Science.gov

Sample records for mass properties testing

  1. NASA Dryden: Flight Loads Lab Capabilities and Mass Properties Testing

    NASA Technical Reports Server (NTRS)

    Wolfe, David Michael; Bakalyar, John A.

    2011-01-01

    This presentation covers the basic capabilities of the Dryden Flight Loads Lab. It also covers in detail the mass properties capabilities of the loads lab, focusing on the recent mass properties testing of the X-48B, and the recent tests of the Dynamic Inertia Measurement method (DIMM). Presentation focuses on the test methods and issues discovered during the mass properties testing of the X-48B leading to the requirement of new instrumentation on all conventional mass properties testing. Presentation also focuses on development of DIMM for replacement of conventional mass properties tests.

  2. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  3. Mass properties calibration of the NASA Langley low frequency vibration test apparatus

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Russell, James W.

    1995-01-01

    This report presents a description and calibration results of the modified NASA Langley Low Frequency Vibration Test Apparatus. The description includes both the suspension system and the data acquisition system. The test apparatus consists of a 2 inch thick, 21 inch diameter aluminum plate that is suspended from an advanced suspension system using a 40 foot long cable system. The test apparatus employed three orthogonally aligned pairs of Sundstrand QA-700 servo accelerometers that can measure accelerations as low as 1 micro-g. The calibration involved deriving the mass and moments of inertia of the test platform from measured input forces and measured acceleration responses. The derived mass and moments were compared to test platform mass properties obtained initially from measurements with a special mass properties instrument. Results of the calibration tests showed that using the product of the test apparatus mass and the measured accelerations, the disturbance force at the center of gravity (CG) can be determined within 4 percent on all three axes. Similarly the disturbance moments about the X, Y, and Z axes can be determined within 5 percent by using the product of the measured moments of inertia and the angular accelerations about the X, Y, and Z axes.

  4. Apollo Soyuz Test Project Weights and Mass Properties Operational Management System

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Hischke, E. R.

    1975-01-01

    The Apollo Soyuz Test Project (ASTP) Weights and Mass Properties Operational Management System was established to assure a timely and authoritative method of acquiring, controlling, generating, and disseminating an official set of vehicle weights and mass properties data. This paper provides an overview of the system and its interaction with the various aspects of vehicle and component design, mission planning, hardware and software simulations and verification, and real-time mission support activities. The effect of vehicle configuration, design maturity, and consumables updates is discussed in the context of weight control.

  5. Mass Properties Testing and Evaluation for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect

    Felicione, Frank S.

    2009-12-01

    Mass properties (MP) measurements were performed for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), serial number (S/N) 0X730401, the power system designated for the Mars Science Laboratory (MSL) mission. Measurements were made using new mounting fixtures at the mass properties testing station in the Idaho National Laboratory (INL) Space and Security Power Systems Facility (SSPSF). The objective of making mass properties measurements was to determine the generator’s flight configured mass and center of mass or center of gravity (CG). Using an extremely accurate platform scale, the mass of the as-tested generator was determined to be 100.117 ± 0.007 lb. Weight accuracy was determined by checking the platform scale with calibrated weights immediately prior to weighing the MMRTG.a CG measurement accuracy was assessed by surrogate testing using an inert mass standard for which the CG could be readily determined analytically. Repeated testing using the mass standard enabled the basic measurement precision of the system to be quantified in terms of a physical confidence interval about the measured CG position. However, repetitious testing with the MMRTG itself was not performed in deference to the gamma and neutron radiation dose to operators and the damage potential to the flight unit from extra handling operations. Since the mass standard had been specially designed to have a total weight and CG location that closely matched the MMRTG, the uncertainties determined from its testing were assigned to the MMRTG as well. On this basis, and at the 99% confidence level, a statistical analysis found the direct, as-measured MMRTG-MSL CG to be located at 10.816 ± 0.0011 in. measured perpendicular from the plane of the lower surface of the generator’s mounting lugs (Z direction), and offset from the generator’s long axis centerline in the X and Y directions by 0.0968 ± 0.0040 in. and 0.0276 ± 0.0026 in., respectively. These uncertainties are based

  6. Apollo/Soyuz test project operational data book. Volume 2: ASTP mass properties data book

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Spacecraft mass properties data are provided for use in mission planning, trajectory documentation, mission simulations, and consumable loading. Spacecraft for use in determining locations of spacecraft components and the relationship to coordinate systems in the launch and docked configuration. Mass properties and consumable loading data for the ASTP mission are included along with consumables mass property data and mission independent consumable loading information for the CSM and DM.

  7. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  8. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles.

  9. A heated flatjack test series to measure the thermomechanical and transport properties of in situ rock masses (heated block test)

    NASA Astrophysics Data System (ADS)

    Hardin, E.; Barton, N.; Lingle, D.; Board, M.; Voegele, M.

    1982-09-01

    An instrumented 8 cu m block of jointed gneiss was subjected to biaxial and uniaxial loading at ambient and elevated temperatures, using flatjacks and a line of borehole heaters. The following rock mass properties were investigated under various conditions of stress (0 to 6.9 MPa, uniaxial and biaxial) and temperature (12 to 74 C mean block temperature): joint permeability, static modulus, dynamic modulus, joint normal and shear stiffness, coefficient of thermal expansion, thermal conductivity and diffusivity. The instrumentation array included multiple position borehole extensometers, DCDT and IRAD surface strainmeters, various borehole stressmeters and deformation gages, numerous thermocouples and Whitemore strain gage measurement points. The coefficient of thermal expansion was found to initially reduce with increasing temperature in the horizontal loaded directions, and to increase in the unloaded vertical direction.

  10. Ballistics/mass properties

    NASA Technical Reports Server (NTRS)

    Drendel, Albert S.; Richards, M. C.

    1989-01-01

    The propulsion performance and reconstructed mass properties data from Morton Thiokol's RSRM-4 motors, which were assigned to the STS-30R launch, are presented. The composite type solid propellant burn rates were close to predicted. The performance of the pair of motors were compared to some CEI Specification CPW1-3600 for compliance. Some aspects of the CEI Specification could not be compared because of low sampling of data. The performance of the motors were well within the CEI specification requirements. Post flight reconstructured RSRM mass properties are within expected values for the RSRM quarterweight and halfweight configurations.

  11. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  12. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  13. ACTOMP - AUTOCAD TO MASS PROPERTIES

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1994-01-01

    AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft

  14. Computing Mass Properties From AutoCAD

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1990-01-01

    Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).

  15. Innovative mechanism for measuring the mass properties of an object

    NASA Technical Reports Server (NTRS)

    Wolcott, Kedron R.; Graham, Todd A.; Doty, Keith L.

    1994-01-01

    The Kennedy Space Center Robotics Group recently completed development and testing on a novel approach to measure the mass properties of a rigid body. This unique design can measure the payload's weight, mass center location, and moments of inertia about three orthogonal axes. Furthermore, these measurements only require a single torque sensor and a single angular position sensor.

  16. Celotex Structural Properties Tests

    SciTech Connect

    Smith, A.C.

    2001-01-26

    In the course of regulatory review of the 9975 packaging, the question of the effects environmental conditions on performance of the packaging was raised. The results of previous tests of the Celotex material, used for impact absorption and thermal insulation, indicated that the effect of temperature variation was small. Accordingly, performance under ambient conditions was judged to be representative of performance under temperature extremes. To extend the database to include other effects, and in response to the questions, a series of materials tests were performed on the Celotex brand cellulose fiberboard material.

  17. NERVA mass properties computer methodology

    NASA Technical Reports Server (NTRS)

    Hall, I. K.

    1972-01-01

    The computer codes are presented that were used for the weight, center of gravity, and mass moment of inertia calculations and documentation for the NERVA. The two programs, E15301 and 12001B, are the basic tools used for weights work on the NERVA program. Used in conjunction with one another, they allow for rapid weights estimates for new concepts or changes while allowing for orderly documentation, which is a necessity in any effective weights effort. Program E15301 requires that each component be resolved into a collection of standard shapes. Separate subroutines then process geometric and material density data for each entry. The master program the performs all calculations necessary to combine these results into a total weight, center of gravity, and moment of inertia for the component. Program 12001B accepts previously calculated weight and center of gravity data for individual components. The program sums weights and calculates center of gravities and moments of inertia for systems of up to four levels of assemblies. The output identifies the engine parts in a format usable directly in a formal report.

  18. MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE

    NASA Technical Reports Server (NTRS)

    Hull, R. A.

    1994-01-01

    The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.

  19. Testing Young Children's Ideas of Mass Measurement

    ERIC Educational Resources Information Center

    Cheeseman, Jill; McDonough, Andrea

    2013-01-01

    This article reports an innovative use of photographs in a pencil-and-paper test which was developed to assess young children's understanding of mass measurement. Two hundred and ninety-five tests were administered by thirteen teachers of Years 1 and 2 children in 3 urban and rural schools. Many of these children of 6-8 years of age were able to…

  20. Mass Property Measurements of the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2012-01-01

    The NASA/JPL Mars Science Laboratory (MSL) spacecraft mass properties were measured on a spin balance table prior to launch. This paper discusses the requirements and issues encountered with the setup, qualification, and testing using the spin balance table, and the idiosyncrasies encountered with the test system. The final mass measurements were made in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center on the fully assembled and fueled spacecraft. This set of environmental tests required that the control system for the spin balance machine be at a remote location, which posed additional challenges to the operation of the machine

  1. Fundamental Properties of Low-Mass Stars and Brown Dwarfs

    SciTech Connect

    Liu, Michael C.; Dupuy, Trent J.; Stassun, Keivan G.; Allard, France; Blake, Cullen H.; Bonnefoy, M.; Cody, Ann Marie; Kraus, Adam; Day-Jones, A. C.; Lopez-Morales, Mercedes

    2009-02-16

    Precise measurements of the fundamental properties of low-mass stars and brown dwarfs are key to understanding the physics underlying their formation and evolution. While there has been great progress over the last decade in studying the bulk spectrophotometric properties of low-mass objects, direct determination of their masses, radii, and temperatures have been very sparse. Thus, theoretical predictions of low-mass evolution and ultracool atmospheres remain to be rigorously tested. The situation is alarming given that such models are widely used, from the determination of the low-mass end of the initial mass function to the characterization of exoplanets.An increasing number of mass, radius, and age determinations are placing critical constraints on the physics of low-mass objects. A wide variety of approaches are being pursued, including eclipsing binary studies, astrometric-spectroscopic orbital solutions, interferometry, and characterization of benchmark systems. In parallel, many more systems suitable for concerted study are now being found, thanks to new capabilities spanning both the very widest (all-sky surveys) and very narrowest (diffraction-limited adaptive optics) areas of the sky. This Cool Stars 15 splinter session highlighted the current successes and limitations of this rapidly growing area of precision astrophysics.

  2. E-Standards For Mass Properties Engineering

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2008-01-01

    A proposal is put forth to promote the concept of a Society of Allied Weight Engineers developed voluntary consensus standard for mass properties engineering. This standard would be an e-standard, and would encompass data, data manipulation, and reporting functionality. The standard would be implemented via an open-source SAWE distribution site with full SAWE member body access. Engineering societies and global standards initiatives are progressing toward modern engineering standards, which become functioning deliverable data sets. These data sets, if properly standardized, will integrate easily between supplier and customer enabling technically precise mass properties data exchange. The concepts of object-oriented programming support all of these requirements, and the use of a JavaTx based open-source development initiative is proposed. Results are reported for activity sponsored by the NASA Langley Research Center Innovation Institute to scope out requirements for developing a mass properties engineering e-standard. An initial software distribution is proposed. Upon completion, an open-source application programming interface will be available to SAWE members for the development of more specific programming requirements that are tailored to company and project requirements. A fully functioning application programming interface will permit code extension via company proprietary techniques, as well as through continued open-source initiatives.

  3. Inflight magnetic characterization of the test masses onboard LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; García-Berro, Enrique; Lobo, Alberto

    2012-02-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, the latter aiming to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. The diagnostics subsystem consists of several modules, one of which is the magnetic diagnostics unit. Its main function is the assessment of the differential acceleration noise between the test masses due to magnetic effects. This subsystem is composed of two onboard coils intended to produce controlled magnetic fields at the location of the test masses. These magnetic fields couple with the remanent magnetic moment and susceptibility and produce forces and torques on the test masses. These, in turn, produce kinematic excursions of the test masses which are sensed by the onboard interferometer. We prove that adequately processing these excursions, the magnetic properties of the test masses can be estimated using classical multiparameter estimation techniques. Moreover, we show that special processing procedures to minimize the effect of the multichannel cross-talks are needed. Finally, we demonstrate that the quality of our estimates is frequency-dependent. We also suggest that using a multiple frequency experiment, the global estimate can be obtained in such a way that the results of the magnetic experiment are more reliable. Finally, using our procedure, we compute the contribution of the magnetic noise to the total proof-mass acceleration noise.

  4. The mass storage testing laboratory at GSFC

    NASA Technical Reports Server (NTRS)

    Venkataraman, Ravi; Williams, Joel; Michaud, David; Gu, Heng; Kalluri, Atri; Hariharan, P. C.; Kobler, Ben; Behnke, Jeanne; Peavey, Bernard

    1998-01-01

    Industry-wide benchmarks exist for measuring the performance of processors (SPECmarks), and of database systems (Transaction Processing Council). Despite storage having become the dominant item in computing and IT (Information Technology) budgets, no such common benchmark is available in the mass storage field. Vendors and consultants provide services and tools for capacity planning and sizing, but these do not account for the complete set of metrics needed in today's archives. The availability of automated tape libraries, high-capacity RAID systems, and high- bandwidth interconnectivity between processor and peripherals has led to demands for services which traditional file systems cannot provide. File Storage and Management Systems (FSMS), which began to be marketed in the late 80's, have helped to some extent with large tape libraries, but their use has introduced additional parameters affecting performance. The aim of the Mass Storage Test Laboratory (MSTL) at Goddard Space Flight Center is to develop a test suite that includes not only a comprehensive check list to document a mass storage environment but also benchmark code. Benchmark code is being tested which will provide measurements for both baseline systems, i.e. applications interacting with peripherals through the operating system services, and for combinations involving an FSMS. The benchmarks are written in C, and are easily portable. They are initially being aimed at the UNIX Open Systems world. Measurements are being made using a Sun Ultra 170 Sparc with 256MB memory running Solaris 2.5.1 with the following configuration: 4mm tape stacker on SCSI 2 Fast/Wide; 4GB disk device on SCSI 2 Fast/Wide; and Sony Petaserve on Fast/Wide differential SCSI 2.

  5. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  6. Mass Properties for Space Systems Standards Development

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey

    2013-01-01

    Current Verbiage in S-120 Applies to Dry Mass. Mass Margin is difference between Required Mass and Predicted Mass. Performance Margin is difference between Predicted Performance and Required Performance. Performance estimates and corresponding margin should be based on Predicted Mass (and other inputs). Contractor Mass Margin reserved from Performance Margin. Remaining performance margin allocated according to mass partials. Compliance can be evaluated effectively by comparison of three areas (preferably on a single sheet). Basic and Predicted Mass (including historical trend). Aggregate potential changes (threats and opportunities) which gives Mass Forecast. Mass Maturity by category (Estimated/Calculated/Actual).

  7. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  8. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  9. Mass Properties Measurement in the X-38 Project

    NASA Technical Reports Server (NTRS)

    Peterson, Wayne L.

    2004-01-01

    This paper details the techniques used in measuring the mass properties for the X-38 family of test vehicles. The X-38 Project was a NASA internal venture in which a series of test vehicles were built in order to develop a Crew Return Vehicle (CRV) for the International Space Station. Three atmospheric test vehicles and one spaceflight vehicle were built to develop the technologies required for a CRV. The three atmospheric test vehicles have undergone flight-testing by a combined team from the NASA Johnson Space Center and the NASA Dryden Flight Research Center. The flight-testing was performed at Edward's Air Force Base in California. The X-38 test vehicles are based on the X-24A, which flew in the '60s and '70s. Scaled Composites, Inc. of Mojave, California, built the airframes and the vehicles were outfitted at the NASA Johnson Space Center in Houston, Texas. Mass properties measurements on the atmospheric test vehicles included weight and balance by the three-point suspension method, four-point suspension method, three load cells on jackstands, and on three in-ground platform scales. Inertia measurements were performed as well in which Ixx, Iyy, Izz, and Ixz were obtained. This paper describes each technique and the relative merits of each. The proposed measurement methods for an X-38 spaceflight test vehicle will also be discussed. This vehicle had different measurement challenges, but integrated vehicle measurements were never conducted. The spaceflight test vehicle was also developed by NASA and was scheduled to fly on the Space Shuttle before the project was cancelled.

  10. Testing the correlation between low mass planets and debris disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2014-10-01

    The number of dusty debris disks has increased across all spectral types through recent infrared surveys. This has provided greater overlap with stars known to host extrasolar planets via RV surveys. New studies have therefore investigated how the different properties of host stars, exoplanets, and debris disks may be correlated, with the objective of giving empirical support to competing theories of planet formation and evolution. One such emerging correlation is that stars with only low mass planets are more likely to host prominent debris disks than stars that have at least one giant planet. If true, then M dwarfs should have abundant debris disks given that they more frequently have low mass planetary systems. However, the information needed to critically test these ideas is lacking. For most systems, the presence of an outer planet with >30 Earth masses has not been observationally tested, nor are there many M dwarf debris disks available for detailed scrutiny. Here we propose to use STIS coronagraphy to image for the first time the debris disks around three nearby stars in optical scattered light. Searching for sharp dust belt structures indirectly tests for the existence of outer planets that are otherwise undetectable by RV or adaptive optics planet searches. Moreover, two of our target stars are the most recently discovered M dwarf debris disks, both closer to the Sun than AU Mic. The scattered light observations of these two targets would present a major advance in characterizing how M dwarf debris disks co-evolve with planets under different stellar environments.

  11. Determination of HART I Blade Structural Properties by Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Jung, Sung N.; Lau, Benton H.

    2012-01-01

    The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.

  12. Cytotoxicity Test and Mass Spectrometry of IPMC

    NASA Astrophysics Data System (ADS)

    Takashima, Kazuto; Kamamichi, Norihiro; Yagi, Tohru; Asaka, Kinji; Mukai, Toshiharu

    Ionic polymer-metal composite (IPMC) is a promising material in biomedical actuators and sensors because IPMC is soft and flexible, leading to the safety of the device itself. The purpose of this study is to investigate the biocompatibility of IPMC by in vitro experiments, in order to evaluate the applicability in biomedical fields. In addition to an IPMC specimen prepared by the conventional “impregnation-reduction method” using cationic gold complexes and reducing agents, two specimens were prepared by processes in addition to that used for the conventional IPMC specimen. One specimen was reduced in Na2SO3 solution and another specimen was cleaned in H2O2 solution. Colony-forming test using Chinese hamster V79 cells shows high cytotoxicity of all IPMC specimens. Examination of direct inlet mass spectrometry (DI-MS) revealed that the peak intensity of gold complex (particularly, m/z=180) was different from that of Nafion film. Monitoring the peak at m/z=180 showed a remnant with the structure of phenanthroline in IPMC specimens which were not cleaned in H2O2 solution.

  13. Common Lunar Lander (CLL) Conceptual Design and Mass Properties

    NASA Technical Reports Server (NTRS)

    Lawson, Shelby

    1991-01-01

    The conceptual design and mass properties are presented for the CLL in viewgraph format. The spacecraft structural mass is given for orbital assembly, thermal insulation, integrated propulsion, power generation, avionics, environment control, and pyrotechnics and landing system. The mass is given of the lander as well as the transfer stage.

  14. SCALING PROPERTIES OF THE TRANSVERSE MASS SPECTRA.

    SciTech Connect

    SCHAFFNER-BIELICH,J.; KHARZEEV,D.; MCLERRAN,L.; VENUGOPALAN,R.

    2002-01-13

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's Relativistic Heavy-Ion Collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m{sub t}. The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m{sub t}-scaling is also present in proton-antiproton collider data and compare it to m{sub t}-scaling at RHIC.

  15. Optimization of pyrolysis properties using TGA and cone calorimeter test

    NASA Astrophysics Data System (ADS)

    Park, Won-Hee; Yoon, Kyung-Beom

    2013-04-01

    The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test.

  16. MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS

    SciTech Connect

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard E-mail: dsaumon@lanl.gov E-mail: andrew.ackerman@nasa.gov E-mail: freedman@darkstar.arc.nasa.gov

    2012-08-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

  17. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  18. Users guide for the shuttle mass properties automated system

    NASA Technical Reports Server (NTRS)

    Hamil, R. G.

    1975-01-01

    A set of programs developed for use on the JSC Univac 1100 series computers and designed to automate the collection and processing of data into the mass properties section of the shuttle operational data book is described.

  19. IMP: Interactive mass properties program. Volume 1: Program description

    NASA Technical Reports Server (NTRS)

    Stewart, W. A.

    1976-01-01

    A method of computing a weights and center of gravity analysis of a flight vehicle using interactive graphical capabilities of the Adage 340 computer is described. The equations used to calculate area, volume, and mass properties are based on elemental surface characteristics. The input/output methods employ the graphic support of the Adage computer. Several interactive program options are available for analyzing the mass properties of a vehicle. These options are explained.

  20. Mass properties measurement system: Dynamics and statics measurements

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.

  1. Quantitative analysis of LISA pathfinder test-mass noise

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Congedo, Giuseppe; Hueller, Mauro; Vitale, Stefano; Hewitson, Martin; Nofrarias, Miquel; Armano, Michele

    2011-12-01

    LISA Pathfinder (LPF) is a mission aiming to test the critical technology for the forthcoming space-based gravitational-wave detectors. The main scientific objective of the LPF mission is to demonstrate test masses free falling with residual accelerations below 3×10-14ms-2/Hz at 1 mHz. Reaching such an ambitious target will require a significant amount of system optimization and characterization, which will in turn require accurate and quantitative noise analysis procedures. In this paper, we discuss two main problems associated with the analysis of the data from LPF: i) excess noise detection and ii) noise parameter identification. The mission is focused on the low-frequency region ([0.1, 10] mHz) of the available signal spectrum. In such a region, the signal is dominated by the force noise acting on test masses. At the same time, the mission duration is limited to 90 days and typical data segments will be 24 hours in length. Considering those constraints, noise analysis is expected to deal with a limited amount of non-Gaussian data, since the spectrum statistics will be far from Gaussian and the lowest available frequency is limited by the data length. In this paper, we analyze the details of the expected statistics for spectral data and develop two suitable excess noise estimators. One is based on the statistical properties of the integrated spectrum, the other is based on the Kolmogorov-Smirnov test. The sensitivity of the estimators is discussed theoretically for independent data, then the algorithms are tested on LPF synthetic data. The test on realistic LPF data allows the effect of spectral data correlations on the efficiency of the different noise excess estimators to be highlighted. It also reveals the versatility of the Kolmogorov-Smirnov approach, which can be adapted to provide reasonable results on correlated data from a modified version of the standard equations for the inversion of the test statistic. Closely related to excess noise detection, the

  2. Geometrical Properties of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Cremades, Hebe; Bothmer, Volker

    Based on the SOHO/LASCO dataset, a collection of "structured" coronal mass ejections (CMEs) has been compiled within the period 1996-2002, in order to analyze their three-dimensional configuration. These CME events exhibit white-light fine structures, likely indicative of their possible 3D topology. From a detailed investigation of the associated low coronal and photospheric source regions, a generic scheme has been deduced, which considers the white-light topology of a CME projected in the plane of the sky as being primarily dependent on the orientation and position of the source region's neutral line on the solar disk. The obtained results imply that structured CMEs are essentially organized along a symmetry axis, in a cylindrical manner. The measured dimensions of the cylinder's base and length yield a ratio of 1.6. These CMEs seem to be better approximated by elliptic cones, rather than by the classical ice cream cone, characterized by a circular cross section.

  3. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  4. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color

  5. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Wen Xiaoqing; Xu Jianying; Ding Yingping; Huang Tong

    2010-06-10

    At a stellar mass of 3 x 10{sup 10} M {sub {Theta}} we divide the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) into two distinct families and explore the environmental dependence of galaxy properties for High Stellar Mass (HSM) and Low Stellar Mass (LSM) galaxies. It is found that for HSM and LSM galaxies, the environmental dependence of some typical galaxy properties, such as color, morphologies, and star formation activities, is still very strong, which at least shows that the stellar mass is not fundamental in correlations between galaxy properties and the environment. We also note that the environmental dependence of the size for HSM and LSM galaxies is fairly weak, which is mainly due to the galaxy size being insensitive to environment.

  6. Compression mass gauge testing in a liquid hydrogen dewar

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Rogers, A. C.

    1995-01-01

    This paper describes testing that was conducted using a mass gauge in a liquid hydrogen environment. The mass gauge, herein referred to as the 'compressibility gauge,' is being developed as a means to accurately determine the mass of liquid contained in a tank in a low-gravity environment. The concept is based on the thermodynamic principle that the pressure of gas or vapor changes when its volume changes. Previous work has been conducted by Southwest Research Institute in collaboration with NASA Lewis Research Center. This consisted of testing the concept with water and other cryogenic simulant fluids. The purpose of conducting liquid hydrogen tests is to test the concept in actual cryogenic conditions, and address hardware issues that arise in fabricating a test article for use in liquid hydrogen.

  7. High-speed impact test using an inertial mass and an optical interferometer

    NASA Astrophysics Data System (ADS)

    Jin, T.; Watanabe, K.; Prayogi, I. A.; Takita, A.; Mitatha, S.; Djamal, M.; Jia, H. Z.; Hou, W. M.; Fujii, Y.

    2013-07-01

    A high-speed impact testing method for evaluating mechanical properties of materials is proposed using an inertial mass and a dual beat-frequencies laser Doppler interferometer (DB-LDI). In this method, an inertial mass levitated using an aerostatic linear bearing is made to collide with the material being tested at a high initial velocity. During the collision, the velocity of the mass, which is even higher than the critical velocity (±0.56 m/s) defined by the frequency difference of the Zeeman laser, is accurately measured using the DB-LDI. The position, acceleration, and impact force of the mass are calculated from the measured velocity. Using the proposed method, the mechanical properties of a visco-elastic material under a high-speed impact loading condition can be accurately evaluated.

  8. High-speed impact test using an inertial mass and an optical interferometer.

    PubMed

    Jin, T; Watanabe, K; Prayogi, I A; Takita, A; Mitatha, S; Djamal, M; Jia, H Z; Hou, W M; Fujii, Y

    2013-07-01

    A high-speed impact testing method for evaluating mechanical properties of materials is proposed using an inertial mass and a dual beat-frequencies laser Doppler interferometer (DB-LDI). In this method, an inertial mass levitated using an aerostatic linear bearing is made to collide with the material being tested at a high initial velocity. During the collision, the velocity of the mass, which is even higher than the critical velocity (±0.56 m/s) defined by the frequency difference of the Zeeman laser, is accurately measured using the DB-LDI. The position, acceleration, and impact force of the mass are calculated from the measured velocity. Using the proposed method, the mechanical properties of a visco-elastic material under a high-speed impact loading condition can be accurately evaluated. PMID:23902115

  9. Estimation of the mass center and dynamics of a spherical test mass for gravitational reference sensors

    NASA Astrophysics Data System (ADS)

    Conklin, John W.

    Exciting new fields of physics and precision inertial navigation can be realized by reducing test mass disturbances in drag-free spacecraft orders of magnitude below what has currently been demonstrated. The mass center of an ideal drag-free test mass is a reference point traveling along a pure geodesic. The purpose of the drag-free spacecraft is to shield the test mass from all external disturbances, and at the same time, not to introduce additional disturbances. A sphere has the advantage of invariance of orientation. A spherical test mass, therefore, requires no forcing on the part of the spacecraft to control the test mass orientation. With the need for actuation eliminated, the gap between the test mass and spacecraft can be opened up to sizes on the order of the sphere's radius. Elimination of test mass forcing and a large gap reduces, or all together eliminates, the largest disturbances acting on the test mass. Furthermore, spinning the sphere can spectrally shift body-fixed features to frequencies that do-not interfere with the drag-free control or the science mission. The angular momentum vector of the spinning sphere is a quantity that is robust against residual torques providing an orientation reference for the local inertial frame. In this dissertation a generic model for the output of a drag-free sensor with a spinning spherical test mass is developed. A measurable feature of the test mass (surface geometry with respect to the mass center, magnetic potential, etc.) is written as an expansion in spherical harmonics. The rigid body motion of the test mass relative to the sensor is assumed to obey Euler's equations on short time scales, with angular momentum decay and polhode damping due to residual disturbances modeled on longer time scales, greater than say one clay. The validity of this model is demonstrated to approximately 1% using the Gravity Probe B flight data spanning 1 year. The success of this model allows for the prediction of polhode

  10. RSRM-3 (360L003) Ballistics/Mass Properties Report

    NASA Technical Reports Server (NTRS)

    Laubacher, B. A.; Richards, M. C.

    1989-01-01

    The propulsion performance and reconstructed mass properties data from Morton Thiokol's RSRM-3 motors which were assigned to the STS-29 launch are presented. The composite type solid propellant burn rates were close to predicted. The performance of the pair of motors were compared to some CEI Specifications. The performance from each motor as well as matched pair performance values were well within the CEI specification requirements. The nominal thrust time curve and impulse gate information is included. Post flight reconstructed Redesigned Solid Rocket Motor (RSRM) mass properties are within expected values for the lightweight configuration.

  11. Derivation of mass and stiffness matrices from dynamic test data.

    NASA Technical Reports Server (NTRS)

    Thoren, A. R.

    1972-01-01

    A technique is described by which orthonormal modal vectors, computed from dynamic test response data, are used to derive mass, stiffness, and damping matrices for a discrete model of the distributed elastic system. Matrices thus computed from subsystems tests may be readily incorporated into larger system models. The method has been applied to a test of the Saturn V S-II stage LOX tank-engine support system. The dynamic responses of the discrete model are shown to correlate well with test data throughout the frequency range tested.

  12. Investigation of sources, properties and preparation of distillate test fuels

    NASA Technical Reports Server (NTRS)

    Bowden, J. N.; Erwin, J.

    1983-01-01

    Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.

  13. RSRM-11 (36OW011) ballistics mass properties (STS-35)

    NASA Technical Reports Server (NTRS)

    Hutchinson, B. J.; Gruet, L. P.; Richards, M. C.

    1991-01-01

    The propulsion performance and reconstructed mass properties data from Thiolol's RSRM-11 motors which were assigned to the STS-35 launch are contained. The Thiokol manufacturing designations for the motors were 360W011A/360W011B, which are referred to as RSRM-11A and RSRM-B, respectively. The launch of STS-35 occurred on 2 December 1990 at the Eastern Test Range (ETR). The data contained herein was input to the STS-35 Flight Evaluation Report. The SRM propellant, TP-H1148, is a composite type solid propellants, formulated of polybutediene acrylic acid, acryonitrile terpolymer binder, epoxy curing agent, ammonium perchlorate oxidizer, and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information for the RSRM-11 are included. The ballistic performance presented was based on the Operational Flight Instrumentation (OFI) 12.5 sample per second pressure data for the steady state and tail off portion of the pressure trace. Recent studies have shown that the transducers are affected by the measuring system at KSC and temperature gradients created by the igniter heaters. Therefore, an adjustment to the data from each transducer is made to make the initial reading match the atmospheric pressure at the time of launch.

  14. Note: Discharging fused silica test masses with ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Ugolini, D.; Funk, Q.; Amen, T.

    2011-04-01

    We have developed a technique for discharging fused silica test masses in a gravitational-wave interferometer with nitrogen ionized by an electron beam. The electrons are produced from a heated filament by thermionic emission in a low-pressure region to avoid contamination and burnout. Some electrons then pass through a small aperture and ionize nitrogen in a higher-pressure region, and this ionized gas is pumped across the test mass surface, neutralizing both polarities of charge. The discharge rate varies exponentially with charge density and filament current, quadratically with filament potential, and has an optimal working pressure of ˜8 mT. Adapting the technique to larger test mass chambers is also discussed.

  15. 240 nm UV LEDs for LISA test mass charge control

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  16. Machining as a mechanical property test revisited

    NASA Astrophysics Data System (ADS)

    Smith, David L.

    There is much need for data on mechanical behavior of metals at high strains and strain rates. This need is dictated by modeling of processes like forming and machining, wherein the material in the deformation zone is subjected to severe deformation conditions atypical of conventional material property tests such as tension and torsion. Accurate flow stress data is an essential input for robust prediction of process outputs. Similar requirements arise from applications in high speed ballistic penetration and design of materials for armor. Since the deformation zone in cutting of metals is characterized by unique and extreme combinations of strain, strain rate and temperature, an opportunity exists for using plane-strain cutting as a mechanical property test for measuring flow properties of metals. The feasibility of using plane-strain cutting to measure flow properties of metals is revisited in the light of recent data showing controllability of the deformation conditions in chip formation by systematic variation of process input parameters. A method is outlined as to how the deformation conditions can be varied by changing the process parameters. The method is applied to cutting of commercially pure copper (FCC), iron (BCC) and zinc (HCP). Forces and chip geometries are measured, in conjunction with particle image velocimetry characterization of the deformation using high speed image sequences. The flow stresses are estimated from these measurements. The measured flow stress and its dependence on strain are shown to agree well with prior measurements of these parameters using conventional tests, and flow stress inferred from hardness characterization. The method is also demonstrated to be able to measure properties of metals that recrystallize at room temperature (zinc), wherein quasi-static tests predict much lower strength. Sources of variability and uncertainty in the application of this measurement technique are discussed. Future work in the context of further

  17. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  18. Psychometric properties of the Affect Phobia Test.

    PubMed

    Frankl, My; Philips, Björn; Berggraf, Lene; Ulvenes, Pål; Johansson, Robert; Wennberg, Peter

    2016-10-01

    The aim of this study was to make the first evaluation of the psychometric properties of the Affect Phobia Test, using the Swedish translation - a test developed to screen the ability to experience, express and regulate emotions. Data was collected from a clinical sample (N = 82) of patients with depression and/or anxiety participating in randomized controlled trial of Internet-based affect-focused treatment, and a university student sample (N = 197). The internal consistency for the total score was satisfactory (Clinical sample α = 0.88/Student sample α = 0.84) as well as for all the affective domains, except Anger/Assertion (α = 0.44/0.36), Sadness/Grief (α = 0.24/0.46) and Attachment/Closeness (α = 0.67/0.69). Test retest reliability was satisfactory (ICC > 0.77) for the total score and for all the affective domains except for Sadness/Grief (ICC = 0.04). The exploratory factor analysis resulted in a six-factor solution and did only moderately match the test's original affective domains. An empirical cut-off between the clinical and the university student sample were calculated and yielded a cut-off of 72 points. As expected, the Affect Phobia test showed negative significant correlations in the clinical group with measures on depression (rxy  = -0.229; p < 0.01) and anxiety (rxy  = -0.315; p < 0.05). The conclusion is that the psychometric properties are satisfactory for the total score of the Affect Phobia Test but not for some of the test's affective domains. Consequently the domains should not be used as subscales. The test can discriminate between individuals who seek help for psychological problems and those who do not. PMID:27461917

  19. Mass Testing and the Underdevelopment of Inner-City Communities.

    ERIC Educational Resources Information Center

    Hesch, Rick

    2000-01-01

    Mass testing as a phenomena of global educational restructuring exacerbates social class differences. This phenomenon is examined via inner-city Winnipeg's experience, cross-cultural educational literature, and the Manitoba government's tendency to reinforce the underdevelopment of core area regions. Emerging resistance to educational…

  20. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    SciTech Connect

    D. Rigby

    2004-11-10

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components).

  1. Computer program for determining mass properties of a rigid structure

    NASA Technical Reports Server (NTRS)

    Hull, R. A.; Gilbert, J. L.; Klich, P. J.

    1978-01-01

    A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes.

  2. Mass-Transport Properties In Growth Of Crystals From Vapors

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1992-01-01

    Brief report summarizes results of experimental and theoretical studies of mass-transport properties of GeSe/Gel4 and Hg0.8Cd0.2Te systems in connection with growth of crystals in closed ampoules. Primary emphasis in studies was on thermochemical analyses, on development of mathematical models to predict diffusion-limited mass transport, and on comparison of theoretically predicted with experimental fluxes. Results applied to design, preparation, performance, and analysis of crystal-growth experiments of semiconducting materials on Earth and in outer space. Model extended to predict mass flux and overall composition of transport products of Hg0.8Cd0.2Te transport system.

  3. Two cylindrical masses in orbit for the test of the equivalence principle

    NASA Astrophysics Data System (ADS)

    Chhun, Ratana; Touboul, Pierre; Lebat, Vincent

    2010-01-01

    Two pairs of solid test-masses have been considered to perform in space the test of the universality of free fall with an accuracy of at least 10-15. These cylindrical masses are precisely at the heart of the MICROSCOPE mission instrument comprising two differential electrostatic accelerometers. These masses shall exhibit material quality, shapes, positions and alignments in regard to stringent experimental requirements. Indeed the space experiment is based on the control of the two masses submitted to the same gravity acceleration along the same orbit at 810 km altitude with an accuracy of 10-11 m. Thus effects of Earth and satellite gravity gradients shall be contained as well as any other disturbances of the mass motions induced by their magnetic susceptibility or electrical dissymmetries, by outgassing of the materials or radiation emissivity. Furthermore, the electrostatic levitation of the two masses depends dramatically on the mass shapes and electrical properties in particular for the definition of the sensitive axes orientation. All these aspects will be presented from the mass characteristics to the space MICROSCOPE experiment performance.

  4. Two Cylindrical Masses in Orbit for the Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Chhun, Ratana; Touboul, P.; Lebat, V.

    2009-05-01

    Two pairs of solid test-masses have been considered to perform in space the test of the universality of free fall with an accuracy of at least 10-15. These cylindrical masses are precisely at the heart of the MICROSCOPE mission instrument developed by ONERA, comprising two differential electrostatic accelerometers. These masses shall exhibit material quality, shapes, positions and alignments in regard to stringent experimental requirements. Indeed the space experiment is based on the control of the two masses submitted to the same gravity acceleration along the same orbit at 810km altitude with an accuracy of 10-11m. Thus effects of Earth and satellite gravity gradients shall be contained as well as any other disturbances of the mass motions induced by their magnetic susceptibility or electrical dissymmetries, by outgassing of the materials or radiation emissivity. Furthermore, the electrostatic levitation of the two masses depends dramatically on the mass shapes and electrical properties in particular for the definition of the sensitive axes orientation. All these aspects will be presented from the mass characteristics to the space MICROSCOPE experiment performance.

  5. Validation of a Compression Mass Gauge using ground tests for liquid propellant mass measurements

    NASA Astrophysics Data System (ADS)

    Fu, Juan; Chen, Xiaoqian; Huang, Yiyong; Li, Xiaolong

    2014-05-01

    To properly estimate orbital lifetimes and predict the maneuverability of spacecraft, the remaining liquid propellant mass must be accurately known at every moment of a space mission. This paper studies the Compression Mass Gauge (CMG) method to determine the mass of liquid contained in a tank in a low-gravity environment with high accuracy. CMG is a thermodynamic method used to determine the quantity of liquid by measuring the gas pressure change when the tank volume changes, and has been previously theoretically and experimentally studied by researchers. The primary objective of this investigation is to explore the effects of attitude disturbance and the spacecraft thermal environment on the accuracy of the method. A ground test system, consisting of several test apparatuses, was fabricated and described as part of this study. The test results and analyses indicate that the CMG performs well and has an accuracy of ±1%. Additionally, demonstrations were performed to show that measurement errors do not increase drastically or exceed ±1% when the test system is vibrated to simulate the tank being perturbed as a result of an attitude disturbance. Liquid sloshing resonance was found to have a significant effect on the gauging accuracy. Measurements in a real thermal environment in which heat transfers into and out of the propellant tank were also conducted. The results show that the gauging accuracy is acceptable for normal liquid propellant. Furthermore, theoretical research shows that heat leakage has a significant influence on cryogenic propellant mass gauging.

  6. THE MASS OF (15) EUNOMIA FROM 923 TEST BODIES

    SciTech Connect

    Zielenbach, William

    2010-03-15

    The orbits of 923 asteroids that came within 0.1 AU of (15) Eunomia were analyzed to determine its mass and gave a weighted mean mass of (1.62 {+-} 0.05) x 10{sup -11} M {sub sun}. The process was automated, which forced the use of uniform criteria for selection and weighting of both the observations and the individual solutions. Statistical combination of a large number of cases including numerous implausible individual results, gives reasonable mass values even for subsets of weakly determined individual solutions. This approach mitigates the impact of mismodeling as well as observation errors and/or poor distribution of data that might affect individual test cases.

  7. The core mass-radius relation for giants - A new test of stellar evolution theory

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.; Lewis, W.

    1987-01-01

    It is demonstrated here that the measurable properties of systems containing degenerate dwarfs can be used as a direct test of the core mass-radius relation for moderate-mass giants if the final stages of the loss of the envelope of the progenitor giant occurred via stable critical lobe overflow. This relation directly probes the internal structure of stars at a relatively advanced evolutionary state and is only modestly influenced by adjustable parameters. The measured properties of six binary systems, including such diverse systems as Sirius and Procyon and two millisecond pulsars, are utilized to derive constraints on the empirical core mass-radius relation, and the constraints are compared to the theoretical relation. The possibility that the final stages of envelope ejection of the giant progenitor of Sirius B occurred via critical lobe overflow in historical times is considered.

  8. Testing radiative neutrino mass models at the LHC

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Clarke, Jackson D.; Schmidt, Michael A.; Volkas, Raymond R.

    2015-02-01

    The Large Hadron Collider provides us new opportunities to search for the origin of neutrino mass. Beyond the minimal see-saw models a plethora of models exist which realise neutrino mass at tree- or loop-level, and it is important to be sure that these possibilities are satisfactorily covered by searches. The purpose of this paper is to advance a systematic approach to this problem. Majorana neutrino mass models can be organised by SM-gauge-invariant operators which violate lepton number by two units. In this paper we write down the minimal ultraviolet completions for all of the mass-dimension 7 operators. We predict vector-like quarks, vector-like leptons, scalar leptoquarks, a charged scalar, a scalar doublet, and a scalar quadruplet, whose properties are constrained by neutrino oscillation data. A detailed collider study is presented for and completions with a vector-like quark and a leptoquark . The existing LHC limits extracted from searches for vector-like fermions and sbottoms/stops are m χ ≳ 620 GeV and m ϕ ≳ 600 GeV.

  9. Force Limited Random Vibration Test of TESS Camera Mass Model

    NASA Technical Reports Server (NTRS)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  10. The Wind and Mass-loss Properties of the Most Massive Stars

    NASA Astrophysics Data System (ADS)

    Bestenlehner, Joachim; Vink, Jorick; Gräfener, Götz; Najarro, Francisco

    2013-06-01

    Mass-loss rates play an important role in the evolution of massive stars. The initial, present day and the mass at their end of their lifetime is considerable different as a result of mass loss. Different stages of evolution have different mass-loss rates. The understanding of massive star evolution is tightly connected to the understanding of their mass loss properties. In the context of the VLT-Flames Tarantula Survey I will present the results from our spectral analysis of stars in the transition region from O-stars to very massive WN(h)-stars. WN(h)-stars are very young and massive stars which develop already in the earliest stages of their evolution WR-star like winds. For the analysis we used the non-LTE radiative transfer code CMFGEN to investigate the wind and mass-loss properties of these very massive stars. This analysis also tests theoretical predictions which suggest a notable change of the mass-loss behaviour at a certain Eddington factor in the transition region from O to WN(h)-stars (Bestenlehner et al. 2011, Bestenlehner et al. in prep.)

  11. Relation between mass balance aperture and hydraulic properties from field experiments in fractured rock in Sweden

    NASA Astrophysics Data System (ADS)

    Hjerne, Calle; Nordqvist, Rune

    2014-09-01

    Results from tracer tests are often used to infer connectivity and transport properties in bedrock. However, the amount of site-specific data from tracer tests is often very limited, while data from hydraulic tests are more abundant. It is therefore of great interest for predictive transport modeling to use hydraulic data to infer transport properties. In this study, data from cross-hole tracer tests carried out in crystalline bedrock in Sweden were compiled and analysed. The tests were performed within investigations made by the Swedish Nuclear Fuel and Waste Management Company (SKB) between 1978 and 2009 at five different locations. An empirical relationship between mass balance aperture and transmissivity was found and quantified by using 74 observations. The empirical relationship deviates considerably from the cubic law aperture, as mass balance aperture is found to be at least one order of magnitude larger than cubic law aperture. Hence, usage of cubic law aperture, derived from hydraulic testing, for transport predictions is unsuitable, as the advective transport time will be considerably underestimated. Another result, from the data set studied, is that mass balance aperture appears to correlate better to apparent storativity than to transmissivity.

  12. Analysis of borehole expansion and gallery tests in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    1991-01-01

    Closed-form solutions are used to show how rock anisotropy affects the variation of the modulus of deformation around the walls of a hole in which expansion tests are conducted. These tests include dilatometer and NX-jack tests in boreholes and gallery tests in tunnels. The effects of rock anisotropy on the modulus of deformation are shown for transversely isotropic and regularly jointed rock masses with planes of transverse isotropy or joint planes parallel or normal to the hole longitudinal axis for plane strain or plane stress condition. The closed-form solutions can also be used when determining the elastic properties of anisotropic rock masses (intact or regularly jointed) in situ. ?? 1991.

  13. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  14. Variability properties and masses of central black hole for blazars

    NASA Astrophysics Data System (ADS)

    Fan, Junhui

    2001-06-01

    In this paper, the compiled long-term optical and infrared measurements of some blazars are used to analyze the variation properties, and the optical data are used to search for periodicity evidence in the lightcurve by means of the Jurkevich technique and the discrete correlation function (DCF) method. The periods are found in the range of 1.5 to 19 years. The short time scales are used to estimate the central black hole masses which are found in the range of (3.8 - 130)×107Msolar for the gamma-ray loud blazars. Some discussions are presented.

  15. Control System Upgrade for a Mass Property Measurement Facility

    NASA Technical Reports Server (NTRS)

    Chambers, William; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The Mass Property Measurement Facility (MPMF) at the Goddard Space Flight Center has undergone modifications to ensure the safety of Flight Payloads and the measurement facility. The MPMF has been technically updated to improve reliability and increase the accuracy of the measurements. Modifications include the replacement of outdated electronics with a computer based software control system, the addition of a secondary gas supply in case of a catastrophic failure to the gas supply and a motor controlled emergency stopping feature instead of a hard stop.

  16. Kalman Filter for Mass Property and Thrust Identification (MMS)

    NASA Technical Reports Server (NTRS)

    Queen, Steven

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties is necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  17. Testing and Validation of Computational Methods for Mass Spectrometry.

    PubMed

    Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas

    2016-03-01

    High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods. PMID:26549429

  18. Wiring test program insulation material related properties

    NASA Technical Reports Server (NTRS)

    Reher, Heinz-Josef

    1995-01-01

    This viewgraph presentation provides an overview of activities at DASA-RI concerning the testing of wires for manned spacecraft, including test facilities, arc-tracking tests, flammability tests, microgravity tests, and standardization, and outlines future activities.

  19. Properties and clinical implications of body mass indices.

    PubMed Central

    Fung, K P; Lee, J; Lau, S P; Chow, O K; Wong, T W; Davis, D P

    1990-01-01

    The properties of body mass indices were evaluated in a cross sectional study of the weights and heights of 5016 Chinese boys and girls aged between 3 and 18 years. Of the indices examined (weight/height (W/H), weight/height2 (W/H2), weight/height3 (W/H3) and weight/heightp (W/Hp], W/Hp was the only one that consistently showed least correlation with height, and so could be regarded as the optimal body mass index by the criterion of independence of the index from height. The exponent 'p' of W/Hp is, however, highly dependent on age; the value increases steadily between the age of 3 and 7-9 years, and then varies considerably around puberty. Only the age specific exponent ensures a lack of correlation between body mass index (W/Hp) and height. Age specific W/Hp should therefore be used in intrapopulation studies of weight or problems associated with obesity in children. Interpopulation comparison of weight and adiposity by W/H, W/H2, or W/H3 may give misleading results because of their dependence on height. Our results also suggest that the conventional weight for height charts may not be accurate enough for clinical use. PMID:2357091

  20. Properties of test metal ceramic titanium alloys.

    PubMed

    Akagi, K; Okamoto, Y; Matsuura, T; Horibe, T

    1992-09-01

    Four test alloys were prepared using a high frequency centrifugal casting machine and a ceramic crucible for the development of titanium bonding alloys that can be cast in the ordinary atmosphere. Of these alloys, 10.06% Ti, 78.79% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir could be cast by the conventional high frequency centrifugal method; however, 89.18% Ti, 8.75% Ni, 1.03% Pd, 0.28% Sn and 89.81% Ti, 8.15% Ni, 1.01% Pd, 0.18% Sn, 0.67% Ir could be cast only by the argon are melting method. The alloys 10.06% Ti, 78.95% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed excellent physical and mechanical properties and bonding strengths, surpassing those of the commercial alloys TPW and Unimetal. Concerning the elution of component elements, the amounts of titanium eluted from these alloys were far smaller than those from pure titanium or a Ti-6Al-4V alloy, and nickel elution, which has become an issue in relation to metal allergy, was almost nil in contrast to Unimetal (Ni-Cr alloy). The alloy 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed properties that indicated its favorable use as an alloy for the bonding of dental porcelain. PMID:1432762

  1. Experimental study on the mechanical properties of simulated columnar jointed rock masses

    NASA Astrophysics Data System (ADS)

    Xiao, Wei-min; Deng, Rong-gui; Zhong, Zhi-bin; Fu, Xiao-min; Wang, Cong-yan

    2015-02-01

    Columnar jointed rock mass is a kind of structural rock mass commonly encountered in igneous rocks. Due to the effects of columnar joint networks, anisotropy is the typical mechanical property of columnar jointed rock mass, i.e. deformation and strength varying with loading direction. Correct understanding of the mechanical anisotropy of columnar jointed rock mass is a key problem that should be solved for demonstration and design of large scale rock mass projects such as dams and underground cavern excavations constructed in it. Plaster simulated columnar jointed rock mass specimens at dip angles varying from 0° to 90° with respect to the axial stress were tested under uniaxial compression conditions to investigate the mechanical anisotropy and failure modes. Based on analyses of experimental results, it was found that the strength and deformation of columnar jointed rock masses had pronounced ‘U-shaped’ anisotropy. In the anisotropic curves, the maximum and minimum values occurred at β = 90° and β = 45°, respectively. It was also shown that the lateral strain ratio was relatively high, especially when the dip angle was close to (45° - φj/2), where φj was the joint friction angle. An empirical expression was adopted to predict the ‘U-shaped’ anisotropy of deformation and strength and the predicted anisotropic curves agreed reasonably well with experimental data. Furthermore, four types of failure modes were summarized based on experimental results and corresponding mechanisms were also discussed.

  2. Method For Testing Properties Of Corrosive Lubricants

    DOEpatents

    Ohi, James; De La Cruz, Jose L.; Lacey, Paul I.

    2006-01-03

    A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

  3. 21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ovarian adnexal mass assessment score test system... immunological Test Systems § 866.6050 Ovarian adnexal mass assessment score test system. (a) Identification. An ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum...

  4. 21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ovarian adnexal mass assessment score test system... immunological Test Systems § 866.6050 Ovarian adnexal mass assessment score test system. (a) Identification. An ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum...

  5. 21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ovarian adnexal mass assessment score test system... immunological Test Systems § 866.6050 Ovarian adnexal mass assessment score test system. (a) Identification. An ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum...

  6. 21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ovarian adnexal mass assessment score test system... immunological Test Systems § 866.6050 Ovarian adnexal mass assessment score test system. (a) Identification. An ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum...

  7. SED and Emission Line Properties of Red 2MASS AGN

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Joanna; Wilkes, Belinda J.; Schmidt, Gary; Ghosh, Himel

    2009-09-01

    Radio and far-IR surveys, and modeling of the cosmic X-ray background suggest that a large population of obscured AGN has been missed by traditional, optical surveys. The Two Micron All-Sky Survey (2MASS) has revealed a large population (surface density comparable to that of optically selected AGN with Ks<14.5mag) of mostly nearby (median z=0.25), red, moderately obscured AGN, among which 75% are previously unidentified emission-line AGN, with 85% showing broad emission lines. We present the SED and emission line properties of 44 such red (J-Ks>2) 2MASS AGN observed with Chandra. They lie at z<0.37, span a full range of spectral types (Type 1, intermediate, Type 2),Ks-to-X-ray slopes, and polarization (<13%). Their IR-to-X-ray spectral energy distributions (SEDs) are red in the near-IR/opt/UV showing little or no blue bump. The optical colors are affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The levels of obscuration obtained from optical, X-rays, and far-IR imply N_H properties shows that, while obscuration/inclination is important, the dominant cause of variance in the sample (eigenvector 1) is the L/L_{edd} ratio (perhaps because the red near-IR selection limits the range of inclination/obscuration values in our sample). This analysis also distinguishes two sources of obscuration: the host galaxy and circumnuclear absorption.

  8. Some attributes of a language for property-based testing.

    SciTech Connect

    Neagoe, Vicentiu; Bishop, Matt

    2004-11-01

    Property-based testing is a testing technique that evaluates executions of a program. The method checks that specifications, called properties, hold throughout the execution of the program. TASpec is a language used to specify these properties. This paper compares some attributes of the language with the specification patterns used for model-checking languages, and then presents some descriptions of properties that can be used to detect common security flaws in programs. This report describes the results of a one year research project at the University of California, Davis, which was funded by a University Collaboration LDRD entitled ''Property-based Testing for Cyber Security Assurance''.

  9. THE RELATIONSHIP BETWEEN CORONAL DIMMING AND CORONAL MASS EJECTION PROPERTIES

    SciTech Connect

    Reinard, A. A.

    2009-11-01

    Coronal dimmings are closely related to the footpoints of coronal mass ejections (CMEs) and, as such, offer information about CME origins and evolution. In this paper, we investigate the relationship between CME and dimming properties. In particular, we compare CME quantities for events with and without associated dimmings. We find that dimming-associated CMEs, on average, have much higher speeds than non-dimming-associated events. In fact, CMEs without an associated dimming do not appear to travel faster than 800 km s{sup -1}, i.e., the fast solar wind speed. Dimming-associated events are also more likely to be associated with flares, and those flares tend to have the highest magnitudes. We propose that each of these phenomena is affected by the energy available in the source region. Highly energetic source regions produce fast CMEs that are accompanied by larger flares and visible dimmings, while less energetic source regions produce slow CMEs that are accompanied by smaller flares and may or may not have dimmings. The production of dimmings in the latter case may depend on a number of factors including initiation height of the CME, source region magnetic configuration, and observational effects. These results have important implications for understanding and predicting CME initiations.

  10. RSRM-9 (360L009): Ballistics mass properties

    NASA Technical Reports Server (NTRS)

    Drendel, Albert S.; Richards, M. C.

    1990-01-01

    The propulsion performance and reconstructed mass properties data from Thiokol's RSRM-9 motors which were assigned to the STS-36 launch are presented. The SRM propellant, TP-H1148, is a composite type solid propellant, formulated of polybutadiene acrylic acid acryonitrile terpolymer binder (PBAN), epoxy curing agent, ammonium perchlorate oxidizer and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information for the RSRM-9 are included. The propellant grain design consists of four segments. There is a forward segment with an eleven point star with a transition into a tapered circular perforated (CP) configuration. There are two center segments that result in a double tapered CP configuration and an aft segment with a triple taper CP configuration and a cutout for the partially submerged nozzle. The ballistic performance presented is based on the Operational Flight Instrumentation (OFI) 12.5 sample per second pressure data for the steady state and tail off portion of the pressure trace. No high sample rate pressure gauges, Development Flight Instrumentation (DFI), were used on this flight and therefore no ignition data is presented.

  11. Human Mars Mission: Weights and Mass Properties. Pt. 1

    NASA Technical Reports Server (NTRS)

    Brothers, Bobby

    1999-01-01

    This paper presents a final report on The Human Mars Mission Weights and Measures. The topics included in this report are: 1) Trans-Earth Injection Storage Human Mars Mission (HMM) Chemical Design Reference Mission (DRM) v4.0a Weight Breakout; 2) Ascent Stage HMM Chemical DRM v4.0a Weight Breakout; 3) Descent Stages HMM Chemical DRM v4.0a Weight Breakout; 4) Trans-Mars Injection Stages HMM Chemical DRM v4.0a Weight Breakout; 5) Trans-Earth Injection Stage HMM Solar Electric Propulsion (SEP) DRM v4.0a Weight Breakout; 6) Ascent Stage HMM SEP DRM v4.0a Weight Breakout; 7) Descent Stages HMM SEP DRM v4.0a Weight Breakout; 8) Trans-Mars Injection Stages HMM SEP DRM v4.0a Weight Breakout; 9) Crew Taxi Stage HMM SEP DRM v4.0 Weight Breakout; 10)Trans-Earth Injection Stage HMM Nuclear DRM v4.0a Weight Breakout; 11) Ascent Stage HMM Nuclear DRM v4.0a Weight Breakout; 12) Descent Stages HMM Nuclear DRM v4.0a Weight Breakout; 13) Trans-Mars Injection Stages HMM Nuclear DRM v4.0a Weight Breakout; and 14) HMM Mass Properties Coordinate System.

  12. WHAT DO DARK MATTER HALO PROPERTIES TELL US ABOUT THEIR MASS ASSEMBLY HISTORIES?

    SciTech Connect

    Wong, Anson W. C.; Taylor, James E. E-mail: taylor@uwaterloo.ca

    2012-09-20

    Individual dark matter halos in cosmological simulations vary widely in their detailed structural properties, properties such as concentration, shape, spin, and degree of internal relaxation. Recent non-parametric (principal component) analyses suggest that a few principal components explain a large fraction of the scatter in these structural properties. The main principal component is closely aligned with concentration, which in turn is known to be related to the mass accretion history (MAH) of the halo, as described by its merger tree. Here, we examine more generally the connection between the MAH and structural parameters. The space of mass accretion histories has principal components of its own. The strongest, accounting for almost 60% of the scatter between individual histories, can be interpreted as the age of the system. We give an analytic fit for this first component, which provides a rigorous way of defining the dynamical age of a halo. The second strongest component, representing acceleration or deceleration of growth at late times, accounts for 25% of the scatter. Relating structural parameters to formation history, we find that concentration correlates strongly with the early history of the halo, while shape and degree of relaxation or dynamical equilibrium correlate with the later history. We examine the inferences about formation history that can be drawn by splitting halos into sub-samples based on observable properties such as concentration and shape. Applications include the definition young and old samples of galaxy clusters in a quantitative way, or empirical tests of environmental processing rates in clusters.

  13. Spacecraft mass property identification with torque-generating control

    NASA Technical Reports Server (NTRS)

    Bergmann, E.; Dzielski, J.

    1990-01-01

    Previous studies indicated that an applied force was necessary to perform in-flight identification of the mass and center of mass of a spacecraft. This paper shows that the mass and center of mass of a rigid spacecraft can be determined using only torque-producing actuators such as control-moment gyros or reaction wheels, and commonly available sensors, e.g., rate gyros and accelerometers. A space-station application is presented.

  14. Psychometric Properties of the Eating Attitudes Test

    ERIC Educational Resources Information Center

    Ocker, Liette B.; Lam, Eddie T. C.; Jensen, Barbara E.; Zhang, James J.

    2007-01-01

    The study was designed to examine the construct validity and internal consistency reliability of the Eating Attitudes Test (EAT) using a confirmatory factor analysis (CFA). Two widely adopted EAT models were tested: three-factor (Dieting, Bulimia and Food Preoccupation, and Oral Control) with 26 items (Garner, Olmsted, Bohr, & Garfinkel, 1982),…

  15. 76 FR 16350 - Medical Devices; Ovarian Adnexal Mass Assessment Score Test System; Labeling; Black Box Restrictions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 Medical Devices; Ovarian Adnexal Mass... regulation classifying ovarian adnexal mass assessment score test systems to restrict these devices so that a... mass assessment score test system into class II (special controls). DATES: Submit either electronic...

  16. System for testing properties of a network

    DOEpatents

    Rawle, Michael; Bartholomew, David B.; Soares, Marshall A.

    2009-06-16

    A method for identifying properties of a downhole electromagnetic network in a downhole tool sting, including the step of providing an electromagnetic path intermediate a first location and a second location on the electromagnetic network. The method further includes the step of providing a receiver at the second location. The receiver includes a known reference. The analog signal includes a set amplitude, a set range of frequencies, and a set rate of change between the frequencies. The method further includes the steps of sending the analog signal, and passively modifying the signal. The analog signal is sent from the first location through the electromagnetic path, and the signal is modified by the properties of the electromagnetic path. The method further includes the step of receiving a modified signal at the second location and comparing the known reference to the modified signal.

  17. Correlation of elastomer material properties from small specimen tests and scale-size bearing tests

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1994-06-01

    Tests were performed on small-size elastomer specimens and scale-size laminated elastomeric bearings to correlate the material properties in shear between the two types of tests. An objective of the tests was to see how well the material properties that were determined from specimen tests could predict the response of scale-size laminated elastomeric bearings. Another objective was to compare the results of specimen test and scale-size bearing test conducted by different testing organizations. A comparison between the test results from different organizations on small specimens showed very good agreement. In contrast, the correlation of scale-size bearing tests showed differences in bearing stiffness.

  18. RAPID DYNAMICAL MASS SEGREGATION AND PROPERTIES OF FRACTAL STAR CLUSTERS

    SciTech Connect

    Yu Jincheng; Chen Li; De Grijs, Richard

    2011-05-01

    We investigate the evolution of young star clusters using N-body simulations. We confirm that subvirial and fractal-structured clusters will dynamically mass segregate on a short timescale (within 0.5 Myr). We adopt a modified minimum-spanning-tree method to measure the degree of mass segregation, demonstrating that the stars escaping from a cluster's potential are important for the temporal dependence of mass segregation in the cluster. The form of the initial velocity distribution will also affect the degree of mass segregation. If it depends on radius, the outer parts of the cluster would expand without undergoing collapse. In velocity space, we find 'inverse mass segregation', which indicates that massive stars have higher velocity dispersions than their lower-mass counterparts.

  19. Physical properties of the human head: mass, center of gravity and moment of inertia.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Baisden, Jamie L

    2009-06-19

    This paper presents a synthesis of biomedical investigations of the human head with specific reference to certain aspects of physical properties and development of anthropometry data, leading to the advancement of dummies used in crashworthiness research. As a significant majority of the studies have been summarized as reports, an effort has been made to chronologically review the literature with the above objectives. The first part is devoted to early studies wherein the mass, center of gravity (CG), and moment of inertia (MOI) properties are obtained from human cadaver experiments. Unembalmed and preserved whole-body and isolated head and head-neck experiments are discussed. Acknowledging that the current version of the Hybrid III dummy is the most widely used anthropomorphic test device in motor vehicle crashworthiness research for frontal impact applications for over 30 years, bases for the mass and MOI-related data used in the dummy are discussed. Since the development and federalization of the dummy in the United States, description of methods used to arrive at these properties form a part of the manuscript. Studies subsequent to the development of this dummy including those from the US Military are also discussed. As the head and neck are coupled in any impact, and increasing improvements in technology such as advanced airbags, and pre-tensioners and load limiters in manual seatbelts affect the kinetics of the head-neck complex, the manuscript underscores the need to pursue studies to precisely determine all the physical properties of the head. Because the most critical parameters (locations of CG and occipital condyles (OC), mass, and MOI) have not been determined on a specimen-by-specimen basis in any single study, it is important to gather these data in future experiments. These critical data will be of value for improving occupant safety, designing advanced restraint systems, developing second generation dummies, and assessing the injury mitigating

  20. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    PubMed Central

    Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.

    2009-01-01

    biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models. PMID:19225569

  1. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models. PMID:19225569

  2. A Wald test with enhanced selectivity properties in homogeneous environments

    NASA Astrophysics Data System (ADS)

    Liu, Weijian; Xie, Wenchong; Wang, Yongliang

    2013-12-01

    A Wald test with enhanced selectivity capabilities is proposed in homogeneous environments. At the design stage, we assume that the cell under test contains a noise-like interferer in addition to colored noise and possible signal of interest. We show that the Wald test is equivalent to a recently proposed Rao test. We also observe that this Rao/Wald test possesses constant false alarm rate property in homogeneous environments.

  3. Expendable second stage reusable space shuttle booster. Volume 4: Detail mass properties data

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Mass properties data are presented to describe the characteristics of an expendable second stage with a reusable space shuttle booster. The final mass characteristics of the vehicle configurations for three specified payloads are presented in terms of weight, center of gravity, and mass moments of inertia. Three basic subjects are the integrated vehicle system, the expendable second stage, and the booster modifications.

  4. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  5. Probing Late Neutrino Mass Properties With SupernovaNeutrinos

    SciTech Connect

    Baker, Joseph; Goldberg, Haim; Perez, Gilad; Sarcevic, Ina

    2007-08-08

    Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.

  6. Tests of timing properties of silicon photomultipliers

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Byrum, K.; Demarteau, M.; Los, S.; May, E.; Ramberg, A.; Va'vra, J.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-03-01

    Timing measurements of Silicon Photomultipliers (SiPM) [1] and [2] at the picosecond level were performed at Fermilab. The core timing resolution of the electronic measurement technique is approximately 2 ps. The single photoelectron time resolution (SPTR) was measured for the signals coming from the SiPM's. A SPTR of about one hundred picoseconds was obtained for SiPM's illuminated by laser pulses. The dependence of the SPTR on applied bias voltage and on the wavelength of the light was measured. A simple model is proposed to explain the difference in the SPTR for blue and red light. A time of flight system based on the SiPM's, with quartz Cherenkov radiators, was tested in a proton beam at Fermilab. The time resolution obtained is 35 ps per SiPM. Finally, requirements for the SiPM's temperature and bias voltage stability to maintain the time resolution are discussed.

  7. Residual Gas Noise in the Test-mass Module for DECIGO Pathfinder

    NASA Astrophysics Data System (ADS)

    Okutomi, K.; Akutsu, T.; Ando, M.; Nikaido, M.; Tanaka, N.; Torii, Y.; Sato, S.; Izumi, K.; Chen, D.

    2015-05-01

    DECIGO Pathfinder is the first milestone mission for DECIGO, a future gravitational wave antenna. In DPF, residual gas noise acting on the test mass is estimated to increase and exceed the requirement for force noise of 1 × 10-15 N/√Hz due to geometry of the test-mass module. We performed a Monte Carlo simulation to calculate the residual gas noise and found that the engineering model of the test-mass module cannnot satisfy the requirement. To reduce the gas noise, we present revised geometry of the test-mass module using comb-like electrodes.

  8. Testing molecular effects for tritium-based neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Bodine, Laura; Robertson, R. G. Hamish

    2015-10-01

    The upcoming KATRIN experiment will use the kinematics of tritium beta decay to probe the neutrino mass. The tritium source is molecular, however, and one of KATRIN's largest expected systematic uncertainties arises from the population of molecular final states following beta decay. To study this uncertainty, the Tritium Recoil-Ion Mass Spectrometer will measure the dissociation probability of the daughter molecule following beta decay, addressing a discrepancy between modern, high-precision theoretical calculations and two mass spectrometry measurements from the 1950s. We will describe the novel measurement technique and the commissioning of the experiment. This research is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  9. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  10. Thermophysical property testing using transient techniques

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Shoemaker, R. L.; Stark, J. A.; Koshigoe, L. G.

    1984-06-01

    Transient techniques were applied to the study of energetic materials (AP, HMX, RDX and HTPB) used in solid rocket fuel to carbon/carbon materials used as rocket nozzles. Studies on AP included single crystals, pressed powders and AP/HTPB mixtures. It was found that the conductivity of AP can be considered isotropic, even the orthrohombic phase. The conductivity values for pure AP calculated from the AP/HTPB mixtures were somewhat larger than those measured directly on single crystals due to imperfections in the relatively large single crystals. Conductivity values for Beta HMX obtained on pressed powders are believed to be 20% below those that would be obtained on good single crystals if they were available. Delta phase values are believed representative. Conductivity data useful for modeling AP/binder and HMX/binder fuel from RT to combustion were obtained. Successful techniques for determining in-situ conductivity values for carbon fibers and matrix in c/c composites were developed. The relative roles of the fibers and matrix in c/c subject to transient heat fluxes were delineated. The advantages of off-axis testing were revealed. Diffusivity values corresponding to thermal conductivity results could be obtained. The presence of a surface layer in which interconstituent thermal gradients are important and beyond which they are negligible was demonstrated.

  11. Fiber mass, count and breaking force from Stelometer test

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental understanding of the relationship among cotton fiber mass, count, and breaking force is important, as bundle fiber tenacity, elongation, and linear density can be calculated from these three parameters. In this study, the Stelometer instrument was employed, mostly because it is the tra...

  12. Initial experimental test of a helicon plasma based mass filter

    DOE PAGESBeta

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less

  13. Initial experimental test of a helicon plasma based mass filter

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-06-01

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.

  14. Mass Testing of Individual Writing: The California Model.

    ERIC Educational Resources Information Center

    White, Edward M.

    1978-01-01

    Presents remarks on essay testing made by Edward M. White, an account of procedures for developing essay questions for the California State University and Colleges (CSUC) English Equivalency Examination, the 1974 essay scale with accompanying writing samples, and the questions and scale used in the 1975 test. (RL)

  15. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  16. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  17. Fiber twist test: A new test technique to measure composite interface properties

    SciTech Connect

    Chepolis, W.M.; Ertuerk, T.

    1995-10-01

    This paper discusses the work accomplished, thus far, in the development of the Fiber Twist Test (FTT) as an alternative and improved technique for testing the interface properties of continuous fiber composite materials. The unique features of the fiber twist test include the absence of Poisson effects during testing. This eliminates the nonlinear variation, with changing embedded fiber lengths, of fracture modes and accompanying debond energy, and of friction along the interface. Since the fiber is not removed from its surrounding matrix during testing, the interface area remains constant. This facilitates a more accurate measurement of friction properties at the interface.

  18. Testing General Relativity with Spherical Resonant Mass Detectors

    NASA Astrophysics Data System (ADS)

    Sylvester, Alex J.

    Gravitational waves in f(R) gravity excite monopole and m = 0+/-2 quadrupole resonance modes of a spherical detector. This document reviews the basic ideas of general relativity and gravitational waves, and then applies those concepts to an f( R) gravitational wave. The acoustic response of a GW incident with a spherical detector is reviewed in detail, and the absorption cross section for an f(R) GW impinging on the spherical detector is calculated. Minimum detectable scalar wave amplitudes are explored for the Mario Schenberg detector. The mass of the scalar mode affects its detectability.

  19. Determination of densified biomass mass properties using 3D laser scanning and image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass densification is viewed as the indispensable feedstock preprocessing operation for efficient transport, storage, material flow through machines, and handling activities. Accurate mass properties of densified biomass such as surface area, volume, and envelope density form fundamental data for...

  20. Temperature dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect

    Iverson, Brian DeVon; Broome, Scott Thomas; Siegel, Nathan Phillip

    2010-08-01

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts.

  1. Cyclic material properties tests supporting elastic-plastic analysis development

    SciTech Connect

    Hodge, S.C.; Minicucci, J.M.

    1996-11-01

    Correlation studies have shown that hardening models currently available in the ABAQUS finite element code (isotropic, kinematic) do not accurately capture the inelastic strain reversals that occur due to structural rebounding from a rapidly applied transient dynamic load. The purpose of the Cyclic Material properties Test program was to obtain response data for the first several cycles of inelastic strain reversal from a cyclic properties test. This data is needed to develop elastic-plastic analysis methods that can accurately predict strains and permanent sets in structures due to rapidly applied transient dynamic loading. Test specimens were cycled at inelastic strain levels typical of rapidly applied transient dynamic analyses (0.5% to 4.0%). In addition to the inelastic response data, cyclic material properties for high yield strength (80 ksi) steel were determined including a cyclic stress-strain curve for a stabilized specimen. Two test methods, the Incremental Step method and the Companion specimen Method, were sued to determine cyclic properties. The incrementally decreasing strain amplitudes in the first loading block of the Incremental Step method test is representative of the response of structures subjected to rapidly applied transient dynamic loads. The inelastic strain history data generated by this test program will be used to support development of a material model that can accurately predict inelastic material behavior including inelastic strain reversals. Additionally, this data can be used to verify material model enhancements to elastic-plastic finite element analysis codes.

  2. Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance

    DOEpatents

    Granstaff, Victoria E.; Martin, Stephen J.

    1993-01-01

    A method, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.

  3. Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance

    DOEpatents

    Granstaff, V.E.; Martin, S.J.

    1993-04-13

    A method is described, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.

  4. Mass extinctions and cosmic collisions - A lunar test

    NASA Technical Reports Server (NTRS)

    Horz, F.

    1985-01-01

    The possibility has been considered that some or all major mass extinctions in the geologic record of earth are caused by the collision of massive, cosmic objects. Thus, it has been proposed that the unusual concentration of siderophile elements in strata at which the boundary between the Cretaceous (K) and Tertiary (T) geologic time periods has been placed must represent the remnants of a gigantic meteorite. However, a large 65-m.y.-old crater which could have been the result of the impact of this meteorite is not presently known on earth. One approach to evaluate the merits of the collisional hypothesis considered is based on the study of the probability of collision between a cosmic object of a suitable size and the earth. As moon and earth were subject to the same bombardment history and the preservation of craters on the moon is much better than on earth, a consideration of the lunar cratering record may provide crucial information.

  5. Mass extinctions and cosmic collisions - A lunar test

    NASA Astrophysics Data System (ADS)

    Horz, F.

    The possibility has been considered that some or all major mass extinctions in the geologic record of earth are caused by the collision of massive, cosmic objects. Thus, it has been proposed that the unusual concentration of siderophile elements in strata at which the boundary between the Cretaceous (K) and Tertiary (T) geologic time periods has been placed must represent the remnants of a gigantic meteorite. However, a large 65-m.y.-old crater which could have been the result of the impact of this meteorite is not presently known on earth. One approach to evaluate the merits of the collisional hypothesis considered is based on the study of the probability of collision between a cosmic object of a suitable size and the earth. As moon and earth were subject to the same bombardment history and the preservation of craters on the moon is much better than on earth, a consideration of the lunar cratering record may provide crucial information.

  6. How to test for mass degenerate Higgs resonances

    NASA Astrophysics Data System (ADS)

    Grossman, Yuval; Surujon, Ze'ev; Zupan, Jure

    2013-03-01

    The Higgs-like signal observed at the LHC could be due to several mass degenerate resonances. We show that the number of resonances is related to the rank of a "production and decay" matrix, R if . Each entry in this matrix contains the observed rate in a particular production mode i and final state f. In the case of N non-interfering resonances, the rank of R is, at most, N. If interference plays a role, the maximum rank is generically N 2, or with a universal phase, N( N + 1) /2. As an illustration we use the present experimental data to constrain the rank of the corresponding matrix. We estimate the LHC reach of probing two and three resonances under various speculations on future measurements and uncertainties.

  7. Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation

    SciTech Connect

    Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.

    2014-05-19

    The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.

  8. Numerical Calibration of Mass Flow Plug for Inlet Testing

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  9. Tests of blending and correlation of distillate fuel properties

    NASA Technical Reports Server (NTRS)

    Erwin, J.; Bowden, J. N.

    1982-01-01

    The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.

  10. The influence of body mass index and gender on the impact attenuation properties of flooring systems.

    PubMed

    Bhan, Shivam; Levine, Iris; Laing, Andrew C

    2013-12-01

    The biomechanical effectiveness of safety floors has never been assessed during sideways falls with human volunteers. Furthermore, the influence of body mass index (BMI) and gender on the protective capacity of safety floors is unknown. The purpose of this study was to test whether safety floors provide greater impact attenuation compared with traditional flooring, and whether BMI and gender modify their impact attenuation properties. Thirty participants (7 men and 7 women of low BMI; 7 men and 9 women of high BMI) underwent lateral pelvis release trials on 2 common floors and 4 safety floors. As a group, the safety floors reduced peak force (by up to 11.7%), and increased the time to peak force (by up to 25.5%) compared with a traditional institutional grade floor. Force attenuation was significantly higher for the low BMI group, and for males. Force attenuation was greatest for the low BMI males, averaging 26.5% (SD = 3.0) across the safety floors. These findings demonstrate an overall protective effect of safety floors during lateral falls on the pelvis, but also suggest augmented benefits for frail older adults (often with low body mass) who are at an increased risk of hip fracture. PMID:23429161

  11. Tracer mass recovery in fractured aquifers estimated from multiple well tests.

    PubMed

    Sanford, William E; Cook, Peter G; Robinson, Neville I; Weatherill, Douglas

    2006-01-01

    Forced-gradient tracer tests in fractured aquifers often report low mass recoveries. In fractured aquifers, fractures intersected by one borehole may not be intersected by another. As a result (1) injected tracer can follow pathways away from the withdrawal well causing low mass recovery and (2) recovered water can follow pathways not connected to the injection well causing significant tracer dilution. These two effects occur along with other forms of apparent mass loss. If the strength of the connection between wells and the amount of dilution can be predicted ahead of time, tracer tests can be designed to optimize mass recovery and dilution. A technique is developed to use hydraulic tests in fractured aquifers to calculate the conductance (strength of connection) between well pairs and to predict mass recovery and amount of dilution during forced gradient tracer tests. Flow is considered to take place through conduits, which connect the wells to each other and to distant sources or sinks. Mass recovery is related to the proportion of flow leaving the injection well and arriving at the withdrawal well, and dilution is related to the proportion of the flow from the withdrawal well that is derived from the injection well. The technique can be used to choose well pairs for tracer tests, what injection and withdrawal rates to use, and which direction to establish the hydraulic gradient to maximize mass recovery and/or minimize dilution. The method is applied to several tracer tests in fractured aquifers in the Clare Valley, South Australia. PMID:16857034

  12. Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brough, Sarah; Driver, Simon P.; Hopkins, Andrew M.; Kelvin, Lee; Loveday, Jon; Phillipps, Steve; Robotham, Aaron S. G.

    2014-11-01

    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 < Mr < -17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s-1 Mpc-1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr-1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10-4 Mpc-3 Gyr-1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < Mr < -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ˜ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to `harassment' in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.

  13. Rock mass mechanical property estimations for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    SciTech Connect

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-06-01

    Rock mass mechanical properties are important in the design of drifts and ramps. These properties are used in evaluations of the impacts of thermomechanical loading of potential host rock within the Yucca Mountain Site Characterization Project. Representative intact rock and joint mechanical properties were selected for welded and nonwelded tuffs from the currently available data sources. Rock mass qualities were then estimated using both the Norwegian Geotechnical Institute (Q) and Geomechanics Rating (RMR) systems. Rock mass mechanical properties were developed based on estimates of rock mass quality, the current knowledge of intact properties, and fracture/joint characteristics. Empirical relationships developed to correlate the rock mass quality indices and the rock mass mechanical properties were then used to estimate the range of rock mass mechanical properties.

  14. Chemical, mass spectrometric, and spectrochemical analysis of, and physical tests on, beryllium oxide powder

    SciTech Connect

    Not Available

    1981-01-01

    Beryllium oxide is used in the fabrication of nuclear components. In order to be suitable for this purpose, the material must meet certain criteria for impurity content and physical properties. The analytical and physical testing procedures in this standard are designed to show whether or not a given material meets accepted specifications. Test methods described in detail are: total carbon by the combustion-thermal conductivity method; iron by colorimetric (orthophenanthroline) method; nitride nitrogen by the micro Kjeldahl method; chloride by nephelometry; lithium by atomic absorption spectrophotometry; sulfur by combustion-iodometric titration method; beryllium oxide in beryllium oxide powders by impurity correction method; trace elements by the complete-burning spectrochemical method; impurity elements by a spark-source mass spectrographic method; density by toluene displacement method; density (pour and tap) by the tap-pak volumetric method; particle size distribution analysis by the coulter counter method; sieve analysis; bulk and real densities, porosity, and pore size-pore volume distribution mercury-penetration porosimetry; surface area by nitrogen absorption method. (JMT)

  15. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    PubMed

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748

  16. Estimating flow properties of quasi-newtonian mass-movements

    NASA Astrophysics Data System (ADS)

    Barnouin-Jha, O. S.; Bulmer, M.; Baloga, S.; Glaze, L.

    2001-12-01

    A variety of models exist in the literature to describe the flow behavior and rheological nature of debris flows. These include viscoplastic models, inertial grain flow models, fluid-solid momentum transport models and empirical Chezy-type models. For the purpose of planetary studies, the Chezy-type models have been found very useful. These models make few apriori assumptions on the physical processes ongoing in a debris flow, but rather parameterize the momentum transport and energy dissipation of debris flows with semi-empirical constants. When properly calibrated with appropriate field and laboratory evidence, these constants can provide a first order qualitative view into the behavior and rheological character, particularly water content, of a debris flow. Such a view permits the development and use of the more sophisticated debris flow models mentioned above where the physical processes are explicitly accounted for and from which, in conjunction with observation, quantitative rheological parameters can be determined. The strength of the Chezy-type models lies in that its parameterizing constants can be derived relatively easily from topographic data and airborne or space-based imaging and compared with a large body of terrestrial analogs. In this study, we will use a form of the Chezy model commonly applied to investigate quasi-Newtonian flows that are fast moving fluids bearing various kinds of loading or suspension. We will present a list of the Chezy constants for a wide-range of debris flows, ranging from water to water-rich landslides. This calibration table was determined by completing a literature search where velocity, channel slope, channel cross-sectional area, channel width and rheological characteristics of the debris flows were available. We show how rheological inferences, particularly water- content of one type of mass movement - debris flows - can be constrained using planetary data sets. These inferences are derived through judicious use of

  17. Modelling the post-Newtonian test-mass gravitational wave flux function for compact binary systems using Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2006-10-01

    We introduce a new method for modelling the gravitational wave flux function of a test-mass particle inspiralling into an intermediate mass Schwarzschild black hole which is based on Chebyshev polynomials of the first kind. It is believed that these intermediate mass ratio inspiral events (IMRI) are expected to be seen in both the ground- and space-based detectors. Starting with the post-Newtonian expansion from black hole perturbation theory, we introduce a new Chebyshev approximation to the flux function, which due to a process called Chebyshev economization gives a model with faster convergence than either post-Newtonian- or Padé-based methods. As well as having excellent convergence properties, these polynomials are also very closely related to the elusive minimax polynomial. We find that at the last stable orbit, the error between the Chebyshev approximation and a numerically calculated flux is reduced, <1.8%, at all orders of approximation. We also find that the templates constructed using the Chebyshev approximation give better fitting factors, in general >0.99, and smaller errors, <1/10%, in the estimation of the chirp mass when compared to a fiducial exact waveform, constructed using the numerical flux and the exact expression for the orbital energy function, again at all orders of approximation. We also show that in the intermediate test-mass case, the new Chebyshev template is superior to both PN and Padé approximant templates, especially at lower orders of approximation.

  18. Summary of the results of the LISA-Pathfinder Test Mass release

    NASA Astrophysics Data System (ADS)

    Zanoni, C.; Bortoluzzi, D.; Conklin, J. W.; Köker, I.; Seutchat, B.; Vitale, S.

    2015-05-01

    The challenging goal of LISA-Pathfinder in terms of maximum non-gravitational forces applied on the test mass poses tight constraints on the design of the Gravitational Reference Sensor. In particular, large gaps (3-4 mm) must exist between the test mass and its housing and any system there located must be either gold coated or made of a gold-based material. As a consequence, a significant adhesion may arise between the test mass and the mechanism designed to cage it during the spacecraft launch and to release it to free-fall. The criticality of the latter phase is enhanced by the control force authority exerted to the test mass by the surrounding electrodes. Such a force is limited by the large gaps (order of μN). Since the expected adhesion force between the test mass and its holding devices is much larger than the force authority, a dynamic release must be realized. However, following this procedure adhesion converts into test mass velocity, which can be controlled by the capacitive force only if it is smaller than 5 μm/s. At the University of Trento (Italy) the Transferred Momentum Measurement Facility has been designed and developed to measure the impulse produced by metallic adhesion upon quick rupture, in representative conditions of the LISA-Pathfinder test mass release to free-fall. Large sets of data have been collected and a mathematical model of the in-flight release dynamics has been developed, in order to estimate the test mass release velocity. A summary of the results is presented, together with an overview of the recent developments and a prediction of the in-flight performance.

  19. Heat-flow properties of systems with alternate masses or alternate on-site potentials

    NASA Astrophysics Data System (ADS)

    Pereira, Emmanuel; Santana, Leonardo M.; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  20. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  1. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  2. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  3. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  4. On the upscaling of mass transfer rate expressions for interpretation of source zone partitioning tracer tests

    NASA Astrophysics Data System (ADS)

    Boroumand, Ali; Abriola, Linda M.

    2015-02-01

    Analysis of partitioning tracer tests conducted in dense nonaqueous phase liquid (DNAPL) source zones relies on conceptual models that describe mass exchange between the DNAPL and aqueous phases. Such analysis, however, is complicated by the complex distribution of entrapped DNAPL mass and formation heterogeneity. Due to parameter uncertainty in heterogeneous regions and the desire to reduce model complexity, the effect of mass transfer limitations is often neglected, and an equilibrium-based model is typically used to interpret test results. This work explores the consequences of that simplifying assumption on test data interpretation and develops an alternative upscaled modeling approach to quantify effective mass transfer rates. To this end, a series of partitioning tracer tests is numerically simulated in heterogeneous two-dimensional PCE-DNAPL source zones, representative of a range of hydraulic conductivity and DNAPL mass distribution characteristics. The effective mass transfer coefficient corresponding to each test is determined by fitting an upscaled model to the simulated data, and regression analysis is performed to explore the correlation between various source zone metrics and the effective mass transfer coefficient. Results suggest that vertical DNAPL spreading, Reynolds number, pool fraction, and the effective organic phase saturation are the most significant parameters controlling tracer partitioning rates. Finally, a correlation for prediction of the effective (upscaled) mass transfer coefficient is proposed and verified using existing experimental data. The developed upscaled model incorporates the influence of physical heterogeneity on the rate of tracer partitioning and, thus, can be used for the estimation of source zone mass distribution characteristics from tracer test results.

  5. Modeling and Simulation of a Spinning Spherical Test Mass for Modular Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Conklin, John; Allen, Graham; Buchman, Sasha; Byer, Robert; Debra, Dan

    In a drag-free spacecraft, the spacecraft computer uses input from displacement sensors to fly at a constant distance from a free- floating test mass inside the spcaecraft. Optical sensors offer higher resolution and zero stiffness compared to capacitive sensors, but the small spot size makes them much more sensitive to test mass surface irregularities. Except for these residual geometric irregularities, the sphere is orientation invariant. Consequently, with a spherical test mass, we can eliminate electrostatic suspension for orientation control, which can cause unwanted forcing of the test mass. Spinning a sphere spectrally shifts the surface irregularities as well as the mass center offset from the geometric center out of the desired sensing band. Given that the outof-roundness and mass center offset of a sphere can be 105 larger than the desired resolution, special care must be taken to avoid aliasing spin frequency information into the science band. An analytical model for the output of a drag-free sensor using a spherical test mass including all first order contributions is developed. With this model, we evaluate systematic errors in the mass center measurement due to geometric variations which place requirements on spacecraft attitude and test mass dynamics. We also present a fast and reliable algorithm for recovering the mass center location and spin frequency of the test mass, in real-time, to picometer level from the sensor data. This algorithm involves fitting and removing the spin harmonics from the sensor output and uses the phase of the fitted harmonics to track the test mass spin frequency in real-time. A numerical simulation is developed to compared this algorithm to other possible data processing methods including a straight-forward tuned digital filter and a surface mapping algorithm. The computational complexity of each algorithm is analyzed since in there is limited CPU power on a satellite, and there is insufficient bandwidth for transmitting

  6. Mass Transport Properties in the Matrix of the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Bhandari, A. R.; Cronin, M.; Polito, P. J.; Flemings, P. B.; Bryant, S. L.

    2013-12-01

    We documented multi-scale permeability within Barnett shale samples using pulse decay permeability measurement method. We observe pressure dissipation at two timescales reflecting flow through micro-fractures and flow through the matrix. We estimate matrix permeability to be between 1×10-21 -25×10-21 m2 while the effective permeability of the bulk rock to be on the order of 10-18 m2 parallel to the bedding plane and 10-21 m2 normal to the bedding plane. We find bedding parallel micro-fractures possibly induced due to stress relief and sample preparation to be the dominant pathways for core plugs tested parallel to bedding plane. The Barnett shale core plugs have a porosity of 3-6%, are composed of quartz, calcite and clays, and have a total organic content of ˜4% and a maturity of 1.9 %Ro. The samples were 3.8 cm in diameter and less than 2.5 cm in length, were prepared from cores obtained at a depth of approximately 2330 m from the Mitchel Energy 2 T.P. Sims well. We conducted permeability measurements on core plugs at confining pressures ranging from 10.3 to 41.4 MPa using a hydrostatic pressure cell. We used argon as a pore fluid and kept the pore pressure constant at 6.9 MPa. The permeability anisotropy is normally attributed to preferential flow along bedding planes and any effects of micro-fractures are not properly investigated. By suitable experimental design, this study shows that only a fraction of the anisotropy can be attributed to parallel to bedding flow and to overlook micro-fractures will lead to erroneous interpretations.

  7. The effect of cellulose molar mass on the properties of palmitate esters.

    PubMed

    Willberg-Keyriläinen, Pia; Talja, Riku; Asikainen, Sari; Harlin, Ali; Ropponen, Jarmo

    2016-10-20

    Nowadays one of the growing trends is to replace oil-based products with cellulose-based materials. Currently most cellulose esters require a huge excess of chemicals and have therefore, not been broadly used in the industry. Here, we show that decreasing the molar mass of cellulose by ozone hydrolysis provides cellulose functionalization with less chemical consumption. To reveal the differences in reactivity and chemical consumption, we showed esterification of both native cellulose and ozone treated hydrolyzed cellulose. Based on the results, the molar mass of the starting cellulose has a significant effect on the end product's degree of substitution and properties. Furthermore, molar mass controlled palmitate esters form mechanically strong, flexible and optically transparent films with excellent water barrier properties. We anticipate that molar mass controlled cellulose will provide a starting point for the greater use of cellulose based materials, in various application, such as films and composites. PMID:27474646

  8. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  9. Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test

    SciTech Connect

    Jiang, Hao; Wang, Jy-An John

    2014-01-01

    An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, such as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.

  10. Clustering Properties and Halo Masses for Central Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Wang, Lixin; Li, Cheng; Jing, Y. P.

    2016-03-01

    We investigate the clustering and dark matter halo mass for a sample of ˜16,000 central galaxies selected from the SDSS/DR7 group catalog. We select subsamples of central galaxies on three two-dimensional planes, each formed by stellar mass (M{}*) and one other property out of optical color (g - r), surface stellar mass density ({μ }*), and central stellar velocity dispersion ({σ }*). For each subsample we measure both the projected cross-correlation function ({w}p({r}p)) relative to a reference galaxy sample, and an average mass of the host dark matter halos (M{}{{h}}). Both {w}p({r}p) and M{}{{h}} show the strongest dependence on M{}*, and there is no clear dependence on the other properties when M{}* is fixed. This result provides strong support to the previously adopted assumption that, for central galaxies, stellar mass is the best indicator of the host dark halo mass. For comparison we have estimated {w}p({r}p) for the full galaxy population and the population of satellite galaxies. Both populations show similar clustering properties in all cases, but they are similar to the centrals only at high masses (M{}* ≳ {10}11 {M}⊙ ). At lower masses, their {w}p({r}p) depends more strongly on {σ }* and g - r than on M{}*. It is thus necessary to consider central and satellite galaxies separately when studying the link between galaxies and dark matter halos. We discuss the implications of our results for the relative roles of halo mass and galaxy structure in quenching the star formation in central galaxies.

  11. Mechanical properties testing and results for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Cruse, T. A.; Johnsen, B. P.; Nagy, A.

    1997-03-01

    Mechanical test data for thermal barrier coatings, including modulus, static strength, and fatigue strength data, are reviewed in support of the development of durability models for heat engine applica-tions. The materials include 7 and 8 wt % yttria partially stabilized zirconia (PSZ) as well as a cermet ma-terial (PSZ +10 wt % NiCoCrAlY). Both air plasma sprayed and electron beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  12. The Evaluation of Flammability Properties Regarding Testing Methods

    NASA Astrophysics Data System (ADS)

    Osvaldová, Linda Makovická; Gašpercová, Stanislava

    2015-12-01

    In this paper, we address the historical comparison methods with current methods for the assessment of flammability characteristics for materials an especially for wood, wood components and wooden buildings. Nowadays in European Union brings harmonization in evaluated of standards into each European country and try to make one concept of evaluated the flammability properties. In each European country to the one standard level which will be used by evaluation of materials regarding flammability. In our article we focused mainly on improving the evaluation methods in terms of flammability characteristics of using materials at building industry. In the article we present examples of different assessment methods at their own test methods in terms of fire prevention. On the base of old compared of materials by STN, BS and DIN methods for testing materials on fire and new methods of evaluating the flammability properties regarding EU standards before and after starting the flash over.

  13. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  14. Mass property identification - A comparison study between extended Kalman filter and neuro-filter approaches

    NASA Technical Reports Server (NTRS)

    Lam, Quang; Chipman, Richard; Sunkel, John

    1991-01-01

    Two algorithms, extended Kalman filter and neuro-filter, are formulated to perform mass property identification for the Space Station Freedom. Control moment gyros that are part of the Station's basic momentum management system are chosen to provide input excitation in the form of applied torques. These torques together with the measured angular body rate responses are supplied to the filters. From these data, both algorithms are shown to accurately identify the station mass properties when excitation levels are high and balanced between axes. The neuro-filter, however, is shown to be more robust and to perform well even with weakly persistent, unbalanced signals contaminated with noise.

  15. Influence of Primary Glyoxal on Properties of Tested Drilling Mud

    NASA Astrophysics Data System (ADS)

    Minaev, K.; Martynova, D.; Knyazev, A.; Zaharov, A.; Shenderova, I.

    2014-08-01

    The research was done to observe the influence of primary glyoxal on properties of tested drilling mud. Glyoxal was used as a reagent to reduce viscosity and stabilize shale. Drilling mud processing parameters were estimated before and after affecting by glyoxal. Suggested is the method of polysaccharide modification by glyoxal for improving its resistance to microorganisms; carried out the research of bio- and thermal resistance of starchy and xanthan reagents.

  16. TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER

    SciTech Connect

    Epstein, Courtney R.; Johnson, Jennifer A.; Tayar, Jamie; Pinsonneault, Marc; Elsworth, Yvonne P.; Chaplin, William J.; Shetrone, Matthew; Mosser, Benoît; Hekker, Saskia; Harding, Paul; Silva Aguirre, Víctor; Basu, Sarbani; Beers, Timothy C.; Bizyaev, Dmitry; Bedding, Timothy R.; Frinchaboy, Peter M.; García, Rafael A.; and others

    2014-04-20

    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (<ΔM > =0.17 ± 0.05 M {sub ☉}) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 M {sub ☉} level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ∼100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.

  17. Basic principles on selection and use of diagnostic tests: properties of diagnostic tests.

    PubMed

    Carneiro, A V

    2001-12-01

    In clinical practice, in order to design and implement a specific therapeutic plan, as well as communicating an appropriate prognosis, the doctor needs to establish a precise diagnosis of the condition. Sometimes all one needs is a clinical impression. More often, however, the definition of an accurate diagnosis will mandate the interpretation of specific diagnostic tests as well. The rational use of diagnostic tests in cardiology--whether laboratorial or imaging--should be based on three factors: 1) validity of results of studies on the test; 2) diagnostic properties of the test; and 3) applicability of the test in the clinical setting. The rational use and the correct interpretation of diagnostic tests are based on these three factors. In a previous article we presented the basic principles concerning the validity of the results from the study that defined the specific test, and what level of evidence that constitutes. In this article we present the diagnostic properties of tests (sensitivity, specificity, positive and negative predictive values, likelihood ratios, odds). Finally, in a forthcoming paper we will discuss the applicability of the test in clinical cardiological practice. PMID:11865687

  18. A non-contacting vertical alignment system for mass properties measuring instruments

    SciTech Connect

    James, G.H. III; Suazo, J.E.; Varga, R.C.

    1993-11-01

    A non-contact system for alignment of objects on mass properties measuring instruments is described. Test parts can be aligned to within the capabilities of the user and the fixture to make the adjustments. The current implementation can align objects to less than .001 inches at two points with final requested adjustments of a few ten-thousands of an inch. The non-contact capability allows the alignment of objects which are too compliant or fragile for traditional contacting measurement methods. Also, this system allows the definition of a reference axis on objects which are not perfectly symmetric. The reference axis is defined at the top of the object by an appropriate marker and defined at the bottom by a best fit circle through the surface at a specified height. A general description of the hardware, procedures, and results are presented for the non-user. Appendices which contain a complete description of the software, usage, and mathematical implementation are provided for the reader who is interested in using or further developing the system.

  19. Experimental Testing of the HI Mass Reconstruction Procedure at Lis Setup

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Strekalovsky, A. O.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, E. A.; Mishinsky, V. G.; Strekalovsky, O. V.; Zhuchko, V. E.; Pyatkov, Yu. V.; Mkaza, N.

    2015-06-01

    Reconstruction of the heavy ion masses in the time-of-flight spectrometry is known to be a complicated task due to distortions both in timing and measuring of the ions energy using PIN diodes. Original procedure which takes into account simultaneously pulse height defect (PHD) and plasma delay for unbiased mass reconstruction was tested in series of experiments at the LIS setup using degrader foils.

  20. VAMP: A computer program for calculating volume, area, and mass properties of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Norton, P. J.; Glatt, C. R.

    1974-01-01

    A computerized procedure developed for analyzing aerospace vehicles evaluates the properties of elemental surface areas with specified thickness by accumulating and combining them with arbitrarily specified mass elements to form a complete evaluation. Picture-like images of the geometric description are capable of being generated.

  1. Development strategies for herbal products reducing the influence of natural variance in dry mass on tableting properties and tablet characteristics.

    PubMed

    Qusaj, Ylber; Leng, Andreas; Alshihabi, Firas; Krasniqi, Blerim; Vandamme, Thierry

    2012-01-01

    One "Quality by Design" approach is the focus on the variability of the properties of the active substance. This is crucially important for active substances that are obtained from natural resources such as herbal plant material and extracts. In this paper, we present various strategies for the development of herbal products especially taking into account the natural batch-to-batch variability (mainly of the dry mass) of tablets that contain a fixed amount of tincture. The following steps in the development have been evaluated for the outcome of the physico-chemical properties of the resulting tablets and intermediates: concentration of the tincture extracted from Echinacea fresh plant, loading of the concentrate onto an inert carrier, the respective wet granulation and drying step, including milling, and the adjuvant excipients for the tablet compression step. The responses that were investigated are the mean particle size of the dried and milled granulates, compaction properties and disintegration time of the tablets. Increased particle size showed a significant increase of the disintegration time and a decrease of the compaction properties. In addition, our results showed that the particle size has a great dependency on the ratio of liquid to carrier during the wet granulation process. Thus, the variability of the respective parameters tested was influenced by the performed strategies, which is how the tincture correlated to its dry mass and the relation of the amount of carrier used. In order to optimize these parameters, a strategy considering the above-mentioned points has to be chosen. PMID:24300367

  2. Diagnosis of Helicobacter pylori by carbon-13 urea breath test using a portable mass spectrometer

    PubMed Central

    Sreekumar, J; France, N; Taylor, S; Matthews, T; Turner, P; Bliss, P; Watson, AJM

    2015-01-01

    Context: In the non-invasive detection of markers of disease, mass spectrometry is able to detect small quantities of volatile markers in exhaled air. However, the problem of size, expense and immobility of conventional mass spectrometry equipment has restricted its use. Now, a smaller, less expensive, portable quadrupole mass spectrometer system has been developed. Helicobacter pylori has been implicated in the development of chronic gastritis, gastric and duodenal ulcers and gastric cancer. Objectives: To compare the results obtained from the presence of H. pylori by a carbon-13 urea test using a portable quadrupole mass spectrometer system with those from a fixed mass spectrometer in a hospital-based clinical trial. Methods: Following ethical approval, 45 patients attending a gastroenterology clinic at the Royal Liverpool University Hospital exhaled a breath sample into a Tedlar gas sampling bag. They then drank an orange juice containing urea radiolabelled with carbon and 30 min later gave a second breath sample. The carbon-13 content of both samples was measured using both quadrupole mass spectrometer systems. If the post-drink level exceeded the pre-drink level by 3% or more, a positive diagnosis for the presence of H. pylori was made. Results: The findings were compared to the results using conventional isotope ratio mass spectrometry using a laboratory-based magnetic sector instrument off-site. The results showed agreement in 39 of the 45 patients. Conclusions: This study suggests that a portable quadrupole mass spectrometer is a potential alternative to the conventional centralised testing equipment. Future development of the portable quadrupole mass spectrometer to reduce further its size and cost is indicated, together with further work to validate this new equipment and to enhance its use in mass spectrometry diagnosis of other medical conditions. PMID:26770764

  3. Measurements of the top-quark mass and properties at CMS

    NASA Astrophysics Data System (ADS)

    Dünser, Marc; CMS Collaboration

    2015-06-01

    Measurements of the top-quark mass and other top-quark properties are presented, obtained from the CMS data collected in 2011 and 2012 at centre-of-mass energies of 7 and 8 TeV. The mass of the top quark is measured using several methods and decay channels. The measurements of the top-quark properties include the W helicity in top-quark decays, the search for anomalous couplings, and the ratio of top-quarks decaying to bW over qW in order to gain information on |Vtb| using both t\\bar t and single-top quark event samples. The results are compared with predictions from the standard model as well as new physics models. The cross section of t\\bar t events produced in association with a W, Z boson or a photon is also measured.

  4. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  5. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  6. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics.

    PubMed

    Bell, Alexander W; Deutsch, Eric W; Au, Catherine E; Kearney, Robert E; Beavis, Ron; Sechi, Salvatore; Nilsson, Tommy; Bergeron, John J M

    2009-06-01

    We performed a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in liquid chromatography-mass spectrometry-based proteomics. We distributed an equimolar test sample, comprising 20 highly purified recombinant human proteins, to 27 laboratories. Each protein contained one or more unique tryptic peptides of 1,250 Da to test for ion selection and sampling in the mass spectrometer. Of the 27 labs, members of only 7 labs initially reported all 20 proteins correctly, and members of only 1 lab reported all tryptic peptides of 1,250 Da. Centralized analysis of the raw data, however, revealed that all 20 proteins and most of the 1,250 Da peptides had been detected in all 27 labs. Our centralized analysis determined missed identifications (false negatives), environmental contamination, database matching and curation of protein identifications as sources of problems. Improved search engines and databases are needed for mass spectrometry-based proteomics. PMID:19448641

  7. Improving the repeatability of replicate analyses in the laser mass spectroscopy of powdered geological test samples

    SciTech Connect

    Oksenoid, K.G.; Ramendik, G.I.; Shuranova, N.G.

    1995-11-01

    During laser mass-spectroscopic analysis of powdered geological test samples, the conditions of ion formation vary because the optical units of the source focusing the laser beam onto the test sample become dusty. These variations result in the inadequate repeatability of replicate measurements at different exposures. It is shown that the change in the total number of ions generated changes the shape of the mass-calibration curve of a mass spectrometer, which is among the reasons for variations in the analytical signals of elements in the course of analysis. A technique proposed for the consideration of such ion discriminations is based on the concept of the predominant effect of a scattered magnetic field on their formation. The technique was tested in a set of twelve analyses of the International Geological Standard W-2 (diabase). With the use of this technique, the relative standard deviation was decreased several times to 13% averaged over 30 elements.

  8. Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Crooks, D. R. M.; Sneddon, P.; Cagnoli, G.; Hough, J.; Rowan, S.; Fejer, M. M.; Gustafson, E.; Route, R.; Nakagawa, N.; Coyne, D.; Harry, G. M.; Gretarsson, A. M.

    2002-03-01

    Interferometric gravitational wave detectors use mirrors whose substrates are formed from materials of low intrinsic mechanical dissipation. The two most likely choices for the test masses in future advanced detectors are fused silica or sapphire (Rowan S et al 2000 Phys. Lett. A 265 5). These test masses must be coated to form mirrors, highly reflecting at 1064 nm. We have measured the excess mechanical losses associated with adding dielectric coatings to substrates of fused silica and calculated the effect of the excess loss on the thermal noise in an advanced interferometer.

  9. Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E. (Technical Monitor); Kellas, Sotiris

    2004-01-01

    A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.

  10. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    SciTech Connect

    Wang, Jy-An John; Jiang, Hao

    2013-08-01

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant

  11. Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor

    SciTech Connect

    D. H. Meikrantz; T. G. Garn; J. D. Law; N. R. Mann; T. A. Todd

    2008-09-01

    TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samples was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.

  12. Tester Board for testing mass-produced SMB modules for CMS Preshower

    NASA Astrophysics Data System (ADS)

    Velikzhanin, Y. S.; Chou, C. H.; Hsiung, Y. B.; Lee, Y. J.; Shiu, J. G.; Sun, C. D.; Wang, Y. Z.

    2007-09-01

    We have developed a Tester Board to test the electrical characteristics of the System Motherboard (SMB) for the CMS Preshower detector at CERN. The board is designed to test input resistances, output resistances, connections, interconnections and possible short- circuits of a module having up to 640 connector pins. The Tester Board is general-purpose in nature: it could be used to test any electronic module or cable by using dedicated cable sets. The module can detect a variety of problems not detected by either functional tests or the "flying probes" technique. The design, algorithms and results of using the Tester Board during mass production of CMS Preshower SMBs are presented.

  13. Hybrid Residual Flexibility/Mass-Additive Method for Structural Dynamic Testing

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.

    2003-01-01

    A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million. Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic bungee cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

  14. Furniture wood wastes: Experimental property characterisation and burning tests

    SciTech Connect

    Tatano, Fabio Barbadoro, Luca; Mangani, Giovanna; Pretelli, Silvia; Tombari, Lucia; Mangani, Filippo

    2009-10-15

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675 to 5105 kcal kg{sup -1} for HHV, and from 3304 to 4634 kcal kg{sup -1} for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM{sub 1} fraction during incomplete industrial wood burning.

  15. Construction and testing of the 2.5m mass driver

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Oneill, G. K.

    1979-01-01

    Presented are the designs used in the construction of the 2.5 m mass driver and the results of the initial testing program. The mass driver consists of equal length sections of acceleration and deceleration each containing 59 drive coils of 13.1 cm caliber. Intermediate energy storage is provided by sector capacitors which are recharged every half cycle by an external power source. The drive coils are individually energized through SCR's with timing supplied by position sensing optical detectors. The drive consists of two phases which operate in quadrature. The initial bucket to be propelled through the mass driver contains two coils of aluminum wire chilled to liquid nitrogen temperatures to momentarily sustain superconducting field intensities. Magnetic flight is generated by eddy current repulsion from six copper guide strips lining the mass driver. Nominal acceleration is 5000 m/sec per sec giving a maximum bucket velocity of 112 m/s.

  16. Optimal Asteroid Mass Determination from Planetary Range Observations: A Study of a Simplified Test Model

    NASA Technical Reports Server (NTRS)

    Kuchynka, P.; Laskar, J.; Fienga, A.

    2011-01-01

    Mars ranging observations are available over the past 10 years with an accuracy of a few meters. Such precise measurements of the Earth-Mars distance provide valuable constraints on the masses of the asteroids perturbing both planets. Today more than 30 asteroid masses have thus been estimated from planetary ranging data (see [1] and [2]). Obtaining unbiased mass estimations is nevertheless difficult. Various systematic errors can be introduced by imperfect reduction of spacecraft tracking observations to planetary ranging data. The large number of asteroids and the limited a priori knowledge of their masses is also an obstacle for parameter selection. Fitting in a model a mass of a negligible perturber, or on the contrary omitting a significant perturber, will induce important bias in determined asteroid masses. In this communication, we investigate a simplified version of the mass determination problem. Instead of planetary ranging observations from spacecraft or radar data, we consider synthetic ranging observations generated with the INPOP [2] ephemeris for a test model containing 25000 asteroids. We then suggest a method for optimal parameter selection and estimation in this simplified framework.

  17. Collective flow properties of intermediate mass fragments and isospin effects in fragmentation at Fermi energies

    SciTech Connect

    Baran, V.; Zus, R.; Colonna, M.; Di Toro, M.

    2013-11-13

    Within a microscopic transport model (Stochastic Mean Field) we analyze the collective flow properties associated to the intermediate mass fragments produced in nuclear fragmentation. We study the transverse and elliptic flow parameters for each rank in mass hierarchy. The results are plotted for {sup 124}Sn + {sup 124}Sn systems at an energy of 50AMeV and for an impact parameter b=4fm. The correlation with the dynamics of the isospin degree of freedom is also discussed and the results are presented for the same systems.

  18. Developing mass spectrometric techniques for boundary layer measurement in hypersonic high enthalpy test facilities

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.; Lewis, B. W.; Nowak, R. J.; Eide, D. G.; Paulin, P. A.; Upchurch, B. T.

    1983-01-01

    Thermodynamic flow properties of gases in the boundary layer or the flowfield have been mainly deduced from pressures and temperatures measured on a model. However, further progress with respect to an understanding of these properties requires a more complete characterization of the layer including determination of the gas composition and chemistry. Most attempts to measure boundary layer chemistry involve the employment of a mass spectrometer and an associated gas sampling system. The three major limiting factors which must be addressed for species measurement in aerothermodynamic investigations on models at reentry stream velocities, are gas sampling effects, instrument limitations, and problems with data acquisition. The present investigation is concerned with a concentrated effort to quantitatively identify and correct for instrument and sampling system effects, and to develop a miniaturized high performance mass spectrometer for on-model real-time analysis of the boundary layer and its associated atmosphere.

  19. Direct measurements of the fundamental properties of low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.

    2010-10-01

    Detailed theoretical models of stars, developed and observationally tested over the last century, now underlie most of modern astronomy. In contrast, models of lower temperature objects, brown dwarfs and gas giant planets, have only recently been developed and remained largely unconstrained by observations. Despite this lack of empirical validation, these models have become entrenched in many active areas of astronomical research, and thus rigorously testing them is imperative. Dynamical masses from visual binaries are central to this effort, but such measurements have been previously been impeded by observational limitations (ultracool binaries are faint, and their orbital separations are very small). This dissertation presents results from our program to test models using precise dynamical masses (as good as 2%) for ultracool binaries, based on infrared parallaxes, near-infrared spectroscopy, and Keck laser guide star adaptive optics astrometry for a sample of over 30 objects. In just the last 2 years, we have more than tripled the number of ultracool binaries with dynamical masses, extending these measurements to much lower temperatures in previously unexplored areas of parameter space. Our main results are summarized as follows: (1) For most field binaries, based on direct measurements of their luminosities and masses, we find that the temperatures predicted by evolutionary models are discrepant with those derived from fitting the observed spectra with model atmospheres, indicating systematic errors of [approximate]200 K in temperature (or 15%-20% in radius). We have also devised alternative model tests for these systems using their space motion and chromospheric activity to constrain their ages. (2) For the only field binary with an independent age determination from the solar-type primary in its hierarchical triple system (from age-activity-rotation relations), we find that evolutionary models systematically underpredict luminosities by a factor of

  20. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    SciTech Connect

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  1. Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John

    2006-01-01

    NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.

  2. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds

    SciTech Connect

    Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel; /UC, Santa Cruz, Phys. Dept.

    2012-02-29

    We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7} - {sub 0.4}(stat.){sup +0.3} - {sub 0.3}(sys.) x 10{sup 12} M {circle_dot} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M {circle_dot} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

  3. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  4. Conception of a test bench to generate known and controlled conditions of refrigerant mass flow.

    PubMed

    Martins, Erick F; Flesch, Carlos A; Flesch, Rodolfo C C; Borges, Maikon R

    2011-07-01

    Refrigerant compressor performance tests play an important role in the evaluation of the energy characteristics of the compressor, enabling an increase in the quality, reliability, and efficiency of these products. Due to the nonexistence of a refrigerating capacity standard, it is common to use previously conditioned compressors for the intercomparison and evaluation of the temporal drift of compressor performance test panels. However, there are some limitations regarding the use of these specific compressors as standards. This study proposes the development of a refrigerating capacity standard which consists of a mass flow meter and a variable-capacity compressor, whose speed is set based on the mass flow rate measured by the meter. From the results obtained in the tests carried out on a bench specifically developed for this purpose, it was possible to validate the concept of a capacity standard. PMID:21334618

  5. Comparison of DOE-2. 1C prediction with thermal mass test cell measurements

    SciTech Connect

    Birdsall, B.

    1985-01-10

    This report describes a Comparison of DOE-2.1C Prediction with Thermal Mass Test Cell Measurements performed by the Building Energy Simulation Group of the Applied Science Division (AS) at Lawrence Berkeley Laboratory, Berkeley, California. It is a companion study to one performed by the Passive Solar Group, ASD, at Lawrence Berkeley Laboratory. Purpose of the study was twofold: first, a comparison was made of simulated results with measured data taken by others from test cells of differing wall constructions at Gaithersburg, MD, and Tesuque Pueblo, NM. Second, a comparison was made of two computer simulations of a prototypical residence when using the programs to characterize the effects of wall thermal mass. The results indicate that the DOE-2 Computer Program for Building Energy Analysis and the Building Loads Analysis and System Thermodynamics (BLAST) programs give similar results and that DOE-2 closes within a reasonable tolerance (+-20%) to measured data from the test cells.

  6. Neutrino mass, proton decay, and neutron oscillations as crucial tests of unification models (A Review)

    PubMed Central

    Marshak, R. E.

    1982-01-01

    Several crucial tests of three popular unification models (of strong, electromagnetic, and weak interactions) are described. The models are SU(5) and SO(10) at the grand unification theory (GUT) level and SU(4)C × SU(2)L × SU(2)R at the partial unification theory (PUT) level. The tests selected for discussion are the finiteness of the neutrino mass in the electron volt region, the decay of protons into antileptons in the range of 1031± yr, and the detectability of neutron oscillations at all. The PUT group can also be tested by establishing the existence of four generations of quarks and leptons.

  7. Properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei

    SciTech Connect

    Gorelik, M. L. Shlomo, Sh. Tulupov, B. A. Urin, M. H.

    2015-07-15

    The recently developed particle-hole dispersive optical model is applied to describe properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. In particular, the double transition density averaged over the energy of the isoscalar monopole excitations is considered for {sup 208}Pb in a wide energy interval, which includes the isoscalar giant monopole resonance and its overtone. The energy-averaged strength functions of these resonances are also analyzed.

  8. The galaxy-dark matter halo connection: which galaxy properties are correlated with the host halo mass?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2015-09-01

    We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.

  9. Mass spectrometer measurements of test gas composition in a shock tunnel

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    Shock tunnels afford a means of generating hypersonic flow at high stagnation enthalpies, but they have the disadvantage that thermochemical effects make the composition of the test flow different to that of ambient air. The composition can be predicted by numerical calculations of the nozzle flow expansion, using simplified thermochemical models and, in the absence of experimental measurements, it has been necessary to accept the results given by these calculations. This note reports measurements of test gas composition, at stagnation enthalpies up to 12.5 MJ.kg(exp -1), taken with a time-of-flight mass spectrometer. Limited results have been obtained in previous measurements. These were taken at higher stagnation enthalpies, and used a quadruple mass spectrometer. The time-of-flight method was preferred here because it enabled a number of complete mass spectra to be obtained in each test, and because it gives good mass resolution over the range of interest with air (up to 50 a.m.a.).

  10. Precision Test of the Isobaric Multiplet Mass Equation in the A = 32, T = 2 Quintet

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Kwiatkowski, A. A.; Bollen, G.; Campbell, C. M.; Folden, C. M., III; Lincoln, D.; Morrissey, D. J.; Pang, G. K.; Prinke, A.; Savory, J.; Schwarz, S.

    2008-10-01

    Masses of the radionuclides ^32,33Si and ^34P and of the stable nuclide ^32S have been measured with the Low Energy Beam and Ion Trap (LEBIT) Penning trap mass spectrometer. Relative mass uncertainties of 3 x 10-8 and better have been achieved. The measured mass value of ^32Si differs from the literature value [1,2] by four standard deviations. The precise mass determination of ^32Si and ^32S have been employed to test the isobaric multiplet mass equation for the A = 32, T= 2 isospin quintet. The experimental results indicate a significant deviation from the quadratic form. This work has been supported by Michigan State University, the NSF under contract number PHY- 0606007, and the DOE under the contract DE-FG02-00ER41144. References: 1. G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729 (2003) 337 2. A. Paul, S. R"ottger, A. Zimbal, and U. Keyser, Hyperfine Interact. 132 (2001) 189

  11. Numerical Tests and Properties of Waves in Radiating Fluids

    SciTech Connect

    Johnson, B M; Klein, R I

    2009-09-03

    We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare the solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.

  12. TESTING MASS LOSS IN LARGE MAGELLANIC CLOUD CEPHEIDS USING INFRARED AND OPTICAL OBSERVATIONS. II. PREDICTIONS AND TESTS OF THE OGLE-III FUNDAMENTAL-MODE CEPHEIDS

    SciTech Connect

    Neilson, Hilding R.; Ngeow, Chow-Choong; Kanbur, Shashi M.; Lester, John B.

    2010-06-20

    In this paper, we test the hypothesis that Cepheids have infrared excesses due to mass loss. We fit a model using the mass-loss rate and the stellar radius as free parameters to optical observations from the OGLE-III survey and infrared observations from the Two Micron All Sky Survey and SAGE data sets. The sample of Cepheids has predicted minimum mass-loss rates ranging from 0 to 10{sup -8} M{sub sun} yr{sup -1}, where the rates depend on the chosen dust properties. We use the predicted radii to compute the period-radius relation for LMC Cepheids and to estimate the uncertainty caused by the presence of infrared excess for determining angular diameters with the infrared surface brightness technique. Finally, we calculate the linear and nonlinear period-luminosity (P-L) relations for the LMC Cepheids at VIJHK + IRAC wavelengths and find that the P-L relations are consistent with being nonlinear at infrared wavelengths contrary to previous results.

  13. The impact of the dibutyrylchitin molar mass on the bioactive properties of dressings used to treat soft tissue wounds.

    PubMed

    Krucinska, Izabella; Komisarczyk, Agnieszka; Paluch, Danuta; Szymonowicz, Maria; Zywicka, Boguslawa; Pielka, Stanislaw

    2012-01-01

    In this work, we describe a novel technique for producing biocompatible medical products with bioactive properties from the biodegradable polymer dibutyrylchitin (DBC). Materials produced by blowing out polymer solutions have excellent hemostaic properties and are easy to handle during surgery. Biocompatibility studies, encompassing hemostasis and the evaluation of post-implantation reactions, indicate that the biological properties of DBC depend on the molecular mass of the polymer. Lower molecular mass polymers are preferable for use in implanted wound dressings. PMID:22114056

  14. Testes Mass, but Not Sperm Length, Increases with Higher Levels of Polyandry in an Ancient Sex Model

    PubMed Central

    Vrech, David E.; Olivero, Paola A.; Mattoni, Camilo I.; Peretti, Alfredo V.

    2014-01-01

    There is strong evidence that polyandrous taxa have evolved relatively larger testes than monogamous relatives. Sperm size may either increase or decrease across species with the risk or intensity of sperm competition. Scorpions represent an ancient direct mode with spermatophore-mediated sperm transfer and are particularly well suited for studies in sperm competition. This work aims to analyze for the first time the variables affecting testes mass, ejaculate volume and sperm length, according with their levels of polyandry, in species belonging to the Neotropical family Bothriuridae. Variables influencing testes mass and sperm length were obtained by model selection analysis using corrected Akaike Information Criterion. Testes mass varied greatly among the seven species analyzed, ranging from 1.6±1.1 mg in Timogenes dorbignyi to 16.3±4.5 mg in Brachistosternus pentheri with an average of 8.4±5.0 mg in all the species. The relationship between testes mass and body mass was not significant. Body allocation in testes mass, taken as Gonadosomatic Index, was high in Bothriurus cordubensis and Brachistosternus ferrugineus and low in Timogenes species. The best-fitting model for testes mass considered only polyandry as predictor with a positive influence. Model selection showed that body mass influenced sperm length negatively but after correcting for body mass, none of the variables analyzed explained sperm length. Both body mass and testes mass influenced spermatophore volume positively. There was a strong phylogenetic effect on the model containing testes mass. As predicted by the sperm competition theory and according to what happens in other arthropods, testes mass increased in species with higher levels of sperm competition, and influenced positively spermatophore volume, but data was not conclusive for sperm length. PMID:24736525

  15. Testes mass, but not sperm length, increases with higher levels of polyandry in an ancient sex model.

    PubMed

    Vrech, David E; Olivero, Paola A; Mattoni, Camilo I; Peretti, Alfredo V

    2014-01-01

    There is strong evidence that polyandrous taxa have evolved relatively larger testes than monogamous relatives. Sperm size may either increase or decrease across species with the risk or intensity of sperm competition. Scorpions represent an ancient direct mode with spermatophore-mediated sperm transfer and are particularly well suited for studies in sperm competition. This work aims to analyze for the first time the variables affecting testes mass, ejaculate volume and sperm length, according with their levels of polyandry, in species belonging to the Neotropical family Bothriuridae. Variables influencing testes mass and sperm length were obtained by model selection analysis using corrected Akaike Information Criterion. Testes mass varied greatly among the seven species analyzed, ranging from 1.6 ± 1.1 mg in Timogenes dorbignyi to 16.3 ± 4.5 mg in Brachistosternus pentheri with an average of 8.4 ± 5.0 mg in all the species. The relationship between testes mass and body mass was not significant. Body allocation in testes mass, taken as Gonadosomatic Index, was high in Bothriurus cordubensis and Brachistosternus ferrugineus and low in Timogenes species. The best-fitting model for testes mass considered only polyandry as predictor with a positive influence. Model selection showed that body mass influenced sperm length negatively but after correcting for body mass, none of the variables analyzed explained sperm length. Both body mass and testes mass influenced spermatophore volume positively. There was a strong phylogenetic effect on the model containing testes mass. As predicted by the sperm competition theory and according to what happens in other arthropods, testes mass increased in species with higher levels of sperm competition, and influenced positively spermatophore volume, but data was not conclusive for sperm length. PMID:24736525

  16. Cost-Effectiveness between Double and Single Fecal Immunochemical Test(s) in a Mass Colorectal Cancer Screening

    PubMed Central

    Cai, Shan-Rong; Zhu, Hong-Hong; Huang, Yan-Qin; Li, Qi-Long; Ma, Xin-Yuan; Zhang, Su-Zhan; Zheng, Shu

    2016-01-01

    This study investigated the cost-effectiveness between double and single Fecal Immunochemical Test(s) (FIT) in a mass CRC screening. A two-stage sequential screening was conducted. FIT was used as a primary screening test and recommended twice by an interval of one week at the first screening stage. We defined the first-time FIT as FIT1 and the second-time FIT as FIT2. If either FIT1 or FIT2 was positive (+), then a colonoscopy was recommended at the second stage. Costs were recorded and analyzed. A total of 24,419 participants completed either FIT1 or FIT2. The detection rate of advanced neoplasm was 19.2% among both FIT1+ and FIT2+, especially high among men with age ≥55 (27.4%). About 15.4% CRC, 18.9% advanced neoplasm, and 29.9% adenoma missed by FIT1 were detected by FIT2 alone. Average cost was $2,935 for double FITs and $2,121 for FIT1 to detect each CRC and $901 for double FITs and $680 for FIT1 to detect each advanced neoplasm. Double FITs are overall more cost-effective, having significantly higher positive and detection rates with an acceptable higher cost, than single FIT. Double FITs should be encouraged for the first screening in a mass CRC screening, especially in economically and medically underserved populations/areas/countries. PMID:27144171

  17. Negative effect of the arthropod parasite, Sarcoptes scabiei, on testes mass in Iberian ibex, Capra pyrenaica.

    PubMed

    Sarasa, Mathieu; Serrano, Emmanuel; Soriguer, Ramón C; Granados, José-Enrique; Fandos, Paulino; Gonzalez, Georges; Joachim, Jean; Pérez, Jesús M

    2011-02-10

    Testes mass is a key factor in male reproductive success and is potentially exposed to so-called 'parasitic castration'. This is the result of the direct destruction or alteration of reproductive cell lineages (parasitic castration sensu stricto), or the indirect detrimental effects - for example, via body condition - on the ability of progenitors to produce or rear offspring (parasitic castration sensu lato). There are enormous gaps in our knowledge on the effects of parasites on the testes of wild mammals and in an attempt to rectify this dearth of data we examined the relationship between the skin parasite Sarcoptes scabiei and testes mass in Iberian ibex Capra pyrenaica. We considered data from 222 males that were culled in the population from the Sierra Nevada in Spain. Our results provide evidence that sarcoptic mange is associated with reduced size-corrected testes mass in Iberian ibex which supports the hypothesis that parasitism is a determining factor in gonad plasticity in male mammals. We discuss several hypothetical causes of this relationship and highlight the need to deepen the sub-lethal effects of pathogens if we are to accurately understand their modulator effects on host population dynamics. PMID:21074328

  18. Mass transfer and interfacial properties in two-phase microchannel flows

    NASA Astrophysics Data System (ADS)

    Martin, Jeffrey D.; Hudson, Steven D.

    2009-11-01

    Drop-based microfluidic devices are becoming more common, and molecular mass transfer and drop circulation are issues that often affect the performance of such devices. Moreover, interfacial properties and surfactant mass transfer rates govern emulsion behavior. Since these phenomena depend strongly on drop size, measurement methods using small drops and flow typical of applications are desired. Using mineral oil as a continuous phase, water droplets and an alcohol surfactant, we demonstrate here a microfluidic approach to measure the interrelated phenomena of dynamic interfacial tension, surfactant mass transfer and interfacial retardation that employs droplet flows in a microchannel with constrictions/expansions. Interfacial flow is influenced markedly by adsorption of surfactant: severe interfacial retardation (by a factor of 30) is observed at low surfactant concentrations and interface remobilization is observed at higher surfactant concentrations. The interfacial tension is described by Langmuir kinetics and the parameters for interfaces with mineral oil (studied here) compare closely with those previously found at air interfaces. For the conditions explored, the surfactant mass transfer is described well by a mixed kinetic-diffusion limited model, and the desorption rate coefficients are measured to be both approximately 70 s-1. The transition from a diffusion-controlled to mixed diffusion-kinetic mass transfer mechanism predicted with reducing drop size is verified. This experimental approach (i.e. adjustable geometry and drop size and height) can therefore probe interfacial dynamics in simple and complex flow.

  19. Ethnobotany/ethnopharmacology and mass bioprospecting: issues on intellectual property and benefit-sharing.

    PubMed

    Soejarto, D D; Fong, H H S; Tan, G T; Zhang, H J; Ma, C Y; Franzblau, S G; Gyllenhaal, C; Riley, M C; Kadushin, M R; Pezzuto, J M; Xuan, L T; Hiep, N T; Hung, N V; Vu, B M; Loc, P K; Dac, L X; Binh, L T; Chien, N Q; Hai, N V; Bich, T Q; Cuong, N M; Southavong, B; Sydara, K; Bouamanivong, S; Ly, H M; Thuy, Tran Van; Rose, W C; Dietzman, G R

    2005-08-22

    Ethnobotany/ethnopharmacology has contributed to the discovery of many important plant-derived drugs. Field explorations to seek and document indigenous/traditional medical knowledge (IMK/TMK), and/or the biodiversity with which the IMK/TMK is attached, and its conversion into a commercialized product is known as bioprospecting or biodiversity prospecting. When performed in a large-scale operation, the effort is referred to as mass bioprospecting. Experiences from the mass bioprospecting efforts undertaken by the United States National Cancer Institute, the National Cooperative Drug Discovery Groups (NCDDG) and the International Cooperative Biodiversity Groups (ICBG) programs demonstrate that mass bioprospecting is a complex process, involving expertise from diverse areas of human endeavors, but central to it is the Memorandum of Agreement (MOA) that recognizes issues on genetic access, prior informed consent, intellectual property and the sharing of benefits that may arise as a result of the effort. Future mass bioprospecting endeavors must take heed of the lessons learned from past and present experiences in the planning for a successful mass bioprospecting venture. PMID:15993554

  20. Development of Testing Methodologies for the Mechanical Properties of MEMS

    NASA Technical Reports Server (NTRS)

    Ekwaro-Osire, Stephen

    2003-01-01

    This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.

  1. Optimization of tuned mass damper for adjacent buildings with equal properties

    NASA Astrophysics Data System (ADS)

    Bekdaş, Gebrail; Nigdeli, Sinan Melih

    2013-10-01

    During earthquakes, adjacent structures may collide to each other because of insufficient seismic gap. By using tuned mass dampers (TMD), the sway of adjacent buildings be reduced and pounding of structures is prevented. In this case, TMDs must be tuned according to the properties of adjacent structures in order to reduce seismic gap (maximum difference of displacements). Also, adjacent structures with equal properties may collide because live-loads on structures is not constant. Change of live-load affects seismic behavior of structures. In this paper, TMDs for adjacent structures with equal properties are optimized by using harmony search algorithm. The approach is effective to reduce the value of seismic gap needed for protection of structures.

  2. TESTING A SCALE-INDEPENDENT METHOD TO MEASURE THE MASS OF BLACK HOLES

    SciTech Connect

    Gliozzi, M.; Titarchuk, L.; Satyapal, S.; Price, D.; Jang, I.

    2011-07-01

    Estimating the black hole mass at the center of galaxies is a fundamental step not only for understanding the physics of accretion, but also for the cosmological evolution of galaxies. Recently, a new method, based solely on X-ray data, was successfully applied to determine the black hole mass in Galactic systems. Since X-rays are thought to be produced via Comptonization process both in stellar and supermassive black holes, in principle, the same method may be applied to estimate the mass in supermassive black holes. In this work we test this hypothesis by performing a systematic analysis of a sample of active galactic nuclei, whose black hole mass has been already determined via reverberation mapping and which possess high-quality XMM-Newton archival data. The good agreement obtained between the black hole masses derived with this novel scaling technique and the reverberation mapping values suggests that this method is robust and works equally well on stellar and supermassive black holes, making it a truly scale-independent technique for black hole determination.

  3. Development Strategies for Herbal Products Reducing the Influence of Natural Variance in Dry Mass on Tableting Properties and Tablet Characteristics

    PubMed Central

    Qusaj, Ylber; Leng, Andreas; Alshihabi, Firas; Krasniqi, Blerim; Vandamme, Thierry

    2012-01-01

    One “Quality by Design” approach is the focus on the variability of the properties of the active substance. This is crucially important for active substances that are obtained from natural resources such as herbal plant material and extracts. In this paper, we present various strategies for the development of herbal products especially taking into account the natural batch-to-batch variability (mainly of the dry mass) of tablets that contain a fixed amount of tincture. The following steps in the development have been evaluated for the outcome of the physico-chemical properties of the resulting tablets and intermediates: concentration of the tincture extracted from Echinacea fresh plant, loading of the concentrate onto an inert carrier, the respective wet granulation and drying step, including milling, and the adjuvant excipients for the tablet compression step. The responses that were investigated are the mean particle size of the dried and milled granulates, compaction properties and disintegration time of the tablets. Increased particle size showed a significant increase of the disintegration time and a decrease of the compaction properties. In addition, our results showed that the particle size has a great dependency on the ratio of liquid to carrier during the wet granulation process. Thus, the variability of the respective parameters tested was influenced by the performed strategies, which is how the tincture correlated to its dry mass and the relation of the amount of carrier used. In order to optimize these parameters, a strategy considering the above-mentioned points has to be chosen. PMID:24300367

  4. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  5. Physical properties of low-mass star-forming galaxies at intermediate redshifts (z <1)

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Rodríguez-Muñoz, L.; Pacifici, C.; Tresse, L.; Charlot, S.; Gil de Paz, A.; Barro, G.; Villar, V.

    2015-05-01

    In this poster we present the physical properties of a sample of low-mass star-forming galaxies at intermediate redshifts (z<1). We selected a population of dwarf galaxies because dwarf galaxies play a key role in galaxy formation and evolution: (1) they resemble the first structures that hierarchical models predict to form first in the Universe (Dekel & Silk 1986) and that are responsible for the reionization process (Bouwens et al. 2012); and (2) the way or epoch they form and how they evolve are still open questions of modern astrophysics. We selected the sample on the CDFS field. Photometry (40 bands, from UV to far-IR) and preliminary photometric redshifts and stellar masses were obtained from RAINBOW database (Pérez-González et al. 2008). Morphology fom Griffith et al. (2012). Main selection was done by stellar mass, selecting those galaxies with stellar mass M_*<10^8 {M}_⊙. Spectroscopic redshifts were obtained from deep (4 h) MOS spectroscopy with the VIMOS spectrograph at VLT. The average spectrum is characterized by a faint, blue and flat continuum and strong emission lines, revealing that the systems are dominated by an undergoing star formation burst. SFRs and stellar masses are consistent with the SF main-squence over a 2 dex range. More massive objects show higher SFRs than low-mass objects, following the SF main sequence. Distant dwarfs and BCDs follow the overall star-forming sequence in the excitation-luminosity diagram, populating the high excitation, low metallicity and high strength region.

  6. Reconnection Properties of Large-scale Current Sheets During Coronal Mass Ejection Eruptions

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Edmondson, J. K.; Kazachenko, M. D.; Guidoni, S. E.

    2016-07-01

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch & Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼103), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  7. Effective-mass model and magneto-optical properties in hybrid perovskites

    PubMed Central

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole. PMID:27338834

  8. Effective-mass model and magneto-optical properties in hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  9. Reconnection Properties of Large-scale Current Sheets During Coronal Mass Ejection Eruptions

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Edmondson, J. K.; Kazachenko, M. D.; Guidoni, S. E.

    2016-07-01

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch & Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ˜100:1), Lundquist number (˜103), and reconnection rate (inflow-to-outflow ratios reaching ˜0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  10. Effective-mass model and magneto-optical properties in hybrid perovskites.

    PubMed

    Yu, Z G

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole. PMID:27338834

  11. Testing the Mass Balance of the Laurentide Ice Sheet During the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ullman, D. J.; Carlson, A. E.; Legrande, A. N.; Anslow, F. S.; Licciardi, J. M.; Caffee, M. W.

    2010-12-01

    Recent findings have suggested that the global Last Glacial Maximum occurred 26.5-20 ka. During this time, ice sheets were at their maximum extent and eustatic sea level was nearly 130 m lower than present. Such stability of Northern Hemisphere ice sheets suggests a nearly neutral net mass balance. Here we test the mass balance of the Laurentide Ice Sheet at the Last Glacial Maximum using an energy-mass balance model and two different ice sheet configurations. The energy-mass balance model is forced by simulated climate from the NASA Goddard Institute for Space Studies Model E-R, consistent with Last Glacial Maximum conditions. This coupled atmosphere-ocean global climate model contains water isotope tracers throughout the hydrologic cycle, which are used to constrain model skill against water isotopic records. Two model experiments are performed with different Laurentide Ice Sheet configurations: one using the ICE-5G geophysical reconstruction and the other using an alternative reconstruction based on a flow-line model that simulates glacier dynamics over deformable and rigid beds. These two reconstructions have widely contrasting ice sheet geometries at the Last Glacial Maximum, with the ICE-5G reconstruction having a much larger Keewatin Dome over west-central Canada, while the largest mass center according to the flow-line model is in the Labrador Dome over eastern Canada. This disparity in ice sheet geometry may result in large differences in simulated climate and net ice sheet mass balance. Initial results suggest that 1) the ICE-5G ice sheet forces a Last Glacial Maximum climate in conflict with paleoceanographic reconstructions of ocean circulation, whereas the flow-line ice sheet is in better agreement with circulation reconstructions; and 2) the initial increase in boreal summer insolation could trigger a negative mass balance for the Laurentide Ice Sheet by 21 ka, driving ice retreat. We will also compare our mass balance results with existing

  12. Born-Oppenheimer approximation for mass scaling of cold-collision properties

    SciTech Connect

    Falke, Stephan; Tiemann, Eberhard; Lisdat, Christian

    2007-07-15

    Asymptotic levels of the A {sup 1}{sigma}{sub u}{sup +} state of the two isotopomers {sup 39}K{sub 2} and {sup 39}K{sup 41}K up to the dissociation limit are investigated with a Doppler-free high resolution laser-spectroscopic experiment in a molecular beam. The observed level structure can be reproduced correctly only if a mass dependent correction term is introduced for the interaction potential. The applied relative correction in the depth of the potential is 10{sup -6}, which is in the order of magnitude expected for corrections of the Born-Oppenheimer approximation. A similar change in ground state potentials might lead to significant changes of mass-scaled properties describing cold collisions like the s-wave scattering length.

  13. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  14. Design of virtual display and testing system for moving mass electromechanical actuator

    NASA Astrophysics Data System (ADS)

    Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng

    2015-12-01

    Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.

  15. Vadose Zone VOC Mass Transfer Testing At The SRS Miscellaneous Chemical Basin

    SciTech Connect

    Riha, B

    2005-10-30

    will aid in answering the question ''How clean is protective of the environment''? For this study, a field test was developed to measure a mass transfer factor by injecting clean air into the subsurface through a sample port or well and measuring the rebound VOC concentration over time. Interpretation of the he results of these tests will provide a mass transfer rate that will be used to determine the appropriate type of SVE for the area (passive, enhanced or active SVE), a measured field parameter to estimate mass loading to the groundwater, and time frame for cleanup.

  16. Laboratory procedures and data reduction techniques to determine rheologic properties of mass flows

    USGS Publications Warehouse

    Holmes, R.R., Jr.; Huizinga, R.J.; Brown, S.M.; Jobson, H.E.

    1993-01-01

    Determining the rheologic properties of coarse- grained mass flows is an important step to mathematically simulate potential inundation zones. Using the vertically rotating flume designed and built by the U.S. Geological Survey, laboratory procedures and subsequent data reduction have been developed to estimate shear stresses and strain rates of various flow materials. Although direct measurement of shear stress and strain rate currently (1992) are not possible in the vertically rotating flume, methods were derived to estimate these values from measurements of flow geometry, surface velocity, and flume velocity.

  17. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Murro, Simone; Röken, Christian

    2016-07-01

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  18. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  19. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-02-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  20. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGESBeta

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  1. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-08-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  2. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry.

    PubMed

    Muramoto, Shin; Forbes, Thomas P; van Asten, Arian C; Gillen, Greg

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal intensity to the amount of drug deposited on the surface were generated from inkjet-printed arrays of cocaine, methamphetamine, and heroin with a deposited-mass ranging nominally from 10 pg to 50 ng per spot. These curves were used to construct concentration maps that visualized the spatial distribution of the drugs on top of a fingerprint, as well as being able to quantify the amount of drugs in a given area within the map. For the drugs on the fingerprint on silicon, ToF-SIMS showed great success, as it was able to generate concentration maps of all three drugs. On the fingerprint on paper, only the concentration map of cocaine could be constructed using ToF-SIMS and DESI-MS, as the signals of methamphetamine and heroin were completely suppressed by matrix and substrate effects. Spatially resolved quantification of illicit drugs using imaging mass spectrometry is possible, but the choice of substrates could significantly affect the results. PMID:25915085

  3. The X-Ray Properties of Million Solar Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard. M.; Gallo, Elena; Haardt, Francesco; Miller, Brendan P.; Wood, Callum J. L.; Reines, Amy E.; Wu, Jianfeng; Greene, Jenny E.

    2016-07-01

    We present new Chandra X-ray observations of seven low-mass black holes ({M}{{BH}}≈ {10}6 {M}ȯ ) accreting at low-bolometric Eddington ratios between -2.0≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -1.5. We compare the X-ray properties of these seven low-mass active galactic nuclei (AGNs) to a total of 73 other low-mass AGNs in the literature with published Chandra observations (with Eddington ratios extending from -2.0≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -0.1). We do not find any statistical differences between the low and high Eddington ratio low-mass AGNs in the distributions of their X-ray to ultraviolet luminosity ratios ({α }{{ox}}), or in their X-ray spectral shapes. Furthermore, the {α }{{ox}} distribution of low-{L}{{bol}}/{L}{{Edd}} AGNs displays an X-ray weak tail that is also observed within high-{L}{{bol}}/{L}{{Edd}} objects. Our results indicate that between -2≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -0.1, there is no systematic change in the structure of the accretion flow for active galaxies hosting {10}6 {M}ȯ black holes. We examine the accuracy of current bolometric luminosity estimates for our low-{L}{{bol}}/{L}{{Edd}} objects with new Chandra observations, and it is plausible that their Eddington ratios could be underestimated by up to an order of magnitude. If so, then in analogy with weak emission line quasars, we suggest that accretion from a geometrically thick, radiatively inefficient “slim disk” could explain their diverse properties in {α }{{ox}}. Alternatively, if current Eddington ratios are correct (or overestimated), then the X-ray weak tail would imply that there is diversity in disk/corona couplings among individual low-mass objects. Finally, we conclude by noting that the {α }{{ox}} distribution for low-mass black holes may have favorable consequences for the epoch of cosmic reionization being driven by AGN.

  4. Diagnostic Characteristics of Tests for Ocular Chlamydia after Mass Azithromycin Distributions

    PubMed Central

    See, Craig W.; Moncada, Jeanne; Ayele, Berhan; Gebre, Teshome; Stoller, Nicole E.; McCulloch, Charles E.; Porco, Travis C.; Gaynor, Bruce D.; Emerson, Paul M.; Schachter, Julius; Lietman, Thomas M.

    2012-01-01

    Purpose. Although trachoma control programs frequently use the World Health Organization (WHO) simplified grading system for trachoma to monitor the clinical response after repeated mass azithromycin treatments, the programmatic relevance of this evaluation after multiple rounds of antibiotic treatments is unclear. Methods. Three rounds of annual mass azithromycin were distributed to 12 villages in Ethiopia. Twelve months after the third treatment, children were assessed for follicular trachomatous inflammation (TF) and intense trachomatous inflammation (TI) using the WHO simplified grading system and for ocular chlamydial infection using DNA-based and RNA-based tests. Test characteristics for predicting chlamydial infection were computed assuming a chlamydial RNA-based gold standard. As a secondary analysis, test characteristics were also assessed using a latent class analysis. Results. The prevalence of RNA evidence of ocular chlamydia was 7.1% (95% confidence interval [CI], 2.7–17.4). A DNA-based test and TF had sensitivities of 61.0% (95% CI, 47.1–73.3) and 65.9% (95% CI, 41.6–83.9), specificities of 100% (95% CI, 99.3–100) and 67.5% (95% CI, 61.0–73.5), and positive predictive values of 100% (95% CI, 86.3–100) and 13.4% (95% CI, 5.5–29.3) compared with an RNA-based gold standard. The latent class analysis confirmed that the RNA-based test was a reasonable choice for a gold standard, with a sensitivity of 100% (95% CI, 67.1–100) and specificity of 99.6% (95% CI, 98.1–100). Conclusions. Basing treatment decisions after mass azithromycin distributions on the WHO simplified grading system will maximize the treatment of infected persons compared with a DNA-based test but will also result in more uninfected persons being treated. The RNA-based test was considerably more sensitive, and almost equivalently specific, compared with a DNA-based test. (ClinicalTrials.gov number, NCT00322972.) PMID:22159017

  5. A new class of equivalence principle test masses, with application to SR-POEM

    NASA Astrophysics Data System (ADS)

    Reasenberg, Robert D.

    2014-09-01

    We describe a new class of test masses (TMs) for use in a Galilean test of the equivalence principle, principally in space. These TMs have n\\geqslant 2 vertical bars that are joined by an off-center connector. A pair of TMs will be positioned to have interleaved bars. For n\\geqslant 3, the principal moments of inertia of a TM can be made equal. With their centers of mass aligned, a TM pair shows decreasing susceptibility to differential acceleration from local mass as n increases. For the Sounding Rocket based Principle Of Equivalence Measurement (SR-POEM), the mission requirements are well met with n=3, but not met with n=2. For a 1 kg SR-POEM TM, vibration frequencies can be made to be above 1 kHz and thus not interfere with the operation of the TM suspension system. The SR-POEM housing supports electrodes for a set of capacitance gauges that observes all six kinematic degrees of freedom of each TM.

  6. Beta-decay properties of neutron-rich medium-mass nuclei

    NASA Astrophysics Data System (ADS)

    Sarriguren, Pedro

    2016-06-01

    β-decay properties of even-even and odd-A neutron-rich Ge, Se, Kr, Sr, Zr, Mo, Ru, and Pd isotopes involved in the astrophysical rapid neutron capture process are studied within a microscopic proton-neutron quasiparticle random-phase approximation. The underlying mean field is based on a self-consistent Skyrme Hartree-Fock + BCS calculation that includes deformation as a key ingredient. The isotopic evolution of the various nuclear equilibrium shapes and the corresponding charge radii are investigated in all the isotopic chains. The energy distributions of the Gamow-Teller strength, as well as the β-decay half-lives are discussed and compared with the available experimental information. It is shown that nuclear deformation plays a significant role in the description of the decay properties in this mass region. Reliable predictions of the strength distributions are essential to evaluate decay rates in astrophysical scenarios.

  7. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test.

    PubMed

    Tita, B; Abdel-Haq, H; Vitalone, A; Mazzanti, G; Saso, L

    2001-01-01

    The analgesic properties of Epilobium angustifolium (Ea), a plant containing flavonoids with anti-inflammatory activity, have not been sufficiently studied so far. Thus, we decided to evaluate, by the classical hot plate test and the writhing test, the analgesic effect of a dry extract of Ea obtained by evaporating a commercially available mother tincture. In the former assay, the effect of Ea (380 mg/kg) was slightly lower than that of morphine (10 mg/kg s.c.). In the writhing test, which is more sensitive for non-steroidal analgesics, the effect of Ea was already significant (P < 0.05) at 95 mg/kg while at doses > or = 190 mg/kg, its activity was similar to that of lysine acetylsalicylate (300 mg/kg). The LD50 of this dry extract of Ea was 1.4+/-0.1 g/kg. Further studies are necessary for the identification of the active principles and the elucidation of their mechanism of action. PMID:11482754

  8. The evaluation of properties of coal mass from the viewpoint of environment

    SciTech Connect

    Foniok, R.; Lukes, M.

    1995-12-01

    This paper deals with the evaluation of several various coal kinds from the Czech coalfields from the viewpoint of the development of thermal processes in coal mass due to their tendency towards self- ignition during storing. In such a case that no self-ignition during storing occurs, gaseous products are liberated into air, the quantity and composition of which depend upon fuel type and its temperature as well. From the environmental viewpoint, substances washed from stored coal are of a certain interest, too. In accordance with this fact, the importance of measures against self-heating of stored coal mass and the importance of a detailed observation of coal quality are concluded. The tables, which compare various coal kinds from the viewpoint of their behavior at self-ignition processes, are the integral part of this presented paper. Our greatest attention is paid to both the quantity and composition of gases being liberated in dependence upon the temperature of coal mass, and at its crushing with regard to selected methods and means of milling circuits before and explosion. Oxygen sorption by means of coal mass is also observed, being of a great importance for self-inertization of closed tanks. All the above-mentioned processes are demonstrated in form of graphic plots. Qualitative signs of coal mass are the basic means for its assessment from the viewpoint of emissions at burning/combustion, and the evaluation of explosive properties. A great attention is paid to explosion-proof means being produced in the Czech Republic. These means can be used for protection of milling circuits of power plants and heating plants or for safety systems of combustion chamber by means of insulation to secondary air main. Explosion-proof quci-acting valves, a special type of safety membrane and device for explosion suppression nip in the bud do represent the latest explosion-proof means.

  9. Higher Doses of Bisphosphonates Further Improve Bone Mass, Architecture, and Strength but Not the Tissue Material Properties in Aged Rats

    PubMed Central

    Shahnazari, Mohammad; Yao, Wei; Dai, WeiWei; Wang, Bob; Ionova-Martin, Sophi S.; Ritchie, Robert O.; Heeren, Daniel; Burghardt, Andrew J.; Nicolella, Daniel P.; Kimiecik, Michael G.; Lane, Nancy E.

    2010-01-01

    We report the results of a series of experiments designed to determine the effects of ibandronate (Ibn) and risedronate (Ris) on a number of bone quality parameters in aged osteopenic rats to explain how bone material and bone mass may be affected by the dose of bisphosphonates (BP) and contribute to their anti-fracture efficacy. Eighteen-month old female rats underwent either ovariectomy or sham surgery. The ovariectomized (OVX) groups were left untreated for 2 months to develop osteopenia. Treatments started at 20 months of age as follows: sham and OVX control (treated with saline), OVX+risedronate 30 and 90 (30 or 90 μg/kg/dose), and OVX+ibandronate 30 and 90 (30 or 90 μg/kg/dose). The treatments were given monthly for four months by subcutaneous injection. At sacrifice at 24 months of age the 4th lumbar vertebra was used for μCT scans (bone mass, architecture, and degree of mineralization of bone, DMB) and histomorphometry, and the 6th lumbar vertebra, tibia, and femur were collected for biomechanical testing to determine bone structural and material strength, cortical fracture toughness, and tissue elastic modulus. The compression testing of the vertebral bodies (LVB6) was simulated using finite-element analysis (FEA) to also estimate the bone structural stiffness. Both Ibn and Ris dose-dependently increased bone mass and improved vertebral bone microarchitecture and mechanical properties compared to OVX control. Estimates of vertebral maximum stress from FEA were correlated with vertebral maximum load (r=0.5, p<0.001) and maximum stress (r=0.4, p<0.005) measured experimentally. Tibial bone bending modulus and cortical strength increased compared to OVX with both BP but no dose-dependent effect was observed. DMB and elastic modulus of trabecular bone were improved with Ibn30 compared to OVX but were not affected in other BP-treated groups. DMB of tibial cortical bone showed no change with BP treatments. The fracture toughness examined in midshaft femurs did

  10. Trampoline Resonator Fabrication for Tests of Quantum Mechanics at High Mass

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew; Pepper, Brian; Sonin, Petro; Eerkens, Hedwig; Buters, Frank; de Man, Sven; Bouwmeester, Dirk

    2014-03-01

    There has been much interest recently in optomechanical devices that can reach the ground state. Two requirements for achieving ground state cooling are high optical finesse in the cavity and high mechanical quality factor. We present a set of trampoline resonator devices using high stress silicon nitride and superpolishing of mirrors with sufficient finesse (as high as 60,000) and quality factor (as high as 480,000) for ground state cooling in a dilution refrigerator. These devices have a higher mass, between 80 and 100 ng, and lower frequency, between 200 and 500 kHz, than other devices that have been cooled to the ground state, enabling tests of quantum mechanics at a larger mass scale.

  11. Development of an Organic Lateral Resolution Test Device for Imaging Mass Spectrometry

    PubMed Central

    2015-01-01

    An organic lateral resolution test device has been developed to measure the performance of imaging mass spectrometry (IMS) systems. The device contains periodic gratings of polyethylene glycol (PEG) and lipid bars covering a wide range of spatial frequencies. Microfabrication technologies were employed to produce well-defined chemical interfaces, which allow lateral resolution to be assessed using the edge-spread function (ESF). In addition, the design of the device allows for the direct measurement of the modulation transfer function (MTF) to assess image quality. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to characterize the device. TOF-SIMS imaging was used to measure the chemical displacement of biomolecules in matrix-assisted laser desorption/ionization (MALDI) matrix crystals. In a proof-of-concept experiment, the platform was also used to evaluate MALDI matrix application methods, specifically aerosol spray and sublimation methods. PMID:25137365

  12. The global chemical properties of high-mass star forming clumps at different evolutionary stages

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Jun; Zhou, Jian-Jun; Esimbek, Jarken; He, Yu-Xin; Li, Da-Lei; Tang, Xin-Di; Ji, Wei-Guang; Yuan, Ye; Guo, Wei-Hua

    2016-06-01

    A total of 197 relatively isolated high-mass star-forming clumps were selected from the Millimeter Astronomy Legacy Team 90 GHz (MALT90) survey data and their global chemical evolution investigated using four molecular lines, N2H+ (1--0), HCO+ (1--0), HCN (1-0), and HNC (1-0). The results suggest that the global averaged integrated intensity ratios I(HCO+)/I(HNC), I(HCN)/I(HNC), I(N2H+)/I(HCO+), and I(N2H+)/ I(HCN) are promising tracers for evolution of high-mass star-forming clumps. The global averaged column densities and abundances of N2H+, HCO+, HCN, and HNC increase as clumps evolve. The global averaged abundance ratios X(HCN)/X(HNC) could be used to trace evolution of high-mass star forming clumps, X(HCO+)/X(HNC) is more suitable for distinguishing high-mass star-forming clumps in prestellar (stage A) from those in protostellar (stage B) and HII/PDR region (stage C). These results suggest that the global averaged integrated intensity ratios between HCN (1-0), HNC (1-0), HCO+ (1--0) and N2H+ (1--0) are more suitable for tracing the evolution of high-mass star forming clumps. We also studied the chemical properties of the target high-mass star-forming clumps in each spiral arm of the Galaxy, and got results very different from those above. This is probably due to the relatively small sample in each spiral arm. For high-mass star-forming clumps in Sagittarius arm and Norma-Outer arm, comparing two groups located on one arm with different Galactocentric distances, the clumps near the Galactic Center appear to be younger than those far from the Galactic center, which may be due to more dense gas concentrated near the Galactic Center, and hence more massive stars being formed there.

  13. Mapping the mechanical properties of rocks using automated microindentation tests

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Pride, Steven R.

    2015-10-01

    A microindentation scanner is constructed that measures the spatial fluctuation in the elastic properties of natural rocks. This novel instrument performs automated indentation tests on the surface of a rock slab and outputs 2-D maps of the indentation modulus at submillimeter resolution. Maps obtained for clean, well-consolidated, sandstone are presented and demonstrate the capabilities of the instrument. We observe that the elastic structure of sandstones correlates well with their visual appearance. Further, we show that the probability distribution of the indentation modulus fluctuations across the slab surfaces can be modeled using a lognormal probability density function. To illustrate possible use of the data obtained with the microindentation scanner, we use roughly 10 cm × 10 cm scans with millimeter resolution over four sandstone planar slabs to numerically compute the overall drained elastic moduli for each sandstone sample. We show that such numerically computed moduli are well modeled using the multicomponent form of the Hashin-Shtrikman lower bound that employs the observed lognormal probability distribution for the mesoscopic-scale moduli (the geometric mean works almost the same). We also compute the seismic attenuation versus frequency associated with wave-induced fluid flow between the heterogeneities in the scanned sandstones and observe relatively small values for the inverse quality factor (Q-1<10-2) in the seismic frequency band 102 Hz

  14. Field testing of lake water chemistry with a portable and an AUV-based mass spectrometer.

    PubMed

    Hemond, Harry F; Mueller, Amy V; Hemond, Michael

    2008-10-01

    Two mass spectrometers (MS) are tested for the measurement of volatile substances, such as hydrocarbons and metabolic gases, in natural waters. KOALA is a backpackable MS operated from above the water surface, in which samples are pumped through a flow cell using a syringe. NEREUS is an underwater instrument hosted by an autonomous underwater vehicle (AUV) that is linked to a communications network to provide chemical data in real time. The mass analyzers of the two MS are nearly identical cycloids, and both use flat-plate membrane inlets. Testing took place in an eutrophic, thermally stratified lake exhibiting steep chemical gradients and significant levels of methane. KOALA provided rapid multispecies analysis of dissolved gases, with a detection limit for methane of 0.1 ppm (readily extendable to 0.01 ppm) and savings of time of at least a factor of 10 compared to that of conventional analysis. The AUV-mounted NEREUS additionally provided rapid spatial coverage and the capability of performing chemical surveys autonomously. Tests demonstrated the need for temperature control of a membrane inlet when steep thermal gradients are present in a water body, as well as the benefits of co-locating all sensors on the AUV to avoid interference from chemically different waters entering and draining from the free-flooding outer hull. The ability to measure dissolved volatiles provided by MS offers potential for complementarity with ionic sensors in the study of natural waters, such as in the case of the carbonate system. PMID:18468452

  15. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Shang, De-Yi; Zhong, Liang-Cai

    2016-04-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  16. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  17. Comparing interferometry techniques for multi-degree of freedom test mass readout

    NASA Astrophysics Data System (ADS)

    Isleif, Katharina-Sophie; Gerberding, Oliver; Mehmet, Moritz; Schwarze, Thomas S.; Heinzel, Gerhard; Danzmann, Karsten

    2016-05-01

    Laser interferometric readout systems with 1pm/Hz precision over long time scales have successfully been developed for LISA and LISA Pathfinder. Future gravitational physics experiments, for example in the fields of gravitational wave detection and geodesy, will potentially require similar levels of displacement and tilt readouts of multiple test masses in multiple degrees of freedom. In this article we compare currently available classic interferometry schemes with new techniques using phase modulations and complex readout algorithms. Based on a simple example we show that the new techniques have great potential to simplify interferometric readouts.

  18. Reassessing rock mass properties and slope instability triggering conditions in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Battista; Utili, Stefano; De Blasio, Fabio Vittorio; Castellanza, Riccardo

    2014-02-01

    The rock walls of the Valles Marineris valleys (VM) in the equatorial area of Mars exhibit several gravitational failures which resulted in a series of large landslides up to several hundred cubic kilometers in volume. Questions arise as to forces at play and rock strength in the stability of the walls of VM. In this work we address the stability analysis of the walls of VM by considering the strength of the materials of the walls and the causes of landslides. Using finite element calculations and the limit analysis upper bound method, we explore the range of cohesion and friction angle values associated with realistic failure geometries, and compare predictions with the more classical Culmann's translational failure model. Our analysis is based both on synthetic, simplified slope profiles, and on the real shape of the walls of VM taken from the MOLA topographic data. Validation of the calibrated cohesion and friction angle values is performed by comparing the computed unstable cross sectional areas with the observed pre- and post-failure profiles, the estimated failure surface geometry and ridge crest retreat. This offers a link between rock mass properties, slope geometry and volume of the observed failure, represented in dimensionless charts. The role of groundwater flow and seismic action on the decrease of slope stability is also estimated. Pseudo-static seismic analyses provide another set of dimensionless charts and show that low seismicity events induced by meteoroid impacts, consistent with the size of craters, could be a cause for some of the observed landslides, if poor rock properties for VM are assumed. Analyses suggest that rock mass properties are more similar to their earth equivalents with respect to what has been previously supposed.

  19. Subsurface mass transport affects the radioxenon signatures that are used to identify clandestine nuclear tests

    NASA Astrophysics Data System (ADS)

    Deinert, M. R.

    2012-12-01

    Underground nuclear tests produce anthropogenic isotopes that provide the only definitive means by which to determine whether a nuclear explosion has taken place. Verification of a suspected test under the Comprehensive Nuclear-Test-Ban Treaty often relies on ratios of radioxenon isotopes. Gas samples are gathered either on-site or off-site with certain ranges of xenon isotope ratios considered to be a signature of a weapons test. It is well established that below ground transport can affect the rate at which Noble gasses will reach the surface. However, the relative abundance of anthropogenic isotopes is has long been assumed to rely solely on fission yield and decay rate. By including in subsurface transport models the effects of mass dependent diffusion, and a time dependent source term for the decay of radioiodine precursors, we show here that this assumption is not true. In fact, certain combinations of geology and atmospheric conditions can alter xenon isotope ratios sufficiently for a weapons test going unconfirmed under the current standards.

  20. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  1. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data

    NASA Astrophysics Data System (ADS)

    Mainhagu, J.; Brusseau, M. L.

    2016-09-01

    The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts.

  2. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data.

    PubMed

    Mainhagu, J; Brusseau, M L

    2016-09-01

    The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts. PMID:27494132

  3. Truth in Testing Legislation and Private Property Concepts.

    ERIC Educational Resources Information Center

    Burns, Daniel J.

    1981-01-01

    Truth in testing laws are subject to challenge on the grounds that they invade federally protected rights and interests of the test-makers through the due process clauses of the Constitution and federal copyright protections. (Author/MLF)

  4. Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents

    SciTech Connect

    Aaron D. Wilson; Christopher J. Orme

    2014-12-01

    Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.

  5. Properties of the Fast Forward Shock Driven by the July 23 2012 Extreme Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Giacalone, Joe; Liu, Ying

    2015-08-01

    Late on July 23, 2012, the STEREO-A spacecraft encountered a fast forward shock driven by a coronal mass ejection launched earlier that same day. The estimated travel time of the disturbance, together with the massive magnetic field strengths measured within the ejecta, made it one of the most extreme events observed during the space era. In this study, we examine the properties of the shock wave. Because an instrument malfunction limited the available plasma measurements during the interval surrounding the CME, our approach has been modified to capitalize on the available measurements and suitable proxies, where possible. We were able to infer the following properties. First, the shock normal, n, was pointing predominantly in the radial direction (0.97,-0.09,-0.23). Second, the angle between n and the upstream magnetic field, theta-Bn, was estimated to be ~34 Deg., making the shock "quasi-parallel," and consistent with there being an earlier "preconditioning" ICME. Third, the shock speed was estimated to be between ~2700 and ~3300 km/s, depending on the technique employed. Finally, in contrast to an earlier study, we found no evidence that the properties of the shock were modified by energetic particles: The change in ram pressure upstream of the shock was ~5 times larger than the pressure from the energetic particles.

  6. Testing the hydrologic utility of geologic frameworks for extrapolating hydraulic properties across large scales

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Halford, K. J.; Sweetkind, D. S.; Fenelon, J.

    2014-12-01

    The utility of geologic frameworks for extrapolating hydraulic conductivities to length scales that are commensurate with hydraulic data has been assessed at the Nevada National Security Site in highly-faulted volcanic rocks. Observed drawdowns from eight, large-scale, aquifer tests on Pahute Mesa provided the necessary constraints to test assumed relations between hydraulic conductivity and interpretations of the geology. The investigated volume of rock encompassed about 40 cubic miles where drawdowns were detected more than 2 mi from pumping wells and traversed major fault structures. Five sets of hydraulic conductivities at about 500 pilot points were estimated by simultaneously interpreting all aquifer tests with a different geologic framework for each set. Each geologic framework was incorporated as prior information that assumed homogeneous hydraulic conductivities within each geologic unit. Complexity of the geologic frameworks ranged from an undifferentiated mass of rock with a single unit to 14 unique geologic units. Analysis of the model calibrations showed that a maximum of four geologic units could be differentiated where each was hydraulically unique as defined by the mean and standard deviation of log-hydraulic conductivity. Consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation were evaluated qualitatively with maps of transmissivity. Distributions of transmissivity were similar within the investigated extents regardless of geologic framework except for a transmissive streak along a fault in the Fault-Structure framework. Extrapolation was affected by underlying geologic frameworks where the variability of transmissivity increased as the number of units increased.

  7. Cerumen of Australian stingless bees ( Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties

    NASA Astrophysics Data System (ADS)

    Massaro, Flavia Carmelina; Brooks, Peter Richard; Wallace, Helen Margaret; Russell, Fraser Donald

    2011-04-01

    Cerumen, or propolis, is a mixture of plant resins enriched with bee secretions. In Australia, stingless bees are important pollinators that use cerumen for nest construction and possibly for colony's health. While extensive research attests to the therapeutic properties of honeybee ( Apis mellifera) propolis, the biological and medicinal properties of Australian stingless bee cerumen are largely unknown. In this study, the chemical and biological properties of polar extracts of cerumen from Tetragonula carbonaria in South East Queensland, Australia were investigated using gas chromatography-mass spectrometry (GC-MS) analyses and in vitro 5-lipoxygenase (5-LOX) cell-free assays. Extracts were tested against comparative (commercial tincture of A. mellifera propolis) and positive controls (Trolox and gallic acid). Distinct GC-MS fingerprints of a mixed diterpenic profile typical of native bee cerumen were obtained with pimaric acid (6.31 ± 0.97%, w/w), isopimaric acid (12.23 ± 3.03%, w/w), and gallic acid (5.79 ± 0.81%, w/w) tentatively identified as useful chemical markers. Characteristic flavonoids and prenylated phenolics found in honeybee propolis were absent. Cerumen extracts from T. carbonaria inhibited activity of 5-LOX, an enzyme known to catalyse production of proinflammatory mediators (IC50 19.97 ± 2.67 μg/ml, mean ± SEM, n = 4). Extracts had similar potency to Trolox (IC50 12.78 ± 1.82 μg/ml), but were less potent than honeybee propolis (IC50 5.90 ± 0.62 μg/ml) or gallic acid (IC50 5.62 ± 0.35 μg/ml, P < 0.001). These findings warrant further investigation of the ecological and medicinal properties of this stingless bee cerumen, which may herald a commercial potential for the Australian beekeeping industry.

  8. Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.

    PubMed

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683

  9. Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses

    PubMed Central

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683

  10. Interpolation of the magnetic field at the test masses in eLISA

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Díaz-Aguiló, M.; Ramos-Castro, J.; García-Berro, E.; Lobo, A.

    2015-08-01

    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-sized sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently conceived, and assess the feasibility of selecting these sensors in the final configuration of the magnetic diagnostic subsystem.

  11. Use of a capillary rheometer to evaluate the rheological properties of microcrystalline cellulose and silicified microcrystalline cellulose wet masses.

    PubMed

    Luukkonen, P; Newton, J M; Podczeck, F; Yliruusi, J

    2001-03-23

    The influence of microcrystalline cellulose (MCC) type and water content on the rheological properties of the wet powder masses were studied using two different MCC grades (Avicel and Emcocel) and silicified microcrystalline cellulose (SMCC, Prosolv). A ram extruder was used as a capillary rheometer and unique flow curves for each cellulose grade and moisture content were derived. In addition, the elastic parameters of recoverable shear and compliance were determined. From different flow curve models evaluated, it was not possible to obtain clear evidence, which model best described the rheological properties of each cellulose grade at each water level. Furthermore, the residuals were shear rate dependent, which indicates that the models do not perfectly agree with physical properties of the wet masses. The elastic properties of wet masses increased with increasing water content and decreased with increasing shear stresses. SMCC grade proved to be more elastic than the simple MCC grades at each moisture content. Thus, the rheological properties of MCC and SMCC wet masses were different and changed with water content. Consequently, it was not possible to achieve similar rheological properties between different grades of cellulose by altering the water content of the wet mass. PMID:11274816

  12. Testing propagating mass accretion rate fluctuations model PROPFLUC on black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2016-05-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of black hole X-ray binaries. However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and a quasi-periodic oscillation (QPO) on the precession frequency. We recently applied systematically for the first time PROPFLUC on a black hole candidate (MAXI J1543-564) in order to compare the results of phenomenological and physical modeling of the source power spectrum and to give a physical interpretation of the rising phase of the source outburst. Here we resume the results of our study on MAXI J1543-564 and we discuss future PROPFLUC implementations.

  13. Monitoring water masses properties by Glider in Sardinia Channel during summer 2014

    NASA Astrophysics Data System (ADS)

    Gana, Slim; Iudicone, Daniele; Ghenim, Leila; Mortier, Laurent; Testor, Pierre; Tintoré, Joaquin; Olita, Antonio

    2015-04-01

    1. Summary In the framework of the EC funded project, PERSEUS (WP3, Subtask 3.3.1: Repeated glider sections in key channels and sub-basin) and with the support of JERICO TNA (EU-FP7), a deep water glider (up to 1000m) was deployed from the R/V Tethys in the Sardinia Channel and has carried out 3 return trips during the period spanning from the 16th of August 2014 to the 19th of September 2014. The Gilder was equipped with CTD, O2 sensors, Fluorometers (ChlA), back scattering from 470 to 880 nm and was programmed to follow a path close to SARAL satellite track #887. During this experiment, a significant dataset, as never obtained before for this area, has been collected. The innovation stands in the high spatial resolution, in the temporal repetitivity and in the number of parameters sampled simultaneously. The first step of the work will focuses on the analysis of the hydrological properties of the existing water masses in the area. 2. Frame and aim of the experiment The Sardinia Channel is a zonally oriented passage connecting the Algerian and the Tyrrhenian basins, with a sill depth of about 1900 m. In spite of the considerable amount of work achieved and accurate results obtained about the circulation in the Western Mediterranean Sea, during the last 20 years, the Sardinia Channel is still one of the region where the dynamical processes and water exchanges are not clearly identified. Previous studies (Garzoli S. and C. Maillard, 1979, and Ozturgut Erdogan, 1975) pointed out the complexity of the processes in the region and the role of the bottom topography in sustaining them, and provided a first estimation of the involved fluxes. The main knowledge about the water masses crossing this region mostly concerns the AW (Atlantic Water) and the LIW (Levantine Intermediate Water). Along the Algerian coast, the AW is transported mainly by the Algerian current (AC Millot, 1985) from which the anticyclonic Algerian eddies (AEs, Puillat et al., 2002; Taupier-Letage et al

  14. PHYSICAL PROPERTIES OF THE LOW-MASS ECLIPSING BINARY NSVS 02502726

    SciTech Connect

    Lee, Jae Woo; Youn, Jae-Hyuck; Kim, Seung-Lee; Lee, Chung-Uk E-mail: jhyoon@kasi.re.kr E-mail: leecu@kasi.re.kr

    2013-01-01

    NSVS 02502726 has been known as a double-lined, detached eclipsing binary that consists of two low-mass stars. We obtained BVRI photometric follow-up observations in 2009 and 2011 to measure improved physical properties of the binary star. Each set of light curves, including the 2008 data given by Cakirli et al., was simultaneously analyzed with the previously published radial velocity curves using the Wilson-Devinney binary code. The conspicuous seasonal light variations of the system are satisfactorily modeled by a two-spot model with one starspot on each component and by changes of the spot parameters with time. Based on 23 eclipse timings calculated from the synthetic model and one ephemeris epoch, an orbital period study of NSVS 02502726 reveals that the period has experienced a continuous decrease of -5.9 Multiplication-Sign 10{sup -7} day yr{sup -1} or a sinusoidal variation with a period and semi-amplitude of 2.51 yr and 0.0011 days, respectively. The timing variations could be interpreted as either the light-travel-time effect due to the presence of an unseen third body, or as the combination of this effect and angular momentum loss via magnetic stellar wind braking. Individual masses and radii of both components are determined to be M{sub 1} = 0.689 {+-} 0.016 M{sub Sun }, M{sub 2} = 0.341 {+-} 0.009 M{sub Sun }, R{sub 1} = 0.707 {+-} 0.007 R{sub Sun }, and R{sub 2} = 0.657 {+-} 0.008 R{sub Sun }. The results are very different from those of Cakirli et al. with the primary's radius (0.674 {+-} 0.006 R{sub Sun }) smaller the secondary's (0.763 {+-} 0.007 R{sub Sun }). We compared the physical parameters presented in this paper with current low-mass stellar models and found that the measured values of the primary star are best fitted to a 79 Myr isochrone. The primary is in good agreement with the empirical mass-radius relation from low-mass binaries, but the secondary is oversized by about 85%.

  15. RSRM-13 (360Q013) ballistics mass properties flight designation STS-41

    NASA Technical Reports Server (NTRS)

    Laubacher, Brian A.; Richards, M. C.

    1990-01-01

    The propulsion performance and reconstructed mass properties data from Thiokol's RSRM-13 motors which were assigned to the STS-41 launch are presented. The SRM propellant, TP-H1148, is a composite type solid propellant, formulated of polybutadiene acrylic acid acryonitrile terpolymer binder, epoxy curing agent, ammonium perchlorate oxidizer, and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information are also presented. The presented ballistic performance was based on the Operational Flight Instrumentation. The adjustments made to the raw data on this flight include biasing the data to correct ambient pressure before liftoff. The performance from each motor as well as matched pair performance values were well within the CEI Specification requirements.

  16. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters.

    PubMed

    Prasai, K; Alves, E; Bagliani, D; Basak Yanardag, S; Biasotti, M; Galeazzi, M; Gatti, F; Ribeiro Gomes, M; Rocha, J; Uprety, Y

    2013-08-01

    In a microcalorimetric neutrino mass experiment using the radioactive decay of (163)Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the (163)Ho fabrication), in the temperature range 70 mK-300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment. PMID:24007077

  17. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  18. Upgrade of the Goddard Space Flight Center's Mass Properties Measuring Facility

    NASA Technical Reports Server (NTRS)

    Ross, Brian P.; McLeod, Christopher

    2004-01-01

    Goddard Space Flight Center has a Mass Properties Measuring Facility (MPMF), which is used to measure weight, center of gravity, moment of inertia, and product of inertia of satellites and space flight hardware. The system was originally purchased more than 30 years ago. While the MPMF was still in good mechanical condition, the measurement and control subsystem had begun to experience more frequent component failures. Many of the outdated, discrete components in the system are no longer available for replacement. A decision was made to upgrade the measurement and control subsystem of the MPMF to improve its reliability and reduce the chance of component failures leading to extended facility outages. This paper will describe details of the upgraded subsystems and summarize the new performance capabilities of the system.

  19. Reflectivity properties of graphene with a nonzero mass-gap parameter

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2016-05-01

    The reflectivity properties of graphene with a nonzero mass-gap parameter are investigated in the framework of a Dirac model using the polarization tensor in (2 +1 ) -dimensional space-time. For this purpose, a more simple explicit representation for the polarization tensor along the real frequency axis is found. The approximate analytic expressions for the polarization tensor and for the reflectivities of graphene are obtained in different frequency regions at any temperature. We show that the nonzero mass-gap parameter has a profound effect on the reflectivity of graphene. Specifically, at zero temperature the reflectivity of gapped graphene goes to zero with vanishing frequency. At nonzero temperature the same reflectivities are equal to unity at zero frequency. We also find the resonance behavior of the reflectivities of gapped graphene at both zero and nonzero temperature at the border frequency determined by the width of the gap. At nonzero temperature the reflectivities of graphene drop to zero in the vicinity of some frequency smaller than the border frequency. Our analytic results are accompanied with numerical computations performed over a wide frequency region. The developed formalism can be used in devising nanoscale optical detectors and optoelectronic switches and in other optical applications of graphene.

  20. Galaxy and mass assembly (GAMA): Mid-infrared properties and empirical relations from WISE

    SciTech Connect

    Cluver, M. E.; Jarrett, T. H.; Hopkins, A. M.; Gunawardhana, M. L. P.; Bauer, A. E.; Lara-López, M. A.; Driver, S. P.; Robotham, A. S. G.; Liske, J.; Taylor, E. N.; Alpaslan, M.; Baldry, I.; Brown, M. J. I.; Peacock, J. A.; Popescu, C. C.; Tuffs, R. J.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Leschinski, K.; and others

    2014-02-20

    The Galaxy And Mass Assembly (GAMA) survey furnishes a deep redshift catalog that, when combined with the Wide-field Infrared Survey Explorer (WISE), allows us to explore for the first time the mid-infrared properties of >110, 000 galaxies over 120 deg{sup 2} to z ≅ 0.5. In this paper we detail the procedure for producing the matched GAMA-WISE catalog for the G12 and G15 fields, in particular characterizing and measuring resolved sources; the complete catalogs for all three GAMA equatorial fields will be made available through the GAMA public releases. The wealth of multiwavelength photometry and optical spectroscopy allows us to explore empirical relations between optically determined stellar mass (derived from synthetic stellar population models) and 3.4 μm and 4.6 μm WISE measurements. Similarly dust-corrected Hα-derived star formation rates can be compared to 12 μm and 22 μm luminosities to quantify correlations that can be applied to large samples to z < 0.5. To illustrate the applications of these relations, we use the 12 μm star formation prescription to investigate the behavior of specific star formation within the GAMA-WISE sample and underscore the ability of WISE to detect star-forming systems at z ∼ 0.5. Within galaxy groups (determined by a sophisticated friends-of-friends scheme), results suggest that galaxies with a neighbor within 100 h {sup –1} kpc have, on average, lower specific star formation rates than typical GAMA galaxies with the same stellar mass.

  1. Optimal Partitioning of Testing Time: Theoretical Properties and Practical Implications

    ERIC Educational Resources Information Center

    Wang, Tianyou; Zhang, Jiawei

    2006-01-01

    This paper deals with optimal partitioning of limited testing time in order to achieve maximum total test score. Nonlinear optimization theory was used to analyze this problem. A general case using a generic item response model is first presented. A special case that applies a response time model proposed by Wang and Hanson (2005) is also…

  2. Apparatus for determining thermophysical properties of test specimens

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Jones, R. A.; Corwin, R. R.; Kramer, J. S. (Inventor)

    1977-01-01

    Apparatus is described for directly measuring the quantity square root of pck of a test specimen such as a wind tunnel model where p is density, c is the specific heat and k is the thermal conductivity of the specimen. The test specimen and a reference specimen are simultaneously subjected to the heat from a heat source. A thermocouple is attached to the reference specimen for producing a first electrical analog signal proportional to the heat rate Q that the test specimen is subjected to and an infrared radiometer that is aimed at the test specimen produces a second electrical analog signal proportional to the surface temperature T of the test specimen. An analog-to-digital converter converts the first and second electrical analog signals to digital signals. These digital signals are applied to a computer for determining the quantity.

  3. Comparative Investigation of the Psychometric Properties of Three Tests of Logical Thinking.

    ERIC Educational Resources Information Center

    Ahlawat, Kapur S.; Billeh, Victor Y.

    1987-01-01

    Presents a comparative analysis of the psychometric properties of three group tests of logical thinking used in science education research. Findings dealing with Longeot's Test of Logical Thinking, Lawson's Test of Formal Reasoning, and Tobin and Capie's Test of Logical Thinking demonstrate a lack of concurrent validity. Includes recommendations.…

  4. Surrounding rock mass stability monitoring of underground caverns in a geomechanical model test using FBG sensors

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhu, Weishen; Zheng, Wenhua; He, Jianping

    2009-07-01

    Fiber Bragg Gratings (FBG) sensor is widely accepted as a structural stability device for all kinds of geomaterials by either embedding into or bonding onto the structures. The physical model in geotechnical engineering, which can accurately simulate the construction processes and the effects on the stability of underground caverns on basis of satisfying the similarity principles, is an actual physical entity. Due to a large number of restrained factors, a series of experiments are difficult to be carried out, in particular for how to obtain physical parameters during the experiments. Using the geo-mechanical model test of underground caverns in Shuangjiangkou Hydropower Station as a research object, the FBG sensors were mainly focused on and adopted to figure out the problem how to achieve the small displacements in the large-scale model test. The final experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like strain gages and mini-extensometers. The experimental results agree well with the numerical simulation results. In the process of building the model, it's successful to embed the FBG sensors in the physical model through making a reserved pore and adding some special glue. In conclusion, FBG sensors can effectively measure the small displacement of monitoring points in the whole process of the geomechanical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in-situ engineering construction.

  5. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  6. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  7. Bacteria Buster: Testing Antibiotic Properties of Silver Nanoparticles

    ERIC Educational Resources Information Center

    Gardner, Grant E.; Jones, M. Gail

    2009-01-01

    Nanoscale science and engineering are disciplines that examine the unique behaviors and properties of materials that emerge at the size range of 1 to 100 nanometers (a billionth of a meter). Nanobiotechnology is a sub-discipline of nanoscience that has arisen more recently. Nanobiotechnology is already impacting the fields of healthcare and…

  8. Determination of test methods for the prediction of the behavior of mass concrete

    NASA Astrophysics Data System (ADS)

    Ferraro, Christopher C.

    Hydration at early ages results from chemical and physical processes that take place between Portland cement and water, and is an exothermic process. The resultant heat evolution and temperature rise for massive concrete placements can be so great that the temperature differentials between the internal concrete core and outer concrete stratum can cause cracking due to thermal gradients. Accurate prediction of temperature distribution and stresses in mass concrete is needed to determine if a given concrete mixture design may have problems in the field, so that adjustments to the design can be made prior to its use. This research examines calorimetric, strength, and physical testing methods in an effort to predict the thermal and physical behavior of mass concrete. Four groups of concrete mixture types containing different cementitious materials are examined. One group contains Portland cement, while the other three groups incorporate large replacements of supplementary cementitious materials: granulated blast furnace slag, fly ash, and a ternary blend (combining Portland cement, fly ash, and slag).

  9. A Unified Theory of Impact Crises and Mass Extinctions: Quantitative Tests

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Haggerty, Bruce M.; Pagano, Thomas C.

    1997-01-01

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting of large-body impacts on the Earth derive from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters, predict that impacts of objects greater than or equal to 5 km in diameter (greater than or equal to 10 (exp 7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of greater than or equal to 10 km in diameter (greater than or equal to 10(exp 8) Mt Events). Smaller impacts (approximately 10 (exp 6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record.

  10. Testing Bayesian and heuristic predictions of mass judgments of colliding objects

    PubMed Central

    Sanborn, Adam N.

    2014-01-01

    Mass judgments of colliding objects have been used to explore people's understanding of the physical world because they are ecologically relevant, yet people display biases that are most easily explained by a small set of heuristics. Recent work has challenged the heuristic explanation, by producing the same biases from a model that copes with perceptual uncertainty by using Bayesian inference with a prior based on the correct combination rules from Newtonian mechanics (noisy Newton). Here I test the predictions of the leading heuristic model (Gilden and Proffitt, 1989) against the noisy Newton model using a novel manipulation of the standard mass judgment task: making one of the objects invisible post-collision. The noisy Newton model uses the remaining information to predict above-chance performance, while the leading heuristic model predicts chance performance when one or the other final velocity is occluded. An experiment using two different types of occlusion showed better-than-chance performance and response patterns that followed the predictions of the noisy Newton model. The results demonstrate that people can make sensible physical judgments even when information critical for the judgment is missing, and that a Bayesian model can serve as a guide in these situations. Possible algorithmic-level accounts of this task that more closely correspond to the noisy Newton model are explored. PMID:25206345

  11. Heat and Mass Transfer Analysis of Dehumidifiers Using Adiabatic Transient Tests

    SciTech Connect

    Maclaine-Cross, I. L.; Pesaran, A. A.

    1986-04-01

    Adiabatic step transient data were obtained for two dehumidifier test matrices, using parallel plates with crushed silica gel and staggered parallel strips coated with microbead silica gel. The data were analyzed using the statistical moments method and combined heat and mass transfer analogy theory. The analysis showed that the average overall Nusselt number in both matrices was about 40% to 50% lower than laminar flow predictions. The average overall Nusselt number for the microbead staggered matrix was about 85% larger than that of the crushed silica-gel parallel-plate matrix. The Nusselt number/friction factor Reynolds number ratio (Nu/fRe) of the microbead, staggered parallel-strip matrix was about 28% larger than that of the crushed silica-gel parallel-plate matrix. These results were explained by the presence of a stagnant gas film. The results showed that compact, high-performance, rotary dehumidifiers for desiccant cooling systems are possible and economical.

  12. Testing the slim disk scenario for active intermediate mass black holes

    NASA Astrophysics Data System (ADS)

    Gallo, Elena

    2012-09-01

    Chandra observations of high luminosity intermediate mass black holes from the Greene & Ho (2004) sample show that the optical to X-ray spectral slope is flatter then in more massive systems. This is interpreted as evidence for slim disks operating in IMBHs with bolometric luminosities above 10 per cent of the Eddington limit. In order to test this scenario, we propose new observations of a parent sample of optically selected IMBHs with bolometric luminosities in the range -2

  13. Thermal and mechanical analysis on the cold mass support assembly of test cryomodule for IMP ADS-injector-II

    NASA Astrophysics Data System (ADS)

    Guo, X. L.; Wang, L.; Wang, J.; Wang, S. Y.; Liu, Y. Y.; Sun, S.

    2014-01-01

    The Injector-II of ADS project will include two cryomodules, each of which consists of eight HWR cavities and nine SC solenoid magnets. A test cryomodule (TCM1) containing one HWR cavity and two SC magnets was developed for verification of related technique at the first stage. The TCM1 cryostat was designed by Shanghai Institute of Applied Physics of Chinese Academy of Sciences (SINAP, CAS). The cold mass support assembly in the test cryomodule should accommodate the unbalanced loads induced by each cold mass assembly, the deformation induced by thermal shrinkage, and the thermal stress between different materials. In order to validate the structure design, coupled thermal and mechanical analysis on the cold mass support assembly was performed. The temperature, deformation and stress of the cold mass support assembly were obtained. The results effectively provide the guideline for the design and improvement of the cold mass support assembly.

  14. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  15. Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composites

    PubMed Central

    Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.

    2014-01-01

    This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920

  16. Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composites.

    PubMed

    Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M; Zahra, Durey N

    2015-11-01

    This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920

  17. RESULTS OF CESIUM MASS TRANSFER TESTING FOR NEXT GENERATION SOLVENT WITH HANFORD WASTE SIMULANT AP-101

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2011-09-27

    SRNL has performed an Extraction, Scrub, Strip (ESS) test using the next generation solvent and AP-101 Hanford Waste simulant. The results indicate that the next generation solvent (MG solvent) has adequate extraction behavior even in the face of a massive excess of potassium. The stripping results indicate poorer behavior, but this may be due to inadequate method detection limits. SRNL recommends further testing using hot tank waste or spiked simulant to provide for better detection limits. Furthermore, strong consideration should be given to performing an actual waste, or spiked waste demonstration using the 2cm contactor bank. The Savannah River Site currently utilizes a solvent extraction technology to selectively remove cesium from tank waste at the Multi-Component Solvent Extraction unit (MCU). This solvent consists of four components: the extractant - BoBCalixC6, a modifier - Cs-7B, a suppressor - trioctylamine, and a diluent, Isopar L{trademark}. This solvent has been used to successfully decontaminate over 2 million gallons of tank waste. However, recent work at Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Savannah River National Laboratory (SRNL) has provided a basis to implement an improved solvent blend. This new solvent blend - referred to as Next Generation Solvent (NGS) - is similar to the current solvent, and also contains four components: the extractant - MAXCalix, a modifier - Cs-7B, a suppressor - LIX-79{trademark} guanidine, and a diluent, Isopar L{trademark}. Testing to date has shown that this 'Next Generation' solvent promises to provide far superior cesium removal efficiencies, and furthermore, is theorized to perform adequately even in waste with high potassium concentrations such that it could be used for processing Hanford wastes. SRNL has performed a cesium mass transfer test in to confirm this behavior, using a simulant designed to simulate Hanford AP-101 waste.

  18. Long-term monitoring of rock mass properties in the underground excavation

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2015-04-01

    It is generally agreed today that hazardous waste should be placed in repositories hundreds of meters below the Earth's surface. In our research we deal with the long-term monitoring of the underground excavation by seismic and electrical resistivity measurements. Permanent measuring system was developed and installed at the Bedřichov gallery test site (northern Bohemia). The gallery was excavated using TBM (Tunnel Boring Machine) in granitic rocks. Realized repeated measurements include ultrasonic time of flight measurement and electrical resistivity tomography (ERT). The seismic measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The main emphasis is devoted to P-waves; however, recording of full waveform enables analyzing of S- waves and other types of waves as well. The comparison of repeated measurements is used for an assessment of changes in seismic velocities with very high-accuracy. The repetition rate of measurements can be selected from seconds; however such fast changes in the rock mass are unexpected. The ERT measurement is performed on the same rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. The conductivity of undisturbed granitic rocks is extremely low. Therefore the observed local increase of conductivity can be associated with joints and fractures saturated with water, resulting in their ionic conductivity. Repeated ERT measurement can reveal some changes in the rock mass. Due to time requirements of ERT measurement the repetition rate can be about three hours. The data collected by measuring system is transferred by means of computer network and can be accessed via internet. This contribution deals with preliminary results gained so far during the testing of developed monitoring system. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA

  19. Psychometric Properties of the Practical Skills Test (PST)

    PubMed Central

    Helfrich, Christine A.; Coster, Wendy J.

    2013-01-01

    The Practical Skills Test (PST) is a new assessment of individuals’ knowledge of life skills. We evaluated the PST’s reliability, validity, and sensitivity to change among a homeless population. Participants were 123 homeless persons in a longitudinal experimental study who were assessed before and after intervention with the PST, Allen Cognitive Level Screen–2000 (ACLS–2000), and Impact of Event Scale–Revised (IES–R). The PST showed generally good internal consistency, no floor effects, and limited ceiling effects (<20% on each test). Supportive evidence for the PST’s convergent validity was seen in its moderate correlations with the ACLS–2000; we found no significant correlation with the IES–R. Paired t tests indicated that the PST is sensitive to changes in life skills after intervention, but effect sizes were small. The results suggest that the PST has generally good reliability and validity. However, ceiling effects suggest an area for further development. PMID:23433280

  20. Implementing the Computer-Adaptive Sequential Testing (CAST) Framework To Mass Produce High Quality Computer-Adaptive and Mastery Tests.

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    Computerized testing has created new challenges for the production and administration of test forms. This paper describes a multi-stage, testlet-based framework for test design, assembly, and administration called computer-adaptive sequential testing (CAST). CAST is a structured testing approach that is amenable to both adaptive and mastery…

  1. Floating wetland islands as a method of nitrogen mass reduction: results of a 1 year test.

    PubMed

    Vázquez-Burney, Rafael; Bays, James; Messer, Ryan; Harris, Jeffrey

    2015-01-01

    Floating wetland islands (FWIs) were tested in Pasco County, Florida, as a method of reducing total nitrogen (TN) in reclaimed water during reservoir storage. The Pasco County Master Reuse System (PCMRS) is a regional reclaimed-water transmission and distribution system providing wastewater effluent disposal for the county. Total daily mass loading from reclaimed water is limited by nitrogen content in the PCMRS watershed. To test TN reduction efficacy, 20 FWIs were constructed, installed, and monitored in a lined pond receiving PCMRS reclaimed water. In total, 149 m2 of FWIs were installed, distributed as a connected network covering 1,122 m2, or 7% of pond area. Pond hydraulic residence time averaged 15.7 days. Treatment performance was assessed during three consecutive periods: establishment (first 6 months of grow-in), performance (8 months immediately following grow-in), and control (3 months after the FWIs were removed from the pond). The FWIs enhanced pond nitrogen removal capacity by 32%. The primary effect of the FWIs was to decrease organic nitrogen in the pond outflow. By evaluating the difference between the performance and control periods, an incremental TN removal rate for the FWIs was calculated to be 4.2 kg N/m2 FWI per year. PMID:26287828

  2. PETER: A Hardware Simulator for the Test Mass-GRS System of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Bassan, M.; De Marchi, F.; Pucacco, G.; Visco, M.; Di Fiore, L.; De Rosa, R.; Garufi, F.

    2013-01-01

    Each LISA PathFinder test mass (TM) will be sensitive to forces along all its 6 Degrees of Freedom (DoFs). Extensive ground testing is required in order to evaluate the influence of cross-talks from the read-out and actuator channels. In the INFN laboratory of Firenze we have developed a facility for a good representation of the free fall conditions of the TM on flight. A hollow replica of a TM hanging from a double torsion pendulum can move inside a Gravitational Reference Sensor (GRS) with quasi free fall condition on two Dofs, in the frequency band (0.1 ÷ 100)mHz. On both DoFs, the target residual accelerations (yet to be achieved) at the low end frequency range are ≤ 3 × 10-13ms-2, limited by the thermal noise of the fibres. At higher frequencies, the sensitivity is limited by the readout noise of the readout, a replica of the flight electronics. After a long commissioning, we are now in operating conditions, and can carry out a series of experiments to better qualify the interaction between TM and GRS. In this paper we will show some significant qualification measurements and a first scientific measurements, i.e. the measurement and compensation of the DC bias in the GRS using two independent channels, as well as a measurement of the residual acceleration of the translational DoF, with the feedback loop closed on the rotational one, and viceversa.

  3. Rotating Unbalanced-Mass devices for scanning: Results from the proof-of-concept test

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Polites, Michael E.

    1994-01-01

    Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.

  4. Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries.

    PubMed

    Xu, Qian; Zhao, T S

    2013-07-14

    This work is concerned with the determination of two critical constitutive properties for mass transport of ions through porous electrodes saturated with a liquid electrolyte solution. One is the effective diffusivity that is required to model the mass transport at the representative element volume (REV) level of porous electrodes in the framework of Darcy's law, while the other is the pore-level mass-transfer coefficient for modeling the mass transport from the REV level to the solid surfaces of pores induced by redox reactions. Based on the theoretical framework of mass transport through the electrodes of vanadium redox flow batteries (VRFBs), unique experimental setups for electrochemically determining the two transport properties by measuring limiting current densities are devised. The effective diffusivity and the pore-level mass-transfer coefficient through the porous electrode made of graphite felt, a typical material for VRFB electrodes, are measured at different electrolyte flow rates. The correlation equations, respectively, for the effective diffusivity and the pore-level mass-transfer coefficient are finally proposed based on the experimental data. PMID:23698744

  5. HD 152246: a new high-mass triple system and its basic properties

    NASA Astrophysics Data System (ADS)

    Nasseri, A.; Chini, R.; Harmanec, P.; Mayer, P.; Nemravová, J. A.; Dembsky, T.; Lehmann, H.; Sana, H.; Le Bouquin, J.-B.

    2014-08-01

    Analyses of multi-epoch, high-resolution (R ~ 50 000) optical spectra of the O-type star HD 152246 (O9 IV according to the most recent classification), complemented by a limited number of earlier published radial velocities, led to the finding that the object is a hierarchical triple system, where a close inner pair (Ba-Bb) with a slightly eccentric orbit (e = 0.11) and a period of 6.^d0049 revolves in a 470-day highly eccentric orbit (e = 0.865) with another massive and brighter component A. The mass ratio of the inner system must be low since we were unable to find any traces of the secondary spectrum. The mass ratio A/(Ba+Bb) is 0.89. The outer system has recently been resolved using long-baseline interferometry on three occasions. The interferometry confirms the spectroscopic results and specifies elements of the system. Our orbital solutions, including the combined radial-velocity and interferometric solution indicate an orbital inclination of the outer orbit of 112° and stellar masses of 20.4 and 22.8 M⊙. We also disentangled the spectra of components A and Ba and compare them to synthetic spectra from two independent programmes, TLUSTY and FASTWIND. In either case, the fit was not satisfactory and we postpone a better determination of the system properties for a future study, after obtaining observations during the periastron passage of the outer orbit (the nearest chance being March 2015). For the moment, we can only conclude that component A is an O9 IV star with v sin i = 210 ± 10 km s-1and effective temperature of 33 000 ± 500 K, while component Ba is an O9 V object with v sin i = 65 ± 3 km s-1and Teff = 33 600 ± 600 K. Based on data products from observations made with ESO telescopes at La Silla Paranal Observatory under programmes 68.D-0095(A), 71.D-0369(A), 073.D-0609(A), 075.D-0061(A), 076.D0294(A), 077.D-0146(A), 079.D-0718(A), 081.D-2008(B), 083.D-0589(B), 086.D-0997(B), 087.D-0946(A), and 089.D-0975(A), extracted from the ESO/ST-ECF Science

  6. a Body Mass Dependent Mechanical Impedance Model for Applications in Vibration Seat Testing

    NASA Astrophysics Data System (ADS)

    BOILEAU, P.-É.; RAKHEJA, S.; WU, X.

    2002-05-01

    A three degree-of-freedom model is proposed to predict the biodynamic responses of the seated human body of different masses. A baseline model is initially derived to satisfy both the mean apparent mass and seat-to-head transmissibility responses proposed in ISO/DIS 5982:2000 applicable for mean body mass of 75 kg. The validity of the resultant generic mass dependent model is verified by comparing the apparent mass and driving-point mechanical impedance responses computed for total body masses of 55, 75 and 90 kg with the range of idealized values proposed for body masses within the 49-93 kg range. Considering the lack of data that could be found to define the apparent mass/mechanical impedance of subjects with different body masses when applying the experimental conditions defined in ISO/DIS 5982:2000, an attempt is made to adapt the parameters of the base model to fit the measured apparent mass data applicable to groups of automobile occupants within different mass ranges. This is achieved through constrained parametric optimization which consists of minimizing the sum of squared errors between the computed response and the mean apparent mass data measured for automobile occupants within four mass groups: less than 60 kg, 60·5-70·5 kg, 70·5-80 kg and above 80 kg. The results show a reasonably good agreement between the model responses and the measured apparent mass data, particularly at frequencies below 10 Hz. The results suggest that the proposed mass dependent model can effectively predict the apparent mass responses of automobile occupants over a wide range of body masses and for two different postures: passenger (hands-in-lap) and driver (hands-on-steering wheel) postures.

  7. Properties of the Fast Forward Shock Driven by the July 23 2012 Extreme Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Caplan, Ronald M.; Giacalone, Joe; Lario, David; Liu, Ying

    2016-03-01

    Late on 2012 July 23, the STEREO-A spacecraft encountered a fast forward shock driven by a coronal mass ejection (CME) launched from the Sun earlier that same day. The estimated travel time of the disturbance (˜20 hr), together with the massive magnetic field strengths measured within the ejecta (>100 nT), made it one of the most extreme events observed during the space era. In this study, we examine the properties of the shock wave. Because of an instrument malfunction, plasma measurements during the interval surrounding the CME were limited, and our approach has been modified to capitalize on the available measurements and suitable proxies, where possible. We were able to infer the following properties. First, the shock normal was pointing predominantly in the radial direction ({\\boldsymbol{n}}=0.97{{\\boldsymbol{e}}}r-0.09{{\\boldsymbol{e}}}t-0.23{{\\boldsymbol{e}}}n). Second, the angle between {\\boldsymbol{n}} and the upstream magnetic field, θBn, was estimated to be ≈34°, making the shock “quasi-parallel,” and supporting the idea of an earlier “preconditioning” ICME. Third, the shock speed was estimated to be ≈3300 km s-1. Fourth, the sonic Mach number, Ms, for this shock was ˜28. We support these results with an idealized numerical simulation of the ICME. Finally, we estimated the change in ram pressure upstream of the shock to be ˜5 times larger than the pressure from the energetic particles, suggesting that this cosmic-ray modified shock had not reached steady-state, but instead, had been caught in an early, transient phase in its evolution.

  8. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  9. Research study for materials/properties test results database

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Lubricants Data Base System was designed and developed for operation on the DEC PDP 11/24 computer. The procedures are written in Datatrieve. In transferring the Lubricants System to the VAX 8600 computer, the Datatrieve had to be 80 percent rewritten. At the end of the contract the Lubricants System is operational on both the PDP 11/24 and VAX 8600 computers. The LOX/GOX, Aluminum/Steel, Toxic, VCM, and Flammability Systems are operational only on the PDP 11/24 computer. The Toxic, VCM, and Flammability Systems do not contain any useable data, only test data. However, the LOX/GOX file does contain test data results supplied by MSFC.

  10. Effects of Role Demands and Test Cue Properties on Personality Test Performance: Replication and Extension

    ERIC Educational Resources Information Center

    Kroger, Rolf O.; Turnbull, William

    1970-01-01

    In a replication of earlier findings by Kroger, the hypothesis was tested that the situation affects test performance by generating a set of role demands. Community college students described themselves on the SVIB, Taylor Manifest Anxiety Scale, and Welsh Figure Preference Test after being exposed to implicit social cues intended to induce…

  11. An Analysis of the Psychometric Properties of Dual Language Test Forms.

    ERIC Educational Resources Information Center

    Sireci, Stephen G.; Khaliq, Shameem Nyla

    Many students in the United States who are required to take educational tests are not fully proficient in English. To address this problem, a state-mandated testing program created dual language English-Spanish versions of some of their tests. In this study, the psychometric properties of the English and dual language versions of a fourth-grade…

  12. Nondestructive and automated testing for soil and rock properties. ASTM special technical publication 1350

    SciTech Connect

    Marr, W.A.; Fairhurst, C.E.

    1999-07-01

    The purpose of the symposium was to highlight recent developments in nondestructive and automated testing for soil and rock properties. Speakers present results of recent research in these areas that have practical application for the rapid and economical testing of soil and rock. Authors were encouraged to identify which testing equipment and methods have sufficient practical application to warrant standards development.

  13. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  14. Optimizing tuning masses for helicopter rotor blade vibration reduction including computed airloads and comparison with test data

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Walsh, Joanne L.; Wilbur, Matthew L.

    1992-01-01

    The development and validation of an optimization procedure to systematically place tuning masses along a rotor blade span to minimize vibratory loads are described. The masses and their corresponding locations are the design variables that are manipulated to reduce the harmonics of hub shear for a four-bladed rotor system without adding a large mass penalty. The procedure incorporates a comprehensive helicopter analysis to calculate the airloads. Predicting changes in airloads due to changes in design variables is an important feature of this research. The procedure was applied to a one-sixth, Mach-scaled rotor blade model to place three masses and then again to place six masses. In both cases the added mass was able to achieve significant reductions in the hub shear. In addition, the procedure was applied to place a single mass of fixed value on a blade model to reduce the hub shear for three flight conditions. The analytical results were compared to experimental data from a wind tunnel test performed in the Langley Transonic Dynamics Tunnel. The correlation of the mass location was good and the trend of the mass location with respect to flight speed was predicted fairly well. However, it was noted that the analysis was not entirely successful at predicting the absolute magnitudes of the fixed system loads.

  15. Chemical ionization mass spectrometric measurements of SO2 emissions from jet engines in flight and test chamber operations

    NASA Astrophysics Data System (ADS)

    Hunton, D. E.; Ballenthin, J. O.; Borghetti, J. F.; Federico, G. S.; Miller, T. M.; Thorn, W. F.; Viggiano, A. A.; Anderson, B. E.; Cofer, W. R.; McDougal, D. S.; Wey, C. C.

    2000-11-01

    We report the results of two measurements of the concentrations and emission indices of gas-phase sulfur dioxide (EI(SO2)) in the exhaust of an F100-200E turbofan engine. The broad goals of both experiments were to obtain exhaust sulfur speciation and aerosol properties as a function of fuel sulfur content. In the first campaign, an instrumented NASA T-39 Sabreliner aircraft flew in close formation behind several F-16 fighter aircraft to obtain near-field plume composition and aerosol properties. In the second, an F-100 engine of the same type was installed in an altitude test chamber at NASA Glenn Research Center where gas composition and nonvolatile aerosol concentrations and size distributions were obtained at the exit plane of the engine. In both experiments, SO2 concentrations were measured with the Air Force Research Laboratory chemical ionization mass spectrometer as a function of altitude, engine power, and fuel sulfur content. A significant aspect of the program was the use of the same fuels, the same engine type, and many of the same diagnostics in both campaigns. Several different fuels were purchased specifically for these experiments, including high-sulfur Jet A (˜1150 ppmm S), low-sulfur Jet A (˜10 ppmm S), medium-sulfur mixtures of these two fuels, and military JP-8+100 (˜170 and ˜300 ppmm S). The agreement between the flight and test cell measurements of SO2 concentrations was excellent, showing an overall precision of better than ±10% and an estimated absolute accuracy of ±20%. The EI(SO2) varied from 2.49 g SO2/kg fuel for the high-sulfur fuel in the test chamber to less than 0.01 g/kg for the lowest-sulfur fuel. No dependence of emission index on engine power, altitude or simulated altitude, separation distance or plume age, or the presence of contrails was observed. In all experiments the measured EI(SO2) was consistent with essentially all of the fuel sulfur appearing as gas-phase SO2 in the exhaust. However, accurate determination of S

  16. Models for determining the geometrical properties of halo coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Y.

    2005-12-01

    To this day, the prediction of space weather effects near the Earth suffer from a fundamental problem: the necessary condition for determining whether or not and when a part of the huge interplanetary counterpart (ICME) of frontside halo coronal mass ejections (CMEs) is able to hit the Earth and generate goemagnetic storms, i.e., the real angular width, the propagation direction and speed of the CMEs, cannot be measured directly because of the unfavorable geometry. To inverse these geometrical and kinematical properties we have recently developed a few geometrical models, such as the cone model, the ice cream cone model, and the spherical cone model. The inversing solution of the cone model for the 12 may 1997 halo CME has been used as an input to the ENLIL model (a 3D MHD solar wind code) and successfully predicted the ICME near the Earth (Zhao, Plukett & Liu, 2002; Odstrcil, Riley & Zhao, 2004). After briefly describing the geometrical models this presentation will discuss: 1. What kind of halo CMEs can be inversed? 2. How to select the geometrical models given a specific halo CME? 3. Whether or not the inversing solution is unique?

  17. [COMPARATIVE ASSESSMENT OF MASS-SPECTROMETRY AND INFRARED SPECRTROMETRY USED IN 13C-UREA BREATH TEST FOR HELICOBACTER PYLORI].

    PubMed

    Plavnik, R G; Nevmerzhitsky, V I; Butorova, L I; Plavnik, T E

    2015-01-01

    At present, mass-spectrometry is the most accurate and efficient method for measuring carbon isotope ratio in 13C-urea breath test for H. pylori infection but its wide application is restricted by the high cost of equipment and operational complexity. IR spectrometry is one of the less expensive techniques recently proposedfor the purpose. To compare the effectiveness of the two methods, we undertook a study including 20 volunteers (6 men and 14 women) aged 18-60 years with parallel measurements by IR and mass-spectrometry. IR spectrometry was shown to be highly accurate (94-96%), sensitive (up to 100%), and specific (87.5%) which makes it a promising alternative to mass-spectrometry to be used in urea breath test for mass examination especially in outpatient facilities. PMID:27008742

  18. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    PubMed Central

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-01-01

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia. PMID:25211199

  19. Pseudo-automatic characterization of the morphological and kinematical properties of Coronal Mass Ejections using a texture-based technique

    NASA Astrophysics Data System (ADS)

    Braga, Carlos Roberto; Dal Lago, Alisson; Stenborg, Guillermo

    2012-07-01

    The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal events. They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematical characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematical properties. That lack of agreement is reflected in both manual and automated Coronal Mass Ejections (CME) catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced the concept of "texture of the event". Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic coronal events observed in the field of view of a coronagraph instrument. In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematical parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from two manual catalogs. We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are all in agreement within the observational error with the values in the manual catalogs used for comparison. The width of the events although, exhibits a significant difference in some events. This technique can be applied to any new set of CMEs been observed in the last years using both data from STEREO and SOHO.

  20. Pseudo-automatic characterization of the morphological and kinematical properties of coronal mass ejections using a texture-based technique

    NASA Astrophysics Data System (ADS)

    Braga, Carlos Roberto; Dal Lago, Alisson; Stenborg, Guillermo

    2013-05-01

    The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal mass ejections (CME). They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematic characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematic properties. That lack of agreement is reflected in both the manual and automated CME catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced recently the concept of "texture of the event". Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic events observed in the coronagraphs field of view, which is called CORonal SEgmentation Technique (CORSET). In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematic parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from three existent CME lists: two of them obtained from an observer-based detection and tracking method (i.e., two manual catalogs), and the other one based on the automated detection and characterization of the CME events (i.e., a fully automated catalog). We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are in agreement with the manual catalogs used for comparison. On the other hand, some discrepancies between CORSET and the automated catalog were found, which can be

  1. PORFLO: A continuum model for fluid flow, heat transfer and mass transport in porous media. Model theory, numerical methods and computational tests

    NASA Astrophysics Data System (ADS)

    Runchal, A. K.; Sagar, B.; Baca, R. G.; Kline, N. W.

    1985-09-01

    Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document.

  2. On-Line, Gyro-Based, Mass-Property Identification for Thruster-Controlled Spacecraft Using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Spacecraft control, state estimation, and fault-detection-and-isolation systems are affected by unknown v aerations in the vehicle mass properties. It is often difficult to accurately measure inertia terms on the ground, and mass properties can change on-orbit as fuel is expended, the configuration changes, or payloads are added or removed. Recursive least squares -based algorithms that use gyro signals to identify the center of mass and inverse inertia matrix are presented. They are applied in simulation to 3 thruster-controlled vehicles: the X-38 and Mini-AERCam under development at NASA-JSC, and the SAM, an air-bearing spacecraft simulator at the NASA-Ames Smart Systems Research Lab (SSRL).

  3. TESTS OF DYNAMICAL FLUX EMERGENCE AS A MECHANISM FOR CORONAL MASS EJECTION INITIATION

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K. E-mail: mark.linton@nrl.navy.mi

    2010-10-10

    Current coronal mass ejection (CME) models set their lower boundary to be in the lower corona. They do not calculate accurately the transfer of free magnetic energy from the convection zone to the magnetically dominated corona because they model the effects of flux emergence using kinematic boundary conditions or simply assume the appearance of flux at these heights. We test the importance of including dynamical flux emergence in CME modeling by simulating, in 2.5D, the emergence of sub-surface flux tubes into different coronal magnetic field configurations. We investigate how much free magnetic energy, in the form of shear magnetic field, is transported from the convection zone to the corona, and whether dynamical flux emergence can drive CMEs. We find that multiple coronal flux ropes can be formed during flux emergence, and although they carry some shear field into the corona, the majority of shear field is confined to the lower atmosphere. Less than 10% of the magnetic energy in the corona is in the shear field, and this, combined with the fact that the coronal flux ropes bring up significant dense material, means that they do not erupt. Our results have significant implications for all CME models which rely on the transfer of free magnetic energy from the lower atmosphere into the corona but which do not explicitly model this transfer. Such studies of flux emergence and CMEs are timely, as we have new capabilities to observe this with Hinode and the Solar Dynamics Observatory, and therefore to test the models against observations.

  4. Test of timing properties of the Photek 240 PMT

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Pronko, S.; Ramberg, E.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-01-01

    Timing measurements of Silicon Photomultipliers (SiPM) at the picosecond level were performed at Fermilab. The core timing resolution of the electronic measurement technique is approximately 2 picoseconds. The single photoelectron time resolution (SPTR) was measured for the signals coming from the SiPM's. A SPTR of about one hundred picoseconds was obtained for SiPM's illuminated by laser pulses. The dependence of the SPTR on applied bias voltage and on the wavelength of the light was measured. A simple model is proposed to explain the difference in the SPTR for blue and red light. A time of flight system based on the SiPM's, with quartz Cherenkov radiators, was tested in a proton beam at Fermilab. The time resolution obtained is 35 picoseconds per SiPM. Finally, requirements for the SiPM's temperature and bias voltage stability to maintain the time resolution are discussed.

  5. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.

    PubMed

    San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan

    2012-02-01

    Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM. PMID:22156291

  6. THREE-DIMENSIONAL POLARIMETRIC CORONAL MASS EJECTION LOCALIZATION TESTED THROUGH TRIANGULATION

    SciTech Connect

    Moran, Thomas G.; Davila, Joseph M.

    2010-03-20

    We have tested the validity of the coronal mass ejection (CME) polarimetric reconstruction technique for the first time using triangulation and demonstrated that it can provide the angle and distance of CMEs to the plane of the sky. In this study, we determined the three-dimensional orientation of the CMEs that occurred on 2007 August 21 and 2007 December 31 using polarimetric observations obtained simultaneously with the Solar Terrestrial Relations Observatory/Sun Earth Connection Coronal and Heliospheric Investigation spacecraft COR1-A and COR1-B coronagraphs. We obtained the CME orientations using both the triangulation and polarimetric techniques and found that angles to the sky plane yielded by the two methods agree to within {approx} 5 deg., validating the polarimetric reconstruction technique used to analyze CMEs observed with the Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph. In addition, we located the CME source regions using EUV and magnetic field measurements and found that the corresponding mean angles to the sky plane of those regions agreed with those yielded by the geometric and polarimetric methods within uncertainties. Furthermore, we compared the locations provided by polarimetric COR1 analysis with those determined from other analyses using COR2 observations combined with geometric techniques and forward modeling. We found good agreement with those studies relying on geometric techniques but obtained results contradictory to those provided by forward modeling.

  7. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei

    2013-02-01

    New kinematic data and modeling efforts in the past few years have substantially expanded and revised dynamical measurements of black hole masses (M •) at the centers of nearby galaxies. Here we compile an updated sample of 72 black holes and their host galaxies, and present revised scaling relations between M • and stellar velocity dispersion (σ), V-band luminosity (L), and bulge stellar mass (M bulge), for different galaxy subsamples. Our best-fitting power-law relations for the full galaxy sample are log10(M •) = 8.32 + 5.64log10(σ/200 km s-1), log10(M •) = 9.23 + 1.11log10(L/1011 L ⊙), and log10(M •) = 8.46 + 1.05log10(M bulge/1011 M ⊙). A log-quadratic fit to the M •-σ relation with an additional term of β2 [log10(σ/200 km s-1)]2 gives β2 = 1.68 ± 1.82 and does not decrease the intrinsic scatter in M •. Including 92 additional upper limits on M • does not change the slope of the M •-σ relation. When the early- and late-type galaxies are fit separately, we obtain similar slopes of 5.20 and 5.06 for the M •-σ relation but significantly different intercepts—M • in early-type galaxies are about two times higher than in late types at a given sigma. Within early-type galaxies, our fits to M •(σ) give M • that is about two times higher in galaxies with central core profiles than those with central power-law profiles. Our M •-L and M •-M bulge relations for early-type galaxies are similar to those from earlier compilations, and core and power-law galaxies yield similar L- and M bulge-based predictions for M •. When the conventional quadrature method is used to determine the intrinsic scatter in M •, our data set shows weak evidence for increased scatter at M bulge < 1011 M ⊙ or LV < 1010.3 L ⊙, while the scatter stays constant for 1011 < M bulge < 1012.3 M ⊙ and 1010.3 < LV < 1011.5 L ⊙. A Bayesian analysis indicates that a larger sample of M • measurements would be needed to detect any statistically

  8. Mechanical properties test data of Alloy 718 for liquid metal fast breeder reactor applications

    SciTech Connect

    Korth, G.E.

    1983-01-01

    Mechanical property test data are reported for Alloy 718 with two heat treatments: conventional heat treatment (CHT) for base metal and Idaho National Engineering Laboratory (INEL) heat treatment (IHT) for base and weld metal. Tests were conducted in air from 24 to 704{degree}C and include elastic properties (Young's modulus, shear modulus, Poisson's ratio), tensile properties, creep-rupture properties, fatigue properties, creep-fatigue properties, and Charpy impact behavior. Effects of long term thermal aging at 538, 593, 649, and 704{degree}C for times to 25,000 h are also reported for CHT material (tensile, creep-rupture, fatigue, and Charpy), and IHT material (tensile, and Charpy). 18 refs., 63 figs., 36 tabs.

  9. Test system accurately determines tensile properties of irradiated metals at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Levine, P. J.; Skalka, R. J.; Vandergrift, E. F.

    1967-01-01

    Modified testing system determines tensile properties of irradiated brittle-type metals at cryogenic temperatures. The system includes a lightweight cryostat, split-screw grips, a universal joint, and a special temperature control system.

  10. PHYSICAL PROPERTIES AND LEACH TESTING OF SOLIDIFIED/STABILIZED INDUSTRIAL WASTES

    EPA Science Inventory

    Physical property and leaching tests were conducted to assess the engineering characteristics and pollution potential of five industrial wastes. Four solidification/stabilization processes which are under development or commercially available and represent different containment p...

  11. The loleva oral and written language test: psychometric properties.

    PubMed

    Peralbo, Manuel; Mayor, María Ángeles; Zubiauz, Begoña; Risso, Alicia; Fernández-Amado, María Luz; Tuñas, Alejandro

    2015-01-01

    LolEva, a computerized test for ages 3 to 8 years old, identifies issues in the development of skills that can lead to reading acquisition difficulties. Its structure captures two distinct areas: Phonological Awareness (PA, seven subtests: rhyme, identification-addition-omission of syllable and phoneme at the beginning and end of a word), and Initial Reading Competence (IRC, six subtests: reading uppercase and lowercase letters, simple words, complex words, and pseudowords, and word segmentation). With results collected in a sample of 341 children with the target ages and attending public or private schools, the alpha coefficient was .94 for PA, and .92 for IRC. Factor analysis indicated three factors are present (performance on PA and IRC, and word reading times), together explaining 75% of variance, providing evidence to support the construct validity of the test. On the other hand, analysis of variance showed significant differences for year-in-school variable for PA subscale, F(4, 336) = 191.385, p < .001, η2 p = .695, 1-β = 1.0, as well as for IRC subscale, both in number of correct answers, which increased as schooling progressed: F(4, 336) = 197.897, p < .001, η2 p = .702, 1-β = 1.0, and task completion time, which decreased as education progressed: F(4, 335) = 47.048, p < .001, η2 p = .360, 1-β = 1.0. Also, PA repeated measures analysis revealed that was easier Identification than Addition and Omission , F(2, 672) = 31.639, p < .001, η2 p = .086, 1-β = 1.0, syllable-related tasks than phoneme-related task, F(1, 336) = 229.000, p < .001, η2 p = .405, 1-β = 1.0, and syllable or phoneme at the end of the word than at the beginning, F(1, 336) = 59.201, p < .001, η2 p = .150, 1-β = 1.0. Moreover, all items were examined and indexes of difficulty and discrimination were obtained. PMID:25850336

  12. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping.

    PubMed

    Riese, Sebastian; Seyfarth, Andre; Grimmer, Sten

    2013-09-01

    Given the almost linear relationship between ground-reaction force and leg length, bouncy gaits are commonly described using spring-mass models with constant leg-spring parameters. In biological systems, however, spring-like properties of limbs may change over time. Therefore, it was investigated how much variation of leg-spring parameters is present during vertical human hopping. In order to do so, rest-length and stiffness profiles were estimated from ground-reaction forces and center-of-mass dynamics measured in human hopping. Trials included five hopping frequencies ranging from 1.2 to 3.6 Hz. Results show that, even though stiffness and rest length vary during stance, for most frequencies the center-of-mass dynamics still resemble those of a linear spring-mass hopper. Rest-length and stiffness profiles differ for slow and fast hopping. Furthermore, at 1.2 Hz two distinct control schemes were observed. PMID:23880438

  13. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    SciTech Connect

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  14. Psychometric Properties of Raw and Scale Scores on Mixed-Format Tests

    ERIC Educational Resources Information Center

    Kolen, Michael J.; Lee, Won-Chan

    2011-01-01

    This paper illustrates that the psychometric properties of scores and scales that are used with mixed-format educational tests can impact the use and interpretation of the scores that are reported to examinees. Psychometric properties that include reliability and conditional standard errors of measurement are considered in this paper. The focus is…

  15. Dynamical and Physical Properties of a Post-Coronal Mass Ejection Current Sheet

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Raymond, John C.; Lin, Jun; Lawrence, Gareth; Li, Jing; Fludra, Andrzej

    2003-01-01

    In the eruptive process of the Kopp-Pneuman type, the closed magnetic field is stretched by the eruption so much that it is usually believed to be " open " to infinity. Formation of the current sheet in such a configuration makes it possible for the energy in the coronal magnetic field to quickly convert into thermal and kinetic energies and cause significant observational consequences, such as growing postflare/CME loop system in the corona, separating bright flare ribbons in the chromosphere, and fast ejections of the plasma and the magnetic flux. An eruption on 2002 January 8 provides us a good opportunity to look into these observational signatures of and place constraints on the theories of eruptions. The event started with the expansion of a magnetic arcade over an active region, developed into a coronal mass ejection (CME), and left some thin streamer-like structures with successively growing loop systems beneath them. The plasma outflow and the highly ionized states of the plasma inside these streamer-like structures, as well as the growing loops beneath them, lead us to conclude that these structures are associated with a magnetic reconnection site, namely, the current sheet, of this eruptive process. We combine the data from the Ultraviolet Coronagraph Spectrometer, Large Angle and Spectrometric Coronagraph Experiment, EUV Imaging Telescope, and Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory, as well is from the Mauna Loa Solar Observatory Mark IV K-coronameter, to investigate the morphological and dynamical properties of this event, as well as the physical properties of the current sheet. The velocity and acceleration of the CME reached up to 1800 km/s and 1 km/sq s, respectively. The acceleration is found to occur mainly at the lower corona (<2.76 Solar Radius). The post-CME loop systems showed behaviors of both postflare loops (upward motion with decreasing speed) and soft X-ray giant arches (upward motion with constant

  16. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  17. Laboratory experiments designed to test the remediation properties of materials

    SciTech Connect

    Gilbert, J.S.; Wildeman, T.R.; Ford, K.L.

    1999-07-01

    Passive treatment systems constructed to remediate mine drainage have proven to be very successful for a wide variety of drainage compositions and volumes. The construction of an anaerobic passive treatment system requires a mixture of local materials with the objective of producing a system that allows adequate water flow while supporting the growth of sulfate-reducing bacteria. These bacteria have the effect of reducing the oxidizing potential in the system causing many sulfide-forming metals in solution to precipitate. The focus of these experiments was the study of chemical characteristics of materials, individually and in mixtures, with the purpose of determining which would be best suited for incorporation into a treatment system. The materials of interest were manure (fresh and aged), alfalfa, limestone, and sawdust, which were all collected in close proximity to the construction site of the proposed treatment system. A variety of chemical and physical hypotheses were formulated prior to performing simple chemical characterization and anaerobic treatment tests. The hypotheses relating to the chemical nature of the single materials were carbon to nitrogen ratio, availability of low molecular weight organic acids, number of adsorption sites, and organic carbon content. In addition, hypotheses concerning the performance of mixtures were evaluated by looking at the relative amount of bacterial growth (and metal removal) seen in each mixture over a 4-week period. The results of the laboratory experiments confirmed hypotheses, and demonstrated that in the mixtures, the anaerobic bacteria flourish when alfalfa is present, up to a point. The best mixture that allowed proliferation of bacteria while also removing metals consisted of 50% limestone, 25% aged manure, 15% sawdust, and 10% alfalfa (% by weight).

  18. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    SciTech Connect

    Kahler, S. W.

    2013-06-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v {sub CME} or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v {sub CME}, and TR and TD increase with both v {sub CME} and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v {sub CME} and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v {sub CME} and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  19. Optical Properties of High Area-to-Mass Objects at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Schildknecht, Thomas; Musci, Reto; Flohrer, Tim; Barker, Ed; Stansbery, Eugene; Agapov, Vladimir; Rumyantsev, Vasilij; Biryukov, Vadym; Abercromby, Kira; Rodriguez, Heather; Liou, J.-C.; Kelecy, Thomas; Africano, John

    2007-01-01

    There exists at GEO a significant population of faint debris (R > 15th magnitude) with high area-to-mass ratios (AMR) (1 to 30 sq m/kg). Their orbital elements (particularly eccentricity and inclination) are observed to change on the time-scale of a week. The consensus is that these objects may be fragments of multi-layer insulation (MLI) blankets. Their orbits are primarily perturbed by solar radiation pressure. In this paper we will report preliminary results from an international collaboration to investigate the unresolved optical properties of these objects. This population was originally discovered by the ESA Space Debris Telescope, and the bulk of the objects to be described here are based on discoveries made with this telescope. Additional objects were supplied by both Russia and the US Air Force. Follow-up optical observations were obtained for a sample of a dozen objects by MODEST (the Michigan Orbital DEbris Survey Telescope) located at Cerro Tololo Inter-American Observatory in Chile. Sequences of calibrated observations in filters B, V, Broad R, and I were obtained under photometric conditions. Multi-color photometric observations in B, V, R, and I band of the same objects were also acquired at the Zimmerwald 1-meter telescope, located near Bern, Switzerland. Light curves of selected high AMR objects will be shown with a temporal resolution of a few seconds and typically span about 10 minutes. Photometric observations of these objects were acquired at the Crimean Astrophysical Observatory (CrAO). This data set includes light curves of objects having high variability of brightness and observed with 2.6 m and 0.64 m class instruments. We will present an analysis of the observed magnitudes and colors, and their correlations (or lack of correlation) with orbital elements, and with predicted values for MLI fragments. This represents the first such collaborative observational program on faint debris at GEO.

  20. A Comparison of Solar Energetic Particle Event Timescales with Properties of Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2013-06-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME, and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  1. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    SciTech Connect

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  2. Analysis of three-point-bend test for materials with unequal tension and compression properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    An analysis capability is described for the three-point-bend test applicable to materials of linear but unequal tensile and compressive stress-strain relations. The capability consists of numerous equations of simple form and their graphical representation. Procedures are described to examine the local stress concentrations and failure modes initiation. Examples are given to illustrate the usefulness and ease of application of the capability. Comparisons are made with materials which have equal tensile and compressive properties. The results indicate possible underestimates for flexural modulus or strength ranging from 25 to 50 percent greater than values predicted when accounting for unequal properties. The capability can also be used to reduce test data from three-point-bending tests, extract material properties useful in design from these test data, select test specimen dimensions, and size structural members.

  3. Testing mutagenic properties with the dominant lethal test on the male mouse.

    PubMed

    Lorke, D; Machemer, L

    1975-01-01

    Mytagecity studies were carried out with fluorescent whitening agents (FWAs) using the dominant lethal test on male mice. Own tests with five FWAs, and those of KEPLINGER, et al. (Toxicol. Appl. Pharmacol.27: 494-506, 1974), with four FWAs, are described. In our tests, acute oral administration of five FWAs at a dose of 5000 mg/kg body weight gave no evidence of a mutagenic effect during 8 weeks' mating. The FWAs used were three bis(triazinylamino)stilbenedisulfonic acid derivatives and a 1,3-diphenyl-2-pyrazoline derivative. The results of the tests carried out by KEPLINGER, et al. showed that intraperitoneal injection of the four FWAs produced no mutagenic effect during six weeks' mating; the whiteners used were a triazolylstilbenemonosulfonic acid derivative (50 mg/kg), two bis(triazinylamino)stilbenedisulfonic acid derivatives (50 mg/kg) and a bis(sulfostyryl)biphenyl derivative (10 mg/kg). PMID:1064544

  4. Effects of strain rate, test temperature and test environment on tensile properties of vandium alloys

    SciTech Connect

    Gubbi, A.N.; Rowcliffe, A.F.; Eatherly, W.S.; Gibson, L.T.

    1996-10-01

    Tensile testing was carried out on SS-3 tensile specimens punched from 0.762-mm-thick sheets of the large heat of V-4Cr-4Ti and small heats of V-3Cr-3Ti and V-6Cr-6Ti. The tensile specimens were annealed at 1000{degrees} for 2 h to obtain a fully recrystallized, fine grain microstructure with a grain size in the range of 10-19 {mu}m. Room temperature tests at strain rates ranging from 10{sup {minus}3} to 5 x 10{sup {minus}1}/s were carried out in air; elevated temperature testing up to 700{degrees}C was conducted in a vacuum better than 1 x 10{sup {minus}5} torr (<10{sup {minus}3} Pa). To study the effect of atomic hydrogen on ductility, tensile tests were conducted at room temperature in an ultra high vacuum chamber (UHV) with a hydrogen leak system.

  5. A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS

    SciTech Connect

    Song, Jeeseon; Mohr, Joseph J.; Barkhouse, Wayne A.; Rude, Cody; Warren, Michael S.; Dolag, Klaus

    2012-03-01

    We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the {<=}15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be {approx}35% to redshift z {approx} 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B{sub gc} and a red-sequence redshift estimator. We measure the intrinsic scatter of the B{sub gc}-mass relation to be approximately log normal with {sigma}{sub log10M}{approx}0.25 and we demonstrate photometric redshift accuracies for massive clusters at the {approx}3% level out to z {approx} 0.7.

  6. Implications of Aggregation and Mass Fractal Nature of Aggregates on the Properties of Organic Pigments and Polymer Composites

    NASA Astrophysics Data System (ADS)

    Agashe, Nikhil; Beaucage, Gregory; Skillas, George; Jemian, Peter; Long, Gabrielle; Ilavsky, Jan; Clapp, Lisa; Schwartz, Russell

    2002-03-01

    Aggregation of organic pigments was studied by small and ultra-small angle x-ray scattering. The aggregation of organic pigments and the implications for optical properties has not been previously reported in the literature, although extensive literature of this type exists for inorganic pigments such as titanium oxide. The pigments were also inspected for primary particle-size by electron microscopy and aggregate size by light scattering. All the pigments exhibited mass-fractal behavior when mixed into various polymers. Some pigments exhibited mass-fractal behavior even in powder form. The scattering patterns reflected differences in mass fractal dimension and particle size. The mass fractal dimension and the size of the aggregates in the polymer depend on the chemical nature of the pigment, the size and strength of the primary particle, the surface characteristics of the pigment, the interaction between the pigment and the polymer and the type of polymer used. A relation between the aggregate size and optimal optical properties is proposed. Aggregates having size around 0.5 microns show best optical properties and hence the pigment aggregate growth needs to be controlled during processing. The processes of aggregation were examined for these pigments. Some of the pigments formed aggregates by a reaction limited aggregation process while others exhibited diffusion limited aggregation.

  7. Does multiple paternity affect seed mass in angiosperms? An experimental test in Dalechampia scandens.

    PubMed

    Pélabon, C; Albertsen, E; Falahati-Anbaran, M; Wright, J; Armbruster, W S

    2015-09-01

    Flowers fertilized by multiple fathers may be expected to produce heavier seeds than those fertilized by a single father. However, the adaptive mechanisms leading to such differences remain unclear, and the evidence inconsistent. Here, we first review the different hypotheses predicting an increase in seed mass when multiple paternity occurs. We show that distinguishing between these hypotheses requires information about average seed mass, but also about within-fruit variance in seed mass, bias in siring success among pollen donors, and whether siring success and seed mass are correlated. We then report the results of an experiment on Dalechampia scandens (Euphorbiaceae), assessing these critical variables in conjunction with a comparison of seed mass resulting from crosses with single vs. multiple pollen donors. Siring success differed among males when competing for fertilization, but average seed mass was not affected by the number of fathers. Furthermore, paternal identity explained only 3.8% of the variance in seed mass, and siring success was not correlated with the mass of the seeds produced. Finally, within-infructescence variance in seed mass was not affected by the number of fathers. These results suggest that neither differential allocation nor sibling rivalry has any effect on the average mass of seeds in multiply sired fruits in D. scandens. Overall, the limited paternal effects observed in most studies and the possibility of diversification bet hedging among flowers (but not within flowers), suggest that multiple paternity within fruits or infructescence is unlikely to affect seed mass in a large number of angiosperm species. PMID:26174371

  8. Properties of mass-loading shocks. II - Magnetohydrodynamics. [of Giacobini-Zinner and Halley comets

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Oughton, S.; Neubauer, F. M.; Webb, G. M.

    1992-01-01

    The one-dimensional magnetohydrodynamics of mass-loading shocks is examined. These shocks, which are distinct from MHD shocks of classical nonreacting fluid dynamics and of combustion theory and which are characterized by the addition of mass within the shock transition, are to be found at comets and, depending upon circumstances, at nonmagnetized and weakly magnetized planets such as Venus and Mars. A completely general mass-loading form of the Hugoniot equation is derived, and some of the most important differences between mass-loading and nonreacting classical MHD shocks are identified. Two new types of MHD shocks are described which have no classical MHD analogues.

  9. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  10. Mass Balance. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This module describes the process used to determine solids mass and location throughout a waste water treatment plant, explains how these values are used to determine the solids mass balance around single treatment units and the entire system, and presents calculations of solids in pounds and sludge units. The instructor's manual contains a…

  11. Field test and calibration of neutron coincidence counters for high-mass plutonium samples

    SciTech Connect

    Menlove, H.O.; Dickinson, R.J.; Douglas, I.; Orr, C.; Rogers, F.J.G.; Wells, G.; Schenkel, R.; Smith, G.; Fattgh, A.; Ramalho, A.

    1987-02-01

    Five different neutron coincidence systems were evaluated and calibrated for high-mass PuO/sub 2/ samples. The samples were from 2 to 7.2 kg of PuO/sub 2/ in mass, with a large range of burnup. This report compares the equipment and the results, with an evaluation of deadtime and multiplication corrections.

  12. Testing the Reliability of Cluster Mass Indicators with a Systematics Limited Data Set

    NASA Astrophysics Data System (ADS)

    Juett, Adrienne M.; Davis, David S.; Mushotzky, Richard

    2010-02-01

    We present the mass-X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find two to three times the scatter around the best-fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at r 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results argue for a closer study of the systematic errors due to instrumental calibration and analysis method variations. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.

  13. TESTING THE RELIABILITY OF CLUSTER MASS INDICATORS WITH A SYSTEMATICS LIMITED DATA SET

    SciTech Connect

    Juett, Adrienne M.; Mushotzky, Richard E-mail: richard@milkyway.gsfc.nasa.gov

    2010-02-01

    We present the mass-X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find two to three times the scatter around the best-fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at r {sub 500} than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results argue for a closer study of the systematic errors due to instrumental calibration and analysis method variations. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.

  14. Testing the Reliability of Cluster Mass Indicators with XMM High to Noise Observations

    NASA Astrophysics Data System (ADS)

    Mushotzky, Richard; Juett, A. M.; Davis, D.

    2010-01-01

    We present the mass-X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al.. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at r500 than previous observational studies. Additionally, we find a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses.

  15. Testing the Reliability of Cluster Mass Indicators with a Systematics Limited Dataset

    NASA Technical Reports Server (NTRS)

    Juett, Adrienne M.; Davis, David S.; Mushotzky, Richard

    2009-01-01

    We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.

  16. Tracer Tests in a Fractured Dolomite: 2. Controls on Mass-Recovery Rates for a Single-Porosity, Heterogeneous Conceptualization

    SciTech Connect

    Altman, S.J.; Meigs, L.C.; Jones, T.L.

    1999-03-04

    A single-well injection-withdrawal (SWIW) test is evaluated as a tool to differentiate between single- and double-porosity conceptualizations of a system. Results from single-porosity simulations incorporating plume drift are also compared to observed data from a recent series of SWIW tests conducted in a fractured dolomite unit, for which a double-porosity conceptualization has been proposed. We evaluate the difficulty of differentiating the response for a double-porosity conceptualization from that for a heterogeneous, single-porosity conceptualization incorporating plume drift. Results of sensitivity studies on multiple, stochastically generated, heterogeneous transmissivity fields indicate that to simulate extremely slow mass-recovery rates for a SWIW test with a single-porosity conceptualization, the following conditions must be present: plume drift, extreme heterogeneities (high {sigma}InT), and an unusual configuration of the high and low transmissivity regions relative to the well location. A compilation of existing data suggests that the high degree of heterogeneity necessary is rare at the SWIW test scale.The observed data from the SWIW tracer tests cannot be matched to numerical simulation results when a single-porosity conceptualization is assumed. A signature of significant drift is less than 100% mass recovery with a zero derivative with respect to time of the late-time normalized cumulative mass curve indicating mass transported outside the capture zone of the withdrawal well. To minimize the risk of misinterpretation, an important design feature for SWIW tests is the collection of late-time data so that percent total mass recovery can be calculated.

  17. Numerical test concerning bone mass apposition under electrical and mechanical stimulus

    PubMed Central

    2012-01-01

    This article proposes a model of bone remodeling that encompasses mechanical and electrical stimuli. The remodeling formulation proposed by Weinans and collaborators was used as the basis of this research, with a literature review allowing a constitutive model evaluating the permittivity of bone tissue to be developed. This allowed the mass distribution that depends on mechanical and electrical stimuli to be obtained. The remaining constants were established through numerical experimentation. The results demonstrate that mass distribution is altered under electrical stimulation, generally resulting in a greater deposition of mass. In addition, the frequency of application of an electric field can affect the distribution of mass; at a lower frequency there is more mass in the domain. These numerical experiments open up discussion concerning the importance of the electric field in the remodeling process and propose the quantification of their effects. PMID:22578031

  18. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  19. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Soydugan, F.; Soydugan, E.; Bilir, S.; Yaz Gökçe, E.; Steer, I.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2015-04-01

    The mass-luminosity (M-L), mass-radius (M-R), and mass-effective temperature (M-{{T}eff}) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to ≤slant 3% and luminosities accurate to ≤slant 30% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7 {{M}⊙ } within the studied mass range of 0.38-32 {{M}⊙ }. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (L\\propto {{M}α }), are shown to be preferable to a single linear, quadratic, or cubic equation representing an alternative MLR. Stellar radius evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly evident on the M-R diagram, but it is not clear on the M-{{T}eff} diagram based on published temperatures. Effective temperatures can be calculated directly using the well known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly visible on the M-{{T}eff} diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of ˜6%, as long as its observed radius error is adequately small (\\lt 1%) and its observed mass error is reasonably small (\\lt 6%).

  20. Intrinsic tensile properties of cocoon silk fibres can be estimated by removing flaws through repeated tensile tests.

    PubMed

    Rajkhowa, Rangam; Kaur, Jasjeet; Wang, Xungai; Batchelor, Warren

    2015-06-01

    Silk fibres from silkworm cocoons have lower strength than spider silk and have received less attention as a source of high-performance fibres. In this work, we have used an innovative procedure to eliminate the flaws gradually of a single fibre specimen by retesting the unbroken portion of the fibre, after each fracture test. This was done multiple times so that the final test may provide the intrinsic fibre strength. During each retest, the fibre specimen began to yield once the failure load of the preceding test was exceeded. For each fibre specimen, a composite curve was constructed from multiple tests. The composite curves and analysis show that strengths of mass-produced Muga and Eri cocoon silk fibres increased from 446 to 618 MPa and from 337 to 452 MPa, respectively. Similarly, their toughness increased from 84 to 136 MJ m(-3) and from 61 to 104 MJ m(-3), respectively. Composite plots produced significantly less inter-specimen variations compared to values from single tests. The fibres with reduced flaws as a result of retests in the tested section have a tensile strength and toughness comparable to naturally spun dragline spider silk with a reported strength of 574 MPa and toughness of 91-158 MJ m(-3), which is used as a benchmark for developing high-performance fibres. This retesting approach is likely to provide useful insights into discrete flaw distributions and intrinsic mechanical properties of other fatigue-resistant materials. PMID:25948613

  1. Intrinsic tensile properties of cocoon silk fibres can be estimated by removing flaws through repeated tensile tests

    PubMed Central

    Rajkhowa, Rangam; Kaur, Jasjeet; Wang, Xungai; Batchelor, Warren

    2015-01-01

    Silk fibres from silkworm cocoons have lower strength than spider silk and have received less attention as a source of high-performance fibres. In this work, we have used an innovative procedure to eliminate the flaws gradually of a single fibre specimen by retesting the unbroken portion of the fibre, after each fracture test. This was done multiple times so that the final test may provide the intrinsic fibre strength. During each retest, the fibre specimen began to yield once the failure load of the preceding test was exceeded. For each fibre specimen, a composite curve was constructed from multiple tests. The composite curves and analysis show that strengths of mass-produced Muga and Eri cocoon silk fibres increased from 446 to 618 MPa and from 337 to 452 MPa, respectively. Similarly, their toughness increased from 84 to 136 MJ m−3 and from 61 to 104 MJ m−3, respectively. Composite plots produced significantly less inter-specimen variations compared to values from single tests. The fibres with reduced flaws as a result of retests in the tested section have a tensile strength and toughness comparable to naturally spun dragline spider silk with a reported strength of 574 MPa and toughness of 91–158 MJ m−3, which is used as a benchmark for developing high-performance fibres. This retesting approach is likely to provide useful insights into discrete flaw distributions and intrinsic mechanical properties of other fatigue-resistant materials. PMID:25948613

  2. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  3. Testing Students with Special Educational Needs in Large-Scale Assessments – Psychometric Properties of Test Scores and Associations with Test Taking Behavior

    PubMed Central

    Pohl, Steffi; Südkamp, Anna; Hardt, Katinka; Carstensen, Claus H.; Weinert, Sabine

    2016-01-01

    Assessing competencies of students with special educational needs in learning (SEN-L) poses a challenge for large-scale assessments (LSAs). For students with SEN-L, the available competence tests may fail to yield test scores of high psychometric quality, which are—at the same time—measurement invariant to test scores of general education students. We investigated whether we can identify a subgroup of students with SEN-L, for which measurement invariant competence measures of adequate psychometric quality may be obtained with tests available in LSAs. We furthermore investigated whether differences in test-taking behavior may explain dissatisfying psychometric properties and measurement non-invariance of test scores within LSAs. We relied on person fit indices and mixture distribution models to identify students with SEN-L for whom test scores with satisfactory psychometric properties and measurement invariance may be obtained. We also captured differences in test-taking behavior related to guessing and missing responses. As a result we identified a subgroup of students with SEN-L for whom competence scores of adequate psychometric quality that are measurement invariant to those of general education students were obtained. Concerning test taking behavior, there was a small number of students who unsystematically picked response options. Removing these students from the sample slightly improved item fit. Furthermore, two different patterns of missing responses were identified that explain to some extent problems in the assessments of students with SEN-L. PMID:26941665

  4. Testing Students with Special Educational Needs in Large-Scale Assessments - Psychometric Properties of Test Scores and Associations with Test Taking Behavior.

    PubMed

    Pohl, Steffi; Südkamp, Anna; Hardt, Katinka; Carstensen, Claus H; Weinert, Sabine

    2016-01-01

    Assessing competencies of students with special educational needs in learning (SEN-L) poses a challenge for large-scale assessments (LSAs). For students with SEN-L, the available competence tests may fail to yield test scores of high psychometric quality, which are-at the same time-measurement invariant to test scores of general education students. We investigated whether we can identify a subgroup of students with SEN-L, for which measurement invariant competence measures of adequate psychometric quality may be obtained with tests available in LSAs. We furthermore investigated whether differences in test-taking behavior may explain dissatisfying psychometric properties and measurement non-invariance of test scores within LSAs. We relied on person fit indices and mixture distribution models to identify students with SEN-L for whom test scores with satisfactory psychometric properties and measurement invariance may be obtained. We also captured differences in test-taking behavior related to guessing and missing responses. As a result we identified a subgroup of students with SEN-L for whom competence scores of adequate psychometric quality that are measurement invariant to those of general education students were obtained. Concerning test taking behavior, there was a small number of students who unsystematically picked response options. Removing these students from the sample slightly improved item fit. Furthermore, two different patterns of missing responses were identified that explain to some extent problems in the assessments of students with SEN-L. PMID:26941665

  5. The ELM Survey. VII. Orbital Properties of Low-Mass White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Gianninas, A.; Kilic, Mukremin; Kenyon, Scott J.; Allende Prieto, Carlos

    2016-02-01

    We present the discovery of 15 extremely low-mass (5\\lt {log}g\\lt 7) white dwarf (WD) candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted extremely low-mass Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 M⊙ mean and 0.25 M⊙ dispersion. Thus extremely low-mass WDs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the WD binaries have a total mass below the Chandrasekhar mass, and thus are not type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive WDs and stable mass transfer AM CVn binaries. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  6. A Fast Running Test Bed Model to Evaluate Atmospheric Plume Source Properties I: Initial Test Scenario

    SciTech Connect

    Grossman, A S; Molenkamp, C F; Grant, K E

    2001-06-01

    Given an unknown but detected release of a toxic agent, the current NARAC capability for reconstructing source characteristics is a highly manual procedure that often relies on analyst judgment and requires many hours of computations for a refined analysis. There is no automated, optimization approach to estimating the source characteristics. A fast running, prototype atmospheric inversion model has been developed for use as a test bed for the evaluation of source inversion schemes. The model was applied to a simple puff release scenario to test the relationship between the amount of sampled data obtained and the accuracy of the determination of the inverted source parameters. The initial inversion scheme chosen for the test bed model utilizes the Marquardt method coupled to a Gaussian puff atmospheric dispersion model driven by a COAMPS model wind field. The inversion scheme results are used in conjunction with a sensor realization probability model for a sensor realization scenario consisting of 1000 possible sensor realizations. The results of the initial test calculations indicate that the inversion procedure produces good results for the four source parameters, location (x, y), release time, and strength along with reasonably well defined maximum probabilities for the sensor realization scenarios. The model runs relatively fast, taking {approx}100 seconds per inversion on a Sparc 10 workstation.

  7. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs.

    PubMed

    Allen, Vivian; Paxton, Heather; Hutchinson, John R

    2009-09-01

    Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. PMID:19711477

  8. Entanglement properties of kaons and tests of hidden-variable models

    SciTech Connect

    Genovese, M.

    2004-02-01

    In this paper we discuss entanglement properties of neutral kaons systems and their use for testing local realism. In particular, we analyze a Hardy-type scheme [A. Bramon and G. Garbarino, Phys. Rev. Lett. 89, 160401 (2002)] recently suggested for performing a test of hidden-variable theories against standard quantum mechanics. Our result is that this scheme could, in principle, lead to a conclusive test of local realism, but only if higher identification efficiencies than in today's experiments will be reached.

  9. Water mass properties and fluxes in the Rockall Trough, 1975 1998

    NASA Astrophysics Data System (ADS)

    Penny Holliday, N.; Pollard, Raymond T.; Read, Jane F.; Leach, Harry

    2000-07-01

    A time series of a standard hydrographic section in the northern Rockall Trough spanning 23 yr is examined for changes in water mass properties and transport levels. The Rockall Trough is situated west of the British Isles and separated from the Iceland Basin by the Hatton and Rockall Banks and from the Nordic Seas by the shallow (500 m) Wyville-Thompson ridge. It is one pathway by which warm North Atlantic upper water reaches the Norwegian Sea and is converted into cold dense overflow water as part of the thermohaline overturning in the northern North Atlantic and Nordic Seas. The upper water column is characterised by poleward moving Eastern North Atlantic Water (ENAW), which is warmer and saltier than the subpolar mode waters of the Iceland Basin, which also contribute to the Nordic Sea inflow. Below 1200 m the deep Labrador Sea Water (LSW) is trapped by the shallowing topography to the north, which prevents through flow but allows recirculation within the basin. The Rockall Trough experiences a strong seasonal signal in temperature and salinity with deep convective winter mixing to typically 600 m or more and the formation of a warm fresh summer surface layer. The time series reveals interannual changes in salinity of ±0.05 in the ENAW and ±0.04 in the LSW. The deep water freshening events are of a magnitude greater than that expected from changes in source characteristics of the LSW, and are shown to represent periodic pulses of newer LSW into a recirculating reservior. The mean poleward transport of ENAW is 3.7 Sv above 1200 dbar (of which 3.0 Sv is carried by the shelf edge current) but shows a high-level interannual variability, ranging from 0 to 8 Sv over the 23 yr period. The shelf edge current is shown to have a changing thermohaline structure and a baroclinic transport that varies from 0 to 8 Sv. The interannual signal in the total transport dominates the observations, and no evidence is found of a seasonal signal.

  10. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  11. Thermodynamic properties of the UO 2ZrO 2 system studied by the isothermal mass spectrometric vaporization method

    NASA Astrophysics Data System (ADS)

    Stolyarova, Valentina; Shilov, Andrei; Shultz, Mikhail

    1997-08-01

    The Knudsen effusion high-temperature mass spectrometric method was used to study the vaporization processes and thermodynamic properties of the UO 2ZrO 2 System in the temperature range 2200-2650 K. The work was carried out with the MS 1301 mass spectrometer developed for studies of physico-chemical properties of inorganic substances at high temperatures. Vaporization of the solid solutions containing 0.02-0.45 mol fractions of U0 2 was done using tungsten cells. The vaporization processes and the chemical potentials of ZrO 2 in the U0 2Zr0 2 system and in the Y 2O 3ZrO 2, Lu 2O 3ZrO 2 and HfO 2ZrO 2 systems, available in the literature, were discussed from the point of view of the acid-base concept.

  12. CMOS-MEMS Test-Key for Extracting Wafer-Level Mechanical Properties

    PubMed Central

    Chuang, Wan-Chun; Hu, Yuh-Chung; Chang, Pei-Zen

    2012-01-01

    This paper develops the technologies of mechanical characterization of CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical properties, such as Young’s modulus, and mean stress, through the external electrical circuit behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of bridge-type test-key subjected to electrostatic load and initial stress is derived based on Euler’s beam model and the minimum energy method. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young’s modulus and mean stress of the test structures. The test cases include the test-key fabricated by a TSMC 0.18 μm standard CMOS process, and the experimental results refer to Osterberg’s work on the pull-in voltage of single crystal silicone microbridges. The extracted material properties calculated by the present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm regarding the dimension effects of test-keys. This mechanical properties extracting method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test process is non-destructive. PMID:23235449

  13. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    NASA Astrophysics Data System (ADS)

    Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P.

    2015-03-01

    Context. The post-main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate, and the effect of a close companion. Aims: We study the change in the red supergiant (RSG) lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor and the structure of the stars at that time for various mass-loss rates during the RSG phase and for two different initial rotation velocities. Methods: Stellar models were computed with the Geneva code for initial masses between 9 and 25 M⊙ at solar metallicity (Z = 0.014) with 10 times and 25 times the standard mass-loss rates during the RSG phase, with and without rotation. Results: The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and in turn on the luminosity function of RSGs. An observed RSG is associated with a model of higher initial mass when models with an enhanced RSG mass-loss rate are used to deduce that mass. At solar metallicity, models with an enhanced mass-loss rate produce significant changes in the populations of blue, yellow, and RSGs. When extended blue loops or blueward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post-RSG objects. These post-RSG stars are predicted to show much lower surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. Enhanced mass-loss rates during the RSG phase have little impact on the Wolf-Rayet populations. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever at the pre-supernova stage the H-rich envelope contains more than about 5% of the initial mass, the star is a RSG, and whenever

  14. A new methodology to test galaxy formation models using the dependence of clustering on stellar mass

    NASA Astrophysics Data System (ADS)

    Campbell, David J. R.; Baugh, Carlton M.; Mitchell, Peter D.; Helly, John C.; Gonzalez-Perez, Violeta; Lacey, Cedric G.; Lagos, Claudia del P.; Simha, Vimal; Farrow, Daniel J.

    2015-09-01

    We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a high resolution, large volume N-body simulation, set in the 7-year Wilkinson Microwave Anisotropy Probe cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model, and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highlight the importance of applying our methodology to compare theoretical models to observations. We introduce an alternative scheme for the calculation of the merger time-scales for satellite galaxies in GALFORM, which takes into account the dark matter subhalo information from the simulation. This reduces the amplitude of small-scale clustering. The new merger scheme offers improved or similar agreement with observational clustering measurements, over the redshift range 0 < z < 0.7. We find reasonable agreement with clustering measurements from the Galaxy and Mass Assembly Survey, but find larger discrepancies for some stellar mass ranges and separation scales with respect to measurements from the Sloan Digital Sky Survey and the VIMOS Public Extragalactic Redshift Survey, depending on the GALFORM model used.

  15. A ``Spring-mass'' model of tethered satellite systems: properties of planar periodic motions

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav V.; Celletti, Alessandra

    2010-06-01

    This paper is devoted to the dynamics in a central gravity field of two point masses connected by a massless tether (the so called “spring-mass” model of tethered satellite systems). Only the motions with straight strained tether are studied, while the case of “slack” tether is not considered. It is assumed that the distance between the point masses is substantially smaller than the distance between the system’s center of mass and the field center. This assumption allows us to treat the motion of the center of mass as an unperturbed Keplerian one, so to focus our study on attitude dynamics. A particular attention is given to the family of planar periodic motions in which the center of mass moves on an elliptic orbit, and the point masses never leave the orbital plane. If the eccentricity tends to zero, the corresponding family admits as a limit case the relative equilibrium in which the tether is elongated along the line joining the center of mass with the field center. We study the bifurcations and the stability of these planar periodic motions with respect to in-plane and out-of-plane perturbations. Our results show that the stable motions take place if the eccentricity of the orbit is sufficiently small.

  16. Membrane-Introduction Mass Spectrometry Analysis of Desflurane, Propofol and Fentanyl in Plasma and Cerebrospinal Fluid for Estimation BBB Properties.

    PubMed

    Cherebillo, Vyacheslav Yu; Elizarov, Andrei Yu; Polegaev, Andrei V

    2015-09-01

    A possibility to use the Membrane-Introduction Mass Spectrometry (MIMS) with membrane separator interface has evolved into a powerful method for measurement of anaesthetic agents absolute concentration in blood plasma and cerebrospinal fluid for the study of blood-brain barrier (BBB) properties. Recent advanced a new membrane material was used for drug concentration measurement in biologic fluids. A hydrophobic membrane was used in the interface to separate anaesthetic agents from biological fluids: inhalational anaesthetic desflurane,hypnotic propofol, analgesic fentanyl. The selective detection of volatile anesthetic agents in blood does not require long-term sample processing before injecting the sample into mass-spectrometer interface, in contrast to chromatographic methods. Mass-spectrometric interface for the measurement of anaesthetic agent concentration in biological fluids (blood plasma and cerebrospinal fluid) is described. Sampling of biological fluids was performed during balanced inhalational (desflurane, fentanyl) anaesthesia and total intravenous (propofol, fentanyl) anaesthesia. PMID:26412969

  17. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  18. Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials.

    PubMed

    Wang, Weidong; Li, Shuai; Zhang, Hongti; Lu, Yang

    2015-01-01

    One-dimensional (1-D) nanomaterials exhibit great potentials in their applications to functional materials, nano-devices and systems owing to their excellent properties. In the past decade, considerable studies have been done, with new patents being developed, on these 1-D building blocks for for their mechanical properties, especially elastic properties, which provide a solid foundation for the design of nanoelectromechanical systems (NEMS) and predictions of reliability and longevity for their devices. This paper reviews some of the recent investigations on techniques as well as patents available for the quantitative characterization of the elastic behaviors of various 1-D nanomaterials, with particular focus on on-chip testing system. The review begins with an overview of major testing methods for 1-D nanostructures' elastic properties, including nanoindentation testing, AFM (atomic force microscopy) testing, in situ SEM (scanning electron microscopy) testing, in situ TEM (transmission electron microscopy) testing and the testing system on the basis of MEMS (micro-electro-mechanical systems) technology, followed by advantages and challenges of each testing approach. This review also focuses on the MEMS-based testing apparatus, which can be actuated and measured inside SEM and TEM with ease, allowing users to highly magnify the continuous images of the specimen while measuring load electronically and independently. The combination of on-chip technologies and the in situ electron microscopy is expected to be a potential testing technique for nanomechanics. Finally, details are presented on the key challenges and possible solutions in the implementation of the testing techniques referred above. PMID:25986228

  19. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  20. The relationship of conodont biofacies to spatially variable water mass properties in the Late Pennsylvanian Midcontinent Sea

    NASA Astrophysics Data System (ADS)

    Herrmann, Achim D.; Barrick, James E.; Algeo, Thomas J.

    2015-03-01

    Molybdenum and uranium enrichment factors and nitrogen isotopes suggest that an interplay of open ocean upwelling and riverine runoff led to distinct spatial and secular variations in water mass properties within the epicontinental Late Pennsylvanian Midcontinent Sea of North America. In particular, the intensity of continental runoff influenced the flux of bulk organic matter to the sediment. Benthic anoxia appears to have been controlled by the vertical density gradient in the water column associated with continental runoff combined with the advection of basinal water. Anoxic conditions were stronger in proximal (i.e., more shoreward) areas of the Midcontinent Shelf, indicating that anoxia did not develop primarily due to upwelling of nutrient-rich waters along the southern shelf margin, as previously suggested. Changes in water mass redox conditions not only drove authigenic enrichment of redox-sensitive trace elements across the basin but also had a strong effect on the spatial distribution of various conodont taxa. Our analysis suggests that the widely accepted depth-stratification model for the distribution of conodonts is incomplete. Conodont biofacies distributions seem to have been controlled by physicochemical properties of the water mass (e.g., salinity, temperature, nutrients, turbidity, and/or dissolved oxygen levels) that may correspond less directly to water depth. The proximity to terrestrial freshwater influx and the strength of anoxia/euxinia in the subpycnoclinal water mass played significant roles in the spatial and temporal distributions of conodont taxa.

  1. A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark haloes to their mass

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; White, Simon D. M.; Mandelbaum, Rachel; Henriques, Bruno; Anderson, Michael E.; Han, Jiaxin

    2016-03-01

    We use weak gravitational lensing to measure mean mass profiles around locally brightest galaxies (LBGs). These are selected from the Seventh Data Release of the Sloan Digital Sky Survey spectroscopic and photometric catalogues to be brighter than any neighbour projected within 1.0 Mpc and differing in redshift by <1000 km s-1. Most (>83 per cent) are expected to be the central galaxies of their dark matter haloes. Previous stacking analyses have used this LBG sample to measure mean Sunyaev-Zeldovich flux and mean X-ray luminosity as a function of LBG stellar mass. In both cases, a simulation of the formation of the galaxy population was used to estimate effective halo mass for LBGs of given stellar mass, allowing the derivation of scaling relations between the gas properties of haloes and their mass. By comparing results from a variety of simulations to our lensing data, we show that this procedure has significant model dependence reflecting: (i) the failure of any given simulation to reproduce observed galaxy abundances exactly; (ii) a dependence on the cosmology underlying the simulation; and (iii) a dependence on the details of how galaxies populate haloes. We use our lensing results to recalibrate the scaling relations, eliminating most of this model dependence and explicitly accounting both for residual modelling uncertainties and for observational uncertainties in the lensing results. The resulting scaling relations link the mean gas properties of dark haloes to their mass over an unprecedentedly wide range, 1012.5 < M500/M⊙ < 1014.5, and should fairly and robustly represent the full halo population.

  2. Use of Time-lapse Mise-á-la-Masse Measurements to Monitor a Saline Tracer Test: Advantages and Limitations.

    NASA Astrophysics Data System (ADS)

    Perri, M. T.; De Vita, P.; Cassiani, G.; Masciale, R.; Portoghese, I.; Chirico, G. B.

    2015-12-01

    This work presents the results of a saline tracer test conducted on an alluvial aquifer placed in the Alento River Valley (Campania region, Southern Italy) and monitored by time-lapse Mise-á-la-Masse measurements. The principal aim of this study is the characterization of the groundwater flow field, both in velocity and direction. The results of the geophysical survey are described and compared to several simulated datasets conducted on a 3D model simulating flow, transport and electrical current. In this manner it is possible to assess the information content of the Mise-á-la-Masse dataset with respect to the groundwater field characteristics. The study shows how a combination of three-dimensional time-lapse modelling of flow, tracer transport and electrical current can substantially contribute towards a quantitative interpretation of Mise-á-la-Masse measurements during saline tracer tests. This approach can thus revive the use of Mise-á-la-Masse as a practical, low cost field technique for tracer test monitoring, particularly for shallow aquifers, providing critical information concerning the natural groundwater flow direction and velocity.

  3. TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Jones, Tucker; Richard, Johan

    2013-08-01

    We present rest-frame optical spectra for a sample of nine low-mass star-forming galaxies in the redshift range 1.5 < z < 3 which are gravitationally lensed by foreground clusters. We used Triplespec, an echelle spectrograph at the Palomar 200 inch telescope that is very effective for this purpose as it samples the entire near-infrared spectrum simultaneously. By measuring the flux of nebular emission lines, we derive gas-phase metallicities and star formation rates, and by fitting the optical to infrared spectral energy distributions we obtain stellar masses. Taking advantage of the high magnification due to strong lensing, we are able to probe the physical properties of galaxies with stellar masses in the range 7.8 < log M/M{sub Sun} < 9.4 whose star formation rates are similar to those of typical star-forming galaxies in the local universe. We compare our results with the locally determined relation between stellar mass, gas metallicity, and star formation rate. Our data are in excellent agreement with this relation, with an average offset ({Delta}log (O/H)) = 0.01 {+-} 0.08, suggesting a universal relationship. Remarkably, the scatter around the fundamental metallicity relation is only 0.24 dex, smaller than that observed locally at the same stellar masses, which may provide an important additional constraint for galaxy evolution models.

  4. Collective Properties of Neutron-star X-Ray Binary Populations of Galaxies. II. Pre-low-mass X-Ray Binary Properties, Formation Rates, and Constraints

    NASA Astrophysics Data System (ADS)

    Bhadkamkar, H.; Ghosh, P.

    2014-04-01

    We continue our exploration of the collective properties of neutron-star X-ray binaries in the stellar fields (i.e., outside globular clusters) of normal galaxies. In Paper I of this series, we considered high-mass X-ray binaries (HMXBs). In this paper (Paper II), we consider low-mass X-ray binaries (LMXBs), whose evolutionary scenario is very different from that of HMXBs. We consider the evolution of primordial binaries up to the stage where the neutron star just formed in the supernova explosion of the primary is in a binary with its low-mass, unevolved companion, and this binary has circularized tidally, producing what we call a pre-low-mass X-ray binary (pre-LMXB). We study the constraints on the formation of such pre-LMXBs in detail (since these are low-probability events), and calculate their collective properties and formation rates. To this end, we first consider the changes in the binary parameters in the various steps involved, viz., the common-envelope phase, the supernova, and the tidal evolution. This naturally leads to a clarification of the constraints. We then describe our calculation of the evolution of the distributions of primordial binary parameters into those of pre-LMXB parameters, following the standard evolutionary scenario for individual binaries. We display the latter as both bivariate and monovariate distributions, discuss their essential properties, and indicate the influences of some essential factors on these. Finally, we calculate the formation rate of these pre-LMXBs. The results of this paper will be used in a subsequent one to compute the expected X-ray luminosity function of LMXBs.

  5. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  6. Magnetic properties comparison of mass standards among seventeen national metrology institutes

    NASA Astrophysics Data System (ADS)

    Becerra, L. O.; Berry, J.; Chang, C. S.; Chapman, G. D.; Chung, J. W.; Davis, R. S.; Field, I.; Fuchs, P.; Jacobsson, U.; Lee, S. M.; Loayza, V. M.; Madec, T.; Matilla, C.; Ooiwa, A.; Scholz, F.; Sutton, C.; van Andel, I.

    2006-10-01

    The ubiquitous technology of magnetic force compensation of gravitational forces acting on artifacts on the pans of modern balances and comparators has brought with it the problem of magnetic leakage from the compensation coils. Leaking magnetic fields, as well as those due to the surroundings of the balance, can interact with the artifact whose mass is to be determined, causing erroneous values to be observed. For this reason, and to comply with normative standards, it has become important for mass metrologists to evaluate the magnetic susceptibility and any remanent magnetization that mass standards may possess. This paper describes a comparison of measurements of these parameters among seventeen national metrology institutes. The measurements are made on three transfer standards whose magnetic parameters span the range that might be encountered in stainless steel mass standards.

  7. Mechanical properties test data for structural materials. Semiannual progress report for period ending July 31, 1980

    SciTech Connect

    Keiser, D.D.

    1980-01-01

    Mechanical property investigations of Alloy 718 given either the 954/sup 0/C conventional or the INEL heat treatment are continuing. Current conventional heat-treat data include tests showing the effects of surface finish, product variability, and thermal exposure on the high-cycle fatigue properties; creep-fatigue tests at 538, 593, 649, and 704/sup 0/C with 0.1 hour hold times at peak strain; and stress-rupture tests of notched and smooth specimens showing the effect of pretest thermal exposure. A few stress-rupture tests of weld and base metals given the INEL heat treatment are also reported. High-cycle fatigue tests of Type 316 stainless steel at 593/sup 0/C are reported and compared with previous data from other sources.

  8. THE EVOLUTION OF THE SOLAR NEBULA I. EVOLUTION OF THE GLOBAL PROPERTIES AND PLANET MASSES

    SciTech Connect

    Jin Liping; Sui Ning E-mail: suining@email.jlu.edu.c

    2010-02-20

    We investigate the formation, structure, and evolution of the solar nebula by including nonuniform viscosity and the mass influx from the gravitational collapse of the molecular cloud core. The calculations are done by using currently accepted viscosity, which is nonuniform, and probable mass influx from star formation theory. In the calculation of the viscosity, we include the effect of magnetorotational instability. The radial distributions of the surface density and other physical quantities of the nebula are significantly different from nebula models with constant alpha viscosity and the models which do not include the mass influx. We find that the nebula starts to form from the inner boundary because of the inside-out collapse and then expands due to viscosity. The surface density is not a monotonic function of the radius like the case of uniform viscosity. There are minimums near 1.5 AU due to nonuniform viscosity. The general shape of the surface density is sustained before the mass influx stops because the mass supply offsets mass loss accreted onto the protosun and provides the mass needed for the nebula expansion. We show that not all protoplanetary disks experience gravitational instability during some periods of their lifetime. We find that the nebula becomes gravitationally unstable in some durations when the angular momentum of the cloud core is high. Our numerical calculations confirm Jin's early suggestion that nonuniform viscosity explains the differences in mass and gas content among Jovian planets. Our calculations of nebular evolution show that the nebula temperature is less than 1200 K. Even in the inner portion of the nebula, refractory material from the molecular cloud may survive and refractory condensates may form.

  9. Subaru weak-lensing survey of dark matter subhalos in the Coma cluster: Subhalo mass function and statistical properties

    SciTech Connect

    Okabe, Nobuhiro; Futamase, Toshifumi; Kuroshima, Risa; Kajisawa, Masaru

    2014-04-01

    We present a 4 deg{sup 2} weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos detected in a model-independent manner, down to the order of 10{sup –3} of the virial mass of the cluster. Weak-lensing mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over subhalos show a sharply truncated feature which is well-fitted by a Navarro-Frenk-White (NFW) mass model with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function, dn/dln M {sub sub}, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter function. Best-fit power indices of 1.09{sub −0.32}{sup +0.42} for the former model and 0.99{sub −0.23}{sup +0.34} for the latter, are in remarkable agreement with slopes of ∼0.9-1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in the radial range of 0.02-2 h {sup –1} Mpc from the cluster center show a complex structure which is well described by a composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order of magnitude lower than those for clusters at z ∼ 0.2, the total signal-to-noise ratio, S/N = 13.3, is comparable, or higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of the nearby cluster.

  10. CLASH-VLT: testing the nature of gravity with galaxy cluster mass profiles

    NASA Astrophysics Data System (ADS)

    Pizzuti, L.; Sartoris, B.; Borgani, S.; Amendola, L.; Umetsu, K.; Biviano, A.; Girardi, M.; Rosati, P.; Balestra, I.; Caminha, G. B.; Frye, B.; Koekemoer, A.; Grillo, C.; Lombardi, M.; Mercurio, A.; Nonino, M.

    2016-04-01

    We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at z=0.44 to estimate the value of the ratio η=Ψ/Φ between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric. An accurate measurement of this ratio, called anisotropic stress, could show possible, interesting deviations from the predictions of the theory of General Relativity, according to which Ψ should be equal to Φ. Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only Φ), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum Φ+Ψ). We thus express η as a function of the mass profiles and perform our analysis over the radial range 0.5 Mpc<= r<= r200=1.96 Mpc. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain η(r200)=1.01 ‑0.28+0.31 at the 68% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied f(R) modified gravity model, the constraint on η translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the f(R) interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.

  11. HIghMass-high H I mass, H I-rich galaxies at z ∼ 0 sample definition, optical and Hα imaging, and star formation properties

    SciTech Connect

    Huang, Shan; Matsushita, Satoki; Haynes, Martha P.; Giovanelli, Riccardo; Hallenbeck, Gregory; Jones, Michael G.; Adams, Elizabeth A. K.; Brinchmann, Jarle; Chengalur, Jayaram N.; Hunt, Leslie K.; Masters, Karen L.; Saintonge, Amelie; Spekkens, Kristine

    2014-09-20

    We present first results of the study of a set of exceptional H I sources identified in the 40% ALFALFA extragalactic H I survey catalog α.40 as both being H I massive (M{sub HI}>10{sup 10} M{sub ⊙}) and having high gas fractions for their stellar masses: the HIghMass galaxy sample. We analyze UV- and optical-broadband and Hα images to understand the nature of their relatively underluminous disks in optical and to test whether their high gas fractions can be tracked to higher dark matter halo spin parameters or late gas accretion. Estimates of their star formation rates (SFRs) based on spectral energy distribution fitting agree within uncertainties with the Hα luminosity inferred current massive SFRs. The H II region luminosity functions, parameterized as dN/dlog L∝L {sup α}, have standard slopes at the luminous end (α ∼ –1). The global SFRs demonstrate that the HIghMass galaxies exhibit active ongoing star formation (SF) with moderate SF efficiency but, relative to normal spirals, a lower integrated SFR in the past. Because the SF activity in these systems is spread throughout their extended disks, they have overall lower SFR surface densities and lower surface brightness in the optical bands. Relative to normal disk galaxies, the majority of HIghMass galaxies have higher Hα equivalent widths and are bluer in their outer disks, implying an inside-out disk growth scenario. Downbending double exponential disks are more frequent than upbending disks among the gas-rich galaxies, suggesting that SF thresholds exist in the downbending disks, probably as a result of concentrated gas distribution.

  12. Testing low mass flow train in the DOE Coal Fired Flow Facility. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Not Available

    1984-06-01

    UTSI reports on testing of the Low Mass Flow Train in the DOE Coal Fired Flow Facility. During this period eight tests were conducted, which complete the seed/slag interaction test series. Preliminary results of these tests are reported. Additional nitrogen oxide (NO/sub x/) measurements are included, as are SO/sub 2/ removal results. An analysis of deposit accumulation on the tubes in the materials test module is reported. Data obtained from high velocity thermocouple (HVT) probes in the radiant furnace are included for the first time and show essentially a flat temperature profile in the furnace. Heat transfer calculations for the flow train are correlated with experimental measurements, including those obtained from both UTSI and MSU line reversal systems.

  13. LISA-PF radiation monitor performance during the evolution of SEP events for the monitoring of test-mass charging

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Ao, X.; Fabi, M.; Laurenza, M.; Li, G.; Lobo, A.; Mateos, I.; Storini, M.; Verkhoglyadova, O.; Zank, G. P.

    2014-02-01

    Cosmic rays of solar and galactic origin at energies >100 MeV/n charge and induce spurious forces on free-floating test masses on board interferometers devoted to gravitational wave detection in space. LISA Pathfinder (LISA-PF), the technology testing mission for eLISA/NGO, will carry radiation monitors for on board test-mass charging monitoring. We present here the results of a simulation of radiation monitor performance during the evolution of solar energetic particle (SEP) events of different intensity. This simulation was carried out with the Fluka Monte Carlo package by taking into account for the first time both energy and spatial distributions of solar protons for the SEP events of 23 February 1956, 15 November 1960 and 7 May 1978. Input data for the Monte Carlo simulations was inferred from neutron monitor measurements. Conversely, for the SEP event of 13 December 2006 observed by the PAMELA experiment in space, we used the proton pitch angle distribution (PAD) computed from the Particle Acceleration and Transport in the Heliosphere (PATH) code. We plan to adopt this approach at the time of LISA-PF data analysis in order to optimize the correlation between radiation monitor observations and test-mass charging. The results of this work can be extended to the future space interferometers and other space missions carrying instruments for SEP detection.

  14. Precision Test of Mass-Ratio Variations with Lattice-Confined Ultracold Molecules

    SciTech Connect

    Zelevinsky, T.; Ye Jun; Kotochigova, S.

    2008-02-01

    We propose a precision measurement of time variations of the proton-electron mass ratio using ultracold molecules in an optical lattice. Vibrational energy intervals are sensitive to changes of the mass ratio. In contrast to measurements that use hyperfine-interval-based atomic clocks, the scheme discussed here is model independent and does not require separation of time variations of different physical constants. The possibility of applying the zero-differential-Stark-shift optical lattice technique is explored to measure vibrational transitions at high accuracy.

  15. Precision test of mass-ratio variations with lattice-confined ultracold molecules.

    PubMed

    Zelevinsky, T; Kotochigova, S; Ye, Jun

    2008-02-01

    We propose a precision measurement of time variations of the proton-electron mass ratio using ultracold molecules in an optical lattice. Vibrational energy intervals are sensitive to changes of the mass ratio. In contrast to measurements that use hyperfine-interval-based atomic clocks, the scheme discussed here is model independent and does not require separation of time variations of different physical constants. The possibility of applying the zero-differential-Stark-shift optical lattice technique is explored to measure vibrational transitions at high accuracy. PMID:18352267

  16. Quantitative test method for evaluation of anti-fingerprint property of coated surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Linda Y. L.; Ngian, S. K.; Chen, Z.; Xuan, D. T. T.

    2011-01-01

    An artificial fingerprint liquid is formulated from artificial sweat, hydroxyl-terminated polydimethylsiloxane and a solvent for direct determination of anti-fingerprint property of a coated surface. A range of smooth and rough surfaces with different anti-fingerprint (AF) properties were fabricated by sol-gel technology, on which the AF liquid contact angles, artificial fingerprint and real human fingerprints (HF) were verified and correlated. It is proved that a surface with AF contact angle above 87° is fingerprint free. This provides an objective and quantitative test method to determine anti-fingerprint property of coated surfaces. It is also concluded that AF property can be achieved on smooth and optically clear surfaces. Deep porous structures are more favorable than bumpy structure for oleophobic and AF properties.

  17. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    SciTech Connect

    Price, R. H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200{sup 0}C, and strain rate from 10{sup -7} to 10{sup -2} s{sup -1}. These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests.

  18. Spectroscopy of Galaxies in Massive Clusters: Galaxy Properties and Dynamical Cluster Mass Calibration

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher W.; Ashby, M. L. N.; Anderson, K.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Clocchiatti, A.; Crawford, T. M.; de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Foley, R.; Gladders, M. D.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Keisler, R.; Marrone, D. P.; Mohr, J. J.; Montroy, T.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B.; Shaw, L.; Song, J.; Stalder, B.; Stanford, S. A.; Stark, A. A.; Story, K.; Vanderlinde, K.; Williamson, R.

    2011-08-01

    We propose to acquire GMOS spectroscopy of 85 clusters of galaxies selected via the Sunyaev-Zel'dovich (SZ) effect from the South Pole Telescope (SPT) microwave background survey. This will bring our total to 100 SPT clusters with velocity dispersions. The SPT survey is delivering a uniformly-selected high-mass cluster sample that is essentially volume-complete beyond z>0.3. We will target a subset (0.3 < z < 0.8) of the SPT cluster catalog, extracted from 2500 deg^2. This data set will establish competitive, independent constraints on cosmological parameters, including the nature of the dark energy. Achieving this goal requires a precise understanding of the relationship between the cluster's SZ signature and the cluster mass, and this mass normalization is currently the largest systematic error in SPT's cosmological constraints. One promising method of determining galaxy cluster masses is to probe the dark matter potential with galaxy velocities. Using data from a large cluster sample will average over random projection effects, and will enable the calibration of the SZ-mass scaling relation, in conjunction with X-ray and lensing data on a smaller sample. The cluster galaxy spectroscopy we obtain will also equip the community to address a wide range of questions in galaxy evolution and cluster astrophysics.

  19. Blue straggler masses from pulsation properties. I. The case of NGC 6541

    SciTech Connect

    Fiorentino, G.; Lanzoni, B.; Dalessandro, E.; Ferraro, F. R.; Marconi, M.

    2014-03-01

    We used high spatial resolution images acquired with the Wide Field Camera 3 on board Hubble Space Telescope to probe the population of variable blue straggler stars (BSSs) in the central region of the poorly studied Galactic globular cluster NGC 6541. The time sampling of the acquired multiwavelength (F390W, F555W, and F814W) data allowed us to discover three WUMa stars and nine SX Phoenicis. Periods, mean magnitudes, and pulsation modes have been derived for the nine SX Phoenicis, and their masses have been estimated by using pulsation equations obtained from linear nonadiabatic models. We found masses in the range 1.0-1.1 M {sub ☉}, with an average value of 1.06 ± 0.09 M {sub ☉} (σ = 0.04), significantly in excess of the cluster main-sequence turn-off mass (∼0.75 M {sub ☉}). A mild trend between mass and luminosity seems also to be present. The computed pulsation masses turn out to be in very good agreement with the predictions of evolutionary tracks for single stars, indicating values in the range ∼1.0-1.2 M {sub ☉} for most of the BSS population, in agreement with what was discussed in a number of previous studies.

  20. Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property.

    PubMed

    Shi, Jiao; Cai, Kun; Qin, Qing H

    2014-12-01

    Simulation of the mass distribution in a human proximal femur is important to provide a reasonable therapy scheme for a patient with osteoporosis. An algorithm is developed for prediction of optimal mass distribution in a human proximal femur under a given loading environment. In this algorithm, the bone material is assumed to be bi-modulus, i.e., the tension modulus is not identical to the compression modulus in the same direction. With this bi-modulus bone material, a topology optimization method, i.e., modified SIMP approach, is employed to determine the optimal mass distribution in a proximal femur. The effects of the difference between two moduli on the final material distribution are numerically investigated. Numerical results obtained show that the mass distribution in bi-modular bone materials is different from that in traditional isotropic material. As the tension modulus is less than the compression modulus for bone tissues, the amount of mass required to support tension loads is greater than that required by isotropic material for the same daily activities including one-leg stance, abduction and adduction. PMID:26336694

  1. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME

    SciTech Connect

    Johannsen, Tim; Psaltis, Dimitrios E-mail: dpsaltis@email.arizona.ed

    2010-06-10

    According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetime that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.

  2. Chemical compositions and radiative properties of dust and anthropogenic air masses study in Taipei Basin, Taiwan, during spring of 2004

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Yu; Fang, Guor-Cheng; Chou, Charles C.-K.; Chen, Wei-Nai

    Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM 10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00'N, 121°32'E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m 2 g -1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m 2 g -1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3-2.3 m 2 g -1), which were similar to the previous measurements with

  3. Testing Hypothesized Psychosocial Mediators: Lessons Learned in the MassBUILT Study

    ERIC Educational Resources Information Center

    Okechukwu, Cassandra A.; Krieger, Nancy; Sorensen, Glorian; Li, Yi; Barbeau, Elizabeth M.

    2011-01-01

    Only a few of the interventions that target blue-collar workers have conducted formal analysis to evaluate the specific attributes of their intervention that are associated with success or failure. This study examined the role of dual hazard and decisional balance in the MassBUILT smoking cessation intervention. The authors conducted sets of…

  4. Precision Mass Property Measurements Using a Five-Wire Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.

    2012-01-01

    A method for measuring the moment of inertia of an object using a five-wire torsion pendulum design is described here. Typical moment of inertia measurement devices are capable of 1 part in 10(exp 3) accuracy and current state of the art techniques have capabilities of about one part in 10(exp 4). The five-wire apparatus design shows the prospect of improving on current state of the art. Current measurements using a laboratory prototype indicate a moment of inertia measurement precision better than a part in 10(exp 4). In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center. Typical mass center measurement devices exhibit a measurement precision up to approximately 1 micrometer. Although the five-wire pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  5. Mass spectrometric gas composition measurements associated with jet interaction tests in a high-enthalpy wind tunnel

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Brown, K. G.; Wood, G. M., Jr.; Puster, R. L.; Paulin, P. A.; Fishel, C. E.; Ellerbe, D. A.

    1986-01-01

    Knowledge of test gas composition is important in wind-tunnel experiments measuring aerothermodynamic interactions. This paper describes measurements made by sampling the top of the test section during runs of the Langley 7-Inch High-Temperature Tunnel. The tests were conducted to determine the mixing of gas injected from a flat-plate model into a combustion-heated hypervelocity test stream and to monitor the CO2 produced in the combustion. The Mass Spectrometric (MS) measurements yield the mole fraction of N2 or He and CO2 reaching the sample inlets. The data obtained for several tunnel run conditions are related to the pressures measured in the tunnel test section and at the MS ionizer inlet. The apparent distributions of injected gas species and tunnel gas (CO2) are discussed relative to the sampling techniques. The measurements provided significant real-time data for the distribution of injected gases in the test section. The jet N2 diffused readily from the test stream, but the jet He was mostly entrained. The amounts of CO2 and Ar diffusing upward in the test section for several run conditions indicated the variability of the combustion-gas test-stream composition.

  6. Development of a Cryogenic Mechanical Property Testing Station for Superconducting RF Cavity Material

    NASA Astrophysics Data System (ADS)

    Compton, C.; Chandrasekaran, S. K.; Baars, D.; Bieler, T.; Darbandi, P.; Wright, N.

    2010-04-01

    Recent concerns with pressure vessel codes as they relate to the construction of superconducting linacs have raised questions about mechanical proprieties of materials used in their fabrication at cryogenic temperatures. Pressure vessel engineering codes will require demonstration of a level of safety equivalent to that provided by the various ASME pressure and piping codes, so low temperature mechanical properties of niobium, titanium, and their alloys are needed. Michigan State University (MSU), in collaboration with Fermi National Accelerator Laboratory (FNAL) and Florida State University (FSU), is constructing a materials testing station for tensile tests of materials at room and cryogenic temperatures (300, 77, and 4 K). Once complete, the testing station will allow researchers to relate effects of different microstructures arising from manufacturing pathways, including annealing processes, crystal orientations and microstructure characteristics (e.g. welds) to the resulting mechanical properties at cryogenic temperatures. The paper covers the design, construction, and commissioning of the cryogenic testing station, including initial results.

  7. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  8. Development of a new sodium diclofenac certified reference material using the mass balance approach and ¹H qNMR to determine the certified property value.

    PubMed

    Nogueira, Raquel; Garrido, Bruno C; Borges, Ricardo M; Silva, Gisele E B; Queiroz, Suzane M; Cunha, Valnei S

    2013-02-14

    Certified reference materials (CRMs) are essential tools to guarantee the metrological traceability of measurement results to the International System of Units (SI), which means the accuracy and comparability of results over time and space. In the pharmaceutical area, only a few CRMs are available and the use of (non-certified) reference materials is a much more common practice. In this paper, the studies on a new candidate CRM of sodium diclofenac based on the ISO Guides 34:2009 and 35:2005 are described. The project steps included characterization, homogeneity test, stability studies, and uncertainties estimation. In the characterization, the mass fractions of organic, inorganic, and volatile impurities were determined, and the results were cross-checked by independent reference methods or interlaboratorial study. The API mass fraction was calculated by mass balance and cross-checked by quantitative proton nuclear magnetic resonance (¹H qNMR). The paper also presents a Monte Carlo simulation to estimate the measurement uncertainty as an approach to validate the GUM results in ¹H qNMR. The homogeneity between batch units was verified, and the candidate CRM stability under transport and storage conditions was evaluated in short- and long-term stability studies. The CRM certified property value and corresponding expanded uncertainty, obtained from the combined standard uncertainty multiplied by the coverage factor (k=2), for a confidence level of 95%, was (999.76+0.10) mg g⁻¹. PMID:23220339

  9. Mass media, stigma, and disclosure of HIV test results: multilevel analysis in the Eastern Cape, South Africa.

    PubMed

    Hutchinson, P L; Mahlalela, X; Yukich, Josh

    2007-12-01

    In this article, we examine the role of mass media and interpersonal communication in affecting knowledge of HIV/AIDS, reducing stigma, using condoms, and increasing the likelihood of disclosing HIV test results to sexual partners and family members. Data from a 2002 household survey in the Eastern Cape Province of South Africa are used to measure levels of stigma, interpersonal communication, willingness to disclosure HIV test results and condom use. We use a multilevel framework that accounts for the social context in which individuals access information, gauge social norms, and make decisions about the costs and benefits of HIV testing and disclosure. The results provide support for the positive effects of both media exposure and informal social networks on ideational factors, namely changes in knowledge and stigma, which lead to behavior change. Consistent with common models of health communication dynamics, these latter factors dominate decisions regarding disclosure of HIV test results and condom use. PMID:18190274

  10. A comparison of weak-lensing masses and X-ray properties of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Hoekstra, Henk

    2007-07-01

    We present measurements of the masses of 20 X-ray luminous clusters of galaxies at intermediate redshifts, determined from a weak-lensing analysis of deep archival R-band data obtained using the Canada-France-Hawaii Telescope. Compared to previous work, our analysis accounts for a number of effects that are typically ignored, but can lead to small biases, or incorrect error estimates. We derive masses that are essentially model-independent and find that they agree well with measurements of the velocity dispersion of cluster galaxies and with the results of X-ray studies. Assuming a power law between the lensing mass and the X-ray temperature, M2500 ~ Tα, we find a best-fitting slope of α = 1.34+0.30-0.28. This slope agrees with self-similar cluster models and studies based on X-ray data alone. For a cluster with a temperature of kT = 5 keV we obtain a mass M2500 = (1.4 +/- 0.2)×1014h-1Msolar in fair agreement with recent Chandra and XMM studies. Based on observations from the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique and the University of Hawaii. E-mail: hoekstra@uvic.ca

  11. Bone architectural and structural properties after 56Fe26+ radiation-induced changes in body mass.

    PubMed

    Willey, J S; Grilly, L G; Howard, S H; Pecaut, M J; Obenaus, A; Gridley, D S; Nelson, G A; Bateman, T A

    2008-08-01

    High-energy, high-charge (HZE) radiation, including iron ions ((56)Fe(26+)), is a component of the space environment. We recently observed a profound loss of trabecular bone in mice after whole-body HZE irradiation. The goal of this study was to examine morphology in bones that were excluded from a (56)Fe(26+) beam used to irradiate the body. Using 10-week-old male Sprague-Dawley rats and excluding the hind limbs and pelvis, we irradiated animals with 0, 1, 2 and 4 Gy (56)Fe(26+) ions and killed them humanely after 9 months. Animals grew throughout the experiment. Trabecular bone volume, connectivity and thickness within the proximal tibiae were significantly lower than control in a dose-dependent manner. Irradiated animals generally had less body mass than controls, which largely accounted for the variability in bone parameters as determined by ANCOVA. Likewise, lower cortical parameters were associated with reduced mass. However, lesser trabecular thickness in the 4-Gy group could not be attributed to body mass alone. Indicators of bone metabolism were generally unchanged, suggesting stabilized turnover. Exposure to (56)Fe(26+) ions can alter trabecular microarchitecture in shielded bones. Reduced body mass seems to be correlated with these deficits of trabecular and cortical bone. PMID:18666808

  12. TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2

    SciTech Connect

    Bezanson, Rachel; Van Dokkum, Pieter G.; Leja, Joel; Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska

    2013-12-20

    The fundamental plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy formation mechanisms. The evolution of the zero point of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the ''mass FP'' for massive, quiescent galaxies since z ∼ 2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z ∼ 3, we find that quiescent galaxies lie on the mass FP out to z ∼ 2. In contrast with ∼1.4 dex evolution in the luminosity FP, average residuals from the z ∼ 0 mass FP are less than ∼0.15 dex since z ∼ 2. Assuming the Hyde and Bernardi mass FP slope, we find that this minimal offset scales as (1 + z){sup –0.095} {sup ±} {sup 0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z ∼ 2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.

  13. Bringing comfort to the masses: a novel evaluation of comfort agent solution properties.

    PubMed

    White, Charles J; Thomas, Calvin R; Byrne, Mark E

    2014-04-01

    Ocular comfort agents are molecules that relieve ocular discomfort by augmenting characteristics of the tear film to stabilize and retain tear volume and lubricate the ocular surface. While a number of clinical comparisons between ocular comfort agent solutions are available, very little work has been done correlating the properties of specific comfort agents (species, molecular weight, and water retention) and solution properties (concentration, viscosity, zero shear viscosity, and surface tension) to the performance and effectiveness of comfort agent solutions. In this work, comfort-promoting properties related strongly to comfort agent concentration and molecular weight, the first objective demonstration of this relationship across diverse comfort agent species and molecular weights. The comfort agents with the greatest comfort property contributions (independent of specific molecular weight and concentration considerations) were hyaluronic acid (HA), hydroxypropyl methylcellulose (HPMC), and carboxymethylcellulose (CMC), respectively. The observed, empirical relationships between comfort property contribution and comfort agent species, solution properties, comfort agent molecular weight, and solution concentration was used to develop novel comfort agent index values. The comfort agent index values provided much insight and understanding into the results of experimental studies and/or clinical trials and offer potential resolution to numerous conflicting reports within the literature by accounting for the difference in comfort agent performance due to molecular weight and concentration of comfort agents. The index values provide the first objective, experimental validation and explanation of numerous general trends suggested by clinical data. PMID:23999507

  14. Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Spätig, P.; Victoria, M.

    2002-12-01

    The ball punch test technique was used to evaluate the conventional tensile and impact properties of the tempered martensitic steel EUROFER97 from room temperature down to liquid nitrogen temperature. The testing was carried out on unirradiated material only with small disks, 3 mm in diameter and 0.25 mm in thickness. For comparison, tensile tests were also performed over the same temperature range. Correlations between the load at the plastic bending initiation and the maximum load of the punch tests with the yield stress and the ultimate tensile stress of the tension tests could be established. The temperature dependence of the specific fracture energy of the punch test was used to define a ductile-brittle transition temperature (DBTT) and to correlate this with the DBTT measured from impact Charpy on KLST specimens. The results are compared with other available correlations done in the past on other ferritic steels.

  15. C IV emission-line properties and systematic trends in quasar black hole mass estimates

    NASA Astrophysics Data System (ADS)

    Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.

    2016-09-01

    Black hole masses are crucial to understanding the physics of the connection between quasars and their host galaxies and measuring cosmic black hole-growth. At high redshift, z ≳ 2.1, black hole masses are normally derived using the velocity width of the C IV λ λ1548, 1550 broad emission line, based on the assumption that the observed velocity widths arise from virial-induced motions. In many quasars, the C IV emission line exhibits significant blue asymmetries (`blueshifts') with the line centroid displaced by up to thousands of km s-1 to the blue. These blueshifts almost certainly signal the presence of strong outflows, most likely originating in a disc wind. We have obtained near-infrared spectra, including the Hα λ6565 emission line, for 19 luminous (LBol = 46.5-47.5 erg s-1) Sloan Digital Sky Survey quasars, at redshifts 2 < z < 2.7, with C IV emission lines spanning the full range of blueshifts present in the population. A strong correlation between C IV velocity width and blueshift is found and, at large blueshifts, >2000 km s-1, the velocity widths appear to be dominated by non-virial motions. Black hole masses, based on the full width at half-maximum of the C IV emission line, can be overestimated by a factor of 5 at large blueshifts. A larger sample of quasar spectra with both C IV and H β, or Hα, emission lines will allow quantitative corrections to C IV-based black hole masses as a function of blueshift to be derived. We find that quasars with large C IV blueshifts possess high Eddington luminosity ratios and that the fraction of high-blueshift quasars in a flux-limited sample is enhanced by a factor of approximately 4 relative to a sample limited by black hole mass.

  16. Basic coaxial mass driver construction and testing. [for eventual moon-space manufacturing site magnetic transport

    NASA Technical Reports Server (NTRS)

    Fine, K.

    1977-01-01

    A basic coaxial mass driver has been constructed by a group of students to verify performance predictions in the acceleration range envisaged for the first lunar device. The bucket is guided by four copper tubes which also supply direct current excitation for its single aluminum coil, and is accelerated by twenty coaxial coils along a 2 m track, followed by a deceleration section. The coils are individually energized by electrolytic photoflash capacitors triggered by solid state switches on the basis of bucket position.

  17. Exploring the linkage between exposure to mass media and HIV testing among married women and men in Ghana.

    PubMed

    Sano, Yujiro; Sedziafa, Alice P; Amoyaw, Jonathan A; Boateng, Godfred O; Kuuire, Vincent Z; Boamah, Sheila; Kwon, Eugena

    2016-06-01

    Although HIV testing is critical to the treatment and prevention of HIV/AIDS, utilization rate of HIV testing services among married women and men remains low in Ghana. Mass media, as a tool to increase overall HIV testing turnouts, has been considered one of the important strategies in promoting and enhancing behavioural changes related to HIV/AIDS prevention. Using the 2014 Ghana Demographic and Health Survey, the current study examines the relationship between levels of exposure to print media, radio, and television and the uptake of HIV testing among married women and men in Ghana. Results show that HIV testing is more prevalent among married women than their male counterparts. We also find that higher levels of exposure to radio is associated with HIV testing among women, while higher levels of exposure to print media and television are associated with HIV testing among men. Implications of these findings are discussed for Ghana's HIV/AIDS strategic framework, which aims to expanding efforts at dealing with the HIV/AIDS epidemic. Specifically, it is important for health educators and programme planners to deliver HIV-related messages through television, radio, and print media to increase the uptake of HIV testing particularly among married women and men in Ghana. PMID:26753839

  18. Testing the gas mass density profile of galaxy clusters with distance duality relation

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Zheng, Xiaogang; Zhu, Zong-Hong

    2016-03-01

    In this paper, assuming the validity of distance duality relation, η = DL(z)(1 + z)-2/DA(z) = 1, where DA(z) and DL(z) are the angular and the luminosity distance, respectively, we explore two kinds of gas mass density profiles of clusters: the isothermal β model and the non-isothermal double-β model. In our analysis, performed on 38 massive galaxy clusters observed by Chandra (within the redshift range of 0.14 < z < 0.89), we use two types of cluster gas mass fraction data corresponding to different mass density profiles fitted to the X-ray data. Using two general parameterizations of η(z) (phenomenologically allowing for distance duality violation), we find that the non-isothermal double-β model agrees better with the distance duality relation, while the isothermal β model tends to be marginally incompatible with the Etherington theorem at 68.3 per cent confidence level (CL). However, current accuracy of the data does not allow to distinguish between the two models for the gas-density distribution at a significant level.

  19. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  20. Blood: Tests Used to Assess the Physiological and Immunological Properties of Blood

    ERIC Educational Resources Information Center

    Quinn, J. G.; Tansey, E. A.; Johnson, C. D.; Roe, S. M.; Montgomery, L. E. A.

    2016-01-01

    The properties of blood and the relative ease of access to which it can be retrieved make it an ideal source to gauge different aspects of homeostasis within an individual, form an accurate diagnosis, and formulate an appropriate treatment regime. Tests used to determine blood parameters such as the erythrocyte sedimentation rate, hemoglobin…

  1. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  2. Screening Test Results of Fatigue Properties of type 316LN Stainless Steel in Mercury

    SciTech Connect

    Pawel, S.J.

    1999-05-20

    Fully reversed, load-controlled uniaxial push-pull fatigue tests at room temperature have been performed in air and in mercury on specimens of type 316LN stainless steel. The results indicate a significant influence of mercury on fatigue properties. Compared to specimens tested in air, specimens tested in mercury had reproducibly shorter fatigue lives (by a factor of 2-3), and fracture faces exhibiting intergranular cracking. Preliminary indications are that crack initiation in each environment is similar, but mercury significantly accelerates crack propagation.

  3. A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Shengbo; Gao, Chao; Cheng, Li; Li, Xiaowei; Feng, Yu

    2016-03-01

    The present work studied the very high-cycle fatigue (VHCF) test and fatigue properties of TC17 titanium alloy. The specimens for bending vibration were designed using the finite element method and the VHCF tests were conducted by using the ultrasonic fatigue testing system. The results indicated that there is no the fatigue limit for TC17 titanium alloy, and the S-N curve shows a continuously descending trend. The fatigue crack initiates at the specimen surface within the range of VHCF and the VHCF lives follow the log-normal distribution more closely.

  4. Establishing Correlations for Predicting Tensile Properties Based on the Shear Punch Test and Vickers Microhardness data

    NASA Astrophysics Data System (ADS)

    Milot, Timothy S.

    A series of mechanical tests was performed on a matrix of pressure vessel alloys to establish correlations between shear punch tests (SPT), microhardness (Hv), and tensile data. The purpose is to estimate tensile properties from SPT and Hv data. Small specimen testing is central to characterization of irradiation-induced changes in alloys used for nuclear applications. SPT have the potential for estimating tensile yield and ultimate strengths, strain hardening and ductility data, by using TEM disks, for example. Additional insight into SPT was gained by performing finite element analysis (FEA) simulations.

  5. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Impact test properties for service of 0 °F and below. 54.05-20 Section 54.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and...

  6. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    SciTech Connect

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G.; Rodríguez-Puebla, Aldo E-mail: riccardo@astro.cornell.edu E-mail: jonesmg@astro.cornell.edu

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  7. X-ray Properties of a Mass-Selected Group Catalog

    NASA Astrophysics Data System (ADS)

    Mazzotta, Pasquale

    2004-09-01

    The observed X-ray luminosities of groups are inconsistent with pure shock-heated gas model. It is thought that a combination of pre-heating, gas cooling and energy injection act to remove low entropy gas. However, the extent of these processes is uncertain because the previous selection of group catalogs have been based on X-ray emission. We have constructed a complete, mass-selected catalog of 18 groups from the 2dFGRS. X-ray observations of this sample would for the first time provide accurate determinations of the entropy in a mass-selected sample. This project was highly ranked by last year Chandra and XMM tacs. In return twelve groups have been accepted for observation. Here we propose the observation of the remaining 6 groups to complete the sample.

  8. Correlation between strength properties in standard test specimens and molded phenolic parts

    NASA Technical Reports Server (NTRS)

    Turner, P S; Thomason, R H

    1946-01-01

    This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.

  9. Kinematic and Energetic Properties of the 2012 March 12 Polar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Yashiro, S.; Akiyama, S.

    2015-08-01

    We report on the energetics of the 2012 March 12 polar coronal mass ejection (CME) originating from a southern latitude of ∼60°. The polar CME is similar to low-latitude (LL) CMEs in almost all respects: three-part morphology; post-eruption arcade (PEA), CME, and filament kinematics; CME mass and kinetic energy; and the relative thermal energy content of the PEA. From polarized brightness images, we estimate the CME mass, which is close to the average mass of LL CMEs. The CME kinetic energy (3.3 × 1030 erg) is also typical of the general population of CMEs. From photospheric magnetograms, we estimate the free energy (1.8 × 1031 erg) in the polar crown source region, which we find is sufficient to power the CME and the PEA. About 19% of the free energy went into the CME kinetic energy. We compute the thermal energy content of the PEA (2.3 × 1029 erg) and find it to be a small fraction (6.8%) of the CME kinetic energy. This fraction is remarkably similar to that in active region CMEs associated with major flares. We also show that the 2012 March 12 is one among scores of polar CMEs observed during the maximum phase of cycle 24. The cycle 24 polar crown prominence eruptions have the same rate of association with CMEs as those from LLs. This investigation supports the view that all CMEs are magnetically propelled from closed field regions, irrespective of their location on the Sun (polar crown filament regions, quiescent filament regions, or active regions).

  10. Kinematic and Energetic Properties of the 2012 March 12 Polar Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, Seiji; Akiyama, S.

    2015-01-01

    We report on the energetics of the 2012 March 12 polar coronal mass ejection (CME) originating from a southern latitude of approximately 60deg. The polar CME is similar to low-latitude (LL) CMEs in almost all respects: three-part morphology; post-eruption arcade (PEA), CME, and filament kinematics; CME mass and kinetic energy; and the relative thermal energy content of the PEA. From polarized brightness images, we estimate the CME mass, which is close to the average mass of LL CMEs. The CME kinetic energy (3.3 × 10(sup 30) erg) is also typical of the general population of CMEs. From photospheric magnetograms, we estimate the free energy (1.8 × 10(sup 31) erg) in the polar crown source region, which we find is sufficient to power the CME and the PEA. About 19% of the free energy went into the CME kinetic energy. We compute the thermal energy content of the PEA (2.3 × 10(sup 29) erg) and find it to be a small fraction (6.8%) of the CME kinetic energy. This fraction is remarkably similar to that in active region CMEs associated with major flares. We also show that the 2012 March 12 is one among scores of polar CMEs observed during the maximum phase of cycle 24. The cycle 24 polar crown prominence eruptions have the same rate of association with CMEs as those from LLs. This investigation supports the view that all CMEs are magnetically propelled from closed field regions, irrespective of their location on the Sun (polar crown filament regions, quiescent filament regions, or active regions).

  11. Influence of test fuel properties and composition on UNECE R101 CO2 and fuel economy valuation

    NASA Astrophysics Data System (ADS)

    Parker, A.

    2015-12-01

    CO2 emission and fuel consumption of passenger cars is now assessed by using a simplistic procedure measuring the emission during a test performed without any control of the fuel properties and computing the fuel consumption through an unsophisticated formula. As pump gasoline and diesel fuels are refinery products mixture of many different hydrocarbons, and in case of gasoline may also contain a significant amount of oxygenates, the fuel properties, including the density, carbon and energy content may strongly vary from one pump fuel to the other. Being the specific test fuels carefully selected by the car manufacturers and everything but randomly chosen pump fuels, the claimed CO2 emission and fuel economy figures may differ largely from the certification values. I show from the analysis of the 2014 UK government data for 2358 diesel and 2103 petrol vehicles how same volumes of only theoretically same pump fuels used during the certification test by the cars manufacturers unfortunately do not produce the same carbon dioxide emission, and very likely do not have the same energy content. The CO2 emission per liter of diesel fuel is shown to oscillate froma maximum of 3049 g to a minimum of 2125 g, with an average of 2625 g, froma +16.13% to a -19.06% of the average. TheCO2 emission per liter of petrol fuel is shown to oscillate even more from a maximum of 3735 g to a minimum of 1767 g with an average of 2327 g, from a +60.48% to a -24.05% of the average. The proposed solution is to center the assessment on the energy demand by measuring with accuracy the mass of fuel consumed and the fuel properties of the test fuel starting from the lower heating. The corrected fuel consumption and the corrected carbon dioxide emission to mention from the test are then computed by using pure hydrocarbon reference fuels for diesel and petrol having a given lower heating value and a given hydrocarbon composition. Alternatively, exactly the same test fuel should be used by all the

  12. Mechanical property tests on structural materials for ITER magnet system at low temperatures in China

    NASA Astrophysics Data System (ADS)

    Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    High field superconducting magnets need strong non-superconducting components for structural reinforcement. For instance, the ITER magnet system (MS) consists of cable-in-conduit conductor, coil case, magnet support, and insulating materials. Investigation of mechanical properties at magnet operation temperature with specimens machined at the final manufacturing stages of the conductor jacket materials, magnet support material, and insulating materials, even the component of the full-size conductor jacket is necessary to establish sound databases for the products. In China, almost all mechanical property tests of structural materials for the ITER MS, including conductor jacket materials of TF coils, PF coils, CCs, case material of CCs, conductor jacket materials of Main Busbars (MB) and Corrector Busbars (CB), material of magnet supports, and insulating materials of CCs have been carried out at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). In this paper, the mechanical property test facilities are briefly demonstrated and the mechanical tests on the structural materials for the ITER MS, highlighting test rigs as well as test methods, are presented.

  13. Physical Property and Rheological Testing of Actual Transuranic Waste from Hanford Single-Shell Tanks

    SciTech Connect

    Tingey, Joel M. ); Gao, Johnway ); Delegard, Calvin H. ); Bagaasen, Larry M. ); Wells, Beric E. )

    2003-08-25

    Composites of sludge from Hanford tanks 241-B-203 (B-203), 241-T-203 (T-203), 241-T-204 (T-204), and 241-T-110 (T-110) were prepared at the Hanford 222-S Laboratory and transferred to the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory (PNNL) for measurement of the composites' physical properties. These tank composites were prepared from core samples retieved from these tanks. These core samples may not be representative of the entire contents of the tank but provide some indication of the properties of the waste in these underground storage tanks. Dilutions in water were prepared from the composite samples. The measurements included paint filter tests, viscosity, shear strength, settling and centrifuging behavior, a qualitative test of stickiness, total solids concentration, and extrusion tests to estimate shear strength.

  14. Tensile Properties, Ferrite Contents, and Specimen Heating of Stainless Steels in Cryogenic Gas Tests

    NASA Astrophysics Data System (ADS)

    Ogata, T.; Yuri, T.; Ono, Y.

    2006-03-01

    We performed tensile tests at cryogenic temperatures below 77 K and in helium gas environment for SUS 304L and SUS 316L in order to obtain basic data of mechanical properties of the materials for liquid hydrogen tank service. We evaluate tensile curves, tensile properties, ferrite contents, mode of deformation and/or fracture, and specimen heating during the testing at 4 to 77 K. For both SUS 304L and 316L, tensile strength shows a small peak around 10 K, and specimen heating decreases above 30 K. The volume fraction of α-phase increases continuously up to 70 % with plastic strain, at approximately 15 % plastic strain for 304L and up to 35 % for 316L. There was almost no clear influence of testing temperature on strain-induced martensitic transformation at the cryogenic temperatures.

  15. Analysis of materials properties of niobium tube from the results of a virtual bulge test

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Sumption, Michael; Lim, H.; Collings, E. W.

    2012-06-01

    Hydroforming has been selected as a technique for the seamless fabrication of multicell superconducting radiofrequency (SRF) cavities. For the successful application of this technique to cavity fabrication, it is essential to understand deformation behavior of tubes under hydroforming conditions. Input to the finite-element modeling (FEM) which generally precedes the actual hydroforming process requires the constitutive properties of the tube material. This information may be obtained from the results of hydraulic bulge testing. The present paper provides an example of this activity. In order to verify the steps to be taken in analyzing future bulge-test data a circular argument recovers the original constitutive properties from the results of an FEM-based "virtual bulge test".

  16. Quantitative, Multidrug Pain Medication Testing by Liquid Chromatography: Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Bodor, Geza S

    2016-01-01

    Chronic pain is often treated with narcotic analgesics. The most commonly used narcotic analgesics are the opiates (natural or modified compounds of the poppy plant) or opioids (synthetic chemicals that act on opiate receptors). While opiates and opioids are excellent analgesics, they can also have significant side effects that include respiratory depression, coma, or death. Tolerance, physical dependence, and addiction (psychological dependence) are other severe side effects of opioid use. Patients who develop dependence or addiction often times abuse other, non-opioid narcotics and may trade their prescription medication for illegal street drugs (called "diversion"). In order to minimize side effects, detect possible multidrug abuse and prove diversion, simultaneous monitoring of numerous prescription and illicit drugs is required. The method described in this chapter is for the quantitative measurement of 43 different drugs in urine. The panel includes narcotic pain medications, benzodiazepines, NIDA drugs, and other, commonly abused medications. The analytes of interests are injected in the presence of deuterated internal standards to correct for possible extraction inefficiencies, ion suppression, or other interferences. The sample is prepared by adding dilution buffer with the deuterated internal standards to the sample, followed by reversed-phase, gradient HPLC separation on a Phenyl-Hexyl column using water and methanol as mobile phases. Detection of the analytes of interest is done by isotope-dilution mass spectrometry on a triple-quadrupole tandem mass spectrometer following electrospray ionization in the positive mode. Mass spectrometric (MS) data are collected in the scheduled MRM (sMRM) mode. Two MRM transitions are monitored for each analyte and one MRM transition is monitored for each IS. Quantitation of the unknown analytes is achieved by comparing the peak area ratios of the analytes to that of the internal standards and reading the unknown

  17. Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate

    USGS Publications Warehouse

    Mastin, Larry G.

    2014-01-01

    During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.

  18. Testing for size and allometric differences in fossil hominin body mass estimation.

    PubMed

    Uhl, Natalie M; Rainwater, Christopher W; Konigsberg, Lyle W

    2013-06-01

    Body size reconstructions of fossil hominins allow us to infer many things about their evolution and lifestyle, including diet, metabolic requirements, locomotion, and brain/body size relationships. The importance of these implications compels anthropologists to attempt body mass estimation from fragmentary fossil hominin specimens. Most calculations require a known "calibration" sample usually composed of modern humans or other extant apes. Caution must be taken in these analyses, as estimates are sensitive to overall size and allometric differences between the fossil hominin and the reference sample. PMID:23588924

  19. Temperature-dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect

    Everett, Randy L.; Iverson, Brian D.; Broome, Scott Thomas; Siegel, Nathan Phillip; Bronowski, David R.

    2010-09-01

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts. Interest in raising the operating temperature of concentrating solar technologies and the incorporation of thermal storage has motivated studies on the implementation of molten salt as the system working fluid. Recently, salt has been considered for use in trough-based solar collectors and has been shown to offer a reduction in levelized cost of energy as well as increasing availability (Kearney et al., 2003). Concerns regarding the use of molten salt are often related to issues with salt solidification and recovery from freeze events. Differences among salts used for convective heat transfer and storage are typically designated by a comparison of thermal properties. However, the potential for a freeze event necessitates an understanding of salt mechanical properties in order to characterize and mitigate possible detrimental effects. This includes stress imparted by the expanding salt. Samples of solar salt, HITEC salt (Coastal Chemical Co.), and a low melting point quaternary salt were cast for characterization tests to

  20. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  1. A Kalman Filter for Mass Property and Thrust Identification of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  2. A test of star formation laws in disk galaxies. II. Dependence on dynamical properties

    SciTech Connect

    Suwannajak, Chutipong; Tan, Jonathan C.; Leroy, Adam K.

    2014-05-20

    We use the observed radial profiles of the mass surface densities of total, Σ {sub g}, and molecular, Σ{sub H2}, gas, rotation velocity, and star formation rate (SFR) surface density, Σ{sub sfr}, of the molecular-rich (Σ{sub H2} ≥ Σ{sub HI}/2) regions of 16 nearby disk galaxies to test several star formation (SF) laws: a 'Kennicutt-Schmidt (K-S)' law, Σ{sub sfr}=A{sub g}Σ{sub g,2}{sup 1.5}; a 'Constant Molecular' law, Σ{sub sfr} = A {sub H2}Σ{sub H2,2}; the turbulence-regulated laws of Krumholz and McKee (KM05) and Krumholz, McKee, and Tumlinson (KMT09); a 'Gas-Ω' law, Σ{sub sfr}=B{sub Ω}Σ{sub g}Ω; and a shear-driven 'giant molecular cloud (GMC) Collision' law, Σ{sub sfr} = B {sub CC}Σ {sub g}Ω(1-0.7β), where β ≡ d ln v {sub circ}/d ln r. If allowed one free normalization parameter for each galaxy, these laws predict the SFR with rms errors of factors of 1.4-1.8. If a single normalization parameter is used by each law for the entire galaxy sample, then rms errors range from factors of 1.5-2.1. Although the Constant Molecular law gives the smallest rms errors, the improvement over the KMT, K-S, and GMC Collision laws is not especially significant, particularly given the different observational inputs that the laws utilize and the scope of included physics, which ranges from empirical relations to detailed treatment of interstellar medium processes. We next search for systematic variation of SF law parameters with local and global galactic dynamical properties of disk shear rate (related to β), rotation speed, and presence of a bar. We demonstrate with high significance that higher shear rates enhance SF efficiency per local orbital time. Such a trend is expected if GMC collisions play an important role in SF, while an opposite trend would be expected if the development of disk gravitational instabilities is the controlling physics.

  3. HST/WFC3 OBSERVATIONS OF LOW-MASS GLOBULAR CLUSTERS AM 4 AND PALOMAR 13: PHYSICAL PROPERTIES AND IMPLICATIONS FOR MASS LOSS

    SciTech Connect

    Hamren, Katherine M.; Smith, Graeme H.; Guhathakurta, Puragra; Dolphin, Andrew E.; Weisz, Daniel R.; Rajan, Abhijith; Grillmair, Carl J.

    2013-11-01

    We investigate the loss of low-mass stars in two of the faintest globular clusters known, AM 4 and Palomar 13 (Pal 13), using HST/WFC3 F606W and F814W photometry. To determine the physical properties of each cluster—age, mass, metallicity, extinction, and present day mass function (MF)—we use the maximum likelihood color-magnitude diagram (CMD) fitting program MATCH and the Dartmouth, Padova, and BaSTI stellar evolution models. For AM 4, the Dartmouth models provide the best match to the CMD and yield an age of >13 Gyr, metallicity log Z/Z {sub ☉} = –1.68 ± 0.08, a distance modulus (m – M) {sub V} = 17.47 ± 0.03, and reddening A{sub V} = 0.19 ± 0.02. For Pal 13 the Dartmouth models give an age of 13.4 ± 0.5 Gyr, log Z/Z {sub ☉} = –1.55 ± 0.06, (m – M) {sub V} = 17.17 ± 0.02, and A{sub V} = 0.43 ± 0.01. We find that the systematic uncertainties due to choice in assumed stellar model greatly exceed the random uncertainties, highlighting the importance of using multiple stellar models when analyzing stellar populations. Assuming a single-sloped power-law MF, we find that AM 4 and Pal 13 have spectral indices α = +0.68 ± 0.34 and α = –1.67 ± 0.25 (where a Salpeter MF has α = +1.35), respectively. Comparing our derived slopes with literature measurements of cluster integrated magnitude (M{sub V} ) and MF slope indicates that AM 4 is an outlier. Its MF slope is substantially steeper than clusters of comparable luminosity, while Pal 13 has an MF in line with the general trend. We discuss both primordial and dynamical origins for the unusual MF slope of AM 4 and tentatively favor the dynamical scenario. However, MF slopes of more low luminosity clusters are needed to verify this hypothesis.

  4. Effects of the molar mass of the matrix on electrical properties, structure and morphology of plasticized PANI PMMA blends

    NASA Astrophysics Data System (ADS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Belhadj Mohamed, Abdellatif

    2008-03-01

    The effects of the molar mass of polymethylmethacrylate (PMMA) on electrical, structural and morphological properties of conductive polyaniline-polymethylmethacrylate blends have been studied. We have plasticized the PMMA matrix by using dioctyl phthalate (DioPh). Three different molar masses of PMMA, 15 000, 120 000 and 350 000 g mol-1, have been used. The x-ray diffraction analysis showed amorphous structure for all our studied PANI-PMMA blend films. The SEM micrographs showed more aggregation with the lowest molar mass of PMMA matrix. The direct current (dc) and alternating current (ac) electrical conductivities have been investigated in the temperature range 20-300 K and frequency range 7-1 × 108 Hz. The results of this study indicate an increase of the conductivity when the molar mass of PMMA decreases. With the lowest molar mass of PMMA (15 000 g mol-1), we obtained the lowest percolation threshold (pc≈0.3%). The dc conductivity is governed by Mott's three-dimensional variable range hopping (3D VRH) model; different Mott's parameters have been evaluated. At high frequencies, the ac conductivity follows the power law σ(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed decrease in the frequency exponent s with increasing temperature suggests that the correlated barrier hopping (CBH) model best describes the ac conduction mechanism. All our blends are well described by the scaling law σ(ω)/σdc = 1+(ω/ωc)n with n≈0.51-0.52.

  5. Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Keon; Joung, Tae-Hwan; Cheon, Se-Jong; Jang, Taek-Soo; Lee, Jeong-Hee

    2011-09-01

    This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

  6. Probing Flexural Properties of Cellulose Nanocrystal-Graphene Nanomembranes with Force Spectroscopy and Bulging Test.

    PubMed

    Kim, Sunghan; Xiong, Rui; Tsukruk, Vladimir V

    2016-05-31

    The flexural properties of ultrathin freely standing composite nanomembranes from reduced graphene oxide (rGO) and cellulose nanocrystals (CNC) have been probed by combining force spectroscopy for local nanomechanical properties and bulging test for global mechanical properties. We observed that the flexural properties of these rGO-CNC nanomembranes are controlled by rGO content and deformational regimes. The nanomembranes showed the enhanced mechanical properties due to the strong interfacial interactions between interwoven rGO and CNC components. The presence of weak interfacial interactions resulted in time-dependent behavior with the relaxation time gradually decreased with increasing the deformational rate owing to the reducing viscous damping at faster probing regimes close to 10 Hz. We observed that the microscopic elastic bending modulus of 141 GPa from local force spectroscopy is close to the elastic tensile modulus evaluated from macroscopic bulging test, indicating the consistency of both approaches for analyzing the ultrathin nanomembranes at different spatial scales of deformation. We showed that the flexible rGO-CNC nanomembranes are very resilient in terms of their capacity to recover back into original shape. PMID:27149011

  7. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  8. Wide Low-Mass Tertiary Companions of Binary Star Systems as a Test of Star Formation Theories

    NASA Astrophysics Data System (ADS)

    Douglas, Stephanie; Allen, P.

    2012-01-01

    We will present the status of a common proper motion search for wide low-mass stellar and sub-stellar companions to known white dwarf-M dwarf binary systems. I-band observations were made using the 31" NURO telescope at Lowell Observatory. Candidate companions are selected using astrometry from our own data and 2MASS photometry. We have begun to spectroscopically confirm candidates that pass our selection criteria. The ultimate goal of the search is to test star formation theories which predict that close binary systems form by transferring angular momentum to a third companion. To this end, we will model the physical companion population and perform Bayesian statistical analysis to determine the best-fit population model to our data. Here we will present our spectroscopically confirmed companions as well as the preliminary results of our population models and statistical analysis.

  9. MMS Spin Test

    NASA Video Gallery

    The four Magnetospheric Multiscale observatories all undergo what's called a spin test, to learn how well the spacecraft are balanced. It also provides information on how well the mass properties o...

  10. The main properties and peculiarities of the Earth's motion relative to the center of mass

    NASA Astrophysics Data System (ADS)

    Klimov, D. M.; Akulenko, L. D.; Kumakshev, S. A.

    2014-10-01

    The methods of theoretical and celestial mechanics and mathematical statistics have been used to prove that the Earth's motion relative to the center of mass, the polar wobble, in the principal approximation is a combination of two circumferences with a slow trend in the mean position corresponding to the annual and Chandler components. It has been established that the parameters (amplitude and phase shift) of the annual wobble are stable, while those of the Chandler component are less stable and undergo significant variations over the observed time intervals. It has been proven that the behavior of these polar motion parameters is attributable to the gravitational-tidal mechanisms of their excitation.

  11. Studies of a magnetically focused electrostatic mirror. I. Experimental test of the first order properties

    PubMed

    Crewe; Ruan; Korda; Tsai

    2000-02-01

    When a uniform magnetic field is superimposed on a uniform electrostatic field, the combination can act as a magnetically focused mirror. This mirror is predicted to have aberrations of opposite sign to those of a magnetic lens and may therefore be useful as a corrector. We have built an electron optical system to test these ideas. The results are presented in two papers. This first paper describes the general design and the results of the measurements of the first order properties. The second paper (Tsai, F., J. Microsc. 197 (2000) 118-135) will describe the measurements of the aberration properties. PMID:10652005

  12. Performance tests of medium-energy electron analyzer and ion mass spectrometer developed for SPRINT-B/ERG

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Asamura, K.; Takashima, T.; Mitani, T.; Hirahara, M.

    2012-12-01

    We have been developing instruments for the observations of the medium-energy electrons (10-80 keV) and ions (10-180 keV/q) in our coming radiation belt mission SPRINT-B/ERG (Energization and Radiation in Geospace). The mission goal is to understand the radiation belt dynamics during space storms. The medium-energy electron measurement is one of the most important issues in this mission since these electrons generate whistler chorus wave, which is believed to play significant roles in the relativistic electron acceleration and loss during storms. On the other hand, such a measurement has been a challenging issue due to the harsh radiation environment, where penetrating particles and secondary particles result in significant background. Our strategy for enhancing signal-to-noise ratio is to combine an electrostatic analyzer and silicon detectors, which provide energy coincidence for true signals. We tested the performance of such a combination in a laboratory. The energy and angle responses were in conformity with expectations through simulations. In parallel with the electron instrument, we also have been designed and tested a medium-energy ion mass spectrometer. This instrument is comprised of an electrostatic analyzer, time-of-flight (TOF) mass spectrometer, and solid state detectors, hence it can measure energy, mass and charge state of medium-energy ions. It provides significant information of particle flux and pitch angle distribution of ring current core components, which is essential for the understanding of the radiation belt dynamics. In order to mitigate the background noise with moderate shielding (for reducing the mass), we have designed a TOF unit that is especially suitable for the radiation belt observations in terms of the small detection areas (note that the background count rate is less for the smaller detector areas). Through experiments in a laboratory we have confirmed expected performance on TOF profiles expected from numerical simulations.

  13. Characterizing the compression-dependent viscoelastic properties of human hepatic pathologies using dynamic compression testing

    NASA Astrophysics Data System (ADS)

    DeWall, Ryan J.; Bharat, Shyam; Varghese, Tomy; Hanson, Meghan E.; Agni, Rashmi M.; Kliewer, Mark A.

    2012-04-01

    Recent advances in elastography have provided several imaging modalities capable of quantifying the elasticity of tissue, an intrinsic tissue property. This information is useful for determining tumour margins and may also be useful for diagnosing specific tumour types. In this study, we used dynamic compression testing to quantify the viscoelastic properties of 16 human hepatic primary and secondary malignancies and their corresponding background tissue obtained following surgical resection. Two additional backgrounds were also tested. An analysis of the background tissue showed that F4-graded fibrotic liver tissue was significantly stiffer than F0-graded tissue, with a modulus contrast of 4:1. Steatotic liver tissue was slightly stiffer than normal liver tissue, but not significantly so. The tumour-to-background storage modulus contrast of hepatocellular carcinomas, a primary tumour, was approximately 1:1, and the contrast decreased with increasing fibrosis grade of the background tissue. Ramp testing showed that the background stiffness increased faster than the malignant tissue. Conversely, secondary tumours were typically much stiffer than the surrounding background, with a tumour-to-background contrast of 10:1 for colon metastases and 10:1 for cholangiocarcinomas. Ramp testing showed that colon metastases stiffened faster than their corresponding backgrounds. These data have provided insights into the mechanical properties of specific tumour types, which may prove beneficial as the use of quantitative stiffness imaging increases.

  14. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation

    PubMed Central

    Zhang, Jingzhou; Niebur, Glen L.; Ovaert, Timothy C.

    2009-01-01

    Measurement of the mechanical properties of bone is important for estimating the stresses and strains exerted at the cellular level due to loading experienced on a macro-scale. Nano- and micro-mechanical properties of bone are also of interest to the pharmaceutical industry when drug therapies have intentional or non-intentional effects on bone mineral content and strength. The interactions that can occur between nano- and micro-indentation creep test condition parameters were considered in this study, and average hardness and elastic modulus were obtained as a function of indentation testing conditions (maximum load, load/unload rate, load-holding time, and indenter shape). The results suggest that bone reveals different mechanical properties when loading increases from the nano- to the micro-scale range (μN to N), which were measured using low- and high-load indentation testing systems. A four-parameter visco-elastic/plastic constitutive model was then applied to simulate the indentation load vs. depth response over both load ranges. Good agreement between the experimental data and finite element model was obtained when simulating the visco-elastic/plastic response of bone. The results highlight the complexity of bone as a biological tissue and the need to understand the impact of testing conditions on the measured results. PMID:17961578

  15. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    PubMed

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses. PMID:25911251

  16. [Using mass spectrometry as a tool for testing for toxic substances in foods: toward food safety].

    PubMed

    Romero González, Roberto; Fernández Moreno, José Luis; Plaza Bolaños, Patricia; Garrido Frenich, Antonia; Martínez Vidal, José Luis

    2007-01-01

    A large number of toxic substances, such as pesticides, antibiotics and toxins from different sources (natural or man-made) and different degrees of toxicity for human health can be found in foods. This type of compounds are generally found at very low concentrations in highly complex matrices, it therefore being necessary for the most highly reliable methodologies possible to be sued. In this regard, the use of gas and liquid chromatography techniques coupled to mass spectrometry detectors has made it possible to properly detect this type of substances in foods at extremely low concentrations. Therefore, depending upon the characteristics of the contaminant, one must select the chromatography technique which affords the possibility of best separating the contaminant from the interfering substances present in the matrix, as well as from the contaminants amongst one another. This methodology provides highly valuable data enhancing our knowledge of public health through food safety. PMID:18274351

  17. A test of magnetic field draping induced Bz perturbations ahead of fast coronal mass ejecta

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Smith, E. J.; Cane, H. V.

    1989-01-01

    ICE plasma and magnetic field data are examined to look for observational evidence of IMF draping ahead of fast coronal mass ejections (CMEs). The utility of the draping model for predicting the Bz perturbations and hence geomagnetic activity associated with the sheath regions ahead of such CMEs is also examined. A simple prediction scheme based on the upstream radial field component is developed and a set of interplanetary shock events previously associated with interplanetary type II bursts, and hence solar source locations, is used. Of 17 events the radial component predictor developed here correctly predicts the direction considered of the Bz perturbations for 13 events (76 percent). While this result is certainly not conclusive, it is considered to be supportive of the draping scenario.

  18. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    SciTech Connect

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C.C. (Stanford Univ., CA

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay {mu} {yields} e{gamma} with a sensitivity of 10{sup {minus}13}. A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 {times} 10{sup 4} e{sup +}/mm{sup 2}/s and a thickness of 3 {times} 10{sup {minus}4} radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m{sup 2}) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources.

  19. Measuring Thermodynamic Properties of Metals and Alloys With Knudsen Effusion Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2010-01-01

    This report reviews Knudsen effusion mass spectrometry (KEMS) as it relates to thermodynamic measurements of metals and alloys. First, general aspects are reviewed, with emphasis on the Knudsen-cell vapor source and molecular beam formation, and mass spectrometry issues germane to this type of instrument are discussed briefly. The relationship between the vapor pressure inside the effusion cell and the measured ion intensity is the key to KEMS and is derived in detail. Then common methods used to determine thermodynamic quantities with KEMS are discussed. Enthalpies of vaporization, the fundamental measurement, are determined from the variation of relative partial pressure with temperature using the second-law method or by calculating a free energy of formation and subtracting the entropy contribution using the third-law method. For single-cell KEMS instruments, measurements can be used to determine the partial Gibbs free energy if the sensitivity factor remains constant over multiple experiments. The ion-current ratio method and dimer-monomer method are also viable in some systems. For a multiple-cell KEMS instrument, activities are obtained by direct comparison with a suitable component reference state or a secondary standard. Internal checks for correct instrument operation and general procedural guidelines also are discussed. Finally, general comments are made about future directions in measuring alloy thermodynamics with KEMS.

  20. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    PubMed Central

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-01-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3–4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages. PMID:26924271

  1. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    NASA Astrophysics Data System (ADS)

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-02-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3-4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages.

  2. Performance tests of a gas blending system based on mass-flow controllers

    NASA Technical Reports Server (NTRS)

    Evans, A., Jr.

    1981-01-01

    The system provides many of the gas mixtures required for calibrating analytical instruments used in engine exhaust gas analysis and is capable of blending from one to four additive gases with either of two carrier gases in concentrations from 20 ppm to 50%. Two mixtures can be flowing simultaneously. Performance tests were made to determine the stability accuracy of the system while it was in limited use for a period of 2 years. The accuracy of the blender was measured by comparing binary mixtures from the blender with National Bureau of Standards standard reference materials. Analytical instruments were used to make these comparisons. The expected accuracy of 2% was obtained in some of the tests, by the majority showed a systematic biAs of -5%. Although these tests revealed subtle instabilities in the flow controllers that contributed to the random scatter of data, the accuracy of wet test meters and bubble flowmeters used for calibration is marginal for this purpose. A simple procedure is recommended that should enable the full potential of the system to be realized.

  3. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  4. Annealing and Test Temperature Dependence of Tensile Properties of UNS N04400 Alloy

    NASA Astrophysics Data System (ADS)

    Afzal, Naveed; Ahmad, R.; Akhtar, Tanveer; Ayub, R.; Ghauri, I. M.

    2013-07-01

    Effects of annealing and test temperatures on the tensile behavior of UNS N04400 alloy have been examined. The specimens were annealed at 800, 1000, and 1200 °C for 4 h under vacuum in a muffle furnace. Stress-strain curves of the specimens were obtained in the temperature range 25-300 °C using a universal testing machine fitted with a thermostatic chamber. The results indicate that the yield strength (YS), ultimate tensile strength (UTS), and percentage elongation of the specimens decrease with increase of annealing temperature. By increasing the test temperature, the YS and UTS decrease, whereas the percentage elongation initially decreases with increase of test temperature from 25 to 100 °C and then increases with further increasing the temperature up to 300 °C. The changes in the tensile properties of the alloy are associated with the post-annealing microstructure and modes of fracture.

  5. An improved method for testing tension properties of fiber-reinforced polymer rebar

    NASA Astrophysics Data System (ADS)

    Yuan, Guoqing; Ma, Jian; Dong, Guohua

    2010-03-01

    We have conducted a series of tests to measure tensile strength and modulus of elasticity of fiber reinforced polymer (FRP) rebar. In these tests, the ends of each rebar specimen were embedded in steel tube filled with expansive cement, and the rebar was loaded by gripping the tubes with the conventional fixture during the tensile tests. However, most of specimens were failed at the ends where the section changed abruptly. Numerical simulations of the stress field at bar ends in such tests by ANSYS revealed that such unexpected failure modes were caused by the test setup. The changing abruptly of the section induced stress concentration. So the test results would be regarded as invalid. An improved testing method is developed in this paper to avoid this issue. A transition part was added between the free segment of the rebar and the tube, which could eliminate the stress concentration effectively and thus yield more accurate values for the properties of FRP rebar. The validity of the proposed method was demonstrated by both experimental tests and numerical analysis.

  6. An improved method for testing tension properties of fiber-reinforced polymer rebar

    NASA Astrophysics Data System (ADS)

    Yuan, Guoqing; Ma, Jian; Dong, Guohua

    2009-12-01

    We have conducted a series of tests to measure tensile strength and modulus of elasticity of fiber reinforced polymer (FRP) rebar. In these tests, the ends of each rebar specimen were embedded in steel tube filled with expansive cement, and the rebar was loaded by gripping the tubes with the conventional fixture during the tensile tests. However, most of specimens were failed at the ends where the section changed abruptly. Numerical simulations of the stress field at bar ends in such tests by ANSYS revealed that such unexpected failure modes were caused by the test setup. The changing abruptly of the section induced stress concentration. So the test results would be regarded as invalid. An improved testing method is developed in this paper to avoid this issue. A transition part was added between the free segment of the rebar and the tube, which could eliminate the stress concentration effectively and thus yield more accurate values for the properties of FRP rebar. The validity of the proposed method was demonstrated by both experimental tests and numerical analysis.

  7. High altitude AM0 testing of PV concentrator lens elements. [Air Mass Zero

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Brinker, D. J.; Boyer, E. O.; Mcknight, R. C.; Ranaudo, R. J.

    1990-01-01

    Recently, the NASA Lewis Research Center modified its Lear High Altitude Test Facility to fly two prototype ENTECH minidome Fresnel lens photovoltaic concentrator elements. The tests were highly successful, and the results verified the ability of the Lear High Altitude Facility to measure the optical performance of individual concentrator lens elements and concentrator/cell combinations at near AM0 insolation conditions. The two concentrator lenses flown achieved optical efficiencies, based on a gallium arsenide concentrator cell response, of 89.8 percent and 90.0 percent. The flights demonstrated the ability of the aircraft to maintain the pointing accuracy required to obtain useful data. With proper alignment of the collimating tube and the pilot's sunsight, this facility could easily maintain a pointing accuracy of + or - 0.5 deg for a sufficiently long time to obtain accurate, reproducible results.

  8. Conformationally restricted C-terminal peptides of substance P. Synthesis, mass spectral analysis and pharmacological properties.

    PubMed

    Theodoropoulos, D; Poulos, C; Gatos, D; Cordopatis, P; Escher, E; Mizrahi, J; Regoli, D; Dalietos, D; Furst, A; Lee, T D

    1985-10-01

    Four cyclic analogues of the C-terminal hepta- or hexapeptide of substance P were prepared by the solution method. The cyclizations were obtained by substituting with cysteine the residues normally present in positions 5 or 6 or 11 of substance P and by subsequent disulfide bond formation. The final products were identified by ordinary analytical procedures and advanced mass spectroscopy. The biological activities were determined on three bioassays: the guinea pig ileum, the guinea pig trachea and the rabbit mesenteric vein. Results obtained with these assays indicate that all peptides with a disulfide bridgehead in position 11 are inactive and that a cycle between positions 5 and 6 already strongly reduces the biological activity. The acyclic precursors containing thiol protection groups display weak biological activities. These results further underline the importance of the side chain in position 11 of substance P and suggest that optimal biological activities may require a linear peptide sequence. PMID:2413208

  9. Mechanical properties testing of candidate polymer matrix materials for use in high performance composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. S.; Adams, D. F.

    1985-01-01

    The mechanical properties of four candidate neat resin systems for use in graphite/epoxy composites are characterized. This includes tensile and shear stiffnesses and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests are conducted on specimens in the dry state and moisture-saturated, at temperatures of 23C, 82C and 121C. The neat resins tested are Hexcel HX-1504, Narmco 5245-C, American Cyanamid CYCOM 907, and Union Carbide ERX-4901A (MDA). Results are compared with those obtained for four other epoxy resins tested in a prior program, i.e., Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914, as well as with available Hercules 3501-6 data. Scanning electron microscopic examination of fracture surfaces is performed to permit the correlation of observed failure modes with the environmental test conditions. A finite element micromechanics analysis is used to predict unidirectional composite response under various test conditions, using the measured neat resin properties as input data.

  10. The research Of Multilayer Thermal Insulation With Mechanical Properties Based On Model Analysis Test

    NASA Astrophysics Data System (ADS)

    Lianhua, Yin

    The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.

  11. Remarks on Some Mechanical Small-Scale Tests Applied to Properties of Materials

    NASA Astrophysics Data System (ADS)

    Cardu, Marilena; Seccatore, Jacopo

    2016-06-01

    The paper presents the results of test campaigns on small-scale strength properties (particularly, micro-hardness) performed on two homogeneous materials: calcite, a very common and widespread mineral that is characterized by its relatively low Mohs hardness and its high reactivity with even weak acids; and glass, an amorphous solid characterized by the absence of the long-range order which defines crystalline materials. After a synthetic description of the principles underlying two of the three classical comminution laws, known as Kick's law and Rittinger's law, experimental results are discussed. The results of the tests performed show that both scale effect and size effect contribute to the non-constancy of mechanical properties at small scale for crystalline materials. On the other hand, for amorphous materials, a theoretical law considering size effects gives considerably different results from empirical measurements. Considerations and an extended discussion address these findings.

  12. Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2005-01-01

    In order to facilitate the interpretation of experimental data, a micromechanical modeling procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy composite as a function of volume fraction and nanoplatelet diameter. The predicted storage and loss moduli for the composite are compared to measured values from the same material using three test methods; Dynamical Mechanical Analysis, nanoindentation, and quasi-static tensile tests. In most cases, the model and experiments indicate that for increasing volume fractions of nanoplatelets, both the storage and loss moduli increase. Also, the results indicate that for nanoplatelet sizes above 15 microns, nanoindentation is capable of measuring properties of individual constituents of a composite system. Comparison of the predicted values to the measured data helps illustrate the relative similarities and differences between the bulk and local measurement techniques.

  13. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  14. A mass treatment model for endemic reduction of filaria disease with pre-testing

    NASA Astrophysics Data System (ADS)

    Fuady, A. M.; Soewono, E.; Nuraini, N.; Tasman, H.; Supriatna, A. K.

    2012-05-01

    In 2000 WHO had issued a Global Program to Eliminate Lymphatic Filariasis by 2020. Lymphatic Filariasis is an infectious disease that may cause permanent disability to the infected human. This disease is caused by parasitic worms and transmitted by mosquitoes. In the acute cases, the infected persons will undergo swelling in parts of their body. One of the treatment which has been successfully implemented in some countries is the Diethylcarbamazine (DEC) mass treatment. This treatment, which was implemented every year for the period of few years in some endemic region, is able to kill microfilaria within human body and partially kills the macro filaria. In this paper, a host-vector model for transmission of filariasis is constructed, in which all non-chronic individuals are separated in different compartments. Stability analysis of the disease-free equilibrium and the existence of the endemic equilibria are shown. Numerical analysis and simulation will be conducted to estimate the effectiveness of treatment and to asses the long-term dynamic effect after treatment.

  15. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA).

    PubMed

    Read, A D; Hudgins, M; Phillips, P

    2001-01-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices. PMID:11530917

  16. Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Rabinovich, Avinoam; Barrash, Warren; Cardiff, Michael; Hochstetler, David L.; Bakhos, Tania; Dagan, Gedeon; Kitanidis, Peter K.

    2015-12-01

    Oscillatory pumping tests were conducted at the Boise Hydrogeophysical Research Site. A periodic pressure signal is generated by pumping and injecting water into the aquifer consecutively and the pressure response is recorded at many points around the source. We present and analyze the data from the field test after applying Fourier analysis. We then match the data with a recently derived analytical solution for homogeneous formations to estimate the equivalent aquifer properties: conductivity K, specific storage Ss and specific yield Sy . The estimated values are shown to be in agreement with previous estimates conducted at this site. We observe variations in the estimated parameters with different oscillation periods of pumping. The trend of the parameters with changing period is discussed and compared to predictions by existing theory and laboratory experiments dealing with dynamic effective properties. It is shown that the results are qualitatively consistent with recent works on effective properties of formations of spatially variable properties in oscillatory flow. To grasp the impact of heterogeneity, a simple configuration is proposed, helping explain the observed increase in effective conductivity with decreasing period.

  17. Physical Properties of Kaolin/Sand Slurry Used During Submersible Mixer Pump Tests at TNX

    SciTech Connect

    HANSEN, ERICHK.

    2004-08-18

    The purpose of this task is to characterize the physical properties of kaolin/sand slurry used to test the performance of a new submersible mixer pump which is undergoing performance testing at the TNT Waste Tank mockup facility. Three different sample locations, the SMP cooling water exit, the SMP fluid flow field, and SMP effective cleaning radius were used for sampling over the seven day test. The physical properties determinations for the kaolin/sand slurry samples include rheology, weight percent total solids (wt TS), density, and particle size distribution were requested, though not all these determinations were performed on all the samples. The physical properties determinations are described in more detail in section 1.0. Measurements were performed at Savannah River National Laboratory in accordance with the Technical Assistance Request (TAR)1. The data, average of two measurements, is shown in the table below. This data clearly shows that the SMP-CWE samples contained more so lids than those at other sample locations for a given sample day. The SMP-FFF and SMP-ECR were similar in solids content. The rheology of the samples is dependent on the wt solids concentration and are all within the bounds stated in the TAR.

  18. Testing of Performance of a Scroll Pump in Support of Improved Vapor Phase Catalytic Ammonia Removal (VPCAR) Mass Reduction

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael

    2006-01-01

    This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.

  19. Standardization of automated industrial test equipment for mass production of control systems

    NASA Astrophysics Data System (ADS)

    Voto, A.; Dai, I.; Oleniuk, P.; Todd, B.

    2016-01-01

    Power converters and their controls electronics are key elements for the operation of the CERN accelerator complex, having a direct impact on its availability. They must be designed to achieve a high Mean Time Between Failure (MTBF) and hardware reliability must be ensured by board level testing before hardware is assembled and installed. In this framework, the National Instrument PCI extension for Instrumentation (PXI) was chosen as standard platform for the development of testers. This paper reports on the design strategy and approach used focusing on the tester hardware, firmware and software development.

  20. THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. I. TESTING FWHM-BASED VIRIAL BLACK HOLE MASSES

    SciTech Connect

    Shen Yue; Kelly, Brandon C.

    2012-02-20

    We jointly constrain the luminosity function (LF) and black hole mass function (BHMF) of broad-line quasars with forward Bayesian modeling in the quasar mass-luminosity plane, based on a homogeneous sample of {approx}58, 000 Sloan Digital Sky Survey (SDSS) Data Release 7 quasars at z {approx} 0.3-5. We take into account the selection effect of the sample flux limit; more importantly, we deal with the statistical scatter between true BH masses and FWHM-based single-epoch virial mass estimates, as well as potential luminosity-dependent biases of these mass estimates. The LF is tightly constrained in the regime sampled by SDSS and makes reasonable predictions when extrapolated to {approx}3 mag fainter. Downsizing is seen in the model LF. On the other hand, we find it difficult to constrain the BHMF to within a factor of a few at z {approx}> 0.7 (with Mg II and C IV-based virial BH masses). This is mainly driven by the unknown luminosity-dependent bias of these mass estimators and its degeneracy with other model parameters, and secondly driven by the fact that SDSS quasars only sample the tip of the active BH population at high redshift. Nevertheless, the most likely models favor a positive luminosity-dependent bias for Mg II and possibly for C IV, such that at fixed true BH mass, objects with higher-than-average luminosities have overestimated FWHM-based virial masses. There is tentative evidence that downsizing also manifests itself in the active BHMF, and the BH mass density in broad-line quasars contributes an insignificant amount to the total BH mass density at all times. Within our model uncertainties, we do not find a strong BH mass dependence of the mean Eddington ratio, but there is evidence that the mean Eddington ratio (at fixed BH mass) increases with redshift.

  1. Routine mortality monitoring for detecting mass murder in UK general practice: test of effectiveness using modelling

    PubMed Central

    Guthrie, Bruce; Love, Tom; Kaye, Rebecca; MacLeod, Margaret; Chalmers, Jim

    2008-01-01

    Background The Shipman Inquiry recommended mortality rate monitoring if it could be ‘shown to be workable’ in detecting a future mass murderer in general practice. Aim To examine the effectiveness of cumulative sum (CUSUM) charts, cross-sectional Shewhart charts, and exponentially-weighted, moving-average control charts in mortality monitoring at practice level. Design of study Analysis of Scottish routine general practice data combined with estimation of control chart effectiveness in detecting a ‘murderer’ in a simulated dataset. Method Practice stability was calculated from routine data to determine feasible lengths of monitoring. A simulated dataset of 405 000 ‘patients’ was created, registered with 75 ‘practices’ whose underlying mortality rates varied with the same distribution as case-mix-adjusted mortality in all Scottish practices. The sensitivity of each chart to detect five and 10 excess deaths was examined in repeated simulations. The sensitivity of control charts to excess deaths in simulated data, and the number of alarm signals when control charts were applied to routine data were estimated. Results Practice instability limited the length of monitoring and modelling was consequently restricted to a 3-year period. Monitoring mortality over 3 years, CUSUM charts were most sensitive but only reliably achieved >50% successful detection for 10 excess deaths per year and generated multiple false alarms (>15%). Conclusion At best, mortality monitoring can act as a backstop to detect a particularly prolific serial killer when other means of detection have failed. Policy should focus on changes likely to improve detection of individual murders, such as reform of death certification and the coroner system. PMID:18482483

  2. New IABG Force Measurement Device: Design, Properties and First Use in Testing

    NASA Astrophysics Data System (ADS)

    Albersdorfer, Konrad

    2012-07-01

    The knowledge of the actual interface forces and moments between test article and shaker is of great value for the performance of a vibration test on any space hardware. For this reason, IABG developed a new Force Measurement Device (FMD) to be used for dynamic spacecraft testing on their large shaker systems. A state-of-the-art hardware and software provide extremely accurate on-line signals of the resulting forces and moments, which can be directly applied in the real-time vibration control process. The basic FMD configuration consists of two plates, which are connected by sixteen tri-axial load cells as the force link, the corresponding measurement amplifiers and an electronic unit, the so-called FPU (force processing unit). The FPU is responsible for A/D conversion, application of mathematical operations and finally D/A conversion of the resulting variables. Standard outputs are six analogue signals for the sum forces and overall moments. However, any other kind of signal processing (e.g. group-wise summation) is possible, because the system bears up to twenty analogue output channels. Of course, the individual force signals as well as offline processing of the time histories are available, too. The FMD has successfully been used during the dynamic qualification of the LISA Pathfinder Launch Composite Module (LCM) on IABG’s 320kN Multi Shaker System in April 2011. During this test campaign, the following important properties could be demonstrated: High mechanical stiffness, good linearity and low cross-talk, high accuracy and signal quality, reliable analogue signals for automatic notching. These key properties - with or without additional features - make the FMD a desirable tool for primary notching during S/C testing with its inherent contribution to test safety. This paper describes the design and functionality of the FMD, and gives a short review on its first use during a spacecraft testing.

  3. A new fetal RHD genotyping test: Costs and benefits of mass testing to target antenatal anti-D prophylaxis in England and Wales

    PubMed Central

    2011-01-01

    Background Postnatal and antenatal anti-D prophylaxis have dramatically reduced maternal sensitisations and cases of rhesus disease in babies born to women with RhD negative blood group. Recent scientific advances mean that non-invasive prenatal diagnosis (NIPD), based on the presence of cell-free fetal DNA in maternal plasma, could be used to target prophylaxis on "at risk" pregnancies where the fetus is RhD positive. This paper provides the first assessment of cost-effectiveness of NIPD-targeted prophylaxis compared to current policies. Methods We conducted an economic analysis of NIPD implementation in England and Wales. Two scenarios were considered. Scenario 1 assumed that NIPD will be only used to target antenatal prophylaxis with serology tests continuing to direct post-delivery prophylaxis. In Scenario 2, NIPD would also displace postnatal serology testing if an RhD negative fetus was identified. Costs were estimated from the provider's perspective for both scenarios together with a threshold royalty fee per test. Incremental costs were compared with clinical implications. Results The basic cost of an NIPD in-house test is £16.25 per sample (excluding royalty fee). The two-dose antenatal prophylaxis policy recommended by NICE is estimated to cost the NHS £3.37 million each year. The estimated threshold royalty fee is £2.18 and £8.83 for Scenarios 1 and 2 respectively. At a £2.00 royalty fee, mass NIPD testing would produce no saving for Scenario 1 and £507,154 per annum for Scenario 2. Incremental cost-effectiveness analysis indicates that, at a test sensitivity of 99.7% and this royalty fee, NIPD testing in Scenario 2 will generate one additional sensitisation for every £9,190 saved. If a single-dose prophylaxis policy were implemented nationally, as recently recommended by NICE, Scenario 2 savings would fall. Conclusions Currently, NIPD testing to target anti-D prophylaxis is unlikely to be sufficiently cost-effective to warrant its large scale

  4. Lithium Inventory of 2 Solar Mass Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-01-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 solar mass experience a shortlived phase of Li-richness at the onset of core He-burning. Many of these stars have low C-12/C-13, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 solar mass. We find six Li-rich stars (A(Li) greater than or equal to 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low C-12/C-13. Such low C-12/C-13, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be less than 47%, based on stars that have low C-12/C-13 for their observed A(Li).

  5. A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations

    NASA Astrophysics Data System (ADS)

    Wu, Tongwen

    2012-02-01

    A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14), doi: 10.1029/2001JD001005 , 2002) in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program

  6. An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, T.B.

    2001-01-01

    An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.

  7. LAVA Subsystem Integration and Testing for the RESOLVE Payload of the Resource Prospector Mission: Mass Spectrometers and Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Stewart, Elaine M.

    2015-01-01

    The Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) payload is part of Resource Prospector (RP) along with a rover and a lander that are expected to launch in 2020. RP will identify volatile elements that may be combined and collected to be used for fuel, air, and water in order to enable deeper space exploration. The Resource Prospector mission is a key part of In-Situ Resource Utilization (ISRU). The demand for this method of utilizing resources at the site of exploration is increasing due to the cost of resupply missions and deep space exploration goals. The RESOLVE payload includes the Lunar Advanced Volatile Analysis (LAVA) subsystem. The main instrument used to identify the volatiles evolved from the lunar regolith is the Gas Chromatograph-Mass Spectrometer (GC-MS). LAVA analyzes the volatiles emitted from the Oxygen and Volatile Extraction Node (OVEN) Subsystem. The objective of OVEN is to obtain, weigh, heat and transfer evolved gases to LAVA through the connection between the two subsystems called the LOVEN line. This paper highlights the work completed during a ten week internship that involved the integration, testing, data analysis, and procedure documentation of two candidate mass spectrometers for the LAVA subsystem in order to aid in determining which model to use for flight. Additionally, the examination of data from the integrated Resource Prospector '15 (RP' 15) field test will be presented in order to characterize the amount of water detected from water doped regolith samples.

  8. Statistical Properties of Excited Nuclei in the Mass Range 47≤A≤59

    NASA Astrophysics Data System (ADS)

    Zhuravlev, B. V.; Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2012-02-01

    Level densities and their energy dependences for nuclei in the mass range 47≤A≤59 have been determined from the measurements of neutron evaporation spectra in (p,n) reaction. Neutron spectra from (p,n) reaction on nuclei of 47Ti, 48Ti, 49Ti, 53Cr, 54Cr, 57Fe, 59Co have been measured at proton energies between 7 and 11 MeV. The measurements of neutron spectra were performed by time-of-flight fast neutron spectrometer on the pulsed tandem accelerator EGP-15 of IPPE. The high resolution and stability of time-of-flight spectrometer allowed identify reliably the discrete low-lying levels together with continuum part of neutron spectra. Analyses of the measured data have been carried out in the framework of statistical equilibrium and pre-equilibrium models of nuclear reactions. The calculations are done with use of the exact formalism of the statistical theory as given by Hauser-Feshbach with the generalized superfluid model of nucleus, the back-shifted Fermi-gas model and the composite formula of Gilbert-Cameron for nuclear level density. The nuclear level densities of 47V, 48V, 49V, 53Mn, 54Mn, 57Co, 59Ni and their energy dependences have been determined. The obtained results have been discussed in totality with existing experimental and model systematic data.

  9. Statistical properties of excited nuclei in the mass range 47 ⩽ A ⩽ 59

    NASA Astrophysics Data System (ADS)

    Zhuravlev, B. V.; Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2012-09-01

    Level densities and their energy dependences for nuclei in the mass range of 47 ≤ A ≤ 59 were determined from the results obtained by measuring neutron-evaporation spectra in respective ( p, n) reactions. The spectra of neutrons originating from the ( p, n) reactions on 47Ti, 48Ti, 49Ti, 53Cr, 54Cr, 57Fe, and 59Co nuclei were measured in the proton-energy range of 7-11 MeV. These measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 pulsed tandem accelerator installed at the Institute for Physics and Power Engineering (Obninsk, Russia). A high resolution of the spectrometer and its stability in the time of flight made it possible to identify reliably discrete low-lying levels along with the continuum part of neutron spectra. Our measured data were analyzed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed with the aid of the Hauser-Feshbach formalismof statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for nuclear level densities. Nuclear level densities for 47V, 48V, 49V, 53Mn, 54Mn, 57Co, and 59Ni and their energy dependences were determined. The results are discussed and compared with available experimental data and with recommendations of model-based systematics.

  10. The Properties of Low-Luminosity AGN: Variability, Accretion Rate, Black Hole Mass and Color

    NASA Astrophysics Data System (ADS)

    Oleas, Juan; Podjed, Stephanie; Sarajedini, Vicki

    2016-01-01

    We present the results from a study of ~5000 Broad-Line selected AGN from the Sloan Digital Sky Survey DR7. Galaxy and AGN templates have been fit to the SDSS spectra to isolate the AGN component. The sources have absolute magnitudes in the range -23 < Mi < -18 and lie at redshifts less than z ~ 0.8. A variability analysis reveals that the anti-correlation between luminosity and variability amplitude continues to the faintest AGN in our sample (Gallastegui-Aizpun & Sarajedini 2014), though the underlying cause of the relation is still poorly understood. To address this, we further explore the connection between AGN luminosity and variability through measurement of the Hβ line width to determine black hole mass and accretion rate. We find that AGN with the highest variability amplitudes at a given luminosity appear to have lower accretion rates compared to low amplitude variables. We also investigate correlations with AGN color and accretion rate among these low-luminosity AGN.

  11. TESTING PHOTOMETRIC DIAGNOSTICS FOR THE DYNAMICAL STATE AND POSSIBLE INTERMEDIATE-MASS BLACK HOLE PRESENCE IN GLOBULAR CLUSTERS

    SciTech Connect

    Noyola, Eva; Baumgardt, Holger E-mail: h.baumgardt@uq.edu.au

    2011-12-10

    Surface photometry is a necessary tool to establish the dynamical state of star clusters. We produce realistic HST-like images from N-body models of star clusters with and without central intermediate-mass black holes (IMBHs) in order to measure their surface brightness profiles. The models contain {approx}600,000 individual stars, black holes of various masses between 0% and 2% of the total mass, and are evolved for Hubble time. We measure surface brightness and star count profiles for every constructed image in order to test the effect of IMBHs on the central logarithmic slope, the core radius, and the half-light radius. We use these quantities to test diagnostic tools for the presence of central black holes using photometry. We find that the only models that show central shallow cusps with logarithmic slopes between -0.1 and -0.4 are those containing central black holes. Thus, the central logarithmic slope seems to be a good way to choose clusters suspected of containing IMBHs. Clusters with steep central cusps can definitely be ruled out to host an IMBH. The measured r{sub c} /r{sub h} ratio has similar values for clusters that have not undergone core-collapse and those containing a central black hole. We note that observed Galactic globular clusters have a larger span of values for central slope and r{sub c} /r{sub h} than our modeled clusters, and suggest possible reasons that could account for this and contribute to improved future models.

  12. The Role of Magnetograms in Testing Models of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    A general review of current and future magnetographic capabilities is presented with emphasis on how they address observational predictions of CME models (e.g., the model/observation matrix developed in the SHINE 2000 workshop). Existing line-of-sight magnetographs can observe certain structural and kinematic properties of CME source regions when they are on the visible disk. These include polarity configuration, location and structure of the magnetic inversion line, proper motions of magnetic elements, and time variation of flux. Additional chromospheric magnetograms provide information on how the field spreads with height and, if properly sequenced with photospheric magnetograms, can determine whether flux is emerging or submerging. Vector magnetographs can provide information about currents and magnetic shear but will only begin to attain the spatial and temporal coverage appropriate to CMEs with the advent of the SOLIS vector spectromagnetograph and, hopefully, its copies at several widely spaced longitudes. Important additions to the SHINE 2000 matrix are required to define an observational program. These include spatial and temporal resolutions and extents as well as needed sensitivity.

  13. Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.

    PubMed

    Lee, Min Wook; An, Seongpil; Jo, Hong Seok; Yoon, Sam S; Yarin, Alexander L

    2015-09-01

    The present work aims at development of self-healing materials capable of partially restoring their mechanical properties under the conditions of prolonged periodic loading and unloading, which is characteristic, for example, of aerospace applications. Composite materials used in these and many other applications frequently reveal multiple defects stemming from their original inhomogeneity, which facilitates microcracking and delamination at ply interfaces. Self-healing nanofiber mats may effectively prevent such damage without compromising material integrity. Two types of core-shell nanofibers were simultaneously electrospun onto the same substrate in order to form a mutually entangled mat. The first type of core-shell fibers consisted of resin monomer (dimethylsiloxane) within the core and polyacrylonitrile within the shell. The second type of core-shell nanofibers consisted of cure (dimethyl-methyl hydrogen-siloxane) within the core and polyacrylonitrile within the shell. These mutually entangled nanofiber mats were used for tensile testing, and they were also encased in polydimethylsiloxane to form composites that were also subsequently subjected to tensile testing. During tensile tests, the nanofibers can be damaged in stretching up to the plastic regime of deformation. Then, the resin monomer and cure was released from the cores and the polydimethylsiloxane resin was polymerized, which might be expected to result in the self-healing properties of these materials. To reveal and evaluate the self-healing properties of the polyacrylonitrile-resin-cure nanofiber mats and their composites, the results were compared to the tensile test results of the monolithic polyacrylonitrile nanofiber mats or composites formed by encasing polyacrylonitrile nanofibers in a polydimethylsiloxane matrix. The latter do not possess self-healing properties, and indeed, do not recover their mechanical characteristics, in contrast to the polyacrylonitrile-resin-cure nanofiber mats and

  14. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    NASA Astrophysics Data System (ADS)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies

  15. Mechanical properties measurement of silicon nitride thin films using the bulge test

    NASA Astrophysics Data System (ADS)

    Lee, Hun Kee; Ko, Seong Hyun; Han, Jun Soo; Park, HyunChul

    2007-12-01

    The mechanical properties of silicon nitride films are investigated. Freestanding films of silicon nitride are fabricated using the MEMS technique. The films were deposited onto (100) silicon wafers by LPCVD (Low Pressure Chemical Vapor Deposition). Square and rectangular membranes are made by anisotropic etching of the silicon substrates. Then the bulge test for silicon nitride film was carried out. The thickness of specimens was 0.5, 0.75 and 1μm respectively. By testing both square and rectangular membranes, the reliability and valiant-ness of bulge test with regard to the shape of specimens was investigated. Also considering residual stress in the films, one can evaluate the Young's modulus from experimental load-deflection curves. Young's modulus of the silicon nitride films was about 232GPa. The residual stress is below 100MPa.

  16. Modelling transport in media with heterogeneous advection properties and mass transfer with a Continuous Time Random Walk approach

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Moussey, Charlie; Dentz, Marco

    2016-04-01

    Transport processes in groundwater systems are strongly affected by the presence of heterogeneity. The heterogeneity leads to non-Fickian features, that manifest themselves in the heavy-tailed breakthrough curves, as well as in the non-linear growth of the mean squared displacement and in the non-Gaussian plumes of solute particles. The causes of non-Fickian transport can be the heterogeneity in the flow fields and the processes of mass exchange between mobile and immobile phases, such as sorption/desorption reactions and diffusive mass transfer. Here, we present a Continuous Time Random Walk (CTRW) model that describes the transport of solutes in d-dimensional systems by taking into account both heterogeneous advection and mobile-immobile mass transfer. In order to account for these processes in the CTRW, the heterogeneities are mapped onto a distribution of transition times, which can be decomposed into advective transition times and trapping times, the latter being treated as a compound Poisson process. While advective transition times are related to the Eulerian flow velocities and, thus, to the conductivity distribution, trapping times depend on the sorption/desorption time scale, in case of reactive problems, or on the distribution of diffusion times in the immobile zones. Since the trapping time scale is typically much larger than the advective time scale, we observe the existence of two temporal regimes. The pre-asymptotic regime is defined by a characteristic time scale at which the properties of transport are fully determined by the heterogeneity of the advective field. On the other hand, in the asymptotic regime both the heterogeneity and the mass exchange processes play a role in conditioning the behaviour of transport. We consider different scenarios to discuss the relative importance of the advective heterogeneity and the mass transfer for the occurrence of non-Fickian transport. For each case we calculate analytically the scalings of the breakthrough

  17. Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb3Sn strands

    NASA Astrophysics Data System (ADS)

    Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N.; Shikov, A. K.; Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N.

    2014-01-01

    From 2009 the mass production of the Nb3Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb3Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 °C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb3Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb3Sn strands has been investigated.

  18. Testing models of low-mass star formation - High-resolution far-infrared observations of L1551 IRS 5

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.; Evans, Neal J., II; Lester, Daniel F.; Levreault, Russell M.; Strom, Stephen E.

    1991-01-01

    A 50 and 100 micron wavelength study of L151 IRS 5 has yielded data consistent with the Adams et al. (1987) theoretical model prediction. It has proven possible to constrain a range of possible density gradients through source-emission modeling on the basis of the spherically-symmetric radiative transfer program of Egan et al. (1988) and a comparison of the observed scans at 50 and 100 microns. Attention is given to the effects of varying the dust grain properties of the spherical energy distribution of the source; the amount of mid-IR emission is highly sensitive to dust opacity and, because of poorly understood dust properties, is not a sensitive test for the presence of disks.

  19. A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests

    SciTech Connect

    Shonder, J.A.

    2000-05-02

    The geothermal or ground-source heat pump (GHP) has been shown to be a very efficient method of providing heating and cooling for buildings. GHPs exchange (reject or extract) heat with the earth by way of circulating water, rather than by use of circulating outdoor air, as with an air-source heat pump. The temperature of water entering a GHP is generally cooler than that of outdoor air when space cooling is required, and warmer than that of outdoor air when space heating is required. Consequently, the temperature lift across a GHP is less than the lift across an air-source heat pump. The lower temperature lift leads to greater efficiency, higher capacity at extreme outdoor air temperatures, and better indoor humidity control. These benefits are achieved, however, at the cost of installing a ground heat exchanger. In general, this cost is proportional to length of the heat exchanger, and for this reason there is an incentive to install the minimum possible length such that design criteria are met. The design of a ground heat exchanger for a GHP system requires, at a minimum, the operating characteristics of the heat pumps, estimates of annual and peak block loads for the building, and information about the properties of the heat exchanger: the size of the U-tubes, the grouting material, etc. The design also requires some knowledge of the thermal properties of the soil, namely thermal conductivity, thermal diffusivity, and undisturbed soil temperature. In the case of a vertical borehole heat exchanger (BHEx) these properties generally vary with depth; therefore, in the design, effective or average thermal properties over the length of the borehole are usually sought. When the cost of doing so can be justified, these properties are measured in an in situ experiment: a test well is drilled to a depth on the same order as the expected depth of the heat pump heat exchangers; a U-tube heat exchanger is inserted and the borehole is grouted according to applicable state and

  20. Correlating Aftershock Hypocenters With On-fault Main Shock Properties: Introducing Non-standard Statistical Tests

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Schorlemmer, D.; Wiemer, S.; Mai, P. M.

    2005-12-01

    Quantitatively correlating properties of finite-fault source models with hypocenters of aftershocks may provide new insight in the relationship between either slip or static stress change distributions and aftershock occurrence. We present advanced non-standard statistical test approaches to evaluate the test hypotheses (1) if aftershocks are preferentially located in areas of low slip and (2) if aftershocks are located in increased shear stress against the null hypothesis: aftershocks are located randomly on the fault plane. By using multiple test approaches, we investigate possible pitfalls and the information content of statistical testing. To perform the tests, we use earthquakes for which multiple finite-fault source models and earthquake catalogs of varying accuracy exist. The aftershock hypocenters are projected onto the main-shock rupture plane and uncertainties are accounted for by simulating hypocenter locations in the given error bounds. For the statistical tests, we retain the spatial clustering of earthquakes as the most important observed features of seismicity and synthesize random slip distributions with different approaches: first, using standard statistical methods that randomize the obtained finite-fault source model values and second, using a random spatial field model. We then determine the number of aftershocks in low-slip or increased shear-stress regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the tests to prominent earthquakes in California and Japan and find statistical significant evidence that aftershocks are preferentially located in low-slip regions. The tests, however, show a lower significance for the correlation with the shear-stress distribution, but are in general agreement with the expectations of the asperity model. Tests using the hypocenters of relocated catalogs show higher significances.

  1. Analytics of nonpeptidic erythropoietin mimetic agents in sports drug testing employing high-resolution/high-accuracy liquid chromatography-mass spectrometry.

    PubMed

    Vogel, Matthias; Dib, Josef; Tretzel, Laura; Piper, Thomas; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2016-09-01

    Since its release as anti-anemic drug, recombinant erythropoietin (rEPO) gradually entered the illicit way to sports competitions as endurance-enhancing drug. Novel modifications biopharmaceutically introduced into the rEPO molecule in the form of carbohydrate or polyethylene glycol moieties made robust and sensitive test methods vital to doping controls in order to provide the necessary tools enabling the conviction of dishonest athletes. Modern protein analysis by means of gel electrophoretic separation and western blotting represents the status quo in rEPO anti-doping analysis. However, new therapeutically promising erythropoietin receptor activating compounds have been developed that exhibit cytokine hormone-mimicking properties but lack any protein structure. Progression to evade parenteral application and substitute for rEPO by low molecular mass and orally available compounds is still one of the major objectives in pharmaceutical research. In this approach, four promising in-house synthesized nonpeptidic erythropoietin mimetic agents, namely compound 129, compound 163, A1B10C1, and A5B10C4 were thoroughly evaluated by employing high-resolution/high-accuracy liquid chromatography tandem mass spectrometry experiments. Characteristic product ions were determined supporting the identification of these drugs and putative metabolites as well as related compounds in future doping controls. Test methods employing direct urine injection and receptor affinity purification strategies were assessed, which demonstrated that EPO receptor purification is of limited utility for nonpeptidic EPOR agonists while direct urine injection allowed for comprehensive method characterization. Thereby, achieved limits of detection were 1 ng/mL for compounds 129/163 and 5 ng/mL for A1B10C1/A5B10C4. PMID:27438721

  2. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. PMID:25586667

  3. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  4. DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH STEREO SECCHI

    SciTech Connect

    Lugaz, N.; Roussev, I. I.; Hernandez-Charpak, J. N.; Davis, C. J.; Davies, J. A.; Vourlidas, A. E-mail: iroussev@ifa.hawaii.ed E-mail: chris.davis@stfc.ac.u

    2010-05-20

    We discuss how simultaneous observations by multiple heliospheric imagers (HIs) can provide some important information about the azimuthal properties of coronal mass ejections (CMEs) in the heliosphere. We propose two simple models of CME geometry that can be used to derive information about the azimuthal deflection and the azimuthal expansion of CMEs from SECCHI/HI observations. We apply these two models to four CMEs well observed by both STEREO spacecraft during the year 2008. We find that in three cases, the joint STEREO-A and B observations are consistent with CMEs moving radially outward. In some cases, we are able to derive the azimuthal cross section of the CME fronts, and we are able to measure the deviation from self-similar evolution. The results from this analysis show the importance of having multiple satellites dedicated to space weather forecasting, for example, in orbits at the Lagrangian L4 and L5 points.

  5. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    PubMed

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. PMID:24974014

  6. Intrinsic Absorption in Quasars (AAL & BAL) and its Relation to Outflows, BH Mass, Accretion Rate, Spin, Orientation, and Radio Properties

    NASA Astrophysics Data System (ADS)

    Stone, Robert Bernard; Richards, Gordon T.

    2016-01-01

    Despite the fact that quasars are fueled by matter falling into supermassive black holes, this process spews out considerable mass and energy. We investigate the nature of these outflows in the form of both broad and narrow absorption lines using data taken as part of the Sloan Digital Sky Survey (SDSS). Although these outflows are seen to have ejection speeds of up to 60,000 km/s, it is still unclear how they affect the quasar's host-galaxy and its evolution. We look for correlations of these outflows with the radio properties of the quasars, which can potentially reveal a physical connection between the quasar's accretion physics and its outflows. We also investigate how relaxing the traditional criteria for defining both radio loud and broad absorption line quasars impacts our understanding of these classes and quasars in general. Our ultimate goal is to understand how outflows from quasars change as a function of line-of-sight orientation, mass, accretion, and spin of the black holes that fuel them.

  7. Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Wang, K.; Dickinson, R. E.; Su, L.; Trenberth, K. E.

    2012-07-01

    Atmospheric aerosols impact both human health and climate. PMX is the mass concentration of aerosol particles that have aerodynamic diameters less than X μm, PM10 was initially selected to measure the environmental impact of aerosols. Recently, it was realized that fine particles are more hazardous than larger ones and should be measured. Consequently, observational data for PM2.5 have been obtained but only for a much shorter period than that of PM10. Optical extinction of aerosols, the inverse of meteorological visibility, is sensitive to particles less than 1.0 μm. These fine particles only account for a small part of total mass of aerosols although they are very efficient in light extinction. Comparisons are made between PM10 and PM2.5 over the period when the latter is available and with visibility data for a longer period. PM10 has decreased by 44% in Europe from 1992 to 2009, 33% in the US from 1993 to 2010, 10% in Canada from 1994 to 2009, and 26% in China from 2000 to 2010. However, in contrast, aerosol optical extinction increased 7% in the US, 10% in Canada, and 18% in China during the above study periods. The reduction of optical extinction over Europe of 5% is also much less than the 44% reduction in PM10. Over its short period of record PM2.5 decreased less than PM10. Hence, PM10 is neither a good measure of changes in smaller particles or of their long-term trends, a result that has important implications for both climate impact and human health effects. The increased fraction of anthropogenic aerosol emission, such as vehicle exhaust, to total atmospheric aerosols partly explains this contrasting trend of optical and mass properties of aerosols.

  8. Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Dickinson, R. E.; Su, L.; Trenberth, K. E.

    2012-10-01

    Atmospheric aerosols affect both human health and climate. PMX is the mass concentration of aerosol particles that have aerodynamic diameters less than X μm, PM10 was initially selected to measure the environmental impact of aerosols. Recently, it was realized that fine particles are more hazardous than larger ones and should be measured. Consequently, observational data for PM2.5 have been obtained but only for a much shorter period than that of PM10. Optical extinction of aerosols, the inverse of meteorological visibility, is sensitive to particles less than 1.0 μm. These fine particles only account for a small part of total mass of aerosols although they are very efficient in light extinction. Comparisons are made between PM10 and PM2.5 over the period when the latter is available and with visibility data for a longer period. PM10 has decreased by 44% in Europe from 1992 to 2009, 33% in the US from 1993 to 2010, 10% in Canada from 1994 to 2009, and 26% in China from 2000 to 2011. However, in contrast, aerosol optical extinction has increased 7% in the US, 10% in Canada, and 18% in China during the above study periods. The reduction of optical extinction over Europe of 5% is also much less than the 44% reduction in PM10. Over its short period of record PM2.5 decreased less than PM10. Hence, PM10 is neither a good measure of changes in smaller particles nor of their long-term trends, a result that has important implications for both climate impact and human health effects. The increased fraction of anthropogenic aerosol emission, such as from vehicle exhaust, to total atmospheric aerosols partly explains this contrasting trend of optical and mass properties of aerosols.

  9. Relating past occupation patterns to (paleo)environmental properties - hypothesis testing

    NASA Astrophysics Data System (ADS)

    Zeeden, Christian; Duwe, Anja; Bösken, Janina; Pipaud, Isabel; Chu, Wei; Hauck, Thomas; Lehmkuhl, Frank

    2016-04-01

    Current archaeological discussions suggest that early human settlement distribution patterns, as preserved by the geological record, may be related to geospatial properties such as altitude, vicinity to water and habitat variability. However, to date, no quantitative analyses have been undertaken to either verify or falsify these hypotheses. In this study, data-driven methods were applied to test these hypotheses, specifically correlation and comparison of dataset variabilities. We compare the standard deviation and range from site altitude (as one example geospatial property) to random draws from an area comprising these sites to make a statement whether settlement distribution is random in altitude or linked to a specific altitudinal belt. This set of methods was applied to a dataset of mid-Upper Paleolithic (Gravettian) settlements from the Bohemian-Moravian Highlands and the Western Carpathians. It was possible to quantitatively and reproducibly demonstrate that settlements are related to a specific altitudinal belt around 200-300 m, as suggested earlier in a qualitative way. The discussed set of methods can be extended by incorporating additional geospatial parameters, potentially allowing comprehensive statements on the influence of these parameters on the distribution of early human settlements. Selecting a reference area used for testing and its (paleo)environmental properties is an important input, and several options are compared.

  10. A Quantitative Test for the Spatial Relationship Between Aftershock Distributions and Mainshock Rupture Properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Ripperger, J.; Mai, M. P.; Wiemer, S.

    2004-12-01

    Correlating the properties of the mainshock rupture with the location of corresponding aftershocks may provide insight into the relationship between mainshock-induced static stress changes and aftershock occurrence. In this study, we develop a rigorous statistical test to quantify the spatial pattern of aftershock locations with the corresponding distributions of coseismic slip and stress-drop. Well-located aftershock hypocenters are projected onto the mainshock fault plane and coseismic slip and stress drop values are interpolated to their respective location. The null hypothesis H0 for the applied test statistic is: Aftershock hypocenters are randomly distributed on the mainshock fault plane and are not correlated with mainshock properties. Because we want to maintain spatial earthquake clustering as one of the important observed features of seismicity, we synthesize slip distributions using a random spatial field model from which we then compute the respective stress-drop distributions. For each simulation of earthquake slip, we compute the test statistic for the slip and stress-drop distribution, testing whether or not an apparent correlation between mainshock properties and aftershock locations exists. Uncertainties in the aftershock locations are accounted for by simulating a thousand catalogues for which we randomize the location of the aftershocks within their given location error bounds. We then determine the number of aftershocks in low-slip or negative stress-drop regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the test to crustal earthquakes in California and Japan. If possible, we use different source models and earthquake catalogues with varying accuracy to investigate the dependence of the test results on, for example, the location uncertainties of aftershocks. Contrary to the visual impression, we find that for some strike-slip earthquakes or segments of the

  11. Thermo-Optical and Mechanical Property Testing of Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Hollerman, WIlliam A.; Stanaland, T. L.; Womack, F.; Edwards, David; Hubbs, Whitney; Semmel, Charles

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra-lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This poster will discuss the preliminary results of this research.

  12. Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped quantum dots in presence of Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Pratim Ghosh, Arghya; Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Manas

    2016-05-01

    We examine the influence of position-dependent effective mass (PDEM) on a few nonlinear optical (NLO) properties of impurity doped quantum dots (QDs) in presence and absence of noise. The said properties include total optical absorption coefficient (TOAC), nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG). The impurity potential is modeled by a Gaussian function and the noise applied being Gaussian white noise. The profiles of above NLO properties have been pursued as a function of incident photon energy for different values of PDEM. Using PDEM the said profiles exhibit considerable departure from that of fixed effective mass (FEM). Presence of noise almost invariably amplifies the NLO properties with a few exceptions. A change in the mode of application of noise also sometimes affects the above profiles. The investigation furnishes us with a detailed picture of the subtle interplay between noise and PDEM through which the said NLO properties of doped QD systems can be tailored.

  13. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test.

    PubMed

    Yılmaz, Tekin; Ercikdi, Bayram; Karaman, Kadir; Külekçi, Gökhan

    2014-07-01

    Ultrasonic pulse velocity (UPV) test is one of the most popular non-destructive techniques used in the assessment of the mechanical properties of concrete or rock materials. In this study, the effects of binder type/dosage, water to cement ratio (w/c) and fines content (<20 μm) of the tailings on ultrasonic pulse velocity (UPV) of cemented paste backfill (CPB) samples were investigated and correlated with the corresponding unconfined compressive strength (UCS) data. A total of 96 CPB samples prepared at different mixture properties were subjected to the UPV and UCS tests at 7, 14, 28 and 56-days of curing periods. UPV and UCS of CPB samples of ordinary Portland cement (CEM I 42.5 R) and sulphate resistant cement (SRC 32.5) initially increased rapidly, but, slowed down after 14 days. However, UPV and UCS of CPB samples of the blast furnace slag cement (CEM III/A 42.5 N) steadily increased between 7 and 56 days. Increasing binder dosage or reducing w/c ratio and fines content (<20 μm) increased the UCS and UPV of CPB samples. UPV was found to be particularly sensitive to fines content. UCS data were correlated with the corresponding UPV data. A linear relation appeared to exist between the UCS and UPV of CPB samples. These findings have demonstrated that the UPV test can be reliably used for the estimation of the strength of CPB samples. PMID:24602334

  14. Enhancement of Mechanical Properties and Testing of Nitinol Stents in Cerebral Aneurysm Simulation Models.

    PubMed

    Nam, Hyo Geun; Yoo, Chang Min; Baek, Seoung Min; Kim, Han Ki; Shin, Jae Hee; Hwang, Min Ho; Jo, Ga Eun; Kim, Kyong Soo; Cho, Jae Hwa; Lee, Seung Hoon; Kim, Ho Chul; Lim, Chun Hak; Choi, Hyuk; Sun, Kyung

    2015-12-01

    Stents are promising medical devices widely used in the prevention of cerebral aneurysm rupture. As the performance of stents depends on their mechanical properties and cell configuration, the aim of this study was to optimize the stent design and test the hemodynamic properties by using computational solid mechanics and computational fluid dynamics. In order to test their performance, computer-based cerebral aneurysm models that mimic the conditions present after implantation into the human brain were tested. The strut configuration selected was the closed-cell type, and nitinol was chosen as the material for stent manufacture because the innate characteristics of this material increase stent flexibility. Three ideal sample stent types with different cell configurations were manufactured. Computational solid mechanics analysis of the sample stents showed over 30% difference in flexibility between stents. Furthermore, using a cerebral aneurysm model simulation, we found that the stents eased the hemodynamic factors of the cerebral aneurysm and lessened the flow velocity influx into the sac. A decrease in flow velocity led to a 50-60% reduction in wall shear stress, which is expected to prevent aneurysm rupture under clinical conditions. Stent design optimization was carried out by simulation and electropolishing. Corrosion resistance and surface roughness were evaluated after electropolishing performed under variable conditions, but 40 V and 10 s were the most optimal. PMID:26416549

  15. Kickback risk of portable chainsaws while cutting wood of different properties: laboratory tests and deductions.

    PubMed

    Dąbrowski, Andrzej

    2015-01-01

    Portable chainsaws are associated with substantial risk and can cause serious injury to operators, especially during kickback. This paper presents new results from research and analyses conducted regarding the impact between the different properties of wood on this occurrence. In an open area, such differences may include: wood species, humidity, temperature and the facing angle of the wood fibres in relation to the kerf and shape of the wood surface that comes in contact with the tip of the guide bar. This paper investigates chainsaw kickback including the research results on kickback and wood-cutting energy, saw chain speed and the efficiency of the chainsaw engine. It also presents conclusions drawn from the tests that can be useful for chainsaw users, showing the dependencies between the different properties of wood and the risk of injury. PMID:26694003

  16. Kickback risk of portable chainsaws while cutting wood of different properties: laboratory tests and deductions

    PubMed Central

    Dąbrowski, Andrzej

    2015-01-01

    Portable chainsaws are associated with substantial risk and can cause serious injury to operators, especially during kickback. This paper presents new results from research and analyses conducted regarding the impact between the different properties of wood on this occurrence. In an open area, such differences may include: wood species, humidity, temperature and the facing angle of the wood fibres in relation to the kerf and shape of the wood surface that comes in contact with the tip of the guide bar. This paper investigates chainsaw kickback including the research results on kickback and wood-cutting energy, saw chain speed and the efficiency of the chainsaw engine. It also presents conclusions drawn from the tests that can be useful for chainsaw users, showing the dependencies between the different properties of wood and the risk of injury. PMID:26694003

  17. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Wan, X.; Fan, J.

    2008-06-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index.

  18. Ablation properties of C/C-SiC composites tested on an arc heater

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Zuo, Jinglv; Tao, Huijin

    2011-11-01

    Carbon fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were fabricated by a combination of chemical vapor infiltration and liquid silicon infiltration. Ablation properties of C/C-SiC composites and C/C composites with similar technique were tested on a high-pressure arc heater. The results show that ablation properties of C/C-SiC composites are more severe than those of C/C composites. Ablation of C/C-SiC composites includes oxidation, sublimation of SiC (Si), and mechanical denudation. Oxidation and sublimation of SiC (Si) lead to the enlarged ablation rates between carbon fibers and matrices, which finally cause serious ablation of C/C-SiC composites.

  19. Location - Dependent Coronary Artery Diffusive and Convective Mass Transport Properties of a Lipophilic Drug Surrogate Measured Using Nonlinear Microscopy

    PubMed Central

    Keyes, Joseph T.; Simon, Bruce R.; Vande Geest, Jonathan P.

    2013-01-01

    Purpose Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. Methods We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Results Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. Conclusions This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease. PMID:23224981

  20. Mass transfer properties of nanoconfined fluids at solid-liquid interfaces: from atomistic simulations to continuum models

    NASA Astrophysics Data System (ADS)

    Morciano, Matteo; Fasano, Matteo; Nold, Andreas; Correia Braga, Carlos; Yatsyshin, Petr; Sibley, David; Goddard, Benjamin; Chiavazzo, Eliodoro; Asinari, Pietro; Kalliadasis, Serafim; multi-Scale ModeLing Laboratory Team; Complex Multiphase Systems Team

    2015-11-01

    At the nanoscale, traditional continuum models are not sufficient to describe fluid flow. For example, the no-slip assumption may not be valid for nanoscale flows, where interface effects dominate transport phenomena. Hence, classic boundary conditions should take into account possible interplays between fluid velocity, shear stress, surface chemistry and roughness. Unlike hydrodynamics, in molecular dynamics (MD), the boundary conditions are not specified a priori but arise naturally from computations. Here, mass transfer properties for a Lennard-Jones fluid confined in a nanochannel are studied by MD. Density, stress and velocity profiles within the fluid are evaluated with different nanoconfined conditions, shear rates and surface hydrophilicity. Our results show a strong anisotropic behavior of fluid properties along the channel section. Shear rates and velocity profiles allow calculating the spatial distribution of viscosity along the channel. We also observe that hydrophilic surfaces lead to increased viscosity. Our findings may have a potential impact on the design of nanofluidic devices for either engineering or biomedical applications.