Science.gov

Sample records for mass eigenstate purity

  1. Measurement of the lifetime difference between Bs mass eigenstates.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dörr, C; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ehlers, J; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-03-18

    We present measurements of the lifetimes and polarization amplitudes for B(0)(s)-->J/psiphi and B(0)(d)-->J/psiK(*0) decays. Lifetimes of the heavy and light mass eigenstates in the B(0)(s) system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203+/-15 B(0)(s) decays we obtain tau(L) = (1.05(+0.16)(-0.13) +/- 0.02) ps and tau(H) = (2.07(+0.58)(-0.46) +/- 0.03) ps. Expressed in terms of the difference DeltaGamma(s) and average Gamma(s), of the decay rates of the two eigenstates, the results are DeltaGamma(s)/Gamma(s) = (65(+25)(-33) +/- 1)% and DeltaGamma(s) = (0.47(+0.19)(-0.24) +/- 0.01) ps(-1). PMID:15783473

  2. Mass eigenstates in bimetric theory with matter coupling

    SciTech Connect

    Schmidt-May, Angnis

    2015-01-01

    In this paper we study the ghost-free bimetric action extended by a recently proposed coupling to matter through a composite metric. The equations of motion for this theory are derived using a method which avoids varying the square-root matrix that appears in the matter coupling. We make an ansatz for which the metrics are proportional to each other and find that it can solve the equations provided that one parameter in the action is fixed. In this case, the proportional metrics as well as the effective metric that couples to matter solve Einstein's equations of general relativity including a matter source. Around these backgrounds we derive the quadratic action for perturbations and diagonalize it into generalized mass eigenstates. It turns out that matter only interacts with the massless spin-2 mode whose equation of motion has exactly the form of the linearized Einstein equations, while the field with Fierz-Pauli mass term is completely decoupled. Hence, bimetric theory, with one parameter fixed such that proportional solutions exist, is degenerate with general relativity up to linear order around these backgrounds.

  3. B physics: measurement of the lifetime difference between b_s mass eigenstates

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-04-28

    We present measurements of the lifetimes and polarization amplitudes for B{sub s}{sup 0} {yields} J/{psi}{phi} and B{sub d}{sup 0} {yields} J/{psi} K*{sup 0} decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B{sub s}{sup 0} system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time.

  4. What fraction of boron-8 solar neutrinos arrive at the earth as a nu(2) mass eigenstate?

    SciTech Connect

    Nunokawa, Hiroshi; Parke, Stephen J.; Zukanovich Funchal, Renata; /Sao Paulo U.

    2006-01-01

    We calculate the fraction of B{sup 8} solar neutrinos that arrive at the Earth as a nu{sub 2} mass eigenstate as a function of the neutrino energy. Weighting this fraction with the B{sup 8} neutrino energy spectrum and the energy dependence of the cross section for the charged current interaction on deuteron with a threshold on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the integrated weighted fraction of nu{sub 2}'s to be 91 {+-} 2 % at the 95% CL. This energy weighting procedure corresponds to the charged current response of the Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values for the solar mass squared difference and the mixing angle, obtained by combining the data from all solar neutrino experiments and the reactor data from KamLAND. The uncertainty on the nu{sub 2} fraction comes primarily from the uncertainty on the solar delta m{sup 2} rather than from the uncertainty on the solar mixing angle or the Standard Solar Model. Similar results for the Super-Kamiokande experiment are also given. We extend this analysis to three neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata mixing matrix element U{sub e2} as well as place a lower bound on the electron number density in the solar B{sup 8} neutrino production region.

  5. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  6. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    SciTech Connect

    Schaefer, R. T.; Mojarradi, M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-15

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  7. Preparation of high-purity Cu films by non-mass separated ion beam deposition

    NASA Astrophysics Data System (ADS)

    Lim, J.-W.; Mimura, K.; Miyake, K.; Yamashita, M.; Isshiki, M.

    2003-05-01

    Cu films were deposited on Si(1 0 0) substrates by applying a negative substrate bias voltage using non-mass separated ion beam deposition (IBD) method. By the SIMS results with Cs + ion beam, the Cu film deposited at VS=0 V was found to contain more impurities than the Cu film deposited at VS=-50 V. On the other hand, from the SIMS results with O 2+ ion beam, it was found that elements which are easy to be positive ions such as B, Mg, Na, Al, K, Ca and Fe seem to be increased slightly as compared to the those of the Cu film deposited at VS=0 V. As a result, higher-purity Cu film deposited at VS=-50 V could be obtained in comparison with the film deposited at VS=0 V. The purification effect of the Cu film deposited at VS=-50 V was described in details.

  8. Improvements in bis(cyclopentadienyl)magnesium purity as determined with gas chromatography-mass spectroscopy

    SciTech Connect

    BARTRAM,MICHAEL E.

    2000-03-08

    Bis(cyclopentadienyl)magnesium (MgCp2) is used commonly as a source for doping nitride materials with magnesium. Increased oxygen incorporation known to accompany the use of MgCp2 makes the purity of this precursor an important consideration in nitride CVD. Gas chromatography-mass spectroscopy (GCMS) methods have now been developed for the identification of volatile impurities in MgCp2. Diethylether, an oxygen containing organic compound (CH{sub 3}CH{sub 2}OCH{sub 2}CH{sub 3}), and additional organic impurities were found in the MgCp2 supplied by three manufacturers. Subsequent refinements in the synthetic processes by these companies have resulted in the availability of MgCp2 free of ether and other organic impurities as determined by GCMS.

  9. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  10. Entanglement and localization transitions in eigenstates of interacting chaotic systems.

    PubMed

    Lakshminarayan, Arul; Srivastava, Shashi C L; Ketzmerick, Roland; Bäcker, Arnd; Tomsovic, Steven

    2016-07-01

    The entanglement and localization in eigenstates of strongly chaotic subsystems are studied as a function of their interaction strength. Excellent measures for this purpose are the von Neumann entropy, Havrda-Charvát-Tsallis entropies, and the averaged inverse participation ratio. All the entropies are shown to follow a remarkably simple exponential form, which describes a universal and rapid transition to nearly maximal entanglement for increasing interaction strength. An unexpectedly exact relationship between the subsystem averaged inverse participation ratio and purity is derived that prescribes the transition in the localization as well. PMID:27575066

  11. Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinquan; Liu, Jinglei; Yi, Yong; Liu, Yonglin; Li, Xiang; Su, Yaqin; Lin, Ping

    2007-01-01

    A method for the determination of trace of 14 rare earth elements (REEs) as impurities in high purity samarium oxide (Sm2O3) using inductively coupled plasma mass spectrometry (ICP-MS) was described. Analytes, such as La, Ce, Pr, Nd, Eu, Gd, Tb, Lu and Y were measured without Sm matrix separation because of no interference problems occurring that could affect the analysis of these elements. On the other hand, analytes, such as Dy, Ho, Er, Tm and Yb were carried out after Sm matrix being eliminated completely by means of 2-ethylhexyl hydrogen-ethylhexy phosphonate (EHEHP) extraction chromatographic separation. The inherent problem associated with matrix-induced suppression was effectively compensated with spiking In as internal standard element and the mass spectra isobaric interferences of atomic and molecular ions arose from Sm matrix had been overcome after the removal of Sm matrix. The limits of quantitations (LOQ) for 14 REEs impurities were from 0.01 to 0.07 [mu]g g-1 together with the recoveries of spiking sample of 14 REEs were found to be in the range of 85-110% and the proposed method precision was less than 5%. A synthetic standard Sm2O3 sample with well-known 14 REEs concentrations was prepared and analysed in order to prove the accuracy and precision of the proposed method together with another high purity Sm2O3 was also measured using ICP-MS. The methodology had been found to be suitable for the determination of trace of 14 REEs in 99.999-99.9999% high purity Sm2O3.

  12. Determination of trace elements in high purity alumina powder by helium enhanced direct current glow discharge mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jung, Sehoon; Kim, Sunhye; Hinrichs, Joachim

    2016-08-01

    Trace impurities in high purity alumina powder were determined by fast flow direct current glow discharge mass spectrometry (GD-MS). The non-conductive samples were prepared with high purity graphite powder and used as a sample binder and as a secondary cathode. To improve the sensitivity of the GD-MS analysis, helium was introduced as an additional glow discharge gas to argon plasma. The quantification results of the GD-MS measurement were calculated by external calibration with matrix matched certified reference materials. The GD-MS results for the determination of Na, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn and Ga in the alumina samples agreed well with the certified values of a reference material and the results of chemical analysis using wet sample digestion with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The GD-MS analysis is a rapid analysis technique to determine trace elements in non-conductive alumina to below mg·kg- 1 levels.

  13. Determination of trace impurities in high purity gold by inductively coupled plasma mass spectrometry with prior matrix removal by electrodeposition

    NASA Astrophysics Data System (ADS)

    Sun, Y. C.; Hsieh, C. H.; Lin, T. S.; Wen, J. C.

    2000-09-01

    A novel method for the determination of 11 trace impurities (Be, Mg, Cr, Mn, Ni, Cu, Zn, Ag, Pd, Sn and Pb) in high purity gold with a combination of electrochemical deposition separation and inductively coupled plasma mass spectrometric measurement was investigated. In the present study, an efficient separation procedure was developed to remove the gold matrix by the electrodepositon method on the basis of the difference in reduction potential of gold and the other trace impurities. The effects of deposition potential, deposition time and composition of the electrolyte on the separation efficiency were studied. According to our experimental results, most impurities, except for silver, can remain in the electrolyte and the interference from gold can be completely removed through the application of electrodeposition at suitable potential. To achieve simultaneous separation of silver from the gold matrix, a unique complexation reaction between silver ions and ammonia ions was successfully employed to alter the reduction potential of silver ion. By way of a suitable adjustment of the deposition potential and the composition of electrolytes, the spike recoveries of 11 interesting impurities were found to be in the range of 85-105%. The limit of detection (based on the 3-σ criterion) of these elements was 10 -1-10 -2 μg g -1. The applicability of the proposed method has also been validated by the analysis of high purity gold reference materials (FAU9 and FAU11, Royal Canadian Mint). Comparing with the certified values, the recoveries of interesting elements were found to be in the range of 82-118% through the use of proposed method.

  14. Anderson transition for Google matrix eigenstates

    NASA Astrophysics Data System (ADS)

    Zhirov, O. V.; Shepelyansky, D. L.

    2015-10-01

    We introduce a number of random matrix models describing the Google matrix G of directed networks. The properties of their spectra and eigenstates are analyzed by numerical matrix diagonalization. We show that for certain models it is possible to have an algebraic decay of PageRank vector with the exponent similar to real directed networks. At the same time the spectrum has no spectral gap and a broad distribution of eigenvalues in the complex plain. The eigenstates of G are characterized by the Anderson transition from localized to delocalized states and a mobility edge curve in the complex plane of eigenvalues.

  15. PILOT STUDY: An international comparison of mass fraction purity assignment of theophylline: CCQM Pilot Study CCQM-P20.e (Theophylline)

    NASA Astrophysics Data System (ADS)

    Westwood, S.; Josephs, R.; Daireaux, A.; Wielgosz, R.; Davies, S.; Kang, M.; Ting, H.; Phillip, R.; Malz, F.; Shimizu, Y.; Frias, E.; Pérez, M.; Apps, P.; Fernandes-Whaley, M.; DeVos, B.; Wiangnon, K.; Ruangrittinon, N.; Wood, S.; Duewer, D.; Schantz, M.; Bedner, M.; Hancock, D.; Esker, J.

    2009-01-01

    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a laboratory comparison, CCQM-P20.e, was coordinated by the Bureau International de Poids et Mesures (BIPM) in 2006/2007. Nine national measurement institutes, two expert laboratories and the BIPM participated in the comparison. Participants were required to assign the mass fraction of theophylline present as the main component in two separate study samples (CCQM-P20.e.1 and CCQM-P20.e.2). CCQM-P20.e.1 consisted of a high-purity theophylline material obtained from a commercial supplier. CCQM-P20.e.2 consisted of theophylline to which known amounts of the related structure compounds theobromine and caffeine were added in a homogenous, gravimetrically controlled fashion. For the CCQM-P20.e.2 sample it was possible to estimate gravimetric reference values both for the main component and for the two spiked impurities. In addition to assigning the mass fraction content of theophylline for both materials, participants were requested but not obliged to provide mass fraction estimates for the minor components they identified in each sample. The results reported by the study participants for the mass fraction content of theophylline in both materials showed good levels of agreement both with each other and with the gravimetric reference value assigned to the CCQM-P20.e.2 material. There was also satisfactory agreement overall, albeit at higher levels of uncertainty, in the quantification data reported for the minor components present in both samples. In the few cases where a significant deviation was observed from the consensus values reported by the comparison participants or gravimetric reference values where these where available, they appeared to arise from the use of non-optimal chromatographic separation conditions. The results demonstrate the feasibility for laboratories to assign mass fraction content with associated absolute expanded

  16. Determination of trace phosphorus in high purity tantalum materials by inductively coupled plasma mass spectrometry subsequent to matrix separation with on-line anion exchange/coprecipitation.

    PubMed

    Kozono, Shuji; Takahashi, Shigeto; Haraguchi, Hiroki

    2002-02-01

    An on-line matrix separation/inductively coupled plasma mass spectrometry (ICP-MS) method is proposed for the determination of trace amounts of phosphorus in high purity tantalum metal, tantalum (V) oxide, and tantalum pentaethoxide. In the present method, the matrix tantalum in the sample solution was adsorbed on the anion exchange resin, and phosphorus (phosphate ion) was eluted with the carrier solution of HF and HNO3 mixture. Then, the effluent solution was subsequently mixed with bismuth solution and aqueous ammonia solution to coprecipitate phosphate together with bismuth hydroxide. The precipitate formed was collected on the in-line membrane filter to wash out nitric acid with pure water, and then dissolved with hydrochloric acid. The obtained phosphorus sample solution was introduced directly into the nebulizer of ICP-MS for the determination of phosphorus. Phosphorus was determined at the molecular ion signal of 31P16O+ (m/z 47). The detection limit (3sigma) of phosphorus in the present method was 1.3 ng mL(-1) as the sample solution basis, and the relative standard deviation for 30 ng mL(-1) of phosphorus in the standard solution was 4.3% in the replicate measurements (n=11). The present method was applied to the analysis of high purity tantalum materials. The concentrations of phosphorus in tantalum samples were in fairly good agreement with those obtained by glow discharge mass spectrometry (GDMS). PMID:11939629

  17. Final report on key comparison CCQM-K55.a (estradiol): An international comparison of mass fraction purity assignment of estradiol

    NASA Astrophysics Data System (ADS)

    Westwood, Steven; Josephs, Ralf; Daireaux, Adeline; Wielgosz, Robert; Davies, Stephen; Wang, Hongjie; Rodrigues, Jainana; Wollinger, Wagner; Windust, Anthony; Kang, Ma; Fuhai, Su; Philipp, Rosemarie; Kuhlich, Paul; Wong, Siu-kay; Shimizu, Yoshitaka; Pérez, Melina; Avila, Marco; Fernandes-Whaley, Maria; Prevoo, D.; de Vos, J.; Visser, R.; Archer, M.; LeGoff, Thierry; Wood, Steve; Bearden, Dan; Bedner, Mary; Boroujerdi, Arezue; Duewer, David; Hancock, Diane; Lang, Brian; Porter, Barbara; Schantz, Michele; Sieber, John; White, Edward; Wise, Stephen A.

    2012-01-01

    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.a, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2009/2010. Eleven national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of estradiol present as the main component in the comparison sample (CCQM-K55.a) which consisted of a bulk estradiol hemihydrate material obtained from a commercial supplier that had been extensively but not exhaustively dried prior to sub-division into the units supplied for the comparison. Estradiol was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300-500 Da] and low polarity (pKOW < -2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC) or by high performance liquid chromatography (LC). The majority of participants used a mass balance approach to determine the estradiol content. The key comparison reference value (KCRV) for estradiol in CCQM-K55.a was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. This allowed participants to demonstrate the efficacy (or otherwise) of their implementation of the mass balance approach and to demonstrate that their assigned value for the main component agreed with the KCRV through use of internally consistent contributing methods. The KCRV for the estradiol content of the material was 984.3 mg/g with a combined standard uncertainty of 0.42 mg/g. The individual participant results showed that a relative expanded uncertainty for the purity assignment of 0.2% is a reasonable estimate of the best achievable result by an individual laboratory for a material of this complexity available in this amount at this level of

  18. Determination of boron in high-purity tantalum materials by on-line matrix separation/inductively coupled plasma mass spectrometry.

    PubMed

    Kozono, Shuji; Takahashi, Shigeto; Haraguchi, Hiroki

    2002-07-01

    A method for the determination of ultratrace amounts of boron in high-purity tantalum materials [tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide] is described. On-line anion-exchange matrix separation combined with inductively coupled plasma mass spectrometry (ICP-MS) was employed for the determination of boron at the ng g(-1) level. Tantalum materials were dissolved using HF and/or HNO3 prior to analysis. The loss of boron in the sample preparation procedure was examined as the recovery of boron by adding a definite amount of boron to each tantalum material sample before decomposition, and it was almost negligible. In an anion-exchange method using 0.1 M HF carrier solution, tantalum and boron in the sample solution were first adsorbed on a strongly basic anion-exchange resin. Next, boron was eluted from the resin with 5 M HCl, whereas tantalum was retained strongly adsorbed. The eluted boron was introduced directly into the ICP-MS system for quantitative analysis at m/z 10 and 11. Because of the long elution time of boron, the transient signal was integrated in the time range 70-300 s on the chromatogram. Although the elution of boron in the time range was ca. 40% of total boron in the sample solution injected, the determination limits (10sigma) obtained by the present method were 30, 25, 15 and 13 ng g(-1) for tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide, respectively. The method was applied to the determination of boron in commercially available high-purity tantalum materials and it was found that the concentrations of boron were in the ng g(-1)-microg g(-1) range. PMID:12173652

  19. Final report on key comparison CCQM-K55.b (aldrin): An international comparison of mass fraction purity assignment of aldrin

    NASA Astrophysics Data System (ADS)

    Westwood, Steven; Josephs, Ralf; Choteau, Tiphaine; Daireaux, Adeline; Mesquida, Charline; Wielgosz, Robert; Rosso, Adriana; Ruiz de Arechavaleta, Mariana; Davies, Stephen; Wang, Hongjie; Pires do Rego, Eliane Cristina; Marques Rodrigues, Janaína; de Freitas Guimarães, Evelyn; Vinicius Barreto Sousa, Marcus; Monteiro, Tânia Maria; Alves das Neves Valente, Laura; Marques Violante, Fernando Gustavo; Rubim Ribeiro Almeida, Renato; Baptista Quaresma, Maria Cristina; Nogueira, Raquel; Windust, Anthony; Dai, Xinhua; Li, Xiaomin; Zhang, Wei; Li, Ming; Shao, Mingwu; Wei, Chao; Wong, Siu-kay; Cabillic, Julie; Gantois, Fanny; Philipp, Rosemarie; Pfeifer, Dietmar; Hein, Sebastian; Klyk-Seitz, Urszula-Anna; Ishikawa, Keiichiro; Castro, Esther; Gonzalez, Norma; Krylov, Anatoly; Tang Lin, Teo; Tong Kooi, Lee; Fernandes-Whaley, M.; Prévoo, D.; Archer, M.; Visser, R.; Nlhapo, N.; de Vos, B.; Ahn, Seonghee; Pookrod, Preeyaporn; Wiangnon, Kanjana; Sudsiri, Nittaya; Muaksang, Kittiya; Cherdchu, Chainarong; Ceyhan Gören, Ahmet; Bilsel, Mine; LeGoff, Thierry; Bearden, Dan; Bedner, Mary; Duewer, David; Hancock, Diane; Lang, Brian; Lippa, Katrice; Schantz, Michele; Sieber, John

    2012-01-01

    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.b, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2010/2011. Nineteen national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of aldrin present as the main component in the comparison sample for CCQM-K55.b which consisted of technical grade aldrin obtained from the National Measurement Institute Australia that had been subject to serial recrystallization and drying prior to sub-division into the units supplied for the comparison. Aldrin was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300 Da to 500 Da] and low polarity (pKOW < -2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC). The key comparison reference value (KCRV) for the aldrin content of the material was 950.8 mg/g with a combined standard uncertainty of 0.85 mg/g. The KCRV was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 0.3% to 0.6% using a mass balance approach and 0.5% to 1% using a qNMR method. The major analytical challenge posed by the material proved to be the detection and quantification of a significant amount of oligomeric organic material within the sample and most participants relying on a mass balance approach displayed a positive bias relative to the KCRV (overestimation of aldrin content) in excess of 10 mg/g due to not having adequate procedures in place to detect and quantify the non-volatile content—specifically the non-volatile organics content—of the comparison sample. There

  20. Development and validation of a supercritical fluid chromatography method for the direct determination of enantiomeric purity of provitamin B5 in cosmetic formulations with mass spectrometric detection.

    PubMed

    Khater, Syame; West, Caroline

    2015-01-01

    A rapid and efficient chiral supercritical fluid chromatography (SFC) method has been developed for the quantitative determination of panthenol enantiomers in cosmetic formulations (cream, lotion, wipe, and exfoliant). Indeed, the pharmacological effect only depends on the D form (Dexpanthenol) thus accurate measurement of its enantiomeric purity in formulated cosmetic products is of interest. The samples were prepared with liquid-liquid extraction followed by solid-phase extraction on Adsorbex amino cartridges. After testing several enantioselective columns in an attempt at reversing the elution order to have the minor enantiomer eluted first, the best separation of enantiomers and internal standard (N-acetyl-L-alanine) was achieved on a 3 μm-amylose-type immobilized polysaccharide chiral stationary phase (Chiralpak IA) in less than 6 min with a simple mobile phase comprising carbon dioxide and 11% methanol pumped at 2.3 mL/min, 25°C and 150 bar backpressure. Supercritical fluid chromatography coupled to both an optical diode-array detector and a user-friendly single-quadrupole mass spectrometer (Waters QDa) equipped with electrospray ionization source has been used. The on-line coupling ensures the technique to be more informative and improves detection sensitivity, as underivatized panthenol has a poor UV absorption. The limit of quantification (LOQ) achieved with single-ion recording was 0.5 μg/mL. The method was validated in terms of linearity, precision and accuracy and satisfactory results were obtained. PMID:25459930

  1. Interplay of gravitation and linear superposition of different mass eigenstates

    NASA Astrophysics Data System (ADS)

    Ahluwalia, D. V.; Burgard, C.

    1998-04-01

    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein's theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernova, and certain atomic systems is briefly discussed.

  2. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  3. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    SciTech Connect

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.; Day, Anthony R.; Farmer, Orville T.; Hossbach, Todd W.; McIntyre, Justin I.; Miley, Harry S.; Mintzer, Esther E.; Seifert, Allen; Smart, John E.; Warren, Glen A.

    2008-07-01

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS. Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.

  4. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  5. Quantum algorithm for obtaining the eigenstates of a physical system

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng

    2016-05-01

    We propose a quantum algorithm for solving the following problem: given the Hamiltonian of a physical system and one of its eigenvalues, how do we obtain the corresponding eigenstate? The algorithm is based on the resonance phenomenon. For a probe qubit coupled to a quantum system, the system exhibits resonance dynamics when the frequency of the probe qubit matches a transition frequency in the system. Therefore the system can be guided to evolve to the eigenstate with a known eigenvalue by inducing the resonance between the probe qubit and a designed transition in the system. This algorithm can also be used to obtain the energy spectrum of a physical system and can achieve even quadratic speedup over the phase estimation algorithm.

  6. Quantum localization of chaotic eigenstates and the level spacing distribution

    NASA Astrophysics Data System (ADS)

    Batistić, Benjamin; Robnik, Marko

    2013-11-01

    The phenomenon of quantum localization in classically chaotic eigenstates is one of the main issues in quantum chaos (or wave chaos), and thus plays an important role in general quantum mechanics or even in general wave mechanics. In this work we propose two different localization measures characterizing the degree of quantum localization, and study their relation to another fundamental aspect of quantum chaos, namely the (energy) spectral statistics. Our approach and method is quite general, and we apply it to billiard systems. One of the signatures of the localization of chaotic eigenstates is a fractional power-law repulsion between the nearest energy levels in the sense that the probability density to find successive levels on a distance S goes like ∝Sβ for small S, where 0≤β≤1, and β=1 corresponds to completely extended states. We show that there is a clear functional relation between the exponent β and the two different localization measures. One is based on the information entropy and the other one on the correlation properties of the Husimi functions. We show that the two definitions are surprisingly linearly equivalent. The approach is applied in the case of a mixed-type billiard system [M. Robnik, J. Phys. A: Math. Gen.JPHAC50305-447010.1088/0305-4470/16/17/014 16, 3971 (1983)], in which the separation of regular and chaotic eigenstates is performed.

  7. Quantum localization of chaotic eigenstates and the level spacing distribution.

    PubMed

    Batistić, Benjamin; Robnik, Marko

    2013-11-01

    The phenomenon of quantum localization in classically chaotic eigenstates is one of the main issues in quantum chaos (or wave chaos), and thus plays an important role in general quantum mechanics or even in general wave mechanics. In this work we propose two different localization measures characterizing the degree of quantum localization, and study their relation to another fundamental aspect of quantum chaos, namely the (energy) spectral statistics. Our approach and method is quite general, and we apply it to billiard systems. One of the signatures of the localization of chaotic eigenstates is a fractional power-law repulsion between the nearest energy levels in the sense that the probability density to find successive levels on a distance S goes like [proportionality]S(β) for small S, where 0≤β≤1, and β=1 corresponds to completely extended states. We show that there is a clear functional relation between the exponent β and the two different localization measures. One is based on the information entropy and the other one on the correlation properties of the Husimi functions. We show that the two definitions are surprisingly linearly equivalent. The approach is applied in the case of a mixed-type billiard system [M. Robnik, J. Phys. A: Math. Gen. 16, 3971 (1983)], in which the separation of regular and chaotic eigenstates is performed. PMID:24329337

  8. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  9. Quantized Eigenstates of a Classical Particle in a Ponderomotive Potential

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2004-12-21

    The average dynamics of a classical particle under the action of a high-frequency radiation resembles quantum particle motion in a conservative field with an effective de Broglie wavelength ë equal to the particle average displacement on a period of oscillations. In a "quasi-classical" field, with a spatial scale large compared to ë, the guiding center motion is adiabatic. Otherwise, a particle exhibits quantized eigenstates in a ponderomotive potential well, can tunnel through classically forbidden regions and experience reflection from an attractive potential. Discrete energy levels are also found for a "crystal" formed by multiple ponderomotive barriers.

  10. Random Free Fermions: An Analytical Example of Eigenstate Thermalization

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.

    2016-01-01

    Having analytical instances of the eigenstate thermalization hypothesis (ETH) is of obvious interest, both for fundamental and applied reasons. This is generally a hard task, due to the belief that nonlinear interactions are basic ingredients of the thermalization mechanism. In this article we prove that random Gaussian-free fermions satisfy ETH in the multiparticle sector, by analytically computing the correlations and entanglement entropies of the theory. With the explicit construction at hand, we finally comment on the differences between fully random Hamiltonians and random Gaussian systems, providing a physically motivated notion of randomness of the microscopic quantum state.

  11. Random Free Fermions: An Analytical Example of Eigenstate Thermalization.

    PubMed

    Magán, Javier M

    2016-01-22

    Having analytical instances of the eigenstate thermalization hypothesis (ETH) is of obvious interest, both for fundamental and applied reasons. This is generally a hard task, due to the belief that nonlinear interactions are basic ingredients of the thermalization mechanism. In this article we prove that random Gaussian-free fermions satisfy ETH in the multiparticle sector, by analytically computing the correlations and entanglement entropies of the theory. With the explicit construction at hand, we finally comment on the differences between fully random Hamiltonians and random Gaussian systems, providing a physically motivated notion of randomness of the microscopic quantum state. PMID:26849576

  12. Controlling the dark exciton spin eigenstates by external magnetic field

    NASA Astrophysics Data System (ADS)

    Gantz, L.; Schmidgall, E. R.; Schwartz, I.; Don, Y.; Waks, E.; Bahir, G.; Gershoni, D.

    2016-07-01

    We study the dark exciton's behavior as a coherent physical two-level spin system (qubit) using an external magnetic field in the Faraday configuration. Our studies are based on polarization-sensitive intensity autocorrelation measurements of the optical transition resulting from the recombination of a spin-blockaded biexciton state, which heralds the dark exciton and its spin state. We demonstrate control over the dark exciton eigenstates without degrading its decoherence time. Our observations agree well with computational predictions based on a master equation model.

  13. Extended Hellmann-Feynman theorem for degenerate eigenstates

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, Thomas F.

    2004-04-01

    In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem (HFT) for degenerate eigenstates. This has generated enormous interest among different groups. In four independent papers by Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces correctly reflect the symmetry of the molecule.

  14. Quantum backflow states from eigenstates of the regularized current operator

    NASA Astrophysics Data System (ADS)

    Halliwell, J. J.; Gillman, E.; Lennon, O.; Patel, M.; Ramirez, I.

    2013-11-01

    We present an exhaustive class of states with quantum backflow—the phenomenon in which a state consisting entirely of positive momenta has negative current and the probability flows in the opposite direction to the momentum. They are characterized by a general function of momenta subject to very weak conditions. Such a family of states is of interest in the light of a recent experimental proposal to measure backflow. We find one particularly simple state which has surprisingly large backflow—about 41% of the lower bound on flux derived by Bracken and Melloy. We study the eigenstates of a regularized current operator and we show how some of these states, in a certain limit, lead to our class of backflow states. This limit also clarifies the correspondence between the spectrum of the regularized current operator, which has just two non-zero eigenvalues in our chosen regularization, and the usual current operator.

  15. LETTER TO THE EDITOR: Universal features of localized eigenstates in disordered systems

    NASA Astrophysics Data System (ADS)

    Ludlam, J. J.; Taraskin, S. N.; Elliott, S. R.; Drabold, D. A.

    2005-08-01

    Localization-delocalization transitions occur in problems ranging from semiconductor-device physics to propagation of disease in plants and viruses on the internet. Here, we report calculations of localized electronic and vibrational eigenstates for remarkably different, mostly realistic, disordered systems and point out similar characteristics in the cases studied. We show in each case that the eigenstates may be decomposed into exponentially localized islands which may appear in many different eigenstates. In all cases, the decay length of the islands increases only modestly near the localization-delocalization transition; the eigenstates become extended primarily by proliferation (growth in number) of islands near the transition. Recently, microphotoluminescence experiments (Guillet et al 2003 Phys. Rev. B 68 045319) have imaged exciton states in disordered quantum wires, and these bear a strong qualitative resemblance to the island structure of eigenstates that we have studied theoretically.

  16. An international comparison of mass fraction purity assignment of digoxin: The Comité Consultatif pour la Quantité de Matière (CCQM) Pilot Study CCQM-P20.f (Digoxin)

    NASA Astrophysics Data System (ADS)

    Westwood, S.; Josephs, R.; Choteau, T.; Mesquida, C.; Daireaux, A.; Wielgosz, R.; Davies, S.; Windust, A.; Kang, M.; Ting, H.; Kato, K.; Frias, E.; Pérez, M.; Apps, P.; Fernandes-Whaley, M.; Wiangnon, K.; Ruangrittinon, N.; Wood, S.; LeGoff, T.; Duewer, D.; Schantz, M.; Siekmann, L.; Esker, J.

    2011-01-01

    results. Unlike the CCQM-P20.e samples, in which the major impurities were solely related structure organic compounds, the CCQM-P20.f study material contained significant levels of residual organic solvents (ethanol, dichloromethane and to a lesser extent toluene). The majority of participants failed to detect and allow for the presence of this class of impurity, introducing a bias towards overestimation of digoxin content in most of the individual results. However, the uncertainty budgets produced by several participants were sufficiently conservative such that their reported results were nevertheless consistent with the reference value for digoxin content assigned using a consensus mass balance approach. The results of the comparison reinforce the conclusion from previous rounds of the CCQM-P20 study that care in developing and validating the suitability of the chromatographic separation method used to resolve the main component from the related structure impurities present is essential to obtaining reliable, comparable results when using the mass balance approach to estimate purity. This specific comparison has demonstrated that, in addition to developing an appropriate chromatographic separation, it is also important to use complementary techniques capable of detecting all potential orthogonal classes of impurities if it is desired to demonstrate a general capability to assign purity with a small (<0.2% relative) standard uncertainty. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM OAWG.

  17. Determination of ultratrace impurity elements in high purity niobium materials by on-line matrix separation and direct injection/inductively coupled plasma mass spectrometry.

    PubMed

    Kozono, Shuji; Haraguchi, Hiroki

    2007-07-31

    The determination of 52 impurity elements in niobium materials (niobium metal, niobium oxide (V), and niobium pentaethoxide) was performed by inductively coupled plasma mass spectrometry (ICP-MS) with on-line anion exchange matrix separation as well as direct nebulization. Niobium material samples were decomposed with a mixture of hydrofluoric acid and nitric acid to prepare 10% niobium solutions. In the on-line anion exchange matrix separation/ICP-MS, the niobium and hydrofluoric acid concentrations in sample solution were adjusted to 5% and ca. 8M, respectively. The solution was then injected into the carrier stream from the sample loop of injection valve to pass through an anion exchange resin column. In the anion exchange separation, niobium in the fluoro-complex form was adsorbed on the resin, while impurity elements were eluted. The eluted elements were introduced into ICP-MS for the determination of 25 impurity elements. On the other hand, 27 impurity elements could not be separated well from niobium matrix under the above anion exchange conditions, and then the sample solution with the niobium concentration of max. 0.2% containing internal standard elements was injected from the sample loop of injection valve directly to introduce into ICP-MS. As a result, 52 impurity elements in three kinds of niobium materials could be determined at the ng g(-1) level. PMID:19071834

  18. Algebraic Construction of the Eigenstates for the Second Conserved Operator of the Quantum Calogero Model

    NASA Astrophysics Data System (ADS)

    Ujino, Hideaki; Wadati, Miki

    1996-03-01

    An algebraic construction of the eigenstates for the quantum Calogero modelis investigated. Extending the method of Lapointe and Vinet, weconstruct the eigenstates for the second conservedoperator of the quantum Calogero model.All the eigenstates can be factorizedinto symmetric polynomials which we call “Hi-Jack symmetric polynomials”and the ground state wave function.The conjectured formula for the eigenvalue of the second conserved operatoris confirmed.The Hi-Jack polynomials are strong candidates for the orthogonalbasis of the quantum Calogero model.

  19. Elimination of chromatographic and mass spectrometric problems in GC-MS analysis of Lavender essential oil by multivariate curve resolution techniques: Improving the peak purity assessment by variable size moving window-evolving factor analysis.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni-Pourasil, Roudabeh Sadat; Sereshti, Hassan

    2015-03-01

    In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The proposed methodology was applied to the GC-MS analysis of Iranian Lavender essential oil, which resulted in extending the number of identified constituents from 56 to 143 components. It was found that the most abundant constituents of the Iranian Lavender essential oil are α-pinene (16.51%), camphor (10.20%), 1,8-cineole (9.50%), bornyl acetate (8.11%) and camphene (6.50%). This indicates that the Iranian type Lavender contains a relatively high percentage of α-pinene. Comparison of different types of Lavender essential oils showed the composition similarity between Iranian and Italian (Sardinia Island) Lavenders. PMID:25621436

  20. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  1. Direct Neutrino Mass Searches

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  2. Enhanced Detection of Low-Abundance Host Cell Protein Impurities in High-Purity Monoclonal Antibodies Down to 1 ppm Using Ion Mobility Mass Spectrometry Coupled with Multidimensional Liquid Chromatography.

    PubMed

    Doneanu, Catalin E; Anderson, Malcolm; Williams, Brad J; Lauber, Matthew A; Chakraborty, Asish; Chen, Weibin

    2015-10-20

    The enormous dynamic range of proteinaceous species present in protein biotherapeutics poses a significant challenge for current mass spectrometry (MS)-based methods to detect low-abundance HCP impurities. Previously, an HCP assay based on two-dimensional chromatographic separation (high pH/low pH) coupled to high-resolution quadrupole time-of-flight (QTOF) mass spectrometry and developed in the author's laboratory has been shown to achieve a detection limit of about 50 ppm (parts per milion) for the identification and quantification of HCPs present in monoclonal antibodies following Protein A purification.1 To improve the HCP detection limit we have explored the utility of several new analytical techniques for HCP analysis and thereby developed an improved liquid chromatography-mass spectrometry (LC-MS) methodology for enhanced detection of HCPs. The new method includes (1) the use of a new charge-surface-modified (CSH) C18 stationary phase to mitigate the challenges of column saturation, peak tailing, and distortion that are commonly observed in the HCP analysis; (2) the incorporation of traveling-wave ion mobility (TWIM) separation of coeluting peptide precursors, and (3) the improvement of fragmentation efficiency of low-abundance HCP peptides by correlating the collision energy used for precursor fragmentation with their mobility drift time. As a result of these improvements, the detection limit of the new methodology was greatly improved, and HCPs present at a concentration as low as 1 ppm (1 ng HCP/mg mAb) were successfully identified and quantified. The newly developed method was applied to analyze two high-purity mAbs (NIST mAb and Infliximab) expressed in a murine cell line. For both samples, low-abundance HCPs (down to 1 ppm) were confidently identified, and the identities of the HCPs were further confirmed by targeted MS/MS experiments. In addition, the performance of the assay was evaluated by an interlaboratory study in which three independent

  3. Eigenstate-Assisted Longitudinal Quantum State Transfer and Qubit Storage in Photonic and Spin Lattices

    NASA Astrophysics Data System (ADS)

    Perez-Leija, Armando; Grafe, Markus; Heilmann, Rene; Keil, Robert; Stutzer, Simon; Weimann, Steffen; Christodoulides, Demetrios N.; Szameit, Alexander

    2014-05-01

    Coherent transport of quantum information between distant nodes plays a role of paramount importance for developing fair quantum computing technologies. In that vein, in this contribution we propose a novel photonic lattice system allowing the perfect transmission of photon encoded quantum information. The basic idea is to use the stationary nature of the associated eigenstates in order to transfer quantum states over long distances with unit fidelity. The proposed system consists of an array of evanescently coupled waveguides obeying a parabolic law distribution for the coupling strength between neighboring elements. In such an optical system, the eigenstates are readily excited provided single sites are fed with single photons. After the eigenstates have been excited, they propagate for very long distances without any distortion. Once the eigenstate has reached the desired distance, it is transformed into a single-site state simetrically residing on the oposite site of the array, performing so a perfect transfer of the initial state. Using these same principles we demonstrated the possibility of storage qubit in spin chains by exploiting the intrinsic time-invariance of the system eigenstates.

  4. Pair-eigenstates and mutual alignment of coupled molecular rotors in a magnetic field.

    PubMed

    Sharma, Ketan; Friedrich, Bretislav

    2016-05-11

    We examine the rotational states of a pair of polar (2)Σ molecules subject to a uniform magnetic field. The electric dipole-dipole interaction between the molecules creates entangled pair-eigenstates of two types. In one type, the Zeeman interaction between the inherently paramagnetic molecules and the magnetic field destroys the entanglement of the pair-eigenstates, whereas in the other type it does not. The pair-eigenstates exhibit numerous intersections, which become avoided for pair-eigenstates comprised of individual states that meet the selection rules ΔJi = 0, ± 1, ΔNi = 2n (n = 0, ±1, ±2,…), and ΔMi = 0, ± 1 imposed by the electric dipole-dipole operator. Here Ji, Ni and Mi are the total, rotational and projection angular momentum quantum numbers of molecules i = 1, 2 in the absence of the electric dipole-dipole interaction. We evaluate the mutual alignment of the pair-eigenstates and find it to be independent of the magnetic field, except for states that undergo avoided crossings, in which case the alignment of the interacting states is interchanged at the magnetic field corresponding to the crossing point. We present an analytic model which provides ready estimates of the pairwise alignment cosine that characterises the mutual alignment of the pair of coupled rotors. PMID:27126576

  5. Characterizing eigenstate thermalization via measures in the Fock space of operators

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Liang; Hosur, Pavan

    The eigenstate thermalization hypothesis (ETH) attempts to bridge the gap between quantum mechanical and statistical mechanical descriptions of isolated quantum systems. Here, we define unbiased measures for how well the ETH works in various regimes, by mapping general interacting quantum systems on regular lattices onto a single particle living on a high-dimensional graph. By numerically analyzing deviations from ETH behavior in the non-integrable Ising model, we propose quantities that we call the ''n-weight'' and the ''n-distinguishability'' to democratically characterize the average and the maximum deviations, respectively, for all operators residing on n sites. Along the way, we discover that complicated operators on average are worse than simple ones at distinguishing between neighboring eigenstates, contrary to the naive intuition created by the usual statements of the ETH that few-body (many-body) operators acquire the same (different) expectation values in nearby eigenstates at finite energy density.

  6. Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika; Pollmann, Frank; Sondhi, S. L.

    2016-06-01

    The eigenstates of many-body localized (MBL) Hamiltonians exhibit low entanglement. We adapt the highly successful density-matrix renormalization group method, which is usually used to find modestly entangled ground states of local Hamiltonians, to find individual highly excited eigenstates of MBL Hamiltonians. The adaptation builds on the distinctive spatial structure of such eigenstates. We benchmark our method against the well-studied random field Heisenberg model in one dimension. At moderate to large disorder, the method successfully obtains excited eigenstates with high accuracy, thereby enabling a study of MBL systems at much larger system sizes than those accessible to exact-diagonalization methods.

  7. Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates

    NASA Astrophysics Data System (ADS)

    Fine, Boris V.

    2009-11-01

    This work describes the statistics for the occupation numbers of quantum levels in a large isolated quantum system, where all possible superpositions of eigenstates are allowed provided all these superpositions have the same fixed energy. Such a condition is not equivalent to the conventional microcanonical condition because the latter limits the participating eigenstates to a very narrow energy window. The statistics is obtained analytically for both the entire system and its small subsystem. In a significant departure from the Boltzmann-Gibbs statistics, the average occupation numbers of quantum states exhibit in the present case weak algebraic dependence on energy. In the macroscopic limit, this dependence is routinely accompanied by the condensation into the lowest-energy quantum state. This work contains initial numerical tests of the above statistics for finite systems and also reports the following numerical finding: when the basis states of large but finite random matrix Hamiltonians are expanded in terms of eigenstates, the participation of eigenstates in such an expansion obeys the newly obtained statistics. The above statistics might be observable in small quantum systems, but for the macroscopic systems, it rather re-enforces doubts about self-sufficiency of nonrelativistic quantum mechanics for justifying the Boltzmann-Gibbs equilibrium.

  8. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  9. Production of high purity radiothallium

    DOEpatents

    Lebowitz, Elliot; Greene, Margaret W.

    1976-11-23

    The method of producing high purity thallium-201 for use as a myocardial scanning agent comprising the steps of irradiating a thallium target with protons to give the reaction .sup.203 Tl(p,3n) .sup.201.sub.Pb, separating in ion exchange columns the lead from the thallium isotopes, permitting the lead to decay, and then purifying the thallium solution and converting the thallium present to thallous form in which it can be used.

  10. Purity homophily in social networks.

    PubMed

    Dehghani, Morteza; Johnson, Kate; Hoover, Joe; Sagi, Eyal; Garten, Justin; Parmar, Niki Jitendra; Vaisey, Stephen; Iliev, Rumen; Graham, Jesse

    2016-03-01

    Does sharing moral values encourage people to connect and form communities? The importance of moral homophily (love of same) has been recognized by social scientists, but the types of moral similarities that drive this phenomenon are still unknown. Using both large-scale, observational social-media analyses and behavioral lab experiments, the authors investigated which types of moral similarities influence tie formations. Analysis of a corpus of over 700,000 tweets revealed that the distance between 2 people in a social-network can be predicted based on differences in the moral purity content-but not other moral content-of their messages. The authors replicated this finding by experimentally manipulating perceived moral difference (Study 2) and similarity (Study 3) in the lab and demonstrating that purity differences play a significant role in social distancing. These results indicate that social network processes reflect moral selection, and both online and offline differences in moral purity concerns are particularly predictive of social distance. This research is an attempt to study morality indirectly using an observational big-data study complemented with 2 confirmatory behavioral experiments carried out using traditional social-psychology methodology. PMID:26726910

  11. Preparation of high purity copper fluoride by fluorinating copper hydroxyfluoride

    NASA Technical Reports Server (NTRS)

    King, R. B.; Lundquist, J. R.

    1969-01-01

    Copper fluoride containing no more than 50 ppm of any contaminating element was prepared by the fluorination of copper hydroxyfluoride. The impurity content was obtained by spark source mass spectrometry. High purity copper fluoride is needed as a cathode material for high energy density batteries.

  12. Preparation of high purity phosphorus

    DOEpatents

    Rupp, Arthur F.; Woo, David V.

    1981-01-01

    High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.

  13. Measurement of CP-violating asymmetries in B0 decays to CP eigenstates.

    PubMed

    Aubert, B; Boutigny, D; De Bonis, I; Gaillard, J M; Jeremie, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Dardin, S; Day, C; Dow, S F; Elioff, T; Fan, Q; Gaponenko, I; Gill, M S; Goozen, F R; Gowdy, S J; Gritsan, A; Groysman, Y; Jacobsen, R G; Jared, R C; Kadel, R W; Kadyk, J; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Kolomensky, Y G; Kral, J F; Lafever, R; LeClerc, C; Levi, M E; Lewis, S A; Lionberger, C; Liu, T; Long, M; Lynch, G; Marino, M; Marks, K; Meyer, A B; Mokhtarani, A; Momayezi, M; Nyman, M; Oddone, P J; Ohnemus, J; Oshatz, D; Patton, S; Perazzo, A; Peters, C; Pope, W; Pripstein, M; Quarrie, D R; Rasson, J E; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Stone, R; Telnov, A V; von der Lippe, H; Weber, T; Wenzel, W A; Zisman, M S; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Watson, A T; Watson, N K; Deppermann, T; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Kolachev, G M; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Buchanan, C; Chun, S; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Burke, S; Campagnari, C; Dahmes, B; Hale, D; Hart, P A; Kuznetsova, N; Kyre, S; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Williams, D C; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hanson, J E; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Fahey, S; Ford, W T; Gaede, F; van Hoek, W C; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Warner, D W; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Eckstein, P; Futterschneider, H; Krause, R; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Fouque, G; Gastaldi, F; Matricon, P; Mora de Freitas, P; Renard, C; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Di Lodovico, F; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Pallavicini, M; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; McKay, R; Meyer, W T; Rosenberg, E I; Albert, J N; Beigbeder, C; Benkebil, M; Breton, D; Cizeron, R; Du, S; Grosdidier, G; Hast, C; Höcker, A; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Truong, K; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Brooks, A; Fackler, O; Fujino, D; Lange, D J; Mugge, M; O'Connor, T G; Pedrotti, B; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Yamamoto, B; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Price, D R; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Newman-Coburn, D; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Ford, K; Li, Y; Pavlovich, J; Allison, J; Barlow, R J; Boyd, J T; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Thompson, R J; Weatherall, J H; Bard, R; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenberg, V; Kroeger, R; Reep, M; Reidy, J; Sanders, D A; Summers, D J; Beaulieu, M; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cavallo, N; Cartaro, C; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Heck, J; Brau, J E; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Borsato, E; Colecchia, F; Dal Corso, F; Galeazzi, F; Margoni, M; Marzolla, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Bailly, P; Benayoun, M; Briand, H; Chauveau, J; David, P; De La Vaissière, C; Del Buono, L; Genat, J F; Hamon, O; Le Diberder, F; Lebbolo, H; Leruste, P; Lory, J; Martin, L; Roos, L; Stark, J; Versillé, S; Zhang, B; Manfredi, P F; Ratti, L; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Hairre, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Fernholz, R; Lu, C; McDonald, K T; Miftakov, V; Sands, B; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Bronzini, F; Buccheri, A; Bulfon, C; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Waldi, R; Jacques, P F; Kalelkar, M; Plano, R J; Adye, T; Claxton, B; Franek, B; Galagedera, S; Geddes, N I; Gopal, G P; Lidbury, J; Xella, S M; Aleksan, R; Besson, P; Bourgeois, P; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Gosset, L; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bartelt, J; Becla, J; Bell, R; Bloom, E; Boeheim, C T; Boyarski, A M; Boyce, R F; Bulos, F; Burgess, W; Byers, B; Calderini, G; Claus, R; Convery, M R; Coombes, R; Cottrell, L; Coupal, D P; Coward, D H; Craddock, W W; DeStaebler, H; Dorfan, J; Doser, M; Dunwoodie, W; Ecklund, S; Fieguth, T H; Field, R C; Freytag, D R; Glanzman, T; Godfrey, G L; Grosso, P; Haller, G; Hanushevsky, A; Harris, J; Hasan, A; Hewett, J L; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kawahara, H; Keller, L; Kelsey, M H; Kim, P; Klaisner, L A; Kocian, M L; Krebs, H J; Kunz, P F; Langenegger, U; Langeveld, W; Leith, D W; Louie, S K; Luitz, S; Luth, V; Lynch, H L; MacDonald, J; Manzin, G; Mariske, H; McCulloch, M; McShurley, D; Menke, S; Messner, R; Metcalfe, S; Moffeit, K C; Mount, R; Muller, D R; Nelson, D; Nordby, M; O'Grady, C P; O'Neill, F G; Oxoby, G; Pavel, T; Perl, J; Petrak, S; Putallaz, G; Quinn, H; Raines, P E; Ratcliff, B N; Reif, R; Robertson, S H; Rochester, L S; Roodman, A; Russell, J J; Sapozhnikov, L; Saxton, O H; Schietinger, T; Schindler, R H; Schwiening, J; Seeman, J T; Serbo, V V; Skarpass, K; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; White, J L; Wienands, U; Wisniewski, W J; Young, C C; Zioulas, G; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; De Silva, A; Henderson, R; Berridge, S; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Vuagnin, G; Panvini, R S; Brown, C M; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Elmer, P; Hu, H; Johnson, J R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Moore, T B; Neal, H

    2001-03-19

    We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23x10(6) Upsilon(4S)-->BbarB decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events in which one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta = 0.34+/-0.20 (stat)+/-0.05 (syst). PMID:11289970

  14. Measurement of CP-Violating Asymmetries in B0 Decays to CP Eigenstates

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Boutigny, D.; de Bonis, I.; Gaillard, J.-M.; Jeremie, A.; Karyotakis, Y.; Lees, J. P.; Robbe, P.; Tisserand, V.; Palano, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Reinertsen, P. L.; Stugu, B.; Abbott, B.; Abrams, G. S.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Clark, A. R.; Dardin, S.; Day, C.; Dow, S. F.; Elioff, T.; Fan, Q.; Gaponenko, I.; Gill, M. S.; Goozen, F. R.; Gowdy, S. J.; Gritsan, A.; Groysman, Y.; Jacobsen, R. G.; Jared, R. C.; Kadel, R. W.; Kadyk, J.; Karcher, A.; Kerth, L. T.; Kipnis, I.; Kluth, S.; Kolomensky, Yu. G.; Kral, J. F.; Lafever, R.; Leclerc, C.; Levi, M. E.; Lewis, S. A.; Lionberger, C.; Liu, T.; Long, M.; Lynch, G.; Marino, M.; Marks, K.; Meyer, A. B.; Mokhtarani, A.; Momayezi, M.; Nyman, M.; Oddone, P. J.; Ohnemus, J.; Oshatz, D.; Patton, S.; Perazzo, A.; Peters, C.; Pope, W.; Pripstein, M.; Quarrie, D. R.; Rasson, J. E.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Stone, R.; Telnov, A. V.; von der Lippe, H.; Weber, T.; Wenzel, W. A.; Zisman, M. S.; Bright-Thomas, P. G.; Harrison, T. J.; Hawkes, C. M.; Kirk, A.; Knowles, D. J.; O'Neale, S. W.; Watson, A. T.; Watson, N. K.; Deppermann, T.; Koch, H.; Krug, J.; Kunze, M.; Lewandowski, B.; Peters, K.; Schmuecker, H.; Steinke, M.; Andress, J. C.; Barlow, N. R.; Bhimji, W.; Chevalier, N.; Clark, P. J.; Cottingham, W. N.; de Groot, N.; Dyce, N.; Foster, B.; Mass, A.; McFall, J. D.; Wallom, D.; Wilson, F. F.; Abe, K.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Camanzi, B.; Jolly, S.; McKemey, A. K.; Tinslay, J.; Blinov, V. E.; Bukin, A. D.; Bukin, D. A.; Buzykaev, A. R.; Dubrovin, M. S.; Golubev, V. B.; Ivanchenko, V. N.; Kolachev, G. M.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Salnikov, A. A.; Serednyakov, S. I.; Skovpen, Yu. I.; Telnov, V. I.; Yushkov, A. N.; Lankford, A. J.; Mandelkern, M.; McMahon, S.; Stoker, D. P.; Ahsan, A.; Buchanan, C.; Chun, S.; Macfarlane, D. B.; Prell, S.; Rahatlou, Sh.; Raven, G.; Sharma, V.; Burke, S.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P. A.; Kuznetsova, N.; Kyre, S.; Levy, S. L.; Long, O.; Lu, A.; Richman, J. D.; Verkerke, W.; Witherell, M.; Yellin, S.; Beringer, J.; Dorfan, D. E.; Eisner, A. M.; Frey, A.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Johnson, R. P.; Kroeger, W.; Lockman, W. S.; Pulliam, T.; Sadrozinski, H.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E. N.; Turri, M.; Walkowiak, W.; Williams, D. C.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Hanson, J. E.; Hitlin, D. G.; Metzler, S.; Oyang, J.; Porter, F. C.; Ryd, A.; Samuel, A.; Weaver, M.; Yang, S.; Zhu, R. Y.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Jayatilleke, S. M.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P.; Fahey, S.; Ford, W. T.; Gaede, F.; van Hoek, W. C.; Johnson, D. R.; Michael, A. K.; Nauenberg, U.; Olivas, A.; Park, H.; Rankin, P.; Roy, J.; Sen, S.; Smith, J. G.; Wagner, D. L.; Blouw, J.; Harton, J. L.; Krishnamurthy, M.; Soffer, A.; Toki, W. H.; Warner, D. W.; Wilson, R. J.; Zhang, J.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Dubitzky, R. S.; Eckstein, P.; Futterschneider, H.; Krause, R.; Maly, E.; Müller-Pfefferkorn, R.; Otto, S.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Wilden, L.; Behr, L.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Cohen-Tanugi, J.; Ferrag, S.; Fouque, G.; Gastaldi, F.; Matricon, P.; Mora de Freitas, P.; Renard, C.; Roussot, E.; T'jampens, S.; Thiebaux, C.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; di Lodovico, F.; Khan, A.; Muheim, F.; Playfer, S.; Swain, J. E.; Falbo, M.; Bozzi, C.; Dittongo, S.; Folegani, M.; Piemontese, L.; Treadwell, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Xie, Y.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, M. R.; Pallavicini, M.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Morii, M.; Bartoldus, R.; Dignan, T.; Hamilton, R.; Mallik, U.; Cochran, J.; Crawley, H. B.; Fischer, P. A.; Lamsa, J.; McKay, R.; Meyer, W. T.; Rosenberg, E. I.; Albert, J. N.; Beigbeder, C.; Benkebil, M.; Breton, D.; Cizeron, R.; Du, S.; Grosdidier, G.; Hast, C.; Höcker, A.; Lepeltier, V.; Lutz, A. M.; Plaszczynski, S.; Schune, M. H.; Trincaz-Duvoid, S.; Truong, K.; Valassi, A.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Brooks, A.; Fackler, O.; Fujino, D.; Lange, D. J.; Mugge, M.; O'Connor, T. G.; Pedrotti, B.; Shi, X.; van Bibber, K.; Wenaus, T. J.; Wright, D. M.; Wuest, C. R.; Yamamoto, B.; Carroll, M.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Kay, M.; Payne, D. J.; Sloane, R. J.

    2001-03-01

    We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23×106 ϒ\\(4S\\)-->BB¯ decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events in which one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2β, is derived from the decay time distributions in such events. The result is sin2β = 0.34+/-0.20 \\(stat\\)+/-0.05 \\(syst\\).

  15. Quantum nondemolition measurement of parity and generation of parity eigenstates in optical fields

    SciTech Connect

    Gerry, Christopher C.; Benmoussa, A.; Campos, R. A.

    2005-11-15

    The parity of photonic number states is known to be an important observable for quantized electromagnetic fields with applications to quantum information processing and to Heisenberg-limited measurement of phase shifts in quantum interferometry performed with maximally entangled states and with twin number states. In this paper we describe an approach to the quantum nondemolition measurement of parity for quantized optical fields. The method proposed involves the use of a cross-Kerr interaction where we assume a large Kerr nonlinearity is available through the techniques of electromagnetically induced transparency. Our proposed method does not require the measurement of photon number but rather measures parity directly. The method not only allows for the quantum nondemolition measurement of parity but also allows for the von Neumann projection of parity eigenstates from an arbitrary field state. The generation and detection of higher-order parity eigenstates is also discussed. Losses from dissipation and the effects of detector efficiency are considered.

  16. Quantum thermalization of two coupled two-level systems in eigenstate and bare-state representations

    SciTech Connect

    Liao Jieqiao; Huang Jinfeng; Kuang Leman

    2011-05-15

    We study analytically the quantum thermalization of two coupled two-level systems (TLSs), which are connected with either two independent heat baths (IHBs) or a common heat bath (CHB). We understand the quantum thermalization in eigenstate and bare-state representations when the coupling between the two TLSs is stronger and weaker than the TLS-bath couplings, respectively. In the IHB case, we find that, when the two IHBs have the same temperatures, the two coupled TLSs in eigenstate representation can be thermalized with the same temperature as those of the IHBs. However, in the case of two IHBs at different temperatures, just when the energy detuning between the two TLSs satisfies a special condition, the two coupled TLSs in eigenstate representation can be thermalized with an immediate temperature between those of the two IHBs. In bare-state representation, we find a counterintuitive phenomenon that, under some conditions, the temperature of the TLS connected with the high-temperature bath is lower than that of the other TLS, which is connected with the low-temperature bath. In the CHB case, the coupled TLSs in eigenstate representation can be thermalized with the same temperature as that of the CHB in nonresonant cases. In bare-state representation, the TLS with a larger energy separation can be thermalized to a thermal equilibrium with a lower temperature. In the resonant case, we find a phenomenon of antithermalization. We also study the steady-state entanglement between the two TLSs in both the IHB and CHB cases.

  17. Bound eigenstate dynamics under a sudden shift of the well's wall

    SciTech Connect

    Granot, Er'el; Marchewka, Avi

    2010-03-15

    We investigate the dynamics of the eigenstate of an infinite well under an abrupt shift of the well's wall. It is shown that when the shift is small compared to the initial well's dimensions, the short-time behavior changes from the well-known t{sup 3/2} behavior to t{sup 1/2}. It is also shown that the complete dynamical picture converges to a universal function, which has fractal structure with dimensionality D=1.25.

  18. Complexity in parametric Bose-Hubbard Hamiltonians and structural analysis of eigenstates

    SciTech Connect

    Hiller, Moritz; Kottos, Tsampikos; Geisel, T.

    2006-06-15

    We consider a family of chaotic Bose-Hubbard Hamiltonians parametrized by the coupling strength k between neighboring sites. As k increases the eigenstates undergo changes, reflected in the structure of the local density of states. We analyze these changes, both numerically and analytically, using perturbative and semiclassical methods. Although our focus is on the quantum trimer, the presented methodology is applicable for the analysis of longer lattices as well.

  19. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces.

    PubMed

    Otsuka, P H; Nanri, K; Matsuda, O; Tomoda, M; Profunser, D M; Veres, I A; Danworaphong, S; Khelif, A; Benchabane, S; Laude, V; Wright, O B

    2013-01-01

    Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in governing acoustic confinement in waveguides. However, frequency-domain studies miss vital information concerning the phase of the acoustic field and eigenstate coupling. Using a wide range of wavevectors k, we implement an ultrafast technique to probe the wave field evolution in straight and L-shaped phononic crystal surface-phonon waveguides in real- and k-space in two spatial dimensions, thus revealing the eigenstate-energy redistribution processes and the coupling between different frequency-degenerate eigenstates. Such use of k-t space is a first in acoustics, and should have other interesting applications such as acoustic-metamaterial characterization. PMID:24284621

  20. Characterizing eigenstate thermalization via measures in the Fock space of operators.

    PubMed

    Hosur, Pavan; Qi, Xiao-Liang

    2016-04-01

    The eigenstate thermalization hypothesis (ETH) attempts to bridge the gap between quantum mechanical and statistical mechanical descriptions of isolated quantum systems. Here, we define unbiased measures for how well the ETH works in various regimes, by mapping general interacting quantum systems on regular lattices onto a single particle living on a high-dimensional graph. By numerically analyzing deviations from ETH behavior in the nonintegrable Ising model, we propose a quantity that we call the n-weight to democratically characterize the average deviations for all operators residing on a given number of sites, irrespective of their spatial structure. It appears to have a simple scaling form, which we conjecture to hold true for all nonintegrable systems. A closely related quantity, which we term the n-distinguishability, tells us how well two states can be distinguished if only n-site operators are measured. Along the way, we discover that complicated operators on average are worse than simple ones at distinguishing between neighboring eigenstates, contrary to the naive intuition created by the usual statements of the ETH that few-body (many-body) operators acquire the same (different) expectation values in nearby eigenstates at finite energy density. Finally, we sketch heuristic arguments that the ETH originates from the limited ability of simple operators to distinguish between quantum states of a system, especially when the states are subject to constraints such as roughly fixed energy with respect to a local Hamiltonian. PMID:27176285

  1. Characterizing eigenstate thermalization via measures in the Fock space of operators

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang

    2016-04-01

    The eigenstate thermalization hypothesis (ETH) attempts to bridge the gap between quantum mechanical and statistical mechanical descriptions of isolated quantum systems. Here, we define unbiased measures for how well the ETH works in various regimes, by mapping general interacting quantum systems on regular lattices onto a single particle living on a high-dimensional graph. By numerically analyzing deviations from ETH behavior in the nonintegrable Ising model, we propose a quantity that we call the n -weight to democratically characterize the average deviations for all operators residing on a given number of sites, irrespective of their spatial structure. It appears to have a simple scaling form, which we conjecture to hold true for all nonintegrable systems. A closely related quantity, which we term the n -distinguishability, tells us how well two states can be distinguished if only n -site operators are measured. Along the way, we discover that complicated operators on average are worse than simple ones at distinguishing between neighboring eigenstates, contrary to the naive intuition created by the usual statements of the ETH that few-body (many-body) operators acquire the same (different) expectation values in nearby eigenstates at finite energy density. Finally, we sketch heuristic arguments that the ETH originates from the limited ability of simple operators to distinguish between quantum states of a system, especially when the states are subject to constraints such as roughly fixed energy with respect to a local Hamiltonian.

  2. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate.

    PubMed

    Walsh, Gary F

    2016-03-21

    We propose and numerically demonstrate a Pancharatnam-Berry optical element (PBOE) device that simultaneously sorts spin (SAM) and orbital (OAM) angular momentum. This device exploits the circular polarization selective properties of PBOEs to modulate independently the orthogonal SAM eigenstates within a geometric optical transformation that sorts OAM, enabling single measurement characterization of the full angular momentum eigenstate. This expands the available state space for OAM communication and enables characterization of the eigenmode composition of structured polarization beams. We define the two-dimensional orientation patterns of the transversely varying half-waveplate PBOEs that implement the angular momentum sorter. We show that the device discriminates the OAM and SAM eigenstates of optical beams including laser cavity modes such as Laguerre-Gaussian OAM eigenmodes, Hermite-Gaussian modes, and hybrid modes with complex structured polarization. We also demonstrate that it can determine the m parameter of higher order LGml Laguerre-Gaussian modes. The ability of this device to decode information from spatially structured optical phase has potential for applications in communication, encryption, modal characterization, and scientific measurements. PMID:27136857

  3. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces

    PubMed Central

    Otsuka, P. H.; Nanri, K.; Matsuda, O.; Tomoda, M.; Profunser, D. M.; Veres, I. A.; Danworaphong, S.; Khelif, A.; Benchabane, S.; Laude, V.; Wright, O. B.

    2013-01-01

    Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in governing acoustic confinement in waveguides. However, frequency-domain studies miss vital information concerning the phase of the acoustic field and eigenstate coupling. Using a wide range of wavevectors k, we implement an ultrafast technique to probe the wave field evolution in straight and L-shaped phononic crystal surface-phonon waveguides in real- and k-space in two spatial dimensions, thus revealing the eigenstate-energy redistribution processes and the coupling between different frequency-degenerate eigenstates. Such use of k-t space is a first in acoustics, and should have other interesting applications such as acoustic-metamaterial characterization. PMID:24284621

  4. Global characteristics of all eigenstates of local many-body Hamiltonians: participation ratio and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Beugeling, W.; Andreanov, A.; Haque, Masudul

    2015-02-01

    In the spectrum of many-body quantum systems appearing in condensed matter physics, the low-energy eigenstates were the traditional focus of research. The interest in the statistical properties of the full eigenspectrum has grown more recently, in particular in the context of non-equilibrium questions. Wave functions of interacting lattice quantum systems can be characterized either by local observables or by global properties such as the participation ratio (PR) in a many-body basis or the entanglement between various partitions. We present a study of the PR and of the entanglement entropy (EE) between two roughly equal spatial partitions of the system, in all the eigenfunctions of local Hamiltonians. Motivated by the similarity of the PR and EE—both are generically larger in the bulk and smaller near the edges of the spectrum—we quantitatively analyze the correlation between them. We elucidate the effect of (proximity to) integrability, showing how low-entanglement and low-PR states appear also in the middle of the spectrum as one approaches integrable points. We also determine the precise scaling behaviour of the eigenstate-to-eigenstate fluctuations of the PR and EE with respect to system size and characterize the statistical distribution of these quantities near the middle of the spectrum.

  5. Numerical observation of logarithmically normal eigenstate statistics in weakly disordered two-dimensional metals

    NASA Astrophysics Data System (ADS)

    Lupu-Sax, Adam; Smolyarenko, Igor; Kaplan, Lev; Heller, Eric

    1998-03-01

    Recent theoretical work on statistics of local eigenstate intensities in weakly disordered two-dimensional metals(Falko & Efetov, PRB, 1995, 52(24), 17413-29; Smolyarenko & Altshuler, PRB, 1997, 55(16), 10451-66) predicts a logarithmically normal form of the distribution of local eigenstate intensities |ψ|^2 in the asymptotic region L^2|ψ|^2>>l/ln L, where the mean free path l and the system size L are measured in the units of the wavelength λ. We use a new scattering theory method(Lupu-Sax & Heller, talk in session 38c, paper in preparation) to find and compute eigenstates numerically at high speed which allows us to investigate previously inaccessible tails of the distribution function. We observe the log-normal form of the far asymptotic region of the distribution function of |ψ|^2 in the model of a single particle moving in the potential formed by randomly placed pointlike scatterers in a 2D integrable or chaotic billiard. We study the parameters of the log-normal distribution as functions of l and L and analyze the spatial structure of ``anomalous'' wavefunctions (those with a value of |ψ|^2 satisfying the above inequality somewhere in the sample), as well as the scatterer arrangements which produce them. The results are compared to theoretical predictions^1,(Mirlin, J. Math. Phys., 1997, 38(4), 1888-917).

  6. Purity and adulterant analysis of crack seizures in Brazil.

    PubMed

    Fukushima, André R; Carvalho, Virginia M; Carvalho, Débora G; Diaz, Ernesto; Bustillos, Jose Oscar William Vega; Spinosa, Helenice de S; Chasin, Alice A M

    2014-10-01

    Cocaine represents a serious problem to society. Smoked cocaine is very addictive and it is frequently associated with violence and health issues. Knowledge of the purity and adulterants present in seized cocaine, as well as variations in drug characteristics are useful to identify drug source and estimate health impact. No data are available regarding smoked cocaine composition in most countries, and the smoked form is increasing in the Brazilian market. The purpose of the present study is to contribute to the current knowledge on the status of crack cocaine seized samples on the illicit market by the police of São Paulo. Thus, 404 samples obtained from street seizures conducted by the police were examined. The specimens were macroscopically characterized by color, form, odor, purity, and adulterant type, as well as smoke composition. Samples were screened for cocaine using modified Scott test and thin-layer chromatographic (TLC) technique. Analyses of purity and adulterants were performed with gas chromatography equipped with flame ionization detector (GC-FID). Additionally, smoke composition was analyzed by GC-mass spectrometry (MS), after samples burning. Samples showed different colors and forms, the majority of which is yellow (74.0%) or white (20.0%). Samples free of adulterants represented 76.3% of the total. Mean purity of the analyzed drug was 71.3%. Crack cocaine presented no correlations between macroscopic characteristics and purity. Smoke analysis showed compounds found also in the degradation of diesel and gasoline. Therefore, the drug marketed as crack cocaine in São Paulo has similar characteristics to coca paste. High purity can represent a greater risk of dependency and smoke compounds are possibly worsening drug health impact. PMID:24887446

  7. 21 CFR 610.13 - Purity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Purity. 610.13 Section 610.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.13 Purity. Products shall be free of...

  8. 21 CFR 610.13 - Purity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Purity. 610.13 Section 610.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.13 Purity. Products shall be free of...

  9. 21 CFR 610.13 - Purity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Purity. 610.13 Section 610.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.13 Purity. Products shall be free of...

  10. Strong zero modes and eigenstate phase transitions in the XYZ/interacting Majorana chain

    NASA Astrophysics Data System (ADS)

    Fendley, Paul

    2016-07-01

    I explicitly construct a strong zero mode in the XYZ chain or, equivalently, Majorana wires coupled via a four-fermion interaction. The strong zero mode is an operator that pairs states in different symmetry sectors, resulting in identical spectra up to exponentially small finite-size corrections. Such pairing occurs in the Ising/Majorana fermion chain and possibly in strongly disordered many-body localized phases. The proof here shows that the strong zero mode occurs in a clean interacting system, and that it possesses some remarkable structure—despite being a rather elaborate operator, it squares to the identity. Eigenstate phase transitions separate regions with different strong zero modes.

  11. Controlling the polarization eigenstate of a quantum dot exciton with light.

    PubMed

    Belhadj, Thomas; Simon, Claire-Marie; Amand, Thierry; Renucci, Pierre; Chatel, Beatrice; Krebs, Olivier; Lemaître, Aristide; Voisin, Paul; Marie, Xavier; Urbaszek, Bernhard

    2009-08-21

    We demonstrate optical control of the polarization eigenstates of a neutral quantum dot exciton without any external fields. By varying the excitation power of a circularly polarized laser in microphotoluminescence experiments on individual InGaAs quantum dots we control the magnitude and direction of an effective internal magnetic field created via optical pumping of nuclear spins. The adjustable nuclear magnetic field allows us to tune the linear and circular polarization degree of the neutral exciton emission. The quantum dot can thus act as a tunable light polarization converter. PMID:19792745

  12. Purity analyses of high-purity organic compounds with nitroxyl radicals based on the Curie–Weiss law

    SciTech Connect

    Matsumoto, Nobuhiro Shimosaka, Takuya

    2015-05-07

    This work reports an attempt to quantify the purities of powders of high-purity organic compounds with stable nitroxyl radicals (namely, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl benzoate (4-hydroxy-TEMPO benzoate)) in terms of mass fractions by using our “effective magnetic moment method,” which is based on both the Curie–Weiss law and a fundamental equation of electron paramagnetic resonance (ESR). The temperature dependence of the magnetic moment resulting from the radicals was measured with a superconducting quantum interference device magnetometer. The g value for each compound was measured with an X-band ESR spectrometer. The results of the purities were (0.998 ± 0.064) kg kg{sup −1} for TEMPO, (1.019 ± 0.040) kg kg{sup −1} for TEMPOL, and (1.001 ± 0.048) kg kg{sup −1} for 4-hydroxy-TEMPO benzoate. These results demonstrate that this analytical method as a future candidate of potential primary direct method can measure the purities with expanded uncertainties of approximately 5%.

  13. Exact canonic eigenstates of the truncated Bogoliubov Hamiltonian in an interacting bosons gas

    NASA Astrophysics Data System (ADS)

    Ferrari, Loris

    2016-09-01

    In a gas of N weakly interacting bosons [1,2], a truncated canonic Hamiltonian Hc follows from dropping all the interaction terms between free bosons with momentum ℏk ≠ 0 . Bogoliubov Canonic Approximation (BCA) is a further manipulation, replacing the number operatorN˜in of free particles in k = 0 , with the total number N of bosons. BCA Hc transforms into a different Hamiltonian HBCA =∑k≠0 ɛ(k) Bk† Bk + const , where Bk† and Bk create/annihilate non interacting pseudoparticles. The problem of the exact eigenstates of the truncated Hamiltonian is completely solved in the thermodynamic limit (TL) for a special class of eigensolutions | S , k>c , denoted as 's-pseudobosons', with energies ES(k) and zero total momentum. Some preliminary results are given for the exact eigenstates (denoted as 'η-pseudobosons'), carrying a total momentum ηℏk (η = 1 , 2 , …) . A comparison is done with HBCA and with the Gross-Pitaevskii theory (GPT), showing that some differences between exact and BCA/GPT results persist even in the thermodynamic limit (TL). Finally, it is argued that the emission of η-pseudobosons, which is responsible for the dissipation á la Landau [3], could be significantly different from the usual picture, based on BCA pseudobosons.

  14. Antiperiodic XXZ Chains with Arbitrary Spins: Complete Eigenstate Construction by Functional Equations in Separation of Variables

    NASA Astrophysics Data System (ADS)

    Niccoli, Giuliano; Terras, Véronique

    2015-07-01

    Generic inhomogeneous integrable XXZ chains with arbitrary spins are studied by means of the quantum separation of variables (SOV) method. Within this framework, a complete description of the spectrum (eigenvalues and eigenstates) of the antiperiodic transfer matrix is derived in terms of discrete systems of equations involving the inhomogeneity parameters of the model. We show here that one can reformulate this discrete SOV characterization of the spectrum in terms of functional T - Q equations of Baxter's type, hence proving the completeness of the solutions to the associated systems of Bethe-type equations. More precisely, we consider here two such reformulations. The first one is given in terms of Q-solutions, in the form of trigonometric polynomials of a given degree , of a one-parameter family of T - Q functional equations with an extra inhomogeneous term. The second one is given in terms of Q-solutions, again in the form of trigonometric polynomials of degree but with double period, of Baxter's usual (i.e., without extra term) T - Q functional equation. In both cases, we prove the precise equivalence of the discrete SOV characterization of the transfer matrix spectrum with the characterization following from the consideration of the particular class of Q-solutions of the functional T - Q equation: to each transfer matrix eigenvalue corresponds exactly one such Q-solution and vice versa, and this Q-solution can be used to construct the corresponding eigenstate.

  15. Multifractal structure of eigenstates in the Anderson model with long-range off-diagonal disorder

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.; Schober, H. R.

    1998-05-01

    The spectrum of eigenvalues and the spatial structure of eigenstates for the Anderson model with long-range off-diagonal disorder (Vij=(+/-)/\\|Ri-Rj\\|d) is investigated numerically where Ri are Poisson-distributed random points in d-dimensional space. For this marginal case all states in the system are delocalized. Analyzing the scaling with system size of the inverse participation numbers for the most extended modes we find that these states exhibit a self-similar multifractal structure. The generalized dimensions, Dq, and the multifractal spectrum, f(α), are calculated. For d=3 the information dimension D1=2.65 and the correlation dimension D2=2.33 that characterizes the power-law behavior of the averaged two-particle Green function. The temporal autocorrelation function C(t) built from the eigenstates of the most dispersive oscillator exhibits an nondiffusive algebraic decay C(t)~t-δ with the exponent δ≡D~2=D2/d reflecting the generalized multifractal dimension of the local density of states.

  16. Proportion estimation using prior cluster purities

    NASA Technical Reports Server (NTRS)

    Terrell, G. R. (Principal Investigator)

    1980-01-01

    The prior distribution of CLASSY component purities is studied, and this information incorporated into maximum likelihood crop proportion estimators. The method is tested on Transition Year spring small grain segments.

  17. Mathematics of small stochastic reaction networks: A boundary layer theory for eigenstate analysis

    PubMed Central

    Mjolsness, Eric; Prasad, Upendra

    2013-01-01

    We study and analyze the stochastic dynamics of a reversible bimolecular reaction A + B ↔ C called the “trivalent reaction.” This reaction is of a fundamental nature and is part of many biochemical reaction networks. The stochastic dynamics is given by the stochastic master equation, which is difficult to solve except when the equilibrium state solution is desired. We present a novel way of finding the eigenstates of this system of difference-differential equations, using perturbation analysis of ordinary differential equations arising from approximation of the difference equations. The time evolution of the state probabilities can then be expressed in terms of the eigenvalues and the eigenvectors. PMID:23514469

  18. Mechanical and electronic energy eigenstates of neutral Rb atoms in deep optical lattices

    NASA Astrophysics Data System (ADS)

    Neuzner, Andreas; Koerber, Matthias; Morin, Olivier; Ritter, Stephan; Rempe, Gerhard

    2015-05-01

    Optical lattices allow for tight three-dimensional confinement of neutral atoms in quasi-harmonic potentials and have become a standard tool in experimental quantum optics. Applications range from fundamental topics like metrology to applications in quantum communication and quantum information processing. Here we present an experimental characterization of the motional and internal energy eigenstates of optically trapped 87Rb atoms. We implement different spectroscopy techniques based on non-destructive hyperfine state detection using an optical cavity. Applying these techniques, we observe and explain a series of effects like the decoupling of the hyperfine spin due to a tensor lightshift and mechanical effects associated with a small non-orthogonality of the lattice axes. Furthermore, we succeed to exploit the latter for optical cooling of a single atom into the two-dimensional mechanical groundstate in an environment with restricted optical access.

  19. Initial-state-independent equilibration at the breakdown of the eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Khodja, Abdellah; Schmidtke, Daniel; Gemmer, Jochen

    2016-04-01

    This work aims at understanding the interplay between the eigenstate thermalization hypothesis (ETH), initial state independent equilibration, and quantum chaos in systems that do not have a direct classical counterpart. It is based on numerical investigations of asymmetric Heisenberg spin ladders with varied interaction strengths between the legs, i.e., along the rungs. The relaxation of the energy difference between the legs is investigated. Two different parameters, both intended to quantify the degree of accordance with the ETH, are computed. Both indicate violation of the ETH at large interaction strengths but at different thresholds. Indeed, the energy difference is found not to relax independently of its initial value above some critical interaction strength, which coincides with one of the thresholds. At the same point the level statistics shift from Poisson-type to Wigner-type. Hence, the system may be considered to become integrable again in the strong interaction limit.

  20. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    SciTech Connect

    Eremko, Alexander; Brizhik, Larissa; Loktev, Vadim

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  1. Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices

    PubMed Central

    Dias, R. G.; Gouveia, J. D.

    2015-01-01

    We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette. PMID:26581296

  2. Spectroscopic Determination of Trace Contaminants in High Purity Oxygen

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.

    2011-01-01

    Oxygen used for extravehicular activities (EVA) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. Measurement of oxygen purity above 99.5% is problematic, and currently only complex instruments such as gas chromatographs or mass spectrometers are used for these determinations. Because liquid oxygen boil-off from the space shuttle will no longer be available to supply oxygen for EVA use, other concepts are being developed to produce and validate high purity oxygen from cabin air aboard the International Space Station. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen was developed at White Sands Test Facility. This instrument uses a glow discharge in reduced pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants and may lend itself to a device capable of on-orbit verification of oxygen purity. System design and optimized measurement parameters are presented.

  3. Towards the certification of the purity of calibrant reference materials for thyroid hormones: a chicken and egg dilemma.

    PubMed

    Toussaint, B; Schimmel, H; Klein, C L; Wiergowski, M; Emons, H

    2007-07-13

    The certification of the purity of CRMs intended for calibration, where no other certified material already exists for comparison, raises principle questions on how to determine the purity of a "first" calibrant in the calibration hierarchy. We developed and certified two calibration CRMs for their purity in thyroid hormones taking into consideration inorganic residues, residual solvents and organic impurities detectable by HPLC-UV and HPLC-MS. IRMM-468 was certified for a thyroxine (T(4)) mass fraction of 98.6+/-0.7% and IRMM-469 was certified for a 3,3',5-triiodothyronine (T(3)) mass fraction of 97.1+/-0.7%. The approach we used aims to determine the purity of these two CRMs to the best of our knowledge and taking all scientific aspects properly into account for the estimation of an uncertainty related to the stated purity. PMID:17187812

  4. High purity silane and silicon production

    NASA Technical Reports Server (NTRS)

    Breneman, William C. (Inventor)

    1987-01-01

    Silicon tetrachloride, hydrogen and metallurgical silicon are reacted at about 400.degree.-600.degree. C. and at pressures in excess of 100 psi, and specifically from about 300 up to about 600 psi to form di- and trichlorosilane that is subjected to disproportionation in the presence of an anion exchange resin to form high purity silane. By-product and unreacted materials are recycled, with metallurgical silicon and hydrogen being essentially the only consumed feed materials. The silane product may be further purified, as by means of activated carbon or cryogenic distillation, and decomposed in a fluid bed or free space reactor to form high purity polycrystalline silicon and by-product hydrogen which can be recycled for further use. The process results in simplified waste disposal operations and enhances the overall conversion of metallurgical grade silicon to silane and high purity silicon for solar cell and semiconductor silicon applications.

  5. 21 CFR 610.13 - Purity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... necessary for the continued safety, purity, and potency of the product. (2) Records. Appropriate records for... substances by intravenous injection into rabbits as provided in paragraphs (b) (1) and (2) of this section...; Cryoprecipitate; Plasma; Source Plasma; Normal Horse Serum; bacterial, viral, and rickettsial vaccines...

  6. 7 CFR 201.60 - Purity percentages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Purity percentages. 201.60 Section 201.60 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Tolerances § 201.60...

  7. Microscopic Evaluation of Contaminants in Ultra-High Purity Copper

    SciTech Connect

    Hoppe, Eric W.; Mintzer, Esther E.; Aalseth, Craig E.; Edwards, Danny J.; Farmer, Orville T.; Fast, James E.; Gerlach, David C.; Liezers, Martin; Miley, Harry S.

    2009-10-08

    Copper is one of the very few elements having no relatively long-lived radioisotopes and which can be electrodeposited to ultra-high levels of purity. Next generation experiments probing neutrino properties and searching for direct evidence of Dark Matter require ultra-clean materials, such as copper, containing the smallest quantities obtainable of naturally occurring radioactive contaminants. Copper is also of interest in the material science field for applications requiring low-activity materials, such as in electronics and semi-conductors, an example of which is reduced alpha activity, low-fault integrated circuits. Determining the purity of the copper is of great interest, but even more important is establishing the location of any contamination and its dispersion within the bulk material. Co-deposition of contaminants during copper electrodeposition and its relationship to nucleation and growth processes were investigated using a variety of analytical methods including scanning electron microscopy (SEM), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ionization mass spectrometry (SIMS).

  8. Modified matrix volatilization setup for characterization of high purity germanium.

    PubMed

    Meruva, Adisesha Reddy; Raparthi, Shekhar; Kumar, Sunil Jai

    2016-01-01

    Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1). PMID:26695261

  9. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  10. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.

  11. Rovibrational bound states of neon trimer: quantum dynamical calculation of all eigenstate energy levels and wavefunctions.

    PubMed

    Yang, Benhui; Chen, Wenwu; Poirier, Bill

    2011-09-01

    Exact quantum dynamics calculations of the eigenstate energy levels and wavefunctions for all bound rovibrational states of the Ne(3) trimer (J = 0-18) have been performed using the ScalIT suite of parallel codes. These codes employ a combination of highly efficient methods, including phase-space optimized discrete variable representation, optimal separable basis, and preconditioned inexact spectral transform methods, together with an effective massive parallelization scheme. The Ne(3) energy levels and wavefunctions were computed using a pair-wise Lennard-Jones potential. Jacobi coordinates were used for the calculations, but to identify just those states belonging to the totally symmetric irreducible representation of the G(12) complete nuclear permutation-inversion group, wavefunctions were plotted in hyperspherical coordinates. "Horseshoe" states were observed above the isomerization barrier, but the horseshoe localization effect is weaker than in Ar(3). The rigid rotor model is found to be applicable for only the ground and first excited vibrational states at low J; fitted rotational constant values are presented. PMID:21913762

  12. Magnetizabilities of relativistic hydrogenlike atoms in some arbitrary discrete energy eigenstates

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2016-03-01

    We present the results of numerical calculations of magnetizability (χ) of the relativistic one-electron atoms with a pointlike, spinless and motionless nuclei of charge Ze. Exploiting the analytical formula for χ recently derived by us Stefańska (2015), valid for an arbitrary discrete energy eigenstate, we have found the values of the magnetizability for the ground state and for the first and the second set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, and 3d5/2) of the Dirac one-electron atom. The results for ions with the atomic number 1 ⩽ Z ⩽ 137 are given in 14 tables. The comparison of the numerical values of magnetizabilities for the ground state and for each state belonging to the first set of excited states of selected hydrogenlike ions, obtained with the use of two different values of the fine-structure constant, i.e.: α-1 = 137.035 999 139 (CODATA 2014) and α-1 = 137.035 999 074 (CODATA 2010), is also presented.

  13. Composite and shaped pulses for efficient and robust pumping of disconnected eigenstates in magnetic resonance

    SciTech Connect

    Theis, T.; Feng, Y.; Wu, T.; Warren, W. S.

    2014-01-07

    Hyperpolarization methods, which can enhance nuclear spin signals by orders of magnitude, open up important new opportunities in magnetic resonance. However, many of these applications are limited by spin lattice relaxation, which typically destroys the hyperpolarization in seconds. Significant lifetime enhancements have been found with “disconnected eigenstates” such as the singlet state between a pair of nearly equivalent spins, or the “singlet-singlet” state involving two pairs of chemically equivalent spins; the challenge is to populate these states (for example, from thermal equilibrium magnetization or hyperpolarization) and to later recall the population into observable signal. Existing methods for populating these states are limited by either excess energy dissipation or high sensitivity to inhomogeneities. Here we overcome the limitations by extending recent work using continuous-wave irradiation to include composite and adiabatic pulse excitations. Traditional composite and adiabatic pulses fail completely in this problem because the interactions driving the transitions are fundamentally different, but the new shapes we introduce can move population between accessible and disconnected eigenstates over a wide range of radio-frequency (RF) amplitudes and offsets while depositing insignificant amounts of power.

  14. Time-independent eigenstate-free calculation of vibronic spectra beyond the harmonic approximation

    NASA Astrophysics Data System (ADS)

    Petrenko, Taras; Rauhut, Guntram

    2015-12-01

    The calculation of vibronic spectra and resonance Raman intensities can be performed on the basis of the Raman wavefunction (RWF) formalism. In general, the well-known sum-over-states (SOS) and time-dependent methods can be applied for calculating the RWF. We present an alternative route in which the RWF is determined pointwise in a spectral range on the basis of the inhomogeneous Schrödinger equation using an iterative subspace method, in which explicit state-by-state calculations of vibrational eigenstates are bypassed. We study this approach within the framework of vibrational configuration interaction theory in conjunction with high-level electronic structure calculations for the multidimensional Born-Oppenheimer potential energy surface. The method benefits from an implicit account of interference effects between vibrational states, so that its computational cost correlates with the required resolution in the spectra. The accuracy and efficiency of the method with respect to comparable SOS calculations are tested for the simulation of the photoelectron spectra of ClO2, HS2 - , ZnOH-, and Zn(H2O)+.

  15. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  16. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60.

    PubMed

    Felker, Peter M; Bačić, Zlatko

    2016-05-28

    We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H2O@C60. They provide a comprehensive description of the dynamical behavior of H2O inside the fullerene having icosahedral (Ih) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H2O@C60, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H2O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allow tentative assignments of a number of transitions in the recent experimental INS spectra of H2O@C60 that have not been assigned previously. PMID:27250272

  17. The Analysis of Eigenstates of a Few Generalized Quantum Baker’s Maps Using Hadamard and Related Transforms

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, N.

    Application of the Hadamard and related transforms on a few generalized quantum baker’s maps have been studied. Effectiveness of the Hadamard transform and a new transform which combines the Fourier and the Hadamard transforms, for simplifying the eigenstates or resonances of the quantization of a few generalized baker’s map namely tetradic baker and lazy baker’s map when the Hilbert space dimension is power of 2 has been done by comparing the participation ratios in the transformed basis with respect to the position basis. Several special family of states based on their maximal compression in either Hadamard transform or the new transform are identified and they are related to the ubiquitous Thue-Morse and allied sequences. Evidence is provided that these special family of states as well as average over all eigenstates exhibits multifractal nature.

  18. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H2O@C60

    NASA Astrophysics Data System (ADS)

    Felker, Peter M.; Bačić, Zlatko

    2016-05-01

    We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H2O@C60. They provide a comprehensive description of the dynamical behavior of H2O inside the fullerene having icosahedral (Ih) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H2O@C60, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H2O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allow tentative assignments of a number of transitions in the recent experimental INS spectra of H2O@C60 that have not been assigned previously.

  19. Charge, current and spin densities of a two-electron system in Russell-Saunders spin-orbit coupled eigenstates

    NASA Astrophysics Data System (ADS)

    Ayuel, K.; de Châtel, P. F.; Amani, Salah

    2002-04-01

    Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.

  20. High purity silica reflecting heat shield development

    NASA Technical Reports Server (NTRS)

    Congdon, W.

    1974-01-01

    A reflecting heat shield composed of fused silica in which the scattering results from the refractive index mismatch between silica particles and the voids introduced during the fabrication process is developed. Major considerations and conclusions of the development are: the best material to use is Type A, which is capable of ultra-high-purity and which does not show the 0.243 micrometer absorption band; the reflection efficiency of fused silica is decreased at higher temperatures due to the bathochromic shift of the ultraviolet cut-off; for a given silica material, over the wavelength region and particle sizes tested, the monodisperse particle size configurations produce higher reflectances than continuous particle size configurations; and the smaller monodisperse particle size configurations give higher reflectance than the larger ones. A reflecting silica configuration that is an efficient reflector of shock layer radiation at high ablation temperatures is achieved by tailoring the matrix for optimum scattering and using an ultra-high-purity material.

  1. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Nachtscheim, P. R.; Blome, J. C.

    1976-01-01

    A hyperpure vitreous silica material is being developed for use as a reflective and ablative heat shield for planetary entry. Various purity grades and forms of raw materials were evaluated along with various processing methods. Slip casting of high purity grain was selected as the best processing method, resulting in a highly reflective material in the wavelength bands of interest (the visible and ultraviolet regions). The selected material was characterized with respect to optical, mechanical and physical properties using a limited number of specimens. The process has been scaled up to produce a one-half scale heat shield (18 in. dia.) (45.72 cm) for a Jupiter entry vehicle. This work is now being extended to improve the structural safety factor of the heat shield by making hyperpure silica material tougher through the addition of silica fibers.

  2. Derivation of high-purity oligodendroglial progenitors.

    PubMed

    Hatch, Maya N; Nistor, Gabriel; Keirstead, Hans S

    2009-01-01

    Oligodendrocytes are a type of glial cells that play a critical role in supporting the central nervous system (CNS), in particular insulating axons within the CNS by wrapping them with a myelin sheath, thereby enabling saltatory conduction. They are lost, and myelin damaged - demyelination - in a wide variety of neurological disorders. Replacing depleted cell types within demyelinated areas, however, has been shown experimentally to achieve remyelination and so help restore function. One method to produce oligodendrocytes for cellular replacement therapies is through the use of progenitor or stem cells. The ability to differentiate progenitor or stem cells into high-purity fates not only permits the generation of specific cells for transplantation therapies, but also provides powerful tools for studying cellular mechanisms of development. This chapter outlines methods of generating high-purity OPCs from multipotent neonatal progenitor or human embryonic stem cells. PMID:19378196

  3. A quantum algorithm for obtaining the lowest eigenstate of a Hamiltonian assisted with an ancillary qubit system

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok

    2015-01-01

    We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.

  4. Isospin purity in the A=42 isobars

    SciTech Connect

    Orce, J.N.; McKay, C.J.; Choudry, S.N.; Lesher, S.L.; Mynk, M.; Bandyopadhyay, D.; Yates, S.W.; McEllistrem, M.T.; Petkov, P.

    2004-09-13

    The lifetime of the first 2{sub T=1}{sup +} state in 42Sc has been measured as 74(16) fs. This result gives a value for the isoscalar matrix element of M0=6.63(76). From the mirror nuclei, 42Ca and 42Ti, the isoscalar matrix element is given as 7.15(48) W.u., confirming isospin purity in the A=42 isobars.

  5. [Study of purity tests for silicone resins].

    PubMed

    Sato, Kyoko; Otsuki, Noriko; Ohori, Akio; Chinda, Mitsuru; Furusho, Noriko; Osako, Tsutomu; Akiyama, Hiroshi; Kawamura, Yoko

    2012-01-01

    In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent. PMID:23243991

  6. Method of high purity silane preparation

    DOEpatents

    Tsuo, Y. Simon; Belov, Eugene P.; Gerlivanov, Vadim G.; Zadde, Vitali V.; Kleschevnikova, Solomonida I.; Korneev, Nikolai N.; Lebedev, Eugene N.; Pinov, Akhsarbek B.; Ryabenko, Eugene A.; Strebkov, Dmitry S.; Chernyshev, Eugene A.

    2000-01-01

    A process for the preparation of high purity silane, suitable for forming thin layer silicon structures in various semiconductor devices and high purity poly- and single crystal silicon for a variety of applications, is provided. Synthesis of high-purity silane starts with a temperature assisted reaction of metallurgical silicon with alcohol in the presence of a catalyst. Alcoxysilanes formed in the silicon-alcohol reaction are separated from other products and purified. Simultaneous reduction and oxidation of alcoxysilanes produces gaseous silane and liquid secondary products, including, active part of a catalyst, tetra-alcoxysilanes, and impurity compounds having silicon-hydrogen bonds. Silane is purified by an impurity adsorption technique. Unreacted alcohol is extracted and returned to the reaction with silicon. Concentrated mixture of alcoxysilanes undergoes simultaneous oxidation and reduction in the presence of a catalyst at the temperature -20.degree. C. to +40.degree. C. during 1 to 50 hours. Tetra-alcoxysilane extracted from liquid products of simultaneous oxidation and reduction reaction is directed to a complete hydrolysis. Complete hydrolysis of tetra-alcoxysilane results in formation of industrial silica sol and alcohol. Alcohol is dehydrated by tetra-alcoxysilane and returned to the reaction with silicon.

  7. Local purity distillation with bounded classical communication

    NASA Astrophysics Data System (ADS)

    Krovi, Hari; Devetak, Igor

    2007-07-01

    Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.

  8. High-purity germanium crystal growing

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10/sup 10/cm/sup -3/ and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

  9. 3. SOUTHWEST VIEW OF LOW PURITY BULK OXYGEN BUILDING, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTHWEST VIEW OF LOW PURITY BULK OXYGEN BUILDING, WITH THE LINDE LOW PURITY OXYGEN FRACTIONATING TOWERS ON LEFT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T.

    2014-01-29

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  11. Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian

    NASA Astrophysics Data System (ADS)

    Piecuch, Piotr; Włoch, Marta

    2005-12-01

    Completely renormalized (CR) coupled-cluster (CC) approaches, such as CR-CCSD(T), in which one corrects the standard CC singles and doubles (CCSD) energy for the effects of triply (T) and other higher-than-doubly excited clusters [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], are reformulated in terms of the left eigenstates ⟨Φ∣L of the similarity-transformed Hamiltonian of CC theory. The resulting CR-CCSD(T)L or CR-CC(2,3) and other CR-CCL methods are derived from the new biorthogonal form of the method of moments of CC equations (MMCC) in which, in analogy to the original MMCC theory, one focuses on the noniterative corrections to standard CC energies that recover the exact, full configuration-interaction energies. One of the advantages of the biorthogonal MMCC theory, which will be further analyzed and extended to excited states in a separate paper, is a rigorous size extensivity of the basic ground-state CR-CCL approximations that result from it, which was slightly violated by the original CR-CCSD(T) and CR-CCSD(TQ) approaches. This includes the CR-CCSD(T)L or CR-CC(2,3) method discussed in this paper, in which one corrects the CCSD energy by the relatively inexpensive noniterative correction due to triples. Test calculations for bond breaking in HF, F2, and H2O indicate that the noniterative CR-CCSD(T)L or CR-CC(2,3) approximation is very competitive with the standard CCSD(T) theory for nondegenerate closed-shell states, while being practically as accurate as the full CC approach with singles, doubles, and triples in the bond-breaking region. Calculations of the activation enthalpy for the thermal isomerizations of cyclopropane involving the trimethylene biradical as a transition state show that the noniterative CR-CCSD(T)L approximation is capable of providing activation enthalpies which perfectly agree with experiment.

  12. Subcritical extraction of flaxseed oil with n-propane: Composition and purity.

    PubMed

    Zanqui, Ana Beatriz; de Morais, Damila Rodrigues; da Silva, Claudia Marques; Santos, Jandyson Machado; Gomes, Sandra Terezinha Marques; Visentainer, Jesuí Vergílio; Eberlin, Marcos Nogueira; Cardozo-Filho, Lúcio; Matsushita, Makoto

    2015-12-01

    Flaxseed (Linum usitatissimum L.) oil was obtained via subcritical n-propane fluid extraction (SubFE) under different temperatures and pressures with an average yield of 28% and its composition, purity and oxidative stability were compared to oils obtained via conventional solvent extraction methods (SEMs). When the oxidative stability was measured by differential scanning calorimetry, the oil was found to be up to 5 times more resistant to lipid oxidation as compared to the SEM oils. Direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis showed characteristic and similar TAG profiles for SubFE and SEMs oils but higher purity for the SubFE oil. The flaxseed oil content of β-tocopherol, campesterol, stigmasterol and sitosterol were quantified via GC-MS. SubFE showed to be a promising alternative to conventional SEM since SubFE provides an oil with higher purity and higher oxidation stability and with comparable levels of biologically active components. PMID:26041217

  13. Metrological approaches to organic chemical purity: primary reference materials for vitamin D metabolites.

    PubMed

    Nelson, Michael A; Bedner, Mary; Lang, Brian E; Toman, Blaza; Lippa, Katrice A

    2015-11-01

    Given the critical role of pure, organic compound primary reference standards used to characterize and certify chemical Certified Reference Materials (CRMs), it is essential that associated mass purity assessments be fit-for-purpose, represented by an appropriate uncertainty interval, and metrologically sound. The mass fraction purities (% g/g) of 25-hydroxyvitamin D (25(OH)D) reference standards used to produce and certify values for clinical vitamin D metabolite CRMs were investigated by multiple orthogonal quantitative measurement techniques. Quantitative (1)H-nuclear magnetic resonance spectroscopy (qNMR) was performed to establish traceability of these materials to the International System of Units (SI) and to directly assess the principal analyte species. The 25(OH)D standards contained volatile and water impurities, as well as structurally-related impurities that are difficult to observe by chromatographic methods or to distinguish from the principal 25(OH)D species by one-dimensional NMR. These impurities have the potential to introduce significant biases to purity investigations in which a limited number of measurands are quantified. Combining complementary information from multiple analytical methods, using both direct and indirect measurement techniques, enabled mitigation of these biases. Purities of 25(OH)D reference standards and associated uncertainties were determined using frequentist and Bayesian statistical models to combine data acquired via qNMR, liquid chromatography with UV absorbance and atmospheric pressure-chemical ionization mass spectrometric detection (LC-UV, LC-ACPI-MS), thermogravimetric analysis (TGA), and Karl Fischer (KF) titration. PMID:26345446

  14. High-purity thermoacoustic isotope enrichment.

    PubMed

    Swift, G W; Geller, D A; Backhaus, S N

    2014-08-01

    In a tube many wavelengths long, thermoacoustic separation of a gas mixture can produce very high purities. A flexible wall allows a spatially continuous supply of acoustic power into such a long tube. Coiling the tube and immersing it in a fluid lets a single-wavelength, circulating, traveling pressure wave in the fluid drive all the wavelengths in the tube wall and gas. Preliminary measurements confirm many aspects of the concept with neon ((20)Ne and (22)Ne) and highlight some challenges of practical implementation. PMID:25096099

  15. 7 CFR 201.60 - Purity percentages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....00 0.00-0.04 0.13 0.16 99.90-99.94 .05-.09 .20 .23 99.85-99.89 .10-.14 .24 .29 99.80-99.84 .15-.19... 7 Agriculture 3 2011-01-01 2011-01-01 false Purity percentages. 201.60 Section 201.60 Agriculture... .57 99.30-99.39 .60-.69 .51 .60 99.20-99.29 .70-.79 .54 .64 99.10-99.19 .80-.89 .57 .66...

  16. 7 CFR 201.60 - Purity percentages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....00 0.00-0.04 0.13 0.16 99.90-99.94 .05-.09 .20 .23 99.85-99.89 .10-.14 .24 .29 99.80-99.84 .15-.19... 7 Agriculture 3 2012-01-01 2012-01-01 false Purity percentages. 201.60 Section 201.60 Agriculture... .57 99.30-99.39 .60-.69 .51 .60 99.20-99.29 .70-.79 .54 .64 99.10-99.19 .80-.89 .57 .66...

  17. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, Frederick; Carlson, O. Norman

    1986-09-09

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  18. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, F.; Carlson, O.N.

    1984-05-16

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  19. Surface purity control during XMASS detector refurbishment

    SciTech Connect

    Kobayashi, Kazuyoshi

    2015-08-17

    The XMASS project aims at detecting dark matter, pp and {sup 7}Be solar neutrinos, and neutrino less double beta decay using large volume of pure liquid xenon. The first physics target of the XMASS project is to detect dark matter with 835 kg liquid xenon. After the commissioning runs, XMASS detector was refurbished to minimize the background contribution mainly from PMT sealing material and we restarted data taking in November 2013. We report how we control surface purity, especially how we prevent radon daughter accumulation on the detector copper surface, during XMASS detector refurbishment. The result and future plan of XMASS are also reported.

  20. Ultrasensitive mass sensing using mode localization in coupled microcantilevers

    SciTech Connect

    Spletzer, Matthew; Raman, Arvind; Wu, Alexander Q.; Xu Xianfan; Reifenberger, Ron

    2006-06-19

    We use Anderson or vibration localization in coupled microcantilevers as an extremely sensitive method to detect the added mass of a target analyte. We focus on the resonance frequencies and eigenstates of two nearly identical coupled gold-foil microcantilevers. Theoretical and experimental results indicate that the relative changes in the eigenstates due to the added mass can be orders of magnitude greater than the relative changes in resonance frequencies. Moreover this sensing paradigm possesses intrinsic common mode rejection characteristics thus providing an alternate way to achieve ultrasensitive mass detection under ambient conditions.

  1. Cell culture purity issues and DFAT cells

    SciTech Connect

    Wei, Shengjuan; Bergen, Werner G.; Zan, Linsen; Dodson, Michael V.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  2. Workshop on Preserving High Purity Uranium-233

    SciTech Connect

    Krichinsky, Alan M; Giaquinto, Joseph; Canaan, R Douglas {Doug}

    2016-01-01

    A workshop was held on at the MARC X conference to provide a forum for the scientific community to communicate needs for high-purity 233U and its by-products in order to preserve critical items otherwise slated for downblending and disposal. Currently, only a small portion of the U.S. holdings of separated 233U is being preserved. However, many additional kilograms of 233U (>97% pure) still are destined to be downblended which will permanently destroy their potential value for many other applications. It is not likely that this material will ever be replaced due to a lack of operating production capability. Summaries of information conveyed at the workshop and feedback obtained from the scientific community are presented herein.

  3. Distillation of local purity from quantum states

    SciTech Connect

    Devetak, I.

    2005-06-15

    Recently Horodecki et al. [Phys. Rev. Lett. 90, 100402 (2003)] introduced an important quantum information processing paradigm, in which two parties sharing many copies of the same bipartite quantum state distill local pure states by means of local unitary operations assisted by a one-way (two-way) completely dephasing channel. Local pure states are a valuable resource from a thermodynamical point of view, since they allow thermal energy to be converted into work by local quantum heat engines. We give a simple information-theoretical characterization of the one-way distillable local purity, which turns out to be closely related to a previously known operational measure of classical correlations, the one-way distillable common randomness.

  4. Processing to obtain high-purity gallium

    NASA Astrophysics Data System (ADS)

    Bautista, Renato G.

    2003-03-01

    Gallium has become increasingly popular as a substrate material for electronic devices. Aside from ore, gallium can be obtained from such industrial sources as the Bayer process caustic liquor that is a byproduct of bauxite processing, flue dust removed from the fume-collection system in plants that produce aluminum by the electrolytic process, zinc refinery residues, gallium scrap materials, and coal fly ash. The purification process for gallium can start with solvent-extraction processes where the concentrations of impurities, especially metals, are reduced to the ppm range. This article describes how ultra-purification techniques can be employed to reduce the undesirable impurities to the low ppb range. The various procedures described give an idea as to the extent of work needed to obtain and prepare high-purity gallium for electronic application.

  5. Electromagnetic eigenstates and the field of an oscillating point electric dipole in a flat-slab composite structure

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Bergman, David J.

    2016-06-01

    An exact calculation of the local electric field E (r ) is described for the case of a time-dependent point electric dipole p e-i ω t in the top layer of an ɛ2, ɛ1, ɛ2 three parallel slabs composite structure, where the ɛ1 layer has a finite thickness 2 d but the ɛ2 layers are infinitely thick. For this purpose we first calculate all the eigenstates of the full Maxwell equations for the case where μ =1 everywhere in the system. The eigenvalues appear as special, nonphysical values of ɛ1 when ɛ2 is given. These eigenstates are then used to develop an exact expansion for the physical values of E (r ) in the system characterized by physical values of ɛ1(ω ) and ɛ2(ω ) . Results are compared with those of a previous calculation of the local field of a time-dependent point charge in the quasistatic regime. Numerical results are shown for the local electric field in practically important configurations where attaining an optical image with subwavelength resolution has practical significance.

  6. Preparation and Evaluation of High-Purity La2O3

    NASA Astrophysics Data System (ADS)

    Lee, Gwang Seop; Uchikoshi, Masahito; Mimura, Kouji; Isshiki, Minoru

    2010-06-01

    A separation procedure based on extraction chromatography using the di(2-ethylhexyl) phosphoric acid (D2EHPA) impregnated resin, anion exchange with DIAION SA 10 resin, and oxalate precipitation has been developed for the preparation of high-purity La2O3 in hydrochloric acid media at a high La concentration. The metallic impurities Ce, Pr, Nd, Sm, K, Mg, Ca, Zn, Cu, Co, Mn, Pb, Al, In, and Fe, but not Bi, were removed efficiently from La by extraction chromatography using a D2EHPA impregnated resin. The Bi was separated from the La by anion exchange (DIAION SA 10) separation. Thus, a high-purity LaCl3 solution was obtained by anion exchange separation and extraction chromatography. La2O3 was prepared from the purified LaCl3 solution by oxalate precipitation. Glow discharge mass spectrometry was applied for purity evaluation of the prepared La2O3. The purity of the prepared La2O3 was more than 99.9998 pct total rare earth oxide.

  7. Dynamic shear deformation in high purity Fe

    SciTech Connect

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P; Lopez, Mike F; Gray, George T

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  8. High-purity silicon crystal growth investigations

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schuyler, T.; Hurd, J. L.; Fearheiley, M.; Evans, C.; Elder, R.

    1986-01-01

    Information is given on evaporation and segregation contributions to impurity profiles of floating zone crystals (FZ); high-purity silicon float zoning (FZ); minority-carrier lifetime measurement of heavily doped silicon crystals; the effect of some crystal growth parameters on minority-carrier lifetime; and defect investigations by X-ray topography in graphical and tabular form. It was concluded that evaporation contributes substantially to impurity reduction when FZ or cold-crucible growth is conducted in a vacuum; boron and gallium may be more favorable dopants than indium or aluminum for obtaining high minority-carrier lifetimes; minority-carrier lifetimes greater than 100 microseconds are feasible at a 2 times 10 to the 17th power cm-3 doping level; minority-carrier lifetime decreases with increasing crystal cooling rate and also with the presence of dislocations; the method used to clean silicon feed rods affects lifetime; and microdefect densities in dislocation-free FZ crystals appear to be lower with Ga doping than with B doping.

  9. Biaxial deformation in high purity aluminum

    DOE PAGESBeta

    Livescu, V.; Bingert, J. F.; Liu, C.; Lovato, M. L.; Patterson, B. M.

    2015-09-25

    The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron backscatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. Recently micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum inmore » biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. We determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. Finally, these combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects.« less

  10. Biaxial deformation in high purity aluminum

    SciTech Connect

    Livescu, V.; Bingert, J. F.; Liu, C.; Lovato, M. L.; Patterson, B. M.

    2015-09-25

    The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron backscatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. Recently micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum in biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. We determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. Finally, these combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects.

  11. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  12. Bounds on the overlap of the Hartree-Fock, optimized effective potential, and density functional approximations with the exact energy eigenstates.

    PubMed

    Thanos, S; Theophilou, A K

    2006-05-28

    In this paper, we examine the limits of accuracy of the single determinant approximations (Hartree-Fock, optimized effective potential, and density functional theory) to the exact energy eigenstates of many electron systems. We show that an approximate Slater determinant of S(z)=M gives maximum accuracy for states with S=M, provided that perturbation theory for the spin up minus spin down potential is applicable. The overlap with the exact energy eigenstates with S not equal M is much smaller. Therefore, for the case that the emphasis is on wave functions, one must use symmetry preserving theories, although this is at the expense of accuracy in energy. PMID:16774321

  13. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  14. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  15. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  16. 5. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT STEAM TURBINE END OF TWO ALLIS-CHALMER AXIAL AIR COMPRESSORS FOR 1000 TON PER DAY HIGH PURITY OXYGEN MAKING PLANT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. 6. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT STEAM TURBINE END OF TWO ALLIS-CHALMERS AXIAL AIR COMPRESSORS FOR 1000 TON PER DAY HIGH PURITY OXYGEN MAKING PLANT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. Determination of continuous variable entanglement by purity measurements.

    PubMed

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity. PMID:14995815

  19. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain...

  20. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain...

  1. High-purity silicon for solar cell applications

    NASA Technical Reports Server (NTRS)

    Dosaj, V. D.; Hunt, L. P.; Schei, A.

    1978-01-01

    The article discusses the production of solar cells from high-purity silicon. The process consists of reducing the level of impurities in the raw materials, preventing material contamination before and after entering the furnace, and performing orders-of-magnitude reduction of metal impurity concentrations. The high-purity raw materials are considered with reference to carbon reductants, silica, and graphite electrodes. Attention is also given to smelting experiments used to demonstrate, in an experimental-scale furnace, the production of high-purity SoG-Si. It is found that high-purity silicon may be produced from high-purity quartz and chemically purified charcoal in a 50-kVA arc furnace. The major contamination source is shown to be impurities from the carbon reducing materials.

  2. Production of ultrahigh purity copper using waste copper nitrate solution.

    PubMed

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery. PMID:12719148

  3. An algebraic function operator expectation value based eigenstate determinations for quantum systems with one degree of freedom

    SciTech Connect

    Kalay, Berfin; Demiralp, Metin

    2015-12-31

    This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this short paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature.

  4. High Purity Zirconium Tetrafluoride For Fluoride Glass Applications

    NASA Astrophysics Data System (ADS)

    Withers, Howard P.; Monk, V. A.; Cooper, G. A.

    1989-06-01

    A totally anhydrous process has been developed for the preparation of high purity zirconium tetrafluoride for use in low loss fluoride glass applications. The ZrF4 purityis 99.99997% with respect to all transition elements (excluding HO based on analysis by spark source mass spectrometry (SSMS) and graphite furnace/atomic absorption spectroscopy (GF/AA). The only transition elements detected by these techniques were Fe, Ni and Cr, while Co and Cu were consistently below the detection limits. The anhydrous nature of the process, which is strictly maintained by the choice of reactants, affords product with very low oxide and hydroxide content. Total oxygen concentrations of less than 10 ppm have been measured by the inert gas fusion technique. A ZBLAN glass composition prepared using this ZrF4 showed extremely low UV absorption having an absorption constant of 1 cm-1 at 198 nm. ZrF4 from this process was also used in a ZBLAN glass fiber whose minimum optical loss was measured at 6.3 dB/km over 150 meters of fiber. The process is straightforward to scale up and has also been demonstrated to be useful for the preparation of HfF4, BaF2, A1F3 and LaF3.

  5. State-independent purity and fidelity of quantum operations

    NASA Astrophysics Data System (ADS)

    Kong, Fan-Zhen; Zong, Xiao-Lan; Yang, Ming; Cao, Zhuo-Liang

    2016-04-01

    The purity and fidelity of quantum operations are of great importance in characterizing the quality of quantum operations. The currently available definitions of the purity and fidelity of quantum operations are based on the average over all possible input pure quantum states, i.e. they are state-dependent (SD). In this paper, without resorting to quantum states, we define the state-independent (SI) purity and fidelity of a general quantum operation (evolution) in virtue of a new density matrix formalism for quantum operations, which is extended from the quantum state level to quantum operation level. The SI purity and fidelity gain more intrinsic physical properties of quantum operations than state-dependent ones, such as the purity of a one-qubit amplitude damping channel (with damping rate 1) is 1/2, which is in line with the fact that the channel is still a nonunitary operation described by two Kraus operators rather than a unitary one. But the state-dependent Haar average purity is 1 in this case. So the SI purity and fidelity proposed here can help the experimentalists to exactly quantify the implementation quality of an operation. As a byproduct, a new measure of the operator entanglement is proposed for a quantum evolution (unitary or nonunitary) in terms of the linear entropy of its density matrix on the orthonormal operator bases (OOBs) in Hilbert-Schmidt space.

  6. Ultrasensitive mode-localized mass sensor with electrically tunable parametric sensitivity

    SciTech Connect

    Thiruvenkatanathan, P.; Yan, J.; Seshia, A. A.; Woodhouse, J.; Aziz, A.

    2010-02-22

    We use the phenomena of mode localization and vibration confinement in pairs of weakly coupled, nearly identical microelectromechanical (MEMS) resonators as an ultrasensitive technique of detecting added mass on the resonator. The variations in the eigenstates for induced mass additions are studied and compared with corresponding resonant frequency shifts in pairs of MEMS resonators that are coupled electrostatically. We demonstrate that the relative shifts in the eigenstates can be over three orders of magnitude greater than those in resonant frequency for the same addition of mass. We also investigate the effects of voltage controlled electrical spring tuning on the parametric sensitivity of such sensors and demonstrate sensitivities tunable by over 400%.

  7. Production of High Purity Niobium Ingots at CBMM

    SciTech Connect

    Moura, Lourenco de; Faria Sousa, Clovis Antonio de; Burgos Cruz, Edmundo

    2011-03-31

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  8. 1. LOOKING SOUTH AT LOW PURITY BULK OXYGEN BUILDING (FORMERLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING SOUTH AT LOW PURITY BULK OXYGEN BUILDING (FORMERLY BLOW ENGINE HOUSE No. 1), WITH LIQUID OXYGEN STORAGE TANKS IN THE FOREGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Determination of Purity by Differential Scanning Calorimetry (DSC).

    ERIC Educational Resources Information Center

    Brown, M. E.

    1979-01-01

    An exercise is presented which demonstrates the determination of sample purity by differential scanning calorimetry. Data and references are provided to enable the exercise to be carried out as a dry-lab experiment. (BB)

  10. Systematic pan-cancer analysis of tumour purity

    PubMed Central

    Aran, Dvir; Sirota, Marina; Butte, Atul J.

    2015-01-01

    The tumour microenvironment is the non-cancerous cells present in and around a tumour, including mainly immune cells, but also fibroblasts and cells that comprise supporting blood vessels. These non-cancerous components of the tumour may play an important role in cancer biology. They also have a strong influence on the genomic analysis of tumour samples, and may alter the biological interpretation of results. Here we present a systematic analysis using different measurement modalities of tumour purity in >10,000 samples across 21 cancer types from the Cancer Genome Atlas. Patients are stratified according to clinical features in an attempt to detect clinical differences driven by purity levels. We demonstrate the confounding effect of tumour purity on correlating and clustering tumours with transcriptomics data. Finally, using a differential expression method that accounts for tumour purity, we find an immunotherapy gene signature in several cancer types that is not detected by traditional differential expression analyses. PMID:26634437

  11. Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity.

    PubMed

    Harrold, Zoë R; Hertel, Mikaela R; Gorman-Lewis, Drew

    2011-12-01

    Investigating the biochemistry, resilience and environmental interactions of bacterial endospores often requires a pure endospore biomass free of vegetative cells. Numerous endospore isolation methods, however, neglect to quantify the purity of the final endospore biomass. To ensure low vegetative cell contamination we developed a quality control technique that enables rapid quantification of endospore harvest purity. This method quantifies spore purity using bright-field and fluorescence microscopy imaging in conjunction with automated cell counting software. We applied this method to Bacillus subtilis endospore harvests isolated using a two-phase separation method that utilizes mild chemicals. The average spore purity of twenty-two harvests was 88±11% (error is 1σ) with a median value of 93%. A spearman coefficient of 0.97 correlating automated and manual bacterial counts confirms the accuracy of software generated data. PMID:21989299

  12. Delta Doping High Purity CCDs and CMOS for LSST

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill

    2006-01-01

    A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.

  13. Purity Determination of Acetaldehyde in an Acetaldehyde Certified Reference Material.

    PubMed

    Yamazaki, Taichi; Watanabe, Takuro; Nakamura, Satoe; Kato, Kenji

    2015-01-01

    Acetaldehyde is regulated as a toxic substance in various fields, and the method for monitoring or analysis of acetaldehyde is important. However, handling is difficult because of the high reactivity and low boiling point of acetaldehyde. Therefore, a reference material for high purity acetaldehyde with high accuracy was not available. Although the measuring method of acetaldehyde as a reagent is published in the Japanese Industrial Standard (JIS) where the specification of acetaldehyde purity is more than 80%, the analytical method described in JIS is not enough for an accuracy purity determination method. In this research, the high precision purity determination method for development of a certified reference material (CRM) of acetaldehyde was examined. By controlling the volatility and reactivity of acetaldehyde, we established the purity determination method of acetaldehyde with a relative standard uncertainty of less than 0.3%. Furthermore, this method was applied to develop a high purity acetaldehyde CRM with an expanded uncertainty of 0.005 kg kg(-1) (k = 2). PMID:26063006

  14. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells

    PubMed Central

    Landman, Sija; Bauland, Stijn C. G.; van den Dolder, Juliette

    2016-01-01

    Regulatory T cells (Treg) are important for immune homeostasis and are considered of great interest for immunotherapy. The paucity of Treg numbers requires the need for ex vivo expansion. Although therapeutic Treg flow-sorting is feasible, most centers aiming at Treg-based therapy focus on magnetic bead isolation of CD4+CD25+ Treg using a good manufacturing practice compliant closed system that achieves lower levels of cell purity. Polyclonal Treg expansion protocols commonly use anti-CD3 plus anti-CD28 monoclonal antibody (mAb) stimulation in the presence of rhIL-2, with or without rapamycin. However, the resultant Treg population is often heterogeneous and pro-inflammatory cytokines like IFNγ and IL-17A can be produced. Hence, it is crucial to search for expansion protocols that not only maximize ex vivo Treg proliferative rates, but also maintain Treg stability and preserve their suppressive function. Here, we show that ex vivo expansion of low purity magnetic bead isolated Treg in the presence of a TNFR2 agonist mAb (TNFR2-agonist) together with rapamycin, results in a homogenous stable suppressive Treg population that expresses FOXP3 and Helios, shows low expression of CD127 and hypo-methylation of the FOXP3 gene. These cells reveal a low IL-17A and IFNγ producing potential and hardly express the chemokine receptors CCR6, CCR7 and CXCR3. Restimulation of cells in a pro-inflammatory environment did not break the stability of this Treg population. In a preclinical humanized mouse model, the TNFR2-agonist plus rapamycin expanded Treg suppressed inflammation in vivo. Importantly, this Treg expansion protocol enables the use of less pure, but more easily obtainable cell fractions, as similar outcomes were observed using either FACS-sorted or MACS-isolated Treg. Therefore, this protocol is of great interest for the ex vivo expansion of Treg for clinical immunotherapy. PMID:27224512

  15. Importance of purity evaluation and the potential of quantitative ¹H NMR as a purity assay.

    PubMed

    Pauli, Guido F; Chen, Shao-Nong; Simmler, Charlotte; Lankin, David C; Gödecke, Tanja; Jaki, Birgit U; Friesen, J Brent; McAlpine, James B; Napolitano, José G

    2014-11-26

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical ¹H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  16. Self-excited coupled cantilevers for mass sensing in viscous measurement environments

    NASA Astrophysics Data System (ADS)

    Yabuno, Hiroshi; Seo, Yasuhiro; Kuroda, Masaharu

    2013-08-01

    The eigenstate shift in two nearly identical and weakly coupled cantilevers provides a means to realize much higher-sensitivity mass detection compared with the eigenfrequency shift approach. We propose using self-excited oscillations for eigenstate detection without using frequency response or resonance curve normally used in conventional methods. Mass sensing thus becomes possible even in high-viscosity environments, where the peak of the frequency response curve is ambiguous or does not exist. The feedback control method is theoretically clarified to produce self-excited oscillation and the validity of the proposed method is investigated experimentally using macroscale coupled cantilevers.

  17. Synthesis and properties of high-purity alumina

    SciTech Connect

    Martin, E.S.; Weaver, M.L. . Chemical Systems Div.)

    1993-07-01

    High-purity alumina is intended primarily for the high-pressure sodium-vapor lamp envelope market and other specialty alumina applications such as abrasives, catalysts, and structural ceramics. High-purity alumina must calcine to Al[sub 2]O[sub 3] with minimal metal impurities ([>=]99.99% Al[sub 2]O[sub 3]). Sulfate and chloride impurities are also undesirable. High-purity alumina should have less than 20ppm alkali and alkaline-earth metals, and less than 10 ppm each in transition-metal impurities. A process for synthesizing alumina by converting pure aluminum metal to aluminum hydroxide and the resultant alumina properties are described.

  18. Accurate calculation and assignment of highly excited vibrational levels of floppy triatomic molecules in a basis of adiabatic vibrational eigenstates

    NASA Astrophysics Data System (ADS)

    Bačić, Z.

    1991-09-01

    We show that the triatomic adiabatic vibrational eigenstates (AVES) provide a convenient basis for accurate discrete variable representation (DVR) calculation and automatic assignment of highly excited, large amplitude motion vibrational states of floppy triatomic molecules. The DVR-AVES states are eigenvectors of the diagonal (in the stretch states) blocks of the adiabatically rearranged triatomic DVR-ray eigenvector (DVR-REV) Hamiltonian [J. C. Light and Z. Bačić, J. Chem. Phys. 87, 4008 (1987)]. The transformation of the full triatomic vibrational Hamiltonian from the DVR-REV basis to the new DVR-AVES basis is simple, and does not involve calculation of any new matrix elements. No dynamical approximation is made in the energy level calculation by the DVR-AVES approach; its accuracy and efficiency are identical to those of the DVR-REV method. The DVR-AVES states, as the adiabatic approximation to the vibrational states of a triatomic molecule, are labeled by three vibrational quantum numbers. Consequently, accurate large amplitude motion vibrational levels obtained by diagonalizing the full vibrational Hamiltonian transformed to the DVR-AVES basis, can be assigned automatically by the code, with the three quantum numbers of the dominant DVR-AVES state associated with the largest (by modulus) eigenvector element in the DVR-AVES basis. The DVR-AVES approach is used to calculate accurate highly excited localized and delocalized vibrational levels of HCN/HNC and LiCN/LiNC. A significant fraction of localized states of both systems, below and above the isomerization barrier, is assigned automatically, without inspection of wave function plots or separate approximate calculations.

  19. Low defect, high purity crystalline layers grown by selective deposition

    NASA Technical Reports Server (NTRS)

    Morrison, A. D. (Inventor); Daud, T.

    1985-01-01

    The purity and perfection of a semiconductor is improved by depositing a patterned mask of a material impervious to impurities of the semiconductor on a surface of a blank. When a layer of semiconductor is grown on the mask, the semiconductor will first grow from the surface portions exposed by the openings in the mask and will bridge the connecting portions of the mask to form a continuous layer having improved purity, since only the portions overlying the openings are exposed to defects and impurities.

  20. Characterisation of two AGATA asymmetric high purity germanium capsules

    NASA Astrophysics Data System (ADS)

    Colosimo, S. J.; Moon, S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Harkness-Brennan, L.; Judson, D. S.; Lazarus, I. H.; Nolan, P. J.; Simpson, J.; Unsworth, C.

    2015-02-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  1. Ambiguities and subtleties in fermion mass terms in practical quantum field theory

    NASA Astrophysics Data System (ADS)

    Cheng, Yifan; Kong, Otto C. W.

    2014-09-01

    This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature-specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models.

  2. High-Purity Nickel Prepared by Electron Beam Melting: Purification Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shang, Zaiyan; Chen, Ming; He, Jinjiang; Lv, Baoguo; Wang, Xingquan; Xiong, Xiaodong

    2013-12-01

    A bulk cylindrical high-purity nickel ingot, with purity of more than 99.999 pct (5N) in mass, was obtained from the raw nickel with 99.95 pct (3N5) initial purity by virtue of double electron beam melting (EBM). A chemical analysis was performed by using glow discharge mass spectrometry (GDMS) analysis for all elements in the periodic table except carbon, nitrogen, and oxygen, which were tested by the high-performance combustion and fusion method. The major impurities B, Na, Al, Si, P, S, Ca, Ti, Cr, Fe, Cu, Co, Zn, As, Ag, Sb, and Pb showed an excellent removal effect with removal efficiency of more than 85 pct following the double EBMs. Li, Mg, Cl, K, V, Mn, Ga, Ge, Cd, Se, In, Sn, Tl, Au, and Pt were below the detection limit. No significant change in concentration was found for the refractory elements W, Mo, Ta, Nb, and Ir. Be, F, Sc, Se, Br, Rb, Sr, Zr, Y, Ru, Rh, Pd, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Re, Os, Hg, Bi, Th, and U were not detectable following the purification as compared to the raw nickel. Gaseous impurities, C, N, O, especially for N, was removed sufficiently. Theoretical calculations for removal efficiency of impurity Fe based on the calculated vapor pressure, activity coefficient, and melt temperature were in good agreement with measured results, and the purification mechanism was ascribed to the evaporation of major impurities and subsequently evacuation by repetitive EBM.

  3. Low cost routes to high purity silicon and derivatives thereof

    SciTech Connect

    Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart

    2013-07-02

    The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).

  4. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  5. 7 CFR 201.7 - Purity (including variety).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Records for Agricultural and Vegetable Seeds § 201.7 Purity (including variety). The complete record for any lot of seed shall include (a) records of analyses, tests, and examinations...

  6. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  7. 7 CFR 201.7 - Purity (including variety).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Records for Agricultural and Vegetable Seeds § 201.7 Purity (including variety). The complete record for any lot of seed shall include (a) records of analyses, tests, and examinations...

  8. Electrochemical study of aluminum corrosion in boiling high purity water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  9. Estimation of purity in terms of correlation functions

    SciTech Connect

    Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.

    2003-06-01

    We prove a rigorous inequality that estimates the purity of a reduced density matrix of a composite quantum system in terms of cross correlation of the same state and an arbitrary product state. Various immediate applications of our result are proposed, in particular, concerning Gaussian wave-packet propagation under classically regular dynamics.

  10. Monitoring the microbial purity of the treated water and dialysate.

    PubMed

    Canaud, B; Martin, K; Morena, M; Bosc, J Y; Leray-Moragues, H; Mahowashi, M; Stec, F; Hansel, S

    2001-01-01

    Dialysate purity has become a major concern in recent years since it has been proven that contamination of dialysate is able to induce the production of proinflammatory cytokines, putatively implicated in the development of dialysis related pathology. In order to reduce this risk, it is advised to use ultrapure dialysate as a new standard of dialysate purity. Ultrapure dialysate preparation may be easily achieved with modern water treatment technologies. The reliable production of ultrapure dialysate requires several prerequisites: use of ultrapure water, use of clean electrolytic concentrates, implementation of ultrafilters in the dialysate pathway to ensure cold sterilization of the fresh dialysate. The regular supply with such high-grade purity dialysate relies on predefined microbiological monitoring of the chain using adequate and sensitive methods, and hygienic handling including frequent disinfection to reduce the level of contamination and to prevent biofilm formation. Reliability of this process requires compliance with a very strict quality assurance process. In this paper, we summarized the principles of the dialysate purity monitoring and the criteria used for surveillance in order to establish good antimicrobial practices in dialysis. PMID:18209379

  11. Purity assessment of commercial zein products after purification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful utilization of commercial zein products for certain food, pharmaceutical, cosmetic and medical applications requires a decolorized/deodorized zein of high purity. A zein protein product with those qualifications can be achieved by column filtration of commercial yellow zein solutions thro...

  12. 7 CFR 201.7 - Purity (including variety).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Records for Agricultural and Vegetable Seeds § 201.7 Purity (including variety). The complete record for any lot of seed shall include (a) records of analyses, tests, and examinations...

  13. 7 CFR 201.7 - Purity (including variety).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Records for Agricultural and Vegetable Seeds § 201.7 Purity (including variety). The complete record for any lot of seed shall include (a) records of analyses, tests, and examinations...

  14. 7 CFR 201.7 - Purity (including variety).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Records for Agricultural and Vegetable Seeds § 201.7 Purity (including variety). The complete record for any lot of seed shall include (a) records of analyses, tests, and examinations...

  15. Ambiguities and subtleties in fermion mass terms in practical quantum field theory

    SciTech Connect

    Cheng, Yifan Kong, Otto C.W.

    2014-09-15

    This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature—specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models. - Highlights: • Structure of fermion mass terms in practical quantum field theory is reviewed. • Important subtleties and ambiguities on the subject are clarified. • A mass eigenstate Dirac fermion and two degenerated Majorana ones are equivalent. • The conventional meaning of such terminology for neutrinos is critically discussed.

  16. Qualification and initial characterization of a high-purity 233U spike for use in uranium analyses

    DOE PAGESBeta

    Mathew, K. J.; Canaan, R. D.; Hexel, C.; Giaquinto, J.; Krichinsky, A. M.

    2015-08-20

    Several high-purity 233U items potentially useful as isotope dilution mass spectrometry standards for safeguards, non-proliferation, and nuclear forensics measurements are identified and rescued from downblending. By preserving the supply of 233U materials of different pedigree for use as source materials for certified reference materials (CRMs), it is ensured that the safeguards community has high quality uranium isotopic standards required for calibration of the analytical instruments. One of the items identified as a source material for a high-purity CRM is characterized for the uranium isotope-amount ratios using thermal ionization mass spectrometry (TIMS). Additional verification measurements on this material using quadrupole inductivelymore » coupled plasma mass spectrometry (ICPMS) are also performed. As a result, the comparison of the ICPMS uranium isotope-amount ratios with the TIMS data, with much smaller uncertainties, validated the ICPMS measurement practices. ICPMS is proposed for the initial screening of the purity of items in the rescue campaign.« less

  17. Qualification and initial characterization of a high-purity 233U spike for use in uranium analyses

    SciTech Connect

    Mathew, K. J.; Canaan, R. D.; Hexel, C.; Giaquinto, J.; Krichinsky, A. M.

    2015-08-20

    Several high-purity 233U items potentially useful as isotope dilution mass spectrometry standards for safeguards, non-proliferation, and nuclear forensics measurements are identified and rescued from downblending. By preserving the supply of 233U materials of different pedigree for use as source materials for certified reference materials (CRMs), it is ensured that the safeguards community has high quality uranium isotopic standards required for calibration of the analytical instruments. One of the items identified as a source material for a high-purity CRM is characterized for the uranium isotope-amount ratios using thermal ionization mass spectrometry (TIMS). Additional verification measurements on this material using quadrupole inductively coupled plasma mass spectrometry (ICPMS) are also performed. As a result, the comparison of the ICPMS uranium isotope-amount ratios with the TIMS data, with much smaller uncertainties, validated the ICPMS measurement practices. ICPMS is proposed for the initial screening of the purity of items in the rescue campaign.

  18. Molecular eigenstate spectroscopy: Application to the intramolecular dynamics of some polyatomic molecules in the 3000 to 7000 cm{sup {minus}1} region

    SciTech Connect

    Perry, D.S.

    1993-12-01

    Intramolecular vibrational redistribution (IVR) appears to be a universal property of polyatomic molecules in energy regions where the vibrational density of states is greater than about 5 to 30 states per cm{sup {minus}1}. Interest in IVR stems from its central importance to the spectroscopy, photochemistry, and reaction kinetics of these molecules. A bright state, {var_phi}{sub s}, which may be a C-H stretching vibration, carries the oscillator strength from the ground state. This bright state may mix with bath rotational-vibrational levels to form a clump of molecular eigenstates, each of which carries a portion of the oscillator strength from the ground state. In this work the authors explicitly resolve transitions to each of these molecular eigenstates. Detailed information about the nature of IVR is contained in the frequencies and intensities of the observed discrete transitions. The primary goal of this research is to probe the coupling mechanisms by which IVR takes place. The most fundamental distinction to be made is between anharmonic coupling which is independent of molecular rotation and rotationally-mediated coupling. The authors are also interested in the rate at which IVR takes place. Measurements are strictly in the frequency domain but information is obtained about the decay of the zero order state, {var_phi}{sub s}, which could be prepared in a hypothetical experiment as a coherent excitation of the clump of molecular eigenstates. As the coherent superposition dephases, the energy would flow from the initially prepared mode into nearby overtones and combinations of lower frequency vibrational modes. The decay of the initially prepared mode is related to a pure sequence infrared absorption spectrum by a Fourier transform.

  19. Preparation and properties of high purity Mg-Y biomaterials.

    PubMed

    Peng, Qiuming; Huang, Yuanding; Zhou, Le; Hort, Norbert; Kainer, Karl Ulrich

    2010-01-01

    An effective zone solidification method has been found to prepare high purity Mg-Y biomaterials. The corrosion and mechanical properties of the purified middle region are improved remarkably compared with common casting method. The average gain size and secondary dendrite space decrease from the top layer to the bottom layer of the ingot. The oxides, defects and precipitates are mainly enriched in the top layer of the ingot under the impulsion of high thermal gradient. These results are in agreement with that simulated by finite elemental method using FLOW-3D software. It is confirmed that the mode of scallop symmetric solidification attributes to the purifying process. This zone solidification method not only contributes to high purity Mg-based biomaterials, but also provides a new approach to prepare high performance Mg alloys. PMID:19800117

  20. Characterization of low-purity clays for geopolymer binder formulation

    NASA Astrophysics Data System (ADS)

    Mostafa, Nasser Y.; Mohsen, Q.; El-maghraby, A.

    2014-06-01

    The production of geopolymer binders from low-purity clays was investigated. Three low-purity clays were calcined at 750°C for 4 h. The calcined clays were chemically activated by the alkaline solutions of NaOH and Na2SiO3. The compressive strength was measured as a function of curing time at room temperature and 85°C. The results were compared with those of a pure kaolin sample. An amorphous aluminosilicate polymer was formed in all binders at both processing temperatures. The results show that, the mechanical properties depend on the type and amount of active aluminum silicates in the starting clay material, the impurities, and the processing temperature.

  1. Tainting the soul: purity concerns predict moral judgments of suicide.

    PubMed

    Rottman, Joshua; Kelemen, Deborah; Young, Liane

    2014-02-01

    Moral violations are typically defined as actions that harm others. However, suicide is considered immoral even though the perpetrator is also the victim. To determine whether concerns about purity rather than harm predict moral condemnation of suicide, we presented American adults with obituaries describing suicide or homicide victims. While harm was the only variable predicting moral judgments of homicide, perceived harm (toward others, the self, or God) did not significantly account for variance in moral judgments of suicide. Instead, regardless of political and religious views and contrary to explicit beliefs about their own moral judgments, participants were more likely to morally condemn suicide if they (i) believed suicide tainted the victims' souls, (ii) reported greater concerns about purity in an independent questionnaire, (iii) experienced more disgust in response to the obituaries, or (iv) reported greater trait disgust. Thus, suicide is deemed immoral to the extent that it is considered impure. PMID:24333538

  2. High-Purity Silicon Seeds for Silane Pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Rohatgi, N. K.; Morrison, A.

    1985-01-01

    Seed particles for fluidized-bed production of silicon made by new contamination-free, economical method. In new method, large particles of semiconductor-grade silicon fired at each other by high-speed streams of gas and thereby break up into particles of suitable size for fluidized bed. No foreign materials introduced, and leaching unnecessary. Method used to feed fluidized-bed reactor for continuous production of high-purity silicon.

  3. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    DOEpatents

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  4. Dimensional stability of high-purity Invar 36

    NASA Astrophysics Data System (ADS)

    Sokolowski, Witold M.; Jacobs, Stephen F.; Lane, Marc S.; O'Donnell, Timothy P.; Hsieh, Cheng

    1993-12-01

    High performance requirements for the Imaging Science Subsystem/Narrow Angle Camera (NAC) instrument on the NASA/Jet Propulsion Laboratory (JPL) Cassini spacecraft impose very stringent demands for dimensional stability of metering rods in the camera's athermalizing system. Invar 36 was chosen as a baseline material because it possibly could meet these requirements through high purity control and appropriate thermomechanical processes. A powder metallurgy process appears to be the manufacturing method to ensure high purity and cleanliness of this material. Therefore, a powder metallurgy manufacturer was contacted and high purity (HP) Invar 36 was produced per JPL engineering requirements. Several heat treatments were established and heat treated HP Invar 36 samples were evaluated. Coefficient of thermal expansion (CTE), thermal hysteresis and temporal stability test results are reported here. The test results indicate that JPL has succeeded in obtaining possibly the most dimensionally stable (lowest CTE plus lowest temporal change) Invar 36 material ever produced. CTE < 1 ppm/ degree(s)C are reported here along with temporal stability < 1 ppm/year. These dimensional stability properties will meet the requirements for metering rods on the NAC.

  5. On the purity assessment of solid sodium borohydride

    NASA Astrophysics Data System (ADS)

    Botasini, Santiago; Méndez, Eduardo

    2012-01-01

    Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.

  6. Recyclable Strategy for the Production of High-Purity Galacto-oligosaccharides by Kluyveromyces lactis.

    PubMed

    Sun, Huaisheng; You, Shengping; Wang, Mengfan; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-07-20

    A recyclable strategy for the production of high-purity (>95%) galacto-oligosaccharides (GOS) was developed using Kluyveromyces lactis in both the synthesis and purification steps. For the synthesis of GOS, ethanol-permeabilized cells (p-cells) of K. lactis were used because the enhanced permeability facilitated the mass transfer of the substrate and the release of oligosaccharide products. For the purification of GOS, non-permeabilized K. lactis cells (np-cells) were preferred as a result of their intrinsic cell membrane barrier toward GOS, which led to the selective consumption of carbohydrate. In this way, undesired glucose, galactose, and lactose in the raw GOS solution can be completely removed. This strategy is recyclable not only because of the high stability and reusability of p-cells and np-cells but also because the ethanol, which is simultaneously generated during the purification, can be reused for the preparation of p-cells. The strategy proposed in this study is a promising candidate for the efficient production of high-purity GOS. PMID:27366924

  7. Application of quantitative NMR for purity determination of standard ACE inhibitors.

    PubMed

    Shen, Shi; Yang, Xing; Shi, Yaqin

    2015-10-10

    This study investigated the accuracy of the quantitative NMR method for purity determination of ACE inhibitors reference standards and the discovery of two pairs of new diastereoisomers. Six types of ACE inhibitors, imidapril hydrochloride, benazepril hydrochloride, lisinopril, enalapril maleate, quinapril hydrochloride, and captopril were quantificated and validated for the qNMR method by discussing factors that affect parameters of the qNMR experiment, internal standards, integration, pH-effect, and uncertainty. The results were compared with data obtained by the mass balance method. The study found that maleic acid influenced the quantification of captopril in deuteroxide because of a chemical reaction. The mixtures of the reaction products were isolated by HPLC and structurally elucidated by NMR as two pairs of new diastereoisomers, 1-[(2S,4R)-thio-2-methylpropionyl-5-d-ethanedicarboxylicacid]-L-proline and 1-[(2S,4S)-thio-2-methylpropionyl-5-d-ethanedicarboxylicacid]-L-proline. The results showed that the accuracy and precision of quantitative (1)H NMR spectroscopy satisfied the requirements for quantitative analysis of chemical reference standards and provided a simple, rapid, and reliable method for purity determination of ACE inhibitors systematically. PMID:26070161

  8. Tertiarybutylarsine for Metalorganic Chemical Vapor Deposition Growth of High Purity, High Uniformity Films

    NASA Astrophysics Data System (ADS)

    Chui, H. C.; Biefeld, R. M.; Hammons, B. E.; Breiland, W. G.; Brennan, T. M.; Jones, E. D.; Moffat, H. K.; Kim, M. H.; Grodzinski, P.; Chang, K. H.; Lee, H. C.

    1997-12-01

    We have performed an extensive study of GaAs, Al0.22Ga0.78As, and In0.16Ga0.84As grown using tertiarybutylarsine (TBA) in an ultra-high purity metalorganic chemical vapor deposition multi-wafer reactor. Key results include: high purity TBA AlGaAs layers with the lowest p-type carrier concentrations (4 × 1014 cm-3) reported to date; 4K photoluminescence bound exciton linewidths as narrow as 4.3 meV; C, O. Si, and S concentrations below the secondary ion mass spectrometry detection limit; and InGaAs/GaAs quantum wells with 20K PL linewidths as narrow as 3.5 meV. We also observe a strong dependence of growth rates and doping efficiency on group-V partial pressure, possibly due to a competition between excess group-V species and group-Ill or Si species for group-Ill surface sites. Finally, we demonstrate record uniformity using TBA with an AlGaAs thickness variation of only ±1.4% across a 4 inch wafer.

  9. Novel Molten Oxide Membrane for Ultrahigh Purity Oxygen Separation from Air.

    PubMed

    Belousov, Valery V; Kulbakin, Igor V; Fedorov, Sergey V; Klimashin, Anton A

    2016-08-31

    We present a novel solid/liquid Co3O4-36 wt % Bi2O3 composite that can be used as molten oxide membrane, MOM ( Belousov, V. V. Electrical and Mass Transport Processes in Molten Oxide Membranes. Ionics 22 , 2016 , 451 - 469 ), for ultrahigh purity oxygen separation from air. This membrane material consists of Co3O4 solid grains and intergranular liquid channels (mainly molten Bi2O3). The solid grains conduct electrons, and the intergranular liquid channels predominantly conduct oxygen ions. The liquid channels also provide the membrane material gas tightness and ductility. This last property allows us to deal successfully with the problem of thermal incompatibility. Oxygen and nitrogen permeation fluxes, oxygen ion transport number, and conductivity of the composite were measured by the gas flow, volumetric measurements of the faradaic efficiency, and four-probe dc techniques, accordingly. The membrane material showed the highest oxygen selectivity jO2/jN2 > 10(5) and sufficient oxygen permeability 2.5 × 10(-8) mol cm(-1) s(-1) at 850 °C. In the range of membrane thicknesses 1.5-3.3 mm, the oxygen permeation rate was controlled by chemical diffusion. The ease of the MOM fabrication, combined with superior oxygen selectivity and competitive oxygen permeability, shows the promise of the membrane material for ultrahigh purity oxygen separation from air. PMID:27482771

  10. Final report of the key comparison CCQM-K72: Purity of zinc with respect to six defined metallic analytes

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Kipphardt, Heinrich; del Rocío Arvizu Torres, María; Manzano, Judith Velina Lara; Marques Rodrigues, Janaína; Caciano de Sena, Rodrigo; Yim, Yong-Hyeon; Heo, Sung Woo; Zhou, Tao; Turk, Gregory C.; Winchester, Michael; Yu, Lee L.; Miura, Tsutomu; Methven, B.; Sturgeon, Ralph; Jährling, Reinhard; Rienitz, Olaf; Tunç, Murat; Zühtü Can, Süleyman

    2014-01-01

    High purity elements can serve as a realization of the SI unit amount of substance for the specific element. Solutions prepared from high purity metals by applying gravimetric preparation and the concept of molar mass are used as 'calibration' solutions in many fields of analytical chemistry and provide the metrological basis in elemental analysis. Since ideal purity does not exist for real materials, the actual purity of the high purity material must be known with a specified uncertainty. As required uncertainties around 10-4 relative on the purity statement are not accessible in almost all cases by a direct measurement of the element in itself, the indirect approach is followed, where all elements excepting the matrix element itself are measured and their sum is subtracted from the value for ideal purity, which is 1 kg/kg. It was the aim of this comparison to demonstrate the capability of national metrology institutes and designated institutes to determine the purity of pure elements. In order to limit the effort within this comparison, only six metallic impurities (Ag, Al, Cd, Cr, Ni, Tl) in the low mg/kg range are considered in a zinc matrix. It has to be underlined here that the task was to measure the purity of zinc based on the determination of six analytes. The task is not trace analysis of specific analytes in zinc. This subtle distinction defines different measurands. The sample, pure Zn, was cut in pieces of cubic geometry for wet chemical analysis or of pin geometry for GDMS analysis and was sent to the participants. The comparison was run under the auspices of the Inorganic analysis Working Group (IAWG) of the CCQM and was piloted by the BAM Federal Institute for Materials Research and Testing, Berlin, Germany. The majority of the participants applied ICP-MS techniques and only two participants used additionally atomic absorption spectrometry. GDMS was used only by one participant. The observed spreads for the measurement results reported by the

  11. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  12. The importance of Soret transport in the production of high purity silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Srivastava, R.

    1985-01-01

    Temperature-gradient-driven diffusion, or Soret transport, of silicon vapor and liquid droplets is analyzed under conditions typical of current production reactors for obtaining high purity silicon for solar cells. Contrary to the common belief that Soret transport is negligible, it is concluded that some 15-20 percent of the silicon vapor mass flux to the reactor walls is caused by the high temperature gradients that prevail inside such reactors. Moreover, since collection of silicon is also achieved via deposition of silicon droplets onto the walls, the Soret transport mechanism becomes even more crucial due to size differences between diffusing species. It is shown that for droplets in the 0.01 to 1 micron diameter range, collection by Soret transport dominates both Brownian and turbulent mechanisms.

  13. Improving Negative Ion Beam Quality and Purity with a RF Quadrupole Cooler

    SciTech Connect

    Liu, Y.

    2011-09-26

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negative ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  14. Improving Negative Ion Beam Quality And Purity With A RF Quadrupole Cooler

    SciTech Connect

    Liu, Yuan

    2011-01-01

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negation ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  15. Method and apparatus for producing high purity silicon

    DOEpatents

    Olson, Jerry M.

    1984-01-01

    A method for producing high purity silicon includes forming a copper silie alloy and positioning the alloy within an enclosure. A filament member is also placed within the enclosure opposite the alloy. The enclosure is then filled with a chemical vapor transport gas adapted for transporting silicon. Finally, both the filament member and the alloy are heated to temperatures sufficient to cause the gas to react with silicon at the alloy surface and deposit the reacted silicon on the filament member. In addition, an apparatus for carrying out this method is also disclosed.

  16. A purity monitor for the KEDR liquid krypton calorimeter

    NASA Astrophysics Data System (ADS)

    Evtushenko, P. N.; Kotov, K. Yu.; Maslennikov, A. L.; Peleganchuk, S. V.; Snopkov, R. G.; Rogozin, A. I.; Tikhonov, Yu. A.

    2016-06-01

    We present a purity monitor for the KEDR liquid krypton calorimeter. A new method is suggested based on the usage of a short pulse of a gas discharge as a source of ultraviolet radiation for the photoproduction of electrons in a drift cell of the monitor. This paper describes the design of the monitor, the results of experiments with gaseous and liquid krypton, as well as the experience of using the developed device in the process of krypton purification for the KEDR liquid krypton calorimeter.

  17. The GALATEA test-facility for high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  18. A novel method to synthesize high purity, nanostructured copper

    SciTech Connect

    Hodge, A M; Wang, Y M; Barbee, T W

    2005-08-30

    Nanostructured high purity (99.999%) copper foils, 10 cm in diameter and 22-25 microns thick were produced using nanoscale multilayer technology. The foils were produced using five different layer thicknesses ranging from 1.25 to 43.6 nm (18,000 to 520 layers). This process delivers the ability to produce multiple large-scale samples during a single deposition run with very small residual stresses. Tensile and indentation tests demonstrate that the material produced is a high strength copper ({sigma}{sub y} {approx} 540-690 MPa).

  19. Test of isospin purity in the A=42 isobaric analogs

    SciTech Connect

    Orce, J.N.; McKay, C.J.; Choudry, S.N.; Lesher, S.R.; Bandyopadhyay, D.; McEllistrem, M.T.; Petkov, P.; Mynk, M.; Yates, S.W.

    2004-07-01

    A careful measurement of the lifetime of the first 2{sub T=1}{sup +} state in {sup 42}Sc has allowed an accurate experimental test of isospin purity in the A=42 isobaric analogs by using the isospin formalism. A lifetime of 69 (18) fs has been determined, giving an isoscalar matrix element of 6.8 (8) W.u. Previous measurements of the lifetimes in the mirror nuclei {sup 42}Ca and {sup 42}Ti provided an isoscalar matrix element of 7.1 (5) W.u. which is very close to the presently measured value for {sup 42}Sc.

  20. Neutron energy determination with a high-purity germanium detector

    NASA Technical Reports Server (NTRS)

    Beck, Gene A.

    1992-01-01

    Two areas that are related to planetary gamma-ray spectrometry are investigated. The first task was the investigation of gamma rays produced by high-energy charged particles and their secondaries in planetary surfaces by means of thick target bombardments. The second task was the investigation of the effects of high-energy neutrons on gamma-ray spectral features obtained with high-purity Ge-detectors. For both tasks, as a function of the funding level, the experimental work was predominantly tied to that of other researchers, whenever there was an opportunity to participate in bombardment experiments at large or small accelerators for charged particles.

  1. High-purity silica reflecting heat shield development

    NASA Technical Reports Server (NTRS)

    Congdon, W. M.

    1974-01-01

    A high-purity, fused-silica reflecting heat shield for the thermal protection of outer-planet probes was developed. Factors that strongly influence the performance of a silica heat shield were studied. Silica-bonded silica configurations, each prepared by a different technique, were investigated and rated according to its relative merits. Slip-casting was selected as the preferred fabrication method because it produced good reflectivity and good strength, and is relatively easy to scale up for a full-size outer-planet probe. The slips were cast using a variety of different particle sizes: continuous particle-size slips; monodisperse particle-size slips; and blends of monodisperse particle-size slips were studied. In general, smaller particles gave the highest reflectance. The monodisperse slips as well as the blend slips gave a higher reflectance than the continuous particle-size slips. An upgraded and fused natural quartz was used to study the effects of microstructure on reflectance and as the baseline to ascertain the increase in reflectance obtained from using a higher-purity synthetic material.

  2. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  3. A cultural look at moral purity: wiping the face clean

    PubMed Central

    Lee, Spike W. S.; Tang, Honghong; Wan, Jing; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Morality is associated with bodily purity in the custom of many societies. Does that imply moral purity is a universal psychological phenomenon? Empirically, it has never been examined, as all prior experimental data came from Western samples. Theoretically, we suggest the answer is not so straightforward—it depends on the kind of universality under consideration. Combining perspectives from cultural psychology and embodiment, we predict a culture-specific form of moral purification. Specifically, given East Asians' emphasis on the face as a representation of public self-image, we hypothesize that facial purification should have particularly potent moral effects in a face culture. Data show that face-cleaning (but not hands-cleaning) reduces guilt and regret most effectively against a salient East Asian cultural background. It frees East Asians from guilt-driven prosocial behavior. In the wake of their immorality, they find a face-cleaning product especially appealing and spontaneously choose to wipe their face clean. These patterns highlight both culturally variable and universal aspects of moral purification. They further suggest an organizing principle that informs the vigorous debate between embodied and amodal perspectives. PMID:26029134

  4. The compressibility of high purity YbB2.

    PubMed

    Kalkan, B; Suzer, S; Ozdas, E

    2012-08-29

    The compressibility and phase stability of Y bB(2) are investigated under high pressure using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The bulk modules of high purity Y bB(2) is obtained as ∼182 GPa using the Birch-Murnaghan equation of state. The patterns measured up to 20 GPa and the pressure dependence of normalized lattice parameters, a/a(0) and c/c(0), reveal that the compressibility of Y bB(2) is low and fairly isotropic, and this material can be classified as a hard material. X-ray photoemission studies demonstrate that Yb in Y bB(2) has a mostly trivalent valence state at room temperature. Moreover, sample preparation details provide a new insight into the high purity synthesis of Y bB(2) at ambient pressure and moderate temperatures. The presented structural and compressibility results are in agreement with the available theoretical and experimental data on binary rare-earth borides and can serve as a reliable reference for future studies. PMID:22850355

  5. Recent developments in high purity niobium metal production at CBMM

    SciTech Connect

    Abdo, Gustavo Giovanni Ribeiro Sousa, Clovis Antonio de Faria Guimarães, Rogério Contato Ribas, Rogério Marques Vieira, Alaércio Salvador Martins Menezes, Andréia Duarte Fridman, Daniel Pallos Cruz, Edmundo Burgos

    2015-12-04

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  6. Recent developments in high purity niobium metal production at CBMM

    NASA Astrophysics Data System (ADS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-12-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM's position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM's ingots is for the manufacture of particle accelerators (superconducting radio frequency - SRF - cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world's largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  7. A cultural look at moral purity: wiping the face clean.

    PubMed

    Lee, Spike W S; Tang, Honghong; Wan, Jing; Mai, Xiaoqin; Liu, Chao

    2015-01-01

    Morality is associated with bodily purity in the custom of many societies. Does that imply moral purity is a universal psychological phenomenon? Empirically, it has never been examined, as all prior experimental data came from Western samples. Theoretically, we suggest the answer is not so straightforward-it depends on the kind of universality under consideration. Combining perspectives from cultural psychology and embodiment, we predict a culture-specific form of moral purification. Specifically, given East Asians' emphasis on the face as a representation of public self-image, we hypothesize that facial purification should have particularly potent moral effects in a face culture. Data show that face-cleaning (but not hands-cleaning) reduces guilt and regret most effectively against a salient East Asian cultural background. It frees East Asians from guilt-driven prosocial behavior. In the wake of their immorality, they find a face-cleaning product especially appealing and spontaneously choose to wipe their face clean. These patterns highlight both culturally variable and universal aspects of moral purification. They further suggest an organizing principle that informs the vigorous debate between embodied and amodal perspectives. PMID:26029134

  8. Purity and Enrichment of Laser-Microdissected Midbrain Dopamine Neurons

    PubMed Central

    Brown, Amanda L.; Day, Trevor A.; Dayas, Christopher V.; Smith, Doug W.

    2013-01-01

    The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells. PMID:23984404

  9. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  10. Precipitation of hydrides in high purity niobium after different treatments

    SciTech Connect

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  11. Characteristics of GRIFFIN high-purity germanium clover detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Garnsworthy, A. B.; Andreoiu, C.; Ball, G. C.; Chester, A.; Domingo, T.; Dunlop, R.; Hackman, G.; Rand, E. T.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Voss, P.; Williams, J.

    2016-06-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new experimental facility for radioactive decay studies at the TRIUMF-ISAC laboratory. The performance of the 16 high-purity germanium (HPGe) clover detectors that will make up the GRIFFIN spectrometer is reported. The energy resolution, efficiency, timing resolution, crosstalk and preamplifier properties of each crystal were measured using a combination of analog and digital data acquisition techniques. The absolute efficiency and add-back factors are determined for the energy range of 80-3450 keV. The detectors show excellent performance with an average over all 64 crystals of a FWHM energy resolution of 1.89(6) keV and relative efficiency with respect to a 3 in . × 3 in . NaI detector of 41(1)% at 1.3 MeV.

  12. Survey of the preparation, purity, and availability of silanes

    SciTech Connect

    Lorenz, J.H.

    1983-12-01

    Silane and disilane are currently available as prepared for the semiconductor market. Published or public information on preparative methods for monosilane and higher silanes are discussed. Purification techniques are reviewed. Data from current silane suppliers are tabulated. A short review of the silanes in Japan is given. Analytical procedures are not now perfected to determine group 3 or 5 elements in silane. All commercial silanes contain certain impurities. There is no simple one step purification technique for silane which a user could easily operate. Typical and actual analyses of commercial silane are given. Disilane is still in the development stage with only small quantities available at very high prices. The silane process developed in part under the DOE/JPL Flat Plate Solar Array project by Union Carbide is summarized. Higher purity silanes are now appearing on the market. These should be useful in the photovoltaic area.

  13. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  14. Secondary emission conductivity of high purity silica fabric

    NASA Technical Reports Server (NTRS)

    Belanger, V. J.; Eagles, A. E.

    1977-01-01

    High purity silica fabrics were proposed for use as a material to control the effects of electrostatic charging of satellites at synchronous altitudes. These materials exhibited very quiet behavior when placed in simulated charging environments as opposed to other dielectrics used for passive thermal control which exhibit varying degrees of electrical arcing. Secondary emission conductivity is proposed as a mechanism for this superior behavior. Design of experiments to measure this phenomena and data taken on silica fabrics are discussed as they relate to electrostatic discharge (ESD) control on geosynchronous orbit spacecraft. Studies include the apparent change in resistivity of the material as a function of the electron beam energy, flux intensity, and the effect of varying electric fields impressed across the material under test.

  15. High-efficiency spectral purity filter for EUV lithography

    DOEpatents

    Chapman, Henry N.

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  16. Springback in Deep Drawn High Purity Niobium for Superconductor Cavities

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel

    2005-09-01

    Superconducting radio frequency (SRF) cavities made from deep drawn high-purity niobium have become a popular approach for the design of particle accelerators. A number of current accelerators use this technology and it is a leading candidate for future designs. The development of this technology has required significant advances in many scientific fields including metallurgy, high vacuum physics, surface science, and forming. Recently proposed modifications to the current process for fabrication of these cavities has resulted in increased concern about the distribution of deformation, residual stress patterns, and springback. This presentation will report on the findings of a recently initiated program to study plastic flow and springback in the fabrication of these cavities and the influence of metallurgical variables including grain size and impurity content.

  17. Study on the Properties of High Purity Germanium Crystals

    NASA Astrophysics Data System (ADS)

    Yang, G.; Mei, H.; Guan, Y. T.; Wang, G. J.; Mei, D. M.; Irmscher, K.

    2015-05-01

    In the crystal growth lab of South Dakota University, we are growing high purity germanium (HPGe) crystals and using the grown crystals to make radiation detectors. As the detector grade HPGe crystals, they have to meet two critical requirements: an impurity level of ∼109 to 10 atoms /cm3 and a dislocation density in the range of ∼102 to 104 / cm3. In the present work, we have used the following four characterization techniques to investigate the properties of the grown crystals. First of all, an x-ray diffraction method was used to determine crystal orientation. Secondly, the van der Pauw Hall effect measurement was used to measure the electrical properties. Thirdly, a photo-thermal ionization spectroscopy (PTIS) was used to identify what the impurity atoms are in the crystal. Lastly, an optical microscope observation was used to measure dislocation density in the crystal. All of these characterization techniques have provided great helps to our crystal activities.

  18. Dislocation distribution in large high-purity germanium crystal

    NASA Astrophysics Data System (ADS)

    Mei, Hao; Wang, Guojian; Mei, Dongming; Huang, Mianliang; Yang, Gang; Guan, Yutong; Cubed Collaboration

    2014-03-01

    We investigated the impacts of growth rate, time-temperature profile, thermal gradient on the dislocation distribution in large high-purity germanium crystal (12 cm in diameter) grown via Czochralski along <100>orientation. The time-temperature profiles of the crystal grown at different input power were investigated using direct measurements and computational modeling. The effect of crystallization speed on dislocation density is discussed from the context of thermal gradient during growth. Several samples from the grown crystals were used for this investigation. We measured dislocation density across the entire cross-section of the grown crystal through the microscope. By measuring and calculating the dislocation density, we were able to identify the denseness and the type of dislocation, which allows us to study how the thermal stress impacts the dislocation generation and distribution across the large grown crystals. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  19. Development of high purity niobium used in SRF accelerating cavity

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Xie, Wei-Ping; Li, Ming-Yang; He, Ji-Lin; Fan, Hui-Ru; Zhang, Bao-Cheng; He, Fei-Si; Zhao, Kui; Chen, Jia-Er; Liu, Ke-Xin

    2008-12-01

    Niobium is widely used in SRF (Superconducting Radio Frequency) cavities due to its excellent superconductivity and workability. With the continuous development of technology, higher demands of material are raised. One of the key issues is that RRR (Residual Resistance Ratio) of the Nb material should be more than 300, which requires that the Nb ingot have even higher RRR. This article introduces the development and the experimental results of high purity niobium in OTIC in Ningxia (Ningxia Orient Tantalum Industry Co. Ltd.), and the test results of the single cell TESLA (Tera Electron volt energy Superconducting Linear Accelerator) shaped cavity manufactured by Peking University using Nb material from OTIC. Supported by National Basic Research Program of China (2002CB713600)

  20. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    NASA Astrophysics Data System (ADS)

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-08-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz-1 at 10 Hz, -90 dBc Hz-1 at 100 Hz and -170 dBc Hz-1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10-10 at 1-100 s integration time--orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  1. Physical and mechanical metallurgy of high purity Nb accelerator cavities.

    SciTech Connect

    Wright, N. T.; Bieler, T. R.; Pourgoghart , F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.; Michigan State Univ.; Texas A & M Univ.; ORNL

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  2. Self-excited coupled-microcantilevers for mass sensing

    NASA Astrophysics Data System (ADS)

    Endo, Daichi; Yabuno, Hiroshi; Higashino, Keiichi; Yamamoto, Yasuyuki; Matsumoto, Sohei

    2015-06-01

    This paper reports ultrasensitive mass detection based on the relative change in the amplitude ratio of the first mode oscillation using self-excited coupled microcantilevers. The method proposed and demonstrated using the macrocantilevers in the previous study can measure eigenstate shifts caused by objects with high accuracy without being affected by the viscous damping effect of measurement environments. In this study, moving towards the use of this method for small mass measurements, we established the self-excited coupled microcantilevers and we have achieved in measurements of very small mass (about 1 ng) with 1% order of error.

  3. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    SciTech Connect

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio; De Siena, Silvio

    2003-07-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.

  4. Equilibrium theory-based design of simulated moving bed processes under reduced purity requirements linear isotherms.

    PubMed

    Rajendran, Arvind

    2008-03-28

    The design of simulated moving bed processes under reduced purity requirements for systems whose isotherm is linear is considered. Based on the equilibrium theory of chromatography, explicit equations to uniquely identify the separation region that will ensure specified extract and raffinate purities are derived. The identification of the region requires only the knowledge of Henry constants of the solutes, the concentration of the solutes in the feed and the purity specifications. These results are validated using numerical simulations. PMID:18281052

  5. Entanglement and purity of two-mode Gaussian states in noisy channels

    SciTech Connect

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio; Paris, Matteo G.A.

    2004-02-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.

  6. Improving axion detection sensitivity in high purity germanium detector based experiments

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  7. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    PubMed

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A

    2016-09-01

    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (<10mgL(-1)) and suitable pH for analysis by both IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS. PMID:27343595

  8. Measurement of φs in CP and Non-CP Eigenstates - Results from D0, CDF and LHCb

    NASA Astrophysics Data System (ADS)

    Sparkes, Ailsa

    2013-10-01

    D0, CDF and LHCb have all performed measurements of the CP-violating parameters φs with the decay Bs0= J/Ψφ. These measurements are now consistent with each other and also with the prediction of the Standard Model. LHCb has performed the first non-zero measurement of the lifetime difference between the Bs0 and Bs-0 decays. The ambiguity in the sign of this difference has been resolved using a simultaneous fit in bins of K+K- invariant mass. The value of φs has also been measured with the decay Bs0→J/Ψππ at LHCb, and has been combined with the result from Bs0→J/Ψφ. Prospects for further measurements are discussed.

  9. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    SciTech Connect

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).

  10. MassToMI-A Mathematica package for an automatic Mass Insertion expansion

    NASA Astrophysics Data System (ADS)

    Rosiek, Janusz

    2016-04-01

    We present a Mathematica package designed to automatize the expansion of transition amplitudes calculated in the mass eigenstates basis (i.e. expressed in terms of physical masses and mixing matrices) into series of "mass insertions", defined as off-diagonal entries of mass matrices in Lagrangian before diagonalization and identification of the physical states. The algorithm implemented in this package is based on the general "Flavor Expansion Theorem" proven in Dedes et al. (2015). The supplied routines are able to automatically analyze the structure of the amplitude, identify the parts which could be expanded and expand them to any required order. They are capable of dealing with amplitudes depending on both scalar or vector (Hermitian) and Dirac or Majorana fermion (complex) mass matrices. The package can be downloaded from the address www.fuw.edu.pl/masstomi.

  11. Observing bulk diamond spin coherence in high-purity nanodiamonds.

    PubMed

    Knowles, Helena S; Kara, Dhiren M; Atatüre, Mete

    2014-01-01

    Nitrogen-vacancy (NV) centres in diamond are attractive for research straddling quantum information science, nanoscale magnetometry and thermometry. Whereas ultrapure bulk diamond NVs sustain the longest spin coherence times among optically accessible spins, nanodiamond NVs exhibit persistently poor spin coherence. Here we introduce high-purity nanodiamonds accommodating record-long NV coherence times, >60 μs, observed through universal dynamical decoupling. We show that the main contribution to decoherence comes from nearby nitrogen impurities rather than surface states. We protect the NV spin free precession, essential to d.c. magnetometry, by driving solely these impurities into the motional narrowing regime. This extends the NV free induction decay time from 440 ns, longer than that in type Ib bulk diamond, to 1.27 μs, which is comparable to that in type IIa (impurity-free) diamond. These properties allow the simultaneous exploitation of both high sensitivity and nanometre resolution in diamond-based emergent quantum technologies. PMID:24270582

  12. Characterization and modeling of heterogeneous deformation in commercial purity titanium

    SciTech Connect

    Yang, Y; Wang, Leyun; Zambaldi, Dr C; Eisenlohr, P; Barabash, Rozaliya; Liu, W.; Stoudt, Dr M R; Crimp, Prof M A; Bieler, Prof T R

    2011-01-01

    Heterogeneous deformation, including local dislocation shear activity and lattice rotation, was analyzed in microstructure patches of polycrystalline commercial purity titanium specimens using three different experimental methods. The measurements were compared with crystal plasticity finite element (CPFE) simulations for the same region that incorporate a local phenomenological hardening constitutive model. The dislocation activity was measured using techniques associated with atomic force microscopy (AFM), confocal microscopy, three-dimensional-X-ray diffraction (3D-XRD), and nano-indentation. These measurements allow assessment and guidance for strategic improvement of the accuracy of CPFE model development. The CPFE model successfully predicted most types of active dislocation systems within grains at the correct magnitudes, but the simulation of spatial distribution of strain was not always similar to experimental observations. To obtain an accurate CPFE model, the critical resolved shear stresses for major deformation systems in -titanium were assessed using an optimization strategy with CPFE predictions of the measured pile-up topography surrounding axisymmetric nano-indentation. Only modest improvements were noted over the simulations done without such optimized parameters. This indicates that a major challenge for model development is to effectively predict conditions where slip transfer occurs, and where geometrically necessary dislocations (GND) accumulate.

  13. Permeation of oxygen through high purity, large grain silver

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Peregoy, W. K.; Hoflund, Gar B.

    1987-01-01

    The permeation of high purity, large grain Ag membranes by oxygen has been studied over the temperature range 400 to 800 C. The permeability was found to be quite linear and repeatable, but the magnitude was 3.2 times smaller than that determined by past research. Since previous investigators studied substantially less pure Ag and conducted experiments within much poorer vacuum environments (which indicates that their grain boundary density was much greater), the data presented here suggest oxygen transport through the membrane is primarily by grain boundary diffusion. The diffusivity measurements were found to exhibit two distinct linear regions, one above and one below a critical temperature of 630 C. The high-temperature data have an activation energy (11.1 kcal/mole) similar to that reported by others, but the low-temperature data have a higher activation energy (15.3 kcal/mole), which can be explained by impurity trapping in the grain boundaries. Vacuum desorption of the oxygen-saturated Ag was found to occur at a threshold of 630 C, which is consistent with the onset of increased mobility within the grain boundaries.

  14. D2 and CD4 Purity Effects on CD Ablators

    SciTech Connect

    Cook, R C; Nikroo, A

    2004-01-09

    The question of how the isotopic purity of the feed gases D{sub 2} and CD{sub 4} used to make CD ablators at GA effects the extinction coefficient in the region of wavenumber 2900 cm{sup -1} ({lambda} = 3.45 {micro}m) is addressed below. The answer is at best incomplete; this is only an interim evaluation. What is clear is that using ultra-pure D{sub 2} is required to lower the ''CH'' impurity peak at 2900 cm{sup -1}. Perhaps using ultra-pure CD{sub 4} also helps, though the evidence for this is mixed. A closer look at the results raises other questions, however, and these are discussed below. Though solving these questions is unlikely to reduce the extinction coefficient in the region of 2900 cm{sup -1} below about 10 cm{sup -1}, this work will lead to a better understanding of the deposition of CH/CD GDP, and that is certainly worthwhile.

  15. Improved scheme for the analysis of high-purity talc.

    PubMed

    Norwitz, G; Gordon, H

    1977-01-01

    An improved method is proposed for the determination of silica, magnesium oxide, R(2)O(3), ferric oxide, calcium oxide, and aluminium oxide in high-purity talc. In the method for silica and magnesium oxide, the sample is fused with sodium carbonate and the cooled melt is dissolved with perchloric acid in such a manner that it floats free from the crucible (in previous schemes for the analysis of talc there are frequently mechanical losses due to the difficulty of removing the magnesium silicate melt from the crucible). The solution is then evaporated to fumes of perchloric acid and the silica is filtered off and ignited. The magnesium oxide is determined in the filtrate by precipitation as magnesium ammonium phosphate and a correction is made for the calcium which is precipitated along with the magnesium ammonium phosphate. R(2)O(3) is determined after treatment of the sample with nitric and hydrofluoric acids and evaporation to fumes of perchloric acid. Iron oxide and calcium oxide are determined by atomic absorption, after treatment with nitric and hydrofluoric acids and evaporation to fumes of perchloric acid. Al(2)O(3) is calculated by difference. PMID:18962055

  16. The regeneration games: purity and security in the Olympic city.

    PubMed

    Fussey, Pete; Coaffee, Jon; Armstrong, Gary; Hobbs, Dick

    2012-06-01

    This paper examines the wider social impacts of hosting the London 2012 Olympic Games and its 'legacy' ambitions in East London, emphasizing securitization as an inbuilt feature of the urban regeneration project. Drawing on extensive original empirical research, the paper analyses the modalities of Olympic safety and security practices within the Olympic Park itself and their wider impact, while also connecting this research to theorization and debates in urban sociology and criminology. In this complex setting, a raft of formal and informal, often subtle, regulatory mechanisms have emerged, especially as visions of social ordering focused on 'cleansing' and 'purifying' have 'leaked out' from the hyper-securitized 'sterilized' environment of the Olympic Park and become embedded within the Olympic neighbourhood. In such complex circumstances, applying Douglas' (1966) work on purity and danger to the spatial realm provides a key conceptual framework to understand the form and impact of such processes. The imposition of order can be seen to not only perform 'cleansing' functions, but also articulate multiple symbolic, expressive and instrumental roles. PMID:22670647

  17. 7 CFR 201.51b - Purity procedures for coated seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Purity procedures for coated seed. 201.51b Section 201... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b...

  18. Animal Sex: Purity Education and the Naturalization of the Abstinence Agenda

    ERIC Educational Resources Information Center

    Sethna, Christabelle

    2010-01-01

    An early-twentieth-century movement for social purity in England, Canada and the United States aimed to eradicate prostitution, the double standard of sexual morals and their dreaded corollary, the venereal diseases. Social purists suggested that "purity education" for children was the best pedagogical prophylaxis against such medico-moral…

  19. Human Newborn Color Vision: Measurement with Chromatic Stimuli Varying in Excitation Purity.

    ERIC Educational Resources Information Center

    Adams, Russell J.; Courage, Mary L.

    1998-01-01

    Habituated 180 neonates to white lights of varying luminance and tested for recovery of habituation to green, yellow, or red lights varying in excitation purity. Found that newborns discriminated chromatic stimuli from white only when excitation purity exceeded levels much higher than those for adults. Results reinforce view that neonates' vision…

  20. Recent Rhetorics of Purity in the Visual Arts. Infection, Dissemination, Genealogy.

    ERIC Educational Resources Information Center

    Cheetham, Mark A.

    1997-01-01

    Analyzes the medical discourses of infection, purity, and impurity and how these relate to the manipulation of images and ideas inherent in modern art. Argues that various concepts of purity (both in form and as a metaphorical subject) continue to exert powerful influences on artists in the 20th century. (MJP)

  1. 7 CFR 201.51b - Purity procedures for coated seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Purity procedures for coated seed. 201.51b Section 201... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b...

  2. 7 CFR 201.51b - Purity procedures for coated seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Purity procedures for coated seed. 201.51b Section 201... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b...

  3. 7 CFR 201.51b - Purity procedures for coated seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Purity procedures for coated seed. 201.51b Section 201... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b...

  4. 7 CFR 201.51b - Purity procedures for coated seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Purity procedures for coated seed. 201.51b Section 201... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b...

  5. Effect of Magnesium and Calcium on Purity of Rice Husk Ash based silicon

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo Taofeek

    2014-03-01

    This paper describes the effect of reducing agents on purity of rice husk based silicon. The rice husk samples were subjected to thermal treatment at 900°C to extract the silica. The silica extracted was subsequently analyzed for the initial impurities and treated with magnesium and calcium powder. The silicon obtained when magnesium was used to reduce the silica resulted in higher purity than that of the Calcium. It follows therefore that magnesium is thermodynamically favourable to reduce SiO2 than Calcium. However the two products gave silicon purities in the range of 94.93% to 96.03%. The result shows that the range of purity meets the requirement as starting raw material for the semiconductor grade silicon. Keywords: Purity, Rice husk ash, Silicon, Magnesium, Calcium. I wish to acknowledge the support of the Management of Osun State Polytechnic Iree for providing me a conducive environment for this publication.

  6. Flag-based control of quantum purity for n =2 systems

    NASA Astrophysics Data System (ADS)

    Rooney, Patrick; Bloch, Anthony M.; Rangan, C.

    2016-06-01

    This paper investigates the fast Hamiltonian control of n =2 density operators by continuously varying the flag (i.e., the eigenspaces) as one moves away from the completely mixed state. In general, the critical points and zeros of the purity derivative can only be solved analytically in the limit of minimal purity. We derive differential equations that maintain these features as the purity increases. In particular, there is a thread of points in the Bloch ball that locally maximizes the purity derivative and a corresponding thread that minimizes it. Additionally, we show there is a closed surface of points inside of which the purity derivative is positive and outside of which is negative. We argue that this approach may be useful in studying higher-dimensional systems.

  7. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

    NASA Astrophysics Data System (ADS)

    Baykara, N. A.

    2015-12-01

    Recent studies on quantum evolutionary problems in Demiralp's group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.

  8. Impact of the Condensed-Phase Environment on the Translation-Rotation Eigenstates and Spectra of a Hydrogen Molecule in Clathrate Hydrates.

    PubMed

    Powers, Anna; Marsalek, Ondrej; Xu, Minzhong; Ulivi, Lorenzo; Colognesi, Daniele; Tuckerman, Mark E; Bačić, Zlatko

    2016-01-21

    We systematically investigate the manifestations of the condensed-phase environment of the structure II clathrate hydrate in the translation-rotation (TR) dynamics and the inelastic neutron scattering (INS) spectra of an H2 molecule confined in the small dodecahedral cage of the hydrate. The aim is to elucidate the extent to which these properties are affected by the clathrate water molecules beyond the confining cage and the proton disorder of the water framework. For this purpose, quantum calculations of the TR eigenstates and INS spectra are performed for H2 inside spherical clathrate domains of gradually increasing radius and the number of water molecules ranging from 20 for the isolated small cage to more than 1800. For each domain size, several hundred distinct hydrogen-bonding topologies are constructed in order to simulate the effects of the proton disorder. Our study reveals that the clathrate-induced splittings of the j = 1 rotational level and the translational fundamental of the guest H2 are influenced by the condensed-phase environment to a dramatically different degree, the former very strongly and the latter only weakly. PMID:26727217

  9. Manifesting the evolution of eigenstates from quantum billiards to singular billiards in the strongly coupled limit with a truncated basis by using RLC networks

    NASA Astrophysics Data System (ADS)

    Tuan, P. H.; Liang, H. C.; Tung, J. C.; Chiang, P. Y.; Huang, K. F.; Chen, Y. F.

    2015-12-01

    The coupling interaction between the driving source and the RLC network is explored and characterized as the effective impedance. The mathematical form of the derived effective impedance is verified to be identical to the meromorphic function of the singular billiards with a truncated basis. By using the derived impedance function, the resonant modes of the RLC network can be divided into the open-circuit and short-circuit states to manifest the evolution of eigenvalues and eigenstates from closed quantum billiards to the singular billiards with a truncated basis in the strongly coupled limit. The substantial differences of the wave patterns between the uncoupled and strongly coupled eigenmodes in the two-dimensional wave systems can be clearly revealed with the RLC network. Finally, the short-circuit resonant states are exploited to confirm that the experimental Chladni nodal-line patterns in the vibrating plate are the resonant modes subject to the strong coupling between the oscillation system and the driving source.

  10. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

    SciTech Connect

    Baykara, N. A.

    2015-12-31

    Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.

  11. Manifesting the evolution of eigenstates from quantum billiards to singular billiards in the strongly coupled limit with a truncated basis by using RLC networks.

    PubMed

    Tuan, P H; Liang, H C; Tung, J C; Chiang, P Y; Huang, K F; Chen, Y F

    2015-12-01

    The coupling interaction between the driving source and the RLC network is explored and characterized as the effective impedance. The mathematical form of the derived effective impedance is verified to be identical to the meromorphic function of the singular billiards with a truncated basis. By using the derived impedance function, the resonant modes of the RLC network can be divided into the open-circuit and short-circuit states to manifest the evolution of eigenvalues and eigenstates from closed quantum billiards to the singular billiards with a truncated basis in the strongly coupled limit. The substantial differences of the wave patterns between the uncoupled and strongly coupled eigenmodes in the two-dimensional wave systems can be clearly revealed with the RLC network. Finally, the short-circuit resonant states are exploited to confirm that the experimental Chladni nodal-line patterns in the vibrating plate are the resonant modes subject to the strong coupling between the oscillation system and the driving source. PMID:26764773

  12. Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen

    NASA Technical Reports Server (NTRS)

    Hornung, Steven

    2013-01-01

    Oxygen used for extravehicular activities (EVAs) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen has been developed. This instrument uses a glow discharge in reduced-pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete, and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants, and may lend itself to a device capable of on-orbit verification of oxygen purity. A glow discharge is a plasma formed in a low-pressure (1 to 10 Torr) gas cell between two electrodes. Depending on the configuration, voltages ranging from 200 V and above are required to sustain the discharge. In the discharge region, the gas is ionized and a certain population is in the excited state. Light is produced by the transitions from the excited states formed in the plasma to the ground state. The spectrum consists of discrete, narrow emission lines for the atomic species, and broader peaks that may appear as a manifold for molecular species such as O2 and N2, the wavelengths and intensities of which are a characteristic of each atom. The oxygen emission is dominated by two peaks at 777 and 844 nm.

  13. Chemical purity and toxicology of pigments used in tattoo inks.

    PubMed

    Petersen, Henrik; Lewe, Dirk

    2015-01-01

    The safety of tattoo inks has obviously increased in Europe since the existence of European Union Resolution ResAP(2008)1, which resulted in the improved quality control of pigment raw materials due to the definition of impurity limits that manufacturers can refer to. High-performance pigments are mostly used in tattoo inks, and these pigments are supposed to be chemically inert and offer high light fastness and low migration in solvents. However, these pigments were not developed or produced for applications involving long-term stay in the dermis or contact with bodily fluids. Therefore, these pigments often do not comply with the purity limits of the resolution; however, it is required that every distributed tattoo ink does not contain aromatic amines and not exceed the limits of heavy metals or polycyclic aromatic hydrocarbons. Current toxicity studies of pigments underline that no ecotoxicological threat to human health or to the environment should be expected. However, the pigment as well as its impurities and coating materials must be considered. In order to evaluate the safety of pigments according to their impurities, two different validated sample preparation methods are necessary: (1) simulation of their long-term stay in the bodily fluid of the dermis and (2) simulation of cleavage due to laser removal or ultraviolet exposure. The development of standardized, validated and well-adapted methods for this application has to be part of prospective efforts. Concerning legislation, it might be appropriate that the first regulative approaches be based on those of cosmetics. PMID:25833635

  14. Determination of purity degree and counter-ion content in lecirelin by capillary zone electrophoresis and capillary isotachophoresis.

    PubMed

    Sázelová, Petra; Kasicka, Václav; Solínová, Veronika; Koval, Dusan

    2006-09-01

    Capillary zone electrophoresis (CZE) and capillary isotachophoresis (CITP) were applied for the determination of peptide purity degree and counter-ion content in lecirelin, the synthetic analogue of luteinizing hormone-releasing hormone (LHRH). CZE analyses were carried out in acidic background electrolyte (100 mM H3PO4, 50 mM Tris, pH 2.25) in bare fused silica capillary using UV-absorption detection at 206 nm. CITP analyses were performed in the electrophoretic analyzer with column coupling, equipped with contactless conductivity detectors both in preseparation capillary and in analytical capillary, and with UV-absorption detector (220 and 254 nm) in analytical capillary. Determinations of peptide purity were carried out in cationic mode with leading electrolyte (LE), 10 mM KOH/AcOH, pH 4.5, and terminating electrolyte (TE), 10 mM beta-alanine (BALA)/AcOH, pH 4.4. Degree of peptide purity determined by both CZE and CITP was in the range 60.1-80.9% for crude preparations of lecirelin and in the range 96.4-99.9% for HPLC purified batches. Concentrations of contaminating counter-ions, the anions of trifluoromethanesulfonic acid (TFMSA), trifluoroacetic acid (TFA) and acetic acid (AcOH), were determined by CITP analyses in anionic mode with LE 10 mM HCl/His, pH 6.0, and TE 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES), pH 4.0, by the calibration curve method. Mass percentages of the counterion contents in the analyzed lecirelin batches varied from zero to ca. 9% (TFMSA), 3% (TFA) and 11% (AcOH), respectively. PMID:16687256

  15. High-purity isolation of anthocyanins mixtures from fruits and vegetables--a novel solid-phase extraction method using mixed mode cation-exchange chromatography.

    PubMed

    He, Jian; Giusti, M Monica

    2011-11-01

    Research on biological activity of anthocyanins requires the availability of high purity materials. However, current methods to isolate anthocyanins or anthocyanin mixtures are tedious and expensive or insufficient for complete isolation. We applied a novel cation-exchange/reversed-phase combination solid-phase extraction (SPE) technique, and optimized the use of water/organic buffer mobile phases to selectively separate anthocyanins. Crude extracts of various representative anthocyanin sources were purified with this technique and compared to 3 commonly used SPE techniques: C(18), HLB, and LH-20. Purified anthocyanin fractions were analyzed with high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) and mass spectrometry (MS) detectors and by Fourier transform infrared (FT-IR) spectroscopy. The UV-visible chromatograms quantitatively demonstrated that our novel technique achieved significantly higher (P<0.05) anthocyanin purity than the C(18) cartridge, the next best method, for 11 of the 12 anthocyanin sources tested. Among them, eight were purified to greater than 99% purity (based on UV-visible chromatograms). The new method efficiently removed non-anthocyanin phenolics. MS and FT-IR results semi-quantitatively confirmed extensive reduction of impurities. Due to strong ionic interaction, our sorbent capacity was superior to others, resulting in the highest throughput and least use of organic solvents. This new methodology for isolation of anthocyanin mixtures drastically increased purity and efficiency while maintaining excellent recovery rate and low cost. The availability of high purity anthocyanin mixtures will facilitate anthocyanin studies and promote the application of anthocyanins in the food and nutraceutical industries. PMID:21968344

  16. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography.

    PubMed

    Tulevski, George S; Franklin, Aaron D; Afzali, Ali

    2013-04-23

    The isolation of semiconducting carbon nanotubes (CNTs) to ultrahigh (ppb) purity is a prerequisite for their integration into high-performance electronic devices. Here, a method employing column chromatography is used to isolate semiconducting nanotubes to 99.9% purity. The study finds that by modifying the solution preparation step, both the metallic and semiconducting fraction are resolved and elute using a single surfactant system, allowing for multiple iterations. Iterative processing enables a far more rapid path to achieving the level of purities needed for high performance computing. After a single iteration, the metallic peak in the absorption spectra is completely attenuated. Although absorption spectroscopy is typically used to characterize CNT purity, it is found to be insufficient in quantifying solutions of high purity (>98 to 99%) due to low signal-to-noise in the metallic region of ultrahigh purity solutions. Therefore, a high throughput electrical testing method was developed to quantify the degree of separation by characterizing ∼4000 field-effect transistors fabricated from the separated nanotubes after multiple iterations of the process. The separation and characterization methods described here provide a path to produce the ultrahigh purity semiconducting CNT solutions needed for high performance electronics. PMID:23484490

  17. Influence of purity of NdF3 single crystals on their ionic conductivity

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Zhmurova, Z. I.; Krivandina, E. A.; Sobolev, B. P.

    2012-05-01

    Single crystals of the NdF3 superionic conductor have been grown by the Bridgman method from a melt in a helium atmosphere using a fluorinating PbF2 agent. Commercial NdF3 reagents of special purity grade, reagent grade, and pure grade are used. It is found that the ionic conductivity σ of the crystals depends considerably on the purity grade of the starting substances: at 200°C σ = 1.4 × 10-, 3 × 10-4, and 8 × 10-4 S/cm for reagents of special purity grade, reagent grade, and pure grade, respectively.

  18. High-purity separation of cancer cells by optically induced dielectrophoresis.

    PubMed

    Chen, Hsiu-Hsiang; Lin, Mai-Wei; Tien, Wan-Ting; Lai, Chin-Pen; Weng, Kuo-Yao; Ko, Ching-Huai; Lin, Chun-Chuan; Chen, Jyh-Chern; Tiao, Kuo-Tung; Chen, Tse-Ching; Chen, Shin-Cheh; Yeh, Ta-Sen; Cheng, Chieh-Fang

    2014-04-01

    Detecting and concentrating cancer cells in peripheral blood is of great importance for cancer diagnosis and prognosis. Optically induced dielectrophoresis (ODEP) can achieve high resolution and low optical intensities, and the electrode pattern can be dynamically changed by varied light patterns. By changing the projected light pattern, it is demonstrated to separate high-purity gastric cancer cell lines. Traditionally, the purity of cancer cell isolation by negative selection is 0.9% to 10%; by positive selection it is 50% to 62%. An ODEP technology is proposed to enhance the purity of cancer cell isolation to about 77%. PMID:24723112

  19. The Hydrometallurgical Extraction and Recovery of High-Purity Silver

    NASA Astrophysics Data System (ADS)

    Hoffmann, James E.

    2012-06-01

    -bearing inputs, will be described in detail to demonstrate how typical chemical engineering unit process and unit operations have supplanted classic smelting and fire refining techniques. The Kennecott Copper Company, which has operated a hydrometallurgical circuit successfully for the recovery of high-purity silver from the slimes wet chlorination residue, has permitted me to provide some operation information and results using the technology. Both Phelps Dodge and Kennecott should be recognized for their forward-looking attitude in undertaking the conversion of conceptual chemistry into successful, full-scale plants. The process as employed at Phelps Dodge is discussed at length in reference (J.E. Hoffmann and B. Wesstrom: Hydrometallurgy, 1994, vol. 94, pp. 69-105).

  20. Inelastic neutron scattering spectra of a hydrogen molecule in a nanocavity: Methodology for quantum calculations incorporating the coupled five-dimensional translation-rotation eigenstates

    NASA Astrophysics Data System (ADS)

    Xu, Minzhong; Bačić, Zlatko

    2011-11-01

    We present an in-depth description of the methodology for accurate quantum calculation of the inelastic neutron scattering (INS) spectra of an H2 molecule confined inside a nanosize cavity of an arbitrary shape. This methodology was introduced in a recent work [M. Xu, L. Ulivi, M. Celli, D. Colognesi, and Z. Bačić, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.241403 83, 241403(R) (2011)], where the INS spectra of para- and ortho-H2 in the small cage of the structure II clathrate hydrate were simulated and compared with the measured spectra. The key distinctive feature of our approach, and its main strength and advantage, is the use of the coupled quantum 5D translation-rotation (TR) energy levels and wave functions of the entrapped H2 molecule, rigorously calculated on the 5D intermolecular potential energy surface (PES), as the initial and the final states of the INS transitions. In this work, we describe the implementation of the 5D TR wave functions within the quantum INS formalism, and obtain the working expressions for the matrix elements required to compute the INS spectra of the nanoconfined H2 molecule. The computational approach devised for efficient calculation of the 5D TR eigenstates in the compact contracted basis, indispensable for our quantum simulation of the INS spectra, is presented as well. Since the TR coupling is fully taken into account, the computed INS spectra exhibit a uniquely high degree of realism and faithfully reflect the quantum dynamics of H2 on the PES of the host environment.

  1. Structure of polarimetric purity of a Mueller matrix and sources of depolarization

    NASA Astrophysics Data System (ADS)

    Gil, José J.

    2016-06-01

    The depolarization properties of a medium with associated Mueller matrix M are characterized through two complementary sets of parameters, namely 1) the three indices of polarimetric purity (IPP), which are directly linked to the relative weights of the spectral components of M and provide complete information on the structure of polarimetric randomness, but are insensitive to the specific polarimetric behaviors that introduce the lack of randomness, and 2) the set of three components of purity (CP), constituted by the polarizance, the diattenuation and the degree of spherical purity. The relations between these sets of physical invariant quantities are studied by means of their representation into a common purity figure. Furthermore, the polarimetric properties of a general Mueller matrix M are parameterized in terms of sixteen meaningful quantities, three of them being the IPP, which together with the CP provide complete information on the integral depolarization properties of the medium.

  2. Purity assessment of condensed tannin fractions by nuclear magnetic resonance (NMR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unambiguous investigation of condensed tannin (CT) structure-activity relationships in biological systems requires the use of highly enriched CT fractions of defined chemical purity. Purification of CTs from Sorghum bicolor, Trifolium repens, Theobroma cacao, Lespedeza cuneata, Lotus pedunculatus, a...

  3. Effects of TiCl4 Purity on the Sinterability of Armstrong-Processed Ti Powder

    SciTech Connect

    Weil, K. Scott; Hovanski, Yuri; Lavender, Curt A.

    2009-04-03

    A series of high purity and low purity powders were synthesized from TiCl4 by the Armstrong process. While both powders displayed swelling when consolidated and sintered, the lower purity powder exhibited this phenomenon in significantly lower degree. The improvement is attributed to the increase in the onset of sintering temperature, which mitigates the entrapment of volatile impurities that would otherwise lead to pore formation and growth. The net effect is that the use of a lower purity TiCl4 may beneficial in two ways: (1) it is a potentially lower cost precursor to Ti powder production and (2) the trace impurities allow higher density components to be fabricated via a typical low-cost press and sinter approach.

  4. A cleaner two-step synthesis of high purity diallyldimethylammonium chloride monomers for flocculant preparation.

    PubMed

    Tian, Bing-hui; Fan, Bin; Peng, Xian-jia; Luan, Zhao-kun

    2005-01-01

    In order to improve the flocculation efficiency of polydiallyldimethylammonium chloride (PDADMAC), high molecular weight PDADMAC should be prepared from high purity diallyldimethylammonium chloride(DADMAC) monomers. In this paper, a cleaner method with microwave irradiation and alkali solidification was proposed for preparing high pure DADMAC by selective heating under low temperature, and the prepared high purity DADMAC is characterized using FTIR and atomic absorption spectrometry. The new method provides a solution to the key technical problem of PDADMAC synthesis. Comparing with the conventional methods, the results showed that the advantages of the novel synthesis include: (a) high purity DADMAC is improved from 57% to 71%; (b) reaction time of tertiary amine preparation is shortened from 6 h to 7 min; (c) water instead of acetone was used as reaction medium; (d) toxic by-products, wastewater and waste gas are eliminated. Flocculant made from the synthesized high purity DADMAC monomers was proved more efficient in flocculation tests. PMID:16313006

  5. High purity germanium crystal growth at the University of South Dakota

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Mei, Hao; Mei, Dongming; Guan, Yutong; Yang, Gang

    2015-05-01

    High-purity germanium crystal growth is challenging work, requiring the control of individual crystal properties such as the impurity distribution, the dislocation density, and the crystalline structure. Currently, we grow high-purity germanium crystals by the Czochralski method in our laboratory in order to understand the details of the growing process, especially for large diameter crystals. In this paper, we report the progress of detector-grade germanium crystal growth at the University of South Dakota.

  6. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  7. Adherence of Staphylococcus aureus to Dyneema Purity® Patches and to Clinically Used Cardiovascular Prostheses.

    PubMed

    Basir, Amir; Gründeman, Paul; Moll, Frans; van Herwaarden, Joost; Pasterkamp, Gerard; Nijland, Reindert

    2016-01-01

    Various materials that are used for vascular and heart valve prostheses carry drawbacks: some require anticoagulant drugs or have moderate durability; others are not suitable for endovascular treatment. These prostheses are associated with bacterial infections. A material potentially suitable for prostheses is Dyneema Purity®, made of ultra-high-molecular-weight polyethylene. Dyneema Purity® fibers are very thin, flexible, resistant to fatigue and abrasion, and have high strength. S. aureus adherence to Dyneema Purity® was tested and compared with currently used cardiovascular prostheses. We compared adhesion of S. aureus to Dyneema Purity® (1 membrane-based and 1 yarn-composed patch) with 5 clinically used yarn-composed polyester and membrane-based expanded polytetrafluoroethylene patches. Patches were contaminated with S. aureus bacteria and bacterial adherence was quantified. S. aureus adherence was also visualized in flow conditions. Overall, bacterial adherence was higher on yarn-composed prosthesis materials, with a rough surface, than on the membrane-based materials, with a smooth surface. Adherence to Dyneema Purity® materials was non-inferior to the currently used materials. Therefore, patches of Dyneema Purity® might be attractive for use in cardiovascular applications such as catheter-based heart valves and endovascular prostheses by their good mechanical properties combined with their noninferiority regarding bacterial adhesion. PMID:27583703

  8. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    DOE PAGESBeta

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb ofmore » medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.« less

  9. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    SciTech Connect

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Art; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  10. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Arthur E.; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-05-01

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  11. Tachyonic neutrinos and the neutrino masses

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert

    2013-01-01

    With a recent claim of superluminal neutrinos shown to be in error, 2012 may not be a propitious time to consider the evidence that one or more neutrinos may indeed be tachyons. Nevertheless, there are a growing number of observations that continue to suggest this possibility - albeit with an mν2<0 having a much smaller magnitude than was implied by the original OPERA claim. One recently published non-standard analysis of SN 1987A neutrinos supports a tachyonic mass eigenstate, and here we show how it leads to 3 + 3 mirror neutrino model having an unconventional mass hierarchy. The model incorporates one superluminal active-sterile neutrino pair, and it is testable in numerous ways, including making a surprising prediction about an unpublished aspect of the SN 1987A neutrinos. Additional supporting evidence involving earlier analyses of cosmic rays is summarized to add credence to the tachyonic neutrino hypothesis.

  12. Stubborn Contaminants: Influence of Detergents on the Purity of the Multidrug ABC Transporter BmrA

    PubMed Central

    Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli. PMID:25517996

  13. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    PubMed

    Wiseman, Benjamin; Kilburg, Arnaud; Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli. PMID:25517996

  14. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques.

    PubMed

    Wang, Erlei; Yin, Yongguang; Xu, Caina; Liu, Jingbo

    2014-01-31

    Research on the isolation and preparation of anthocyanins has intensified in recent years because of the requirements of quantitative and bioactive analyses. However, simple and effective methods for the scale purification of pure anthocyanins from natural products are rarely reported. In this study, high-purity anthocyanin mixtures and monomers were successfully isolated from wild blueberries using a combination of column chromatography and semi-preparative HPLC. We established an effective elution system to separate high-purity anthocyanin mixtures with aqueous ethanol containing 0.01% HCl first in an Amberlite XAD-7HP column (ethanol/H2O=35:65) and then in a Sephadex LH-20 column (ethanol/H2O=25:75). Crude anthocyanin extracts were isolated using the Amberlite column, and a purity of 32% was obtained based on UV-vis analysis. Three fractions of anthocyanin mixtures were isolated from the crude extracts using the Sephadex column with purities ranging from 59% to 68%. Three pure monomeric anthocyanins of malvidin-3-O-glucoside, petunidin-3-O-glucoside, and delphinidin-3-O-glucoside were also isolated by semi-preparative HPLC and identified by HPLC-DAD-ESI-MS/MS. The purities of these anthocyanins were determined by analytical HPLC and estimated to be 97.7%, 99.3%, and 95.4%, respectively. The results of this study may help promote the purification of anthocyanins from most blueberry varieties as well as from other plant materials. PMID:24433700

  15. Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process

    PubMed Central

    Zong, Linqi; Zhu, Bin; Lu, Zhenda; Tan, Yingling; Jin, Yan; Liu, Nian; Hu, Yue; Gu, Shuai; Zhu, Jia; Cui, Yi

    2015-01-01

    Silicon, with its great abundance and mature infrastructure, is a foundational material for a range of applications, such as electronics, sensors, solar cells, batteries, and thermoelectrics. These applications rely on the purification of Si to different levels. Recently, it has been shown that nanosized silicon can offer additional advantages, such as enhanced mechanical properties, significant absorption enhancement, and reduced thermal conductivity. However, current processes to produce and purify Si are complex, expensive, and energy-intensive. Here, we show a nanopurification process, which involves only simple and scalable ball milling and acid etching, to increase Si purity drastically [up to 99.999% (wt %)] directly from low-grade and low-cost ferrosilicon [84% (wt %) Si; ∼$1/kg]. It is found that the impurity-rich regions are mechanically weak as breaking points during ball milling and thus, exposed on the surface, and they can be conveniently and effectively removed by chemical etching. We discovered that the purity goes up with the size of Si particles going down, resulting in high purity at the sub–100-nm scale. The produced Si nanoparticles with high purity and small size exhibit high performance as Li ion battery anodes, with high reversible capacity (1,755 mAh g−1) and long cycle life (73% capacity retention over 500 cycles). This nanopurification process provides a complimentary route to produce Si, with finely controlled size and purity, in a diverse set of applications. PMID:26483490

  16. Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process.

    PubMed

    Zong, Linqi; Zhu, Bin; Lu, Zhenda; Tan, Yingling; Jin, Yan; Liu, Nian; Hu, Yue; Gu, Shuai; Zhu, Jia; Cui, Yi

    2015-11-01

    Silicon, with its great abundance and mature infrastructure, is a foundational material for a range of applications, such as electronics, sensors, solar cells, batteries, and thermoelectrics. These applications rely on the purification of Si to different levels. Recently, it has been shown that nanosized silicon can offer additional advantages, such as enhanced mechanical properties, significant absorption enhancement, and reduced thermal conductivity. However, current processes to produce and purify Si are complex, expensive, and energy-intensive. Here, we show a nanopurification process, which involves only simple and scalable ball milling and acid etching, to increase Si purity drastically [up to 99.999% (wt %)] directly from low-grade and low-cost ferrosilicon [84% (wt %) Si; ∼$1/kg]. It is found that the impurity-rich regions are mechanically weak as breaking points during ball milling and thus, exposed on the surface, and they can be conveniently and effectively removed by chemical etching. We discovered that the purity goes up with the size of Si particles going down, resulting in high purity at the sub-100-nm scale. The produced Si nanoparticles with high purity and small size exhibit high performance as Li ion battery anodes, with high reversible capacity (1,755 mAh g(-1)) and long cycle life (73% capacity retention over 500 cycles). This nanopurification process provides a complimentary route to produce Si, with finely controlled size and purity, in a diverse set of applications. PMID:26483490

  17. Investigation of active slip systems in high purity single crystal niobium

    NASA Astrophysics Data System (ADS)

    Baars, Derek

    The superconducting radio-frequency (SRF) community uses high purity niobium to manufacture SRF cavities for a variety of accelerator applications. Cavities are either made from large-grain sheets cut directly from the ingot and formed, or the ingot microstructure is broken down to form polycrystalline sheets or tubes. Reducing the number of costly electron beam welds to assemble the cavities is also desired. A greater understanding of the active slip systems and their relation to subsequent dislocation substructure would be of use in all these areas, to better understand how large grain niobium deforms and to develop more accurate computational models that will aid in the design and use of more cost-effective forming methods. Studies of slip in high-purity niobium suggest that temperature, material purity, and crystal orientation affect which slip systems are active during deformation, though have not examined the somewhat lesser purity niobium used for SRF cavities. As a step toward these goals, two sets of SRF-purity single crystal niobium samples were deformed to 40% strain in tension at room temperature. The first set was cut and welded back together. The second set consisted of deliberately orientated samples that resolved shear stress onto desired slip systems to evaluate different combinations of slip. Determining likely active slip systems was complex, though the evidence suggests that {112} slip may be dominant at yield at room temperature as suggested by theory, though {110} slip could not be ruled out.

  18. Development and validation of a reversed-phase high-performance liquid chromatography method for routine identification and purity assessment of high-purity steviol glycoside sweeteners.

    PubMed

    Bililign, Tsion; Moore, Jeffrey C; Tan, Shane; Leeks, Allan T

    2014-02-12

    The widespread application of stevia-based sweeteners in food products has resulted in the need for reliable analytical methods for measuring the purity and identity of high-purity steviol glycoside ingredients. The objective of this research was to develop and validate a new reversed-phase separation method capable of separating and quantifying nine steviol glycosides present in typical high-purity stevia extract ingredients. Results of the study established the linearity of the method at a correlation factor of 1.000 for the two major components and other minor components of this food ingredient. Method accuracy values were in the range of 99.1-100.9%. The percent relative standard deviation for six independent assay determinations was 1.0%. The method was determined to be robust for minor changes in column temperature, initial acetonitrile content, flow rate, and wavelength. The validated high-performance liquid chromatography method was found to be suitable to be included by USP as a Food Chemicals Codex compendial standard for steviol glycosides. PMID:24443893

  19. Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol.

    PubMed

    Launey, Maximilien; Robertson, Scott W; Vien, Lot; Senthilnathan, Karthikeyan; Chintapalli, Prashanth; Pelton, Alan R

    2014-06-01

    The bending fatigue resistance of commercially-available Standard versus High Purity Nitinol was evaluated at 3% mean strain and a range of strain amplitudes with the simple wire Z-specimen geometry. The Standard grade Nitinol demonstrated a 10(7)-cycle fatigue strain limit of 0.50% alternating strain, comparable to results reported elsewhere in the literature. Conversely, the High Purity grade VAR Nitinol demonstrated a 5-fold improvement in fatigue resistance with an impressive 10(7)-cycle fatigue strain limit of 2.5% alternating strain. The High Purity Nitinol has an oxygen+nitrogen content of 60wppm, maximum wrought-material inclusion length of 17µm, and inclusion volume fraction of 0.28%, all substantially less than industry standards. With all processing variables held constant except for inclusion content, it is clear that this marked fatigue superiority is due exclusively to the reduction in both size and area fraction of inclusions. PMID:24603214

  20. Purity of (28)Si-Enriched Silicon Material Used for the Determination of the Avogadro Constant.

    PubMed

    D'Agostino, Giancarlo; Di Luzio, Marco; Mana, Giovanni; Oddone, Massimo; Bennett, John W; Stopic, Attila

    2016-07-01

    At present, counting atoms in a one-kilogram sphere made of (28)Si-enriched silicon allows the determination of the Avogadro constant with the 2.0 × 10(-8) relative standard uncertainty required for the realization of the definition of the new kilogram. With the exception of carbon, oxygen, boron, nitrogen, and hydrogen, the claimed uncertainty is based on the postulation that the silicon material used to manufacture the sphere was above a particular level of purity. Two samples of the silicon were measured using instrumental neutron activation analysis to collect experimental data to test the purity assumption. The results obtained in two experiments carried out using different research reactor neutron sources are reported. The analysis confirmed that the silicon material was of sufficient purity by quantifying the ultratrace concentration of 12 elements and determining the detection limits of another 54 elements. PMID:27282500

  1. Impurity distribution in high purity germanium crystal and its impact on the detector performance

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Amman, Mark; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    High-purity germanium crystals were grown in a hydrogen atmosphere using the Czochralski method. The axial and radial distributions of impurities in the crystals were measured by Hall effect and Photo-thermal ionization spectroscopy (PTIS). Amorphous semiconductor contacts were deposited on the germanium crystals to make detectors. Three planar detectors were fabricated from three crystals with different net carrier concentrations (1.7, 7.9 and 10x1010 cm-3). We evaluated the electrical and spectral performance of three detectors. Measurements of gamma-ray spectra from 137Cs, 241Am and 60Co sources demonstrate that the detectors have excellent energy resolution. The relationship between the impurities and detector's energy resolution was analyzed. Keywords: High-purity germanium crystal, High-purity germanium detector This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota..

  2. Reexamination of the purity entanglement measure: Peculiarities of a truly thermodynamic quantum correlation measure

    NASA Astrophysics Data System (ADS)

    Batle, J.; Ooi, C. H. Raymond; Abdalla, S.

    2015-12-01

    The purity entanglement measure introduced by Los Alamos group a decade ago is reexamined in the light of interesting features. The role played by purity, reaching a real thermodynamic limit, in detecting quantum phase transitions is studied with a different system, the bond-alternating X Y model in an external magnetic field. The properties of this system are described as well. By considering the dynamics of the original X Y model, we observe that nonergodicity is also grasped by the purity measure, in accordance with other quantum correlation measures that have no common physical or mathematical relation. Adiabaticity is not recovered from the dynamic to the static case, in accordance with one of the consequences of the celebrated Kibble-Zurek mechanism.

  3. Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons

    NASA Astrophysics Data System (ADS)

    Du, Shengwang

    2015-10-01

    We analyze the quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons. We find that the quantum-state purity in the time-frequency domain depends strongly on the response time uncertainty of the trigger-photon detector that heralds the generation of its paired photon. If the trigger response time is much shorter than the two-photon coherence time, the time-frequency quantum-state purity of heralded single photons approaches unity and the heralded single photon is in a nearly pure state. If the trigger response time is much longer than the two-photon coherence time, the heralded photon is then projected onto a mixed state. Making use of the time-frequency entanglement, heralded single photons with a well-defined temporal wave function or a frequency superposition state can be produced and engineered. This time-frequency entanglement allows for shaping heralded single photons through nonlocal spectral modulation.

  4. Method for growing low defect, high purity crystalline layers utilizing lateral overgrowth of a patterned mask

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor); Daud, Taher (Inventor)

    1986-01-01

    A method for growing a high purity, low defect layer of semiconductor is described. This method involves depositing a patterned mask of a material impervious to impurities of the semiconductor on a surface of a blank. When a layer of semiconductor is grown on the mask, the semiconductor will first grow from the surface portions exposed by the openings in the mask and will bridge the connecting portions of the mask to form a continuous layer having improved purity, since only the portions overlying the openings are exposed to defects and impurities. The process can be iterated and the mask translated to further improve the quality of grown layers.

  5. Mechanical Strength and Biocompatibility of Ultrafine-Grained Commercial Purity Titanium

    PubMed Central

    Estrin, Yuri; Kim, Hyoun-Ee; Lapovok, Rimma; Ng, Hoi Pang; Jo, Ji-Hoon

    2013-01-01

    The effect of grain refinement of commercial purity titanium by equal channel angular pressing (ECAP) on its mechanical performance and bone tissue regeneration is reported. In vivo studies conducted on New Zealand white rabbits did not show an enhancement of biocompatibility of ECAP-modified titanium found earlier by in vitro testing. However, the observed combination of outstanding mechanical properties achieved by ECAP without a loss of biocompatibility suggests that this is a very promising processing route to bioimplant manufacturing. The study thus supports the expectation that commercial purity titanium modified by ECAP can be seen as an excellent candidate material for bone implants suitable for replacing conventional titanium alloy implants. PMID:23936857

  6. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage

    SciTech Connect

    Graefe, E. M.; Korsch, H. J.; Witthaut, D.

    2006-01-15

    We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning.

  7. Geometric representation of fundamental particles' inertial mass

    SciTech Connect

    Schachter, L.; Spencer, James

    2015-07-22

    A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically, its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the nucleon regardless of whether it is determined from all N particles of only the hadrons, the mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown that the eigen-values, the polar representation θν of the masses on the Sphere, satisfy the symmetry θν + θN+1-ν = π within less than 1% relative error. In addition, these pair correlations include the pairs θγ + θtop ≃ π and θgluon + θH ≃ π as well as pairing the weak gauge bosons with the three neutrinos.

  8. PINGU sensitivity to neutrino mass hierarchy

    SciTech Connect

    Groß, Andreas; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit.

  9. PILOT-SCALE INCINERATION OF CONTAMINATED SOIL FROM THE PURITY OIL SALES AND MCCOLL SUPERFUND SITES

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils at the Purity Oil Sales superfund site in Fresno, California, and the McColl ...

  10. Integration of High-Purity Carbon Nanotube Solution into Electronic Devices

    NASA Astrophysics Data System (ADS)

    Tulevski, George; IBM TJ Watson Reserach Center Team

    Due to their exceptional electronic properties, carbon nanotubes (cnt) are leading candidates to be employed as channel materials in future nanoelectronic devices. A key bottleneck to realizing device integration is the sorting of carbon nanotubes, namely the isolation of high-purity, semiconducting cnt solutions. This talk will describe our efforts in using polymer-based sorting methods to isolate high-density and high-purity semiconducting cnt solutions. We explore the dependence of starting material and polymer to cnt ratio on the effectiveness of the separation. We confirm optically and electrically that the semiconducting purity is >99.99% through several thousand individual device measurements. In addition to single-cnt devices, thin-film transistors were also fabricated and tested. Due to the high purity of the solutions, device switching (~105 ION/IOFF) was observed at channel lengths below the percolation threshold (<500 nm). Operating below the percolation threshold allows for devices with much higher current densities and effective mobilities as transport is now the result of direct transport as opposed to hopping between cnts.

  11. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion.

    PubMed

    Crawford, D E; Wright, L A; James, S L; Abbott, A P

    2016-03-18

    Mechanochemical synthesis has been applied to the rapid synthesis of Deep Eutectic Solvents (DESs), including Reline 200 (choline chloride : urea, 1 : 2), in a continuous flow methodology by Twin Screw Extrusion (TSE). This gave products in higher purity and with Space Time Yields (STYs), four orders of magnitude greater than for batch methods. PMID:26911554

  12. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  13. Production of High-purity Radium-223 from Legacy Actinium-Beryllium Neutron Sources

    SciTech Connect

    Z. Soderquist, Chuck; K. McNamara, Bruce; R. Fisher, Darrell

    2012-06-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclides with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing 223Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity 223Ra from 227Ac. We obtained 227Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity 223Ra. We extracted 223Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free 223Ra product, and does not disturb the 227Ac/227Th equilibrium. A high purity, carrier-free 227Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of 223Ra for research and new alpha-emitter radiopharmaceutical development.

  14. Cross Purposes: Love and Purity at a Puerto Rican Protestant High School

    ERIC Educational Resources Information Center

    Seale-Collazo, James

    2013-01-01

    A "native" Christian ethnographer finds religious education at this church-sponsored school to pursue two distinct, and occasionally conflicting, curricula: "love" and "purity." The curriculum of love draws on what Turner called liminality and communitas in an effort to promote spiritual "encounters with…

  15. Structure and texture of electrolytic superconducting coatings of high-purity niobium

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Shevyrev, A. A.

    2014-08-01

    Modes of epitaxial growth of electrolytic superconducting coatings of high-purity niobium on substrates of niobium, molybdenum, and tungsten have been investigated. The dynamics of changes in the structure and texture of the coatings depending on the method of treatment of substrates, cathode current density, and thickness of the deposited niobium layer has been studied.

  16. Defect structural evolution in high purity tungsten irradiated with electrons using high voltage electron microscope

    NASA Astrophysics Data System (ADS)

    Fukuzumi, S.; Yoshiie, T.; Satoh, Y.; Xu, Q.; Mori, H.; Kawai, M.

    2005-08-01

    Four types of high purity tungsten were irradiated with 2 MeV electrons to 5 dpa using a high voltage electron microscope, and defect structural evolutions were examined as a function of the irradiation temperature and the concentration of impurity atoms. Three of materials were made by sintering of tungsten powder with purity of 99.999% (5N-W), 99.99% (PF-W) and 99.95% (N-W), and one was a chemical vapor deposited tungsten of 99.9999% (CVD-W) purity. The formation of interstitial type dislocation loops is observed above room temperature by electron irradiation. In sintered tungsten, the number density of loops increases with increasing density of impurity atoms, i.e., N-W > PF-W > 5N-W. The density of loops in CVD-W is relatively high, contrary to its purity. In CVD-W, a heterogeneous formation of loops is observed at above 573 K. Loops are aligned on layers, and no loops are formed between the layers. All four types of specimens have a change in slop of the temperature dependence of loop number density at around 500 K which is caused by impurity atoms. Results of radioactivation analysis and hardness testing are also presented.

  17. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    PubMed

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development. PMID:22697483

  18. Cleansing the Superdome: The Paradox of Purity and Post-Katrina Guilt

    ERIC Educational Resources Information Center

    Grano, Daniel A.; Zagacki, Kenneth S.

    2011-01-01

    The reopening of the New Orleans Superdome after Hurricane Katrina on Monday Night Football dramatized problematic rhetorical, visual, and spatial norms of purification rituals bound up in what Burke calls the paradox of purity. Hurricane Katrina was significant as a visually traumatic event in large part because it signified the ghetto as a…

  19. Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity

    NASA Astrophysics Data System (ADS)

    Westwood, Steven; Josephs, Ralf; Choteau, Tiphaine; Daireaux, Adeline; Wielgosz, Robert; Davies, Stephen; Moad, Michael; Chan, Benjamin; Muñoz, Amalia; Conneely, Patrick; Ricci, Marina; Pires do Rego, Eliane Cristina; Garrido, Bruno C.; Violante, Fernando G. M.; Windust, Anthony; Dai, Xinhua; Huang, Ting; Zhang, Wei; Su, Fuhai; Quan, Can; Wang, Haifeng; Lo, Man-fung; Wong, Wai-fun; Gantois, Fanny; Lalerle, Béatrice; Dorgerloh, Ute; Koch, Matthias; Klyk-Seitz, Urszula-Anna; Pfeifer, Dietmar; Philipp, Rosemarie; Piechotta, Christian; Recknagel, Sebastian; Rothe, Robert; Yamazaki, Taichi; Zakaria, Osman Bin; Castro, E.; Balderas, M.; González, N.; Salazar, C.; Regalado, L.; Valle, E.; Rodríguez, L.; Ángel Laguna, L.; Ramírez, P.; Avila, M.; Ibarra, J.; Valle, L.; Pérez, M.; Arce, M.; Mitani, Y.; Konopelko, L.; Krylov, A.; Lopushanskaya, E.; Tang Lin, Teo; Liu, Qinde; Tong Kooi, Lee; Fernandes-Whaley, Maria; Prevoo-Franzsen, Désirée; Nhlapo, Nontete; Visser, Ria; Kim, Byungjoo; Lee, Hwashim; Kankaew, Pornhatai; Pookrod, Preeyaporn; Sudsiri, Nittaya; Shearman, Kittiya; Ceyhan Gören, Ahmet; Bilsel, Gökhan; Yilmaz, Hasibe; Bilsel, Mine; Çergel, Muhiddin; Gonca Çoskun, Fatma; Uysal, Emrah; Gündüz, Simay; Ün, Ilker; Warren, John; Bearden, Daniel W.; Bedner, Mary; Duewer, David L.; Lang, Brian E.; Lippa, Katrice A.; Schantz, Michele M.; Sieber, John R.

    2014-01-01

    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100-300] and high polarity (pKOW > -2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and α-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques

  20. Preparation and characterization of (10)B boric acid with high purity for nuclear industry.

    PubMed

    Zhang, Weijiang; Liu, Tianyu; Xu, Jiao

    2016-01-01

    Boric acid is often added into coolant as neutron capture agent for pressurized water reactor, whose amount is influenced by its abundance and purity. Therefore, the preparation of enriched (10)B boric acid with high purity is beneficial to nuclear industry. (10)B is also used in developing tumor-specific boronated drugs in boron neutron capture therapy. The boronated drug can be administered to patient intravenously, intratumorally, or deposited at tumor site in surgical excision. Thus, enriched (10)B boric acid is of practical significance in the field of medicine. Self-made boron trifluoride-methanol-complex solution was selected as one of the experimental reagents, and the preparation of (10)B acid was realized by one-step reaction for the complexes with water and calcium chloride. The determination of electrical conductivity in reaction process proves that the optimum reaction time was 16-20 h. Furthermore, the effect of reaction time, ratio of calcium chloride to complex as well as the amount of water on the purity and yield of boric acid was investigated. Finally, the optimum reaction time was 20 h, the optimal solid-liquid ratio (molar ratio) was 3:1, and the amount of water was 1 L of deionized water for each mol of the complex. H2O2 was added in the reaction process to remove Fe(2+). After recrystallization, IR spectra of (10)B boric acid was measured and compared with standard to verify the product of boric acid. The feasibility of the preparation method was determined by the detection of XRD of boric acid. To observe the morphology by polarizing microscope, crystal structure was obtained. The purity of the final product is 99.95 %, and the yield is 96.47 %. The ion concentration of boric acid accords with the national standard of high purity, which was determined by ICP. PMID:27516940

  1. [Purity Detection Model Update of Maize Seeds Based on Active Learning].

    PubMed

    Tang, Jin-ya; Huang, Min; Zhu, Qi-bing

    2015-08-01

    Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm. PMID:26672281

  2. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells.

    PubMed

    Pan, Yen-Chung; Lee, Wen-Chien

    2005-03-30

    A method for the production of high-purity isomalto-oligosaccharides (IMO) involving the transglucosylation by transglucosidase and yeast fermentation was proposed. The starch of rice crumbs was enzymatically liquefied and saccharified, and then converted to low-purity IMO syrup by transglucosylation. The low-purity IMO produced either from rice crumbs or tapioca flour as the starch source could be effectively converted to high-purity IMO by yeast fermentation to remove the digestible sugars including glucose, maltose, and maltotriose. Both Saccharomyces carlsbergensis and Saccharomyces cerevisiae were able to ferment glucose in the IMO syrup. Cells of S. carlsbergensis harvested from the medium of malt juice were also able to ferment maltose and maltotriose. A combination of these two yeasts or S. carlsbergensis alone could be used to totally remove the digestible sugars in the IMO, coupled with the production of ethanol. The resultant high-purity IMO, including mainly isomaltose, panose, and isomaltotriose made up more than 98% w/w of the total sugars after a 3-day fermentation. When the low-purity IMO was produced from the starch of tapioca flour, 3-day fermentation under the same conditions resulted in IMO with purity lower than that from rice crumbs. For low-purity IMO from rice crumbs, fermentation with washed S. carlsbergensis cells harvested at log phase was the most effective. However, for the low-purity IMO from tapioca flour, incubation with S. cerevisiae for the first 24 h and then supplementing with an equal amount of S. carlsbergensis cells for further fermentation was the most effective approach for producing high-purity IMO. PMID:15672377

  3. Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2016-07-01

    We present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Z e . Calculations are based on the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B 30, 2747(E) (1997), 10.1088/0953-4075/30/11/023], combined with the theory of hypergeometric functions. The final result is of an elementary form and agrees with corresponding formulas obtained earlier by other authors for some particular states of the atom.

  4. Map showing high-purity silica sand of Middle Ordovician age in the Midwestern states

    USGS Publications Warehouse

    Ketner, Keith B.

    1979-01-01

    Certain quartz sands of Middle Ordovician age in the Midwestern States are well known for their purity and are exploited for a wide variety of industrial uses. The principal Middle Ordovician formations containing high-purity sands are the St. Peter Sandstone which crops out extensively from Minnesota to Arkansas; the Everton Formation principally of Arkansas; and the Oil Creek, McLish, and Tulip Creek Formations (all of the Simpson Group) of Oklahoma. The St. Peter and sandy beds in the other formations are commonly called "sandstones," but a more appropriate term is "sands" for in most fresh exposures they are completely uncemented or very weakly cemented. On exposure to air, uncemented sands usually become "case hardened" where evaporating ground water precipitates mineral matter at the surface; but this is a surficial effect. This report summarizes the available information on the extent of exposures, range of grain size, and chemical composition of the Middle Ordovician sands.

  5. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel

    2005-07-10

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study.

  6. Cu2ZnSnS4 absorption layers with controlled phase purity

    PubMed Central

    Su, Chia-Ying; -Yen Chiu, Chiu; Ting, Jyh-Ming

    2015-01-01

    We report the synthesis and characterization of Cu2ZnSnS4 (CZTS) with controlled phase purity. The precursor was first prepared using sequential electrodeposition of Cu, Zn, and Sn in different orders. The Cu/(Sn+Zn) ratio in each stacking order was also varied. The precursor was subjected to annealing at 200°C and sulfurization at 500°C in a 5%-H2S/Ar atmosphere for the formation of CZTS. The phase evolutions during the electrodeposition and annealing stages, and the final phase formation at the sulfurization stage were examined using both x-ray diffractometry and Raman spectroscopy, both of which are shown to be complimentary tools for phase identification. Detailed growth path is therefore reported. We also demonstrate by controlling the stacking order and the Cu/(Sn+Zn) ratio, CZTS with a phase purity as high as 93% is obtained. PMID:25801219

  7. Cu2ZnSnS4 absorption layers with controlled phase purity.

    PubMed

    Su, Chia-Ying; Chiu, Chiu-Yen; Ting, Jyh-Ming

    2015-01-01

    We report the synthesis and characterization of Cu2ZnSnS4 (CZTS) with controlled phase purity. The precursor was first prepared using sequential electrodeposition of Cu, Zn, and Sn in different orders. The Cu/(Sn+Zn) ratio in each stacking order was also varied. The precursor was subjected to annealing at 200°C and sulfurization at 500°C in a 5%-H2S/Ar atmosphere for the formation of CZTS. The phase evolutions during the electrodeposition and annealing stages, and the final phase formation at the sulfurization stage were examined using both x-ray diffractometry and Raman spectroscopy, both of which are shown to be complimentary tools for phase identification. Detailed growth path is therefore reported. We also demonstrate by controlling the stacking order and the Cu/(Sn+Zn) ratio, CZTS with a phase purity as high as 93% is obtained. PMID:25801219

  8. An improved procedure for high purity gaseous peroxyacyl nitrate production: Use of heavy lipid solvents

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Fajer, R.; Senum, G. I.

    An improved procedure is described for the production of peroxyacyl nitrates (PAN's) in the gas phase. The method of Nielsen et al. (1982) has been modified to yield PAN's of high purity with no further Chromatographic purification required. Extraction of PAN's from the nitration of the peracids is accomplished by use of a heavy lipid solvent ( n-tridecane). This solvent's low vapor pressure allows the simple separation and preparation of high purity gaseous PAN's (> 98 %) as determined by Fourier transform infrared spectroscopy (FTIR). Using this method infrared integrated band strengths are reported for peroxyacetyl nitrate (PAN) perdeutero-peroxyacetyl nitrate (PAN-D 3) and peroxyproprionyl nitrate (PPN). The method allows facile production of large amounts of gaseous PAN's for smog chamber and laboratory studies, lexicological and health effects research, as well as for calibration of PAN analyses.

  9. Optical quantum computing with photons of arbitrarily low fidelity and purity

    NASA Astrophysics Data System (ADS)

    Rohde, Peter P.

    2012-11-01

    Linear optics quantum computing (LOQC) is a leading candidate for the implementation of large scale quantum computers. Here quantum information is encoded into the quantum states of light and computation proceeds via a linear optics network. It is well known that in such schemes there are stringent requirements on the spatiotemporal structure of photons—they must be completely indistinguishable and of very high purity. We show that in the boson-sampling model for LOQC these conditions may be significantly relaxed. We present evidence that by increasing the size of the system we can implement a computationally hard algorithm even if our photons have arbitrarily low fidelity and purity. These relaxed conditions may make boson-sampling LOQC within reach of present-day technology.

  10. Supply-side response to declining heroin purity: fentanyl overdose episode in New Jersey.

    PubMed

    Hempstead, Katherine; Yildirim, Emel O

    2014-06-01

    The inelastic price demand observations characteristic of illegal drug markets have led to the conclusion that the burden of a negative supply shock would be completely reflected to consumers. This paper argues that the increasing availability of prescription opioids may threaten heroin sellers' profit margin and force them to find alternative methods to compensate buyers in the event of a supply shock. We investigate the 2006 fentanyl overdose episode in New Jersey and argue that the introduction of non-pharmaceutical fentanyl, its spatial distribution, and the timing of overdose deaths may have been related to trends in heroin purity. Using medical examiner data, as well as data from the Drug Enforcement Administration, Office of Diversion Control on retail sales of prescription opioids in a negative binomial specification, we show that month-to-month fluctuations in heroin purity have a significant effect on fentanyl-related overdoses, particularly in those areas where prescription opioids are highly available. PMID:23740651

  11. Crystal growth and detector performance of large size high-purity Ge crystals

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Amman, Mark; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    2015-03-01

    High-purity germanium crystals with 12 cm in diameter were grown in a hydrogen atmosphere using the Czochralski method. The dislocation density of the crystals was determined to be in the range of 2000 - 4200 cm-2, which meets a requirement for use as a radiation detector. The axial and radial distributions of impurities in the crystals were measured by Hall effect and Photo-thermal ionization spectroscopy (PTIS). Two detectors were also fabricated from one of the crystals with different techniques and then evaluated for electrical and spectral performance. Measurements of gamma-ray spectra from 137Cs, 241Am and 60Co sources demonstrate that the detectors have excellent energy resolution. Keywords: High-purity germanium crystal, Czochralski method This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  12. Yield, Purity and Mobility of a Silver-DNA Fluorophore in Solution

    NASA Astrophysics Data System (ADS)

    O'Neill, Patrick; Velazquez, Lourdes; Goodwin, Peter; Driehorst, Til; Pennathur, Sumita; Fygenson, Deborah

    2010-03-01

    Chemical reduction of DNA oligonucleotide:Ag+ mixtures leads to the formation of fluorescent few-atom Ag clusters stabilized by the DNA. This reaction typically produces many species, some of which are fluorescent, with emission wavelengths and stabilities that vary widely with DNA sequence. While most DNA sequences studied produce many different Ag:DNA products, we identify a specific DNA sequence that strongly favors the formation of a green 11Ag cluster, stable for months under ambient conditions. We generate pure solutions of this emitter by synthesizing in the presence of excess silver and then removing free silver from solution. We report on results enabled by the purity of these samples, including determination of the extinction coefficient (using FCS), diffusion coefficient (using microfluidics) and bulk chemical yield of this fluorophore, and comment on the challenges that remain on the path to production of sufficient quantity and purity for high-resolution structure determination.

  13. Cu2ZnSnS4 absorption layers with controlled phase purity

    NASA Astrophysics Data System (ADS)

    Su, Chia-Ying; -Yen Chiu, Chiu; Ting, Jyh-Ming

    2015-03-01

    We report the synthesis and characterization of Cu2ZnSnS4 (CZTS) with controlled phase purity. The precursor was first prepared using sequential electrodeposition of Cu, Zn, and Sn in different orders. The Cu/(Sn+Zn) ratio in each stacking order was also varied. The precursor was subjected to annealing at 200°C and sulfurization at 500°C in a 5%-H2S/Ar atmosphere for the formation of CZTS. The phase evolutions during the electrodeposition and annealing stages, and the final phase formation at the sulfurization stage were examined using both x-ray diffractometry and Raman spectroscopy, both of which are shown to be complimentary tools for phase identification. Detailed growth path is therefore reported. We also demonstrate by controlling the stacking order and the Cu/(Sn+Zn) ratio, CZTS with a phase purity as high as 93% is obtained.

  14. Characterization of a high-purity germanium detector for small-animal SPECT

    PubMed Central

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-01-01

    We present an initial evaluation of a mechanically-cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axis. Finally, a flood-corrected-flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT. PMID:21852723

  15. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  16. Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station

    SciTech Connect

    Wong, H. T.; Li, H. B.; Lee, F. S.; Wu, S. C.; Chen, C. P.; Chou, M. H.; Jon, G. C.; Lai, W. P.; Lee, S. C.; Lin, F. K.; Lin, S. K.; Lin, S. T.; Chang, H. M.; Liao, H. Y.; Singh, V.; Chang, C. Y.; Deniz, M.; Fang, J. M.; Su, R. F.; Hu, C. H.

    2007-01-01

    A search of neutrino magnetic moments was carried out at the Kuo-Sheng nuclear power station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 kg{sup -1} keV{sup -1} day{sup -1} near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding, and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron antineutrino flux of 6.4x10{sup 12} cm{sup -2} s{sup -1}, the limit on the neutrino magnetic moments of {mu}{sub {nu}{sub e}}<7.4x10{sup -11}{mu}{sub B} at 90% confidence level was derived. Indirect bounds on the {nu}{sub e} radiative decay lifetimes were inferred.

  17. Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station

    NASA Astrophysics Data System (ADS)

    Wong, H. T.; Li, H. B.; Lin, S. T.; Lee, F. S.; Singh, V.; Wu, S. C.; Chang, C. Y.; Chang, H. M.; Chen, C. P.; Chou, M. H.; Deniz, M.; Fang, J. M.; Hu, C. H.; Huang, H. X.; Jon, G. C.; Kuo, W. S.; Lai, W. P.; Lee, S. C.; Li, J.; Liao, H. Y.; Lin, F. K.; Lin, S. K.; Lu, J. Q.; Sheng, H. Y.; Su, R. F.; Tong, W. S.; Xin, B.; Yeh, T. R.; Yue, Q.; Zhou, Z. Y.; Zhuang, B. A.

    2007-01-01

    A search of neutrino magnetic moments was carried out at the Kuo-Sheng nuclear power station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1kg-1keV-1day-1 near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding, and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron antineutrino flux of 6.4×1012cm-2s-1, the limit on the neutrino magnetic moments of μν¯e<7.4×10-11μB at 90% confidence level was derived. Indirect bounds on the ν¯e radiative decay lifetimes were inferred.

  18. Note: Simple and portable setup for loading high purity liquids in diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Olejnik, Ella; Deemyad, Shanti

    2016-03-01

    Here we explain a simple and inexpensive procedure to preserve the original purity of the liquid samples during the loading process in a diamond anvil cell. The idea is to keep the sample in frozen form during the loading process while preventing the condensation of the water or other introduction of contaminants. The system can be quickly and easily assembled in a basic laboratory setup. This process can be used for loading some of the common pressure media in a diamond anvil cell.

  19. Synthesis of high purity nitride powders. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the synthesis and preparation of high purity nitride powders. Citations discuss the preparation of powders using chemical vapor deposition, carbothermic reactions, plasmochemical reactions, pyrolysis, sol gel processes, and self-propagating high-temperature synthesis. Citations concern boron nitrides, carbonitrides, aluminum nitrides, silicon nitrides, and titanium nitrides. (Contains a minimum of 246 citations and includes a subject term index and title list.)

  20. Synthesis of high purity nitride powders. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning the synthesis and preparation of high purity nitride powders. Citations discuss the preparation of powders using chemical vapor deposition, carbothermic reactions, plasmochemical reactions, pyrolysis, sol gel processes, and self-propagating high-temperature synthesis. Citations concern boron nitrides, carbonitrides, aluminum nitrides, silicon nitrides, and titanium nitrides.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. High Purity Americium-241 for Fuel Cycle R&D Program

    SciTech Connect

    Dr. Paul A. Lessing

    2011-07-01

    Previously the U.S. Department of Energy released Am-241 for various applications such as smoke detectors and Am-Be neutron sources for oil wells. At this date there is a shortage of usable, higher purity Am-241 in metal and oxide form available in the United States. Recently, the limited source of Am-241 has been from Russia with production being contracted to existing customers. The shortage has resulted in the price per gram rising dramatically over the last few years. DOE-NE currently has need for high purity Am-241 metal and oxide to fabricate fuel pellets for reactor testing in the Fuel Cycle R&D program. All the available high purity americium has been gathered from within the DOE system of laboratories. However, this is only a fraction of the projected needs of FCRD over the next 10 years. Therefore, FCR&D has proposed extraction and purification concepts to extract Am-241 from a mixed AmO2-PuO2 feedstock stored at the Savannah River Site. The most simple extraction system is based upon high temperature reduction using lanthanum metal with concurrent evaporation and condensation to produce high purity Am metal. Metallic americium has over a four order of magnitude higher vapor pressure than plutonium. Results from small-scale reduction experiments are presented. These results confirm thermodynamic predictions that at 1000 deg C metallic lanthanum reduces both PuO2 and AmO2. Faster kinetics are expected for temperatures up to about 1500 deg C.

  2. [Rapid and nondestructive discrimination of hybrid maize seed purity using near infrared spectroscopy].

    PubMed

    Huang, Yan-yan; Zhu, Li-wei; Li, Jun-hui; Wang, Jian-hua; Sun, Bao-qi; Sun, Qun

    2011-03-01

    Near infrared spectroscopy technology was applied to study rapid and nondestructive discrimination method of hybrid maize seed purity. With NongDa108 hybrid seeds and mother 178 seeds, a discrimination model for the purity of maize single seed was built by near infrared reflectance spectroscopy with distinguished partial least squares (DPLS). A total of 200 seeds including 100 hybrid seeds and 100 mother seeds were divided into two groups: calibration set (150 samples) and validation set (50 samples), and each group had same number of hybrid and mother seeds. To eliminate human errors as much as possible we used two sample cups with transmission hole diameter of 3.0 and 4.5 mm, respectively, at the bottom for spectrum acquisition. The location of sample cups and seeds were fixed during spectrum acquisition process. The result showed that the average identification rate with 3 mm transmission hole diameter was 99.82%, significantly higher than that of 4.5 mm whose average identification rate was just 90.96%. There was no significant difference among the identification rates of one replicate and two replicates spectrum on endosperm face, two replicates spectrum on embryo face and four replicates. The rates of validation set reached about 99%, slightly more than that of one replicate on embryo face. The identification rates of one spectrum and two replicates spectrum on endosperm face in calibration and validation set were 100%, with the spectral region between 4000 and 8000 cm(-1). With 3.0 mm transmission hole diameter and 4000-8000 cm(-1) spectral region, the seed purity identification rates in calibration and validation sets built up by one spectrum on endosperm face were 100%. With the increase in principal components, the identification rates in calibration set and validation set gradually increased, and when principal components reached 9, the rate in both of sets were 100%. The results have important value for rapid and nondestructive testing of hybrid maize

  3. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  4. Synthesis of high purity carbide powders. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    Not Available

    1994-08-01

    The bibliography contains citations concerning the synthesis and preparation of high purity carbide powders. Articles discuss techniques of powder manufacture such as chemical vapor deposition, plasma arc reactions, sintering, hot pressing, combustion synthesis, precipitation, chemical reaction, self-propagating high temperature synthesis, shock or explosive compaction, and aerosol formation. Citations concern silicon carbides, titanium carbides, and other carbide materials and composites. (Contains 250 citations and includes a subject term index and title list.)

  5. High purity liquid phase epitaxial GaAs for radiation detectors

    SciTech Connect

    Wynne, D.I.; Haller, E.E.; Rossington Tull, C.S.

    1998-12-31

    The authors report on the growth of high purity n-GaAs using Liquid Phase Epitaxy (LPE) and the fabrication of room temperature p-i-n radiation detectors. The epilayers are grown from a Ga solvent in a graphite boat in a pure hydrogen atmosphere. Growth is started at a temperature of approximately 800 C. The best epilayers show a net-residual-donor concentration of 2 {times} 10{sup 13} cm{sup {minus}3}, confirmed by Hall effect measurements. The residual donors have been analyzed by far infrared spectroscopy and found to be sulfur and silicon. Epilayers with thicknesses of up to 120 {micro}m have been deposited on 650 {micro}m thick semi-insulating GaAs substrates and on 500 {micro}m thick n{sup +}-type GaAs substrates. The authors report the results obtained with Schottky barrier diodes fabricated from these high purity n-type GaAs epilayers and operated as X-ray detectors. The Schottky barrier contacts consisted of evaporated circular gold contacts on epilayers on n{sup +} substrates. The ohmic contacts were formed by evaporated and alloyed Ni-Ge-Au films on the back of the substrate. Several of the diodes exhibit currents of the order of 1 to 10 nA at reverse biases depleting approximately 50 {micro}m of the epilayer. This very encouraging result, demonstrating the possibility for fabricating GaAs p-i-n diodes with depletion layers in high purity GaAs instead of semi-insulating GaAs, is supported by similar results obtained by several other groups. The consequences of using high purity instead of semi-insulating GaAs will be much reduced charge carrier trapping. Diode electrical characteristics and detector performance results using {sup 55}Fe and {sup 241}Am radiation will be discussed.

  6. Construction of a Bacillus amyloliquefaciens strain for high purity levan production.

    PubMed

    Feng, Jun; Gu, Yanyan; Han, Lifang; Bi, Kexin; Quan, Yufeng; Yang, Chao; Zhang, Wei; Cao, Mingfeng; Wang, Shufang; Gao, Weixia; Sun, Yang; Song, Cunjiang

    2015-06-01

    Bacillus amyloliquefaciens NK-1 has the potential to produce levan and poly-gamma-glutamic acid (γ-PGA) simultaneously. However, it is not possible to purify each single product from the same strain because the extraction process is identical. We deleted the pgs cluster (for γ-PGA synthesis) from the NK-1 strain and constructed a γ-PGA-deficient NK-ΔLP strain. Nuclear magnetic results showed that the NK-ΔLP strain could produce high purity levan product. However, its levan titer was only 1.96 g L(-1) in the basal medium. Single-factor experimental and response surface methodology was used to optimize the culture condition, leading to levan titer of 13.9 and 22.6 g L(-1) in flask culture and in a 5-L bioreactor, respectively. The levan purity can reach to 92.7% after 48 h cultivation. Furthermore, the relationship between levanase (LevB) and levan molecular weight was studied. The results showed that LevB resulted in the production of low molecular weight levan and its expression level determined the ratio of high and low molecular weight levan. We also deleted the sac cluster (for levan synthesis) from the NK-1 strain and constructed a levan-deficient NK-L strain. The NK-L strain exhibited increased purity of γ-PGA product from 79.5 to 91.2%. PMID:25953857

  7. Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhao, Wen-yu; Mu, Xin; Liu, Xing; He, Dan-qi; Zhu, Wan-ting; Zhang, Qing-jie

    2016-03-01

    Nanowires have attracted intense attention in recent years due to their novel physical properties. In this work, we prepare high-purity tellurium nanowires through the self-seed-assisted growth method previously developed by us. The tellurium seeds were firstly synthesized by reducing Na2TeO3 in the ice water with NaBH4. The high-purity tellurium nanowires with a diameter of 40-50 nm and a length of several tens of micrometers were then grown on tellurium seeds by reducing Na2TeO3 with hydrazine hydrate. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of tellurium seeds and nanowires. The effects of temperature, time, surfactant and tellurium seeds on microstructures of tellurium nanowires has also been investigated. The synthesis conditions of tellurium seeds and nanowires was optimized. The selected area electron diffraction pattern confirms that the growth direction of tellurium nanowires is parallel to [0001] direction. It was discovered that high-purity tellurium nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the tellurium nuclei, selecting the appropriate surfactant to induce the coordination along the macromolecular chain, and using tellurium seeds as the templates of the epitaxial growth of tellurium nuclei.

  8. Synthesis and Characterization of High-Purity Bismuth Nanowires via Seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Mu, Xin; Zhao, Wen-Yu; He, Dan-Qi; Zhou, Hong-Yu; Zhu, Wan-Ting; Zhang, Qing-Jie

    2015-06-01

    Nanowires are considered as high-performance thermoelectric materials with large Seebeck coefficients due to quantum confinement and low thermal conductivity because of enhanced boundary scattering of phonons. In this work, a seed-assisted growth method has been developed to synthesize high-purity bismuth nanowires. The bismuth seeds were first synthesized by reducing BiCl3 in the ice water with NaBH4. The high-purity bismuth nanowires about 40-50 nm in diameter and several tens of micrometers in length were then grown on bismuth seeds by reducing NaBiO3 with ethylene glycol. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of the bismuth seeds and nanowires. The effects of temperature, reductant, and bismuth seeds template on the microstructures of the bismuth nanowires were also investigated. The synthesis conditions of bismuth seeds and nanowires were optimized. The selected area electron diffraction pattern confirms that the growth direction of bismuth nanowires is parallel to [] direction. It was discovered that high-purity bismuth nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the bismuth nuclei, selecting the appropriate reductant to maintain a low nucleation rate, and using bismuth seeds as the template of the epitaxial growth of the bismuth nuclei.

  9. Formation process of high-purity Ge-on-insulator layers by Ge-condensation technique

    NASA Astrophysics Data System (ADS)

    Nakaharai, S.; Tezuka, T.; Hirashita, N.; Toyoda, E.; Moriyama, Y.; Sugiyama, N.; Takagi, S.

    2009-01-01

    Formation process of Ge-on-insulator (GOI) layers by Ge condensation with very high purity of Ge is clarified in terms of diffusion behaviors of Si and Ge in a SiGe layer. It is shown that the diffusion behavior affects the Ge condensation process, and the purity of GOI layer can be determined by the relation between oxidation and diffusion of Si. Experimental results support a model of GOI formation that the selective oxidation of Si in SiGe continues until the formation of a GOI layer with the residual Si fraction of less than 0.01%. Based on this model, we quantitatively clarify the reason why GOI layers can reach very low residual Si fraction without oxidizing Ge by calculating the diffusion behavior of Si during the Ge condensation process. As a result, we have found that the thermal diffusion of Si is sufficiently fast so that the selective oxidation of Si can continue during the GOI formation process until the averaged residual Si fraction in the SGOI layer becomes lower than 0.03%, which is essentially consistent with the experimental results. In addition, we have found that, even if the GOI layer is thick, the Ge purity of GOI layer can approach 100% infinitely in principle by enhancing the Si diffusion in SGOI compared to the oxidation rate of SGOI.

  10. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance.

    PubMed

    Sun, Yan-Jun; Zhang, Yan-Li; Wang, Yu; Wang, Jun-Min; Zhao, Xuan; Gong, Jian-Hong; Gao, Wei; Guan, Yan-Bin

    2015-01-01

    In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR) was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1), scan numbers (NS), and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS), and deuterated dimethyl sulfoxide (DMSO-d6) as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7'-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7'-O-β-d-glucopyranoside, and 6''-acetyl-podophyllotoxin-7'-O-β -d-glucopyranoside) were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC). Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans. PMID:26016553

  11. Rapid purity check method for susceptibility testing of M. tuberculosis complex with the MGIT 960 system.

    PubMed

    Huang, Tsi-Shu; Liu, Yung-Ching; Tu, Hui-Zin; Sy, Cheng-Len; Chen, Yao-Shen; Chen, Bao-Chen

    2007-01-01

    The Bactec MGIT 960 system is a rapid and reliable automated method for drug susceptibility testing of Mycobacterium tuberculosis complex (MTBC) that yields a high percentage of agreement with the standard method. The microscopic cord morphology of M. tuberculosis in liquid medium is characteristic, and readily differentiates MTBC from nontuberculous mycobacteria (NTM). The goals of this study were to describe the microscopic and macroscopic growth morphology of MTBC in antimicrobial-containing MGIT tubes and to evaluate the usefulness of the growth appearance during purity checking. The macroscopic cotton wool-like appearance of MTBC isolates in isoniazid (INH), streptomycin (SM), rifampin (RMP), and ethambutol (EMB)-containing tubes was observed in 97, 90, 93, and 71% of the isolates, respectively. The percentage of typical cord, loose, or frayed rope microscopic features in smears prepared from MTBC-positive cultures of INH, SM, RMP, and EMB-containing tubes was 96, 86, 97, and 71%, respectively. The sensitivity of the macroscopic morphology for predicting the purity of drug-containing MGIT tubes was 93%, while the microscopic morphology predicted the purity with a sensitivity rate of 92%. We found that simply examining the macroscopic morphology of the antimicrobial-containing MGIT tubes of drug-resistant MTBC isolates is useful in preventing false resistant results of susceptibility testing by the MGIT 960 system. PMID:18000288

  12. Assessment of Bt trait purity in different generations of transgenic cottons.

    PubMed

    Singh, B P; Sandhu, S S; Kalia, V K; Gujart, G T; Dhillon, M K

    2016-04-01

    Adequate expression of Bt (Bacillus thuringiensis) toxins and purity of seeds of Bt-transgenic cottons are important for controlling bollworms, and thereby increasing the cotton productivity. Therefore, we examined the variability in expression of Bt toxin proteins in the seeds and in leaves of different cotton (Gossypium hirsutum (L.) hybrids (JKCH 226, JKCH 1947, JKCH Durga, JKCH Ishwar, JKCH Varun KDCHH 441 and KDCHH 621) expressing Bt toxins in F₁ and F₂ generations, using bioassays against the cotton bollworm, Helicoverpa armigera (Hübner), and the lateral flow strip (LFS) test. Toxicity of Bt toxin proteins in the seeds of Bt-transgenic cottons to H. armigera correlated with their toxicity in the leaves in one- toxin Bt cotton hybrids. The Bt-F₁ and Bt-F₂ seeds of JKCH 1947 were more toxic to H. armigera than those of JKCH Varun seeds. The seeds and leaves of F₁s showed greater toxicity than the F2 seeds or leaves of one-toxin (cry1Ac) Bt cotton hybrids. However, no significant differences were observed for the two-toxin (cry1Ac and cry2Ab) hybrid, KDCHH 621. Toxicity of leaves to H. armigera increased with crop age, until 112 days after seedling emergence. The Bt trait purity in F₁ seeds of four two-toxin Bt cotton hybrids ranged from 86.7 to 100%. The present study emphasizes the necessity of 95% Bt trait purity in seeds of transgenic cotton for sustainable crop production. PMID:27295920

  13. Purity and decoherence in the theory of a damped harmonic oscillator.

    PubMed

    Isar, A; Sandulescu, A; Scheid, W

    1999-12-01

    For the generalized master equations derived by Karrlein and Grabert for the microscopic model of a damped harmonic oscillator, the conditions for purity of states are written, in particular for different initial conditions and different types of damping, including Ohmic, Drude, and weak coupling cases, and the Agarwal and Weidlich-Haake models. It is shown that the states which remain pure are the squeezed states with variances that are constant in time. For pure states, generalized nonlinear Schrödinger-type equations corresponding to these master equations are also obtained. Then the condition for purity of states of a damped harmonic oscillator is considered in the framework of Lindblad theory for open quantum systems. For a special choice of the environment coefficients, correlated coherent states with constant variances and covariance are shown to be the only states which remain pure all the time during the evolution of the considered system. In Karrlein-Grabert and Lindblad models, as well as in the particular models considered, expressions for the rate of entropy production are written, and it is shown that state which preserve their purity in time are also states which minimize entropy production and, therefore, are the most stable state under evolution in the presence of the environment, and play an important role in the description of decoherence phenomenon. PMID:11970551

  14. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    PubMed

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines. PMID:23857606

  15. Factors influencing the purity of electronic grade phosphine delivered to MOCVD tools

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Owens, Mitch; Raynor, Mark W.

    2010-04-01

    Increasing mobility of InP films with usage time of one PH 3 cylinder prompted an investigation into factors influencing the purity of delivered PH 3. The presence of hygroscopic H xPO y residues in a delivery system greatly increases the dry-down time compared to that of a clean system. Static delivery system tests show increasing H 2O concentration with time and twice the increase in PH 3 versus N 2 over 48 h indicating reaction of metal oxides in components with PH 3 to generate H 2O. Gas purity may also vary during cylinder usage. Depletion of a high-purity PH 3 cylinder shows consistently low gas phase H 2O levels before phase-break but increasing levels after phase-break, as the cylinder depressurizes. The results highlight the importance of using pure PH 3, employing rigorous cycle-purging procedures to prevent H xPO y contamination, switching out cylinders in good time and using purification technology to control H 2O.

  16. Purification techniques and purity and density measurements of high-pressure Xe

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey; Ramsey, Brian

    1996-02-01

    A xenon gas purification system and simple techniques for purity and density measurements of high-pressure (˜60 atm) Xe have been developed. The purification system features two stages. As a first stage of purification an oxisorb and a high-temperature getter are used to purify Xe gas up to a level of that typically required for liquid Xe detectors. As a second stage, a titanium spark purifier is employed to further improve the purity by an order of magnitude. A gridded ionization chamber is used to measure the purity level and density of the xenon. The duration of pulses produced by cosmic muons inside the chamber gives the lower limit of an electron's life time. The capacitance between the mesh and anode, which depends on the dielectric constant of Xe, provides a temperature independent measurement of the density. This work is a part of a development program of high-pressure Xe detectors for hard X-ray and low energy gamma-ray astronomy.

  17. Characterization of high purity Silicon derived from Rice husk through improved Leaching process

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Awodugba, Ayodeji; Raimi, Adepoju; Babatola, Babatunde

    2014-03-01

    Rice husk is an abundant source of silicon and silicon compounds. High purity Silicon are required in high technology products such as semiconductors and solar cell. In this work, the possibility of obtaining pure silicon compounds through leaching process was investigated. Mesoporous silica nanoparticles with amorphous morphology have been synthesized from rice husk which was further subjected to improved leaching process to obtain pure silicon. XRD analysis shows the crystal structure of the as-received RHA with major reflections or peaks of crystalline quartz from ICSD powder diffraction occur at Bragg 2 θ angles of 20.856°, 26.636° and 36.541°. The purity of silicon obtained in terms of silica content was improved by leaching in 10 wt% hydrochloric acid. Advance future works on characterizing the electrical properties of the refined Rice Husk will eventually add value to the Rice Husk Silicon product and make it more attractive not only to the Photovoltaic industry but also other industries that require high purity silicon at reasonable cost. We wish to thank the Managements of Osun state Polytechnic-Iree and Ladoke Akintola University of Technology-Ogbomoso for creating enabling environment for this research work.

  18. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator

    PubMed Central

    Anis, Siti Nor Syairah; Iqbal, Nurhezreen Md; Kumar, Sudesh; Al-Ashraf, Amirul

    2013-01-01

    A simple procedure for recovering biodegradable polymer from bacterial cells has been developed using economical and environmentally friendly solvent or chemicals. Recombinant bacterium, Cupriavidus necator harboring pBBR1MCS-C2 plasmid polyhydroxyalkanoate (PHA) synthase gene was used for the production of copolymer P(3HB-co-3HHx) from crude palm kernel oil (CPKO). NaOH was chosen in this study as it could give high purity and recovery yield. Increase of NaOH concentration had resulted in an increase of the PHA purity, but the recovery yield had decreased. The greater improvement of PHA purity and recovery were achieved by incubating the freeze-dried cells (10–30 g/L) in NaOH (0.1 M) for 1–3 h at 30°C and polishing using 20% (v/v) of ethanol. The treatment caused negligible degradation of the molecular weight of PHA recovered from the bacterial cells. The present review also highlights other extraction methods to provide greater insights into economical and sustainable recovery of PHA from bacterial cells. PMID:23018620

  19. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.

  20. Asymptotic geometric phase and purity for phase qubit dispersively coupled to lossy LC circuit

    SciTech Connect

    Mohamed, A.-B.A.; Obada, A.-S.F.

    2011-09-15

    Analytical descriptions of the geometric phases (GPs) for the total system and subsystems are studied for a current biased Josephson phase qubit strongly coupled to a lossy LC circuit in the dispersive limit. It is found that, the GP and purity depend on the damping parameter which leads to the phenomenon of GP death. Coherence parameter delays the phenomenon of a regular sequence of deaths and births of the GP. The asymptotic behavior of the GP and the purity for the qubit-LC resonator state closely follow that for the qubit state, but however, for the LC circuit these asymptotic values are equal to zero. - Highlights: > The model of a current biased Josephson phase qubit, strongly coupled to loss LC circuit, is considered. > Analytical descriptions of the geometric phase (GP) of this model, in the dispersive limit, are studied. > The GP and purity depend on the dissipation which leads to the GP death phenomenon. > Coherence parameter delays the phenomenon of a regular sequence of deaths and births of the GP.

  1. High-purity propionate production from glycerol in mixed culture fermentation.

    PubMed

    Chen, Yun; Wang, Ting; Shen, Nan; Zhang, Fang; Zeng, Raymond J

    2016-11-01

    High-purity propionate production from glycerol in mixed culture fermentation (MCF) induced by high ammonium concentration was investigated. Fed-batch experiments revealed that higher ammonium concentration (>2.9g/L) had simultaneous negative effects on acetate and propionate degradation. Propionate production and yield was up to 22.6g/L and 0.45g COD/g COD glycerol, respectively, with a purity of 96%. Sequential batch experiments demonstrated that the yields of propionate were 0.3±0.05, 0.32±0.01, and 0.34±0.03g COD/g COD at a glycerol concentration of 2.78, 4.38, and 5.56g/L, respectively, and the purity of propionate was 91-100%. Microbial community analysis showed that the phylum Firmicutes dominated the bacterial community at different glycerol concentrations. However, the Methanosaeta population decreased from 46% to 6% when glycerol concentration increased from 2.78 to 5.56g/L, resulting in lower acetate degradation rate. Thus, the present study might provide an alternative option for the production of propionate from glycerol via MCF. PMID:27544916

  2. [Maize Hybrid Seed Purity Identification Based on Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectra].

    PubMed

    Li, Tian-xin; Jia, Shi-qiang; Liu, Xu; Zhao, Sheng-yi; Ran, Hang; Yan, Yan-lu; An, Dong

    2015-12-01

    This article explore the feasibility of using Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectroscopy (908.1-1677.2 nm wavelength range) to identify maize hybrid purity, and compare the performance of NIR and NIT spectroscopy. Principle Component Analysis (PCA) and Orthogonal Linear Discriminant Analysis (OLDA) were used to reduce the dimension of spectra which have been pretreated by first derivative and vector normalization. The hybrid purity identification model of Nonghua101 and Jingyu16 were built by SVM. Models based on NIR spectra obtained correct identification rate as 100% and 90% for Nonghua101 and Jingyu16 respectively. But NIR spectra were greatly influenced by the placement of seeds, and there existed significant difference between NIR spectra of embryo and non-embryo side. Models based on NIT spectroscopy yielded correct identification rate as 98% both for Nonghua101 and Jingyu16. NIT spectra of embryo and non-embryo side were highly similar. The results indicate that it is feasible to identify maize hybrid purity based on NIR and NIT spectroscopy, and NIT spectroscopy is more suitable to analyze single seed kernel than NIR spectroscopy. PMID:26964215

  3. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles.

    PubMed

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z Y; Chen, J F; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source. PMID:27419568

  4. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator.

    PubMed

    Anis, Siti Nor Syairah; Iqbal, Nurhezreen Md; Kumar, Sudesh; Al-Ashraf, Amirul

    2013-01-01

    A simple procedure for recovering biodegradable polymer from bacterial cells has been developed using economical and environmentally friendly solvent or chemicals. Recombinant bacterium, Cupriavidus necator harboring pBBR1MCS-C2 plasmid polyhydroxyalkanoate (PHA) synthase gene was used for the production of copolymer P(3HB-co-3HHx) from crude palm kernel oil (CPKO). NaOH was chosen in this study as it could give high purity and recovery yield. Increase of NaOH concentration had resulted in an increase of the PHA purity, but the recovery yield had decreased. The greater improvement of PHA purity and recovery were achieved by incubating the freeze-dried cells (10-30 g/L) in NaOH (0.1 M) for 1-3 h at 30°C and polishing using 20% (v/v) of ethanol. The treatment caused negligible degradation of the molecular weight of PHA recovered from the bacterial cells. The present review also highlights other extraction methods to provide greater insights into economical and sustainable recovery of PHA from bacterial cells. PMID:23018620

  5. Switching between purification and contamination regimes governed by the ionic purity of nanoparticles dispersed in liquid crystals

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy

    2016-03-01

    This paper reports non-trivial effects of the ionic purity of nanoparticles on the concentration of ions in liquid crystals. Nanoparticles dispersed in liquid crystals can affect the concentration of mobile ions in different ways. 100% pure nanoparticles can only decrease the concentration of ions by means of adsorption/desorption processes. Liquid crystals doped with contaminated nanoparticles exhibit three regimes, namely, the purification, contamination, and no change in the concentration of ions. Switching between these regimes is governed by three dominant factors: the purity of liquid crystals, the purity of nanoparticles, and the ratio of the adsorption rate to the desorption rate.

  6. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOEpatents

    Pugar, E.A.; Morgan, P.E.D.

    1987-09-15

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics

  7. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOEpatents

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-01-01

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.

  8. Characterization of high-purity arsine and gallium arsenide epilayers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Clement, Ryan; Raynor, Mark

    2008-11-01

    Impurities present in the metal organic chemical vapor deposition (MOCVD) process gases and precursors can have a significant effect on the performance of III-V compound semiconductor devices. High-purity arsine purified using chemical, adsorption and distillation techniques, has been characterized for impurities by using high sensitivity gas analysis methods and low temperature photoluminescence (PL) of GaAs epilayers. Permanent gas, hydrocarbon and dopant impurities can all be removed using these purification methods to below the detection limit of instrumentation (low nmol mol -1-pmol mol -1, depending on method). Capability to remove water vapor to single digit nmol mol -1 levels is also demonstrated and cylinder depletion studies show that gas-phase arsine, with consistently low H 2O, can be delivered from the cylinder, even well after phase break. Low temperature PL measurements are made on 10 μm GaAs/GaAs grown with three different arsine sources. Well-resolved near-band emission characteristics of high-purity n-type GaAs is obtained with high-purity distilled arsine. PL of epilayers grown with less pure arsine show the presence of Ge as well as elevated levels of Mg and Zn, incorporated from the trimethylgallium. The incorporation of O from an arsine cylinder containing H 2O at 200 nmol mol -1 results in reduced full width at half maximum (FWHM) of the near-band emission and decreased ( D0, X) and ( F, X) intensity, highlighting the importance of minimizing H 2O impurity.

  9. Recycling of high purity selenium from CIGS solar cell waste materials

    SciTech Connect

    Gustafsson, Anna M.K. Foreman, Mark R.StJ.; Ekberg, Christian

    2014-10-15

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.

  10. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  11. Effects of annealing on texture evolution of cross shear rolled high-purity Al foils

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, Y.; Song, X.; He, J.; Zuo, L.

    2015-04-01

    The effects of annealing on recrystallization texture of cross shear rolled high-purity Al foil were investigated by orientation distribution functions (ODFs) and electron backscattered diffraction (EBSD). The results show that the intermediate annealing is beneficial to the development of the cube texture. The cube texture can be promoted by annealing, and the critical annealing temperature is about 280 °C. The cubic orientation grains firstly nucleate, and then expand into other grains with a high growth speed, and large angle grain boundary ratio increases, finally can swallow up most of the original grains, which results in the cube texture

  12. Determination of enantiomeric purity of mandelonitrile with derivatized cyclodextrins in water

    NASA Astrophysics Data System (ADS)

    Hickel, Andrea; Gradnig, Günther; Schall, Michael; Zangger, Klaus; Griengl, Herfried

    1997-03-01

    A variety of derivatized cyclodextrins was used for the determination of the optical purity of mandelonitrile by 1H-NMR (nuclear magnetic resonance) spectroscopy in aqueous solution. Mandelonitrile was formed by the enzymatic reaction of benzaldehyde and HCN (or acetone cyanohydrine) with the hydroxynitrile lyase (Hnl) from Hevea brasiliensis (rubber tree). It turned out that the best separation was achieved with acetyl-β-cyclodextrin ( Kd = 12 dm 3 mol -1). A straightforward integration was possible if there was more than 5% of one of the enantiomers in the solution. Below this value, the results were not reproducible enough for quantitative analysis.

  13. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    SciTech Connect

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  14. Process for the production of ultrahigh purity silane with recycle from separation columns

    DOEpatents

    Coleman, Larry M.

    1982-07-20

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  15. Process for the production of ultrahigh purity silane with recycle from separation columns

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor)

    1982-01-01

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  16. Formation of High-Purity Indium Oxide Nanoparticles and Their Application to Sensitive Detection of Ammonia

    PubMed Central

    Bhardwaj, Sanjeev K.; Bhardwaj, Neha; Kukkar, Manil; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2015-01-01

    High-purity In2O3 nanoparticles were recovered from scrap indium tin oxide substrates in a stepwise process involving acidic leaching, liquid-liquid extraction with a phosphine oxide extractant, and combustion of the organic phase. The morphological and structural parameters of the recovered nanoparticles were investigated to support the formation of the desired products. These In2O3 nanoparticles were used for sensitive sensing of ammonia gas using a four-probe electrode device. The proposed sensor offered very quick response time (around 10 s) and highly sensitive detection of ammonia (at a detection limit of 1 ppm). PMID:26694415

  17. SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS

    SciTech Connect

    Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

    2003-12-01

    This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous

  18. Corrosion behavior of surface films on boron-implanted high purity iron and stainless steels

    NASA Technical Reports Server (NTRS)

    Kim, H. J.; Carter, W. B.; Hochman, R. F.; Meletis, E. I.

    1985-01-01

    Boron (dose, 2 x 10 to the 17th ions/sq cm) was implanted into high purity iron, AISI 316 austenitic stainless steel, and AISI 440C martensitic stainless steel, at 40 keV. The film structure of implanted samples was examined and characterized by contrast and diffraction analyses utilizing transmission electron microscopy. The effect of B(+) ion implantation on the corrosion behavior was studied using the potentiodynamic polarization technique. Tests were performed in deaerated 1 N H2SO4 and 0.1 M NaCl solutions. Scanning electron microscopy was used to examine the morphology of the corroded surfaces after testing.

  19. Purity oscillations in Bose-Einstein condensates with balanced gain and loss

    NASA Astrophysics Data System (ADS)

    Dast, Dennis; Haag, Daniel; Cartarius, Holger; Wunner, Günter

    2016-03-01

    In this work we present a generic feature of PT -symmetric Bose-Einstein condensates by studying the many-particle description of a two-mode condensate with balanced gain and loss. This is achieved using a master equation in Lindblad form whose mean-field limit is a PT -symmetric Gross-Pitaevskii equation. It is shown that the purity of the condensate periodically drops to small values but then is nearly completely restored. This has a direct impact on the average contrast in interference experiments which cannot be covered by the mean-field approximation, in which a completely pure condensate is assumed.

  20. [Progress on methods for purity assessment of separated chromosome X- or Y-bearing sperm].

    PubMed

    Guo, Jia-Ming; Zhu, Hua-Bin; Wang, Dong; Zhang, Lin-Bo; Hao, Hai-Sheng; DU, Wei-Hua

    2008-09-01

    In this review of methods for purity assessment of isolated chromosome X- and Y-bearing sperm, we compared the principles, operating procedures, as well as pros and cons for various methods. We conclude that nested PCR of single sperm will become a conventional and popular method with lower costs, and the method will play a very important role in optimizing the X, Y sorting method, if the sensitivity and accuracy of the method can be increased and the testing time decreased, and promote the new progress in other genetic testing techniques on single sperm. PMID:18779167

  1. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System

    PubMed Central

    Kim, Jongmin; Shin, Hyunwoo; Kim, Jiyoon; Kim, Junho; Park, Jaesung

    2015-01-01

    We present a simple and rapid method to isolate extracellular vesicles (EVs) by using a polyethylene glycol/dextran aqueous two-phase system (ATPS). This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs. PMID:26090684

  2. Conversion Efficiency, Spectral And Mode Purities Of A Single Sideband Electro-Optic Modulator

    NASA Astrophysics Data System (ADS)

    Eng, R. S.; Parker, J. K.; Bunis, J. L.; Grimm, J. G.; Harris, N. W.; Wong, D. M.

    The measured single sideband conversion efficiency of a 10.6 μm bulk-type CdTe electro-optic modulator over the 14-18 GHz modulation frequency range is shown to be in close agreement with the coupled-mode and segmented modulator theories. The paper addresses the effects of the rotational orientations of segmented crystals and indirectly proves that a broadband multisection modulator is feasible; it further shows that a modulator with crystals in rotatable segmented circular waveguides is spectrally widely tunable. The effects of mechanical pressure and off-axis beam propagation on conver-sion, mode purity, and beam quality are also discussed.

  3. Conversion efficiency, spectral and mode purities of a single sideband electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Eng, R. S.; Parker, J. K.; Bunis, J. L.; Grimm, J. G.; Harris, N. W.

    1989-06-01

    The measured single sideband conversion efficiency of a 10.6-micron bulk-type CdTe electrooptic modulator over the 14-18 GHz modulation frequency range is shown to be in close agreement with the coupled-mode and segmented modulator theories. The paper addresses the effects of the rotational orientations of segmented crystals and indirectly proves that a broadband multisection modulator is feasible. It is shown that a modulator with crystals in rotatable segmented circular waveguides is spectrally widely tunable. The effects of mechanical pressure and off-axis beam propagation on conversion, mode purity, and beam quality are also discussed.

  4. Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Li, Yan-Biao; Wu, Fang-Ping

    2014-07-01

    Quantifying and understanding quantum correlations may give a direct reply for many issues regarding the interesting behaviors of quantum system. To explore the quantum correlations in quantum teleportation, we have used a two-qubit Heisenberg XYZ system with spin-orbit interaction as a quantum channel to teleport an unknown state. By using different measures and standard teleportation protocols, we have derived the analytical expressions for quantum discord, entanglement of formation, purity, and maximal teleportation fidelity of the system. We compare their different characteristics and analyze the relationships between these quantities.

  5. A molecular picture of the problems in ensuring structural purity of tazofelone

    NASA Astrophysics Data System (ADS)

    Price, Louise S.; McMahon, Jennifer A.; Lingireddy, Sreenivas R.; Lau, Suk-Fai; Diseroad, Benjamin A.; Price, Sarah L.; Reutzel-Edens, Susan M.

    2014-12-01

    Almost twenty years after the crystal polymorphism of tazofelone was first studied at Lilly, the compound was revisited by calculating the crystal energy landscape and complementing the calculations with experimental work for calibration purposes. The crystal structure prediction study confirmed the stability of racemic form II (RCII) and showed that the racemic compound had greater potential for polymorphism than the single enantiomer. The seeding experiment that has previously been shown to produce a racemic solid solution (SS) correlates with the isostructurality between some low energy racemic structures and the enantiopure form. Other low energy structures have the same layer structure as both racemic polymorphs and the newly-discovered, but closely related, polymorph RCIII, which accounts for the difficulty in obtaining phase pure samples of the metastable RCI and RCIII and the problems of structural purity evidenced by streaked diffraction spots for RCI-III in the single crystal diffraction. This molecular picture of the problems in ensuring structural purity in the layer structure polymorphs of tazofelone not only explains the crystal dependent thermochemistry measurements of tazofelone, but also shows the value of combining a range of experimental and computational techniques to investigate the organic solid state.

  6. In-line System to Produce High-Purity Acid Solutions.

    PubMed

    Masunaga, Hiroto; Higo, Yuji; Ishii, Mizuo; Maruyama, Noboru; Yamazaki, Shigeo

    2016-01-01

    Herein, we report a new device that generates a high-purity acid solution. It comprises three compartments divided by anion-exchange membranes and filled with ion-exchange resins. Fluorochemical cation-exchange membranes, which tolerate electrochemical wear and permit bulk flow, are inserted between each electrode and the anion-exchange resin. A bipolar boundary is a composite boundary comprising anion and cation exchangers. This device has four bipolar boundaries to separate the location of acid generation from the location where water is electrolyzed. It can tolerate high pressures, resist degradation due to electrolysis at the electrodes, and produce high-purity acid solutions that are free from gases and cationic impurities. The acid solution is generated on the basis of an electrokinetic phenomenon at the surfaces of ion-exchange resins and membranes in an electric field; its concentration can be controlled at rates from 0.01 to 100 μmol/min by adjusting the electrical current applied to the device. PMID:27302592

  7. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings

    SciTech Connect

    Helminiak, Yanar NM

    2009-12-01

    Research on the behavior of high-purity, low-density (85%) air plasma sprayed (APS) thermal barrier coatings (TBC) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The microstructure of the APS topcoats is one variable in this study intended to maximize the coating thicknesses that can be applied without spallation and to minimize the thermal conduction through the YSZ layer. The specimens were evaluated using cyclic oxidation tests and important properties of the TBCs, such as resistance to sintering and phase transformation, were determined. The high purity resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The porous topcoat microstructure also resulted in significant durability during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, CTE of the superalloy substrate and the nature of the thermal exposure.

  8. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  9. Recycling of high purity selenium from CIGS solar cell waste materials.

    PubMed

    Gustafsson, Anna M K; Foreman, Mark R StJ; Ekberg, Christian

    2014-10-01

    Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1h at 800°C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS. PMID:24472714

  10. Native oxidation of ultra high purity Cu bulk and thin films

    NASA Astrophysics Data System (ADS)

    Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M.

    2006-12-01

    The effect of microstructure and purity on the native oxidation of Cu was studied by using angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and spectroscopic ellipsometry (SE). A high quality copper film prepared by ion beam deposition under a substrate bias voltage of -50 V (IBD Cu film at Vs = -50 V) showed an oxidation resistance as high as an ultra high purity copper (UHP Cu) bulk, whereas a Cu film deposited without substrate bias voltage (IBD Cu film at Vs = 0 V) showed lower oxidation resistance. The growth of Cu 2O layer on the UHP Cu bulk and both types of the films obeyed in principle a logarithmic rate law. However, the growth of oxide layer on the IBD Cu films at Vs = 0 and -50 V deviated upward from the logarithmic rate law after the exposure time of 320 and 800 h, respectively. The deviation from the logarithmic law is due to the formation of CuO on the Cu 2O layer after a critical time.

  11. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis

    1984-01-01

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.

  12. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  13. Purity control of some Chinese crude herbal drugs marketed in Italy.

    PubMed

    Mazzanti, G; Battinelli, L; Daniele, C; Costantini, S; Ciaralli, L; Evandri, M G

    2008-09-01

    The widespread use of herbal drugs, among which those coming from eastern Countries, has created a more compelling need for quality, a pre-requisite that can influence safety. In the present study, 10 Chinese crude herbal drugs marketed in Italy (Radix Ginseng, Radix Astragali, Rhizoma Coptidis, Rhizoma Atractylodis Macrocephalae, Radix Bupleuri, Radix Rehmanniae, Radix Paeoniae Alba, Pericarpium Citri Reticulatae, Radix Polygalae, Radix Salviae Miltiorrhizae) were analysed by the following purity assays: foreign matter, total ash, microbial and heavy metal contamination. Each herbal drug was purchased in Italy from three different sources: two Chinese firms and one Chinese herbal shop. Except for the heavy metal content, the tests were performed according to the European Pharmacopoeia. The presence of parasites was shown in two samples; moreover, level of ash (in three samples), lead content (in one sample) and total viable aerobic count (in one sample), were higher than the limits set by the European or Italian Pharmacopoeias. Our results, even if obtained from a small number of herbal drugs, show some purity issues and underline the importance of the quality control, particularly for this kind of products whose therapeutic value is not always demonstrated. PMID:18586067

  14. Protective Polymer Coatings for High-Throughput, High-Purity Cellular Isolation

    PubMed Central

    2016-01-01

    Cell-based therapies are emerging as the next frontier of medicine, offering a plausible path forward in the treatment of many devastating diseases. Critically, current methods for antigen positive cell sorting lack a high throughput method for delivering ultrahigh purity populations, prohibiting the application of some cell-based therapies to widespread diseases. Here we show the first use of targeted, protective polymer coatings on cells for the high speed enrichment of cells. Individual, antigen-positive cells are coated with a biocompatible hydrogel which protects the cells from a surfactant solution, while uncoated cells are immediately lysed. After lysis, the polymer coating is removed through orthogonal photochemistry, and the isolate has >50% yield of viable cells and these cells proliferate at rates comparable to control cells. Minority cell populations are enriched from erythrocyte-depleted blood to >99% purity, whereas the entire batch process requires 1 h and <$2000 in equipment. Batch scale-up is only contingent on irradiation area for the coating photopolymerization, as surfactant-based lysis can be easily achieved on any scale. PMID:26244409

  15. A novel FPGA-based bunch purity monitor system at the APS storage ring.

    SciTech Connect

    Norum, W. E.; APS Engineering Support Division

    2008-01-01

    Bunch purity is an important source quality factor for the magnetic resonance experiments at the Advanced Photon Source. Conventional bunch-purity monitors utilizing time-to-amplitude converters are subject to dead time. We present a novel design based on a single field- programmable gate array (FPGA) that continuously processes pulses at the full speed of the detector and front-end electronics. The FPGA provides 7778 single-channel analyzers (six per rf bucket). The starting time and width of each single-channel analyzer window can be set to a resolution of 178 ps. A detector pulse arriving inside the window of a single-channel analyzer is recorded in an associated 32-bit counter. The analyzer makes no contribution to the system dead time. Two channels for each rf bucket count pulses originating from the electrons in the bucket. The other four channels on the early and late side of the bucket provide estimates of the background. A single-chip microcontroller attached to the FPGA acts as an EPICS IOC to make the information in the FPGA available to the EPICS clients.

  16. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    NASA Astrophysics Data System (ADS)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  17. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Qingjun; Qu, Shiyao; Wang, Xinhong; Zou, Zengda

    2007-06-01

    Amorphous composite coatings Fe 38Ni 30- XSi 16B 14V 2M X ( X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  18. Non-iridescent Transmissive Structural Color Filter Featuring Highly Efficient Transmission and High Excitation Purity

    PubMed Central

    Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2014-01-01

    Nanostructure based color filtering has been considered an attractive replacement for current colorant pigmentation in the display technologies, in view of its increased efficiencies, ease of fabrication and eco-friendliness. For such structural filtering, iridescence relevant to its angular dependency, which poses a detrimental barrier to the practical development of high performance display and sensing devices, should be mitigated. We report on a non-iridescent transmissive structural color filter, fabricated in a large area of 76.2 × 25.4 mm2, taking advantage of a stack of three etalon resonators in dielectric films based on a high-index cavity in amorphous silicon. The proposed filter features a high transmission above 80%, a high excitation purity of 0.93 and non-iridescence over a range of 160°, exhibiting no significant change in the center wavelength, dominant wavelength and excitation purity, which implies no change in hue and saturation of the output color. The proposed structure may find its potential applications to large-scale display and imaging sensor systems. PMID:24815530

  19. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  20. Device to generate high purity hydroxide solution in-line for ion chromatography.

    PubMed

    Masunaga, Hiroto; Higo, Yuji; Ishii, Mizuo; Maruyama, Noboru; Yamazaki, Shigeo

    2016-05-01

    Herein, we report a new device that generates a high-purity hydroxide solution in line. The device's container has three compartments that are isolated from each other by two cation exchange (CE) membranes. In each end of the container, an electrode is installed. The three compartments are filled with ion exchange resins. A bipolar boundary is a composite boundary comprising anion- and cation-exchangers. This device has two bipolar boundaries, which are used to separate the location of hydroxide solution generation from the location where water is electrolyzed. Therefore, it can produce high-purity hydroxide solutions that are free from gases and anionic impurities. The hydroxide solution is generated on the basis of an electrokinetic phenomenon at the surfaces of ion-exchange resins and membranes in an electric field; NaOH concentration can be controlled at rates from 0.01 to 100mM per 1mL/min by adjusting the electrical current (0-200mA) applied to the device. As the generated solution is used as an eluent for a suppressed anion chromatography, the electrical conductivity of the effluent from the suppressor is as low as that of ultra-pure water. Thus, the noise of the base-line electrical conductivity is improved, and so the detection limit of anions on the sub-ng/mL order can be achieved. PMID:27063368

  1. Liquid-purity monitor for the LUX-ZEPLIN dark matter search

    NASA Astrophysics Data System (ADS)

    Manalaysay, Aaron; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) experiment will be the first liquid-xenon (LXe) dark matter search to feature a multi-tonne fiducial target. Drawing on the lessons learned in the LUX and ZEPLIN experiments, this next step will probe dark-matter candidates with unprecedented sensitivity. As these LXe detectors have grown larger, so too has the distance over which ionization electrons (from particle interactions) must be drifted through the liquid. Because of this, even minute levels of electronegative impurities can significantly attenuate the ionization signal, and must therefore be closely monitored. I will present the concept of a liquid-purity monitor which uses new and novel techniques, including state-of-the-art UV LEDs and low-work-function materials, and will measure levels of impurities in LZ's liquid circulation line in real time. This device will provide vital supplemental data to the roughly weekly in-situ purity measurements carried out within the detector's active volume, will greatly improve the resolution of the ionization channel in this detector, and will yield instant feedback in response to changing detector conditions.

  2. The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected Via the Sunyaev-Zel'Dovich Effect

    NASA Technical Reports Server (NTRS)

    Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, Richard; Das, Supeed; Deshpande, Amruta J.; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Wollack, Ed

    2010-01-01

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.

  3. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  4. Galaxy masses

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Cappellari, Michele; de Jong, Roelof S.; Dutton, Aaron A.; Emsellem, Eric; Hoekstra, Henk; Koopmans, L. V. E.; Mamon, Gary A.; Maraston, Claudia; Treu, Tommaso; Widrow, Lawrence M.

    2014-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods all provide review material on galaxy masses in a self-consistent manner.

  5. Quantitative analysis of cell composition and purity of human pancreatic islet preparations.

    PubMed

    Pisania, Anna; Weir, Gordon C; O'Neil, John J; Omer, Abdulkadir; Tchipashvili, Vaja; Lei, Ji; Colton, Clark K; Bonner-Weir, Susan

    2010-11-01

    Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light microscopy (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed an accurate identification and quantification of cell types with measured cell number fractions (mean±s.e.m.) of 35.6±2.1% β-cells, 12.6±1.0% non-β-islet cells (48.3±2.6% total islet cells), 22.7±1.5% duct cells, and 25.3±1.8% acinar cells. Of the islet cells, 73.6±1.7% were β-cells. For comparison with the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, β-cells were 86.5±1.1% of the total islet cell volume and 61.2±0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates produced 1560±20 cells in an islet equivalent (volume of 150-μm diameter sphere), of which 1140±15 were β-cells. To test whether LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction of the islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analyses correlated linearly with excellent agreement (R²=0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20-30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islet preparations and can help us understand many of the discrepancies of islet composition in the literature. PMID:20697378

  6. [Quantitative analysis of hybrid maize seed purity using near infrared spectroscopy].

    PubMed

    Huang, Yan-Yan; Zhu, Li-Wei; Ma, Han-Xu; Li, Jun-Hui; Sun, Bao-Qi; Sun, Qun

    2011-10-01

    A quantitative identification model for testing the purity of hybrid maize seeds was built by near infrared reflectance spectroscopy with quantitative partial least squares (QPLS). The NIR spectra of 123 seeds powder samples (Nongda108 and mother178) with the purity of 600-100% were collected using MPA spectrometer. All samples were divided into two groups: calibration set (82 samples) and validation set (41 samples). Synergy interval partial least squares (SiPLSu) was used for selecting effective spectral regions and building models. The influences of different spectral regions and different calibration samples on the prediction results and different main components were compared. The result showed that the spectral regions 6 000 8 000, 6 000-9 000 and 6 000-10 000 cm(-1) all had better prediction results (R2 over 95%). Spectral region 6 000-10 000 cm(-1) was regarded the optimum spectral region for building the model with less main components(8), and the determination coefficient (R2) of calibration and validation sets were 96.61% and 97.67% respectively, SEC (standard error of calibration) and SEP (standard error of prediction) were 2.15% and 1.78% respectively, RSDs (relative standard deviation) were 2.04% and 1.94% respectively. Even with different calibration samples, the average determination coefficients (R2) of calibration and validation sets were 96.21% and 95.75%, SEC (standard error of calibration) and SEP (standard error of prediction) were 2.29% and 2.23% respectively, RSDs (relative standard deviation) were 2.81% and 2.73% respectively, which further proved the model's stability. With the increase in the number of main components, the identification rates in calibration set and validation set gradually increased, when the number of main components reached 8, the model determination coefficients reached the best (96.61% and 97.67%), and related coefficients of true value and predicted value were 98.29% and 98.87% respectively. The results have

  7. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  8. Emergent Newtonian dynamics and the geometric origin of mass

    NASA Astrophysics Data System (ADS)

    D'Alessio, Luca; Polkovnikov, Anatoli

    2014-06-01

    We consider a set of macroscopic (classical) degrees of freedom coupled to an arbitrary many-particle Hamiltonian system, quantum or classical. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. Expanding their dynamics near the adiabatic limit we find the emergent Newton's second law (force is equal to the mass times acceleration) with an extra dissipative term. In systems with broken time reversal symmetry there is an additional Coriolis type force proportional to the Berry curvature. We give the microscopic definition of the mass tensor. The mass tensor is related to the non-equal time correlation functions in equilibrium and describes the dressing of the slow degree of freedom by virtual excitations in the system. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini-Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion (not necessarily in space) and geometry. We illustrate our findings with four simple examples.

  9. A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.

    PubMed

    Gondall, M A; Qahtan, Talal F; Dastageer, M A; Yamani, Z H; Anjum, D H

    2016-01-01

    A rapid and cost effective method is developed to synthesize high purity cadmium Selenide (CdSe) quantum dots in acetone medium using second harmonic of Nd:YAG nanosecond pulsed laser of 532 nm wavelength. The thermal agglomeration due the nanosecond pulse duration of the laser was successfully eliminated by using unfocussed laser beam and thereby providing a favorable conditions for the synthesis of quantum dots having the grain size of 3 nm. The morphological and optical characterizations like XRD, HRTEM, optical absorption of the synthesized CdSe quantum dots, reveal that the material possesses the similar characteristics of the one synthesized through cumbersome wet chemical methods. Relative to the CdSe bulk material, the synthesized CdSe quantum dots showed a blue shift in the measured band gap energy from near infrared spectral region to visible region, making this material very attractive for many solar energy harvesting applications like photo-catalysis and solar cells. PMID:27398538

  10. Observation of Impact Ionization of Shallow States in Sub-Kelvin, High-Purity Germanium

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-01

    We report on the observation of impact ionization processes involving shallow impurity states in a sub-Kelvin, high-purity n-type germanium detector similar to those used by direct detection dark matter experiments such as the Cryogenic Dark Matter Search. An optical fiber is used to generate packets of charge carriers near one surface of the detector. The charge carriers drift to the opposite surface by application of an electric field. The resulting drift current is measured by a high-speed charge amplifier. The onset of impact ionization for both electron and hole transport is clearly observed in the drift current as the applied electric field is increased above ≈ 5 V/cm. We present the effective charge collection efficiency and trapping length as a function of applied electric field for electrons and holes. We estimate the impact ionization cross section to be on the order of 5× 10^{-13} {cm}^2.

  11. Formation of recrystallization cube texture in high purity face-centered cubic metal sheets

    SciTech Connect

    Mao, W.

    1999-10-01

    An investigation on recrystallization textures in high purity face-centered cubic (fcc) aluminum, copper, and nickel indicated that the cube texture is a unique dominant final texture. In a macroview of rolling deformation, a balanced activation of four slip systems can result in certain stability of some substructure with cube orientation in the deformed matrix. In the stable substructure the dislocation density is very low, and the dislocation configuration is rather simple in comparison to other orientations so that the cube substructure can easily be transformed into cube recrystallization nuclei by a recovery process. A high orientation gradient and correspondingly high angle boundaries to the deformed matrix are usually expected around the cube nuclei, which, therefore, grow rapidly. After the primary recrystallization, the size of cube grains is much larger than the grains with other orientations, which will be expensed as the cube grains grow further, so that the cube texture can finally become a dominant texture component.

  12. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  13. Parallel optimization of pixel purity index algorithm for massive hyperspectral images in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Chen, Yufeng; Wu, Zebin; Sun, Le; Wei, Zhihui; Li, Yonglong

    2016-04-01

    With the gradual increase in the spatial and spectral resolution of hyperspectral images, the size of image data becomes larger and larger, and the complexity of processing algorithms is growing, which poses a big challenge to efficient massive hyperspectral image processing. Cloud computing technologies distribute computing tasks to a large number of computing resources for handling large data sets without the limitation of memory and computing resource of a single machine. This paper proposes a parallel pixel purity index (PPI) algorithm for unmixing massive hyperspectral images based on a MapReduce programming model for the first time in the literature. According to the characteristics of hyperspectral images, we describe the design principle of the algorithm, illustrate the main cloud unmixing processes of PPI, and analyze the time complexity of serial and parallel algorithms. Experimental results demonstrate that the parallel implementation of the PPI algorithm on the cloud can effectively process big hyperspectral data and accelerate the algorithm.

  14. The relationship between induction time for pitting and pitting potential for high purity aluminum.

    SciTech Connect

    Wall, Frederick Douglas; Vandenavyle, Justin J.; Martinez, Michael A.

    2003-08-01

    The objective of this study was to determine if a distribution of pit induction times (from potentiostatic experiments) could be used to predict a distribution of pitting potentials (from potentiodynamic experiments) for high-purity aluminum. Pit induction times were measured for 99.99 Al in 50 mM NaCl at potentials of -0.35, -0.3, -0.25, and -0.2 V vs. saturated calomel electrode. Analysis of the data showed that the pit germination rate generally was an exponential function of the applied potential; however, a subset of the germination rate data appeared to be mostly potential insensitive. The germination rate behavior was used as an input into a mathematical relationship that provided a prediction of pitting potential distribution. Good general agreement was found between the predicted distribution and an experimentally determined pitting potential distribution, suggesting that the relationships presented here provide a suitable means for quantitatively describing pit germination rate.

  15. Diffusion Resistant, High-Purity Wafer Carriers For SI Semiconductor Production

    SciTech Connect

    Tiegs, T.N.; Leaskey, L.

    2000-10-01

    The Cooperative Research and Development Agreement (CRADA) was directed towards development of diffusion resistant, high-purity wafer carriers for Si semiconductor production with improved properties compared to current materials. The determination of the infiltration behavior is important for controlling the fabrication process to. obtain consistent high-quality products. Ammonium molybdate or molybdenum carbide were found to be suitable as a precursor to produce SiC-MoSi{sub 2}-Si composites by Si infiltration into carbon preforms. Experiments on the pyrolysis of the preforms showed variable infiltration behavior by the molten Si (within the range of conditions in the present study). Further research is required to reproducibly and consistently fabricate flaw-free articles. The strength of the composites fabricated to-date was 325{+-}124 MPa, which is higher than current commercial products. Better process control should result in higher average strengths and reduce the variability.

  16. [Hatred of foreigners and purity--current aspects of an illusion. Social psychological and psychoanalytic considerations].

    PubMed

    Heim, R

    1992-08-01

    This study draws upon both Carlo Ginzburg's procedures for establishing and preserving (historical) evidence and Claude Lévi-Strauss' structuralist approach with its analysis of "primitive" mythologies to demonstrate that binary coding of the social domain is an all-pervasive structural principle. Heim's intention in this is to show that (present-day) xenophobia and racism are the products of a phantasm centering around the division of the world into pure and impure. The author brings into alignment collective fantasies about the homogeneity of the "body politic" with a form of primary narcissism which, if it is to preserve the illusion of original purity, is forced to externalize instinctual urges experienced as heterogeneous and unpleasurable and project them onto "foreigners" and things foreign. PMID:1509096

  17. Effect of Sintering Temperature on the Synthesis of High Purity Cordierite

    SciTech Connect

    Choo, Y. P.; Chow, T. Y.; Mohamad, H.

    2008-03-17

    Cordierite is silicate material widely used in ceramic industry. The effect of sintering temperature to the properties of cordierite by sol gel method was studied with utilizing magnesium nitrate, aluminum nitrate, ethanol, and tetraethyl orthosilicate (TEOS) as starting materials. Gels are dried and sintered at different temperature (1000 deg. C, 1200 deg. C, 1300 deg. C and 1350 deg. C) then characterized by varies analysis techniques. XRD analysis shows that spinel, {mu}-cordierite and cristobalite are formed at 1000 deg. C which spinel as predominant phase. At 1200 deg. C, {mu}-cordierite occured as predominant phase, spinel, sapphirine and cristobalite are formed as minor phases. It also confirmed that high purity {alpha}-cordierite formed at 1300 deg. C and clearly observed at 1350 deg. C. Result of EDX analysis proved that magnesium, aluminum, silicon and oxygen was existed in the cordierite.

  18. In-depth assessment of analytical methods for olive oil purity, safety, and quality characterization.

    PubMed

    Tena, Noelia; Wang, Selina C; Aparicio-Ruiz, Ramón; García-González, Diego L; Aparicio, Ramón

    2015-05-13

    This paper evaluates the performance of the current analytical methods (standard and widely used otherwise) that are used in olive oil for determining fatty acids, triacylglycerols, mono- and diacylglycerols, waxes, sterols, alkyl esters, erythrodiol and uvaol, tocopherols, pigments, volatiles, and phenols. Other indices that are commonly used, such as free acidity and peroxide value, are also discussed in relation to their actual utility in assessing quality and safety and their possible alternatives. The methods have been grouped on the basis of their applications: (i) purity and authenticity; (ii) sensory quality control; and (iii) unifying methods for different applications. The speed of the analysis, advantages and disadvantages, and multiple quality parameters are assessed. Sample pretreatment, physicochemical and data analysis, and evaluation of the results have been taken into consideration. Solutions based on new chromatographic methods or spectroscopic analysis and their analytical characteristics are also presented. PMID:25891853

  19. In-growth of an electrically active defect in high-purity silicon after proton irradiation

    SciTech Connect

    Nylandsted Larsen, A.; Juul Pedersen, H.; Christian Petersen, M.; Privitera, V.; Gurimskaya, Y.; Mesli, A.

    2013-12-14

    Defect-related energy levels in the lower half of the band gap of silicon have been studied with transient-capacitance techniques in high-purity, carbon and oxygen lean, plasma-enhanced chemical-vapor deposition grown, n-and p-type silicon layers after 2-MeV proton irradiations at temperatures at or just below room temperature. The in-growth of a distinct line in deep-level transient spectroscopy spectra, corresponding to a level in the band gap at E{sub V} + 0.357 eV where E{sub V} is the energy of the valence band edge, takes place for anneal temperatures at around room temperature with an activation energy of 0.95 ± 0.08 eV. The line disappears at an anneal temperature of around 450 K. The corresponding defect is demonstrated not to contain boron, carbon, oxygen, or phosphorus. Possible defect candidates are discussed.

  20. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry; Taylor ,Brandon W.

    2012-01-01

    Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  1. Microstructure Evolution of 1050 Commercial Purity Aluminum Processed by High-Strain-Rate Deformation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Chen, Yadong; Ma, Fei; Hu, Haibo; Zhang, Qingming; Tang, Tiegang; Zhang, Xiaowei

    2015-11-01

    1050 commercial purity aluminum was first deformed by split-Hopkinson pressure bar. Two means of loading methods were conducted, namely uni-directional impact and multiaxial impact. The nominal strain rates reached 1.1 ×103 and 3.0 × 103/s, respectively, with the total strain 1.6 and 3.6. TEM observations reveal that the initial coarse grains are refined significantly. The majority of the structures in the deformed state are composed of elongated grains/cells whose width/length average grain sizes are 187/411 nm. However, the grains of multiaxial impacted sample are equiaxed with an average size of 517 nm. Dynamic recovery is suppressed during high-strain-rate deformation, so the dislocation configurations could not reach equilibrium states. High densities of dislocations are generated, forming several kinds of configurations. Interactions of dislocation substructures result in the refinement of grains.

  2. Development, standardization and assessment of PCR systems for purity testing of avian viral vaccines.

    PubMed

    Ottiger, Hans-Peter

    2010-05-01

    The European Pharmacopoeia (Ph. Eur.) requires avian viral vaccines to be free of adventitious agents. Purity testing is an essential quality requirement of immunological veterinary medicinal products (IVMPs) and testing for extraneous agents includes monitoring for many different viruses. Conventional virus detection methods include serology or virus culture, however, molecular tests have become a valid alternative testing method. Nucleic acid testing (NAT) is fast, highly sensitive and has a higher degree of discrimination than conventional approaches. These advantages have led to the development and standardization of polymerase chain reaction (PCR) assays for the detection of avian leucosis virus, avian orthoreovirus, infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus, infectious laryngotracheitis virus, influenza A virus, Marek's disease virus, turkey rhinotracheitis virus, egg drop syndrome virus, chicken anaemia virus, avian adenovirus and avian encephalomyelitis virus. This paper reviews the development, standardization and assessment of PCR for extraneous agent testing in IVMPs with examples from an Official Medicines Control Laboratory (OMCL). PMID:20338785

  3. URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE

    DOEpatents

    Bailes, R.H.; Long, R.S.; Grinstead, R.R.

    1957-09-17

    A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

  4. Hot working of high purity Fe-C alloys in the α-range

    NASA Astrophysics Data System (ADS)

    Montheillet, F.; Le Coze, J.

    2010-07-01

    The influence of carbon in solid solution on the stress-strain curves of α-iron was investigated using model alloys prepared from high purity iron. Uniaxial compression tests were carried out within the ferritic domain at temperatures between 700 and 880 °C. Oscillating stress-strain curves observed at high temperatures and low strain rates indicate that discontinuous dynamic recrystallization takes place. The macroscopic strain rate sensitivities m and apparent activation energies Q associated with the flow stress are not significantly modified by carbon additions. By contrast, the "mesoscopic" parameters h and r associated with strain hardening and dynamic recovery, respectively, are strongly dependent on the carbon content. Finally, an estimation of the grain boundary mobilities during dynamic recrystallization was carried out from the above rheological data.

  5. Observation of Impact Ionization of Shallow States in Sub-Kelvin, High-Purity Germanium

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-07-01

    We report on the observation of impact ionization processes involving shallow impurity states in a sub-Kelvin, high-purity n-type germanium detector similar to those used by direct detection dark matter experiments such as the Cryogenic Dark Matter Search. An optical fiber is used to generate packets of charge carriers near one surface of the detector. The charge carriers drift to the opposite surface by application of an electric field. The resulting drift current is measured by a high-speed charge amplifier. The onset of impact ionization for both electron and hole transport is clearly observed in the drift current as the applied electric field is increased above ≈ 5 V/cm. We present the effective charge collection efficiency and trapping length as a function of applied electric field for electrons and holes. We estimate the impact ionization cross section to be on the order of 5× 10^{-13} mathrm {cm}^2.

  6. Strain heterogeneity and damage nucleation at grain boundaries during monotonic deformation in commercial purity titanium.

    SciTech Connect

    Bieler, T. R.; Crimp, M. A.; Yang, Y.; Wang, L.; Eisenlohr, P.; Mason, D. E.; Liu, W.; Ice, G. E.; Michigan State Univ.; Air Force Office of Scientific Research

    2009-01-01

    Heterogeneous strain was analyzed in polycrystalline, commercial-purity titanium using many experimental techniques that provide information about microstructure, dislocation arrangement, grain orientation, orientation gradients, surface topography, and local strain gradients. The recrystallized microstructure with 50-200 {micro}m grains was extensively characterized before and after deformation using 4-point bending to strains between 2% and 15%. Extremely heterogeneous deformation occurred along some grain boundaries, leading to orientation gradients exceeding 10{sup o} over 10-20 {micro}m. Patches of highly characterized micro-structure were modeled using crystal plasticity finite element (CPFE) analysis to simulate the deformation to evaluate the ability of the CPFE model to capture local deformation processes. Damage nucleation events were identified that are associated with twin interactions with grain boundaries. Progress toward identifying fracture initiation criteria based upon slip and twin interactions with grain boundaries is illustrated with related CPFE simulations of deformation in a TiAl alloy.

  7. Strain Heterogeneity and Damage Nucleation at Grain Boundaries during Monotonic Deformation in Commercial Purity Titanium

    SciTech Connect

    Bieler, T. R.; Crimp, M. A.; Yang, Y.; Eisenlohr, P.; Mason, D. E.; Liu, W.; Ice, Gene E

    2009-01-01

    Heteroeneous strain was analyzed in polycrystalline, commercial-purity titanium using many experimental techniques that provide information about microstructure, dislocation arrangement, grain orientation, orientation gradients, surface topography, and local strain gradients. The recrystallized microstructure with 50-200 ?m grains was extensively characterized before and after deformation using 4-point bending to strains between 2% and 15%. Extremely heterogeneous deformation occurred along some grain boundaries, leading to orientation gradients exceeding 10{sup o} over 10-20 {micro}m. Patches of highly characterized microstructure were modeled using crystal plasticity finite element (CPFE) analysis to simulate the deformation to evaluate the ability of the CPFE model to capture local deformation processes. Damage nucleation events were identified that are associated with twin interactions with grain boundaries. Progress toward identifying fracture initiation criteria based upon slip and twin interactions with grain boundaries is illustrated with related CPFE simulations of deformation in a TiAl alloy.

  8. Observation of Impact Ionization of Shallow States in Sub-Kelvin, High-Purity Germanium

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-07-01

    We report on the observation of impact ionization processes involving shallow impurity states in a sub-Kelvin, high-purity n-type germanium detector similar to those used by direct detection dark matter experiments such as the Cryogenic Dark Matter Search. An optical fiber is used to generate packets of charge carriers near one surface of the detector. The charge carriers drift to the opposite surface by application of an electric field. The resulting drift current is measured by a high-speed charge amplifier. The onset of impact ionization for both electron and hole transport is clearly observed in the drift current as the applied electric field is increased above ≈ 5 V/cm. We present the effective charge collection efficiency and trapping length as a function of applied electric field for electrons and holes. We estimate the impact ionization cross section to be on the order of 5× 10^{-13} {cm}^2.

  9. Characterization of dislocation and defects for large high purity Ge crystals

    NASA Astrophysics Data System (ADS)

    Mei, Hao; Wang, Guojian; Guan, Yutong; Yang, Gang; Mei, Dongming; Cubed Collaboration

    2015-03-01

    Large diameter (~10 cm) high purity Germanium (HP-Ge) crystals have been growing via Czochralski method at University of South Dakota. We investigate the impacts of growth rate, time-temperature profile, and thermal gradient on the dislocation and defects distribution in HP-Ge crystals along <100>orientation. The dislocation density across the entire cross-section of a grown crystal is measured using microscope. Utilizing X-Ray Diffraction method, we obtain the rocking curves from the same crystal samples. We analyze the correlation between the full width at half maximum (FWHM) of the rocking curves and the dislocation densities from the optical observations (etch pits distribution). A model that describes the correlation of dislocation density, along the HP-Ge crystal, with the FWHM of the rock curves for XRD is established. We report these analytic results. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South.

  10. Effect of Rest Periods on Fatigue of High-Purity Aluminum

    NASA Technical Reports Server (NTRS)

    Berry, J. W.; Lemaitre, J.; Valluri, S. R.

    1958-01-01

    The effect of rest periods on the fatigue life of high-purity aluminum was investigated under two conditions. In one the specimens were tested at elevated temperatures and the rest periods were given at room temperature; in the second the specimens were tested at room temperature and the rest periods were given at elevated temperature. The results obtained indicated that the increase of life was negligible in the first condition, but an increase of life may be obtained in the second. In order to check this increase in fatigue life a second series of tests has been carried out on a different lot of specimens and again an increase in life was found. This increase of life appeared to be from 30 to 60 percent from the average of the results of 20 tests for each test condition.

  11. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

    NASA Astrophysics Data System (ADS)

    Saengkaew, Phannee; Sanorpim, Sakuntam; Jitpukdee, Manit; Cheewajaroen, Kulthawat; Yenchai, Chadet; Thong-aram, Decho; Yordsri, Visittapong; Thanachayanont, Chanchana; Nuntawong, Noppadon

    2016-08-01

    Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman-Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ~540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ~600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the orange

  12. High Strain-Rate Response of High Purity Aluminum at Temperatures Approaching Melt

    SciTech Connect

    Grunschel, S E; Clifton, R J; Jiao, T

    2010-01-28

    High-temperature, pressure-shear plate impact experiments were conducted to investigate the rate-controlling mechanisms of the plastic response of high-purity aluminum at high strain rates (10{sup 6} s{sup -1}) and at temperatures approaching melt. Since the melting temperature of aluminum is pressure dependent, and a typical pressure-shear plate impact experiment subjects the sample to large pressures (2 GPa-7 GPa), a pressure-release type experiment was used to reduce the pressure in order to measure the shearing resistance at temperatures up to 95% of the current melting temperature. The measured shearing resistance was remarkably large (50 MPa at a shear strain of 2.5) for temperatures this near melt. Numerical simulations conducted using a version of the Nemat-Nasser/Isaacs constitutive equation, modified to model the mechanism of geometric softening, appear to capture adequately the hardening/softening behavior observed experimentally.

  13. "Giant" red and green core/shell quantum dots with high color purity and photostability

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Xu, Ruilin; Zhuo, Ningze; Zhang, Lei; Wang, Haibo; Cui, Yiping; Zhang, Jiayu

    2016-03-01

    "Giant" red CdSe/CdS and green CdSeS/ZnS core/shell quantum dots (QDs), whose color purity were ∼100% and 91%, respectively, were synthesized, and the color gamut could be more than 120% relative to the NTSC color space for the display utilizing these two kinds of QDs. Time-resolved photoluminescence (PL) measurement showed that the PL dynamics was evolved from tri-exponential decay to bi-exponential type with the increase of the shell thickness, and the PL decay characteristics of these giant QDs did not evidently change under long-term UV irradiation, indicating that the thick shell could isolate the effect of the surface's defects on the exciton's recombination within these QDs. Their high photostability could have an advantage in the application on display and white-light LEDs.

  14. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

    NASA Astrophysics Data System (ADS)

    Mezbahul-Islam, Mohammad; Belanger, Frederic; Chartrand, Patrice; Jung, In-Ho; Coursol, Pascal

    2016-04-01

    The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

  15. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOEpatents

    Golden, Timothy Christopher; Farris, Thomas Stephen

    2008-11-18

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  16. Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of >99% ee

    PubMed Central

    NEGISHI, Ei-ichi; XU, Shiqing

    2015-01-01

    Shortly after the discovery of Zr-catalyzed carboalumination of alkynes in 1978, we sought expansion of the scope of this reaction so as to develop its alkene version for catalytic asymmetric C–C bond formation, namely the ZACA (Zr-catalyzed asymmetric carboalumination of alkenes). However, this seemingly easy task proved to be quite challenging. The ZACA reaction was finally discovered in 1995 by suppressing three competitive side reactions, i.e., (i) cyclic carbometalation, (ii) β-H transfer hydrometalation, and (iii) alkene polymerization. The ZACA reaction has been used to significantly modernize and improve syntheses of various natural products including deoxypolypropionates and isoprenoids. This review focuses on our recent progress on the development of ZACA–lipase-catalyzed acetylation–transition metal-catalyzed cross-coupling processes for highly efficient and enantioselective syntheses of a wide range of chiral organic compounds with ultra-high enantiomeric purities. PMID:26460317

  17. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    NASA Astrophysics Data System (ADS)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang; Wu, Guilin; Liu, Qing; Juul Jensen, Dorte

    2016-08-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations. It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed at different indentations within one original grain are analyzed and it is found that the orientation distribution of the nuclei is far from random. It is suggested that it relates to the orientations present near the indentation tips which in turn depend on the orientation of the selected grain in which they form. Finally, possible nucleation mechanisms are briefly discussed.

  18. Experimental research of phase transition's kinetics in a liquid melt of high-purity aluminum

    NASA Astrophysics Data System (ADS)

    Vorontsov, V. B.; Zhuravlev, D. V.; Cherepanov, A. S.

    2015-08-01

    This scientific work is devoted to the studying of the genetic connection structures of solid and liquid phases. Fourier analysis of signals of acoustic emission (AE) accompanying melting high purity aluminum from the melting point up to t = 860°C was performed. Based on the results of previous studies cluster formations in the melt - the micro-regions, those retain crystallinity (areas with short-range order of symmetry) were considered as the source of AE. The experimental data allowed to follow the dynamics of disorder zones range order in the melt with increasing melt temperature up to their complete destruction. The presented results of spectral analysis of the signals were analyzed from the standpoint of the theory of cluster melting metals.

  19. Purity and cleanness of aerogel as a cosmic dust capture medium

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Fleming, R. H.; Lindley, P. M.; Craig, A. Y.; Blake, D.

    1994-01-01

    The capability for capturing micrometeoroids intact through laboratory simulations and in space in passive underdense silica aerogel offers a valuable tool for cosmic dust research. The integrity of the sample handling medium can substantially modify the integrity of the sample. Intact capture is a violent hypervelocity event: the integrity of the capturing medium can cause even greater modification of the sample. Doubts of the suitability of silica aerogel as a capture medium were raised at the 20th LPSC, and questions were raised again at the recent workshop on Particle Capture, Recovery, and Velocity Trajectory Measurement Technologies. Assessment of aerogel's volatile components and carbon contents have been made. We report the results of laboratory measurements of the purity and cleanliness of silica aerogel used for several Sample Return Experiments flown on the Get Away Special program.

  20. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    SciTech Connect

    Bieler, T. R.; Wright, N. T.; Pourboghrat, F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, Gene E; Liu, W.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  1. Production of high-purity vanadium, chromium and titanium for use in low activation materials

    NASA Astrophysics Data System (ADS)

    Murphy, D.; Butterworth, G. J.

    1992-09-01

    The presence of radiologically potent tramp elements must be strictly controlled if the intrinsic low activation properties of alloys based on vanadium and chromium are to be fully realized. In this study the incidence of critical impurity elements in commercial sources of vanadium, chromium and titanium metals and precursor compounds is investigated using techniques for trace element analysis. Maximum permitted concentrations corresponding to the attainment of the “hands-on” dose rate limit of 25 μSvh-1 after 100 yr cooling of first wall material were adopted as target values. Chromium and titanium from commercial sources are able to satisfy the purity target. Commercially available vanadium may contain unacceptable levels of Mo, Ag, Nb or Co and additional purification steps designed to remove these impurities are described.

  2. The self-propagation high-temperature synthesis (SHS) of ultrafine high purity tungsten powder from scheelite

    SciTech Connect

    Jung, J.C.; Ko, S.G.; Won, C.W.; Cho, S.S.; Chun, B.S.

    1996-07-01

    High-purity tungsten was prepared by self-propagating high-temperature synthesis (SHS) process from a mixture of CaO{center_dot}WO{sub 3} and Mg. The complete reduction of CaO{center_dot}WO{sub 3} required a 33{percent} excess of magnesium over the stoichiometric molar ratio Mg/CaO{center_dot}WO{sub 3} of 3:1. The MgO and CaO in the product was leached with an HCl solution. The product tungsten had a purity of 99.980{percent} which was higher than that of the reactants. The high purity results because the non tungsten reactants and products are volatilized by the high temperatures generated during the rapid exothermic SHS reaction and are dissolved during HCl leaching of the product. {copyright} {ital 1996 Materials Research Society.}

  3. Influence of strain rate and temperature on the structure/property behavior of high-purity titanium

    SciTech Connect

    Gray, G.T. III

    1997-05-01

    The effect of strain rate, temperature, grain size, and texture on the substructure and mechanical response of high-purity polycrystalline titanium is presented. The compressive stress-strain response of 20 and 240 {mu}m grain size high-purity Ti was found to depend on both the applied strain rate; 0.001 {le} {epsilon} {le} 7500 s{sup -1}, and the test temperature; 77 {le} T {le} 873 K. The rate of strain hardening in Ti is seen to increase with increasing strain rate. The substructure of high-purity Ti deformed at high-strain-rate or quasi-statically at 77K displayed a higher incidence of deformation twinning than during quasi-static deformation at 298K.

  4. Purity Analysis Method of Dihydroxylammonium 5,5ʹ-Bistetrazole-1,1ʹ-diolate (TKX-50)

    NASA Astrophysics Data System (ADS)

    Xiong, Shu-Ling; Chen, Shu-Sen; Li, Li-Jie; Jin, Shao-Hua; Li, Jing-Lin

    2016-07-01

    A method for purity analysis of dihydroxylammonium 5,5ʹ-bistetrazole-1,1ʹ-diolate (TKX-50) using high-performance liquid chromatography (HPLC) was established by optimizing the chromatographic conditions: the detection wavelength was set at 200 nm, and the sample was separated by reverse-phase column (SinoChrom ODS-BP, 4.6 mm × 200 mm, 5 μm) using binary mobile phase acetonitrile and water (volume ratio of 50/50) with a flow rate of 1.0 mL/min at column temperature of 25°C. Normalization method, external standard method, and internal standard method were used to analyze the purity of TKX-50. The results indicate that the precision and accuracy of each method can satisfy the requirements of product analysis; however, the external standard method possesses higher accuracy and precision by comparison and is suggested to analyze the purity of TKX-50.

  5. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.

    PubMed

    Pimenidou, P; Rickett, G; Dupont, V; Twigg, M V

    2010-12-01

    High purity hydrogen (>95%) was produced at 600 degrees C and 1 atm by steam reforming of waste cooking oil at a molar steam to carbon ratio of 4 using chemical looping, a process that features redox cycles of a Ni catalyst with the in-situ carbonation/calcination of a CO(2) sorbent (dolomite) in a packed bed reactor under alternated feedstreams of fuel-steam and air. The fuel and steam conversion were higher with the sorbent present than without it. Initially, the dolomite carbonation was very efficient (100%), and 98% purity hydrogen was produced, but the carbonation decreased to around 56% with a purity of 95% respectively in the following cycles. Reduction of the nickel catalyst occurred alongside steam reforming, water gas shift and carbonation, with H(2) produced continuously under fuel-steam feeds. Catalyst and CO(2)-sorbent regeneration was observed, and long periods of autothermal operation within each cycle were demonstrated. PMID:20655199

  6. The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation.

    PubMed

    Lee, Sang-Hyo; Lee, Ju Eun; Kim, Yoori; Lee, Seung-Yop

    2016-01-01

    Phycocyanin is a photosynthetic pigment found in photosynthetic cyanobacteria, cryptophytes, and red algae. In general, production of phycocyanin depends mainly on the light conditions during the cultivation period, and purification of phycocyanin requires expensive and complex procedures. In this study, we propose a new two-stage cultivation method to maximize the quantitative content and purity of phycocyanin obtained from Spirulina platensis using red and blue light-emitting diodes (LEDs) under different light intensities. In the first stage, Spirulina was cultured under a combination of red and blue LEDs to obtain the fast growth rate until reaching an absorbance of 1.4-1.6 at 680 nm. Next, blue LEDs were used to enhance the concentration and purity of the phycocyanin in Spirulina. Two weeks of the two-stage cultivation of Spirulina yielded 1.28 mg mL(-1) phycocyanin with the purity of 2.7 (OD620/OD280). PMID:26433600

  7. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core–shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  8. High-purity 3D nano-objects grown by focused-electron-beam induced deposition.

    PubMed

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices. PMID:27454835

  9. Gold Nanoparticle Interference Study during the Isolation, Quantification, Purity and Integrity Analysis of RNA

    PubMed Central

    Sanabria, Natasha M.; Vetten, Melissa; Andraos, Charlene; Boodhia, Kailen; Gulumian, Mary

    2014-01-01

    Investigations have been conducted regarding the interference of nanoparticles (NPs) with different toxicological assay systems, but there is a lack of validation when conducting routine tests for nucleic acid isolation, quantification, integrity, and purity analyses. The interference of citrate-capped gold nanoparticles (AuNPs) was investigated herein. The AuNPs were added to either BEAS-2B bronchial human cells for 24 h, the isolated pure RNA, or added during the isolation procedure, and the resultant interaction was assessed. Total RNA that was isolated from untreated BEAS-2B cells was spiked with various concentrations (v/v%) of AuNPs and quantified. A decrease in the absorbance spectrum (220–340 nm) was observed in a concentration-dependent manner. The 260 and 280 nm absorbance ratios that traditionally infer RNA purity were also altered. Electrophoresis was performed to determine RNA integrity, but could not differentiate between AuNP-exposed samples. However, the spiked post-isolation samples did produce differences in spectra (190–220 nm), where shifts were observed at a shorter wavelength. These shifts could be due to alterations to chromophores found in nucleic acids. The co-isolation samples, spiked with 100 µL AuNP during the isolation procedure, displayed a peak shift to a longer wavelength and were similar to the results obtained from a 24 h AuNP treatment, under non-cytotoxic test conditions. Moreover, hyperspectral imaging using CytoViva dark field microscopy did not detect AuNP spectral signatures in the RNA isolated from treated cells. However, despite the lack of AuNPs in the final RNA product, structural changes in RNA could still be observed between 190–220 nm. Consequently, full spectral analyses should replace the traditional ratios based on readings at 230, 260, and 280 nm. These are critical points of analyses, validation, and optimization for RNA-based techniques used to assess AuNPs effects. PMID:25470814

  10. [Improvement of yield and purity of human fibroblast growth factor-21].

    PubMed

    Yu, Dan; Ye, Xianlong; Ren, Guiping; Xu, Pengfei; Li, Shujie; Niu, Zeshan; Li, Deshan

    2014-04-01

    Fibroblast growth factor -21 (FGF-21) is a recently discovered metabolic regulation factor, regulating glucose and lipid metabolism and increasing insulin sensitivity. FGF-21 is expected to be a potential anti-diabetic drug. Expression of FGF-21 as inclusion bodies has advantages for high yield and purity, but the bioactivity of the protein is almost totally lost after denature and renature. That is why FGF-21 is currently expressed in soluble form. As a result, the yield is considerably low. In this study, we used SUMO vector to express SUMO-human FGF-21 (SUMO-hFGF-21) in form of inclusion body. We optimized the culture conditions to increase the yield of the bioactive human fibroblast growth factor-21. We applied the hollow fiber membrane filtration column to enrich the bacteria, wash, denature and renature inclusion bodies. After affinity and gel filtration chromatography, we examined the hypoglycemic activity of FGF-21 by the glucose uptake assay in HepG2 cells. We also detected the blood glucose concentration of type 2 diabetic db/db model mice after short or long-term treatment. The results show that the yield of ihFGF-21 was 4 times higher than that of shFGF-21. The yield was 20 mg/L for ihFGF-21 vs. 6 mg/L for shFGF-21. The purity of ihFGF-21 was above 95%, while shFGF-21 was 90%. Compared with the traditional method of extracting inclusion bodies, the production cycle was about three times shortened by application of hollow fiber membrane filtration column technology, but the bioactivity did not significantly differ. This method provides an efficient and cost-effective strategy to the pilot and industrial production of hFGF-21. PMID:25195255

  11. Bio-assisted potentiometric multisensor system for purity evaluation of recombinant protein A.

    PubMed

    Voitechovič, Edita; Korepanov, Anton; Kirsanov, Dmitry; Jahatspanian, Igor; Legin, Andrey

    2016-08-15

    Recombinant proteins became essential components of drug manufacturing. Quality control of such proteins is routine task, which usually requires a lot of time, expensive reagents, specialized equipment and highly educated personnel. In this study we propose a new concept for protein purity evaluation that is based on application of bio-assisted potentiometric multisensor system. The model object for analysis was recombinant protein A from Staphylococcus aureus (SpA), which is commonly used for monoclonal antibody purification. SpA solutions with different amount of host cell related impurities (Escherichia coli, bacterial lysate) were analyzed. Two different bio-transducers were employed: proteinase K from Tritirachium album and baker's yeast Saccharomyces cerevisiae. It was shown that both bio-transducers are able to induce changes in pure and lysate-contaminated SpA samples. Different products of yeast digestion and proteolysis with proteinase of pure SpA and lysate were detected with size exclusion high-performance liquid chromatography (SE-HPLC). The induced changes of chemical composition are detectible with potentiometric multisensor system and can be related to SpA purity through projection on latent structures (PLS) regression technique. The proposed method allows for estimation of the impurity content with 12% accuracy using proteinase K and 16% accuracy using baker's yeast. The suggested approach could be useful for early contamination warning at initial protein purification steps. The analysis requires no expensive materials and equipment, no bio-material immobilization, and its duration time is comparable with other commonly used methods like chromatography or electrophoresis though the main part of this time is related to the sample preparation. PMID:27260439

  12. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  13. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  14. Coupling and single-photon purity of a quantum dot-cavity system studied using hydrostatic pressure

    SciTech Connect

    Zhou, P. Y.; Wu, X. F.; Ding, K.; Dou, X. M.; Zha, G. W.; Ni, H. Q.; Niu, Z. C.; Zhu, H. J.; Jiang, D. S.; Zhao, C. L.; Sun, B. Q.

    2015-01-07

    We propose an approach to tune the emission of a single semiconductor quantum dot (QD) to couple with a planar cavity using hydrostatic pressure without inducing temperature variation during the process of measurement. Based on this approach, we studied the influence of cavity mode on the single-photon purity of an InAs/GaAs QD. Our measurement demonstrates that the single-photon purity degrades when the QD emission resonates with the cavity mode. This negative influence of the planar cavity is mainly caused by the cavity feeding effect.

  15. Generation of high spectral purity photon-pairs with MgO-doped periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Zhan, Mengying; Sun, Qichao; Xiang, Tong; Chen, Xianfeng

    2015-12-01

    We study the spectral correlation of photon pairs generated via type-II spontaneous parametric down conversion in periodically poled lithium niobate crystals. By performing Schmidt decomposition on the two-photon wavefunction, we calculate the spectral purity of the two-photon state under various pump laser characteristics and doping concentrations of MgO in lithium niobate crystals. Our results show that periodically poled 5% MgO doped lithium niobate is a good candidate to generate photon-pairs with high spectral purity at telecom wavelength.

  16. Coupled translation-rotation eigenstates of H2, HD, and D2 in the large cage of structure II clathrate hydrate: comparison with the small cage and rotational Raman spectroscopy.

    PubMed

    Xu, Minzhong; Sebastianelli, Francesco; Bacić, Zlatko

    2009-07-01

    We report fully coupled quantum five-dimensional calculations of the translation-rotation (T-R) energy levels of one H(2), HD, and D(2) molecule confined inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate. Highly converged T-R eigenstates have been obtained for excitation energies beyond the j = 2 rotational levels of the guest molecules, in order to allow comparison with the recent Raman spectroscopic measurements. The translationally excited T-R states are assigned with the quantum numbers n and l of the 3D isotropic harmonic oscillator. However, the translational excitations are not harmonic, since the level energies depend not only on n but also on l. For l > 1, the T-R levels having the same n,l values are split into groups of almost degenerate levels. The splitting patterns follow the predictions of group theory for the environment of T(d) symmetry, which is created by the configuration of the oxygen atoms of the large cage. The 2j + 1 degeneracy of the j = 1 and 2 rotational levels of the encapsulated hydrogen molecule is lifted entirely by the angular anisotropy of the H(2)-cage interaction potential. The patterns and magnitudes of the j = 1, 2 rotational level splittings, and the energies of the sublevels, in the large cage are virtually identical with those calculated for the small cage. This is in agreement with, and sheds light on, the observation that the S(0)(0) (j = 0-->2) bands in the rotational Raman spectra measured for simple H(2) hydrate and the binary hydrate of H(2) with tetrahydrofuran are remarkably similar with respect to their frequencies, widths, shapes, and internal structure, when the H(2) occupancy of the large cage of simple H(2) hydrate is low. PMID:19552479

  17. Emergent Newtonian dynamics and the geometric origin of mass

    NASA Astrophysics Data System (ADS)

    D'Alessio, Luca; Polkovnikov, Anatoli

    2014-03-01

    We consider an arbitrary many-body system with possibly infinitely many degrees of freedom interacting with few macroscopic parameters which are allowed to slowly change in time. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. By extending the Kubo linear response theory to such setups we derive the dynamics of the macroscopic d.o.f. which takes the form of the emergent Newton's second law (force is equal to the mass times acceleration) with an extra dissipative term. We find the microscopic expression for the mass tensor relating it to the non-equal time correlation functions in equilibrium. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini-Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion and geometry. This work was partially supported by BSF 2010318, NSF DMR- 0907039, AFOSR FA9550-10- 1-0110

  18. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  19. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  20. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  1. THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Menanteau, Felipe; Acquaviva, Viviana; Baker, Andrew J.; Deshpande, Amruta J.; Gonzalez, Jorge; Juin, Jean-Baptiste; Aguirre, Paula; Barrientos, L. Felipe; Duenner, Rolando; Marriage, Tobias A.; Reese, Erik D.; Devlin, Mark J.; Dicker, Simon; Appel, John William; Essinger-Hileman, Thomas; Fowler, Joseph W.; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Dunkley, Joanna

    2010-11-10

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich effect (SZE) from 148 GHz maps over 455 deg{sup 2} of sky made with the Atacama Cosmology Telescope (ACT). These maps, coupled with multi-band imaging on 4 m class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts, and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10{sup 14} M{sub sun}, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10{sup 15} M{sub sun} and the redshift range is 0.167-1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the universe.

  2. Quantum toroidal moments of nanohelix eigenstates

    NASA Astrophysics Data System (ADS)

    Williamson, Johnny; Encinosa, Mario

    2015-09-01

    Developments in the area of metamaterial research have generated interest in toroidal moments and their treatment in the quantum regime. A quantum mechanical method of determining toroidal moments due to current circulating on a toroidal helix is presented. The Hamiltonian of a negatively charged spinless particle constrained to motion in the vicinity of a toroidal helix having loops of arbitrary eccentricity is developed. The resulting three dimensional Schr¨odinger equation is reduced to a one dimensional form inclusive of curvature effects. Low-lying eigenfunctions of the toroidal helix system are determined along with corresponding toroidal moments. A disagreement, not predicted by a classical treatment, arises between toroidal moments of elliptic toroidal helix systems when vertical and horizontal eccentricity are transposed.

  3. Sample Acquisition and Analytical Chemistry Challenges to Verifying Compliance to Aviators Breathing Oxygen (ABO) Purity Specification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has been developing and testing two different types of oxygen separation systems. One type of oxygen separation system uses pressure swing technology, the other type uses a solid electrolyte electrochemical oxygen separation cell. Both development systems have been subjected to long term testing, and performance testing under a variety of environmental and operational conditions. Testing these two systems revealed that measuring the product purity of oxygen, and determining if an oxygen separation device meets Aviator's Breathing Oxygen (ABO) specifications is a subtle and sometimes difficult analytical chemistry job. Verifying product purity of cryogenically produced oxygen presents a different set of analytical chemistry challenges. This presentation will describe some of the sample acquisition and analytical chemistry challenges presented by verifying oxygen produced by an oxygen separator - and verifying oxygen produced by cryogenic separation processes. The primary contaminant that causes gas samples to fail to meet ABO requirements is water. The maximum amount of water vapor allowed is 7 ppmv. The principal challenge of verifying oxygen produced by an oxygen separator is that it is produced relatively slowly, and at comparatively low temperatures. A short term failure that occurs for just a few minutes in the course of a 1 week run could cause an entire tank to be rejected. Continuous monitoring of oxygen purity and water vapor could identify problems as soon as they occur. Long term oxygen separator tests were instrumented with an oxygen analyzer and with an hygrometer: a GE Moisture Monitor Series 35. This hygrometer uses an aluminum oxide sensor. The user's manual does not report this, but long term exposure to pure oxygen causes the aluminum oxide sensor head to bias dry. Oxygen product that exceeded the 7 ppm specification was improperly accepted, because the sensor had biased. The bias is permanent - exposure to air does not cause the sensor to

  4. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity

    NASA Astrophysics Data System (ADS)

    Yue, Wenjing; Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2016-07-01

    Highly efficient subtractive tri-color filters of cyan, magenta, and yellow with enhanced color purity and robustness have been proposed and realized, by exploiting a silicon-aluminum (Si-Al) hybrid-nanodisk (ND) metasurface atop a Si substrate. The aspect ratio of the Si-Al hybrid ND is much lower than that of the conventional Si nanowire, which is disadvantageous due to its fragility and low color purity. In response to incident light impinging upon the metasurface, the hybrid-NDs individually play the role in exciting a magnetic dipole (MD) resonance through the mediation of Mie-scattering between the hybrid ND and air. The light stored in the resonance is coupled to the substrate, giving rise to a suppressed reflection. By virtue of the top Al ND, the excited MD resonance is strongly confined by the Si ND. As a consequence, a near-zero resonant dip that exhibits high off-resonance reflection and narrow bandwidth is produced for embodying highly efficient tri-color filters with enhanced color purity. The spectral position can be tuned by a simple adjustment of the hybrid-ND diameter. A full-color palette was successfully created with a high color purity and large color gamut. The proposed devices may be applied for photorealistic high-resolution color printing and holographic displays.

  5. Conversations about Code-Switching: Contrasting Ideologies of Purity and Authenticity in Basque Bilinguals' Reactions to Bilingual Speech

    ERIC Educational Resources Information Center

    Lantto, Hanna

    2016-01-01

    This study examines the manifestations of purity and authenticity in 47 Basque bilinguals' reactions to code-switching. The respondents listened to two speech extracts with code-switching, filled in a short questionnaire and talked about the extracts in small groups. These conversations were then recorded. The respondents' beliefs can be…

  6. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity

    PubMed Central

    Yue, Wenjing; Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2016-01-01

    Highly efficient subtractive tri-color filters of cyan, magenta, and yellow with enhanced color purity and robustness have been proposed and realized, by exploiting a silicon-aluminum (Si-Al) hybrid-nanodisk (ND) metasurface atop a Si substrate. The aspect ratio of the Si-Al hybrid ND is much lower than that of the conventional Si nanowire, which is disadvantageous due to its fragility and low color purity. In response to incident light impinging upon the metasurface, the hybrid-NDs individually play the role in exciting a magnetic dipole (MD) resonance through the mediation of Mie-scattering between the hybrid ND and air. The light stored in the resonance is coupled to the substrate, giving rise to a suppressed reflection. By virtue of the top Al ND, the excited MD resonance is strongly confined by the Si ND. As a consequence, a near-zero resonant dip that exhibits high off-resonance reflection and narrow bandwidth is produced for embodying highly efficient tri-color filters with enhanced color purity. The spectral position can be tuned by a simple adjustment of the hybrid-ND diameter. A full-color palette was successfully created with a high color purity and large color gamut. The proposed devices may be applied for photorealistic high-resolution color printing and holographic displays. PMID:27407024

  7. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity.

    PubMed

    Yue, Wenjing; Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2016-01-01

    Highly efficient subtractive tri-color filters of cyan, magenta, and yellow with enhanced color purity and robustness have been proposed and realized, by exploiting a silicon-aluminum (Si-Al) hybrid-nanodisk (ND) metasurface atop a Si substrate. The aspect ratio of the Si-Al hybrid ND is much lower than that of the conventional Si nanowire, which is disadvantageous due to its fragility and low color purity. In response to incident light impinging upon the metasurface, the hybrid-NDs individually play the role in exciting a magnetic dipole (MD) resonance through the mediation of Mie-scattering between the hybrid ND and air. The light stored in the resonance is coupled to the substrate, giving rise to a suppressed reflection. By virtue of the top Al ND, the excited MD resonance is strongly confined by the Si ND. As a consequence, a near-zero resonant dip that exhibits high off-resonance reflection and narrow bandwidth is produced for embodying highly efficient tri-color filters with enhanced color purity. The spectral position can be tuned by a simple adjustment of the hybrid-ND diameter. A full-color palette was successfully created with a high color purity and large color gamut. The proposed devices may be applied for photorealistic high-resolution color printing and holographic displays. PMID:27407024

  8. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts.

    PubMed

    Lim, H E; Miyata, Y; Nakayama, T; Chen, S; Kitaura, R; Shinohara, H

    2011-09-30

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices. PMID:21891846

  9. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts

    NASA Astrophysics Data System (ADS)

    Lim, H. E.; Miyata, Y.; Nakayama, T.; Chen, S.; Kitaura, R.; Shinohara, H.

    2011-09-01

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices.

  10. Purity Analysis of the Pharmaceuticals Naproxen and Propranolol: A Guided-Inquiry Laboratory Experiment in the Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.

    2015-01-01

    Counterfeiting and adulteration of prescription drugs, herbal products, and food supplements are a global challenge, causing serious economic loss to drug marketers and health implications for humans. Accordingly, accurate determination of the purity of pharmaceuticals is critical for the quality assurance of prescription drugs. Herein, the first…

  11. The effect of deoxyribonucleic acid extraction methods from lymphoid tissue on the purity, content, and amplifying ability

    PubMed Central

    Ayatollahi, Hossein; Sadeghian, Mohammad Hadi; Keramati, Mohammad Reza; Ayatollahi, Ali; Shajiei, Arezoo; Sheikhi, Maryam; Bakhshi, Samane

    2016-01-01

    Background: Nowadays, definitive diagnosis of numerous diseases is based on the genetic and molecular findings. Therefore, preparation of fundamental materials for these evaluations is necessary. Deoxyribonucleic acid (DNA) is the first material for the molecular pathology and genetic analysis, and better results need more pure DNA. Furthermore, higher concentration of achieved DNA causes better results and higher amplifying ability for subsequent steps. We aim to evaluate five DNA extraction methods to compare DNA intimacy including purity, concentration, and amplifying ability with each other. Materials and Methods: The lymphoid tissue DNA was extracted from formalin-fixed, paraffin embedded (FFPE) tissue through five different methods including phenol-chloroform as the reference method, DNA isolation kit (QIAamp DNA FFPE Tissue Kit, Qiagen, Germany), proteinase K and xylol extraction and heat alkaline plus mineral oil extraction as authorship innovative method. Finally, polymerase chain reaction (PCR) and real-time PCR method were assessed to compare each following method consider to DNA purity and its concentration. Results: Among five different applied methods, the highest mean of DNA purity was related to heat alkaline method. Moreover, the highest mean of DNA concentration was related to heat alkaline plus mineral oil. Furthermore, the best result in quantitative PCR was in proteinase K method that had the lowest cycle threshold averages among the other extraction methods. Conclusion: We concluded that our innovative method for DNA extraction (heat alkaline plus mineral oil) achieved high DNA purity and concentration.

  12. Impact of metal-induced degradation on the determination of pharmaceutical compound purity and a strategy for mitigation.

    PubMed

    Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L

    2011-04-01

    Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. PMID:21163601

  13. Abdominal mass

    MedlinePlus

    Several conditions can cause an abdominal mass: Abdominal aortic aneurysm can cause a pulsating mass around the navel. ... This could be a sign of a ruptured aortic aneurysm, which is an emergency condition. Contact your health ...

  14. Abdominal mass

    MedlinePlus

    ... Several conditions can cause an abdominal mass: Abdominal aortic aneurysm can cause a pulsating mass around the navel. ... This could be a sign of a ruptured aortic aneurysm, which is an emergency condition. Contact your health ...

  15. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.

    2011-08-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  16. High-purity Ni electroless plating on screen-printed anodized Al substrates

    NASA Astrophysics Data System (ADS)

    Park, Sang-Geon; Lee, Youn-Seoung; Rha, Sa-Kyun

    2016-07-01

    By using an electroless plating process with a Ni source solution including dimethylamine borane (DMAB) at pH 6.5 and 65 ◦ C, we obtained a higher purity Ni film (< 1 at.% boron) without damage to the anodized Al substrate. With increasing plating time, the thickness of the film increased gradually, although the average deposition rate of the Ni films decreased steadily. We can infer that the abrupt decrease in sheet resistance (Rs) at the interface region is due to the change in the boron concentration caused by surface reactions, and the gradual decrease in Rs in the bulk region is due mainly to the effect of the saturation of boron's concentration on the thickness. From a boron-distribution viewpoint, this result indicates that the B concentration in the Ni film increases gradually with increasing plating time for plating times ≤ 60 s as a kind of initial stage (that is, interface region), and then saturates uniformly for plating times ≥ 300 s as a kind of bulk region. On the other hand, from an electronic structure viewpoint, this result implies that Ni gains 3d electrons with respect to elemental Ni. The increase in the number of electrons gained by the Ni 3d states may result in an enhancement of the electrical conductivity.

  17. High-Purity Composite Briquette for Direct UMG-Si Production in Arc Furnaces

    NASA Astrophysics Data System (ADS)

    Perruchoud, Raymond; Fischer, Jean-Claude

    2013-12-01

    In metallurgical grade Si (MG-Si), the coal (B) and charcoal (P) contents are on average above 30 ppm as the carbon reduction materials used in the arc furnace are either rich in B or in P. A decrease of both impurities by a factor of 3 using purer raw materials would allow for the direct production of the upgraded metallurgical grade (UMG).This would significantly improve the efficiency of the resulting photovoltaic (PV) cells made with the refined solar grade silicon (SoG-Si) or massively decrease the costs of Si purification by shortening the number of steps needed for reaching B and P contents below 1 ppm requested for the SoG-Si used for the PV cells. A composite C/SiO2 briquette fulfilling the purity targets for the direct production of UMG-Si in the arc furnace was developed. The composite contains several carbon materials with different levels of reactivities and quartz sand. The raw materials aspects, the paste and briquette preparation, as well as the final carbonization step are discussed. The finished briquettes are free of volatiles and are mechanically and thermally very stable, thus, ensuring stable arc furnace charges with minimum losses of dust and SiO gas. Semi-industrial trials including the downstream purification steps for the production of SoG-Si by a metallurgical low-cost route are contemplated.

  18. Ospapst1, a useful mutant for identifying seed purity and authenticity in hybrid rice.

    PubMed

    Lv, Qundan; Xu, Jiming; Wu, Ping

    2013-07-01

    The stability and completeness of male sterility is still a challenge in some male sterile rice lines, especially those of photoperiod/thermo-sensitive genic male sterility (P/TGMS). Leaf color marker is a widely practiced approach to reduce the impact of self-pollinated seeds of male sterile lines. The papst1 is a leaf color mutant. The newly emerged leaves of papst1 are chlorosis and have an impaired photosynthesis. But the other agronomic traits, such as germination rate, duration of maturation and seed weight, are not changed. The papst1/PAPST1 F₁ showed the wild-type leaf phenotype. The papst1/PAPST1 F₂ progenies displayed an approximately 3:1 segregation ratio of WT phenotype:mutant phenotype (72: 28, χ(2) = 0.48, p > 0.05), suggesting that papst1 mutant phenotype is caused by a single repressive gene. Map-based cloning and sequencing analysis revealed that a point mutation was occurred in Os01 g16040 (OsPAPST1). Given these results, the Ospapst1 mutant is a useful mutant for identifying seed purity and authenticity in hybrid rice. PMID:23656867

  19. Evaluation of Electric Load Following Capability on Fuel Cell System Fueled by High-Purity Hydrogen

    NASA Astrophysics Data System (ADS)

    Doi, Yusuke; Park, Deaheum; Ishida, Masayoshi; Fujisawa, Akitoshi; Miura, Shinichi

    This paper describes the electrical response in load change concerning a fuel cell system fueled by high-purity hydrogen. The purpose of this study is that the fuel cell system is applied to make up for unstable electrical output of a photovoltaic system as a renewable energy. As an alternative method of secondary battery, the fuel cell system, which is able to continuously generate power as long as fuel is supplied, is expected to provide power with high reliability and stability. To evaluate the load-following capability of a polymer electrolyte fuel cell (PEFC) system, an experimental equipment was constructed with a 200W PEFC stack (number of cells: 20, cell area: 200cm2) which was supplied with hydrogen from a compressed hydrogen cylinder and a metal hydride canister. We measured the transient phenomenon of current and cell voltage when the PEFC stack was inputted step-up current loads that changed in the range of 0∼300mA/cm2. As a result, we have found that the PEFC system with both hydrogen supply sources is able to response at a time constant of 6.6∼11.6μsec under enough oxygen supply and a load below the PEFC rated power.

  20. Realization of Ultra-High Spectral Purity with the Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Yao, Steve; Maleki, Lute; Ji, Yu; Dick, John

    2000-01-01

    Recent results with the Opto-Electronic Oscillator (OEO) have led to the realization of very high spectral purity. Experimental results have produced a performance characterized by a noise as low as by -50 dBc/Hz at 10 Hz for a 10 GHz OEO. The unit was built in a compact package containing an integrated DFB laser and the modulator. This performance is significant because the oscillator is free running, and since the noise in an OEO is independent of the oscillation frequency, the same result can also be obtained at higher frequencies. The result also demonstrates that high frequency, high performance, low cost, and miniature OEO can be realized with the integrated photonic technology. We have also developed a novel carrier suppression technique to reduce the 1/f phase noise of the oscillator even further. The technique is based on the use of a long fiber delay, in place of the high Q cavity, to implement carrier suppression. Our preliminary experimental results indicate an extra 10 to 20 dB phase noise reduction of the OEO with this novel technique. Further noise reduction beyond this value is expected with improved circuit design and longer reference fiber.

  1. Gut check: reappraisal of disgust helps explain liberal-conservative differences on issues of purity.

    PubMed

    Feinberg, Matthew; Antonenko, Olga; Willer, Robb; Horberg, E J; John, Oliver P

    2014-06-01

    Disgust plays an important role in conservatives' moral and political judgments, helping to explain why conservatives and liberals differ in their attitudes on issues related to purity. We examined the extent to which the emotion-regulation strategy reappraisal drives the disgust-conservatism relationship. We hypothesized that disgust has less influence on the political and moral judgments of liberals because they tend to regulate disgust reactions through emotional reappraisal more than conservatives. Study 1a found that a greater tendency to reappraise disgust was negatively associated with conservatism, independent of disgust sensitivity. Study 1b replicated this finding, demonstrating that the effect of reappraisal is unique to disgust. In Study 2, liberals condemned a disgusting act less than conservatives, and did so to the extent that they reappraised their initial disgust response. Study 3 manipulated participants' use of reappraisal when exposed to a video of men kissing. Conservatives instructed to reappraise their emotional reactions subsequently expressed more support for same-sex marriage than conservatives in the control condition, demonstrating attitudes statistically equivalent to liberal participants. PMID:24098928

  2. Influence of Ta content in high purity niobium on cavity performance

    SciTech Connect

    P. Kneisel; G. Ciovati; G. R. Myneni; W. Singer; X. Singer; D. Proch; T. Carneiro

    2005-05-01

    In a previous paper [1] we have reported about initial tests of single cell 1500 MHz cavities made from high purity niobium with three different Ta contents of 160 ppm , {approx}600 ppm and {approx}1400 ppm. These cavities had been treated by buffered chemical polishing several times and 100 {micro}m, 200 {micro}m and 300 {micro}m of material had been removed from the surfaces. This contribution reports about subsequent tests following post purification heat treatments with Ti and ''in situ'' baking. As a result, all cavities exhibited increased quench fields due to the improved thermal conductivity after the heat treatment. After the ''in situ'' baking at 120 C for {approx} 40 hrs the always present Q-drop at high fields disappeared and further improvements in accelerating gradient could be realized. Gradients as high as E{sub acc} = 35 MV/m were achieved and there were no clear indications that the cavity performance was influenced by the Ta content in the material. A multi-cell cavity from the high Ta content material has been fabricated and initial results are reported.

  3. Purity of the single frequency mode of a hybrid semiconductor-fiber laser.

    PubMed

    Wahbeh, Mamoun; Kashyap, Raman

    2015-06-15

    The penalty of extending the cavity length of a laser diode when seeking a linewidth reduction is normally revealed by poor side mode suppression, which prevents the laser from operating purely in a single mode of the external cavity. A hybrid laser, based on a C-band semiconductor optical amplifier combined with a long erbium doped fiber external cavity, is carefully engineered to operate with high spectral purity and outstanding stability. For the first time, a side-mode suppression ratio of ≥42 dB, measured at a resolution of 1.16 pm (149 MHz) at all intra-cavity powers above the lasing threshold, is reported. The output power at the peak lasing wavelength is 13.3 dBm. Also, the ability to lock such a hybrid laser to a particular external-cavity mode is realized for the first time. Excluding the effect of mechanical and thermal drifts on the cavity length, the long-term frequency stability is demonstrated to be within ± 11 Hz while the long-term linewidth is 2.26 kHz, measured using the self-beating technique under free running conditions. PMID:26193582

  4. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  5. Safety studies conducted on high-purity trans-resveratrol in experimental animals.

    PubMed

    Williams, Lonnie D; Burdock, George A; Edwards, James A; Beck, Mareike; Bausch, Jochen

    2009-09-01

    trans-Resveratrol is a naturally occurring polyphenolic compound found in a variety of foods, but predominantly in grapes. Safety studies were conducted on high-purity trans-resveratrol (Resvida), including skin and eye irritation, dermal sensitization, subchronic and reproductive toxicity, genotoxicity, and absorption, metabolism and excretion. Resvida was non-irritating to skin and eyes and non-sensitizing. It was non-mutagenic in a bacterial reverse mutation assay in Salmonella typhimurium and Escherichia coli, but exhibited clastogenic activity in a chromosomal aberration test in human lymphocytes. However, in an in vivo bone marrow micronucleus test in rats, Resvida was non-genotoxic. In a 28-day study, Resvida caused no adverse effects in rats at 50, 150 and 500 mg/kg bw/day. Similarly, in a 90-day study, Resvida did not cause any adverse effects in rats at up to 700 mg/kg bw/day; the highest dose tested. Resvida did not induce any adverse reproductive effects in an embryo-fetal toxicity study in rats at a dose of 750 mg/kg bw/day. Also, in vitro and in vivo absorption, metabolism, and excretion studies in Caco-2 cells, rat primary hepatocytes and male and female rats (in vivo) show that Resvida is readily absorbed, metabolized and excreted. These studies provide evidence that Resvida is well tolerated and non-toxic. PMID:19505523

  6. Industrial symbiosis: high purity recovery of metals from Waelz sintering waste by aqueous SO2 solution.

    PubMed

    Copur, Mehmet; Pekdemir, Turgay; Colak, Sabri; Künkül, Asim

    2007-10-22

    Sintering operation in the production of Zn, Cd, and Pb by Waelz process produces a powdery waste containing mainly (about 70%) ZnO, CdO, and PbO. The waste may be referred to as Waelz sintering waste (WSW). The aim of this study is to develop a process for the separation and recovery of the metals from WSW with high purities. The process is based on the dissolution of the WSW in aqueous SO2 solution. The research reported here concentrated on the effect of some important operational parameters on dissolution process. The parameters investigated and their ranges were as follows: SO(2) gas flow rate (V); 38-590 ml/min, stirring speed (W); 100-1000 rpm, reaction temperature (T); 13-60 degrees C, reaction time (t); 1-16 min, and solid-liquid ratio (S/L); 0.1-0.5 g/ml. The results showed that the dissolution rate increased with increasing W, V, and S/L and decreasing T. The best dissolution conditions were found to be V=325 ml/min, W=600 rpm, t=6 min, T=21 degrees C, and S/L=0.1g/ml. Separation of Zn from Cd involved precipitation of ZnSO3 from a mixture solution. The best pH level for the precipitation was observed to be 6. PMID:17482352

  7. Size and Purity Control of HPHT Nanodiamonds down to 1 nm

    PubMed Central

    2015-01-01

    High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method. PMID:26691647

  8. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  9. Development, fabrication and test of a high purity silica heat shield

    NASA Technical Reports Server (NTRS)

    Rusert, E. L.; Drennan, D. N.; Biggs, M. S.

    1978-01-01

    A highly reflective hyperpure ( 25 ppm ion impurities) slip cast fused silica heat shield material developed for planetary entry probes was successfully scaled up. Process development activities for slip casting large parts included green strength improvements, casting slip preparation, aggregate casting, strength, reflectance, and subscale fabrication. Successful fabrication of a one-half scale Saturn probe (shape and size) heat shield was accomplished while maintaining the silica high purity and reflectance through the scale-up process. However, stress analysis of this original aggregate slip cast material indicated a small margin of safety (MS. = +4%) using a factor of safety of 1.25. An alternate hyperpure material formulation to increase the strength and toughness for a greater safety margin was evaluated. The alternate material incorporates short hyperpure silica fibers into the casting slip. The best formulation evaluated has a 50% by weight fiber addition resulting in an 80% increase in flexural strength and a 170% increase in toughness over the original aggregate slip cast materials with comparable reflectance.

  10. A method for rapid isolation of total RNA of high purity and yield from Arthrospira platensis.

    PubMed

    Pathak, Ravi Ramesh; Lochab, Sunila

    2010-07-01

    Arthrospira (Spirulina) platensis is widely used as a food supplement and has been an economically important species for centuries. However, the genetic aspect of studies of this particular organism has always been neglected, mainly because of the nonavailability of suitable methods for isolation of nucleic acids and the difficulties faced during further manipulations. Although total RNA has been isolated using commercially available kits, we present a method optimized to obtain DNA-free total RNA of higher yields and higher purity in less time than is required by other methods (<2 h). It involves hot phenol - chloroform - IAA extraction using an aqueous to organic phase ratio of 1:2 followed by lithium chloride precipitation and 70% ethanol wash. This method, optimized for the cyanobacterium Arthrospira (Spirulina) platensis, eliminates the need for DNase treatment and produces high-quality RNA, as validated by bioanalyzer, RT-PCR, and cloning. With the recent release of the Arthrospira genome, the current method will be of great value for carrying out high-throughput studies like microarray and real-time PCR. PMID:20651857

  11. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting.

    PubMed

    Wang, Jing; Nguyen, Tuan Dat; Cao, Qing; Wang, Yilei; Tan, Marcus Y C; Chan-Park, Mary B

    2016-03-22

    Semiconducting (semi-) single-walled carbon nanotubes (SWNTs) must be purified of their metallic (met-) counterparts for most applications including nanoelectronics, solar cells, chemical sensors, and artificial skins. Previous bulk sorting techniques are based on subtle contrasts between properties of different nanotube/dispersing agent complexes. We report here a method which directly exploits the nanotube band structure differences. For the heterogeneous redox reaction of SWNTs with oxygen/water couple, the aqueous pH can be tuned so that the redox kinetics is determined by the availability of nanotube electrons only at/near the Fermi level, as predicted quantitatively by the Marcus-Gerischer (MG) theory. Consequently, met-SWNTs oxidize much faster than semi-SWNTs and only met-SWNTs selectively reverse the sign of their measured surface zeta potential from negative to positive at the optimized acidic pH when suspended with nonionic surfactants. By passing the redox-reacted nanotubes through anionic hydrogel beads, we isolate semi-SWNTs to record high electrically verified purity above 99.94% ± 0.04%. This facile charge sign reversal (CSR)-based sorting technique is robust and can sort SWNTs with a broad diameter range. PMID:26901408

  12. Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment

    NASA Astrophysics Data System (ADS)

    Yu, Tianbo; Hansen, Niels

    2016-06-01

    A new approach to analyze recovery kinetics is developed from a recent model, and microstructural observations are introduced to supplement hardness measurements. The approach involves two steps of data fitting, and the second step of fitting enables an estimation of the apparent activation energy for recovery. This approach is applied to commercial purity aluminum (AA1050) cold rolled to ultrahigh strain (99.6 pct reduction in thickness) and annealed at temperatures from 413 K to 493 K (140 °C to 220 °C). The annealing data fit the recovery model well, and the analysis shows that the apparent activation energy increases during recovery and approaches 190 kJ/mol at the end of recovery, suggesting that solute drag is an important rate-controlling mechanism. The recovery rate for the highly strained Al is found to be higher than that for Al deformed to a lower strain, an effect which is related to an increase in the stored energy (driving force). These findings form the basis for a discussion of recovery mechanisms and the increase in the apparent activation energy during annealing, suggesting an application of the model when optimizing the structure and strength through annealing of nanostructured materials produced by high strain deformation.

  13. [Improved color purity of green OLED device based on Au thin film].

    PubMed

    Zhang, Yan-Fei; Zhao, Su-Ling; Xu, Zheng

    2014-04-01

    Au was used as anode in some kind of organic electroluminescent devices. Sometimes transparent Au electrodes are required, which means that the thickness of Au electrode should be as thin as possible. Therefore, two metals together forming an electrode become a choice. In the present paper, translucent Au/Al layer was inserted to anode side, and OLED device with the structure of ITO/Al (16 nm)/Au (10 nm)/TPD (30 nm)/AlQ (30 nm)/LiF (0.5 nm)/Al was prepared. There is a spectral narrowing phenomenon on the device ITO/TPD (30 nm)/AlQ (30 nm)/LiF (0. 5 nm)/Al, and through analysis and experiment it was found that this phenomenon comes from selective permeability to light of Au thin film rather than the microcavity effect. The device maintains wide viewing angle, without the angular dependence. And the color purity of device with Au thin film is improved. PMID:25007596

  14. Effect of chromium on low-temperature deformation of high-purity iron

    NASA Technical Reports Server (NTRS)

    Kelley, M. J.; Stoloff, N. S.

    1976-01-01

    A series of very low interstitial Fe-Cr alloys containing 0, 1, 3, 5, and 10 wt% Cr were prepared by vacuum melting and fabricated under argon to 1.83 mm diam wires exposed in an alumina system to wet hydrogen for 200 h at 1423 K followed by 1000 h in ZrH2-purified hydrogen at 1573 K. The wires were then transverse-rolled into thin sheet and cut into tensile specimens subjected to electropolishing and strained to fracture in a series of cryogenic baths ranging from 4.2 K to room temperature. It is shown that small Cr additions lower the twinning stress so that yielding occurs by twinning rather than by slip. Cr in amounts up to 10 wt% has little effect on the yield strength of high-purity Fe between 147 and 300 K, and ductility is not greatly affected at any test temperature. Higher solute contents provide appreciable strengthening only at temperatures of 112 K and below.

  15. USING BLOCKS OF SKEWERS FOR FASTER COMPUTATION OF PIXEL PURITY INDEX

    SciTech Connect

    J. THEILER; D. LAVENIER; ET AL

    2000-10-01

    The pixel purity index (PPI) algorithm proposed by Boardman, et al.1 identifies potential endmember pixels in multispectral imagery. The algorithm generates a large number of skewers (unit vectors in random directions), and then computes the dot product of each skewer with each pixel. The PPI is incremented for those pixels associated with the extreme values of the dot products. A small number of pixels (a subset of those with the largest PPI values) are selected as pure and the rest of the pixels in the image are expressed as linear mixtures of these pure endmembers. This provides a convenient and physically-motivated decomposition of the image in terms of a relatively few components. We report on a variant of the PPI algorithm in which blocks of B skewers are considered at a time. From the computation of B dot products, one can produce a much larger set of derived dot products that are associated with skewers that are linear combinations of the original B skewers. Since the derived dot products involve only scalar operations, instead of full vector dot products, they can be very cheaply computed. We will also discuss a hardware implementation on a field programmable gate array (FPGA) processor both of the original PPI algorithm and of the block-skewer approach. We will furthermore discuss the use of fast PPI as a front-end to more sophisticated algorithms for selecting the actual endmembers.

  16. 3D microband boundary alignments and transitions in a cold rolled commercial purity aluminum alloy

    SciTech Connect

    George, C.; Soe, B.; King, K.; Quadir, M.Z.; Ferry, M.; Bassman, L.

    2013-05-15

    In the study of microband formation during plastic deformation of face centered cubic metals and alloys, two theories have been proposed regarding the orientations of their boundaries: (i) they are aligned parallel to crystallographic planes associated with dislocation glide (i.e. (111) planes in FCC metals), or (ii) they are aligned in accordance with the macroscopic stress state generated during deformation. In this study, high resolution 3D electron backscatter diffraction (3D EBSD) was used to investigate the morphology and crystallographic nature of microband boundaries within a 19 × 9 × 8.6 μm volume of a deformed grain in commercial purity aluminum cold rolled to 22% reduction. It was found that microband boundaries correspond to both theories of orientation. Additionally, a single surface may contain both crystallographic and non-crystallographic alignments. Misorientations across boundaries in the regions of microband triple junctions have been identified for both boundary alignments. - Highlights: ► Reconstruction of a 3D volume of crystallographic orientations from EBSD data ► Subgrain features accurately reconstructed using specially designed strategies. ► Microband boundaries contain crystallographic and non-crystallographic alignments. ► Boundaries form by crystallographic process but rotate to non-crystallographic.

  17. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    PubMed Central

    Campbell, DL; Peterson, TE

    2014-01-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140-keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. PMID:25360792

  18. Influence of Electronic Type Purity on the Lithiation of Single-Walled Carbon Nanotubes

    SciTech Connect

    Jaber-Ansari, Laila; Iddir, Hakim; Curtiss, Larry A.; Hersam, Mark C.

    2014-02-08

    Single-walled carbon nanotubes (SWCNTs) have emerged as one of the leading additives for high-capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. However, since as-grown SWCNTs possess a distribution of physical and electronic structures, it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Toward this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum-filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts, which is consistent with ab initio molecular dynamics and density functional theory calculations in the limit of isolated SWCNTs. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations that show increased lithiation of semiconducting SWCNTs in the limit of small SWCNT*SWCNT spacing. Overall, these results will inform ongoing efforts to utilize SWCNTs as conductive additives in nanocomposite lithium ion battery electrodes.

  19. When Halides Come to Lithium Niobate Nanopowders Purity and Morphology Assistance.

    PubMed

    Lamouroux, Emmanuel; Badie, Laurent; Miska, Patrice; Fort, Yves

    2016-03-01

    The preparation of pure lithium niobate nanopowders was carried out by a matrix-mediated synthesis approach. Lithium hydroxide and niobium pentachloride were used as precursors. The influence of the chemical environment was studied by adding lithium halide (LiCl or LiBr). After thermal treatment of the precursor mixture at 550 °C for 30 min, the morphology of the products was obtained from transmission electron microscopy and dynamic light scattering, whereas the crystallinity and phase purity were characterized by X-ray diffraction and UV-visible and Raman spectroscopies. Our results point out that the chemical environment during lithium niobate formation at 550 °C influences the final morphology. Moreover, direct and indirect band-gap energies have been determined from UV-visible spectroscopy. Their values for the direct-band-gap energies range from 3.97 to 4.36 eV with a slight dependence on the Li/Nb ratio, whereas for the indirect-band-gap energies, the value appears to be independent of this ratio and is 3.64 eV. No dependence of the band-gap energies on the average crystallite and nanoparticle sizes is observed. PMID:26859157

  20. Preparation of high purity glasses in the Ga-Ge-As-Se system

    NASA Astrophysics Data System (ADS)

    Shiryaev, V. S.; Velmuzhov, A. P.; Tang, Z. Q.; Churbanov, M. F.; Seddon, A. B.

    2014-11-01

    Small additions of Ga to Ge-As-Se glasses are known to enhance rare earth ion solubility in Ge-As-Se chalcogenide glasses designed for active optical applications. The effect of variants and conditions for producing samples of an exemplar Ge16As17Se64Ga3 (atomic%) glass on optical transmission, and the content of limiting impurities, is investigated. To prepare the high-purity glass samples, chemical distillation for purification of the Ge-As-Se base-glass is used. Next, a new vapor phase transport approach of metallic Ga transfer in a GaI3 flow is developed to purify and add the batch of metallic gallium into the silica-glass reactor for the Ge-As-Se-Ga glass synthesis. A thermodynamic equilibrium based vapor phase transport model is discussed. In the best examples of these glasses, the content of residual impurities is: hydrogen - 0.15 ppm, oxygen - <1 ppm, and transition metals - less than 0.1 ppm.

  1. Imagine no religion: Heretical disgust, anger and the symbolic purity of mind.

    PubMed

    Ritter, Ryan S; Preston, Jesse L; Salomon, Erika; Relihan-Johnson, Daniel

    2016-01-01

    Immoral actions, including physical/sexual (e.g., incest) and social (e.g., unfairness) taboos, are often described as disgusting. But what about immoral thoughts, more specifically, thoughts that violate religious beliefs? Do heretical thoughts taint the purity of mind? The present research examined heretical disgust using self-report measures and facial electromyography. Religious thought violations consistently elicited both self-reported disgust and anger. Feelings of disgust also predicted harsh moral judgement, independent of anger, and were mediated by feelings of "contamination". However, religious thought violations were not associated with a disgust facial expression (i.e., levator labii muscle activity) that was elicited by physically disgusting stimuli. We conclude that people (especially more religious people) do feel disgust in response to heretical thoughts that is meaningfully distinct from anger as a moral emotion. However, heretical disgust is not embodied in a physical disgust response. Rather, disgust has a symbolic moral value that marks heretical thoughts as harmful and aversive. PMID:25899719

  2. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation.

    PubMed

    Chen, Ying; Song, Yang; Zhang, Shaoxiang; Li, Jianan; Zhao, Changli; Zhang, Xiaonong

    2011-04-01

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 µm were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E(corr)) and smaller corrosion currents (I(corr)) in the modified simulated body fluid (m-SBF) at 37 °C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents. PMID:21358027

  3. Expression and purification of bioactive high-purity recombinant mouse SPP1 in Escherichia coli.

    PubMed

    Yuan, Yunsheng; Zhang, Xiyuan; Weng, Shunyan; Guan, Wen; Xiang, Di; Gao, Jin; Li, Jingjing; Han, Wei; Yu, Yan

    2014-05-01

    Secreted phosphoprotein 1 (SPP1) is a phosphorylated acidic glycoprotein. It is broadly expressed in a variety of tissues, and it is involved in a number of physiological and pathological events, including cancer metastasis, tissues remodeling, pro-inflammation regulation, and cell survival. SPP1 has shown its function of protecting tissues and organs against injury and wound, giving itself potentials to become a therapy target or giving its antibodies of other counter-acting reagents potentials to become drug candidates. Non-tagged (native) recombinant SPP1 would be valuable in therapeutic and pharmaceutical researches. In our study, mouse Spp1 DNA fragment without signal peptide was built in pET28a(+) vector and transformed into Escherichia coli BL21 (DE3). The recombinant mouse SPP1 (rmSPP1) was then expressed in bacteria upon induction by isopropyl β-D-thiogalactopyranoside (IPTG). The abundance of rmSPP1 was increased using isoelectric precipitation and ammonium sulfate fractionation methods, and anion and cation exchange chromatography was employed to further purify rmSPP1. Finally, we got rmSPP1 product with 12.8 % productivity, 97 % purity, satisfactory bioactivity, and low endotoxin content. PMID:24664233

  4. Leakage current in high-purity germanium detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Q.; Amman, M.; Vetter, K.

    2015-03-01

    Amorphous semiconductor electrical contacts on high-purity Ge radiation detectors have become a valuable technology because they are simple to fabricate, result in thin dead layers, block both electron and hole injection, and can readily be finely segmented as needed for applications requiring imaging or particle tracking. Though significant numbers of detectors have been successfully produced for a variety of applications using the amorphous semiconductor contact technology, there remains a need to better understand the dependence of performance characteristics, particularly leakage current, on the fabrication process parameters so that the performance can be better optimized. To this end, we have performed a systematic study of leakage current on RF-sputter-deposited amorphous-Ge (a-Ge) and amorphous-Si (a-Si) contacts as a function of process and operational parameters including sputter gas pressure and composition, number of detector temperature cycles, and time spent at room temperature. The study focused primarily on the current resulting from electron injection at the contact. Significant findings from the study include that a-Si produces lower electron injection than a-Ge, the time the detector spends at room temperature rather than the number of temperature cycles experienced by the detector is the primary factor associated with leakage current change when the detector is warmed, and the time stability of the a-Ge contact depends on the sputter gas pressure with a higher pressure producing more stable characteristics.

  5. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  6. Safety studies conducted on a proprietary high-purity aloe vera inner leaf fillet preparation, Qmatrix.

    PubMed

    Williams, Lonnie D; Burdock, George A; Shin, Eunju; Kim, Seunghyun; Jo, T H; Jones, Kenneth N; Matulka, Ray A

    2010-06-01

    The aloe vera plant has a long history of safe use for oral and topical applications. This publication describes safety studies conducted on a proprietary high-purity aloe vera inner leaf fillet preparation, Qmatrix. In a 13-week study in rats, Qmatrix was administered via gavage at 0, 500, 1000 and 2000 mg/kg body weight (bw)/day. There were no significant changes in food or water consumption, body weight, serum biochemistry or hematology at any of the doses tested. Sporadic, significant increases were observed in some of the measured urinalysis parameters; however, these variations were not treatment-related, as most were observed only in one sex, not dose-dependent and within historical control values. Organ weights were unaffected, except for a statistically significant, though not dose-dependent, increase in absolute and relative weights of the right kidney in males at 500 and 2000 mg/kg bw/day, respectively. Histopathological analysis revealed no abnormal signs. Qmatrix was non-mutagenic in an Ames test and a chromosomal aberration test at concentrations up to 10,000 microg/plate, and in an in vivo bone marrow micronucleus test at doses up to 5000 mg/kg bw/day. Based on these results, Qmatrix is not genotoxic in vitro or in vivo and; has an oral NOAEL greater than 2000 mg/kg bw/day following 90 days of oral exposure. PMID:20096744

  7. Temperature sensitivity of surface channel effects on high-purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Hull, E. L.; Pehl, R. H.; Madden, N. W.; Luke, P. N.; Cork, C. P.; Malone, D. L.; Xing, J. S.; Komisarcik, K.; Vanderwerp, J. D.; Friesel, D. L.

    1995-02-01

    The temperature sensitivity of surface channel effects on planar high-purity germanium detectors was measured using 60-keV gamma-ray scanning techniques, as part of a radiation damage study. When measured in this manner, the surface effects on most detectors showed extreme temperature sensitivity in the 72-95 K region. The effect of the surface channel increased with increasing temperature to such an extent that the efficiency, as measured by the count rate in the 1332-keV peak from a 60Co source, decreased by a factor of over two in some cases. Since the peak efficiency for the 1332-keV gamma ray decreased as the temperature increased throughout the operating range (72-120 K) the effect of the surface channel must continue to increase beyond the temperature (95 K) at which the 60-keV scan loses its sensitivity because of the strong attenuation of these much lower energy gamma rays. Radiation damage had no measurable effect on the surface characteristics. No correlation between the surface effects and the resolution changes of the 1332-keV peak was observed.

  8. Production of Ultrafine, High-purity Ceramic Powders Using the US Bureau of Mines Developed Turbomill

    NASA Technical Reports Server (NTRS)

    Hoyer, Jesse L.

    1993-01-01

    Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.

  9. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity

    NASA Astrophysics Data System (ADS)

    Raveu, Gaëlle; Martin, Guillaume; Fiquet, Olivier; Garcia, Philippe; Carlot, Gaëlle; Palancher, Hervé; Bonnin, Anne; Khodja, Hicham; Raepsaet, Caroline; Sauvage, Thierry; Barthe, Marie-France

    2014-12-01

    Uranium and plutonium carbides are candidate fuels for Generation IV nuclear reactors. This study is focused on the characterization of uranium monocarbide samples. The successive fabrication steps were carried out under atmospheres containing low oxygen and moisture concentrations (typically less than 100 ppm) but sample transfers occurred in air. Six samples were sliced from four pellets elaborated by carbothermic reaction under vacuum. Little presence of UC2 is expected in these samples. The α-UC2 phase was indeed detected within one of these UC samples during an XRD experiment performed with synchrotron radiation. Moreover, oxygen content at the surface of these samples was depth profiled using a recently developed nuclear reaction analysis method. Large oxygen concentrations were measured in the first micron below the sample surface and particularly in the first 100-150 nm. UC2 inclusions were found to be more oxidized than the surrounding matrix. This work points out to the fact that more care must be given at each step of UC fabrication since the material readily reacts with oxygen and moisture. A new glovebox facility using a highly purified atmosphere is currently being built in order to obtain single phase UC samples of better purity.

  10. Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.

    PubMed

    Poojary, Mahesha M; Passamonti, Paolo

    2015-12-01

    The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. PMID:26041168

  11. Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment

    NASA Astrophysics Data System (ADS)

    Yu, Tianbo; Hansen, Niels

    2016-08-01

    A new approach to analyze recovery kinetics is developed from a recent model, and microstructural observations are introduced to supplement hardness measurements. The approach involves two steps of data fitting, and the second step of fitting enables an estimation of the apparent activation energy for recovery. This approach is applied to commercial purity aluminum (AA1050) cold rolled to ultrahigh strain (99.6 pct reduction in thickness) and annealed at temperatures from 413 K to 493 K (140 °C to 220 °C). The annealing data fit the recovery model well, and the analysis shows that the apparent activation energy increases during recovery and approaches 190 kJ/mol at the end of recovery, suggesting that solute drag is an important rate-controlling mechanism. The recovery rate for the highly strained Al is found to be higher than that for Al deformed to a lower strain, an effect which is related to an increase in the stored energy (driving force). These findings form the basis for a discussion of recovery mechanisms and the increase in the apparent activation energy during annealing, suggesting an application of the model when optimizing the structure and strength through annealing of nanostructured materials produced by high strain deformation.

  12. Multidimensional Study on Spall Behavior of High-Purity Copper Under Sliding Detonation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Peng, Zhiqiang; Guo, Zhaoliang; Luo, Shuhong; Tang, Tiegang; Hu, Haibo; Zhang, Qingming

    2015-09-01

    The spall behaviors of high-purity copper samples with different heat treatment histories were investigated using optical microscopy and X-ray computer tomography (XRCT). The spall samples were obtained by sliding detonation experiments at low pressures (2 to 4 GPa). It was found that the spall planes created by sliding detonation in this experiment are similar to the spall planes created by plate impact test, except for more secondary damage residual around the main spall plane. The results of damage degree, the shape, and the distributions of voids obtained by the means of metallography (2D) and XRCT (3D) statistics were consistent. For similar microstructure, the maximum damage degree and damage zone width increase with increasing shock stress. Whereas the ranges of voids distribution parallel to the shock stress direction decreases with the increasing of shock stress. For the shock stress is similar, the shape of voids in annealed samples are closed to spheres, their mean flatness is 0.51. The voids in samples with thermo-mechanical treatment histories are sheet like with mean flatness 0.16. The difference in grain size (40 and 9 μm) may be the main reason of such difference.

  13. High-Purity Germanium Spectroscopy at Rates in Excess of 10^{6} Events/s

    SciTech Connect

    VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.

    2014-10-01

    Abstract—In gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at rates up to and exceeding 106 events per second. We report the performance of an HPGe spectrometer adapted to run at such rates. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltagerail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-widthat- half-maximum energy resolution of less than 8 keV measured at 662 keV with 1:08*106 per second incoming event rate and 38% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of edge pileup that passes the first pileup cut, reducing throughput to 26%. While better resolution has been reported by other authors, our throughput is over an order of magnitude higher than any other reported HPGe system operated at such an event rate.

  14. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm.

    PubMed

    Herczegh, Anna; Ghidan, Agoston; Friedreich, Dóra; Gyurkovics, Milán; Bendő, Zsolt; Lohinai, Zsolt

    2013-03-01

    We investigated the effectiveness of chlorine dioxide (ClO2) solution in comparison to sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX) in the elimination of intracanal Enterococcus faecalis biofilm. Extracted human teeth were inoculated with E. faecalis. After preparation the canals were irrigated with ClO2, NaOCl, CHX or physiologic saline for control. Two and five days later bacterial samples were collected and streaked onto Columbia agar. CFU/mL were counted. The canal walls were investigated by scanning electron microscopy (SEM). The gas phase was investigated in an upside down Petri dish where E. faecalis was inoculated onto blood agar. The irrigants were placed on absorbent paper into the cover. Bacteria were detectable in the control group, but not in any of the irrigants groups. There was a massive reinfection 2 or 5 days after irrigation in the control group. The lowest reinfection was found after the ClO2 treatment. These findings were confirmed by SEM images. We observed an antibacterial effect of ClO2 and NaOCl gas phases on E. faecalis growth, but not of CHX. ClO2 eliminates intracanal biofilm and keeps canal nearly free from bacteria. We suggest the use of high purity ClO2 as a root canal irrigant in clinical practice. PMID:23529300

  15. Effects of spatial resolution and spectral purity on transvenous coronary angiography images

    SciTech Connect

    Chapman, D.; Thomlinson, W.; Gumer, N.F.

    1994-11-01

    Measurements have been made on the National Synchrotron Light Source (NSLS) Coronary Angiography X17B2 beamline under ideal and real imaging conditions to investigate the optimal imaging conditions for spatial resolution and spectral purity. The spatial resolution tests were performed using two multielement Si(Li) detectors (600 element, 0.5mm, pixel-pixel spacing; 1200 element, 0.25mm pixel-pixel spacing. Images were taken of phantoms containing iodine contrast agent over a wide range of incident beam absorption conditions. Patient images were also obtained using the same viewing projection with both detectors. Harmonics present in the imaging beam can be reduced by operating the superconducting wiggler source at reduced field strength. At regions of high absorption in the patient, the harmonics present can contribute to the detected signal. Iodine phantom images were obtained at a wiggler field strength of 3 Tesla (E{sub c}=13.3keV) and 4 Tesla (E{sub c}= I 7.8keV) for comparison. As before, patient images were obtained using the same projection at both wiggler fields. Results of the detector resolution and wiggler eld measurements will be presented for the phantoms as well as the patient scans.

  16. Isolation of Ubiquitinated Proteins to High Purity from In Vivo Samples.

    PubMed

    Ramirez, Juanma; Min, Mingwei; Barrio, Rosa; Lindon, Catherine; Mayor, Ugo

    2016-01-01

    Ubiquitination pathways are widely used within eukaryotic cells. The complexity of ubiquitin signaling gives rise to a number of problems in the study of specific pathways. One problem is that not all processes regulated by ubiquitin are shared among the different cells of an organism (e.g., neurotransmitter release is only carried out in neuronal cells). Moreover, these processes are often highly temporally dynamic. It is essential therefore to use the right system for each biological question, so that we can characterize pathways specifically in the tissue or cells of interest. However, low stoichiometry, and the unstable nature of many ubiquitin conjugates, presents a technical barrier to studying this modification in vivo. Here, we describe two approaches to isolate ubiquitinated proteins to high purity. The first one favors isolation of the whole mixture of ubiquitinated material from a given tissue or cell type, generating a survey of the ubiquitome landscape for a specific condition. The second one favors the isolation of just one specific protein, in order to facilitate the characterization of its ubiquitinated fraction. In both cases, highly stringent denaturing buffers are used to minimize the presence of contaminating material in the sample. PMID:27613036

  17. Electrical properties of as-grown and proton-irradiated high purity silicon

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Karcz, Waldemar; Kamiński, Paweł; Jensen, Leif

    2016-08-01

    The complex permittivity of as-grown and proton-irradiated samples of high purity silicon obtained by the floating zone method was measured as a function of temperature at a few frequencies in microwave spectrum by employing the quasi TE011 and whispering gallery modes excited in the samples under test. The resistivity of the samples was determined from the measured imaginary part of the permittivity. The resistivity was additionally measured at RF frequencies employing capacitive spectroscopy as well as in a standard direct current experiment. The sample of as-grown material had the resistivity of ∼85 kΩ cm at room temperature. The sample irradiated with 23-MeV protons had the resistivity of ∼500 kΩ cm at 295 K and its behavior was typical of the intrinsic material at room and at elevated temperatures. For the irradiated sample, the extrinsic conductivity region is missing and at temperatures below 250 K hopping conductivity occurs. Thermal cycle hysteresis of the resistivity for the sample of as-grown material is observed. After heating and subsequent cooling of the sample, its resistivity decreases and then slowly (∼50 h) returns to the initial value.

  18. Formation of formaldehyde and peroxides by air oxidation of high purity polyoxyethylene surfactants.

    PubMed

    Bergh, M; Magnusson, K; Nilsson, J L; Karlberg, A T

    1998-07-01

    Ethoxylated alcohols are non-ionic surfactants. The majority are used in household cleaners, laundry products, toiletries and in industrial and institutional cleaners. In previous studies, an ethoxylated non-ionic surfactant of technical quality showed allergenic activity in guinea pig experiments. Chemical analysis revealed a content of formaldehyde, a well-known contact allergen, and peroxides in the surfactant. Most cases of occupational contact dermatitis are considered to be of irritant origin, caused by contact with water and surfactants, but if allergenic autoxidation products can be formed, allergic contact dermatitis cannot be excluded. The sensitizing potential of a chemically defined high purity ethoxylated alcohol was investigated and oxidation under various storage and handling conditions was studied for this and a homologous product. The pure surfactant showed no significant allergenic activity on predictive testing in guinea pigs. When ethoxylated alcohols were stored in the refrigerator, their deterioration was limited. At room temperature, their content of peroxides and formaldehyde increased with time. Levels of formaldehyde above those capable of causing positive patch test reactions were found. Since such surfactants have wide applications, resulting exposure to formaldehyde could be more frequent than is generally realized, contributing to persistence of dermatitis in individuals allergic to formaldehyde. PMID:9686972

  19. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  20. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.