(CH_{3}COO)_{2}, FePO_{4}, FeCl_{3}\\cdot6H_{2}O, Fe(SO_{4})_{2}NH_{4}\\cdot12H_{2}O were measured at different energies between 4.508 and 14.142 keV using secondary excitation method. Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr were chosen as secondary exciters. 59.5 keV γ-rays emitted from a ^{241}Am annular source were used to excite a secondary exciter and K_{α}(K-L_{3}, L_{2}) lines emitted by the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. It was observed that mixture rule method is not a suitable method for determination of the mass attenuation coefficients of compounds, especially at an energy that is near the absorption edge. The obtained values were compared with theoretical values.

  9. Matrix-Assisted Ionization-Ion Mobility Spectrometry-Mass Spectrometry: Selective Analysis of a Europium-PEG Complex in a Crude Mixture

    NASA Astrophysics Data System (ADS)

    Fischer, Joshua L.; Lutomski, Corinne A.; El-Baba, Tarick J.; Siriwardena-Mahanama, Buddhima N.; Weidner, Steffen M.; Falkenhagen, Jana; Allen, Matthew J.; Trimpin, Sarah

    2015-12-01

    The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed.

  10. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    USGS Publications Warehouse

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  11. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their

  12. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  13. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  14. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  15. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  16. Concrete Materials and Structures

    SciTech Connect

    Wilby, C.B.

    1991-12-31

    Concrete Materials and Structures provides one of the most comprehensive treatments on the topic of concrete engineering. The author covers a gamut of concrete subjects ranging from concrete mix design, basic reinforced concrete theory, prestressed concrete, shell roofs, and two-way slabs-including a through presentation of Hillerborg`s strip method. Prior to Wilby`s book, the scope of these topics would require at least four separate books to cover. With this new book he has succeeded, quite remarkably, in condensing a fairly complete knowledge of concrete engineering into one single easy-to-carry volume.

  17. Polymer concrete patching manual

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Bartholomew, J.

    1982-06-01

    The practicality of using polymer concrete to repair deteriorated portland cement concrete bridge decks and pavements was demonstrated. This manual outlines the procedures for using polymer concrete as a rapid patching material to repair deteriorated concrete. The process technology, materials, equipment, and safety provisions used in manufacturing and placing polymer concrete are discussed. Potential users are informed of the various steps necessary to insure successful field applications of the material.

  18. Monitoring durability of new concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Aktan, Haluk M.; Yaman, Ismail O.; Staton, John F.

    2001-08-01

    The ND durability monitoring procedure, which measures the soundness of field concrete, is based on the fundamental relationship between ultrasonic pulse velocity (UPV) and permeability of an elastic medium. An experimental study documented adequate sensitivity between UPV and concrete permeability. The durability monitoring procedure is based on a parameter developed as part of this study and called paste quality loss (PQL) which is computed from the probability density function parameters of ultrasonic pulse velocity measurements taken from standard and field concrete. For PQL computation, measurements taken on standard concrete specimens, which are made from field concrete mixture, are compared to field measurements. The verification tests on 1000 mm x 1500 mm x 230 mm lab-deck specimens indicated that the PQL parameter computed from the UPV measurements as early as the 28th day is a good predictor of soundness. The UPV measurements made at increasing age of concrete very clearly document the rapid loss of soundness of improperly cured concrete decks. Deck replacement projects on three NHS bridges were used in the implementation of durability monitoring by PQL (paste quality loss) evaluation. The respective 56-day PQL's were calculated as 15%, 31% and 9% indicating a significant variability in the three bridges.

  19. The Apparent Thermal Conductivity of Pozzolana Concrete

    NASA Astrophysics Data System (ADS)

    Bessenouci, M. Z.; Triki, N. E. Bibi; Khelladi, S.; Draoui, B.; Abene, A.

    The recent development of some lightweight construction materials, such as light concrete, can play an important role as an insulator, while maintaining sufficient levels of mechanical performance. The quality of insulation to provide depends on the climate, the exposure of the walls and also the materials used in the construction. The choice of a material to be used as an insulator, obviously, depends on its availability and its cost. This is a study of natural pozzolanas as basic components in building materials. It is intended to highlight their thermal advantage. It is economically advantageous to use pozzolana in substitution for a portion of the clinker as hydraulically active additions, as well as in compositions of lightweight concretes in the form of pozzolanic aggregate mixtures, which provide mechanical strengths that comply with current standards. A theoretical study is conducted on the apparent thermal conductivity of building materials, namely concrete containing pozzolana. Thermal modeling, apparent to that commonly used for porous materials, has been applied to pozzolana concrete. Experimental results on measurements of the apparent thermal conductivity of pozzolana concrete are reported in this study, using an approach that considers that concrete is composed of two solid ingredients, a binding matrix (hydrated cement paste) and all aggregates. A second comparative theoretical approach is used for the case where concrete consists of a solid phase and a fluid phase (air).

  20. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.

    PubMed

    Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay

    2010-02-01

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving. PMID:19853433

  1. Evaluation of ternary blended cements for use in transportation concrete structures

    NASA Astrophysics Data System (ADS)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  2. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  3. Identification of a radical formed in the reaction mixtures of ram seminal vesicle microsomes with arachidonic Acid using high performance liquid chromatography-electron spin resonance spectrometry and high performance liquid chromatography-electron spin resonance-mass spectrometry.

    PubMed

    Minakata, Katsuyuki; Iwahashi, Hideo

    2010-03-01

    The reaction of ram seminal vesicle (RSV) microsomes with arachidonic acid (AA) was examined using electron spin resonance (ESR), high performance liquid chromatography-electron spin resonance spectrometry (HPLC-ESR), and high performance liquid chromatography-electron spin resonance-mass spectrometry (HPLC-ESR-MS) combined use of spin trapping technique. A prominent ESR spectrum (alpha(N) = 1.58 mT and alpha(H)beta = 0.26 mT) was observed in the complete reaction mixture of ram seminal vesicle microsomes with arachidonic acid containing 2.0 mg protein/ml ram seminal vesicle (RSV) microsomal suspension, 0.8 mM arachidonic acid, 0.1 M 4-POBN, and 24 mM tris/HCl buffer (pH 7.4). The ESR spectrum was hardly observed for the complete reaction mixture without the RSV microsomes. The formation of the radical appears to be catalyzed by the microsomal components. In the absence of AA, the intensity of the ESR signal decreased to 16 +/- 15% of the complete reaction mixture, suggesting that the radical is derived from AA. For the complete reaction mixture with boiled microsomes, the intensity of the ESR signal decreased to 49 +/- 4% of the complete reaction mixture. The intensity of the ESR signal of the complete reaction mixture with indomethacin decreased to 74 +/- 20% of the complete reaction mixture, suggesting that cyclooxygenese partly participates in the reaction. A peak was detected on the elution profile of HPLC-ESR analysis of the complete reaction mixture. To determine the structure of the peak, an HPLC-ESR-MS analysis was performed. The HPLC-ESR-MS analysis of the peak showed two prominent ions, m/z 266 and m/z 179, suggesting that the peak is a 4-POBN/pentyl radical adduct. An HPLC-ESR analysis of the authentic 4-POBN/pentyl radical adduct comfirmed the identification. PMID:20216946

  4. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. PMID:24316812

  5. Cast-concrete products made with FBC ash and wet-collected coal-ash

    SciTech Connect

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D.

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  6. Effective field use of high range water reduced concrete

    NASA Astrophysics Data System (ADS)

    Sprinkel, M. M.

    1981-11-01

    The experience of the Virginia Department of Highways and Transportation with the use of high range water reduced (HRWR) concrete is described as well as the installation of the HRWR concrete in two pavements and four bridge decks. The results of evaluative tests are included along with recommendations concerning the further use of HRWR concrete. On the average the HRWR concrete placed in the field with conventional equipment was properly consolidated and controlled. However, because of the unanticipated variability of the concrete, portions of the concrete exhibited inadequate consolidation, segregated mixture components, improperly entrained air, shrinkage cracks, and poor finishes. Specimens subjected to cycles of freezing and thawing showed low durability factors that were attributed to an unsatisfactory air void system. Subsequent laboratory work revealed that HRWR admixtures satisfied the requirements of ASTM C494.

  7. Nature of unresolved complex mixture in size-distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hays, Michael D.; Smith, N. Dean; Dong, Yuanji

    2004-08-01

    Unresolved complex mixture (UCM) is an analytical artifact of gas chromatographs of combustion source-related fine aerosol extracts. In this study the UCM is examined in size-resolved fine aerosol emissions from residential wood combustion. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). A semiquantitative system for predicting the branched alkane, cycloalkane, alkylbenzene, C3-, C4-, C5-alkylbenzene, methylnaphthalene, C3-, C4-, C5-alkylnaphthalene, methylphenanthrene C2-, C3-alkylphenanthrene, and dibenzothiophene concentrations in the UCM is introduced. Analysis by TD/GS/MS detects UCM on each ELPI stage for all six combustion tests. The UCM baseline among the different fuel types is variable. In particular, the UCM of Pseudotsuga sp. is enriched in later-eluting compounds of lower volatility. A high level of reproducibility is achieved in determining UCM areas. UCM fractions (UCM ion area/total extracted ion chromatograph area) by individual ELPI stage return a mean relative standard deviation of 19.1% over the entire combustion test set, indicating a highly consistent UCM fraction across the ELPI size boundaries. Among the molecular ions investigated, branched alkane (m/z 57) and dibenzothiophene (m/z 212 and 226) constituents are most abundant in UCM emissions from RWC, collectively accounting for 64-95% of the targeted chemical species. The total UCM emissions span 446-756 mg/kg of dry biomass burned and correspond to an upper limit of 7.1% of the PM2.5 mass. The UCM emissions are primarily accumulation mode (0.1 μm ≤ aerodynamic diameter (da) ≤ 1 μm), with a geometric mean diameter (dg) range of 120.3-518.4 nm. UCM in PM2.5 is chemically asymmetric (shifted to finer da), typically clustering at da ≤ 1 μm. Measurable shifts in dg and changes in distribution widths (σg) on an intratest basis suggest that the particle density

  8. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  9. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    SciTech Connect

    Butler, L. West, J.S.; Tighe, S.L.

    2011-10-15

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  10. Lunar concrete for construction

    SciTech Connect

    Cullingford, H.S.; Keller, M.D.

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base. 10 refs., 3 figs., 2 tabs.

  11. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  12. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  13. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi

    2014-12-29

    The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. PMID:25482852

  14. Controlling chloride ions diffusion in concrete

    PubMed Central

    Zeng, Lunwu; Song, Runxia

    2013-01-01

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle. PMID:24285220

  15. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  16. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  17. Porosity estimation of concrete by ultrasonic NDE

    PubMed

    Hernandez; Izquierdo; Ibanez; Anaya; Ullate

    2000-03-01

    The increasing number of concrete structures with symptoms of premature deterioration due to environmental action demands procedures to estimate the durability of this type of component. Concrete durability is related to porosity, which determines the intensity of interactions of the material with aggressive agents. The pores and capillaries inside the structure facilitate the destructive processes that generally begin in the surface. In this work, an ultrasonic NDE technique to estimate the porosity of concrete is developed. The method is based on the analysis of the mechanical behaviour of mortar probes built with calibrated sand, in which the concentration of water-cement mixture has been varied. In this sense, data of sound velocity are correlated with data of porosity, which have been previously measured by destructive measurements. PMID:10829720

  18. Biomarker- and similarity coefficient-based approaches to bacterial mixture characterization using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)

    PubMed Central

    Zhang, Lin; Smart, Sonja; Sandrin, Todd R

    2015-01-01

    MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that has previously been shown to be useful in identification of individual bacteria in pure cultures and simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively applied to identification of individual bacteria in pure cultures. Both strategies were developed and evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed that most peaks in mixture spectra could be assigned to those found in spectra of each component bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-coded samples containing more than two isolates, bacteria were more effectively identified using a biomarker-based strategy. PMID:26537565

  19. Lunar concrete: Prospects and challenges

    NASA Astrophysics Data System (ADS)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  20. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  1. Characterization and genesis interpretation of charcoal-bearing concretions from the early Eocene Ione Formation, CA

    NASA Astrophysics Data System (ADS)

    Bair, D.; Aburto, F.

    2013-12-01

    Charcoal core concretions have been discovered in the kaolinitic soil horizons of the Ione formation (early Eocene epoch ~52Ma BP). It is thought that the Ione Formation in the Ione Basin was deposited in delta and estuarine waters that were subsequently exhumed and exposed to a warmer, humid, tropical-like environment during the early Eocene. The formation of concretions is indicative of seasonal dryness, and the charcoal cores are evidence of wildfires and of the existence of a forest ecosystem. The mineral outer shells of the concretions have been characterized by powder X-ray diffraction, Electron Microprobe and Laser Ablation Quadruple Mass Spectrometry (LA-ICP-MS). Micro-computed tomography (MCT) scans indicate that these concretions have at least three distinct shells and a inner core with fragments of charcoal without apparent internal organization. The outer shell is mainly composed of a layered mix of kaolinite, quartz, goethite, hematite and birnessite. Some pyrite and jarosite have also been found, which could indicate that goethite may be post-depositional and a product of the bacteria-mediated oxidation of pyrite. The central shell has a similar composition, but with a higher content of iron oxyhydroxides and jarosite. The inner cores of the concretions are mainly composed of a mixture of kaolinite and quartz which correspond to the layer in which the concretions were found. The concretion cores contain loose charcoal fragments in a unsolidified kaolinite matrix. The charcoal fragments have been characterized by Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), C/N isotope analysis, and Synchrotron radiation FTIR (SR-FTIR). Analysis of the ATR-FTIR spectra showed significant absorbance peaks at wavenumbers that coincided with the chemical functionality of other wood biochars. Charcoal from different concretions display (n =12) extremely similar spectra which suggest that they were originated from similar species and

  2. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  3. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  4. Early-age volume changes of extrudable reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Cherkaoui, K.; Courtial, M.; Dunstetter, F.; Khelidj, A.; Mounanga, P.; de Noirfontaine, M. N.

    2010-06-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  5. Investigation of gamma-ray shielding properties of concrete containing different percentages of lead.

    PubMed

    Rezaei-Ochbelagh, D; Azimkhani, S

    2012-10-01

    In this work, concrete mixed with different percentages of lead is used to study gamma-ray shielding properties. The transmitted fluxes of gamma-rays that were emitted from (137)Cs and (60)Co sources were detected by a NaI(Tl) detector and analyzed by a MCA analyzer. Then, linear attenuation coefficients (LAC) and compressive strength of concrete specimens were experimentally investigated. By comparing the obtained data from concrete specimens with and without lead, it was observed that, if the powder of lead to cement ratio of 90% by weight is added in the concrete mixture, the concrete can be used as a suitable shield against gamma rays. PMID:22854173

  6. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  7. Waste tyre rubberized concrete: properties at fresh and hardened state.

    PubMed

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997). PMID:20207128

  8. Some engineering properties of heavy concrete added silica fume

    SciTech Connect

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  9. Applications for concrete offshore

    SciTech Connect

    Not Available

    1982-01-01

    The report collects and summarizes the various proposals for development offshore which have in common the use of concrete as the main structural material, and where possible, indicates their relative feasibility. A study encompassing such diverse schemes as offshore windmills, concrete LNG carriers, hydrocarbon production platforms and floating airports cannot be completely exhaustive on each subject, so references to sources of further information have been given wherever possible. Details of individual projects and proposals are included for Power plants, Hydrocarbon production platforms, Concrete ships, Storage systems and industrial plants, Subsea systems, Offshore islands, Coastal works and Other concrete structures.

  10. Analyzing the influence of manufacturing conditions of reclaimed asphalt concrete on the characteristics of the asphalt binder: development of a gradual binder extraction method

    NASA Astrophysics Data System (ADS)

    Navaro, J.; Bruneau, D.; Drouadaine, I.; Pouteau, B.; Colin, J.; Dony, A.

    2012-05-01

    When asphalt concrete is manufactured incorporating a high percentage (almost 70%) of reclaimed materials from the deconstruction of road surfaces under renovation, and when the corresponding production device is designed specifically to reduce the energy input need (lowering the production temperature), the resulting manufacturing process contributes to the protection of the environment and reduces production costs. However, to meet the quality requirements of the finished product, virgin materials of appropriate quality and quantity must also be added (mineral aggregates and new asphalt binder) and control systems set up to quantify and optimize the parameters involved (thus avoiding the guess work which still often prevails today). It was for this reason that a new experimental technique described here was devised, which will ultimately be used in asphalt concrete production plants. The technique involves lixiviating reclaimed asphalt concrete using a chlorinated solvent; the resulting solute is collected gradually, then the mixture of binders (virgin and reclaimed asphalt concrete) can be characterized and their mass fractions quantified using a combination of UV and IR spectrometry. With this experimental technique we were able to assess the extent to which the reclaimed asphalt pavement binder participates in the agglomeration and cohesion of the reclaimed asphalt concrete. This assessment was made in terms of the main parameters in the production process, temperature of the materials and mixing time.

  11. Aggregate assesment and durability evaluation of optimized graded concrete in the state of Oklahoma

    NASA Astrophysics Data System (ADS)

    Ghaeezadeh, Ashkan

    This research is a part of a larger project that emphasizes on creating a more scientific approach to designing concrete mixtures for concrete pavements that use less cement and more aggregate which is called optimized graded concrete. The most challenging obstacle in optimized mixtures is reaching enough workability so that one doesn't have to add more cement or super-plasticizer to reach the desired level of flowability. Aggregate gradation and characteristics have found to be very important when it comes to the workabaility of optimized graded concrete. In this research a new automated method of aggregate assessment was used to compare the shape and the surface of different aggregates as well as their influence on the concrete flowability. At the end, the performance of optimized graded concrete against drying shrinkage and freezing and thawing condition were investigated.

  12. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  13. Pedogenic Carbonate Concretions in the Russian Chernozem

    SciTech Connect

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  14. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  15. Properties of high-performance concrete containing shrinkage-reducing admixture

    SciTech Connect

    Folliard, K.J.; Berke, N.S.

    1997-09-01

    The effects of a recently developed shrinkage-reducing admixture on high-performance concrete properties are described. High-performance concrete mixtures containing silica fume were cast with and without shrinkage-reducing admixture. The mechanical properties, drying shrinkage, and resistance to restrained shrinkage cracking were investigated. The results show that the shrinkage-reducing admixture effectively reduced the shrinkage of high-performance concrete, and resulted in a significant decrease in restrained shrinkage cracking.

  16. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  17. The Structure of Concrete Operational Thought.

    ERIC Educational Resources Information Center

    Tomlinson-Keasey, C.: And Others

    1979-01-01

    In a four-year longitudinal study of the development of concrete operational thought, children were administered tests assessing seriation; numeration; class inclusion; hierarchical classification; and conservation of mass, weight, and volume. Levels of seriation and numeration skills in kindergarten were powerful predictors of the acquisition of…

  18. Sensitivity of concrete properties to the pore structure of hardened cement paste

    SciTech Connect

    Oktar, O.N.; Moral, H.; Tasdemir, M.A.

    1996-11-01

    Coefficients and degrees of sensitivity are introduced to define quantitatively the sensitivity of concrete properties to the pore structure of cement paste. Proposed parameters have been applied to experimental data obtained from 60 different concrete mixtures, measuring eight properties for each mix and the results obtained have been discussed and evaluated.

  19. Concrete sample point: 304 Concretion Facility

    SciTech Connect

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  20. Promoting the use of crumb rubber concrete in developing countries.

    PubMed

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes. PMID:18956487

  1. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  2. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.

    PubMed

    Kockal, Niyazi Ugur; Ozturan, Turan

    2010-07-15

    Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. PMID:20399557

  3. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. PMID:27016667

  4. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  5. Compressive strength and hydration processes of concrete with recycled aggregates

    SciTech Connect

    Koenders, Eduardus A.B.; Pepe, Marco; Martinelli, Enzo

    2014-02-15

    This paper deals with the correlation between the time evolution of the degree of hydration and the compressive strength of Recycled Aggregate Concrete (RAC) for different water to cement ratios and initial moisture conditions of the Recycled Concrete Aggregates (RCAs). Particularly, the influence of such moisture conditions is investigated by monitoring the hydration process and determining the compressive strength development of fully dry or fully saturated recycled aggregates in four RAC mixtures. Hydration processes are monitored via temperature measurements in hardening concrete samples and the time evolution of the degree of hydration is determined through a 1D hydration and heat flow model. The effect of the initial moisture condition of RCAs employed in the considered concrete mixtures clearly emerges from this study. In fact, a novel conceptual method is proposed to predict the compressive strength of RAC-systems, from the initial mixture parameters and the hardening conditions. -- Highlights: •The concrete industry is more and more concerned with sustainability issues. •The use of recycled aggregates is a promising solution to enhance sustainability. •Recycled aggregates affect both hydration processes and compressive strength. •A fundamental approach is proposed to unveil the influence of recycled aggregates. •Some experimental comparisons are presented to validate the proposed approach.

  6. Recovery of MSWI and soil washing residues as concrete aggregates.

    PubMed

    Sorlini, Sabrina; Abbà, Alessandro; Collivignarelli, Carlo

    2011-02-01

    The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production. Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes. Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m(3) of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation. PMID:20537523

  7. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  8. Effective Young's modulus estimation of concrete

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Li, Y.

    1999-09-01

    A two-step analytical procedure is proposed to evaluate the quantitative influence of the maximum aggregate size and aggregate gradation on the effective Young's modulus of concrete. In the first step, the effective Young's modulus of a specified basic element, which is composed of an aggregate coated with interfacial transition zone and again covered with cement paste, is obtained based on a proposed four-phase sphere model. The theory of elasticity and Eshelby's equivalent medium theory are used to achieve the goal. In the second step, the rule of mixture method is used to estimate the effective Young's modulus of concrete. Following the two-step procedure, the maximum aggregate size and aggregate gradation are included in the formulations for the effective Young's modulus of concrete. The calculated results are compared with experimental results from the literature. The comparison results show a reasonable agreement when isostrain is assumed for every basic element in the second step. Parameters influencing the effective Young's modulus of concrete are discussed via calculated results.

  9. Production of high strength concrete

    SciTech Connect

    Peterman, M.B.; Carrasquillo, R.L.

    1986-01-01

    The criteria for selection of concrete materials and their proportions to producer uniform, economical, high strength concrete are presented in this book. The recommendations provided are based on a study of the interactions among components of plain concrete and mix proportions, and of their contribution to the compressive strength of high strength concrete. These recommendations will serve as guidelines to practicing engineers, in the selection of materials and their proportions for the production of high strength concrete. Increasing demands for improved efficiency and reduced construction costs have resulted in engineers beginning to design large structures using higher strength concrete at higher stress levels. There are definite advantages, both technical and economical, in using high strength concrete. For example, for a given cross section, prestresses concrete bridge girders can carry greater service loads across longer spans if made using high strength concrete. In addition, cost comparisons have shown that the savings obtained are significantly greater than the added cost of the higher quality concrete.

  10. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  11. Concrete production floating platforms

    SciTech Connect

    Letourneur, O.; Falcimaigne, J.

    1981-01-01

    The floating production platforms operating in the North Sea are adapted from drilling semisubmersibles which allow only a limited payload capacity. Experience of concrete production platforms constructed for the North Sea has led Sea Tank Co. to propose a floating platform which offers large payload and oil storage capacities similar to those of existing fixed platforms. Sea Tank Co. and Institut Francais du Petrole joined forces in early 1976 to study the feasibility of a concrete floating production platform incorporating the structure and the production riser together. The results of this 3-yr program show that the concrete floating structure is economically attractive for permanent utilization on a production site. Furthermore, concrete has definite advantages over other materials, in its long term behavior.

  12. Concrete decontamination scoping tests

    SciTech Connect

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete.

  13. An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures

    SciTech Connect

    Leemann, Andreas; Merz, Christine

    2013-07-15

    There is little knowledge about the relation between AAR-induced damage observed in structures and the expansion potential obtained with accelerated tests. In this study, aggregates used in structures damaged by AAR were tested with the microbar test (MBT/AFNOR XP 18-594) and the concrete performance test (CPT/AFNOR P18-454). After the tests, the samples were examined using optical and scanning electron microscopy. Based on the results, the significance of the microbar test has to be examined very critically. The agreement of measured expansion, reacted rock types and the composition of the reaction products between the on-site concrete and the reproduced concrete subjected to the CPT clearly indicates that the reaction mechanisms in the structure and in the concrete performance test are comparable. As such, the concrete performance test seems to be an appropriate tool to test the potential reactivity of specific concrete mixtures.

  14. Segregation of a binary mixture of granular particles

    NASA Astrophysics Data System (ADS)

    Yoon, Kook-Young

    Kinetic theory for a binary mixture of slightly inelastic particles, based on Maxwellian velocity distribution with corrections due to high density, is used to predict segregation of a binary mixture with species differing in sizes and material densities. The relative mean species velocities indicates segregation for a mixture uniformly agitated under gravity. Molecular dynamics simulations of elastic hard spheres and physical experiments with inelastic spheres in a cylindrical container vibrated at high normalized acceleration support this prediction. An analysis for a non-uniformly agitated mixture under gravity provides a general criterion for segregation. We establish the validity of equipartition assumption in this problem. Then, we introduce kinetic theory for mono-disperse disks with a friction model differentiating sticking and sliding collisions and derive a simple way of incorporating friction into theory with effective normal restitution coefficient. We linearize Revised Enskog Theory for a binary mixture of disks with small differences in sizes and masses. By solving a boundary value problem of the mixture sheared between two bumpy circular cells, we provide experimenters a concrete way of testing the theory. We then compare dense Maxwellian theory, from the first problem, with Revised Enskog Theory to see differences and their consequences on the prediction of segregation. In the absence of temperature gradient, with gravity present, they yield similar predictions. However, in the presence of temperature gradient, with gravity absent, they only agree at high volume fractions. Then, we describe a steady fully-developed flow on a bumpy incline, with a kinetic theory for mono-disperse spheres. We test the theory by attempting to reproduce three features of inclined flows from physical experiments and numerical simulations. On failing this, we describe modifications that may salvage the core of the theory with a few assumptions. A chain theory is

  15. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  16. Wooden concrete: High thermal efficiency using waste wood

    SciTech Connect

    Kosny, J.

    1994-09-01

    Wood concrete mixture of wood shavings, lime and cement is widely used in European building construction. In spite of many advantages, this material is almost unknown in the US. Eventual application of wooden concrete in building block production is discussed in this paper. Based on finite difference computer modeling, the thermal performance of several masonry wall systems and their components have been analyzed. The total wall system thermal performance for a typical single-story ranch house also has been determined. At present, typical experimental wall measurements and calculations do not include the effects of building envelope subsystems such as comers, window and door openings, and structural joints with roofs, floors, ceilings, and other walls. In masonry wall systems, these details may represent significant thermal bridges because of the highly conductive structural concrete. Many of the typical thermal bridges may be reduced by application of wood concrete elements.

  17. Blast impact behaviour of concrete with different fibre reinforcement

    NASA Astrophysics Data System (ADS)

    Drdlová, Martina; Čechmánek, René; Řídký, Radek

    2015-09-01

    The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer) of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load). The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  18. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  19. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  20. Versatile inlet system for on-line compound-specific deltaD and delta13C gas chromatography-oxidation/reduction-isotope ratio mass spectrometry analysis of gaseous mixtures.

    PubMed

    Henning, Mark; Strapoć, Dariusz; Lis, Grzegorz P; Sauer, Peter; Fong, Jon; Schimmelmann, Arndt; Pratt, Lisa M

    2007-01-01

    Compound-specific deltaD and delta13C analyses of gas mixtures are useful indicators of geochemical and environmental factors. However, the relative concentrations of individual components in gas mixtures (e.g., H2, CO2, methane, ethane, propane, i-butane, n-butane) may vary over several orders of magnitude. The determination of hydrogen and carbon compound-specific stable isotope ratios requires that the hydrogen and carbon dioxide produced from each separated component has a concentration adjusted to match the dynamic range of the stable isotope mass spectrometer. We present a custom-built gas sampling and injection system (GASIS) linked with a Delta Plus XP mass spectrometer that provides flexibility, ease of operation, and economical use of small gas samples with wide ranges of analyte concentrations. The overall on-line GC-ox/red-IRMS (Gas Chromatography - oxidation/reduction - Isotope Ratio Mass Spectrometry) system consists of (i) a customized GASIS inlet system and (ii) two alternative reactors, namely an oxidative Cu-Ni-Pt reactor at 950 degrees C for production of CO2 and a reductive graphitized Al2O3 reactor at 1420 degrees C for production of H2. In addition, the system is equipped with (iii) a liquid nitrogen spray-cooling unit for cryo-GC-focusing at -20 degrees C, and (iv) a Nafion dryer for removal of water vapor from product CO2. The three injection loops of the GASIS inlet allow flexibility in the volume of injected analyte gas (e.g., from 0.06 to 500 microL) in order to measure reproducible deltaD and delta13C values for gases at concentrations ranging from 100% down to 10 ppm. We calibrate our GC-ox/red-IRMS system with two isotopically distinct methane references gases that are combusted off-line and characterized using dual-inlet IRMS. PMID:17577874

  1. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  2. Effect of processing cement to concrete on hexavalent chromium levels.

    PubMed

    Turk, K; Rietschel, R L

    1993-04-01

    Hexavalent chromium sensitization is known to occur from exposure to cement. Concrete is a mixture of cement, sand, rock, and water. Admixtures are compounds used to retard or accelerate concrete setting time. Some countries use ferrous sulfate to reduce hexavalent chromium in cement. We evaluated and compared hexavalent chromium levels in cement, rock (aggregate), and wet and dry concrete in samples from Singapore, Ireland, Denmark, Australia, and the United States. Cement from Denmark contains ferrous sulfate. The effect of representative admixtures on hexavalent chromium concentration in concrete was also evaluated, but technical limitations made evaluation difficult. Soluble chromium levels in cement ranged from 0.225 mg/kg in the US sample to 0.036 mg/kg in the Singapore sample. Aggregate chromium levels ranged from 0.083 mg/kg in the Denmark sample to < 0.002 mg/kg in the Ireland sample. Fresh US concrete, with 1.27 mg/kg hexavalent chromium, contained the highest level. The Denmark sample, with ferrous sulfate added, was lowest (< 0.01 mg/kg). Hardened concrete levels ranged from 0.104 mg/kg from the Ireland sample to 0.002 mg/kg from the Singapore sample. Therefore, hexavalent chromium levels do appear to be influenced by admixtures and by processing from powdered cement to dry concrete. Ferrous sulfate significantly reduced hexavalent chromium levels in fresh cement. PMID:8508629

  3. Proportioning and performance evaluation of self-consolidating concrete

    NASA Astrophysics Data System (ADS)

    Wang, Xuhao

    A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages

  4. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  5. Chloride contamination of concrete by interaction with PVC combustion gases

    SciTech Connect

    Climent-Llorca, M.A.; Viqueira-Perez, E.; Vera-Almenar, G. de; Lopez-Atalaya, M.M.

    1998-02-01

    Chloride contamination of concrete by interaction with PVC combustion gases has been studied in a small-scale testing chamber, which allows simulating the conditions probably prevailing in PVC fires of different magnitude through variation of the quotient between mass of burnt PVC and exposed concrete surface (PVC/S). In all cases, a steep gradient of chloride concentration with depth is found after the fire: most chloride is detected in the outermost layer at depths below 5 mm. Surface chloride contents (within 5 mm) for prestressed and reinforced concretes, tested with a high (PVC/S) ratio, are as high as 2.5 and 5% by weight of cement, respectively. Chloride concentrations in concrete near the steels are below the corrosion thresholds after the fire, but they can rise by diffusion to values able to induce rebar corrosion, especially if concrete is exposed to a humid atmosphere.

  6. Reclamation chain of waste concrete: A case study of Shanghai.

    PubMed

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit. PMID:26452425

  7. Generation of sub-ppb level vapor phase mixtures of biogenic volatile organic compounds from liquid phase standards and stepwise characterization of their volatilization properties by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun

    2014-12-19

    In the analysis of biogenic volatile organic compounds (BVOCs) in ambient air, preparation of a sub-ppb level standard is an important factor. This task is very challenging as most BVOCs (e.g., monoterpenes) are highly volatile and reactive in nature. As a means to produce sub-ppb gaseous standards for BVOCs, we investigated the dynamic headspace (HS) extraction technique through which their vapors are generated from a liquid standard (mixture of 10 BVOCs: (1) α-pinene, (2) β-pinene, (3) 3-carene, (4) myrcene, (5) α-phellandrene, (6) α-terpinene, (7) R-limonene, (8) γ-terpinene, (9) p-cymene, and (10) Camphene) spiked into a chamber-style impinger. The quantification of BVOCs was made by collection on multiple-bed sorbent tubes (STs) and subsequent analysis by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Using this approach, sub-ppb level mixtures of gaseous BVOCs were generated at different sweep cycles. The mean concentrations of 10 BVOCs generated from the most stable conditions (i.e., in the third sweep cycle) varied in the range of 0.37±0.05 to 7.27±0.86ppb depending on the initial concentration of liquid standard spiked into the system. The reproducibility of the gaseous BVOCs generated as mixture standards, if expressed in terms of relative standard error using the concentration datasets acquired under stable conditions, ranged from 1.64 (α-phellandrene) to 9.67% (R-limonene). PMID:25464998

  8. Resin systems for producing polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    When plastics are combined with mixtures of inorganic materials, high-strength, durable, fast-setting composites are produced. These materials are used in structural engineering and other applications, and as a result of the many commercial successes that have been achieved, considerable research and development work is in progress throughout the world. One family of polymer-based composites receiving considerable attention is called polymer concrete. Work in this area is directed toward developing new high-strength durable materials by combining cement and concrete technology with that of polymer chemistry. The purpose of this paper is to discuss the types of resins that can be used to form polymer concretes. Resin selection is normally based upon the desired properties for the composite and cost. However, the physical and chemical properties of the resins before and during curing are also important, particularly for field-applied materials. Currently, for normal temperature (0/degree/ to 30/degree/C) applications, epoxy resins, vinyl monomers such as polyester-styrene, methylmethacrylate, furfuryl alcohol, furan derivatives, urethane, and styrene, are being used. Styrene-trimethylolpropane trimethacrylate (TMPTMA) mixtures and styrene-acrylamide-TMPTMA mixtures yield composites with excellent hydrothermal stability at temperatures up to 150/degree/ and 250/degree/C, respectively, and organosiloxane resins have been successfully tested at 300/degree/C. Of equal importance is the selection of the composition of the inorganic phase of the composite, since chemical interactions between the two phases can significantly enhance the final properties. Further work to elucidate the mechanisms of these interactions is needed. 6 refs.

  9. Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction.

    PubMed

    Bou-Ali, M M; Ahadi, A; Alonso de Mezquia, D; Galand, Q; Gebhardt, M; Khlybov, O; Köhler, W; Larrañaga, M; Legros, J C; Lyubimova, T; Mialdun, A; Ryzhkov, I; Saghir, M Z; Shevtsova, V; Van Vaerenbergh, S

    2015-04-01

    With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions. PMID:25916233

  10. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ