Science.gov

Sample records for mass protostar omc2-fir4

  1. On the nature of the deeply embedded protostar OMC-2 FIR 4

    SciTech Connect

    Furlan, E.; Megeath, S. T.; Fischer, W. J.; Osorio, M.; Stutz, A. M.; Ali, B.; Manoj, P.; Adams, J. D.; Tobin, J. J.

    2014-05-01

    We use mid-infrared to submillimeter data from the Spitzer, Herschel, and Atacama Pathfinder Experiment telescopes to study the bright submillimeter source OMC-2 FIR 4. We find a point source at 8, 24, and 70 μm, and a compact, but extended source at 160, 350, and 870 μm. The peak of the emission from 8 to 70 μm, attributed to the protostar associated with FIR 4, is displaced relative to the peak of the extended emission; the latter represents the large molecular core the protostar is embedded within. We determine that the protostar has a bolometric luminosity of 37 L {sub ☉}, although including more extended emission surrounding the point source raises this value to 86 L {sub ☉}. Radiative transfer models of the protostellar system fit the observed spectral energy distribution well and yield a total luminosity of most likely less than 100 L {sub ☉}. Our models suggest that the bolometric luminosity of the protostar could be as low as 12-14 L {sub ☉}, while the luminosity of the colder (∼20 K) extended core could be around 100 L {sub ☉}, with a mass of about 27 M {sub ☉}. Our derived luminosities for the protostar OMC-2 FIR 4 are in direct contradiction with previous claims of a total luminosity of 1000 L {sub ☉}. Furthermore, we find evidence from far-infrared molecular spectra and 3.6 cm emission that FIR 4 drives an outflow. The final stellar mass the protostar will ultimately achieve is uncertain due to its association with the large reservoir of mass found in the cold core.

  2. High-angular resolution observations towards OMC-2 FIR 4: Dissecting an intermediate-mass protocluster

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Sánchez-Monge, Á.; Ceccarelli, C.; Dominik, C.; Kama, M.; Caux, E.; Fontani, F.; Fuente, A.; Ho, P. T. P.; Neri, R.; Shimajiri, Y.

    2013-08-01

    Context. Intermediate-mass stars are an important ingredient of our Galaxy and a key to understanding how high- and low-mass stars form in clusters. One of the closest known young intermediate-mass protoclusters is OMC-2 FIR 4, which is located at a distance of 420 pc in Orion. This region is one of the few where the complete 500-2000 GHz spectrum has been observed with the heterodyne spectrometer HIFI on board the Herschel satellite, and unbiased spectral surveys at 0.8, 1, 2, and 3 mm have been obtained with the JCMT and IRAM 30-m telescopes. Aims: We aim to disentangle the core multiplicity, to investigate the morphology of this region in order to study the formation of a low- and intermediate-mass protostar cluster, and to aid in interpretation of the single-dish line profiles already in our hands. Methods: We used the IRAM Plateau de Bure Interferometer to image OMC-2 FIR 4 in the 2-mm continuum emission, as well as in DCO+(2-1), DCN(2-1), C34S(3-2), and several CH3OH lines. In addition, we analysed observations of the NH3(1, 1) and (2, 2) inversion transitions that used the Very Large Array of the NRAO. The resulting maps have an angular resolution that allows us to resolve structures of 5″, which is equivalent to ~2000 AU. Results: Our observations reveal three spatially resolved sources within OMC-2 FIR 4, of one or several solar masses each, with hints of further unresolved substructure within them. Two of these sources have elongated shapes and are associated with dust continuum emission peaks, thus likely containing at least one molecular core each. One of them also displays radio continuum emission, which may be attributed to a young B3-B4 star that dominates the overall luminosity output of the region. The third identified source displays a DCO+(2-1) emission peak and weak dust continuum emission. Its higher abundance of DCO+ relative to the other two regions suggests a lower temperature, hence its possible association with either a younger low-mass

  3. The protostar OMC-2 FIR 4: Results from the CHESS Herschel/HIFI spectral survey

    NASA Astrophysics Data System (ADS)

    Kama, Mihkel; Lopez-Sepulcre, Ana; Ceccarelli, Cecilia; Dominik, Carsten; Caux, Emmanuel; Fuente, Asuncion

    2013-07-01

    The intermediate-mass protostar OMC-2 FIR 4 in Orion is the focus of several ongoing studies, including a CHESS key programme Herschel/HIFI spectral survey. In this poster, we review recent CHESS results on this source, including the properties of the central hot core, the presence of a compact outflow, the spatial variation of the chemical composition, and the discovery of a tenuous foreground cloud. The HIFI spectrum of FIR 4 contains 719 lines from 40 species and isotopologs. Cooling by lines detectable with our sensitivity contributes 2% of the total in the 480 to 1900 GHz range. The total line flux is dominated by CO, followed by H2O and CH3OH. Initial comparisons with spectral surveys of other sources will also be presented.

  4. VizieR Online Data Catalog: Transitions in OMC-2 FIR 4 in the far-IR (Kama+, 2013)

    NASA Astrophysics Data System (ADS)

    Kama, M.; Lopez-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.

    2014-04-01

    Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7L⊙ luminosity detected with HIFI in the 480 to 1250GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. (1 data file).

  5. The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range

    NASA Astrophysics Data System (ADS)

    Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.

    2013-08-01

    Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. Aims: A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. Methods: We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. Results: We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. Conclusions: We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L⊙ luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. Appendix A is available in electronic form at http://www.aanda.org

  6. Depletion of chlorine into HCl ice in a protostellar core. The CHESS spectral survey of OMC-2 FIR 4

    NASA Astrophysics Data System (ADS)

    Kama, M.; Caux, E.; López-Sepulcre, A.; Wakelam, V.; Dominik, C.; Ceccarelli, C.; Lanza, M.; Lique, F.; Ochsendorf, B. B.; Lis, D. C.; Caballero, R. N.; Tielens, A. G. G. M.

    2015-02-01

    Context. The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <10-5 has not yet been well studied. Aims: Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. Methods: We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2 hyperfine collisional excitation rate coefficients. Results: A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9 × 10-11, a factor of only 10-3 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Conclusions: Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of ≲10-10 in most of the protostellar core. We find the [35Cl]/[37Cl] ratio in OMC-2 FIR 4 to be 3.2 ± 0.1, consistent with the solar system value. Appendices are available in electronic form at http://www.aanda.org

  7. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2

    SciTech Connect

    Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Stacey, Gordon; Osorio, Mayra; Macias, Enrique; Thomas Megeath, S.; Fischer, William J.; Ali, Babar; D'Alessio, Paola; De Buizer, James M.; Shuping, Ralph Y.; Keller, Luke D.; Morris, Mark R.; Remming, Ian S.; Stanke, Thomas; Stutz, Amelia; and others

    2012-04-20

    We examine eight young stellar objects in the OMC-2 star-forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, Two Micron All Sky Survey, Atacama Pathfinder Experiment, and other results in the literature. We show the spectral energy distributions (SED) of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modeled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 Multiplication-Sign 0.25 pc region; these sources have luminosities ranging from 300 L{sub Sun} to 20 L{sub Sun }. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of {approx}50 L{sub Sun} and mass infall rate of {approx}10{sup -4} M{sub Sun} yr{sup -1}.

  8. Winds from Low Mass Protostars

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Lizano, Susana; Adams, Fred C.; Ruden, Steven P.

    In its last stages, star formation in molecular clouds includes the onset of a stellar wind that helps to clear away the surrounding placenta of gas and dust, thereby making the young stellar object optically visible. The authors discuss new observational evidence that the emerging wind is largely neutral and atomic in low-mass protostars. They then suggest a simple theoretical mechanism for the generation of such powerful neutral winds.

  9. Protostar mass functions in young clusters

    SciTech Connect

    Myers, Philip C.

    2014-01-20

    In an improved model of protostar mass functions (PMFs), protostars gain mass from isothermal cores in turbulent clumps. Their mass accretion rate is similar to Shu accretion at low mass and to reduced Bondi accretion at high mass. Accretion durations follow a simple expression in which higher-mass protostars accrete for longer times. These times are set by ejections, stellar feedback, and gravitational competition, which terminate accretion and reduce its efficiency. The mass scale is the mass of a critically stable isothermal core. In steady state, the PMF approaches a power law at high mass because of competition between clump accretion and accretion stopping. The power law exponent is the ratio of the timescales of accretion and accretion stopping. The protostar luminosity function (PLF) peaks near 1 L {sub ☉} because of inefficient accretion of core gas. Models fit observed PLFs in four large embedded clusters. These indicate that their underlying PMFs may be top-heavy compared with the initial mass function, depending on the protostar radius model.

  10. Evolution of Mass Outflow in Protostars

    NASA Astrophysics Data System (ADS)

    Watson, Dan M.; Calvet, Nuria P.; Fischer, William J.; Forrest, W. J.; Manoj, P.; Megeath, S. Thomas; Melnick, Gary J.; Najita, Joan; Neufeld, David A.; Sheehan, Patrick D.; Stutz, Amelia M.; Tobin, John J.

    2016-09-01

    We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si ii], [Fe ii], and [S i] line emission, and 11 of these in far-infrared [O i] emission. We use the results to derive their mass outflow rates, {\\dot{M}}w. Thereby we observe a strong correlation of {\\dot{M}}w with bolometric luminosity, and with the inferred mass accretion rates of the central objects, {\\dot{M}}a, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass flow rates, the different classes of young stellar objects lie in the sequence Class 0–Class I/flat-spectrum–Class II, indicating that the trend is an evolutionary sequence in which {\\dot{M}}a and {\\dot{M}}w decrease together with increasing age, while maintaining rough proportionality. The survey results include two that are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b={\\dot{M}}w/{\\dot{M}}a, and limits on the distribution of outflow speeds. Neither rules out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (31%) of the sample have a branching ratio sufficiently small that only disk winds, launched on scales as large as several au, have been demonstrated to account for them.

  11. Deuterated water in low-mass protostars

    NASA Astrophysics Data System (ADS)

    Coutens, Audrey; Vastel, Charlotte; Chess Collaboration; Wish Collaboration; Hexos Collaboration

    2013-07-01

    In addition to its dominant role in the cooling of warm gas and in the oxygen chemistry, water is a primordial species in the emergence of life, and comets may have brought a large fraction to Earth to form the oceans. Observations of deuterated water are an important complement for studies of H2O to understand how water forms and how it has evolved from cold prestellar cores to protoplanetary disks and consequently oceans for the Earth's specific, but probably not isolated, case. Several deuterated water transitions were observed with the Herschel/HIFI (Heterodyne Instrument for Far Infrared) instrument towards three low-mass protostars: IRAS 16293-2422, NGC1333 IRAS4A and NGC1333 IRAS4B. In the first source, both HDO and D2O lines are detected, thanks to the unbiased spectral survey carried out by the CHESS key program (Vastel et al. 2010, Coutens et al. 2013a). In the framework of a collaboration between the CHESS, WISH and HEXOS programs, two HDO key lines were observed towards the two other protostars. In addition, complementary observations were carried out with several ground-based single-dish telescopes (IRAM-30m, JCMT, APEX). We used the non-LTE RATRAN spherical model (Hogerheijde & van der Tak 2000) to determine the HDO abundance distribution throughout the protostellar envelope. An abundance jump at 100 K is required to reproduce the line profiles. Indeed, water molecules trapped in the icy grain mantles thermally desorb in the hot corinos, the inner warm regions of the protostellar envelopes. We also obtain that it is necessary to add a water-rich external absorbing layer to reproduce the absorbing components of the HDO and D2O fundamental transitions in all sources (Coutens et al. 2012, 2013a,b). The results derived for the different sources will be then presented and discussed.

  12. Episodic outflows from high-mass protostars

    SciTech Connect

    Mitchell, G.F.; Maillard, J.P.; Hasegawa, T.I. Canada-France-Hawaii Telescope Corp., Waimea, HI CNRS, Institut d'Astrophysique, Paris Duke University, Durham, NC )

    1991-04-01

    This paper examines the kinematics and physical properties of the outflowing gas from seven luminous deeply embedded young stellar objects or protostars: M8E-IR, GL 490, GL 2591, W3 IRS 5, NGC 7538 IRS 1, NGC 7538 IRS 9, and S140 IRS 1. The outflows are seen as blueshifted absorption features in lines of the fundamental band of CO. The CO lines seen in absorption are compared with CO lines seen in emission at mm wavelengths. New CO J = 2-1 emission-line data are presented for the first five of the sources. 60 refs.

  13. COMPLEX MOLECULES TOWARD LOW-MASS PROTOSTARS: THE SERPENS CORE

    SciTech Connect

    Oeberg, Karin I.; Van der Marel, Nienke; Kristensen, Lars E.; Van Dishoeck, Ewine F.

    2011-10-10

    Gas-phase complex organic molecules are commonly detected toward high-mass protostellar hot cores. Detections toward low-mass protostars and outflows are comparatively rare, and a larger sample is the key to investigate how the chemistry responds to its environment. Guided by the prediction that complex organic molecules form in CH{sub 3}OH-rich ices and thermally or non-thermally evaporate with CH{sub 3}OH, we have identified three sight lines in the Serpens core-SMM1, SMM4, and SMM4-W-which are likely to be rich in complex organics. Using the IRAM 30 m telescope, narrow lines (FWHM of 1-2 km s{sup -1}) of CH{sub 3}CHO and CH{sub 3}OCH{sub 3} are detected toward all sources, HCOOCH{sub 3} toward SMM1 and SMM4-W, and C{sub 2}H{sub 5}OH not at all. Beam-averaged abundances of individual complex organics range between 0.6% and 10% with respect to CH{sub 3}OH when the CH{sub 3}OH rotational temperature is applied. The summed complex organic abundances also vary by an order of magnitude, with the richest chemistry toward the most luminous protostar SMM1. The range of abundances compare well with other beam-averaged observations of low-mass sources. Complex organic abundances are of the same order of magnitude toward low-mass protostars and high-mass hot cores, but HCOOCH{sub 3} is relatively more important toward low-mass protostars. This is consistent with a sequential ice photochemistry, dominated by CHO-containing products at low temperatures and early times.

  14. Water D/H Ratio In Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Persson, Magnus V.; Jørgensen, Jes K.; van Dishoeck, Ewine F.; Harsono, Daniel

    2013-07-01

    Water is an important molecule for our life on Earth, but its way from formation on the surfaces of dust grains to planets and the accompanying chemical processing are not well understood. Through evaporation in the warm inner regions of protostars, water brings complex organics and other species previously locked up in the ice into the gas phase. The water deuterium fractionation (HDO/H2O abundance ratio) has traditionally been used to infer the amount of water that was brought to the Earth by comets. Deducing this ratio in the warm gas of deeply-embedded low-mass protostars allows to extend the discussion of the origin of Earth's water to earlier evolutionary stages. This poster present high-angular resolution, ground based interferometric observations of both HDO and H2(18)O water isotopologues toward several Class~0 low-mass protostars. The emission is compact, and stems from the inner few 100 AU in all sources. The derived amount of deuterium fractionation in water, obtained assuming LTE and optically thin emission, is the same within the uncertainties in all sources and shows only small enhancements compared with Earth's oceans and solar system's comets.

  15. The Molecular Envelopes of High-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Su, Yu-Nung; Lim, Jeremy

    We report (JK) = (11)(22) and (33) ammonia observations towards luminous far-IR sources IRAS 06058+2138 made with the VLA in D-configuration. IRAS 06058+2138 has a bolometric luminosity of 2 x 104 Lsun and exhibits energetic maser activities but extremely weak cm-wave free-free emission indicating that there are very young high-mass stars perhaps massive protostars. All ammonia (11) (22) and (33) lines are detected and the emission is spatially coincident with the H13CO+ and SiO emission and 3-mm dust continuum. The centroids of the ammonia (33) condensations agree very well with those of other signposts (i.e. dust continuum and water masers) for new-born high-mass stars while the centroids of ammonia (11) and (22) emission does not. This indicates that ammonia (33) is a better tracer for high-mass star forming regions than ammonia (11) and (22). The condensations of ammonia (33) emission could mark the positions of young high-mass stars.

  16. Far-infrared CO and H2O emission in intermediate-mass protostars

    NASA Astrophysics Data System (ADS)

    Matuszak, M.; Karska, A.; Kristensen, L. E.; Herczeg, G. J.; Tychoniec, Ł.; van Kempen, T. A.; Fuente, A.

    2015-06-01

    Context. Intermediate-mass young stellar objects (YSOs) provide a link to understanding how feedback from shocks and UV radiation scales from low- to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H2O in deeply embedded intermediate-mass YSOs and compare it with similar studies on low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for six YSOs with bolometric luminosities of Lbol ~ 102-103L⊙. The maps cover spatial scales of ~104 AU in several CO and H2O lines located in the ~55-210 μm range. Results: Rotational diagrams of CO show two temperature components at Trot ~ 320 K and Trot ~ 700-800 K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H2O show a single component at Trot ~ 130 K, as seen in low-mass protostars, and about 100 K lower than in high-mass protostars. Since the uncertainties in Trot are on the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central 103 AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at 3 × 103 AU scales, suggesting similar shock conditions in all those sources. Appendix A is available in electronic form at http://www.aanda.org

  17. Chemical tracers of episodic accretion in low-mass protostars

    NASA Astrophysics Data System (ADS)

    Visser, Ruud; Bergin, Edwin A.; Jørgensen, Jes K.

    2015-05-01

    Aims: Accretion rates in low-mass protostars can be highly variable in time. Each accretion burst is accompanied by a temporary increase in luminosity, heating up the circumstellar envelope and altering the chemical composition of the gas and dust. This paper aims to study such chemical effects and discusses the feasibility of using molecular spectroscopy as a tracer of episodic accretion rates and timescales. Methods: We simulate a strong accretion burst in a diverse sample of 25 spherical envelope models by increasing the luminosity to 100 times the observed value. Using a comprehensive gas-grain network, we follow the chemical evolution during the burst and for up to 105 yr after the system returns to quiescence. The resulting abundance profiles are fed into a line radiative transfer code to simulate rotational spectra of C18O, HCO+, H13CO+, and N2H+ at a series of time steps. We compare these spectra to observations taken from the literature and to previously unpublished data of HCO+ and N2H+ 6-5 from the Herschel Space Observatory. Results: The bursts are strong enough to evaporate CO throughout the envelope, which in turn enhances the abundance of HCO+ and reduces that of N2H+. After the burst, it takes 103-104 yr for CO to refreeze and for HCO+ and N2H+ to return to normal. The H2O snowline expands outwards by a factor of ~10 during the burst; afterwards, it contracts again on a timescale of 102-103 yr. The chemical effects of the burst remain visible in the rotational spectra for as long as 105 yr after the burst has ended, highlighting the importance of considering luminosity variations when analyzing molecular line observations in protostars. The spherical models are currently not accurate enough to derive robust timescales from single-dish observations. As follow-up work, we suggest that the models be calibrated against spatially resolved observations in order to identify the best tracers to be used for statistically significant source samples. Herschel

  18. Constraining the disk masses of the class I binary protostar GV Tau

    SciTech Connect

    Sheehan, Patrick D.; Eisner, Josh A.

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  19. Mass loss rates from protostars and OI(63 micron) shock luminosities

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.

    1985-01-01

    The high-velocity ejection of material from protostars results in a wind shock which may be observable in OI(63 micron) emission. It is shown that for a wide range of conditions, the OI(63 micron) luminosity is proportional to the mass loss rate from the protostar. Application is made to shock OI(63 micron) emission observed around IRc2 in the BN-KL region of Orion.

  20. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    NASA Technical Reports Server (NTRS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  1. Modelling water in the envelopes of low-mass protostars

    NASA Astrophysics Data System (ADS)

    van Kempen, Tim A.; Jørgensen, Jes K.; Hogerheijde, Michiel R.; van Dishoeck, Ewine F.

    Using sophisticated spherically symmetric radiative transfer models for gas and dust, we simulate the emission of H2O and its isotopes for the circumstellar envelopes around class 0 protostars, as preparatory science for the ESA cornerstone mission Herschel and its spectrometer, HIFI. L483mm is taken as an example. We probe a wide range of models in which dust, freeze-out and a large variety of abundance structures and optical depths are taken into account. A sample of water lines is selected that are observable by Herschel. Expected fluxes for these lines are derived from the models, convolved with the Herschel beam size. 1. Introduction Water has been detected by the LWS instruments aboard ISO in low-mass protostars (e.g. Ceccarelli et al. 1999, Giannini et al. 2001). The origin of the water lines is still subject of discussion, however. It has been theorized to originate in both the outflow and the quiescent infalling envelope. Ceccarelli et al. (1999) place the water in the small (200 AU), dense (> 107cm-3) and warm (> 100 K) region of the protostellar envelope. The ESA Herschel mission and in particular the HIFI instrument are particularly well suited to observe rotational far-infrared and submillimeter water lines in these environments and test the various models. 2. Approach We started with the physical structure deduced by Jørgensen (2004) for L483mm (Lbol = 9Lsol, Menv10K = 4.4Msol, D=200 pc), giving the density and temperature profiles for a typical protostellar envelope. These profiles are the result of a dust radiative transfer calculation with DUSTY (Ivezic & Elitzur, 1997). The line radiative transfer is subsequently calculated through RATRAN, developed by Hogerheijde & van der Tak (2000). The dust to gas ratio has been set at 1:100, the dust opacities are approximated by the OH5 (Ossenkopf & Henning 1994) at a density of 106cm-3. To simulate the abundance of the water molecule, we have used trial abundances with the assumption that water freezes out

  2. Infrared Observations of Hot Gas and Cold Ice Toward the Low Mass Protostar Elias 29

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Tielens, A. G. G. M.; Ceccarelli, C.; Boonman, A. M. S.; vanDishoeck, E. F.; Keane, J. V.; Whittet, D. C. B.; deGraauw, T.

    2000-01-01

    We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.

  3. Bipolar Molecular Outflows from High-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Su, Yu-Nung; Zhang, Qizhou; Lim, Jeremy

    2004-03-01

    We report observations of the bipolar molecular outflows associated with the luminous (~2×104 Lsolar) far-IR sources IRAS 21519+5613 and IRAS 22506+5944, as well the dust and molecular gas condensations on which these outflows appear to be centered. The observations were made in 12CO, 13CO, C18O, and continuum at 3 mm with the BIMA array and in 12CO and 13CO with the NRAO 12 m telescope to recover extended emission filtered out by the interferometric array. We find that the outflow associated with each IRAS source shows a clear bipolar morphology in 12CO, with properties (i.e., total mass of order 10-100 Msolar, mass-outflow rate >~10-3 Msolar, dynamical timescale 104-105 yr, and energetics) comparable with those of other massive outflows associated with luminous young stellar objects. Each outflow appears to be centered on a dust and gas condensation with a mass of 200-300 Msolar, likely marking the location of the driving source. The outflow lobes of both sources are fully resolved along their major but not minor axes, and they have collimation factors that may be comparable with young low-mass stars. The mass-velocity diagrams of both outflows change in slope at a velocity of ~10 km s-1, suggesting that the high-velocity component (HVC) may drive the low-velocity component (LVC). Although the HVC of IRAS 21519+5613 shows evidence for deceleration, no such signature is seen in the HVC of IRAS 22506+5944. Neither HVC has a momentum supply rate sufficient to drive their corresponding LVCs, although it is possible that the HVC is more highly excited and hence its thrust underestimated. Like for other molecular outflows the primary driving agent cannot be ionized gas, leaving atomic gas as the other remaining candidate. Neither IRAS 21519+5613 nor IRAS 22506+5944 exhibits detectable free-free emission, which together with the observed properties of their molecular outflows and surrounding condensations make them credible candidates for high-mass protostars. The mass

  4. A Complex Organic Slushy Bathing Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine

    2015-08-01

    Complex organic molecules are ubiquitous companions of young forming stars. They were first observed in hot cores surrounding high-mass protostars [e.g., 1], but have since also been detected in the environs of several low-mass counterparts [e.g., 2]. Recent studies have shown that colder envelopes and positions with impinging outflows may also glow with emission from complex organic species [e.g., 3, 4]. For this meeting, I would like to present physicochemical modeling results on the synthesis of complex organics in an envelope-cavity system that is subject to non-thermal processing. This includes wavelength-dependent radiative transfer calculations with RADMC [5] and a comprehensive gas-grain chemical network [6]. The results show that the morphology of such a system delineates three distinct regions: the cavity wall layer with time-dependent and species-variant enhancements; a torus rich in complex organic ices, but not reflected in gas-phase abundances; and the remaining outer envelope abundant in simpler solid and gaseous molecules. Within the adopted paradigm, complex organic molecules are demonstrated to have unique lifetimes and be grouped into early and late species [7]. Key chemical processes for forming and destroying complex organic molecules will be discussed. In addition, the results of adding newly experimentally verified routes [8] into the existing chemical networks will be shown.[1] Blake G. A., Sutton E. C., Masson C. R., Phillips T. G., 1987, ApJ, 315, 621[2] Jørgensen J. K., Favre C., Bisschop S. E., Bourke T. L., van Dishoeck E. F., Schmalzl M., 2012, ApJ, 757, L4[3] Arce H. G., Santiago-García J., Jørgensen J. K., Tafalla M., Bachiller R., 2008, ApJ, 681, L21[4] Öberg K. I., Bottinelli S., Jørgensen J. K., van Dishoeck E. F., 2010, ApJ, 716, 825[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya

  5. First detection of CF+ towards a high-mass protostar

    NASA Astrophysics Data System (ADS)

    Fechtenbaum, S.; Bontemps, S.; Schneider, N.; Csengeri, T.; Duarte-Cabral, A.; Herpin, F.; Lefloch, B.

    2015-02-01

    Aims: We report the first detection of the J = 1-0 (102.6 GHz) rotational lines of CF+ (fluoromethylidynium ion) towards CygX-N63, a young and massive protostar of the Cygnus X region. Methods: This detection occurred as part of an unbiased spectral survey of this object in the 0.8-3 mm range, performed with the IRAM 30 m telescope. The data were analyzed using a local thermodynamical equilibrium model (LTE model) and a population diagram in order to derive the column density. Results: The line velocity (-4 km s-1) and line width (1.6 km s-1) indicate an origin from the collapsing envelope of the protostar. We obtain a CF+ column density of 4 × 1011 cm-2. The CF+ ion is thought to be a good tracer for C+ and assuming a ratio of 10-6 for CF+/C+, we derive a total number of C+ of 1.2 × 1053 within the beam. There is no evidence of carbon ionization caused by an exterior source of UV photons suggesting that the protostar itself is the source of ionization. Ionization from the protostellar photosphere is not efficient enough. In contrast, X-ray ionization from the accretion shock(s) and UV ionization from outflow shocks could provide a large enough ionizing power to explain our CF+ detection. Conclusions: Surprisingly, CF+ has been detected towards a cold, massive protostar with no sign of an external photon dissociation region (PDR), which means that the only possibility is the existence of a significant inner source of C+. This is an important result that opens interesting perspectives to study the early development of ionized regions and to approach the issue of the evolution of the inner regions of collapsing envelopes of massive protostars. The existence of high energy radiations early in the evolution of massive protostars also has important implications for chemical evolution of dense collapsing gas and could trigger peculiar chemistry and early formation of a hot core. Appendices are available in electronic form at http://www.aanda.org

  6. Heavy water stratification in a low-mass protostar

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    2013-05-01

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims: The key program Chemical HErschel Surveys of Star forming regions (CHESS) aims at studying the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI (Heterodyne Instrument for Far-Infrared) instrument provide a unique opportunity to observe the fundamental 11,1-00,0 transition of ortho-D2O at 607 GHz and the higher energy 21,2-10,1 transition of para-D2O at 898 GHz, both of which are inaccessible from the ground. Methods: The ortho-D2O transition at 607 GHz was previously detected. We present in this paper the first tentative detection for the para-D2O transition at 898 GHz. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of D2O with the same method that was used to reproduce the HDO and H218O line profiles in IRAS 16293-2422. Results: As for HDO, the absorption component seen on the D2O lines can only be reproduced by adding an external absorbing layer, possibly created by the photodesorption of the ices at the edges of the molecular cloud. The D2O column density is found to be about 2.5 × 1012 cm-2 in this added layer, leading to a D2O/H2O ratio of about 0.5%. At a 3σ uncertainty, upper limits of 0.03% and 0.2% are obtained for this ratio in the hot corino and the colder envelope of IRAS 16293-2422, respectively. Conclusions: The deuterium fractionation derived in our study suggests that the ices present in IRAS 16293-2422 formed on warm dust grains (~15-20 K) in dense (~104-5 × 104 cm-3) translucent clouds. These results allow us to address the earliest phases of star formation and the conditions in which ices form. Based on Herschel/HIFI observations. Herschel is an ESA space observatory with

  7. MASSES: An SMA Survey of Protostars Aimed at Understanding How Stars Gain Their Mass

    NASA Astrophysics Data System (ADS)

    Dunham, Michael; MASSES Team

    2016-01-01

    Low-mass stars form from the gravitational collapse of dense molecular cloud cores. While a general consensus picture of this collapse process has emerged, many details on how mass is transferred from cores to stars remain poorly understood. MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA), an SMA large-scale project, is surveying the complete population of Class 0 and Class I protostars in the nearby Perseus Molecular Cloud in order to reveal the interplay between fragmentation, conservation of angular momentum, and mass outflows in accreting mass and setting the final masses of stars. In this presentation I will highlight key science results from the first 1.5 years of observations.

  8. [Fe II] Emission Tracing Massive, Irradiated Jets from Intermediate-Mass Protostars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2013-07-01

    We present new spectroscopy and HST and ground-based AO imaging of five protostellar jets in the Carina nebula. Near-IR [Fe II] emission traces dense gas in the jet that is self-shielded from Lyman continuum photons from nearby O-type stars, but is excited by non-ionizing FUV photons that penetrate the ionization front within the jet. New near-IR [Fe II] images reveal a substantial mass of dense, neutral gas that is not seen in Halpha emission from these jets, leading to densities and mass-loss rate estimates an order of magnitude higher than those derived from the Halpha emission measure. Higher jet mass-loss rates require higher accretion rates, implying that these jets are driven by intermediate-mass (~2-8 Msun) protostars. For two of the sources, mid-IR luminosities of the driving sources are clearly consistent with intermediate-mass protostars, while the other two driving sources are more deeply embedded and require imaging at longer wavelengths with high spatial resolution to confirm their luminosity. Tangential velocities from new proper motion measurements exceed velocities typical for lower-luminosity sources (100-200 km/s). In addition, these outflows are highly collimated, with opening angles of only a few degrees, similar to low-mass protostars. We propose that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable. Thus, the jets in Carina constitute a new view of collimated jets from intermediate-mass protostars that exists in a feedback dominated environment, and offer strong additional evidence that stars up to ~8 Msun form by the same accretion mechanisms as low-mass stars.

  9. The puzzling deuteration of methanol in low- to high-mass protostars

    NASA Astrophysics Data System (ADS)

    Ratajczak, A.; Taquet, V.; Kahane, C.; Ceccarelli, C.; Faure, A.; Quirico, E.

    2011-04-01

    Context. The current theory of methanol deuteration on interstellar grains predicts that the abundance ratio of the singly deuterated isotopologues [CH2DOH]/[CH3OD] should always be ~3. In warm regions where grain mantles have sublimated, gaseous methanol is detectable via its rotational transitions. In previous observational studies, the gas-phase [CH2DOH]/[CH3OD] ratio was measured and found to be significantly larger than 3 in low-mass protostars and close to 1 in the Orion IRc2 massive hot core. Aims: We present new measurements of the gas-phase [CH2DOH]/[CH3OD] ratio in two additional high-mass protostars, as well as in two intermediate-mass protostars, to either confirm or exclude the dependence of this ratio on the mass of the protostar. Methods: The observations were carried out using the IRAM-30 m telescope. Several rotational lines of each isotopologue were detected toward the intermediate-mass protostars, while only CH3OD lines were detected in the massive hot cores. The ratio [CH2DOH]/[CH3OD] (or its upper limit) was computed from both the averaged column densities and directly from line flux ratios. Results: Our results confirm that the [CH2DOH]/[CH3OD] ratio is substantially lower in massive hot cores than in (low-mass) hot-corinos, by typically one order of magnitude. Furthermore, they suggest that intermediate-mass protostars have similar properties to low-mass protostars. Conclusions: The measured [CH2DOH]/[CH3OD] ratios are inconsistent with the current theory of methanol deuteration, independently of the mass of the source. While the large ratios measured in low- and intermediate-mass sources can be explained qualitatively by various selective depletion mechanisms, the small ratios (<2) measured toward massive hot cores are puzzling. A revision of the deuterium chemistry in hot cores is suggested. Table A.1 is only available in electronic form at http://www.aanda.org

  10. Observations of Carbon Chain Chemistry in the Envelopes of Low-Mass Protostars

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2012-01-01

    Observational results are reported from our surveys in the Northern Hemisphere (using the Onsala 20 m telescope) and the Southern Hemisphere (using the Mopra 22 m telescope) to search for 3 mm emission lines from carbon-chain-bearing species and other complex molecules in the envelopes of low-mass protostars. Based on a sample of approximately 60 sources, we find that carbon-chain-bearing species including HC3N (and C4H) are highly abundant in the vicinity of more than half of the observed protostars. The origin and evolution of these species, including their likely incorporation into ices in protoplanetary disks will be discussed

  11. Tracing Massive Protostellar Jets from Intermediate-Mass Protostars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, A.

    2014-09-01

    We present new spectroscopy and imaging of four protostellar jets in the Carina nebula. Near-IR [Fe II] emission traces dense gas in the jet that is self-shielded from Lyman continuum photons from nearby O-type stars. New near-IR [Fe II] images reveal a substantial mass of dense, neutral gas that is not seen in the Halpha emission from these jets, leading to densities and mass-loss rate estimates an order of magnitude larger than those derived from the Halpha emission measure. Higher jet mass-loss rates require higher accretion rates, implying that these jets are driven by intermediate-mass (around 2 - 8 solar masses) protostars. Velocities from new proper motion and spectroscopic measurements fall among the velocities typically measured in lower-luminosity sources (100 - 200 km/s). We propose that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable. Thus, the jets in Carina constitute a new view of collimated jets from intermediate-mass protostars that exist in a feedback-dominated environment, and offer strong additional evidence that stars up to 8 solar masses form by the same accretion mechanisms as low-mass stars.

  12. Kinematics of powerful jets from intermediate-mass protostars in the Carina nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2014-12-01

    We present measurements of proper motions and radial velocities of four powerful Herbig-Haro (HH) jets in the Carina nebula: HH 666, HH 901, HH 902, and HH 1066. Two epochs of Hubble Space Telescope imaging separated by a time baseline of ˜4.4 yr provide proper motions that allow us to measure the transverse velocities of the jets, while ground-based spectra sample their Doppler velocities. Together these yield full three-dimensional space velocities. Aside from HH 666, their identification as outflows was previously inferred only from morphology in images. Proper motions now show decisively that these objects are indeed jets, and confirm that the intermediate-mass protostars identified as the candidate driving sources for HH 666 and HH 1066 are indeed the origin of these outflows. The appearance of two new knots in the HH 1066 jet suggests recent (˜35 yr) changes in the accretion rate, underscoring the variable nature of accretion and outflow in the formation of intermediate-mass stars. In fact, kinematics and mass-ejection histories for all the jets suggest highly episodic mass loss, and point towards pronounced accretion fluctuations. Overall, we measure velocities similar to those found for low-mass protostars. However, the HH jets in Carina have higher densities and are more massive than their low-mass counterparts. Coarse estimates suggest that the heavy jets of intermediate-mass protostars can compete with or even exceed inject ˜10 or more times the cumulative momentum injection of lower mass protostars.

  13. From nearby low-mass protostars to high redshift starbursts: protostellar outflows tracing the IMF

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; Bergin, Edwin

    2015-08-01

    Embedded low-mass protostars are notoriously difficult to observe even in the nearest Galactic high-mass clusters where they outnumber the high-mass protostars by orders of magnitude. Thus, without a good tracer of the low-mass population, we do not have a good handle on the shape of the initial (core) mass function, leaving little hope for extrapolating to extragalactic regions where we will never have neither the sensitivity nor the resolution to directly observe this population. A good tracer of the low-mass population is needed.One such physical tracer is outflows. Outflow emission is directly proportional to envelope mass, and outflows are predominantly active during the deeply embedded phases of star formation. What is required for this method to work is species and transitions tracing outflows uniquely such that any signal is not diluted by the surrounding cloud, such as certain methanol transitions, water, high-J CO (J > 10).I will present a statistical model of a forming high-mass cluster. The model includes what we currently know about Galactic high-mass clusters and incorporates outflow emission from low-mass protostars. The latter component is obtained from observations of tens of nearby embedded low-mass protostellar outflows in the above-mentioned tracers. The model is benchmarked against ALMA and Herschel-HIFI observations of Galactic clusters proving the concept, and preliminary extrapolations to the extragalactic regime are presented. With this new probe, and traditional probes of the distant star formation which predominantly trace high mass stars, we will be able to explore the IMF in starburst galaxies from low to high redshift.

  14. Powerful jets driven by intermediate-mass protostars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, N.

    2014-01-01

    The Carina nebula hosts the largest known population of powerful HH jets driven by intermediate-mass stars in a single region. These jets are externally irradiated by dozens of O-type stars in Carina that illuminate unshocked material in the jet, allowing for a more complete census of the mass-loss. Despite the strong incident ionizing radiation, portions of these jets remain neutral. Near-IR [Fe II] images reveal dense, neutral gas that was not seen in previous studies of Hα emission. We show that near-IR [Fe II] emitting gas must be self-shielded from Lyman continuum photons, regardless of its excitation mechanism (shocks, FUV radiation, or both). High densities are required for the survival of Fe+ amid the strong Lyman continuum luminosity from Tr14, raising estimates of the mass-loss rates by an order of magnitude. New proper motion measurements using Halpha images with a ~4.25 year baseline reveal tangential velocities of >200 km/s, in some cases exceeding velocities typical for jets from low-mass stars. In addition, these outflows are highly collimated, with opening angles of only a few degrees, similar to low-mass protostars. We propose that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable. Thus, the irradiated jets in Carina constitute a new view of jets from intermediate-mass protostars that demonstrate that they are as collimated as their low-mass counterparts, but support higher densities and velocities, leading to higher mass-loss rates. This scaling of phenomena seen in low-mass star formation offers strong additional evidence that stars up to ~8 Msun form by the same accretion mechanism as low-mass stars.

  15. Probing the effects of external irradiation on low-mass protostars through unbiased line surveys

    NASA Astrophysics Data System (ADS)

    Lindberg, J. E.; Jørgensen, J. K.; Watanabe, Y.; Bisschop, S. E.; Sakai, N.; Yamamoto, S.

    2015-12-01

    Context. The envelopes of molecular gas around embedded low-mass protostars show different chemistries, which can be used to trace their formation history and physical conditions. The excitation conditions of some molecular species can also be used to trace these physical conditions, making it possible to constrain for instance sources of heating and excitation. Aims: We study the range of influence of an intermediate-mass Herbig Be protostar. We also study the effect of feedback from the environment on the chemical and physical properties of embedded protostars. Methods: We followed up on an earlier line survey of the Class 0/I source R CrA IRS7B in the 0.8 mm window with an unbiased line survey of the same source in the 1.3 mm window using the Atacama Pathfinder Experiment (APEX) telescope. We also studied the excitation of the key species H2CO, CH3OH, and c-C3H2 in a complete sample of the 18 embedded protostars in the Corona Australis star-forming region. Radiative transfer models were employed to establish abundances of the molecular species. Results: We detect line emission from 20 molecular species (32 including isotopologues) in the two surveys. The most complex species detected are CH3OH, CH3CCH, CH3CHO, and CH3CN (the latter two are only tentatively detected). CH3CN and several other complex organic molecules are significantly under-abundant in comparison with what is found towards hot corino protostars. The H2CO rotational temperatures of the sources in the region decrease with the distance to the Herbig Be star R CrA, whereas the c-C3H2 temperatures remain constant across the star-forming region. Conclusions: The high H2CO temperatures observed towards objects close to R CrA suggest that this star has a sphere of influence of several 10 000 AU in which it increases the temperature of the molecular gas to 30-50 K through irradiation. The chemistry in the IRS7B envelope differs significantly from many other embedded protostars, which could be an effect of

  16. Water in embedded low-mass protostars: cold envelopes and warm outflows

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud

    2015-08-01

    As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.

  17. Study of deuterated water in the low-mass protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Caux, E.; Ceccarelli, C.; Herschel Chess Team

    2011-05-01

    Observations of deuterated water are an important complement for studies of H2O, since they give strong constraints on the formation processes: grain surfaces versus gas-phase chemistry through energetic process as shocks. The CHESS (Chemical HErschel Surveys of Star forming regions) Key Program has allowed to detect a lot of transitions of HDO (8) and H2O (16) as well as its isotopes H_218O and H_217O towards the low-mass protostar IRAS16293-2422 thanks to the unbiaised spectral survey carried out with the HIFI instrument on board the Herschel Space Observatory. Complementary data of HDO from the ground-based telescopes IRAM and JCMT are also available, allowing a precise determination of the abundance of deuterated water through the protostar envelope. In order to reproduce the observed line profiles, we have performed a modeling of HDO from the hot corino through the envelope using the physical structure of the protostar (Crimier et al. 2010) and the spherical Monte Carlo radiative transfer code RATRAN, which takes also into account radiative pumping by continuum emission from dust. We have used new HDO collision rates with H_2, recently computed by Wiesenfeld, Scribano and Faure (2011, PCCP). The same method has been applied to model H_2O and its isotopes H_218O and H_217O. We will present the results of this analysis and discuss the determined abundances.

  18. Connecting low- and high-mass star formation: the intermediate-mass protostar IRAS 05373+2349 VLA 2

    NASA Astrophysics Data System (ADS)

    Brown, G. M.; Johnston, K. G.; Hoare, M. G.; Lumsden, S. L.

    2016-08-01

    Until recently, there have been few studies of the protostellar evolution of intermediate-mass (IM) stars, which may bridge the low-and high-mass regimes. This paper aims to investigate whether the properties of an IM protostar within the IRAS 05373+2349 embedded cluster are similar to that of low- and/or high-mass protostars. We carried out Very Large Array as well as Combined Array for Research in Millimeter Astronomy continuum and 12CO(J=1-0) observations, which uncover seven radio continuum sources (VLA 1-7). The spectral index of VLA 2, associated with the IM protostar is consistent with an ionised stellar wind or jet. The source VLA 3 is coincident with previously observed H2 emission line objects aligned in the north-south direction (P.A. -20 to -12°), which may be either an ionised jet emanating from VLA 2 or (shock-)ionised cavity walls in the large-scale outflow from VLA 2. The position angle between VLA 2 and 3 is slightly misaligned with the large-scale outflow we map at ˜5-arcsec resolution in 12CO (P.A. ˜30°), which in the case of a jet suggests precession. The emission from the mm core associated with VLA 2 is also detected; we estimate its mass to be 12-23 M⊙, depending on the contribution from ionised gas. Furthermore, the large-scale outflow has properties intermediate between outflows from low- and high-mass young stars. Therefore, we conclude that the IM protostar within IRAS 05373+2349 is phenomenologically as well as quantitatively intermediate between the low- and high-mass domains.

  19. The Evolution of Matter in the Embedded Stages of Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jes; Lommen, D.; Bourke, T. L.; van Dishoeck, E. F.; Wilner, D.; PROSAC Team

    2008-03-01

    One of the most important questions about low-mass star formation is how circumstellar disks form and evolve through the embedded protostellar stages. We present the results of high angular resolution (1-2"; 200-400 AU) observations from a large program, PROSAC, studying embedded low-mass protostars (Class 0 and I objects) with the Submillimeter Array. In total 17 sources have been observed in a variety of lines of common molecular species together with continuum at (sub)millimeter wavelengths. The continuum observations reveal the presence of compact emission on the smallest scales in all sources which can best be attributed to thermal emission from dust in the circumstellar disks. The inferred masses of the central disks are comparable for both Class 0 and I objects suggesting that disks are formed and rapidly grow in size early in the evolution of the protostars. Line observations of the more evolved Class I systems reveal rotational signatures which in turn constrain the central stellar masses. Together with single-dish continuum data, these observations for the first time allow us to trace evolution of the mass of the stars, disks and envelopes through these pivotal stages.

  20. FORMATION OF GIANT PLANETS BY DISK INSTABILITY ON WIDE ORBITS AROUND PROTOSTARS WITH VARIED MASSES

    SciTech Connect

    Boss, Alan P.

    2011-04-10

    Doppler surveys have shown that more massive stars have significantly higher frequencies of giant planets inside {approx}3 AU than lower mass stars, consistent with giant planet formation by core accretion. Direct imaging searches have begun to discover significant numbers of giant planet candidates around stars with masses of {approx}1 M{sub sun} to {approx}2 M{sub sun} at orbital distances of {approx}20 AU to {approx}120 AU. Given the inability of core accretion to form giant planets at such large distances, gravitational instabilities of the gas disk leading to clump formation have been suggested as the more likely formation mechanism. Here, we present five new models of the evolution of disks with inner radii of 20 AU and outer radii of 60 AU, for central protostars with masses of 0.1, 0.5, 1.0, 1.5, and 2.0 M{sub sun}, in order to assess the likelihood of planet formation on wide orbits around stars with varied masses. The disk masses range from 0.028 M{sub sun} to 0.21 M{sub sun}, with initial Toomre Q stability values ranging from 1.1 in the inner disks to {approx}1.6 in the outer disks. These five models show that disk instability is capable of forming clumps on timescales of {approx}10{sup 3} yr that, if they survive for longer times, could form giant planets initially on orbits with semimajor axes of {approx}30 AU to {approx}70 AU and eccentricities of {approx}0 to {approx}0.35, with initial masses of {approx}1 M{sub Jup} to {approx}5 M{sub Jup}, around solar-type stars, with more protoplanets forming as the mass of the protostar (and protoplanetary disk) is increased. In particular, disk instability appears to be a likely formation mechanism for the HR 8799 gas giant planetary system.

  1. Submillimeter-Wave Observations toward the Low-Mass Protostar IRAS 15398-3359 at Subarcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Oya, Y.; Sakai, N.; Watanabe, Y.; Yamamoto, S.; Sakai, T.; Hirota, T.; Lindberg, J. E.; Bisschop, S. E.; Jørgensen, J. K.; van Dishoeck, E. F.

    2015-12-01

    Subarcsecond 0."5 images of H2CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398-3359 in the Lupus 1 cloud with ALMA. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be almost edge-on (20°) based on the kinematic structure of the outflow cavity. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle, and the mass of the protostar is estimated to be less than 0.09 ⊙.

  2. Herschel CHESS discovery of the fossil cloud that gave birth to the Trapezium and Orion KL

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Kama, M.; Ceccarelli, C.; Dominik, C.; Caux, E.; Fuente, A.; Alonso-Albi, T.

    2013-01-01

    Context. The Orion A molecular complex is a nearby (420 pc), very well studied stellar nursery that is believed to contain examples of triggered star formation. Aims: As part of the Herschel guaranteed time key programme CHESS, we present the discovery of a diffuse gas component in the foreground of the intermediate-mass protostar OMC-2 FIR 4, located in the Orion A region. Methods: Making use of the full HIFI spectrum of OMC-2 FIR 4 obtained in CHESS, we detected several ground-state lines from OH+, H2O+, HF, and CH+, all of them seen in absorption against the dust continuum emission of the protostar's envelope. We derived column densities for each species, as well as an upper limit to the column density of the undetected H3O+. In order to model and characterise the foreground cloud, we used the Meudon PDR code to run a homogeneous grid of models that spans a reasonable range of densities, visual extinctions, cosmic ray ionisation rates and far-ultraviolet (FUV) radiation fields, and studied the implications of adopting the Orion Nebula extinction properties instead of the standard interstellar medium ones. Results: The detected absorption lines peak at a velocity of 9 km s-1, which is blue-shifted by 2 km s-1 with respect to the systemic velocity of OMC-2 FIR 4 (VLSR = 11.4 km s-1). The results of our modelling indicate that the foreground cloud is composed of predominantly neutral diffuse gas (nH = 100 cm-3) and is heavily irradiated by an external source of FUV that most likely arises from the nearby Trapezium OB association. The cloud is 6 pc thick and bears many similarities with the so-called C+ interface between Orion-KL and the Trapezium cluster, 2 pc south of OMC-2 FIR 4. Conclusions: We conclude that the foreground cloud we detected is an extension of the C+ interface seen in the direction of Orion KL, and interpret it to be the remains of the parental cloud of OMC-1, which extends from OMC-1 up to OMC-2.

  3. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ∼600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10‑5 M ⊙ yr‑1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  4. Subarcsecond resolution observations of warm water toward three deeply embedded low-mass protostars

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; van Dishoeck, E. F.

    2012-05-01

    Context. Water is present during all stages of star formation: as ice in the cold outer parts of protostellar envelopes and dense inner regions of circumstellar disks, and as gas in the envelopes close to the protostars, in the upper layers of circumstellar disks and in regions of powerful outflows and shocks. Because of its key importance in the understanding of its origin in our own solar system, following the evolution of water all the way to the planet-forming disk is a fundamental task in research in star formation and astrochemistry. Aims: In this paper we probe the mechanism regulating the warm gas-phase water abundance in the innermost hundred AU of deeply embedded (Class 0) low-mass protostars, and investigate its chemical relationship to other molecular species during these stages. Methods: Millimeter wavelength thermal emission from the para-H218O 31,3 - 22,0 (Eu = 203.7 K) line was imaged at high angular resolution (0.75 arcsec; 190 AU) with the IRAM Plateau de Bure Interferometer toward the deeply embedded low-mass protostars NGC 1333-IRAS2A and NGC 1333-IRAS4A. Results: Compact H218O emission is detected toward IRAS2A and one of the components in the IRAS4A binary; in addition CH3OCH3, C2H5CN, and SO2 are detected. Extended water emission is seen toward IRAS2A, possibly associated with the outflow. Conclusions: The results complement a previous detection of the same transition toward NGC 1333-IRAS4B. The detections in all systems suggests that the presence of water on ≲ 100 AU scales is a common phenomenon in embedded protostars and that the non-detections of hot water with Spitzer toward the two systems studied in this paper are likely due to geometry and high extinction at mid-infrared wavelengths. We present a scenario in which the origin of the emission from warm water is in a flattened disk-like structure dominated by inward motions rather than rotation. The gas-phase water abundance varies between the sources, but is generally much lower than

  5. A Rotating Circumstellar Disk Around a High-Mass Protostar in IRAS 18162-2048

    NASA Astrophysics Data System (ADS)

    Fernández-López, M.; Girart, J. M.; Curiel, S.; Patel, N.; Gómez, Y.; Ho, P. T. P.

    2011-10-01

    Searching for molecular tracers of disks in massive star-formation regions is a complex task. There are molecules that show emission from the envelope and the disk simultaneously. Other molecules show optically thick emission, thus complicating the kinematic study of disks. On the other hand, S-bearing species (such as H2S, SO, SO2, CS, and OCS) could be intimately linked with the evaporation process of the disk surface becoming good tracers of the dynamics of the innermost parts of the high-mass protostars. Recently, several papers have been published on the detection of S-bearing species in disks and other warm gas structures of massive star-forming regions. In particular, SO2 transitions, ubiquitous within the (sub)millimeter range, show a very compact nature, suggesting their close association with circumstellar structures. We have carried out sub-arcsecond SMA observations towards the central region of the HH 80-81 system. The mm continuum emission shows two main sources, one of them located at the center of the extremely large (5.3 pc long) bipolar radio continuum jet observed in this region. The dust emission appears compact and coincides with a radio continuum source. Between the spectral lines detected (H2CO and SO), the SO2 line transitions show compact emission toward this source. These molecular lines clearly show a velocity gradient perpendicular to the radio jet axis. Both, the dust continuum and the molecular line emission suggest the existence of a rotating circumstellar disk around a massive protostar.

  6. Observations of water with Herschel/HIFI toward the high-mass protostar AFGL 2591

    NASA Astrophysics Data System (ADS)

    Choi, Y.; van der Tak, F. F. S.; van Dishoeck, E. F.; Herpin, F.; Wyrowski, F.

    2015-04-01

    Context. Water is an important chemical species in the process of star formation, and a sensitive tracer of physical conditions in star-forming regions because of its rich line spectrum and large abundance variations between hot and cold regions. Aims: We use spectrally resolved observations of rotational lines of H2O and its isotopologs to constrain the physical conditions of the water emitting region toward the high-mass protostar AFGL 2591. Methods: Herschel/HIFI spectra from 552 up to 1669 GHz show emission and absorption in 14 lines of H 2 O, H218O, and H217O. We decompose the line profiles into contributions from the protostellar envelope, the bipolar outflow, and a foreground cloud. We use analytical estimates and rotation diagrams to estimate excitation temperatures and column densities of H2O in these components. Furthermore, we use the non-local thermodynamic equilibrium (LTE) radiative transfer code RADEX to estimate the temperature and volume density of the H2O emitting gas. Results: Assuming LTE, we estimate an excitation temperature of ~42 K and a column density of ~2 × 1014 cm-2 for the envelope and ~45 K and 4 × 1013 cm-2 for the outflow, in beams of 4″ and 30″, respectively. Non-LTE models indicate a kinetic temperature of ~60-230 K and a volume density of 7 × 106-108 cm-3 for the envelope, and a kinetic temperature of ~70-90 K and a gas density of ~107-108 cm-3 for the outflow. The ortho/para ratio of the narrow cold foreground absorption is lower than three (~1.9 ± 0.4), suggesting a low temperature. In contrast, the ortho/para ratio seen in absorption by the outflow is about 3.5 ± 1.0, as expected for warm gas. Conclusions: The water abundance in the outer envelope of AFGL 2591 is ~10-9 for a source size of 4″, similar to the low values found for other high-mass and low-mass protostars, suggesting that this abundance is constant during the embedded phase of high-mass star formation. The water abundance in the outflow is ~10-10 for a

  7. Water deuterium fractionation in the low-mass protostar NGC1333-IRAS2A

    NASA Astrophysics Data System (ADS)

    Liu, F.-C.; Parise, B.; Kristensen, L.; Visser, R.; van Dishoeck, E. F.; Güsten, R.

    2011-03-01

    Context. Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star forming regions. Previous studies of the molecular deuteration toward the solar-type class 0 protostar, IRAS 16293-2422, have shown that the D/H ratio of water is significantly lower than other grain-surface-formed molecules. It is not clear if this property is general or particular to this source. Aims: In order to see if the results toward IRAS 16293-2422 are particular, we aimed at studying water deuterium fractionation in a second low-mass solar-type protostar, NGC1333-IRAS2A. Methods: Using the 1-D radiative transfer code RATRAN, we analyzed five HDO transitions observed with the IRAM 30 m, JCMT, and APEX telescopes. We assumed that the abundance profile of HDO in the envelope is a step function, with two different values in the inner warm (T > 100 K) and outer cold (T < 100 K) regions of the protostellar envelope. Results: The inner and outer abundance of HDO is found to be well constrained at the 3σ level. The obtained HDO inner and outer fractional abundances are xHDO_in = 6.6 × 10-8-1.0 × 10-7(3σ) and x^{HDO}out=9×10-11= 9 × 10-11-1.0-1.8 × 10-9(3σ). These values are close to those in IRAS 16293-2422, which suggests that HDO may be formed by the same mechanisms in these two solar-type protostars. Taking into account the (rather poorly onstrained) H2O abundance profile deduced from Herschel observations, the derived HDO/H2O in the inner envelope is ≥1% and in the outer envelope it is 0.9%-18%. These values are more than one order of magnitude higher than what is measured in comets. If the same ratios apply to the protosolar nebula, this would imply that there is some efficient reprocessing of the material between the protostellar and cometary phases. Conclusions: The H2O inner fractional

  8. First detection of ND in the solar-mass protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Caux, E.; Hily-Blant, P.; Parise, B.; Pagani, L.; Bottinelli, S.; Maret, S.; Vastel, C.; Ceccarelli, C.; Cernicharo, J.; Henning, T.; Castets, A.; Coutens, A.; Bergin, E. A.; Blake, G. A.; Crimier, N.; Demyk, K.; Dominik, C.; Gerin, M.; Hennebelle, P.; Kahane, C.; Klotz, A.; Melnick, G.; Schilke, P.; Wakelam, V.; Walters, A.; Baudry, A.; Bell, T.; Benedettini, M.; Boogert, A.; Cabrit, S.; Caselli, P.; Codella, C.; Comito, C.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Goldsmith, P. F.; Helmich, F.; Herbst, E.; Jacq, T.; Kama, M.; Langer, W.; Lefloch, B.; Lis, D.; Lord, S.; Lorenzani, A.; Neufeld, D.; Nisini, B.; Pacheco, S.; Pearson, J.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Tak, F. F. S.; van der Wiel, M. H. D.; Viti, S.; Wyrowski, F.; Yorke, H.; Faure, A.; Benz, A.; Coeur-Joly, O.; Cros, A.; Güsten, R.; Ravera, L.

    2010-10-01

    Context. In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Very high molecular D/H ratios have been found for saturated molecules and ions. However, little is known about the deuterium fractionation in radicals, even though simple radicals often represent an intermediate stage in the formation of more complex, saturated molecules. The imidogen radical NH is such an intermediate species for the ammonia synthesis in the gas phase. Many of these light molecules however have their fundamental transitions in the submillimetre domain and their detection is hampered by the opacity of the atmosphere at these wavelengths. Herschel/HIFI represents a unique opportunity to study the deuteration and formation mechanisms of species not observable from the ground. Aims: We searched here for the deuterated radical ND in order to determine the deuterium fractionation of imidogen and constrain the deuteration mechanism of this species. Methods: We observed the solar-mass Class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI in Bands 1a (480-560 GHz), 3b (858-961 GHz), and 4a (949-1061 GHz) as part of the Herschel key programme CHESS (Chemical HErschel Survey of Star forming regions). Results: The deuterated form of the imidogen radical ND was detected and securely identified with 2 hyperfine component groups of its fundamental transition (N = 0-1) at 522.1 and 546.2 GHz, in absorption against the continuum background emitted from the nascent protostar. The 3 groups of hyperfine components of its hydrogenated counterpart NH were also detected in absorption. The absorption arises from the cold envelope, where many deuterated species have been shown to be abundant. The estimated column densities are ~2 × 1014 cm-2 for NH and ~ 1.3 × 1014 cm-2 for ND. We derive a very high

  9. Imaging chemical differentiation around the low-mass protostar L483-mm

    NASA Astrophysics Data System (ADS)

    Jørgensen, J. K.

    2004-09-01

    This paper presents a millimeter wavelength aperture-synthesis study of the spatial variations of the chemistry in the envelope around the deeply embedded low-mass protostar L483-mm on ˜1000 AU (5 arcsec) scales. Lines of 8 molecular species including CN, C18O, CS, C34S, HCN, H13CN, HCO+ and N2H+ have been observed using the Owens Valley Radio Observatory Millimeter Array. Continuum emission at 2.7-3.4 mm is well-fit by an envelope model based on previously reported submillimeter continuum images down to the sensitivity of the interferometer without introducing a disk/compact source, in contrast to what is seen for other protostellar objects. A velocity gradient in dense material close to the central protostar is traced by HCN, CS and N2H+, and is perpendicular to the large-scale CO outflow, with a pattern consistent with rotation around a ˜1 M⊙ central object. Velocity gradients in the propagation direction of the outflow suggest a clear interaction between the outflowing material and ``quiescent'' core. Significant differences are observed between the emission morphologies of various molecular species. The C18O interferometer observations are fit with a ``drop'' abundance profile where CO is frozen-out in a region of the envelope with temperatures lower than 40 K and densities higher than 1.5 × 105 cm-3, which is also required to reproduce previously reported single-dish observations. The N2H+ emission strongly resembles that of NH3 and is found to be absent toward the central continuum source. This is a direct consequence of the high CO abundances in the inner region as illustrated by a chemical model for the L483 envelope. The observed CN emission forms a spatial borderline between the outflowing and quiescent material probed by, respectively, HCO+ and N2H+, and also shows intermediate velocities compared to these two species. A scenario is suggested in which CN is enhanced in the walls of an outflow cavity due to the impact of UV irradiation either from

  10. A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY

    SciTech Connect

    Jørgensen, Jes K.; Brinch, Christian; Lindberg, Johan E.; Bisschop, Suzanne E.; Visser, Ruud; Bergin, Edwin A.; Sakai, Nami; Yamamoto, Satoshi; Harsono, Daniel; Van Dishoeck, Ewine F.; Persson, Magnus V.

    2013-12-20

    Low-mass protostars have been suggested to show highly variable accretion rates throughout their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C{sup 17}O, H{sup 13}CO{sup +}, CH{sub 3}OH, C{sup 34}S and C{sub 2}H toward the low-mass protostar IRAS 15398-3359 on 0.''5 (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array at 340 GHz. The resolved images show that the emission from H{sup 13}CO{sup +} is only present in a ring-like structure with a radius of about 1-1.''5 (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO{sup +} is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 yr increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH{sub 3}OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars.

  11. A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system.

    PubMed

    Tobin, John J; Hartmann, Lee; Chiang, Hsin-Fang; Wilner, David J; Looney, Leslie W; Loinard, Laurent; Calvet, Nuria; D'Alessio, Paola

    2012-12-01

    In their earliest stages, protostars accrete mass from their surrounding envelopes through circumstellar disks. Until now, the smallest observed protostar-to-envelope mass ratio was about 2.1 (ref. 1). The protostar L1527 IRS is thought to be in the earliest stages of star formation. Its envelope contains about one solar mass of material within a radius of about 0.05 parsecs (refs 3, 4), and earlier observations suggested the presence of an edge-on disk. Here we report observations of dust continuum emission and (13)CO (rotational quantum number J = 2 → 1) line emission from the disk around L1527 IRS, from which we determine a protostellar mass of 0.19 ± 0.04 solar masses and a protostar-to-envelope mass ratio of about 0.2. We conclude that most of the luminosity is generated through the accretion process, with an accretion rate of about 6.6 × 10(-7) solar masses per year. If it has been accreting at that rate through much of its life, its age is approximately 300,000 years, although theory suggests larger accretion rates earlier, so it may be younger. The presence of a rotationally supported disk is confirmed, and significantly more mass may be added to its planet-forming region as well as to the protostar itself in the future. PMID:23222612

  12. Observational evidence for dissociative shocks in the inner 100 AU of low-mass protostars using Herschel-HIFI

    NASA Astrophysics Data System (ADS)

    Kristensen, L. E.; van Dishoeck, E. F.; Benz, A. O.; Bruderer, S.; Visser, R.; Wampfler, S. F.

    2013-09-01

    Aims: Herschel-HIFI spectra of H2O towards low-mass protostars show a distinct velocity component not seen in observations from the ground of CO or other species. The aim is to characterise this component in terms of excitation conditions and physical origin. Methods: A velocity component with an offset of ~10 km s-1 detected in spectra of the H2O 110-101 557 GHz transition towards six low-mass protostars in the "Water in star-forming regions with Herschel" (WISH) programme is also seen in higher-excited H2O lines. The emission from this component is quantified and local excitation conditions are inferred using 1D slab models. Data are compared to observations of hydrides (high-J CO, OH+, CH+, C+, OH) where the same component is uniquely detected. Results: The velocity component is detected in all six targeted H2O transitions (Eup ~ 50-250 K), as well as in CO 16-15 towards one source, Ser SMM1. Inferred excitation conditions imply that the emission arises in dense (n ~ 5 × 106-108 cm-3) and hot (T ~ 750 K) gas. The H2O and CO column densities are ≳1016 and 1018 cm-2, respectively, implying a low H2O abundance of ~10-2 with respect to CO. The high column densities of ions such as OH+ and CH+ (both ≳1013 cm-2) indicate an origin close to the protostar where the UV field is strong enough that these species are abundant. The estimated radius of the emitting region is 100 AU. This component likely arises in dissociative shocks close to the protostar, an interpretation corroborated by a comparison with models of such shocks. Furthermore, one of the sources, IRAS 4A, shows temporal variability in the offset component over a period of two years which is expected from shocks in dense media. High-J CO gas detected with Herschel-PACS with Trot ~ 700 K is identified as arising in the same component and traces the part of the shock where H2 reforms. Thus, H2O reveals new dynamical components, even on small spatial scales in low-mass protostars. Herschel is an ESA space

  13. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    SciTech Connect

    Van Kempen, T. A.; Longmore, S. N.; Johnstone, D.; Pillai, T.; Fuente, A.

    2012-06-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of {approx}200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M{sub Sun }, is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., <0.5 M{sub Sun }. No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  14. The complex chemistry of outflow cavity walls exposed: the case of low-mass protostars

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria N.; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine F.

    2015-08-01

    Complex organic molecules are ubiquitous companions of young low-mass protostars. Recent observations suggest that their emission stems, not only from the traditional hot corino, but also from offset positions. In this work, 2D physicochemical modelling of an envelope-cavity system is carried out. Wavelength-dependent radiative transfer calculations are performed and a comprehensive gas-grain chemical network is used to simulate the physical and chemical structure. The morphology of the system delineates three distinct regions: the cavity wall layer with time-dependent and species-variant enhancements; a torus rich in complex organic ices, but not reflected in gas-phase abundances and the remaining outer envelope abundant in simpler solid and gaseous molecules. Strongly irradiated regions, such as the cavity wall layer, are subject to frequent photodissociation in the solid phase. Subsequent recombination of the photoproducts leads to frequent reactive desorption, causing gas-phase enhancements of several orders of magnitude. This mechanism remains to be quantified with laboratory experiments. Direct photodesorption is found to be relatively inefficient. If radicals are not produced directly in the icy mantle, the formation of complex organics is impeded. For efficiency, a sufficient number of FUV photons needs to penetrate the envelope, and elevated cool dust temperatures need to enable grain-surface radical mobility. As a result, a high stellar luminosity and a sufficiently wide cavity favour chemical complexity. Furthermore within this paradigm, complex organics are demonstrated to have unique lifetimes and be grouped into early (formaldehyde, ketene, methanol, formic acid, methyl formate, acetic acid and glycolaldehyde) and late (acetaldehyde, dimethyl ether and ethanol) species.

  15. A study of deuterated water in the low-mass protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Caux, E.; Ceccarelli, C.; Bottinelli, S.; Wiesenfeld, L.; Faure, A.; Scribano, Y.; Kahane, C.

    2012-03-01

    Context. Water is a primordial species in the emergence of life, and comets may have brought a large fraction to Earth to form the oceans. To understand the evolution of water from the first stages of star formation to the formation of planets and comets, the HDO/H2O ratio is a powerful diagnostic. Aims: Our aim is to determine precisely the abundance distribution of HDO towards the low-mass protostar IRAS 16293-2422 and learn more about the water formation mechanisms by determining the HDO/H2O abundance ratio. Methods: A spectral survey of the source IRAS 16293-2422 was carried out in the framework of the CHESS (Chemical Herschel Surveys of Star forming regions) Herschel key program with the HIFI (Heterodyne Instrument for the Far-Infrared) instrument, allowing detection of numerous HDO lines. Other transitions have been observed previously with ground-based telescopes. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of HDO by assuming an abundance jump. To determine the H2O abundance throughout the envelope, a similar study was made of the H218O observed lines, as the H2O main isotope lines are contaminated by the outflows. Results: It is the first time that so many HDO and H218O transitions have been detected towards the same source with high spectral resolution. We derive an inner HDO abundance (T ≥ 100 K) of about 1.7 × 10-7 and an outer HDO abundance (T < 100 K) of about 8 × 10-11. To reproduce the HDO absorption lines observed at 894 and 465 GHz, it is necessary to add an absorbing layer in front of the envelope. It may correspond to a water-rich layer created by the photodesorption of the ices at the edges of the molecular cloud. At a 3σ uncertainty, the HDO/H2O ratio is 1.4-5.8% in the hot corino, whereas it is 0.2-2.2% in the outer envelope. It is estimated at ~4.8% in the added absorbing layer. Conclusions: Although it is clearly higher than the cosmic D/H abundance, the HDO/H2O ratio remains

  16. Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Inutsuka, S.-I.; Machida, M.; Matsumoto, T.; Tsukamoto, Y.; Iwasaki, K.

    2016-05-01

    This review describes realistic evolution of magnetic field and rotation of the protostars, dynamics of outflows and jets, and the formation and evolution of protoplanetary disks. Recent advances in the protostellar collapse simulations cover a huge dynamic range from molecular cloud core density to stellar density in a self-consistent manner and account for all the non-ideal magnetohydrodynamical effects, such as Ohmic resistivity, ambipolar diffusion, and Hall current. We explain the emergence of the first core, i.e., the quasi-hydrostatic object that consists of molecular gas, and the second core, i.e., the protostar. Ohmic dissipation largely removes the magnetic flux from the center of a collapsing cloud core. A fast well-collimated bipolar jet along the rotation axis of the protostar is driven after the magnetic field is re-coupled with warm gas (˜103 K) around the protostar. The circumstellar disk is born in the "dead zone", a region that is de-coupled from the magnetic field, and the outer radius of the disk increases with that of the dead zone during the early accretion phase. The rapid increase of the disk size occurs after the depletion of the envelope of molecular cloud core. The effect of Hall current may create two distinct populations of protoplanetary disks.

  17. Shockingly low water abundances in Herschel/PACS observations of low-mass protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Karska, A.; Kristensen, L. E.; van Dishoeck, E. F.; Drozdovskaya, M. N.; Mottram, J. C.; Herczeg, G. J.; Bruderer, S.; Cabrit, S.; Evans, N. J.; Fedele, D.; Gusdorf, A.; Jørgensen, J. K.; Kaufman, M. J.; Melnick, G. J.; Neufeld, D. A.; Nisini, B.; Santangelo, G.; Tafalla, M.; Wampfler, S. F.

    2014-12-01

    Context. Protostars interact with their surroundings through jets and winds impinging on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Aims: Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects (YSOs) in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Methods: Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the William Herschel Line Legacy (WILL) survey. Line emission from H2O, CO, and OH is tested against shock models from the literature. Results: Observed line ratios are remarkably similar and do not show variations with physical parameters of the sources (luminosity, envelope mass). Most ratios are also comparable to those found at off-source outflow positions. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H2O lines provide a particularly good diagnostic of pre-shock gas densities, nH ~ 105 cm-3, in agreement with typical densities obtained from observations of the post-shock gas when a compression factor on the order of 10 is applied (for non-dissociative shocks). The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km s-1. However, the observations consistently show H2O-to-CO and H2O-to-OH line ratios that are one to two orders of magnitude lower than predicted by the existing shock models. Conclusions: The overestimated model H2O fluxes are most likely caused by an overabundance of H2O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H2O abundances and reconcile the models with observations. Detections of hot H2O and strong OH

  18. MULTIPLE HIGH-VELOCITY SiO MASER FEATURES FROM THE HIGH-MASS PROTOSTAR W51 NORTH

    SciTech Connect

    Cho, Se-Hyung; Kim, Jaeheon; Byun, Do-Young E-mail: jhkim@kasi.re.kr

    2011-02-01

    We present the detection of multiple high-velocity silicon monoxide (SiO v = 1, 2, J = 1-0) maser features in the high-mass protostar W51 North which are distributed over an exceedingly large velocity range from 105 to 230 km s{sup -1}. The SiO v = 1, J = 1-0 maser emission shows 3-5 narrow components which span a velocity range from 154 to 230 km s{sup -1} according to observational epochs. The SiO v = 2, J = 1-0 maser also shows 3-5 narrow components that do not correspond to the SiO v = 1 maser and span a velocity range from 105 to 154 km s{sup -1}. The multiple maser components show significant changes on very short timescales (<1 month) from epoch to epoch. We suggest that the high-velocity SiO masers may be emanated from massive star-forming activity of the W51 North protostar as SiO maser jets and will be a good probe of the earliest evolutionary stages of high-mass star formation via an accretion model. Further high angular resolution observations will be required for confirmation.

  19. TENTATIVE DETECTION OF DEUTERATED METHANE TOWARD THE LOW-MASS PROTOSTAR IRAS 04368+2557 IN L1527

    SciTech Connect

    Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Shirley, Yancy L.; Sakai, Takeshi; Hirota, Tomoya

    2012-10-10

    The millimeter-wave rotational transition line (J{sub K} = 1{sub 0}-0{sub 0}) of deuterated methane CH{sub 3}D has tentatively been detected toward the low-mass Class 0 protostar IRAS 04368+2557 in L1527 with the Heinrich Hertz Submillimeter Telescope. This is the first detection of CH{sub 3}D in interstellar clouds, if confirmed. The column density and fractional abundance of CH{sub 3}D are determined to be (9.1 {+-} 3.4) Multiplication-Sign 10{sup 15} cm{sup -2} and (3.0 {+-} 1.1) Multiplication-Sign 10{sup -7}, respectively, where we assume the rotational temperature of 25 K. The column density and fractional abundance of the gaseous CH{sub 4} are estimated to be (1.3-4.6) Multiplication-Sign 10{sup 17} cm{sup -2} and (4.3-15.2) Multiplication-Sign 10{sup -6}, respectively, by adopting the molecular D/H ratios of 2%-7% reported for various molecules in L1527. The fractional abundance of CH{sub 4} is higher than or comparable to that found in high-mass star-forming cores by infrared observations. It is sufficiently high to trigger the efficient production of various carbon-chain molecules in a lukewarm region near the protostar, which supports the scenario of warm carbon-chain chemistry.

  20. High-J CO survey of low-mass protostars observed with Herschel-HIFI

    NASA Astrophysics Data System (ADS)

    Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; San José-García, I.; Karska, A.; Harsono, D.; Tafalla, M.; Fuente, A.; Visser, R.; Jørgensen, J. K.; Hogerheijde, M. R.

    2013-08-01

    Context. In the deeply embedded stage of star formation, protostars start to heat and disperse their surrounding cloud cores. The evolution of these sources has traditionally been traced through dust continuum spectral energy distributions (SEDs), but the use of CO excitation as an evolutionary probe has not yet been explored due to the lack of high-J CO observations. Aims: The aim is to constrain the physical characteristics (excitation, kinematics, column density) of the warm gas in low-mass protostellar envelopes using spectrally resolved Herschel data of CO and compare those with the colder gas traced by lower excitation lines. Methods: Herschel-HIFI observations of high-J lines of 12CO, 13CO, and C18O (up to Ju = 10, Eu up to 300 K) are presented toward 26 deeply embedded low-mass Class 0 and Class I young stellar objects, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. This is the first large spectrally resolved high-J CO survey conducted for these types of sources. Complementary lower J CO maps were observed using ground-based telescopes, such as the JCMT and APEX and convolved to matching beam sizes. Results: The 12CO 10-9 line is detected for all objects and can generally be decomposed into a narrow and a broad component owing to the quiescent envelope and entrained outflow material, respectively. The 12CO excitation temperature increases with velocity from ~60 K up to ~130 K. The median excitation temperatures for 12CO, 13CO, and C18O derived from single-temperature fits to the Ju = 2-10 integrated intensities are ~70 K, 48 K and 37 K, respectively, with no significant difference between Class 0 and Class I sources and no trend with Menv or Lbol. Thus, in contrast to the continuum SEDs, the spectral line energy distributions (SLEDs) do not show any evolution during the embedded stage. In contrast, the integrated line intensities of all CO isotopologs show a clear decrease with evolutionary stage as the envelope is

  1. On the origin of H2CO abundance enhancements in low-mass protostars

    NASA Astrophysics Data System (ADS)

    Schöier, F. L.; Jørgensen, J. K.; van Dishoeck, E. F.; Blake, G. A.

    2004-04-01

    High angular resolution H2CO 218 GHz line observations have been carried out toward the low-mass protostars IRAS 16293-2422 and L1448-C using the Owens Valley Millimeter Array at ˜2 arcsec resolution. Simultaneous 1.37 mm continuum data reveal extended emission which is compared with that predicted by model envelopes constrained from single-dish data. For L1448-C the model density structure works well down to the 400 AU scale to which the interferometer is sensitive. For IRAS 16293-2422, a known proto-binary object, the interferometer observations indicate that the binary has cleared much of the material in the inner part of the envelope, out to the binary separation of ˜800 AU. For both sources there is excess unresolved compact emission centered on the sources, most likely due to accretion disks ⪉200 AU in size with masses of ⪆0.02 M⊙ (L1448-C) and ⪆0.1 M⊙ (IRAS 16293-2422). The H2CO data for both sources are dominated by emission from gas close to the positions of the continuum peaks. The morphology and velocity structure of the H2CO array data have been used to investigate whether the abundance enhancements inferred from single-dish modelling are due to thermal evaporation of ices or due to liberation of the ice mantles by shocks in the inner envelope. For IRAS 16293-2422 the H2CO interferometer observations indicate the presence of rotation roughly perpendicular to the large scale CO outflow. The H2CO distribution differs from that of C18O, with C18O emission peaking near MM1 and H2CO stronger near MM2. For L1448-C, the region of enhanced H2CO emission extends over a much larger scale >1'' than the radius of 50-100 K (0.6 arcsrec - 0.15 arcsec) where thermal evaporation can occur. The red-blue asymmetry of the emission is consistent with the outflow; however the velocities are significantly lower. The H2CO 322-221/303-202 flux ratio derived from the interferometer data is significantly higher than that found from single-dish observations for both

  2. The Spectral Signature of Accretion in Low-Mass Protostars: Observations and Non-LTE Modelling

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, Helmut

    1997-06-01

    This work demonstrates the feasibility of a study bringing together theoretical concepts of the earliest phase of low-mass star formation and its observational evidence. Thus, two aspects have been considered: Observational evidence: In order to detect protostellar collapse by virtue of kinematical features in spectral line profiles, both optically thick and optically thin tracers are needed. According to Leung & Brown (1977, ApJ 214, L73), a protostellar envelope undergoing collapse exhibits a red-shifted self-absorption in a molecular line transition if the excitation gradient is negative. Optically thin emission (e.g. from the corresponding isotopomere's line) corroborates the conclusions by ruling out the case of independent components filling the observing beam. The nearby (d~200 pc) globular filament L 1082 (no. 9 from a catalog assembled by Schneider & Elmegreen, 1979, ApJS 41, 87) provides at least three candidates showing unambigeous footprints of protostellar collapse. By means of millimeter-interferometry (with the iram and bima interferometers Asz well as single dish spectroscopy and continuum imaging (using the iram 30 m telescope), these candidates were identified and characterized. As moderately optically thick high-density tracers, the CS (2,1), (3,2) and (5,4) transitions have been observed. The optically thin (2,1) lines of C34S and C18O were measured to confirm the evidence for collapse. Preliminary results from observations with isophot and isocam were used to better constrain the luminosity of one of the collapse candidates, which subsequently has been classified as an extreme Class 0 protostar. Theoretical concepts: For reasons evidenced by the observed column density distributions and by systematic shifts of the molecular line emission across the sources, spherically-symmetric collapse has to be ruled out. Instead, scenarios such as core formation in sheet-like clouds (as proposed by Hartmann et al., 1994, ApJ 430, L49) and magnetic accretion

  3. The complex environment around the low-mass protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Schöier, Frederik L.; Jörgensen, Jes K.; Lahuis, Fred; van Dishoeck, Ewine F.; Blake, Geoff A.; Evans, Neal J.; C2d Irs Team

    The deeply embedded, low-mass, proto-binary star IRAS 16293-2422 has attained considerable interest over the last decade, in particular, driven by the detection of millimetre line emission from a large number of complex organic molecules and the possibility of this source harbouring a 'hot core', similar to those found in regions of high-mass star formation (e.g. van Dishoeck et al. 1995; Ceccarelli et al. 2000; Schöier et al. 2002; Cazaux et al. 2003). High angular resolution observations of the central core region of IRAS 16293-2422 have been carried out for a number of molecules using the BIMA and OVRO millimetre arrays (Schöier et al. 2005; see Figure 1 for examples). Most molecules show a separation of red (4-7 km s-1) and blue (0-4 km s-1) emission peaks roughly perpendicular to the large-scale outflow, thought to be driven by one of the protostars (MM1), indicative of rotation in the envelope. Some species, e.g. HNC and N2H+, also seem to trace the interaction of the outflow with the circumstellar material. The observed chemical differentiation of C18O, HNC, and N2H+ is consistent with the recent chemical model of IRAS 16293-2422 by Doty et al. (2004). Moreover, SiO and CH3OH appear to be partly associated with outflow activity where the ices are liberated by grain-grain collisions. We also report the detection of mid-infrared (23-35 μm) emission from IRAS 16293-2422 by the Spitzer Space Telescope infrared spectrograph, IRS (Jørgensen et al. 2005). The detection of mid-infrared emission suggests that the envelope is optically thin at these wavelengths. A detailed, spherically symmetric, radiative transfer model reproducing the full SED from 23 μm to 1.3mm requires a large, approximately 1000AU, inner cavity of the envelope in order to avoid quenching the emission from the central source (Figure 2). This corroborates a previous suggestion based on high angular resolution millimetre interferometric data (Schöier et al. 2004). An alternative

  4. Reconnection X-winds: spin-down of low-mass protostars

    NASA Astrophysics Data System (ADS)

    Ferreira, Jonathan; Pelletier, Guy; Appl, Stefan

    2000-02-01

    We investigate the interaction of a protostellar magnetosphere with a large-scale magnetic field threading the surrounding accretion disc. It is assumed that a stellar dynamo generates a dipolar-type field with its magnetic moment aligned with the disc magnetic field. This leads to a magnetic neutral line at the disc mid-plane and gives rise to magnetic reconnection, converting closed protostellar magnetic flux into open field lines. These are simultaneously loaded with disc material, which is then ejected in a powerful wind. This process efficiently brakes down the protostar to 10-20per cent of the break-up velocity during the embedded phase.

  5. Coexisting conical bipolar and equatorial outflows from a high-mass protostar.

    PubMed

    Greenhill, L J; Gwinn, C R; Schwartz, C; Moran, J M; Diamond, P J

    1998-12-17

    The BN/KL region in the Orion molecular cloud is an archetype for the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars but, like most star-forming regions, is difficult to study in detail because of the obscuring effects of dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars accrete gas from rotating equatorial disks and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I. We show that within 60 AU of the source (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU. PMID:9872312

  6. A Substellar-mass Protostar and its Outflow of IRAS 15398-3359 Revealed by Subarcsecond-resolution Observations of H2CO and CCH

    NASA Astrophysics Data System (ADS)

    Oya, Yoko; Sakai, Nami; Sakai, Takeshi; Watanabe, Yoshimasa; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; van Dishoeck, Ewine F.; Yamamoto, Satoshi

    2014-11-01

    Subarcsecond (0.''5) images of H2CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398-3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M ⊙. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H2CO emission associated with the protostar.

  7. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    SciTech Connect

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; Van Dishoeck, Ewine F.

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.

  8. Constraining the physical structure of the inner few 100 AU scales of deeply embedded low-mass protostars

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Harsono, D.; Tobin, J. J.; van Dishoeck, E. F.; Jørgensen, J. K.; Murillo, N.; Lai, S.-P.

    2016-05-01

    Context. The physical structure of deeply embedded low-mass protostars (Class 0) on scales of less than 300 AU is still poorly constrained. While molecular line observations demonstrate the presence of disks with Keplerian rotation toward a handful of sources, others show no hint of rotation. Determining the structure on small scales (a few 100 AU) is crucial for understanding the physical and chemical evolution from cores to disks. Aims: We determine the presence and characteristics of compact, disk-like structures in deeply embedded low-mass protostars. A related goal is investigating how the derived structure affects the determination of gas-phase molecular abundances on hot-core scales. Methods: Two models of the emission, a Gaussian disk intensity distribution and a parametrized power-law disk model, are fitted to subarcsecond resolution interferometric continuum observations of five Class 0 sources, including one source with a confirmed Keplerian disk. Prior to fitting the models to the de-projected real visibilities, the estimated envelope from an independent model and any companion sources are subtracted. For reference, a spherically symmetric single power-law envelope is fitted to the larger scale emission (~1000 AU) and investigated further for one of the sources on smaller scales. Results: The radii of the fitted disk-like structures range from ~90-170 AU, and the derived masses depend on the method. Using the Gaussian disk model results in masses of 54-556 × 10-3 M⊙, and using the power-law disk model gives 9-140 × 10-3 M⊙. While the disk radii agree with previous estimates the masses are different for some of the sources studied. Assuming a typical temperature distribution (r-0.5), the fractional amount of mass in the disk above 100 K varies from 7% to 30%. Conclusions: A thin disk model can approximate the emission and physical structure in the inner few 100 AU scales of the studied deeply embedded low-mass protostars and paves the way for

  9. The Census of High- and Medium-mass Protostars (CHaMP): From Molecular Clouds to Massive Young Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    2015-08-01

    I review the major science outcomes to date of the Galactic Census of High- and Medium-mass Protostars, and also report the latest observational results on this unbiased, uniform sample of massive, cluster-forming molecular clumps, based on new mm-wave and IR data. These clouds represent the vast, subthermally-excited population of clumps predicted by Narayanan et al (2008) to dominate the molecular mass of disk galaxies. Besides confirming their existence, we have presented evidence that these massive clumps probably spend a large fraction (90-95%) of their long lives (possibly up to 100 Myr) in a mostly quiescent, low star formation rate (SFR) state, which is likely ended when a density or internal pressure threshold is crossed, after which vigorous, massive cluster formation consumes the densest gas with a high SFR, dispersing the embedding envelope. New results presented in two posters at this Symposium include (1) the first analysis of HCN emission from the dense gas using a full LTE solution for the column density from the hyperfine line ratios (Schap et al), which identifies low-luminosity but high-column areas that significantly increase the clumps' mass estimates, and (2) the first deep photometry of clusters in this sample based on NIR AAT and CTIO data and MIR Warm Spitzer IRAC data (Dallilar et al), which gives basic cluster parameters such as mass and luminosity as well as the associated star formation efficiency (SFE).

  10. A Cold Complex Chemistry Toward the Low-mass Protostar B1-b: Evidence for Complex Molecule Production in Ices

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Bottinelli, Sandrine; Jørgensen, Jes K.; van Dishoeck, Ewine F.

    2010-06-01

    Gas-phase complex organic molecules have been detected toward a range of high- and low-mass star-forming regions at abundances which cannot be explained by any known gas-phase chemistry. Recent laboratory experiments show that UV irradiation of CH3OH-rich ices may be an important mechanism for producing complex molecules and releasing them into the gas phase. To test this ice formation scenario, we mapped the B1-b dust core and nearby protostar in CH3OH gas using the IRAM 30 m telescope to identify locations of efficient non-thermal ice desorption. We find three CH3OH abundance peaks tracing two outflows and a quiescent region on the side of the core facing the protostar. The CH3OH gas has a rotational temperature of ~10 K at all locations. The quiescent CH3OH abundance peak and one outflow position were searched for complex molecules. Narrow, 0.6-0.8 km s-1 wide, HCOOCH3 and CH3CHO lines originating in cold gas are clearly detected, CH3OCH3 is tentatively detected, and C2H5OH and HOCH2CHO are undetected toward the quiescent core, while no complex molecular lines were found toward the outflow. The core abundances with respect to CH3OH are ~2.3% and 1.1% for HCOOCH3 and CH3CHO, respectively, and the upper limits are 0.7%-1.1%, which is similar to most other low-mass sources. The observed complex molecule characteristics toward B1-b and the pre-dominance of HCO-bearing species suggests a cold ice (below 25 K, the sublimation temperature of CO) formation pathway followed by non-thermal desorption through, e.g., UV photons traveling through outflow cavities. The observed complex gas composition together with the lack of any evidence of warm gas-phase chemistry provides clear evidence of efficient complex molecule formation in cold interstellar ices. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  11. HST/WFC3 imaging of protostellar jets in Carina: [Fe II] emission tracing massive jets from intermediate-mass protostars

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2013-08-01

    We present narrow-band Wide Field Camera 3 (WFC3)-UVIS and WFC3-IR images of four externally irradiated protostellar jets in the Carina nebula: HH 666, HH 901, HH 902 and HH 1066. These massive jets are unusual because they are bathed in UV radiation from dozens of nearby O-type stars, but despite the strong incident ionizing radiation, portions of the jet remain neutral. Near-IR [Fe II] images reveal dense, neutral gas that was not seen in previous studies of Hα emission. We show that near-IR [Fe II] emitting gas must be self-shielded from Lyman continuum photons, regardless of its excitation mechanism (shocks, far-ultraviolet radiation or both). High densities are required for the survival of Fe+ amid the strong Lyman continuum luminosity from Tr14, raising estimates of the mass-loss rates by an order of magnitude. Higher jet mass-loss rates require higher accretion rates on to their driving protostars, implying that these jets are driven by intermediate-mass (˜2-8 M⊙) stars. Indeed, the IR driving sources of two of these outflows have luminosities that require intermediate-mass protostars (the other two are so deeply embedded that their luminosity is uncertain). All four of these HH jets are highly collimated, with opening angles of only a few degrees, similar to those observed in low-mass protostars. We propose that these jets reflect essentially the same outflow phenomenon seen in wide-angle molecular outflows associated with intermediate- and high-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable in the harsh radiative environment of the Carina nebula. In more quiescent environments, this atomic core remains invisible, and outflows traced by shock-excited molecules in the outflow cavity give the impression that these outflows have a wider opening angle. Thus, the externally irradiated jets in Carina constitute a new view of collimated jets from intermediate-mass protostars and offer strong additional evidence

  12. Molecular jets driven by high-mass protostars: a detailed study of the IRAS 20126+4104 jet

    NASA Astrophysics Data System (ADS)

    Caratti o Garatti, A.; Froebrich, D.; Eislöffel, J.; Giannini, T.; Nisini, B.

    2008-07-01

    Context: Protostellar jets from intermediate- and high-mass protostars provide an excellent opportunity to understand the mechanisms responsible for intermediate- and high-mass star-formation. A crucial question is if they are scaled-up versions of their low-mass counterparts. Such high-mass jets are relatively rare and, usually, they are distant and highly embedded in their parental clouds. The IRAS 20126+4104 molecular jet, driven by a 10^4 L⊙ protostar, represents a suitable target to investigate. Aims: We present here an extensive analysis of this protostellar jet, deriving the kinematical, dynamical, and physical conditions of the H2 gas along the flow. Methods: The jet was investigated by means of near-IR H2 and [Fe II] narrow-band imaging, high-resolution spectroscopy of the 1-0 S(1) line (2.12 μm), NIR (0.9-2.5 μm) low-resolution spectroscopy, along with ISO-SWS and LWS spectra (from 2.4 to 200 μm). Results: The flow shows a complex morphology. In addition to the large-scale jet precession presented in previous studies, we detect a small-scale wiggling close to the source, which may indicate the presence of a multiple system. The peak radial velocities of the H2 knots range from -42 to -14 km s-1 in the blue lobe, and from -8 to 47 km s-1 in the red lobe. The low-resolution spectra are rich in H2 emission, and relatively faint [Fe II] (NIR), [O I] and [C II] (FIR) emission is observed in the region close to the source. A warm H2 gas component has an average excitation temperature that ranges between 2000 K and 2500 K. Additionally, the ISO-SWS spectrum reveals a cold component (520 K) that strongly contributes to the radiative cooling of the flow and plays a major role in the dynamics of the flow. The estimated L_H2 of the jet is 8.2 ± 0.7 L⊙, suggesting that IRAS 20126+4104 has a significantly increased accretion rate compared to low-mass YSOs. This is also supported by the derived mass flux rate from the H2 lines (dot{M}_out(H2)˜ 7.5× 10-4 M

  13. Driven and decaying turbulence simulations of low–mass star formation: From clumps to cores to protostars

    SciTech Connect

    Offner, Stella S. R.; Klein, Richard I.; McKee, Christopher F.

    2008-10-20

    Molecular clouds are observed to be turbulent, but the origin of this turbulence is not well understood. As a result, there are two different approaches to simulating molecular clouds, one in which the turbulence is allowed to decay after it is initialized, and one in which it is driven. We use the adaptive mesh refinement (AMR) code, Orion, to perform high-resolution simulations of molecular cloud cores and protostars in environments with both driven and decaying turbulence. We include self-gravity, use a barotropic equation of state, and represent regions exceeding the maximum grid resolution with sink particles. We analyze the properties of bound cores such as size, shape, line width, and rotational energy, and we find reasonable agreement with observation. At high resolution the different rates of core accretion in the two cases have a significant effect on protostellar system development. Clumps forming in a decaying turbulence environment produce high-multiplicity protostellar systems with Toomre Q unstable disks that exhibit characteristics of the competitive accretion model for star formation. In contrast, cores forming in the context of continuously driven turbulence and virial equilibrium form smaller protostellar systems with fewer low-mass members. Furthermore, our simulations of driven and decaying turbulence show some statistically significant differences, particularly in the production of brown dwarfs and core rotation, but the uncertainties are large enough that we are not able to conclude whether observations favor one or the other.

  14. Driven and decaying turbulence simulations of low–mass star formation: From clumps to cores to protostars

    DOE PAGESBeta

    Offner, Stella S. R.; Klein, Richard I.; McKee, Christopher F.

    2008-10-20

    Molecular clouds are observed to be turbulent, but the origin of this turbulence is not well understood. As a result, there are two different approaches to simulating molecular clouds, one in which the turbulence is allowed to decay after it is initialized, and one in which it is driven. We use the adaptive mesh refinement (AMR) code, Orion, to perform high-resolution simulations of molecular cloud cores and protostars in environments with both driven and decaying turbulence. We include self-gravity, use a barotropic equation of state, and represent regions exceeding the maximum grid resolution with sink particles. We analyze the propertiesmore » of bound cores such as size, shape, line width, and rotational energy, and we find reasonable agreement with observation. At high resolution the different rates of core accretion in the two cases have a significant effect on protostellar system development. Clumps forming in a decaying turbulence environment produce high-multiplicity protostellar systems with Toomre Q unstable disks that exhibit characteristics of the competitive accretion model for star formation. In contrast, cores forming in the context of continuously driven turbulence and virial equilibrium form smaller protostellar systems with fewer low-mass members. Furthermore, our simulations of driven and decaying turbulence show some statistically significant differences, particularly in the production of brown dwarfs and core rotation, but the uncertainties are large enough that we are not able to conclude whether observations favor one or the other.« less

  15. Dynamics of disk galaxies under eccentric perturbations and the effect of radiative thermal exchange on the rotation of lower mass protostars

    NASA Astrophysics Data System (ADS)

    Zhang, Linchu

    2000-09-01

    In the first part of this dissertation, the dynamics of disk galaxies are treated using a representation in a number of circular rings*. The rings are assumed to be rigid and oscillate in a plane. Motion of matter within each ring is taken into account. Eccentric perturbations are studied. First the axisymmetric equilibrium configuration of the galaxy is discussed. After that eccentric perturbations are described. The ring representation is then applied and relevant equations of motion derived. Various formulas involving coefficients of terms in the equations of motion are derived. Angular momentum transport is then discussed with the results of numerical solutions of the equations of motion. Besides the disk, two other components: the galactic bulge, and the dark matter halo are also included, but only as passive sources of gravity. The central region of the disk is handled separately; it may contain a black hole. The second part of this dissertation treats protostars. It is shown that radiative thermal exchange can significantly reduce the angular momentum of a rapidly spinning protostar. The mechanism is especially important for high temperature and large surface area. Also, it is expected that the mechanism is most relevant to lower mass protostars, since they may be embedded inside H II regions which have high temperatures. *This first part of the dissertation is related to [15] (Lovelace, R. V. E., Zhang, L., Kornreich, D. A., & Haynes, M. P. 1999, THE ASTROPHYSICAL JOURNAL, 524, 634, published by the University of Chicago Press,© 1999.The American Astronomical Society. All rights reserved).

  16. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  17. SPATIALLY RESOLVING SUBSTRUCTURES WITHIN THE MASSIVE ENVELOPE AROUND AN INTERMEDIATE-MASS PROTOSTAR: MMS 6/OMC-3

    SciTech Connect

    Takahashi, Satoko; Ho, Paul T. P.; Saigo, Kazuya; Tomida, Kengo

    2012-06-10

    With the Submillimeter Array, the brightest (sub)millimeter continuum source in the Orion Molecular Cloud-2/3 region, MMS 6, has been observed in the 850 {mu}m continuum emission with approximately 10 times better angular resolution than previous studies ( Almost-Equal-To 0.''3, Almost-Equal-To 120 AU at Orion). The deconvolved size, the mass, and the column density of MMS 6-main are estimated to be 0.''32 Multiplication-Sign 0.''29 (132 AU Multiplication-Sign 120 AU), 0.29 M{sub Sun }, and 2.1 Multiplication-Sign 10{sup 25} cm{sup -2}, respectively. The estimated extremely high mean number density, 1.5 Multiplication-Sign 10{sup 10} cm{sup -3}, suggests that MMS 6-main is likely optically thick at 850 {mu}m. We compare our observational data with three theoretical core models: prestellar core, protostellar core + disk-like structure, and first adiabatic core. These comparisons clearly show that the observational data cannot be modeled as a simple prestellar core with a gas temperature of 20 K. A self-luminous source is necessary to explain the observed flux density in the (sub)millimeter wavelengths. Our recent detection of a very compact and energetic outflow in the CO (3-2) and HCN (4-3) lines supports the presence of a protostar. We suggest that MMS 6 is one of the first cases of an intermediate-mass protostellar core at an extremely young stage. In addition to the MMS 6-main peak, we have also spatially resolved a number of spiky structures and sub-clumps, distributed over the central 1000 AU. The masses of these sub-clumps are estimated to be 0.066-0.073 M{sub Sun }, which are on the order of brown dwarf masses. Higher angular resolution and higher sensitivity observations with ALMA and EVLA will reveal the origin and nature of these structures such as whether they are originated from fragmentations, spiral arms, or inhomogeneity within the disk-like structures/envelope.

  18. A close-up view of a bipolar jet: Sub-arcsecond near-infrared imaging of the high-mass protostar IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Massi, F.; Arcidiacono, C.; Beltrán, M. T.; McCarthy, D.; Kulesa, C.; Boutsia, K.; Paris, D.; Quirós-Pacheco, F.; Xompero, M.

    2013-01-01

    Context. The formation of OB-type stars up to (at least) 140 M⊙ can be explained via disk-mediated accretion and in fact growing observational evidence of disk-jet systems is found in high-mass star-forming regions. Aims: With the present observations we wish to investigate at sub-arcsecond resolution the jet structure close to the well studied high-mass protostar IRAS 20126+4104, which is known to be surrounded by a Keplerian disk. Methods: Adaptive optics imaging of the 2.2 μm continuum and H2 and Brγ line emission have been performed with the Large Binocular Telescope, attaining an angular resolution of ~90 mas and an astrometric precision of ~100 mas. Results: While our results are consistent with previous K-band images by other authors, the improved (by a factor ~3) resolution allows us to identify a number of previously unseen features, such as bow shocks spread all over the jet structure. Also, we confirm the existence of a bipolar nebulosity within 1'' from the protostar, prove that the emission from the brightest, SE lobe is mostly due to the H2 line, and resolve its structure. Conclusions: Comparison with other tracers such as masers, thermal molecular line emission, and free-free continuum emission proves that the bipolar nebulosity is indeed tracing the root of the bipolar jet powered by the deeply embedded protostar at the center of the Keplerian disk. Based on observations carried out with the Large Binocular Telescope. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  19. H_2CO and CH_3OH abundances in the envelopes around low-mass protostars

    NASA Astrophysics Data System (ADS)

    Jørgensen, J. K.; Schöier, F. L.; van Dishoeck, E. F.

    2005-07-01

    This paper presents the third in a series of single-dish studies of molecular abundances in the envelopes around a large sample of 18 low-mass pre- and protostellar objects. It focuses on typical grain mantle products and organic molecules, including H2CO, CH3OH and CH3CN. With a few exceptions, all H2CO lines can be fit by constant abundances of 7× 10-11{-}8× 10-9 throughout the envelopes if ortho- and para lines are considered independently. The current observational dataset does not require a large H2CO abundance enhancement in the inner warm regions, but this can also not be ruled out. Through comparison of the H2CO abundances of the entire sample, the H2CO ortho-para ratio is constrained to be 1.6 ± 0.3 consistent with thermalization on grains at temperatures of 10-15 K. The H2CO abundances can be related to the empirical chemical network established on the basis of our previously reported survey of other species and is found to be closely correlated with that of the nitrogen-bearing molecules. These correlations reflect the freeze-out of molecules at low temperatures and high densities, with the constant H2CO abundance being a measure of the size of the freeze-out zone. An improved fit to the data is obtained with a "drop" abundance structure in which the abundance is typically a few ×10-10 when the temperature is lower than the evaporation temperature and the density high enough so that the timescale for depletion is less than the lifetime of the core. The location of the freeze-out zone is constrained from CO observations. Outside the freeze-out zone, the H2CO abundance is typically a few × 10-9{-}10-8. The observations show that the CH3OH lines are significantly broader than the H2CO lines, indicating that they probe kinematically distinct regions. CH3OH is moreover only detected toward a handful of sources and CH3CN toward only one, NGC 1333-IRAS2. For NGC 1333-IRAS2, CH3OH and CH3CN abundance enhancements of two-three orders of magnitude at

  20. The low-mass YSO CB230-A: investigating the protostar and its jet with NIR spectroscopy and Spitzer observations

    NASA Astrophysics Data System (ADS)

    Massi, F.; Codella, C.; Brand, J.; di Fabrizio, L.; Wouterloot, J. G. A.

    2008-11-01

    scenario is that CB230-A is a Class 0/I YSO driving an atomic jet that is observed to be almost monopolar probably due to its inclination to the plane of the sky and the resulting higher extinction of its red side. This primary jet appears to be sufficiently energetic to open the cavity visible in the NIR images and drive the large-scale molecular outflow observed at mm-wavelengths. CB230-A was revealed to be a good location to test the innermost structure of accreting low-mass protostars. Appendices A and B are only available in electronic form at http://www.aanda.org

  1. HIGH D{sub 2}O/HDO RATIO IN THE INNER REGIONS OF THE LOW-MASS PROTOSTAR NGC 1333 IRAS2A

    SciTech Connect

    Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Van Dishoeck, E. F.; Vastel, C.; Taquet, V.

    2014-09-01

    Water plays a crucial role both in the interstellar medium and on Earth. To constrain its formation mechanisms and its evolution through the star formation process, the determination of the water deuterium fractionation ratios is particularly suitable. Previous studies derived HDO/H{sub 2}O ratios in the warm inner regions of low-mass protostars. We here report a detection of the D{sub 2}O 1{sub 1,} {sub 0}-1{sub 0,} {sub 1} transition toward the low-mass protostar NGC 1333 IRAS2A with the Plateau de Bure interferometer: this represents the first interferometric detection of D{sub 2}O—and only the second solar-type protostar for which this isotopologue is detected. Using the observations of the HDO 5{sub 4,} {sub 2}-6{sub 3,} {sub 3} transition simultaneously detected and three other HDO lines previously observed, we show that the HDO line fluxes are well reproduced with a single excitation temperature of 218 ± 21 K and a source size of ∼0.''5. The D{sub 2}O/HDO ratio is ∼(1.2 ± 0.5) × 10{sup –2}, while the use of previous H{sub 2}{sup 18}O observations give an HDO/H{sub 2}O ratio of ∼(1.7 ± 0.8) × 10{sup –3}, i.e., a factor of seven lower than the D{sub 2}O/HDO ratio. These results contradict the predictions of current grain surface chemical models and indicate that either the surface deuteration processes are poorly understood or that both sublimation of grain mantles and water formation at high temperatures (≳230 K) take place in the inner regions of this source. In the second scenario, the thermal desorption of the grain mantles would explain the high D{sub 2}O/HDO ratio, while water formation at high temperature would explain significant extra production of H{sub 2}O leading to a decrease of the HDO/H{sub 2}O ratio.

  2. DISK MASSES AT THE END OF THE MAIN ACCRETION PHASE: CARMA OBSERVATIONS AND MULTI-WAVELENGTH MODELING OF CLASS I PROTOSTARS

    SciTech Connect

    Eisner, J. A.

    2012-08-10

    We present imaging observations at the 1.3 mm wavelength of Class I protostars in the Taurus star-forming region, obtained with the CARMA interferometer. Of an initial sample of 10 objects, we detected and imaged millimeter wavelength emission from 9. One of the nine is resolved into two sources and detailed analysis of this binary protostellar system is deferred to a future paper. For the remaining eight objects, we use the CARMA data to determine the basic morphology of the millimeter emission. Combining the millimeter data with 0.9 {mu}m images of scattered light, Spitzer Infrared Spectrograph spectra, and broadband spectral energy distributions (all from the literature), we attempt to determine the structure of the circumstellar material. We consider models including both circumstellar disks and envelopes, and constrain the masses (and other structural parameters) of each of these components. We show that the disk masses in our sample span a range from {approx}< 0.01 to {approx}> 0.1 M{sub Sun }. The disk masses for our sample are significantly higher than for samples of more evolved Class II objects. Thus, Class I disk masses probably provide a more accurate estimate of the initial mass budget for star and planet formation. However, the disk masses determined here are lower than required by theories of giant planet formation. The masses also appear too low for gravitational instability, which could lead to high mass accretion rates. Even in these Class I disks, substantial particle growth may have hidden much of the disk mass in hard-to-see larger bodies.

  3. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    SciTech Connect

    Kim, Hyo Jeong; Evans, Neal J. II; Dunham, Michael M.; Lee, Jeong-Eun; Pontoppidan, Klaus M.

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  4. The jet and the disk of the HH 212 low-mass protostar imaged by ALMA: SO and SO2 emission

    NASA Astrophysics Data System (ADS)

    Podio, L.; Codella, C.; Gueth, F.; Cabrit, S.; Bachiller, R.; Gusdorf, A.; Lee, C.-F.; Lefloch, B.; Leurini, S.; Nisini, B.; Tafalla, M.

    2015-09-01

    Context. The investigation of the disk formation and jet launching mechanism in protostars is crucial to understanding the earliest stages of star and planet formation. Aims: We aim to constrain the physical and dynamical properties of the molecular jet and disk of the HH 212 protostellar system at unprecedented angular scales, exploiting the capabilities of the Atacama Large Millimeter Array (ALMA). Methods: The ALMA observations of HH 212 in emission lines from sulfur-bearing molecules, SO 98-87, SO 1011-1010, SO282,6-71,7, are compared with simultaneous CO 3-2, SiO 8-7 data. The molecules column density and abundance are estimated using simple radiative transfer models. Results: SO 98-87 and SO282,6-71,7 show broad velocity profiles. At systemic velocity, they probe the circumstellar gas and the cavity walls. Going from low to high blue- and red-shifted velocities the emission traces the wide-angle outflow and the fast (~100-200 km s-1), collimated (~90 AU) molecular jet revealing the inner knots with timescales ≤50 yr. The jet transports a mass-loss rate ≥ 0.2-2 × 10-6 M⊙ yr-1, implying high ejection efficiency (≥ 0.03-0.3). The SO and SO2 abundances in the jet are ~ 10-7-10-6. SO 1011-1010 emission is compact and shows small-scale velocity gradients, indicating that it originates partly from the rotating disk previously seen in HCO+ and C17O, and partly from the base of the jet. The disk mass is ≥ 0.002-0.013 M⊙ and the SO abundance in the disk is ~ 10-8-10-7. Conclusions: SO and SO2 are effective tracers of the molecular jet in the inner few hundreds AU from the protostar. Their abundances indicate that 1-40% of sulfur is in SO and SO2 due to shocks in the jet/outflow and/or to ambipolar diffusion at the wind base. The SO abundance in the disk is 3-4 orders of magnitude larger than in evolved protoplanetary disks. This may be due to an SO enhancement in the accretion shock at the envelope-disk interface or in spiral shocks if the disk is partly

  5. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  6. MAGNETIC FIELD STRUCTURE AROUND LOW-MASS CLASS 0 PROTOSTARS: B335, L1527, AND IC348-SMM2

    SciTech Connect

    Davidson, J. A.; Novak, G.; Matthews, T. G.; Matthews, B.; Goldsmith, P. F.; Chapman, N.; Volgenau, N. H.; Vaillancourt, J. E.; Attard, M.

    2011-05-10

    We report new 350 {mu}m polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 young stellar objects L1527, IC348-SMM2, and B335. We have inferred magnetic field directions from these observations and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume that the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.

  7. Protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Barsony, M.; Ward-Thompson, D.; Andre, P.; O'Linger, J.

    1997-12-01

    We present new millimeter, submillimeter, and far-infrared images of three Class 0 protostar systems in Perseus: L1448C, the triple system L1448N, and IRAS 03282+3035. The data were acquired with a 7-element bolometer array on the IRAM 30-m, the common user bolometer, UKT14, on the 15-m James Clerk Maxwell Telescope, and via extensive HIRES processing and modelling of the IRAS data (Aumann, Fowler, & Melnyk 1990). All three sources power bipolar molecular outflows. The spectacular outflow from L1448C is seen in dust emission for the first time at 60, 100, and 1300 microns. The instantaneous outflow mechanical luminosity derived from this emission is found to be a high fraction ( 50%) of the source luminosity, a property recently found to be another distinguishing characteristic of Class 0 protostars, the earliest observable protostellar stage (Bontemps et al. 1996). Extensive HIRES point-source modelling of the 100-micron IRAS emission around IRAS 03282 shows that the emitting dust is co-extensive with the flattened dense gas core, as traced by previous ammonia observations, from which the protostar is forming (Bachiller, Martin-Pintado, & Planesas 1991; Tafalla et al. 1993). References Aumann, H.H., Fowler, J.W., & Melnyk, M. 1990, AJ 99 1674 Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A 311 858 Bachiller, R., Martin-Pintado, J., & Planesas, P. 1991, A&A 251 639 Tafalla, M, Bachiller, R., Martin-Pintado, J. & M.C.H. Wright 1993, ApJL 415 L139

  8. Waterfalls Around Protostars

    NASA Astrophysics Data System (ADS)

    Mottram, J. C.; van Dishoeck, E. F.; Schmalzl, M.; Kristensen, L. E.; Visser, R.; Hogerheijde, M. R.; Bruderer, S.

    2013-07-01

    Water is uniquely sensitive to motion of any kind within the protostellar environment due to its large Einstein A coefficient. As part of the 'Water in star-forming regions with Herschel' (WISH) survey, infall signatures were detected in the HIFI water spectra observed towards 5 Class 0/I protostars observed. The combination of observations of multiple water transitions and full 1-D non-LTE radiative transfer models of protostellar envelopes provides a self-consistent way to probe the physics and chemistry of infalling envelope material.

  9. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star. PMID:18669856

  10. The Infrared Signature of Accretion Luminosity in Protostars

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Villarama, Ethan G.; Flores-Rivera, Lizxandra

    2016-06-01

    Mass accretion from the disk onto the star is an important mechanism by which a star increases in mass during the formation phase. If the mass accretion rate is time variable then the brightness of the star should also change with time. We use the HOCHUNK3D radiative transfer code to investigate how disk accretion rate (Mdot) affects the protostar spectral energy distribution (SED). The biggest changes in brightness occur at infrared wavelengths ranging from approximately 5 to 100 microns. The results show that the protostar luminosity doubles from 1 to 2 L⊙ when the disk accretion rate is increased to Mdot=3.0e-7 M⊙/year. We conclude that the models are a useful tool to study mass accretion rates and time variability in protostars.

  11. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  12. Herschel spectral surveys of star-forming regions. Overview of the 555-636 GHz range

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.; Bacmann, A.; Boogert, A.; Caux, E.; Dominik, C.; Lefloch, B.; Lis, D.; Schilke, P.; van der Tak, F.; Caselli, P.; Cernicharo, J.; Codella, C.; Comito, C.; Fuente, A.; Baudry, A.; Bell, T.; Benedettini, M.; Bergin, E. A.; Blake, G. A.; Bottinelli, S.; Cabrit, S.; Castets, A.; Coutens, A.; Crimier, N.; Demyk, K.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Goldsmith, P. F.; Helmich, F.; Hennebelle, P.; Henning, T.; Herbst, E.; Hily-Blant, P.; Jacq, T.; Kahane, C.; Kama, M.; Klotz, A.; Langer, W.; Lord, S.; Lorenzani, A.; Maret, S.; Melnick, G.; Neufeld, D.; Nisini, B.; Pacheco, S.; Pagani, L.; Parise, B.; Pearson, J.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Wiel, M. H. D.; Vastel, C.; Viti, S.; Wakelam, V.; Walters, A.; Wyrowski, F.; Yorke, H.; Liseau, R.; Olberg, M.; Szczerba, R.; Benz, A. O.; Melchior, M.

    2010-10-01

    High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project “Chemical HErschel Surveys of Star forming regions”, CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 × 105 L_⊙: L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence/absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Figures [see full textsee full text]-[see full textsee full text] and Tables 3, 4 (pages 6 to 8) are only available in electronic form at http://www.aanda.org

  13. Composition of the Silicates around Evolved Stars and Protostars

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Dartois, E.; Wiesemeyer, H.; Jones, A.; D'Hendecourt, L.; Jourdain de Muizon, M.; Heras, A. M.

    2000-11-01

    We present a study of the composition of the silicates around five evolved stars and three high-mass protostars. Around evolved stars, the oxygen-rich dust is composed of amorphous olivine, crystalline silicates (enstatite, forsterite, diopside) and some oxides (FeO, Al2O3). Using a radiative transfer code we have modelled the SED of two OH/IR stars. We estimate that the amount of crystalline silicates in these objects is of the order of 20%. Around protostars, the dust is composed of porous pyroxene and/or aluminosilicate grains containing iron oxide. We calculate that at most 1-2% of the dust mass is crystalline. The newly formed dust around evolved stars has a different structure and composition from the old dust found around protostars. This implies that some mechanism, which remains to be found, occurs during the grain lifetime and alters the chemical composition and structure of the grains.

  14. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  15. Characterizing Dust and Ice Toward Protostars in the Orion Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Poteet, Charles Allen

    Protostars are young stars in the process of accreting infalling envelopes of gas and dust which are transported from the diffuse interstellar medium through gravitational collapse. Although the envelopes are commonly thought to be comprised of cold, pristine material from the interstellar medium, recent space-based studies suggest that protostellar envelopes of low- and high-mass protostars contain thermally processed dust and ice. Unlike the envelope material from luminous, massive protostars, where dust and ice are subject to processing by direct stellar irradiation, thermally processed materials in low-mass protostars may be the consequence of accretion-driven outbursts, shocks in protostellar outflows, or transport of materials from the inner disk to the envelope by outflows and winds. We present an analysis of mid-infrared spectra of a large sample of protostars from the Orion Molecular Cloud complex, the most active region of star formation within the nearest 500 pc. The spectra, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope , reveal strong silicate and solid molecular absorption bands. Using spectral decomposition analyses to determine the dust and ice composition toward the protostars, we find that the amorphous silicate composition is more dominated by amorphous pyroxene than dust in the Galactic diffuse interstellar medium, and that the mass fraction of amorphous pyroxene varies between protostars. Toward the perplexing protostar HOPS-68, we report the first unambiguous detection of (1) crystalline silicate absorption in a cold, infalling protostellar envelope and (2) highly processed carbon dioxide ice mantles. Moreover, we find evidence for crystalline silicate absorption towards two additional protostars. These results provide strong evidence that dust and ice delivered to planet-forming disks around low-mass stars in the protostellar phase may be processed by feedback from the central protostar.

  16. Computational Modeling of the Class I Low-Mass Protostar Elias 29 Applying Optical Constants of Ices Processed By High Energy Cosmic Ray Analogs

    NASA Astrophysics Data System (ADS)

    Rocha, W. R. M.; Pilling, S.

    2015-04-01

    We present a study of the effects of high energy cosmic rays (CRs) over the astrophysical ices, observed toward the embedded class I protostar Elias 29, by using computational modeling and laboratory data. Its spectrum was observed with the Infrared Space Observatory (ISO) covering 2.3-190 μm. The modeling employed the three-dimensional Monte Carlo radiative transfer code RADMC-3D and laboratory data of bombarded ice grains by CR analogs and unprocessed ices (not bombarded). We are assuming that Elias 29 has a self-irradiated disk with inclination i = 60.°0, surrounded by an envelope with a bipolar cavity. The results show that absorption features toward Elias 29 are better reproduced by assuming a combination between unprocessed astrophysical ices at low temperature (H2O, CO, CO2) and bombarded ices (H2O:CO2) by high energy CRs. Evidences of the ice processing around Elias 29 can be observed by the good fitting around 5.5-8.0 μm, by polar and apolar ice segregation in 15.15-15.25 μm, and by the presence of the CH4 and HCOOH ices. Given that non-nitrogen compounds were employed in this work, we assume that absorption around 5.5-8.0 μm should not be associated with the NH4+ ion (see the 2003 work of Shutte & Khanna ), but more probably with aliphatic ethers (e.g., R1-OCH2-R2), CH3CHO, and related species. The results obtained in this paper are important because they show that the environment around protostars is better modeled considering processed samples and, consequently, demonstrate the chemical evolution of the astrophysical ices.

  17. Primordial stellar evolution - The protostar phase

    NASA Technical Reports Server (NTRS)

    Stahler, S. W.; Palla, F.; Salpeter, E. E.

    1986-01-01

    The structure and evolution of a protostar forming from a cloud composed of pure hydrogen and helium gas are calculated. Using an accretion rate of 0.0044 solar mass/yr, the collapse of the cloud is followed numerically as a sequence of steady state accretion flows onto the hydrostatic core, which grows from an initial mass of 0.01 solar mass to 10.5 solar masses. The core is surrounded by an optically thick radiative precursor for most of its evolution. The core radius reaches 47 solar radii when the mass is 1 solar mass. For sufficiently massive cores, the deep interior contracts strongly, driving out a 'luminosity wave' which reaches the surface when the mass is 8 solar masses. This results in a large increase in core radius, the establishment of surface convection, and the disappearance of the radiative precursor. The dependence of core radius on the mass and accretion rate is analytically derived, and a new table or Rosseland mean opacities for metal-free gas is presented.

  18. Cataloging the Youngest Protostars in NGC2264

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Brown, Arianna; Terebey, Susan; CSI2264

    2016-06-01

    Protostars are young stars in their earliest stages of development. We can determine the current stage of development of a young star depending on its relative brightness at varying wavelengths. Protostars are brightest at far-infrared wavelengths, typically peaking at 70-100um. A previous catalog of young stars in NGC 2264 is based on Spitzer data with 24um being the longest available wavelength data. Herschel data at 70um was used to improve the census of protostars. We found 11 new class 0 and 1 protostar candidates that were previously not found in the Spitzer catalog and are bright at 70um. We describe the properties of these candidates.

  19. Water and complex organic molecules in the warm inner regions of solar-type protostars

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Lykke, J. M.; Taquet, V.; van Dishoeck, E. F.; Vastel, C.; Wampfler, S. F.

    2015-12-01

    Water and complex organic molecules play an important role in the emergence of Life. They have been detected in different types of astrophysical environments (protostars, prestellar cores, outflows, protoplanetary disks, comets, etc). In particular, they show high abundances towards the warm inner regions of protostars, where the icy grain mantles thermally desorb. Can a part of the molecular content observed in these regions be preserved during the star formation process and incorporated into asteroids and comets, that can deliver it to planetary embryos through impacts? By comparison with cometary studies, interferometric observations of solar-type protostars can help to address this important question. We present recent results obtained with the Plateau de Bure interferometer about water deuteration, glycolaldehyde and ethylene glycol towards the low-mass protostar NGC 1333 IRAS2A.

  20. Water in the warm inner regions of Class 0 protostars

    NASA Astrophysics Data System (ADS)

    Coutens, Audrey; Jørgensen, Jes K.; Persson, Magnus V.; van Dishoeck, Ewine; vastel, charlotte; Taquet, Vianney; Bottinelli, Sandrine; Caux, Emmanuel; Harsono, Daniel; Lykke, Julie M.

    2015-08-01

    Water plays a key role in many astrophysical environments (star-forming regions, outflows, prestellar cores, comets, asteroids, …) as well as for the emergence of life as we know it. Its detection in the inner regions of low-mass protostars raises the question whether this is similar to the water that is incorporated into comets and asteroids that may deliver it to Earth-like planets. The water deuterium fractionation is very helpful to understand how it forms and evolves. For example, Cleeves et al. (2014) showed that a contribution of water formed in the primordial cloud is necessary to explain the HDO/H2O ratio of the terrestrial oceans. Observations of the deuterated and non-deuterated forms of water at an early stage of star formation may therefore potentially be an important tool to describe the origin of water on Earth.We here present recent interferometric measurements of the distribution and deuteration of water on Solar System scales. During the last few years, a few HDO and H218O lines were observed in the inner regions of Class 0 protostars with interferometers (Jørgensen & van Dishoeck 2010, Codella+2010, Persson+ 2012, 2013, 2014, Taquet+ 2013), which enables estimates of the HDO/H2O ratios. Our recent detection of D2O with the Plateau de Bure interferometer towards the low-mass protostar NGC1333 IRAS2A leads to a surprisingly high D2O/HDO ratio compared with the HDO/H2O ratio (Coutens+ 2014). These results contradict the predictions of current grain surface chemical models and indicate that either an ingredient is missing in our understanding of the surface deuteration process or that both sublimation of grain mantles and water formation at high temperature (T > 230K) take place in the inner regions of protostars. We also present the first results of an ALMA Cycle 2 program (PI: A. Coutens) to target several HDO, H218O and D2O lines at a spatial resolution of ~0.3" (40 AU) toward the nearby protostellar binary IRAS16293-2422. These observations

  1. A HERSCHEL AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS

    SciTech Connect

    Stutz, Amelia M.; Robitaille, Thomas; Henning, Thomas; Krause, Oliver; Tobin, John J.; Stanke, Thomas; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Furlan, Elise; Hartmann, Lee; Osorio, Mayra; Wilson, Thomas L.; Allen, Lori; Manoj, P.

    2013-04-10

    We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 {mu}m and 160 {mu}m that are either too faint (m{sub 24} > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 {mu}m band. We find that the 11 reddest protostar candidates with log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 {mu}m fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65; we name these sources 'PACS Bright Red sources', or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T{sub bol} < 45 K) and large values of sub-millimeter fluxes (L{sub smm}/L{sub bol} > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2 M{sub Sun} and luminosities of 0.7-10 L{sub Sun }. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

  2. A Herschel and APEX Census of the Reddest Sources in Orion: Searching for the Youngest Protostars

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Tobin, John J.; Stanke, Thomas; Megeath, S. Thomas; Fischer, William J.; Robitaille, Thomas; Henning, Thomas; Ali, Babar; di Francesco, James; Furlan, Elise; Hartmann, Lee; Osorio, Mayra; Wilson, Thomas L.; Allen, Lori; Krause, Oliver; Manoj, P.

    2013-04-01

    We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 μm and 160 μm that are either too faint (m 24 > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 μm band. We find that the 11 reddest protostar candidates with log λF λ70/λF λ24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 μm fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log λF λ70/λF λ24 > 1.65; we name these sources "PACS Bright Red sources," or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T bol < 45 K) and large values of sub-millimeter fluxes (L smm/L bol > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2 M ⊙ and luminosities of 0.7-10 L ⊙. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

  3. Estimating the Internal Luminosities of Protostars with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Huard, Tracy L.; Terebey, Susan

    2016-01-01

    During the last decade, the Spitzer Space Telescope and Herschel Space Telescope enabled large infrared surveys of nearby molecular clouds forming low mass stars. The 70 micron observations obtained by those facilities provide estimates of the internal luminosities of protostars that are reliable to within a factor of 2, in general. Spitzer observations at shorter wavelengths yield estimates that are much less constrained, reliable only to within an order of magnitude, at best. With the Stratospheric Observatory for Infrared Astronomy (SOFIA) routinely operating science flights, this facility may be used to further study protostellar populations. We demonstrate that mid-infrared images obtained with the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) achieve internal luminosities with reliability comparable to that achieved by 70 micron observations. With its dynamic range and greater angular resolution, FORCAST may be used to characterize protostars that were either saturated or merged with other sources in previous surveys.

  4. The Herschel Orion Protostar Survey: Spectral Energy Distributions and Fits Using a Grid of Protostellar Models

    NASA Astrophysics Data System (ADS)

    Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.

    2016-05-01

    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2–870 μm and sample the peak of the protostellar envelope emission at ∼100 μm. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  5. Formation of massive protostars in atomic cooling haloes

    NASA Astrophysics Data System (ADS)

    Becerra, Fernando; Greif, Thomas H.; Springel, Volker; Hernquist, Lars E.

    2015-01-01

    We present the highest-resolution three-dimensional simulation to date of the collapse of an atomic cooling halo in the early Universe. We use the moving-mesh code AREPO with the primordial chemistry module introduced in Greif, which evolves the chemical and thermal rate equations for over more than 20 orders of magnitude in density. Molecular hydrogen cooling is suppressed by a strong Lyman-Werner background, which facilitates the near-isothermal collapse of the gas at a temperature of about 104 K. Once the central gas cloud becomes optically thick to continuum emission, it settles into a Keplerian disc around the primary protostar. The initial mass of the protostar is about 0.1 M⊙, which is an order of magnitude higher than in minihaloes that cool via molecular hydrogen. The high accretion rate and efficient cooling of the gas catalyse the fragmentation of the disc into a small protostellar system with 5-10 members. After about 12 yr, strong gravitational interactions disrupt the disc and temporarily eject the primary protostar from the centre of the cloud. By the end of the simulation, a secondary clump has collapsed at a distance of ≃ 150 au from the primary clump. If this clump undergoes a similar evolution as the first, the central gas cloud may evolve into a wide binary system. High accretion rates of both the primary and secondary clumps suggest that fragmentation is not a significant barrier for forming at least one massive black hole seed.

  6. Herschel Key Program, "Dust, Ice, and Gas In Time" (DIGIT): The Origin of Molecular and Atomic Emission in Low-mass Protostars in Taurus

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Lee, Jinhee; Lee, Seokho; Evans, Neal J., II; Green, Joel D.

    2014-10-01

    Six low-mass embedded sources (L1489, L1551-IRS5, TMR1, TMC1-A, L1527, and TMC1) in Taurus have been observed with Herschel-PACS to cover the full spectrum from 50 to 210 μm as part of the Herschel key program, "Dust, Ice, and Gas In Time." The relatively low intensity of the interstellar radiation field surrounding Taurus minimizes contamination of the [C II] emission associated with the sources by diffuse emission from the cloud surface, allowing study of the [C II] emission from the source. In several sources, the [C II] emission is distributed along the outflow, as is the [O I] emission. The atomic line luminosities correlate well with each other, as do the molecular lines, but the atomic and molecular lines correlate poorly. The relative contribution of CO to the total gas cooling is constant at ~30%, while the cooling fraction by H2O varies from source to source, suggesting different shock properties resulting in different photodissociation levels of H2O. The gas with a power-law temperature distribution with a moderately high density can reproduce the observed CO fluxes, indicative of CO close to LTE. However, H2O is mostly subthermally excited. L1551-IRS5 is the most luminous source (Łbol = 24.5 L ⊙) and the [O I] 63.1 μm line accounts for more than 70% of its FIR line luminosity, suggesting complete photodissociation of H2O by a J shock. In L1551-IRS5, the central velocity shifts of the [O I] line, which exceed the wavelength calibration uncertainty (~70 km s-1) of PACS, are consistent with the known redshifted and blueshifted outflow direction.

  7. Star Formation: Chemistry as a Probe of Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Visser, R.

    2013-10-01

    The embedded phase of star formation is the crucial phase where most of the stellar mass is assembled. Velocity-resolved spectra reveal an infalling envelope, bipolar outflows, and perhaps an infant circumstellar disk - all locked together in a cosmic dance of gravitational collapse and magnetic winds. Densities and temperatures change by orders of magnitude as the protostar evolves, driving a chemistry as exotic as it is fascinating. I will review two examples of how to exploit chemistry and molecular spectroscopy to study the physics of low-mass star formation: energetic feedback and episodic accretion.

  8. Star Formation near Berkeley 59: Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Rosvick, J. M.; Majaess, D.

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (~2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, 12CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v LSR = -15 to -17 km s-1, which agrees with the velocity adopted for Berkeley 59 (-15.7 km s-1), while spectral energy distribution models yield an average interstellar extinction AV and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  9. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied. PMID:23283175

  10. Carbon Chains and Methanol toward Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Graninger, Dawn M.; Wilkins, Olivia H.; Öberg, Karin I.

    2016-03-01

    Large interstellar organic molecules are potential precursors of prebiotic molecules. Their formation pathways and chemical relationships with one another and simpler molecules are therefore of great interest. In this paper we address the relationships between two classes of large organic molecules, carbon chains and saturated complex organic molecules at the early stages of star formation through observations of C4H and CH3OH. We surveyed these molecules with the IRAM 30 m telescope toward 16 deeply embedded low-mass protostars selected from the Spitzer c2d ice survey. We find that CH3OH and C4H are positively correlated, indicating that these two classes of molecules can coexist during the embedded protostellar stage. The C4H/CH3OH gas abundance ratio tentatively correlates with the CH4/CH3OH ice abundance ratio in the same lines of sight. This relationship supports a scenario where carbon chain formation in protostellar envelopes begins with CH4 ice desorption. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  11. THE SPITZER ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS

    SciTech Connect

    Oeberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Van den Broek, Saskia; Van Dishoeck, Ewine F.; Bottinelli, Sandrine; Blake, Geoffrey A.; Evans, Neal J.

    2011-10-20

    Ices regulate much of the chemistry during star formation and account for up to 80% of the available oxygen and carbon. In this paper, we use the Spitzer c2d Legacy ice survey, complimented with data sets on ices in cloud cores and high-mass protostars, to determine standard ice abundances and to present a coherent picture of the evolution of ices during low- and high-mass star formation. The median ice composition H{sub 2}O:CO:CO{sub 2}:CH{sub 3}OH:NH{sub 3}:CH{sub 4}:XCN is 100:29:29:3:5:5:0.3 and 100:13:13:4:5:2:0.6 toward low- and high-mass protostars, respectively, and 100:31:38:4:-:-:- in cloud cores. In the low-mass sample, the ice abundances with respect to H{sub 2}O of CH{sub 4}, NH{sub 3}, and the component of CO{sub 2} mixed with H{sub 2}O typically vary by <25%, indicative of co-formation with H{sub 2}O. In contrast, some CO and CO{sub 2} ice components, XCN, and CH{sub 3}OH vary by factors 2-10 between the lower and upper quartile. The XCN band correlates with CO, consistent with its OCN{sup -} identification. The origin(s) of the different levels of ice abundance variations are constrained by comparing ice inventories toward different types of protostars and background stars, through ice mapping, analysis of cloud-to-cloud variations, and ice (anti-)correlations. Based on the analysis, the first ice formation phase is driven by hydrogenation of atoms, which results in an H{sub 2}O-dominated ice. At later prestellar times, CO freezes out and variations in CO freezeout levels and the subsequent CO-based chemistry can explain most of the observed ice abundance variations. The last important ice evolution stage is thermal and UV processing around protostars, resulting in CO desorption, ice segregation, and the formation of complex organic molecules. The distribution of cometary ice abundances is consistent with the idea that most cometary ices have a protostellar origin.

  12. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  13. Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Crapsi, Antonio; Evans, Neal J., II; Bourke, Tyler L.; Huard, Tracy L.; Myers, Philip C.; Kauffmann, Jens

    2008-11-01

    We present the results of a search for all embedded protostars with internal luminosities <=1.0 L⊙ in the full sample of nearby, low-mass star-forming regions surveyed by the Spitzer Space Telescope Legacy Project "From Molecular Cores to Planet Forming Disks" (c2d). The internal luminosity of a source, Lint, is the luminosity of the central source and excludes luminosity arising from external heating. On average, the Spitzer c2d data are sensitive to embedded protostars with Lint >= 4 × 10-3(d/140 pc)2 L⊙, a factor of 25 better than the sensitivity of the Infrared Astronomical Satellite (IRAS) to such objects. We present a set of selection criteria used to identify candidates from the Spitzer data and examine complementary data to decide whether each candidate is truly an embedded protostar. We find a tight correlation between the 70 μm flux and internal luminosity of a protostar, an empirical result based on both observations and detailed two-dimensional radiative transfer models of protostars. We identify 50 embedded protostars with Lint <= 1.0 L⊙ 15 have Lint <= 0.1 L⊙. The intrinsic distribution of source luminosities increases to lower luminosities. While we find sources down to the above sensitivity limit, indicating that the distribution may extend to luminosities lower than probed by these observations, we are able to rule out a continued rise in the distribution below Lint = 0.1 L⊙. Between 75% and 85% of cores classified as starless prior to being observed by Spitzer remain starless to our luminosity sensitivity; the remaining 15%-25% harbor low-luminosity, embedded protostars. We compile complete spectral energy distributions for all 50 objects and calculate standard evolutionary signatures (Lbol, Tbol, and Lbol/Lsmm) and argue that these objects are inconsistent with the simplest picture of star formation, wherein mass accretes from the core onto the protostar at a constant rate.

  14. Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2012-09-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with \\dot{M}_*\\sim 0.1{--}1 \\,M_\\odot \\,yr^{-1} during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper, we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 103 M ⊙. To this end, we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 10-2 M ⊙ yr-1, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates, the star always has a radius exceeding 100 R ⊙, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~100 M ⊙ follows the same track with R *vpropM 1/2 * in all cases with accretion rates >~ 10-2 M ⊙ yr-1 at a stellar mass of 103 M ⊙, the radius is ~= 7000 R ⊙ (sime 30 AU). With higher accretion rates, the onset of hydrogen burning is shifted toward higher stellar masses. In particular, for accretion rates exceeding \\dot{M}_*\\gtrsim 0.1 \\,M_\\odot \\,yr^{-1}, there is no significant hydrogen burning even after 103 M ⊙ have accreted onto the protostar. Such "supergiant" protostars have effective temperatures as low as T eff ~= 5000 K throughout their evolution and because they hardly emit ionizing photons, they do not create an H II region or significantly heat their immediate surroundings. Thus, radiative feedback is unable to hinder the growth of rapidly accreting stars to masses in excess of 103 M ⊙ as long as material is accreted at rates \\dot{M}_*\\gtrsim 10^{-2} \\,M_\\odot \\,yr^{-1}.

  15. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  16. Proceedings of Protostars and Planets V

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Oral presentation sessions in this conference include: Clouds and cores; Star formation and protostars; Binaries and multiples; Newborn massive stars; jets and outflows; Clusters and associations; T Tauri stars and disks; Brown dwarfs; Planet formation and evolution; Extrasolar planets; Dust and protoplanetary disks; Early solar system and Astrobiology. Poster presentations included: Clouds and Cores. Collapse and Protostars, Binaries and Multiples, Clusters, Associations, and the IMF, Jets and Outflows, T Tauri Stars and Other Young Stars, Disks and Disk Accretion, Brown Dwarfs, Herbig Ae/Be Stars and Massive Stars, Solar System Objects, Planet Formation, Extrasolar Planets and Planet Detection, Properties of Protoplanetary Disks, Migration and Planetary Orbits and Meteoritics and Astrobiology

  17. THE BURST MODE OF ACCRETION IN PRIMORDIAL PROTOSTARS

    SciTech Connect

    Vorobyov, Eduard I.; DeSouza, Alexander L.; Basu, Shantanu E-mail: alexander.desouza@gmail.com

    2013-05-10

    We study the formation and long-term evolution of primordial protostellar disks harbored by first stars using numerical hydrodynamics simulations in the thin-disk limit. The initial conditions are specified by pre-stellar cores with distinct mass, angular momentum, and temperature. This allows us to probe several tens of thousand years of the disk's initial evolution, during which we observe multiple episodes of fragmentation leading to the formation of gravitationally bound gaseous clumps within spiral arms. These fragments are torqued inward due to gravitational interaction with the spiral arms on timescales of 10{sup 3}-10{sup 4} yr and accreted onto the growing protostar, giving rise to accretion and luminosity bursts. The burst phenomenon is fueled by continuing accretion of material falling onto the disk from the collapsing parent core, which replenishes the mass lost by the disk due to accretion, and triggers repetitive episodes of disk fragmentation. We show that the burst phenomenon is expected to occur for a wide spectrum of initial conditions in primordial pre-stellar cores and speculate on how the intense luminosities ({approx}10{sup 7} L{sub Sun }) produced by this mechanism may have important consequences for the disk evolution and subsequent growth of the protostar.

  18. Herschel-PACS imaging of protostars in the HH 1-2 outflow complex

    NASA Astrophysics Data System (ADS)

    Fischer, W. J.; Megeath, S. T.; Ali, B.; Tobin, J. J.; Osorio, M.; Allen, L. E.; Kryukova, E.; Stanke, T.; Stutz, A. M.; Bergin, E.; Calvet, N.; di Francesco, J.; Furlan, E.; Hartmann, L.; Henning, T.; Krause, O.; Manoj, P.; Maret, S.; Muzerolle, J.; Myers, P.; Neufeld, D.; Pontoppidan, K.; Poteet, C. A.; Watson, D. M.; Wilson, T.

    2010-07-01

    We present 70 and 160 μm Herschel science demonstration images of a field in the Orion A molecular cloud that contains the prototypical Herbig-Haro objects HH 1 and 2, obtained with the Photodetector Array Camera and Spectrometer (PACS). These observations demonstrate Herschel's unprecedented ability to study the rich population of protostars in the Orion molecular clouds at the wavelengths where they emit most of their luminosity. The four protostars previously identified by Spitzer 3.6-40 μm imaging and spectroscopy are detected in the 70 μm band, and three are clearly detected at 160 μm. We measure photometry of the protostars in the PACS bands and assemble their spectral energy distributions (SEDs) from 1 to 870 μm with these data, Spitzer spectra and photometry, 2MASS data, and APEX sub-mm data. The SEDs are fit to models generated with radiative transfer codes. From these fits we can constrain the fundamental properties of the protostars. We find luminosities in the range 12-84 L⊙ and envelope densities spanning over two orders of magnitude. This implies that the four protostars have a wide range of envelope infall rates and evolutionary states: two have dense, infalling envelopes, while the other two have only residual envelopes. We also show the highly irregular and filamentary structure of the cold dust and gas surrounding the protostars as traced at 160 μm. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This work includes data acquired with the Atacama Pathfinder Experiment (APEX; E-082.F-9807, E-284.C-5015). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Figures 2 and 3 are only available in electronic format at http://www.aanda.org

  19. Protostars at Low Extinction in Orion A

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Lada, Charles J.

    2016-07-01

    In the list of young stellar objects (YSOs) compiled by Megeath et al. for the Orion A molecular cloud, only 44 out of 1208 sources found projected onto low extinction ({A}{{K}}\\lt 0.8 mag) gas are identified as protostars. These objects are puzzling because protostars are not typically expected to be associated with extended low extinction material. Here, we use high resolution extinction maps generated from Herschel data, optical/infrared and Spitzer Space Telescope photometry and spectroscopy of the low extinction protostellar candidate sources to determine if they are likely true protostellar sources or contaminants. Out of 44 candidate objects, we determine that 10 sources are likely protostars, with the rest being more evolved YSOs (18), galaxies (4), false detections of nebulosity and cloud edges (9), or real sources for which more data are required to ascertain their nature (3). We find none of the confirmed protostars to be associated with recognizable dense cores and we briefly discuss possible origins for these orphaned objects.

  20. CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS

    SciTech Connect

    Tobin, John J.; Stutz, Amelia M.; Henning, Thomas; Ragan, Sarah E.; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-10

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ∼5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ ∝ R {sup –2.5}. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.

  1. Characterizing the Youngest Herschel-detected Protostars. I. Envelope Structure Revealed by CARMA Dust Continuum Observations

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Stutz, Amelia M.; Megeath, S. Thomas; Fischer, William J.; Henning, Thomas; Ragan, Sarah E.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-01

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ~5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ vprop R -2.5. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.

  2. Molecular Anions in Protostars, Prestellar Cores and Dark Clouds

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin; Charnley, Steven; Buckle, Jane; Wash, Catherine; Millar, Tom

    2011-01-01

    From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H have been detected in six new sources. Using HC3N = 10(exp -9) emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds Ll172A, TMC-1C and L1495B. Derived [C6H(-)]/[C6H] anion-to-neutral ratios are approximately 1-10. The greatest C6H(-) column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.

  3. Herschel Far-infrared Photometric Monitoring of Protostars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Billot, N.; Morales-Calderón, M.; Stauffer, J. R.; Megeath, S. T.; Whitney, B.

    2012-07-01

    We have obtained time series observations of the Orion Nebula Cluster at 70 μm and 160 μm from the Herschel/PACS Photometer. This represents the first wide-field far-infrared photometric monitoring of a young star-forming region. The acquired 35' × 35' maps show complex extended structures, with unprecedented detail, that trace the interaction between the molecular gas and the young hot stars. We detect 43 protostars, most of which are situated along the integral-shaped filament extending from the Orion nebula, through OMC 2 and OMC 3. We present high-reliability light curves for some of these objects using the first six epochs of our observing program spread over 6 weeks. We find amplitude variations in excess of 20% for a fraction of the detected protostars over periods as short as a few weeks. This is inconsistent with the dynamical timescales of cool far-IR emitting material that orbits at hundreds of AU from the protostar, and it suggests that the mechanism(s) responsible for the observed variability originates from the inner region of the protostars, likely driven by variable mass accretion.

  4. HERSCHEL FAR-INFRARED PHOTOMETRIC MONITORING OF PROTOSTARS IN THE ORION NEBULA CLUSTER

    SciTech Connect

    Billot, N.; Morales-Calderon, M.; Stauffer, J. R.; Megeath, S. T.; Whitney, B.

    2012-07-10

    We have obtained time series observations of the Orion Nebula Cluster at 70 {mu}m and 160 {mu}m from the Herschel/PACS Photometer. This represents the first wide-field far-infrared photometric monitoring of a young star-forming region. The acquired 35' Multiplication-Sign 35' maps show complex extended structures, with unprecedented detail, that trace the interaction between the molecular gas and the young hot stars. We detect 43 protostars, most of which are situated along the integral-shaped filament extending from the Orion nebula, through OMC 2 and OMC 3. We present high-reliability light curves for some of these objects using the first six epochs of our observing program spread over 6 weeks. We find amplitude variations in excess of 20% for a fraction of the detected protostars over periods as short as a few weeks. This is inconsistent with the dynamical timescales of cool far-IR emitting material that orbits at hundreds of AU from the protostar, and it suggests that the mechanism(s) responsible for the observed variability originates from the inner region of the protostars, likely driven by variable mass accretion.

  5. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  6. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum

  7. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-type Protostars

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; López-Sepulcre, Ana; Ceccarelli, Cecilia; Neri, Roberto; Kahane, Claudine; Charnley, Steven B.

    2015-05-01

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  8. THE MAGNETIC FIELD MORPHOLOGY OF THE CLASS 0 PROTOSTAR L1157-mm

    SciTech Connect

    Stephens, Ian W.; Looney, Leslie W.; Kwon, Woojin; Crutcher, Richard M.; Hull, Charles L. H.; Plambeck, Richard L.; Chapman, Nicholas; Novak, Giles; Matthews, Tristan; Davidson, Jacqueline; Vaillancourt, John E.; Shinnaga, Hiroko

    2013-05-20

    We present the first detection of polarization around the Class 0 low-mass protostar L1157-mm at two different wavelengths. We show polarimetric maps at large scales (10'' resolution at 350 {mu}m) from the SHARC-II Polarimeter and at smaller scales (1.''2-4.''5 at 1.3 mm) from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The observations are consistent with each other and show inferred magnetic field lines aligned with the outflow. The CARMA observations suggest a full hourglass magnetic field morphology centered about the core; this is only the second well-defined hourglass detected around a low-mass protostar to date. We apply two different methods to CARMA polarimetric observations to estimate the plane-of-sky magnetic field magnitude, finding values of 1.4 and 3.4 mG.

  9. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221

    SciTech Connect

    Young, Chadwick H.; Young, Kaisa E.; Popa, Victor; Bourke, Tyler L.; Dunham, Michael M.; Evans, Neal J.; Joergensen, Jes K.; Shirley, Yancy L.; De Vries, Christopher; Claussen, Mark J.

    2009-09-01

    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars toward L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modeling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and a larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.

  10. Probing the methanol and CO snow lines in young protostars

    NASA Astrophysics Data System (ADS)

    Anderl, S.; Maret, S.

    2016-05-01

    "Snow lines", marking regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. As part of the CALYPSO Large Program, we have obtained observations of C18O, N2H+ and CH3OH towards the nearest low-luminosity Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. We observe an anti-correlation of C18O and N2H+ in four of these sources, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This reveals the CO snow line in these protostellar envelopes with unprecedented resolution. In addition, we observe compact methanol emission towards three of the sources. We have modeled the emission using a chemical model coupled with a radiative transfer module, using the temperature and density profiles self-consistently determined by Kristensen et al. ([4]). We find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out on H2O surfaces or in mixed ices. Our observations can thereby yield clues on the widely unknown composition of interstellar ices, being the initial seeds of complex organic chemistry.

  11. OBSERVING SIMULATED PROTOSTARS WITH OUTFLOWS: HOW ACCURATE ARE PROTOSTELLAR PROPERTIES INFERRED FROM SEDs?

    SciTech Connect

    Offner, Stella S. R.; Robitaille, Thomas P.; Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.

    2012-07-10

    The properties of unresolved protostars and their local environment are frequently inferred from spectral energy distributions (SEDs) using radiative transfer modeling. In this paper, we use synthetic observations of realistic star formation simulations to evaluate the accuracy of properties inferred from fitting model SEDs to observations. We use ORION, an adaptive mesh refinement (AMR) three-dimensional gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud including the effects of protostellar outflows. To obtain the dust temperature distribution and SEDs of the forming protostars, we post-process the simulations using HYPERION, a state-of-the-art Monte Carlo radiative transfer code. We find that the ORION and HYPERION dust temperatures typically agree within a factor of two. We compare synthetic SEDs of embedded protostars for a range of evolutionary times, simulation resolutions, aperture sizes, and viewing angles. We demonstrate that complex, asymmetric gas morphology leads to a variety of classifications for individual objects as a function of viewing angle. We derive best-fit source parameters for each SED through comparison with a pre-computed grid of radiative transfer models. While the SED models correctly identify the evolutionary stage of the synthetic sources as embedded protostars, we show that the disk and stellar parameters can be very discrepant from the simulated values, which is expected since the disk and central source are obscured by the protostellar envelope. Parameters such as the stellar accretion rate, stellar mass, and disk mass show better agreement, but can still deviate significantly, and the agreement may in some cases be artificially good due to the limited range of parameters in the set of model SEDs. Lack of correlation between the model and simulation properties in many individual instances cautions against overinterpreting properties inferred from SEDs for unresolved protostellar

  12. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    SciTech Connect

    Fernández-López, M.; Girart, J. M.; Curiel, S.; Fonfría, J. P.; Zapata, L. A.; Qiu, K. E-mail: girart@ieec.cat

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  13. Protostellar accretion traced with chemistry. Comparing synthetic C18O maps of embedded protostars to real observations

    NASA Astrophysics Data System (ADS)

    Frimann, S.; Jørgensen, J. K.; Padoan, P.; Haugbølle, T.

    2016-02-01

    Context. Understanding how protostars accrete their mass is a central question of star formation. One aspect of this is trying to understand whether the time evolution of accretion rates in deeply embedded objects is best characterised by a smooth decline from early to late stages or by intermittent bursts of high accretion. Aims: We create synthetic observations of deeply embedded protostars in a large numerical simulation of a molecular cloud, which are compared directly to real observations. The goal is to compare episodic accretion events in the simulation to observations and to test the methodology used for analysing the observations. Methods: Simple freeze-out and sublimation chemistry is added to the simulation, and synthetic C18O line cubes are created for a large number of simulated protostars. The spatial extent of C18O is measured for the simulated protostars and compared directly to a sample of 16 deeply embedded protostars observed with the Submillimeter Array. If CO is distributed over a larger area than predicted based on the protostellar luminosity, it may indicate that the luminosity has been higher in the past and that CO is still in the process of refreezing. Results: Approximately 1% of the protostars in the simulation show extended C18O emission, as opposed to approximately 50% in the observations, indicating that the magnitude and frequency of episodic accretion events in the simulation is too low relative to observations. The protostellar accretion rates in the simulation are primarily modulated by infall from the larger scales of the molecular cloud, and do not include any disk physics. The discrepancy between simulation and observations is taken as support for the necessity of disks, even in deeply embedded objects, to produce episodic accretion events of sufficient frequency and amplitude.

  14. The formation of a massive protostar through the disk accretion of gas.

    PubMed

    Chini, Rolf; Hoffmeister, Vera; Kimeswenger, Stefan; Nielbock, Markus; Nürnberger, Dieter; Schmidtobreick, Linda; Sterzik, Michael

    2004-05-13

    The formation of low-mass stars like our Sun can be explained by the gravitational collapse of a molecular cloud fragment into a protostellar core and the subsequent accretion of gas and dust from the surrounding interstellar medium. Theoretical considerations suggest that the radiation pressure from the protostar on the in-falling material may prevent the formation of stars above ten solar masses through this mechanism, although some calculations have claimed that stars up to 40 solar masses can in principle be formed via accretion through a disk. Given this uncertainty and the fact that most massive stars are born in dense clusters, it was suggested that high-mass stars are the result of the runaway merging of intermediate-mass stars. Here we report observations that clearly show a massive star being born from a large rotating accretion disk. The protostar has already assembled about 20 solar masses, and the accretion process is still going on. The gas reservoir of the circumstellar disk contains at least 100 solar masses of additional gas, providing sufficient fuel for substantial further growth of the forming star. PMID:15141204

  15. OT2_cceccare_4: Searching for the onset of energetic particle irradiation in Class 0 protostars

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.

    2011-09-01

    Several evidences tell us that the first stages of low mass star formation are very violent, characterized by, among other phenomena, an intense irradiation of energetic (MeV) particles. The goal of this proposal is to search for signs of MeV particle irradiation in a sample of low to intermediate mass Class 0 protostars. At this end, we propose to observe a selected list of high J HCO+ and N2H+ lines in a selected sample of sources. Based on the observations obtained within the KP CHESS, we estimate a total observing time of 20.5 hours.

  16. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    SciTech Connect

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C. E-mail: kbatygin@gps.caltech.edu

    2014-12-20

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function.

  17. Evidence for a solar system-size accretion disk around the massive protostar G192.16-3.82.

    PubMed

    Shepherd, D S; Claussen, M J; Kurtz, S E

    2001-05-25

    Seven-millimeter continuum observations of a massive bipolar outflow source, G192.16-3.82, were made at a milli-arc-second resolution with a capability that links the National Radio Astronomy Observatory's Very Large Array radio interferometer with the Very Long Baseline Array antenna, located in Pie Town, New Mexico. The observations provide evidence for a true accretion disk that is about the size of our solar system and located around a massive star. A model of the radio emission suggests the presence of a binary protostellar system. The primary protostar, G192 S1, at the center of the outflow, with a protostar mass of about 8 to 10 times the solar mass, is surrounded by an accretion disk with a diameter of 130 astronomical units (AU). The mass of the disk is on the order of the protostar mass. The outflow is poorly collimated with a full opening angle of about 40 degrees; there is no indication of a more highly collimated jetlike component. The companion source, G192 S2, is located 80 AU north of the primary source. PMID:11375484

  18. The V1647 Orionis (IRAS 05436-0007) Protostar and Its Environment

    NASA Astrophysics Data System (ADS)

    McGehee, Peregrine M.; Smith, J. Allyn; Henden, Arne A.; Richmond, Michael W.; Knapp, Gillian R.; Finkbeiner, Douglas P.; Ivezić, Željko; Brinkmann, J.

    2004-12-01

    We present Sloan Digital Sky Survey (SDSS) and United States Naval Observatory (USNO) observations of the V1647 Ori protostar and its surrounding field near NGC 2068. V1647 Ori, the likely driving source for HH 23, brightened significantly in 2003 November. Analysis of SDSS imaging acquired in 1998 November and 2002 February during the quiescent state, recent USNO photometry, and published Two Micron All Sky Survey (2MASS) and Gemini data show that the color changes associated with brightening suggest an EX Lupi type (EXor) outburst rather than a simple dust-clearing event.

  19. METHYL CYANIDE OBSERVATIONS TOWARD MASSIVE PROTOSTARS

    SciTech Connect

    Rosero, V.; Hofner, P.; Kurtz, S.; Bieging, J.; Araya, E. D.

    2013-07-01

    We report the results of a survey in the CH{sub 3}CN J = 12 {yields} 11 transition toward a sample of massive proto-stellar candidates. The observations were carried out with the 10 m Submillimeter Telescope on Mount Graham, AZ. We detected this molecular line in 9 out of 21 observed sources. In six cases this is the first detection of this transition. We also obtained full beam sampled cross-scans for five sources which show that the lower K-components can be extended on the arcminute angular scale. The higher K-components, however, are always found to be compact with respect to our 36'' beam. A Boltzmann population diagram analysis of the central spectra indicates CH{sub 3}CN column densities of about 10{sup 14} cm{sup -2}, and rotational temperatures above 50 K, which confirms these sources as hot molecular cores. Independent fits to line velocity and width for the individual K-components resulted in the detection of an increasing blueshift with increasing line excitation for four sources. Comparison with mid-infrared (mid-IR) images from the SPITZER GLIMPSE/IRAC archive for six sources show that the CH{sub 3}CN emission is generally coincident with a bright mid-IR source. Our data clearly show that the CH{sub 3}CN J = 12 {yields} 11 transition is a good probe of the hot molecular gas near massive protostars, and provide the basis for future interferometric studies.

  20. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NASA Astrophysics Data System (ADS)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-12-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in the presence of a strong Lyman-Werner radiation background. Particularly, we investigate the impact of turbulence and rotation on the fragmentation behaviour of the gas cloud. We accomplish this goal by varying the initial turbulent and rotational velocities. Methods: We performed 3D adaptive mesh refinement simulations with a resolution of 64 cells per Jeans length using the ENZO code, simulating the formation of a protostar up to unprecedentedly high central densities of 1021 cm-3 and spatial scales of a few solar radii. To achieve this goal, we employed the KROME package to improve modelling of the chemical and thermal processes. Results: We find that the physical properties of the simulated gas clouds become similar on small scales, irrespective of the initial amount of turbulence and rotation. After the highest level of refinement was reached, the simulations have been evolved for an additional ~5 freefall times. A single bound clump with a radius of 2 × 10-2 AU and a mass of ~7 × 10-2 M⊙ is formed at the end of each simulation, marking the onset of protostar formation. No strong fragmentation is observed by the end of the simulations, regardless of the initial amount of turbulence or rotation, and high accretion rates of a few solar masses per year are found. Conclusions: Given such high accretion rates, a quasi-star of 105 M⊙ is expected to form within 105 years. Appendix A is available in electronic form at http://www.aanda.org

  1. Waterfalls around protostars. Infall motions towards Class 0/I envelopes as probed by water

    NASA Astrophysics Data System (ADS)

    Mottram, J. C.; van Dishoeck, E. F.; Schmalzl, M.; Kristensen, L. E.; Visser, R.; Hogerheijde, M. R.; Bruderer, S.

    2013-10-01

    Context. For stars to form, material must fall inwards from core scales through the envelope towards the central protostar. While theories of how this takes place have been around for some time, the velocity profile around protostars is poorly constrained. The combination of observations in multiple transitions of a tracer which is sensitive to kinematics and radiative transfer modelling of those lines has the potential to break this deadlock. Aims: Seven protostars observed with the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory as part of the "Water in star-forming regions with Herschel" (WISH) survey show infall signatures in water line observations. We aim to constrain the infall velocity and the radii over which infall is taking place within the protostellar envelopes of these sources. We will also use these data to constrain the chemistry of cold water. Methods: We use 1-D non-LTE ratran radiative transfer models of the observed water lines to constrain the infall velocity and chemistry in the protostellar envelopes of six Class 0 protostars and one Class I source. We assume a free-fall velocity profile and, having found the best fit, vary the radii over which infall takes place. Results: In the well-studied Class 0 protostar NGC 1333-IRAS4A we find that our observations probe infall over the whole envelope to which our observations are sensitive (r ≳ 1000 AU). For L1527, L1157, BHR71 and IRAS 15398 infall takes place on core to envelope scales (i.e. ~10 000-3000 AU). In Serpens-SMM4 and GSS30 the inverse P-Cygni profiles seen in the ground-state lines are more likely due to larger-scale motions or foreground clouds. Models including a simple consideration of the chemistry are consistent with the observations, while using step abundance profiles are not. The non-detection of excited water in the inner envelope in six out of seven protostars is further evidence that water must be heavily depleted from the gas

  2. DISK AND ENVELOPE STRUCTURE IN CLASS 0 PROTOSTARS. II. HIGH-RESOLUTION MILLIMETER MAPPING OF THE SERPENS SAMPLE

    SciTech Connect

    Enoch, Melissa L.; Duchene, Gaspard; Wright, Melvyn C. H.; Corder, Stuartt; Bolatto, Alberto D.; Teuben, Peter J.; Zauderer, B. Ashley; Culverhouse, Thomas L.; Lamb, James W.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L.; Kwon, Woojin; Marrone, Daniel P.; Perez, Laura M.

    2011-08-01

    We present high-resolution CARMA 230 GHz continuum imaging of nine deeply embedded protostars in the Serpens Molecular Cloud, including six of the nine known Class 0 protostars in Serpens. This work is part of a program to characterize disk and envelope properties for a complete sample of Class 0 protostars in nearby low-mass star-forming regions. Here, we present CARMA maps and visibility amplitudes as a function of uv-distance for the Serpens sample. Observations are made in the B, C, D, and E antenna configurations, with B configuration observations utilizing the CARMA Paired Antenna Calibration System. Combining data from multiple configurations provides excellent uv-coverage (4-500 k{lambda}), allowing us to trace spatial scales from 10{sup 2} to 10{sup 4} AU. We find evidence for compact disk components in all of the observed Class 0 protostars, suggesting that disks form at very early times (t < 0.2 Myr) in Serpens. We make a first estimate of disk masses using the flux at 50 k{lambda}, where the contribution from the envelope should be negligible, assuming an unresolved disk. The resulting disk masses range from 0.04 M{sub sun} to 1.7 M{sub sun}, with a mean of approximately 0.2 M{sub sun}. Our high-resolution maps are also sensitive to binary or multiple sources with separations {approx}> 250 AU, but significant evidence of multiplicity on scales <2000 AU is seen in only one source.

  3. Rotating Bullets from A Variable Protostar

    NASA Astrophysics Data System (ADS)

    Chen, Xuepeng; Arce, Héctor G.; Zhang, Qizhou; Launhardt, Ralf; Henning, Thomas

    2016-06-01

    We present Submillimeter Array (SMA) CO (2–1) observations toward the protostellar jet driven by SVS 13 A, a variable protostar in the NGC 1333 star-forming region. The SMA CO (2–1) images show an extremely high-velocity jet composed of a series of molecular “bullets.” Based on the SMA CO observations, we discover clear and large systematic velocity gradients, perpendicular to the jet axis, in the blueshifted and redshifted bullets. After discussing several alternative interpretations, such as twin-jets, jet precession, warped disk, and internal helical shock, we suggest that the systematic velocity gradients observed in the bullets result from the rotation of the SVS 13 A jet. From the SMA CO images, the measured rotation velocities are 11.7–13.7 km s‑1 for the blueshifted bullet and 4.7 ± 0.5 km s‑1 for the redshifted bullet. The estimated specific angular momenta of the two bullets are comparable to those of dense cores, about 10 times larger than those of protostellar envelopes, and about 20 times larger than those of circumstellar disks. If the velocity gradients are due to the rotation of the SVS 13 A jet, the significant amount of specific angular momenta of the bullets indicates that the rotation of jets/outflows is a key mechanism to resolve the so-called “angular momentum problem” in the field of star formation. The kinematics of the bullets suggests that the jet launching footprint on the disk has a radius of ∼7.2–7.7 au, which appears to support the extended disk-wind model. We note that further observations are needed to comprehensively understand the kinematics of the SVS 13 A jet, in order to confirm the rotation nature of the bullets.

  4. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and

  5. Microwave Spectroscopy of Complex Molecules Around the Young Protostar Chamaeleon MMS1

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Charnley, Steven B.; Wirstrom, Eva S.; Smith, Robert G.

    2011-01-01

    Observations are presented of emission lines from organic molecules at frequencies 30-100 GHz in the vicinity of the extremely young, chemically rich, very low-luminosity protostar and candidate first hydrostatic core Chamaeleon MMS1. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon-chains and methanol. Emission from the carbon-chain-bearing species peaks very near to the protostar; methanol peaks about 0.1 pc further away. The mean molecular hydrogen number density is calculated to be 10(exp 6) per cc. and the gas kinetic temperature is in the range 4-7 K. The abundances of long carbon chains (including C6H and HC7N) are very large -- similar to those found in the most carbon-chain-rich regions of the Galaxy, and indicative of a non-equilibrium carbon chemistry. The observed methanol and acetaldehyde abundances indicate active grain-surface chemistry and desorption processes. The carbon-chain anions C4H- and C6H- were not detected and the upper limit on the anion-to-neutral ratio for C4H- is less than 0.02% and for C6H-, less than 10%. These values are consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC3N and c-C3H2 were detected, with fractionation ratios of about 4%, and 22%, respectively. A low c-C3H2 ortho-to-para ratio was measured, which is consistent with a molecular hydrogen ortho-to-para ratio of close to zero and implies a relatively young chemical age (less than about 10(exp 5) yr) for the matter surrounding Cha-MMS1. These observations show that a high level of chemical complexity can be present in star-forming gas.

  6. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Persson, M. V.; Jørgensen, J. K.; Wampfler, S. F.; Lykke, J. M.

    2015-04-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde), and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 - higher than in the Class 0 source IRAS 16293-2422 (~1), but similar to the lower limits derived in comets (≥3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars might be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios might consequently be inherited from earlier stages of star formation if the young Sun experienced conditions similar to NGC 1333 IRAS2A. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Figures 3-4 and Table 1 are available in electronic form at http://www.aanda.org

  7. ALMA Observations of the Transition from Infall Motion to Keplerian Rotation around the Late-phase Protostar TMC-1A

    NASA Astrophysics Data System (ADS)

    Aso, Yusuke; Ohashi, Nagayoshi; Saigo, Kazuya; Koyamatsu, Shin; Aikawa, Yuri; Hayashi, Masahiko; Machida, Masahiro N.; Saito, Masao; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei

    2015-10-01

    We have observed the Class I protostar TMC-1A with the Atacama Millimeter/submillimeter Array (ALMA) in the emissions of 12CO and C18O (J = 2–1) and 1.3 mm dust continuum. Continuum emission with a deconvolved size of 0.″50 × 0.″37, perpendicular to the 12CO outflow, is detected. It most likely traces a circumstellar disk around TMC-1A, as previously reported. In contrast, a more extended structure is detected in C18O, although it is still elongated with a deconvolved size of 3.″3 × 2.″2, indicating that C18O traces mainly a flattened envelope surrounding the disk and the central protostar. C18O shows a clear velocity gradient perpendicular to the outflow at higher velocities, indicative of rotation, while an additional velocity gradient along the outflow is found at lower velocities. The radial profile of the rotational velocity is analyzed in detail, finding that it is given as a power law ∝r‑a with an index of ∼0.5 at higher velocities. This indicates that the rotation at higher velocities can be explained as Keplerian rotation orbiting a protostar with a dynamical mass of 0.68 {M}ȯ (inclination corrected). The additional velocity gradient of C18O along the outflow is considered to be mainly infall motions in the envelope. Position–velocity diagrams made from models consisting of an infalling envelope and a Keplerian disk are compared with the observations, revealing that the observed infall velocity is ∼0.3 times smaller than the free-fall velocity yielded by the dynamical mass of the protostar. Magnetic fields could be responsible for the slow infall velocity. A possible scenario of Keplerian disk formation is discussed.

  8. CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION

    SciTech Connect

    Sadavoy, S. I.; Di Francesco, J.; André, Ph.; Maury, A.; Men'shchikov, A.; Motte, F.; Hennemann, M.; Könyves, V.; Louvet, F.; Roy, A.; Bernard, J.-P.; Nguyên-Lu'o'ng, Q.; Schneider, N.; Bontemps, S.; Arzoumanian, D.; Hill, T.; Peretto, N.; and others

    2014-06-01

    We use PACS and SPIRE continuum data at 160 μm, 250 μm, 350 μm, and 500 μm from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC 348, L1448, L1455, and NGC 1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 μm as well as archival Spitzer catalogs and SCUBA 850 μm photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.

  9. Protostars, multiplicity, and disk evolution in the Corona Australis region: a Herschel Gould Belt Study

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, A.; Henning, T.; Linz, H.; André, P.; Stutz, A.; Eiroa, C.; White, G. J.

    2013-03-01

    Context. The CrA region and the Coronet cluster form a nearby (138 pc), young (1-2 Myr) star-forming region that hosts a moderate population of Class I, II, and III objects. Aims: We study the structure of the cluster and the properties of the protostars and protoplanetary disks in the region. Methods: We present Herschel PACS photometry at 100 and 160 μm, obtained as part of the Herschel Gould Belt Survey. The Herschel maps reveal the cluster members within the cloud with high sensitivity and high dynamic range. Results: Many of the cluster members are detected, including some embedded, very low-mass objects, several protostars (some of them extended), and substantial emission from the surrounding molecular cloud. Herschel also reveals some striking structures, such as bright filaments around the IRS 5 protostar complex and a bubble-shaped rim associated with the Class I object IRS 2. The disks around the Class II objects display a wide range of mid- and far-IR excesses consistent with different disk structures. We have modeled the disks with the RADMC radiative transfer code to quantify their properties. Some of them are consistent with flared, massive, relatively primordial disks (S CrA, T CrA). Others display significant evidence for inside-out evolution, consistent with the presence of inner holes/gaps (G-85, G-87). Finally, we found disks with a dramatic small dust depletion (G-1, HBC 677) that, in some cases, could be related to truncation or to the presence of large gaps in a flared disk (CrA-159). The derived masses for the disks around the low-mass stars are found to be below the typical values in Taurus, in agreement with previous Spitzer observations. Conclusions: The Coronet cluster presents itself as an interesting compact region that contains both young protostars and very evolved disks. The Herschel data provide sufficient spatial resolution to detect small-scale details, such as filamentary structures or spiral arms associated with multiple star

  10. HOPS 136: An edge-on orion protostar near the end of envelope infall

    SciTech Connect

    Fischer, William J.; Megeath, S. Thomas; Tobin, John J.; Hartmann, Lee; Kounkel, Marina; Stutz, Amelia M.; Poteet, Charles A.; Ali, Babar; Manoj, P.; Remming, Ian; Stanke, Thomas; Watson, Dan M.

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  11. MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527

    SciTech Connect

    Tobin, John J.; Hartmann, Lee; Calvet, Nuria; Chiang, Hsin-Fang; Looney, Leslie W.; Wilner, David J.; Loinard, Laurent; D'Alessio, Paola

    2013-07-01

    We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at {lambda} = 870 {mu}m and 3.4 mm from the Submillimeter Array and Combined Array for Research in Millimeter Astronomy. We detect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M{sub Sun }, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed: {alpha} {approx} 2, implying a dust opacity spectral index {beta} {approx} 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved L' image, spectral energy distribution, and mid-infrared spectrum. The best-fitting model has a disk radius of R = 125 AU, is highly flared (H{proportional_to}R {sup 1.3}), has a radial density profile {rho}{proportional_to}R {sup -2.5}, and has a mass of 0.0075 M{sub Sun }. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 are comparable to disks around pre-main-sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of {approx}1 {mu}m-sized dust grains.

  12. Distributed low-mass star formation in the IRDC G34.43+00.24

    SciTech Connect

    Foster, Jonathan B.; Arce, Héctor G.; Offner, Stella; Kassis, Marc; Sanhueza, Patricio; Jackson, James M.; Finn, Susanna C.; Sakai, Takeshi; Sakai, Nami; Yamamoto, Satoshi; Guzmán, Andrés E.; Rathborne, Jill M.

    2014-08-20

    We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine the column density structure of the cloud. In combination with an empirically verified model of the magnitude distribution of background stars, this column density map allows us to reliably determine overdensities of red sources that are due to embedded protostars in the cloud. We also identify protostars through their extended emission in the K band, which comes from excited H{sub 2} in protostellar outflows or reflection nebulosity. We find a population of distributed low-mass protostars, suggesting that low-mass protostars may form earlier than, or contemporaneously with, high-mass protostars in such a filament. The low-mass protostellar population may also produce the narrow line-width SiO emission observed in some clouds without high-mass protostars. Finally, we use a molecular line map of the cloud to determine the virial parameter per unit length along the filament and find that the highest mass protostars form in the most bound portion of the filament, as suggested by theoretical models.

  13. The Gould Belt 'MISFITS' Survey: The Real Solar Neighborhood Protostars

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda; Evans, Neal J., II

    2015-06-01

    We present an HCO+ J=3\\to 2 survey of Class 0+I and Flat SED young stellar objects (YSOs) found in the Gould Belt clouds by surveys with Spitzer. Our goal is to provide a uniform Stage 0+I source indicator for these embedded protostar candidates. We made single point HCO+ J=3\\to 2 measurements toward the source positions at the CSO and APEX of 546 YSOs (89% of the Class 0+I + Flat SED sample). Using the criteria from van Kempen et al., we classify sources as Stage 0+I or bona fide protostars and find that 84% of detected sources meet the criteria. We recommend a timescale for the evolution of Stage 0+I (embedded protostars) of 0.54 Myr. We find significant correlations of HCO+ integrated intensity with α and Tbol but not with Lbol. The detection fraction increases smoothly as a function of α and Lbol, while decreasing smoothly with Tbol. Using the Stage 0+I sources tightens the relation between protostars and high extinction regions of the cloud; 89% of Stage I sources lie in regions with AV > 8 mag. Class 0+I and Flat SED YSOs that are not detected in HCO+ have, on average, a factor of ∼2 higher Tbol and a factor of ∼5 lower Lbol than YSOs with HCO+ detections. We find less YSO contamination, defined as the number of undetected YSOs divided by the total number surveyed, for sources with Tbol ≲ 600 K and Lbol ≳ 1 L⊙. The contamination percentage is >90% at AV < 4 mag and decreases as AV increases.

  14. Circumstellar ring formation in rapidly rotating protostars

    SciTech Connect

    Williams, H.A.; Tohline, J.E.

    1988-11-01

    Rapidly rotating, self-gravitating polytropes with polytropic indices n = 0.8 and n = 1.8 are studied using a three-dimensional hydrodynamic computer program. The two models are shown as they evolve to extremely nonlinear amplitudes, ending in a type of fission. It is found that the low-mass, roughly axisymmetric ring appears to be dynamically stable, but capable of condensing into planets over a much longer time scale. 34 references.

  15. DETECTION OF FORMAMIDE, THE SIMPLEST BUT CRUCIAL AMIDE, IN A SOLAR-TYPE PROTOSTAR

    SciTech Connect

    Kahane, C.; Ceccarelli, C.; Faure, A.

    2013-02-01

    Formamide (NH{sub 2}CHO), the simplest possible amide, has recently been suggested to be a central species in the synthesis of metabolic and genetic molecules, the chemical basis of life. In this Letter, we report the first detection of formamide in a protostar, IRAS 16293-2422, which may be similar to the Sun and solar system progenitor. The data combine spectra from the millimeter and submillimeter TIMASSS survey with recent, more sensitive observations at the IRAM 30 m telescope. With an abundance relative to H{sub 2} of {approx}10{sup -10}, formamide appears as abundant in this solar-type protostar as in the two high-mass star-forming regions, Orion-KL and SgrB2, where this species has previously been detected. Given the largely different UV-illuminated environments of the three sources, the relevance of UV photolysis of interstellar ices in the synthesis of formamide is therefore questionable. Assuming that this species is formed in the gas phase via the neutral-neutral reaction between the radical NH{sub 2} and H{sub 2}CO, we predict an abundance in good agreement with the value derived from our observations. The comparison of the relative abundance [NH{sub 2}CHO]/[H{sub 2}O] in IRAS 16293-2422 and in the coma of the comet Hale-Bopp supports the similarity between interstellar and cometary chemistry. Our results thus suggest that the abundance of some cometary organic volatiles could reflect gas phase rather than grain-surface interstellar chemistry.

  16. Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission

    NASA Astrophysics Data System (ADS)

    Imai, Hiroshi; Iwata, Takahiro; Miyoshi, Makoto

    1999-08-01

    We made VLBI observations of the water maser emission associated with a protostar, IRAS 16293-2422, using the Kashima-Nobeyama Interferometer (KNIFE) and the Japanese domestic VLBI network (J-Net).\\footnote[2]. These distributions of water maser features showed the blue-shifted and red-shifted components separated in the north-south direction among three epochs spanning three years. The direction of the separation was perpendicular to the molecular outflow and parallel to the elongation of the molecular disk. These steady distributions were successfully modeled by a rotating-infalling disk with an outer radius of 100 AU around a central object with a mass of 0.3 MO . The local specific angular momentum of the disk was calculated to be 0.2-1.0times 10-3 km s-1 pc at a radius of 20-100 AU. This value is roughly equal to that of the disk of IRAS 00338+6312 in L1287 and those of the molecular disks around the protostars in the Taurus molecular cloud. The relatively large disk radius of about 100 AU traced by water maser emission suggests that impinging clumps onto the disk should be hotter than 200 K to excite the water maser emission. Mizusawa, Nobeyama, and Kagoshima stations are operated by staff members of National Astronomical Observatory of the Ministry of Education, Science, Sports and Culture. Kashima station is operated by staff members of Communications Research Laboratory of the Ministry of Posts and Telecomunications. The recent status of J-Net is seen in the WWW home page: http://www.nro.nao.ac.jp/\\ \\ miyaji/Jnet.

  17. Molecules, dust, and protostars in NGC 3503

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Vasquez, J.; Romero, G. A.; Cappa, C. E.; Barbá, R.; Bronfman, L.

    2014-05-01

    Aims: We present here a follow-up study of the molecular gas and dust in the environs of the star forming region NGC 3503. This study aims at dealing with the interaction of the Hii region NGC 3503 with its parental molecular cloud, and also with the star formation in the region, that was possibly triggered by the expansion of the ionization front against the parental cloud. Methods: To analyze the molecular gas we use CO(J = 2 → 1), 13CO(J = 2 → 1), C18O(J = 2 → 1), and HCN(J = 3 → 2) line data obtained with the on-the-fly technique from the APEX telescope. To study the distribution of the dust, we make use of unpublished images at 870 μm from the ATLASGAL survey and IRAC-GLIMPSE archival images. We use public 2MASS and WISE data to search for infrared candidate young stellar objects (YSOs) in the region. Results: The new APEX observations allowed the substructure of the molecular gas in the velocity range from ~-28 km s-1 to -23 km s-1 to be imaged in detail. The morphology of the molecular gas close to the nebula, the location of the PDR, and the shape of radio continuum emission suggest that the ionized gas is expanding against its parental cloud, and confirm the champagne flow scenario. We have identified several molecular clumps and determined some of their physical and dynamical properties such as density, excitation temperature, mass, and line width. Clumps adjacent to the ionization front are expected to be affected by the Hii region, unlike those that are distant from it. We have compared the physical properties of the two kinds of clumps to investigate how the molecular gas has been affected by the Hii region. Clumps adjacent to the ionization fronts of NGC 3503 and/or the bright rimmed cloud SFO 62 have been heated and compressed by the ionized gas, but their line width is not different from those that are too distant from the ionization fronts. We identified several candidate YSOs in the region. Their spatial distribution suggests that stellar

  18. The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). II. Multiplicity of Protostars in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Looney, Leslie W.; Li, Zhi-Yun; Chandler, Claire J.; Dunham, Michael M.; Segura-Cox, Dominique; Sadavoy, Sarah I.; Melis, Carl; Harris, Robert J.; Kratter, Kaitlin; Perez, Laura

    2016-02-01

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L⊙ and ˜33 L⊙, with a median of 0.7 L⊙. This multiplicity study is based on the Ka-band data, having a best resolution of ˜0.″065 (15 au) and separations out to ˜43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ˜75 au and another peak at ˜3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50-400 au) structures and may be candidates for ongoing disk fragmentation.

  19. The evolving velocity field around protostars

    NASA Astrophysics Data System (ADS)

    Brinch, Christian

    2008-10-01

    Using a hydrodynamical simulation of a gravitational collapse and subsequent disk formation, we calculate a time-resolved synthetic data set with a sophisticated molecular excitation and radiation transfer code. These synthetic data consist of a number of molecular gas emission lines that contains information about the density, temperature, and the velocity field. We use this simulated data set to asses how accurately we can extract information about the underlying velocity field from the lines with a simple parameterized velocity model. This model has only two free parameters, the central stellar mass and a geometric angle that describes the ratio of infall to rotation. We find that, by modeling the spectral lines, we can reliably and uniquely describe the underlying velocity field as given by the hydrodynamical simulation and we then assume that by applying the same parameterized model to real data, we can equally well determine the velocity field of observed young stellar objects. We observe two young sources, L1489 IRS in the Taurus star forming region and IRAS2A in NGC-1333. Both sources are observed with single dish telescopes (JCMT, OSO) and with the Submilimeter Array. For L1489~IRS, the interferometric observations reveal a kinematically distinct region on a scale of a few hundred AUs, dominated by rotation, which is still surrounded by some envelope material. Contrary to this, IRAS2A shows no sign of rotation despite the fact that a compact (disk) component is needed in order to interpret the continuum measurements. We do not detect this component in the velocity field and we conclude that IRAS2A is a considerably younger source than L1489 IRS. While this result is based on the gas flow alone, it is entirely consistent with the current classification of IRAS2A as a Class 0 object and L1489~IRS as a Class I object. This thesis also contains a treatment of CO depletion in the disk and envelope. Under certain temperature and density conditions, CO may freeze

  20. HOPS 383: AN OUTBURSTING CLASS 0 PROTOSTAR IN ORION

    SciTech Connect

    Safron, Emily J.; Megeath, S. Thomas; Booker, Joseph; Fischer, William J.; Furlan, Elise; Rebull, Luisa M.; Stutz, Amelia M.; Stanke, Thomas; Billot, Nicolas; Tobin, John J.; Ali, Babar; Allen, Lori E.; Watson, Dan M.; Wilson, T. L.

    2015-02-10

    We report the dramatic mid-infrared brightening between 2004 and 2006 of Herschel Orion Protostar Survey (HOPS) 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 μm with a brightness increase also apparent at 4.5 μm. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K{sub s} imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L{sub ⊙}. Post-outburst time-series mid- and far-infrared photometry show no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a 6 year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.

  1. Radio variability survey of very low luminosity protostars

    SciTech Connect

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  2. Star formation in a turbulent framework: from giant molecular clouds to protostars

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2016-06-01

    Turbulence is thought to be a primary driving force behind the early stages of star formation. In this framework large, self-gravitating, turbulent clouds fragment into smaller clouds which in turn fragment into even smaller ones. At the end of this cascade we find the clouds which collapse into protostars. Following this process is extremely challenging numerically due to the large dynamical range, so in this paper we propose a semi-analytic framework which is able to model star formation from the largest, giant molecular cloud scale, to the final protostellar size scale. Because of the simplicity of the framework it is ideal for theoretical experimentation to explore the principal processes behind different aspects of star formation, at the cost of introducing strong assumptions about the collapse process. The basic version of the model discussed in this paper only contains turbulence, gravity and crude assumptions about feedback; nevertheless it can reproduce the observed core mass function and provide the protostellar system mass function (PSMF), which shows a striking resemblance to the observed initial mass function (IMF), if a non-negligible fraction of gravitational energy goes into turbulence. Furthermore we find that to produce a universal IMF protostellar feedback must be taken into account otherwise the PSMF peak shows a strong dependence on the background temperature.

  3. Properties of Protostars in the Elephant Trunk in the Globule IC 1396A

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Faied, Dohy; Rho, Jeonghee; Boogert, Adwin; Tappe, Achim; Jarrett, Thomas H.; Morris, Patrick; Cambrésy, Laurent; Palla, Francesco; Valdettaro, Riccardo

    2009-01-01

    Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, epsilon, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10-6 M sun yr-1 and present stellar masses 0.1-2 M sun. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γ b , has luminosity less than 0.1 L sun, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γ b . The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and

  4. Multi-Wavelength Views of Protostars in IC 1396

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    NASA's Spitzer Space Telescope has captured a glowing stellar nursery within a dark globule that is opaque at visible light. These new images pierce through the obscuration to reveal the birth of new protostars, or embryonic stars, and young stars never before seen.

    The Elephant's Trunk Nebula is an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus. Located at a distance of 2,450 light-years, the globule is a condensation of dense gas that is barely surviving the strong ionizing radiation from a nearby massive star. The globule is being compressed by the surrounding ionized gas.

    The large composite image above is a product of combining data from the observatory's multiband imaging photometer and the infrared array camera. The thermal emission at 24 microns measured by the photometer (red) is combined with near-infrared emission from the camera at 3.6/4.5 microns (blue) and from 5.8/8.0 microns (green). The colors of the diffuse emission and filaments vary, and are a combination of molecular hydrogen (which tends to be green) and polycyclic aromatic hydrocarbon (brown) emissions.

    Within the globule, a half dozen newly discovered protostars, or embryonic stars, are easily discernible as the bright red-tinted objects, mostly along the southern rim of the globule. These were previously undetected at visible wavelengths due to obscuration by the thick cloud ('globule body') and by dust surrounding the newly forming stars. The newborn stars form in the dense gas because of compression by the wind and radiation from a nearby massive star (located outside the field of view to the left). The winds from this unseen star are also responsible for producing the

  5. Formaldehyde and Methanol Deuteration in Protostars: Fossils from a Past Fast High-density Pre-collapse Phase

    NASA Astrophysics Data System (ADS)

    Taquet, V.; Ceccarelli, C.; Kahane, C.

    2012-03-01

    Extremely high deuteration of several molecules has been observed around low-mass protostars for a decade. Among them, formaldehyde and methanol present particularly high deuteration, with observations of abundant doubly and triply deuterated forms. Both species are thought to be mainly formed on interstellar grains during the low-temperature and dense pre-collapse phase by H and D atom additions on the iced CO. We present here a theoretical study of the formaldehyde and methanol deuteration obtained with our gas-grain model, GRAINOBLE. This model takes into account the multilayer nature of the mantle and explores the robustness of the results against the uncertainties of poorly constrained chemical and surface model parameters. The comparison of the model predictions with the observations leads to two major results: (1) the observed high deuteration is obtained during the last phase of the pre-collapse stage, when the density reaches ~5 × 106 cm-3, and this phase is fast, lasting only several thousands years; and (2) D and H abstraction and substitution reactions are crucial in making up the observed deuteration ratios. This work shows the power of chemical composition as a tool to reconstruct the past history of protostars.

  6. FORMALDEHYDE AND METHANOL DEUTERATION IN PROTOSTARS: FOSSILS FROM A PAST FAST HIGH-DENSITY PRE-COLLAPSE PHASE

    SciTech Connect

    Taquet, V.; Ceccarelli, C.; Kahane, C.

    2012-03-20

    Extremely high deuteration of several molecules has been observed around low-mass protostars for a decade. Among them, formaldehyde and methanol present particularly high deuteration, with observations of abundant doubly and triply deuterated forms. Both species are thought to be mainly formed on interstellar grains during the low-temperature and dense pre-collapse phase by H and D atom additions on the iced CO. We present here a theoretical study of the formaldehyde and methanol deuteration obtained with our gas-grain model, GRAINOBLE. This model takes into account the multilayer nature of the mantle and explores the robustness of the results against the uncertainties of poorly constrained chemical and surface model parameters. The comparison of the model predictions with the observations leads to two major results: (1) the observed high deuteration is obtained during the last phase of the pre-collapse stage, when the density reaches {approx}5 Multiplication-Sign 10{sup 6} cm{sup -3}, and this phase is fast, lasting only several thousands years; and (2) D and H abstraction and substitution reactions are crucial in making up the observed deuteration ratios. This work shows the power of chemical composition as a tool to reconstruct the past history of protostars.

  7. Three micron spectroscopy of low-mass pre-main-sequence stars

    SciTech Connect

    Sato, Shuji; Nagata, Tetsuya; Tanaka, Masuo; Yamamoto, Tetsuo Kyoto Univ. Tokyo Univ. Institute of Space and Astronautical Science, Sagamihara )

    1990-08-01

    Low-resolution spectra were obtained of 16 premain-sequence stars, and ice-band features are detected in young T Tauri stars (TTSs) and in low-mass protostars. The TTSs have an ice band optical depth tau(ice) of 0.1-0.4. The tau(ice) for objects in the Taurus dark cloud decreases progressively from protostars to TTSs. The apparent color temperatures of the continuum spectra are 800-1200 K for protostars and 1100-1500 K for TTSs. The color temperatures of the continuum increase to 1200-2000K after correcting the protostar spectra for foreground extinction. This common temperature range in both young TTSs and protostars suggests that the inner boundary of the circumstellar disk is determined by the sublimation of refractory grains. 39 refs.

  8. Observing the Circumstellar Environment of the Eruptive FUor/EXor Protostar V1647 Ori with ALMA

    NASA Astrophysics Data System (ADS)

    Principe, David; Cieza, Lucas A.; Zhu, Zhaohuan; Tobin, John J.; Prieto, Jose Luis

    2016-01-01

    Fu Ori (FUor) and EXor objects represent a short-lived stage of protostellar evolution characterized by intense mass accretion events which cause extreme variability in the form of outbursts. While it is well demonstrated that these objects exhibit sudden outbursts (ΔV~2-6), the mechanism causing such variability is not well understood. High spatial and spectral resolution observations of the circumstellar environment of these objects are essential to distinguish between different outbursting mechanisms. We present ALMA observations of the FUor/EXor object V1647 Ori as part of an ALMA campaign, which has observed a combined eight FUor and EXor type objects. Deeply embedded in the dark cloud LDN 1630 (L1630), V1647 Ori is one of a few FUor/EXor objects to have been extensively studied at multiple wavelengths before, during and after an outburst. We present preliminary results derived from ALMA 12CO, 13CO, C18O and continuum observations of the circumstellar environment of V1647 Ori. By measuring gas/dust masses and gas kinematics of the circumstellar disk, we investigate the potential mechanisms producing variability in these eruptive protostars during an essential, yet rarely observed, stage of pre-main sequence stellar evolution.

  9. DETECTION OF A MAGNETIZED DISK AROUND A VERY YOUNG PROTOSTAR

    SciTech Connect

    Rao, Ramprasad; Girart, Josep M.; Lai, Shih-Ping; Marrone, Daniel P. E-mail: girart@ice.cat

    2014-01-01

    We present subarcsecond resolution polarimetric observations of the 878 μm thermal dust continuum emission obtained with the Submillimeter Array toward the IRAS 16293–2422 protostellar binary system. We report the detection of linearly polarized dust emission arising from the circumstellar disk associated with the IRAS 16293–2422 B protostar. The fractional polarization of ≅ 1.4% is only slightly lower than that expected from theoretical calculations in such disks. The magnetic field structure on the plane of the sky derived from the dust polarization suggests a complex magnetic field geometry in the disk, possibly associated with a rotating disk that is wrapping the field lines as expected from the simulations. The polarization around IRAS 16293–2422 A at subarcsecond angular resolution is only marginally detected.

  10. Protostar L1455 IRS1: A Rotating Disk Connecting to a Filamentary Network

    NASA Astrophysics Data System (ADS)

    Chou, Hsuan-Gu; Yen, Hsi-Wei; Koch, Patrick M.; Guilloteau, Stéphane

    2016-06-01

    We conducted IRAM-30 m C18O (2–1) and SMA 1.3 mm continuum 12CO (2–1) and C18O (2–1) observations toward the Class 0/I protostar L1455 IRS1 in Perseus. The IRAM-30 m C18O results show IRS1 in a dense 0.05 pc core with a mass of 0.54 M ⊙, connecting to a filamentary structure. Inside the dense core, compact components of 350 au and 1500 au are detected in the SMA 1.3 mm continuum and C18O, with a velocity gradient in the latter one perpendicular to a bipolar outflow in 12CO, likely tracing a rotational motion. We measure a rotational velocity profile \\propto {r}-0.75 that becomes shallower at a turning radius of ˜200 au, which is approximately the radius of the 1.3 mm continuum component. These results hint at the presence of a Keplerian disk with a radius <200 au around L1455 IRS1 with a protostellar mass of about 0.28 M ⊙. We derive a core rotation that is about one order of magnitude faster than expected. A significant velocity gradient along a filament toward IRS1 indicates that this filament is dynamically important, providing a gas reservoir and possibly responsible for the faster-than-average core rotation. Previous polarimetric observations show a magnetic field aligned with the outflow axis and perpendicular to the associated filament on a 0.1 pc scale, while on the inner 1000 au scale, the field becomes perpendicular to the outflow axis. This change in magnetic field orientations is consistent with our estimated increase in rotational energy from large to small scales that overcomes the magnetic field energy, wrapping the field lines and aligning them with the disk velocity gradient. These results are discussed in the context of the interplay between filament, magnetic field, and gas kinematics from large to small scales. Possible emerging trends are explored with a sample of 8 Class 0/I protostars.

  11. Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-05-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M ⊙. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M ⊙ simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M ⊙ simulation shows a star with a mass of 5.48 M ⊙ and a disk of mass 3.3 M ⊙, while our 100 M ⊙ simulation forms a 28.8 M ⊙ mass star with a 15.8 M ⊙ disk over the course of 41.6 kyr, and our 200 M ⊙ simulation forms a 43.7 M ⊙ star with an 18 M ⊙ disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  12. Searching for Correlations with the HCO+ 4-3 Molecular Spectra of Protostars

    NASA Astrophysics Data System (ADS)

    Acikgoz, Ogulcan; Basturk, Seda

    The assignment is based on HCO+ J=4-3 spectral line molecular observations of protostars from the James Clerk Maxwell Telescope, which has the 15 m diameter dish and located in Mauna Kea, Hawaii, USA. Data of 20 protostars are taken from the public LOMASS database and analyzed. We looked for correlations between a few observational quantities. We thank Dr Umut Yildiz (NASA/JPL-Caltech) for providing data and his comments and support to our research project.

  13. HOT WATER IN THE INNER 100 AU OF THE CLASS 0 PROTOSTAR NGC 1333 IRAS2A

    SciTech Connect

    Visser, Ruud; Bergin, Edwin A.; Jorgensen, Jes K.; Kristensen, Lars E.; Van Dishoeck, Ewine F.

    2013-05-20

    Evaporation of water ice above 100 K in the inner few 100 AU of low-mass embedded protostars (the so-called hot core) should produce quiescent water vapor abundances of {approx}10{sup -4} relative to H{sub 2}. Observational evidence so far points at abundances of only a few 10{sup -6}. However, these values are based on spherical models, which are known from interferometric studies to be inaccurate on the relevant spatial scales. Are hot cores really that much drier than expected, or are the low abundances an artifact of the inaccurate physical models? We present deep velocity-resolved Herschel-HIFI spectra of the 3{sub 12}-3{sub 03} lines of H{sub 2}{sup 16}O and H{sub 2}{sup 18}O (1097 GHz, E{sub u}/k = 249 K) in the low-mass Class 0 protostar NGC 1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H{sub 2}{sup 18}O 3{sub 13}-2{sub 20} line (203 GHz, E{sub u}/k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C{sup 18}O J = 9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2 Multiplication-Sign 10{sup -5}, consistent with the theoretical predictions of {approx}10{sup -4}. The revised HDO/H{sub 2}O abundance ratio is 1 Multiplication-Sign 10{sup -3}, an order of magnitude lower than previously estimated.

  14. Molecular line study of the very young protostar IRAM 04191 in Taurus: infall, rotation, and outflow

    NASA Astrophysics Data System (ADS)

    Belloche, A.; André, P.; Despois, D.; Blinder, S.

    2002-10-01

    We present a detailed millimeter spectroscopic study of the circumstellar environment of the low-luminosity Class 0 protostar IRAM 04191+1522 in the Taurus molecular cloud. Molecular line observations with the IRAM 30 m telescope demonstrate that the ~ 14 000 AU radius protostellar envelope is undergoing both extended infall and fast, differential rotation. Radiative transfer modeling of multitransition CS and C34S maps indicate an infall velocity vinf ~0.15 km s-1 at r ~ 1500 AU and v_inf ~ 0.1 km s-1 up to r ~ 11 000 AU, as well as a rotational angular velocity Omega ~ 3.9 x 10-13 rad s-1, strongly decreasing with radius beyond 3500 AU down to a value Omega ~ 1.5-3x 10-14 rad s-1 at ~ 11 000 AU. Two distinct regions, which differ in both their infall and their rotation properties, therefore seem to stand out: the inner part of the envelope (r lower .5ex<~ a 2000-4000 AU) is rapidly collapsing and rotating, while the outer part undergoes only moderate infall/contraction and slower rotation. These contrasted features suggest that angular momentum is conserved in the collapsing inner region but efficiently dissipated due to magnetic braking in the slowly contracting outer region. We propose that the inner envelope is in the process of decoupling from the ambient cloud and corresponds to the effective mass reservoir ( ~ 0.5 Msun) from which the central star is being built. Comparison with the rotational properties of other objects in Taurus suggests that IRAM 04191 is at a pivotal stage between a prestellar regime of constant angular velocity enforced by magnetic braking and a dynamical, protostellar regime of nearly conserved angular momentum. The rotation velocity profile we derive for the inner IRAM 04191 envelope should thus set some constraints on the distribution of angular momentum on the scale of the outer Solar system at the onset of protostar/disk formation.

  15. Probing the water and CO snow lines in the young protostar NGC 1333-IRAS4B

    NASA Astrophysics Data System (ADS)

    Anderl, Sibylle; Maret, Sébastien; André, Philippe; Maury, Anaëlle; Belloche, Arnaud; Cabrit, Sylvie; Codella, Claudio; Lefloch, Bertrand

    2015-08-01

    Today, we believe that the onset of life requires free energy, water, and complex, probably carbon-based chemistry. In the interstellar medium, complex organic molecules seem to mostly form in reactions happening on the icy surface of dust grains, such that they are released into the gas phase when the dust is heated. The resulting “snow lines”, marking regions where ices start to sublimate, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. Accordingly, it is a crucial piece of information in order to get the full picture of how organic chemistry evolves already at the earliest stages of the formation of sun-like stars. As part of the CALYPSO Large Program (http://irfu.cea.fr/Projets/Calypso/), we have obtained observations of C18O, N2H+ and CH3OH towards the Class 0 protostar NGC 1333-IRAS4B with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. Of these we use the methanol observations as a proxy for the water snow line, assuming methanol is trapped in water ice. The observed anti-correlation of C18O and N2H+, with N2H+ forming a ring around the centrally peaked C18O emission, reveals for the first time the CO snow line in this protostellar envelope, with a radius of ~300 AU. The methanol emission is much more compact than that of C18O, and traces the water snow line with a radius of ~40 AU. We have modeled the emission using a chemical model coupled with a radiative transfer module. We find that the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out

  16. No Keplerian Disk >10 AU Around the Protostar B335: Magnetic Braking or Young Age?

    NASA Astrophysics Data System (ADS)

    Yen, Hsi-Wei; Takakuwa, Shigehisa; Koch, Patrick M.; Aso, Yusuke; Koyamatsu, Shin; Krasnopolsky, Ruben; Ohashi, Nagayoshi

    2015-10-01

    We have conducted Atacama Large Millimeter/Submillimeter Array (ALMA) cycle 2 observations in the 1.3 mm continuum and in the C18O (2-1) and SO (56-45) lines at a resolution of ˜0.″3 toward the Class 0 protostar B335. The 1.3 mm continuum, C18O, and SO emission all show central compact components with sizes of ˜40-180 AU within more extended components. The C18O component shows signs of infalling and rotational motion. By fitting simple kinematic models to the C18O data, the protostellar mass is estimated to be 0.05 {M}⊙ . The specific angular momentum, on a 100 AU scale, is (4.3 ± 0.5) × 10-5 km s-1 pc. A similar specific angular momentum, (3-5) × 10-5 km s-1 pc, is measured on a 10 AU scale from the velocity gradient observed in the central SO component, and there is no clear sign of an infalling motion in the SO emission. By comparing the infalling and rotational motion, our ALMA results suggest that the observed rotational motion has not yet reached Keplerian velocity neither on a 100 AU nor even on a 10 AU scale. Consequently, the radius of the Keplerian disk in B335 (if present) is expected to be 1-3 AU. The expected disk radius in B335 is one to two orders of magnitude smaller than those of observed Keplerian disks around other Class 0 protostars. Based on the observed infalling and rotational motion from 0.1 pc to inner 100 AU scales, there are two possible scenarios to explain the presence of such a small Keplerian disk in B335: magnetic braking and young age. If our finding is the consequence of magnetic braking, ˜50% of the angular momentum of the infalling material within a 1000 AU scale might have been removed, and the magnetic field strength on a 1000 AU scale is estimated to be ˜200 μG. If it is young age, the infalling radius in B335 is estimated to be ˜2700 AU, corresponding to a collapsing timescale of ˜5 × 104 years.

  17. The Angular Momentum Content and Evolution of Class I and Flat-Spectrum Protostars

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Greene, Thomas P.; Doppmann, Greg W.; Lada, Charles J.

    2005-06-01

    We report on the angular momentum content of heavily embedded protostars on the basis of our analysis of the projected rotation velocities (vsini) of 38 Class I/flat-spectrum young stellar objects recently presented by Doppmann and others. After correcting for projection effects, we find that infrared-selected Class I/flat-spectrum objects rotate significantly more quickly (median equatorial rotation velocity ~38 km s-1) than classical T Tauri stars (CTTSs; median equatorial rotation velocity ~18 km s-1) in the ρ Ophiuchi and Taurus-Aurigae regions. Projected rotation velocity (vsini) is weakly correlated with Teff in our sample but does not seem to correlate with Brγ emission (a common accretion tracer), the amount of excess continuum veiling (rk), or the slope of the spectral energy distribution between the near- and mid-IR (α). The detected difference in rotation speeds between Class I/flat-spectrum sources and CTTSs proves difficult to explain without some mechanism that transfers angular momentum out of the protostar between the two phases. Assuming that Class I/flat-spectrum sources possess physical characteristics (M*, R*, and B*) typical of pre-main-sequence stars, fully disk-locked Class I objects should have corotation radii within their protostellar disks that match well (within 30%) with predicted magnetic coupling radii. The factor of 2 difference in rotation rates between Class I/flat-spectrum and CTTS sources when interpreted in the context of disk-locking models also implies a factor of 5 or greater difference in mass accretion rate between the two phases. A lower limit of M˙~10-8 Msolar yr-1 for objects transitioning from the Class I/flat-spectrum stage to CTTSs is required to account for the difference in rotation rates of the two classes by angular momentum extraction through a viscous disk via magnetic coupling. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the

  18. PROTOSTARS AND STARS IN THE CORONET CLUSTER: AGE, EVOLUTION, AND CLUSTER STRUCTURE

    SciTech Connect

    Sicilia-Aguilar, Aurora; Henning, Thomas; Kainulainen, Jouni; Roccatagliata, Veronica

    2011-08-01

    We present new optical spectroscopy with the FLAMES spectrograph at the Very Large Telescope (VLT), near-IR imaging with VLT/HAWK-I, and 870 {mu}m mapping with APEX/LABOCA of the Coronet cluster. The optical data allow us to estimate spectral types, extinction, and the presence of accretion in 6 more M-type members, in addition to the 12 that we had previously studied. The submillimeter maps and near-IR data reveal the presence of nebular structures and high extinction regions, which are in some cases associated to known IR, optical, and X-ray sources. Most star formation is associated to two elongated structures crossing in the central part of the cluster. Placing all the 18 objects with known spectral types and extinction in an H-R diagram suggests that the cluster is younger than previously thought (<2 Myr, and probably {approx}0.5-1 Myr). The new age estimate is in agreement with the evolutionary status of the various protostars in the region and with its compactness (<1.3 pc across), but results in a conflict with the low disk and accretion fraction (only 50%-65% of low-mass stars appear to have protoplanetary disks, and most transitional and homologously depleted disks are consistent with no accretion) and with the evolutionary features observed in the mid-IR spectra and spectral energy distributions of the disks.

  19. ISO Detection of CO(+) toward the protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.; Caux, E.; Wolfire, M.; Rudolph, A.; Nisini, B.; Saraceno, P.; White, G. J.

    1998-03-01

    In this letter we report the detection of eight high-N rotational transitions of CO(+) towards a low mass protostar, IRAS 16293-2422. The source was observed with the Long Wavelength Spectrometer on board the Infrared Space Observatory. This is the first time that CO(+) has been detected in a low luminosity source and the first time that high-N lines have been detected in any source. The detection of these lines was not predicted by models and consequently, their interpretation is a challenge. We discuss the possibility that the observed CO(+) emission originates in the dense inner regions illuminated by the UV field created in the accretion shock (formed by infalling material), and conclude that this is an improbable explanation. We have also considered the possibility that a strong, dissociative J-shock at ~ 500 AU from the star is the origin of the CO(+) emission. This model predicts CO(+) column densities in rough agreement with the observations if the magnetic field is ~ 1 mG and the shock velocity is 100 km s(-1) . Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) with the participation of ISAS and NASA.

  20. ISO Detection of CO(+) toward the Protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Rudolph, A.; Ceccarelli, C.; Caux, E.; Wolfire, M.; Nisini, B.; Saraceno, P.; White, G. J.

    1997-12-01

    We report the detection of eight high-N rotational transitions of CO(+) towards a low mass protostar, IRAS 16293-2422. The source was observed with the Long Wavelength Spectrometer on board the Infrared Space Observatory. This is the first time that CO(+) has been detected in a low luminosity source and the first time that high-N lines have been detected in any source. The detection of these lines is totally unpredicted by models and, consequently, their interpretation is a challenge. We discuss the possibility that the observed CO(+) emission originates in the dense inner regions illuminated by the UV field created in the accretion shock (formed by the infalling material), and conclude that this is an improbable explanation. We have also considered the possibility that a strong, dissociative J-shock at ~ 500 AU from the star is the origin of the CO(+) emission. This model predicts CO(+) column densities in rough agreement with the observations if the magnetic field is ~ 1 mG and the shock velocity is 100 km s(-1) .

  1. Detection of a Hot Molecular Disk Around a Massive Protostar Candidate Orion KL Source I

    NASA Astrophysics Data System (ADS)

    Hirota, T.; Kim, M.; Kurono, Y.; Honma, M.

    2015-12-01

    We report results of ALMA cycle 0 observations of the H2O lines at 321 GHz and 336 GHz around a massive protostar candidate Source I in Orion KL. The 336 GHz line is in a vibrationally excited state at the lower state energy of 2939 K. These maps show velocity gradients perpendicular to the bipolar outflow suggesting an existence of a rotating disk. The distribution of the 321 GHz line is found to be similar to that of vibrationally excited SiO masers tracing the base of the outflow emanating from the disk surface. In contrast, the 336 GHz line is emitting from the disk midplane with a diameter of 0.2″ (84 AU) as traced by radio continuum emission. The observed velocity gradient and the spectral profile of the 336 GHz H2O line can be explained by an edge-on ring-like structure with an enclosed mass of >7M⊙ and an excitation temperature of >3000 K. We also investigate the spectral energy distribution of Source I from centimeter to submillimeter wavelengths. Detailed physical and dynamical properties of Source I can be discussed with a spatial scale of smaller than 100 AU.

  2. A symmetrically pulsed jet of gas from an invisible protostar in Orion.

    PubMed

    Zinnecker, H; McCaughrean, M J; Rayner, J T

    1998-08-27

    Young stars are thought to accumulate most of their mass through an accretion disk, which channels the gas and dust of a collapsing cloud onto the central protostellar object. The rotational and magnetic forces in the star-disk system often produce high-velocity jets of outflowing gas. These jets can in principle be used to study the accretion and ejection history of the system, which is hidden from direct view by the dust and dense gas of the parent cloud. But the structures of these jets are often too complex to determine which features arise at the source and which are the result of subsequent interactions with the surrounding gas. Here we present infrared observations of a very young jet driven by an invisible protostar in the vicinity of the Horsehead nebula in Orion. These observations reveal a sequence of geyser-like eruptions occurring at quasi-regular intervals and with near-perfect mirror symmetry either side of the source. This symmetry is strong evidence that such features must be associated with the formation of the jet, probably related to recurrent or even chaotic instabilities in the accretion disk. PMID:9732868

  3. A numerical model for the formation and long-term evolution of protostars and protostellar disks

    NASA Astrophysics Data System (ADS)

    Fateeva, A. M.; Zhilkin, A. G.; Pavlyuchenkov, Ya. N.; Vorobyov, E. I.

    2016-02-01

    We present a physical and numerical model for studying the formation and evolution of protostellar objects with solar and sub-solar masses. The model covers several evolutionary phases of these objects starting from the gravitational collapse of an initially unstable pre-stellar cloud, proceeding through the formation and collapse of the first hydrostatic core, and ending with the complete dissipation of the initial cloud and formation of a protostar and protostellar disk. The model is described by a system of MHD equations that includes Ohmic dissipation and ambipolar diffusion, and also a scheme for calculating the thermal and ionization structure of the cloud. We employ the multicomponent approach for computing the thermal structure of collapsing protostellar cloud, in which the dust and gas temperatures are treated separately, allowing us to accurately describe the initial stages of the cloud's gravitational contraction and collapse. We present the first results showing the structure of an initially quasi-equilibrium protostellar cloud during the first stages of gravitational collapse and subsequent evolution.

  4. Observations of feedback between protostars and their natal clouds

    NASA Astrophysics Data System (ADS)

    Green, Joel D.

    2008-06-01

    In this thesis we explore the relationship between the formation of protostars, and the influence of protostellar outflows on their environment using Infrared Spectrograph onboard the Spitzer Space Telescope. First we introduce the modern understanding of protostellar development advanced by the IRS_Disks guaranteed time program. Next we explore the FU Orionis phenomenon, an IRS_Disks dataset of flaring stars undergoing a burst accretion event. Finally we present a suite of data on Herbig Haro flows in Cepheus A to determine whether protostellar outflows can dissociate a wide angle cavity in their natal cloud. We present 5-35 mm spectra, taken with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope, of five FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, BBW 76, and V346 Nor. All but V346 Nor reveal amorphous silicate grains in emission at 10 mm and 20 mm, and show water-vapor absorption bands at 5.8 and 6.8 mm and SiO or possibly methane absorption at 8 mm. These absorption features closely match these bands in model stellar photospheres--signs of the gaseous photospheres of the inner regions of these objects' accretion disks. The continuum emission at 5-8 mm is also consistent with such disks, and, for FU Orionis and BBW 76, longer-wavelength emission may be fit by a model which includes moderate disk flaring. V1057 Cyg and V1515 Cyg have much more emission at longer wavelengths than the others, perhaps evidence of substantial remnant of their natal, infalling envelopes. This indicates that FU Orionis events can briefly raise outflow rates sufficiently high to dispel their surrounding envelopes and open swaths of the ambient medium via compression waves. Herbig Haro objects are small emission nebulae that signify the interaction between both broad and collimated outflows from young stellar objects and the ambient molecular cloud material. GGD37 is suspected to be an amalgamation of at least two superposed flows (including HH 168) traveling in

  5. Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293–2422

    SciTech Connect

    Favre, Cécile; Field, David; Jørgensen, Jes K.; Brinch, Christian; Bisschop, Suzanne E.; Bourke, Tyler L.; Hogerheijde, Michiel R.; Frieswijk, Wilfred W. F.

    2014-07-20

    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly formed stars, for example, to identify the presence of rotation and infall. IRAS 16293–2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.''46 × 0.''29, i.e., ∼55 × 35 AU) images of compact emission from the C{sup 17}O (3-2) and C{sup 34}S (7-6) transitions at 337 GHz (0.89 mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C{sup 17}O (3-2) and C{sup 34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS 16293A. Our combined eSMA and SMA observations show that the velocity field on the 50-400 AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293–2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.

  6. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    SciTech Connect

    Kuiper, R.; Yorke, H. W. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2013-07-20

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t {<=} 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates.

  7. High-velocity Interstellar Bullets in IRAS 05506+2414: A Very Young Protostar

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Claussen, Mark; Sanchez Contreras, Carmen; Morris, Mark; Sarkar, Geetanjali

    2008-01-01

    We have made a serendipitous discovery of an enigmatic outflow source, IRAS 05506+2414 (hereafter IRAS 05506), as part of a multiwavelength survey of pre-planetary nebulae (PPNs). The HST optical and near-infrared images show a bright compact central source with a jet-like extension, and a fan-like spray of high-velocity (with radial velocities up to 350 km/s) elongated knots which appear to emanate from it. These structures are possibly analogous to the near-IR bullets'' seen in the Orion Nebula. Interferometric observations at 2.6 mm show the presence of a continuum source and a high-velocity CO outflow, which is aligned with the optical jet structure. IRAS 05506 is most likely not a PPN. We find extended NH3 (1,1) emission toward IRAS 05506; these data, together with the combined presence of far-IR emission, H2O and OH masers, and CO and CS J=2-1 emission, strongly argue for a dense, dusty star-forming core associated with IRAS 05506. IRAS 05506 is probably an intermediate-mass or massive protostar, and the very short timescale (200 yr) of its outflows indicates that it is very young. If IRAS 05506 is a massive star, then the lack of radio continuum and the late G to early K spectral type we find from our optical spectra imply that in this object we are witnessing the earliest stages of its life, while its temperature is still too low to provide sufficient UV flux for ionization.

  8. Change in the chemical composition of infalling gas forming a disk around a protostar.

    PubMed

    Sakai, Nami; Sakai, Takeshi; Hirota, Tomoya; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Kahane, Claudine; Bottinelli, Sandrine; Caux, Emmanuel; Demyk, Karine; Vastel, Charlotte; Coutens, Audrey; Taquet, Vianney; Ohashi, Nagayoshi; Takakuwa, Shigehisa; Yen, Hsi-Wei; Aikawa, Yuri; Yamamoto, Satoshi

    2014-03-01

    IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there. PMID:24522533

  9. A possible OB protostar associated with the molecular outflow in G34.4

    NASA Astrophysics Data System (ADS)

    Bronfman, L.; May, J.; Nuernberger, D.; Shepherd, D.

    1999-10-01

    The most conspicuous massive molecular outflow candidate identified in our CS(2-1) survey of UC HII regions (Bronfman et al 1996) is G34.4 (IRAS 18507+0121) in the I Galactic quadrant. At a distance of 3.8 kpc, it is near (about 11') the very bright HII region G34.3 (Carral & Welch 1992), embedded in the same GMC with a VLSR of 57 km/s. The CS velocity profile obtained with SEST shows very broad wings, about 25 km/s wide at the 0.1 K level, indicating strong outflow activity. Near infrared images of the field, 90'' in size (0.35'' per pixel), obtained with the du Pont 100'' Telescope at Las Campanas, show a remarkably reddenned source visible only in the K' filter, elongated in shape, about 15'' in extent. We have recently observed the G34.4 region, using the OVRO array, in the 3 mm continuum band and in the H13CO+ line, at a resolution of 5''. Most of the H13CO+ flux (33.64 Jy) comes from two strong cores; while one of these cores is closely associated with the ! NIR source, the other one is associated with a single, unresolved continuum source that has a total flux of 56.8 mJy. The mass of gas and dust in this second, possibly "star-less" core is estimated from the millimeter continuum to be approximately 355 MSun, consistent with the presence of a massive, embedded OB protostar. Bronfman, L., May, J., & Nyman, L. 1996, A&AS 115, 81 Carral & Welch 1992, ApJ 385, 244

  10. Gas Gaps in the Protoplanetary Disk around the Young Protostar HL Tau

    NASA Astrophysics Data System (ADS)

    Yen, Hsi-Wei; Liu, Hauyu Baobab; Gu, Pin-Gao; Hirano, Naomi; Lee, Chin-Fei; Puspitaningrum, Evaria; Takakuwa, Shigehisa

    2016-04-01

    We have analyzed the HCO+ (1-0) data of the Class I-II protostar, HL Tau, obtained from the Atacama Large Millimeter/submillimeter Array long baseline campaign. We generated the HCO+ image cube at an angular resolution of ˜0.″07 (˜10 au) and performed azimuthal averaging on the image cube to enhance the signal-to-noise ratio and measure the radial profile of the HCO+ integrated intensity. Two gaps at radii of ˜28 and ˜69 au and a central cavity are identified in the radial intensity profile. The inner HCO+ gap is coincident with the millimeter continuum gap at a radius of 32 au. The outer HCO+ gap is located at the millimeter continuum bright ring at a radius of 69 au and overlaps with the two millimeter continuum gaps at radii of 64 and 74 au. On the contrary, the presence of the central cavity is likely due to the high optical depth of the 3 mm continuum emission and not the depletion of the HCO+ gas. We derived the HCO+ column density profile from its intensity profile. From the column density profile, the FWHM widths of the inner and outer HCO+ gaps are both estimated to be ˜14 au, and their depths are estimated to be ˜2.4 and ˜5.0. These results are consistent with the expectation from the gaps opened by forming (sub-)Jovian mass planets, while placing tight constraints on the theoretical models solely incorporating the variation of dust properties and grain sizes.

  11. A HOT MOLECULAR CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR ORION SOURCE I

    SciTech Connect

    Hirota, Tomoya; Honma, Mareki; Kim, Mi Kyoung; Kurono, Yasutaka

    2014-02-20

    We report new Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a circumstellar disk around Source I in Orion KL, an archetype of massive protostar candidates. We detected two ortho-H{sub 2}O lines at 321 GHz (10{sub 2,} {sub 9}-9{sub 3,} {sub 6}) and 336 GHz (ν{sub 2} = 1, 5{sub 2,} {sub 3}-6{sub 1,} {sub 6}) for the first time in Source I. The latter one is in a vibrationally excited state at the lower state energy of 2939 K, suggesting evidence of hot molecular gas close to Source I. The integrated intensity map of the 321 GHz line is elongated along the bipolar outflow while the 336 GHz line map is unresolved with a beam size of 0.''4. Both of these maps show velocity gradients perpendicular to the bipolar outflow. The velocity centroid map of the 321 GHz line implies a spatial and velocity structure similar to that of vibrationally excited SiO masers tracing the root of the outflow emanating from the disk surface. In contrast, the 336 GHz line is most likely emitting from the disk midplane with a diameter of 0.''2 (84 AU) as traced by radio continuum emission and a dark lane devoid of the vibrationally excited SiO maser emission. The observed velocity gradient and the spectral profile of the 336 GHz H{sub 2}O line can be reconciled with a model of an edge-on ring-like structure with an enclosed mass of >7 M{sub ☉} and an excitation temperature of >3000 K. The present results provide further evidence of a hot and neutral circumstellar disk rotating around Source I with a diameter of ∼100 AU scale.

  12. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  13. Near Infrared Spectroscopy of the Massive Protostar Orion-KL IRc2

    NASA Astrophysics Data System (ADS)

    Morino, J. I.; Hasegawa, T.; Yamashita, T.

    Using the multi-purpose near-infrared camera / spectrometer OASIS on the 1.9-m telescope at Okayama Astrophysical Observatory, we have done K-band spectroscopy of the diffuse continuum radiation found in the regions of the bipolar outflow of Orion-KL. The spectra show a very red continuum and clear CO band absorption at 2.3 micron, irrespective of the position in the bipolar outflow lobes. This radiation is most probably the light from the close vicinity of the protostar IRc2 scattered by the dust in the outflow. The fact that we see CO in ABSORPTION suggests that the CO features are of photospheric origin. If so, this is the first spectroscopy of a massive protostar driving an energetic outflow. Apart from the CO band, the continuum is very red and featureless. Comparison with spectra of giants and supergiants indicates that the photosphere of IRc2 has very low temperature and very large diameter; IRc2 is indeed a very young massive protostar, located close to the Hayashi's forbidden region in the HR diagram. We also measured a sample of luminous protostars driving bipolar flows. No CO absorption was detected in other sources, lending further support for the exceptional youth of IRc2.

  14. SOFIA/FORCAST AND SPITZER/IRAC IMAGING OF THE ULTRACOMPACT H II REGION W3(OH) AND ASSOCIATED PROTOSTARS IN W3

    SciTech Connect

    Hirsch, Lea; Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Hora, Joseph L.; De Buizer, James M.; Vacca, William; Megeath, S. Thomas; Keller, Luke D.

    2012-10-01

    We present infrared observations of the ultracompact H II region W3(OH) made by the FORCAST instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) and by the Spitzer/Infrared Array Camera. We contribute new wavelength data to the spectral energy distribution (SED), which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius {approx}600 AU, irradiated by a central star of type O9 and temperature {approx}31, 000 K. The total luminosity of this system is 7.1 Multiplication-Sign 10{sup 4} L{sub Sun }. An observed excess of 2.2-4.5 {mu}m emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H{sub 2}O) at 31.4 and 37.1 {mu}m using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7-37.1 {mu}m. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity ({approx}236-432 L{sub Sun }) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3 Multiplication-Sign 10{sup 3} L{sub Sun} or a less massive young star with a substantial circumstellar disk but depleted envelope; and the other (2MASS J02270743+6152281) is an intermediate-luminosity ({approx}768 L{sub Sun }) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.

  15. Tracing the Magnetic Field in Orion A

    NASA Astrophysics Data System (ADS)

    Houde, Martin; Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Ruisheng; Bastien, Pierre

    2004-04-01

    We use extensive 350 μm polarimetry and continuum maps obtained with the Hertz polarimeter and SHARC II (Submillimeter High Angular Resolution Camera II) along with HCN and HCO+ spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament, it becomes better aligned with it at OMC-3 MMS 8-9, and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two clouds, is a peculiar object in which we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1, where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows far greater stability. This suggests that the orientation of the field is perhaps relatively unaffected by the mass condensation present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data, we were able to measure a set of average values for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is ~73° around OMC-3 MMS 6, ~74° at OMC-3 MMS 8-9, ~80° at OMC-2 FIR 4, ~65° in the northeastern part of OMC-1, and ~49° in the Orion bar

  16. Tracing the Magnetic Field in Orion A

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Rui-Sheng; Bastien, Pierre

    2003-01-01

    We use extensive 350 micron polarimetry and continuum maps obtained with Hertz and SHARC II along with HCN and HCO(sup +) spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament it becomes better aligned with it at OMC-3 MMS 8-9 and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two, is a peculiar object where we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1 where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows much more stability. This suggests that, perhaps, the orientation of the field is relatively unaffected by the mass condensations present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data we were able to measure a set of average d u e s for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is approx. = 73 deg around OMC-3 MMS 6, approx. = 74 deg at OMC-3 MMS 8-9, approx. = 80 deg at OMC-2 FIR 4, approx. = 65 deg in the northeastern part of OMC-1, and approx. = 49 deg in the Bas. The small difference

  17. Discovery of the Rotating Molecular Outflow and Disk in the CLASS-0/I Protostar [BHB2007]#11 in Pipe

    NASA Astrophysics Data System (ADS)

    Chihomi, Hara; Ryohei, Kawabe; Yoshito, Shimajiri; Junko, Ueda; Takashi, Tsukagoshi; Yasutaka, Kurono; Kazuya, Saigo; Fumitaka, Nakamura; Masao, Saito; Wilner, David

    2013-07-01

    The loss of angular momentum is inevitable in star formation processes, and the transportation of angular momentum by a molecular flow is widely thought to be one of the important processes. We present the results of our 2'h resolution Submillimeter Array (SMA) observations in CO, 13CO, and C18O(2-1) emissions toward a low-mass Class-0/I protostar, [BHB2007]#11 (hereafter B59#11) at the nearby star forming region, Barnard 59 in the Pipe Nebula (d=130 pc). B59#11 ejects a molecular outflow whose axis lies almost on the plane of the sky, and one of the best targets to investigate the envelope/disk rotation and the velocity structure of the molecular outflow. The 13CO and C18O observations have revealed that a compact (r ˜ 800 AU) and elongated structure of dense gas is associated with B59#11, which orients perpendicular to the outflow axis. Their distributions show the velocity gradients along their major axes, which are considered to arise from the envelope/disk rotation. The specific angular momentum is estimated to be (1.6+/-0.6)e-3 km/s pc. The power-law index of the radial profile of the rotation velocity changes from steeper one, i.e., ˜ -1 to -1/2 at a radius of 140 AU, suggesting the Keplerian disk is formed inside the radius. The central stellar mass is estimated to be ˜1.3 Msun. A collimated molecular outflow is detected from the CO observations. We found in the outflow a velocity gradient which direction is the same as that seen in the dense gas. This is interpreted to be due to the outflow rotation. The specific angular momentum of the outflow is comparable to that of the envelope, suggesting that this outflow play an important role to the ejection of the angular momentum from the envelope/disk system. This is the first case where both the Keplerian disk and the rotation of the molecular outflow were found in the Class-0 or I protostar, and provides one of good targets for ALMA to address the angular momentum ejection in course of star formation.

  18. HERSCHEL FINDS EVIDENCE FOR STELLAR WIND PARTICLES IN A PROTOSTELLAR ENVELOPE: IS THIS WHAT HAPPENED TO THE YOUNG SUN?

    SciTech Connect

    Ceccarelli, C.; López-Sepulcre, A.; Dominik, C.; Kama, M.; Padovani, M.; Caux, E.; Caselli, P.

    2014-07-20

    There is evidence that the young Sun emitted a high flux of energetic (≥10 MeV) particles. The collisions of these particles with the material at the inner edge of the Protosolar Nebula disk induced spallation reactions that formed short-lived radionuclei, like {sup 10}Be, whose trace is now visible in some meteorites. However, it is poorly known exactly when this happened, and whether and how it affected the solar system. Here, we present indirect evidence for an ejection of energetic particles in the young protostar, OMC-2 FIR 4, similar to that experienced by the young solar system. In this case, the energetic particles collide with the material in the protostellar envelope, enhancing the abundance of two molecular ions, HCO{sup +} and N{sub 2}H{sup +}, whose presence is detected via Herschel observations. The flux of energetic particles at a distance of 1 AU from the emitting source, estimated from the measured abundance ratio of HCO{sup +} and N{sub 2}H{sup +}, can easily account for the irradiation required by meteoritic observations. These new observations demonstrate that the ejection of ≥10 MeV particles is a phenomenon occurring very early in the life of a protostar, before the disappearance of the envelope from which the future star accretes. The whole envelope is affected by the event, which sets constraints on the magnetic field geometry in the source and opens up the possibility that the spallation reactions are not limited to the inner edge of the Protosolar Nebula disk.

  19. Two protostar candidates in the bright-rimmed dark cloud LDN 1206

    NASA Technical Reports Server (NTRS)

    Ressler, Michael E.; Shure, Mark

    1991-01-01

    The discovery of several near IR objects associated with two IRAS point sources in the LDN 1206 region is reported. IRAS 22272 + 6358A is probably a 'protostar' which is seen only in scattered light at near-IR wavelengths because of heavy obscuration by an almost edge-on circumstellar disk. In contrast, IRAS 22272 + 6358B is directly visible at these wavelengths and is perhaps an object which lies between protostars and T-Tauri stars in its evolution. Both direct and polarimetric K-band images of the region are presented, as well as spectral energy distributions constructed from J, H, K, L, L-prime, and M data and published far-IR and mm data.

  20. VizieR Online Data Catalog: The Herschel Orion Protostar Survey (HOPS): SEDs (Furlan+, 2016)

    NASA Astrophysics Data System (ADS)

    Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.

    2016-06-01

    To summarize, starting from a sample of 410 Herschel Orion Protostar Survey (HOPS) targets (see section 2), but excluding likely contaminants and objects not observed or detected by PACS, there are 330 remaining objects that have Spitzer and Herschel data and are considered protostars (based on their Spitzer classification from Megeath et al. 2012, J/AJ/144/192). They form the sample studied in this work. In order to construct SEDs for our sample of 330 YSOs, we combined our own Herschel/PACS observations (see Proposal KPOTtmegeath2) with data from the literature and existing catalogs (see section 3.1). To extend the SEDs into the submillimeter, most of the YSOs were also observed in the continuum at 350 and 870um with the Atacama Pathfinder Experiment (APEX) telescope (Stutz et al. 2013, J/ApJ/767/36). (5 data files).

  1. Probing the CO and methanol snow lines in young protostars. Results from the CALYPSO IRAM-PdBI survey

    NASA Astrophysics Data System (ADS)

    Anderl, S.; Maret, S.; Cabrit, S.; Belloche, A.; Maury, A. J.; André, Ph.; Codella, C.; Bacmann, A.; Bontemps, S.; Podio, L.; Gueth, F.; Bergin, E.

    2016-06-01

    Context. So-called snow lines, indicating regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars, which are still in their early phase of heavy accretion. Aims: We aim to use the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. This information is crucial to get the full picture of the early protostellar collapse and the subsequent evolution of young protostars. Methods: As part of the CALYPSO IRAM Large Program, we have obtained observations of C18O, N2H+, and CH3OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources, we have modeled the emission using a chemical code coupled with a radiative transfer module. Results: We observe an anti-correlation of C18O and N2H+ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This emission morphology, which is due to N2H+ being chemically destroyed by CO, reveals the CO and N2 ice sublimation regions in these protostellar envelopes with unprecedented resolution. We also observe compact methanol emission towards three of the sources. Based on our chemical model and assuming temperature and density profiles from the literature, we find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices (~855 K). The emission regions of models and observations match for a higher value of the CO binding energy of 1200 K, corresponding to a dust temperature of ~24 K at the CO snow line. The binding energy for N2 ices is modeled at 1000 K, also higher than for

  2. WATER DEUTERIUM FRACTIONATION IN THE INNER REGIONS OF TWO SOLAR-TYPE PROTOSTARS

    SciTech Connect

    Taquet, V.; Lopez-Sepulcre, A.; Ceccarelli, C.; Kahane, C.; Coutens, A.; Vastel, C.

    2013-05-10

    The [HDO]/[H{sub 2}O] ratio is a crucial parameter for probing the history of water formation. So far, it has been measured for only three solar-type protostars and yielded different results, possibly pointing to a substantially different history in their formation. In the present work, we report new interferometric observations of the HDO 4{sub 2,2}-4{sub 2,3} line for two solar-type protostars, IRAS2A and IRAS4A, located in the NGC 1333 region. In both sources, the detected HDO emission originates from a central compact unresolved region. A comparison with previously published interferometric observations of the H{sub 2}{sup 18}O 3{sub 1,3}-2{sub 2,0} line shows that the HDO and H{sub 2}O lines mostly come from the same region. A non-LTE large velocity gradient analysis of the HDO and H{sub 2}{sup 18}O line emissions, combined with published observations, provides an [HDO]/[H{sub 2}O] ratio of 0.3%-8% in IRAS2A and 0.5%-3% in IRAS4A. First, the water fractionation is lower than that of other molecules such as formaldehyde and methanol in the same sources. Second, it is similar to that measured in the solar-type protostar prototype, IRAS16293-2422, and, surprisingly enough, larger than that measured in NGC 1333 IRAS4B. The comparison of the measured values toward IRAS2A and IRAS4A with the predictions of our gas-grain model GRAINOBLE gives similar conclusions to those for IRAS 16293, arguing that these protostars share a similar chemical history, although they are located in different clouds.

  3. Tracing Protostellar Envelope Evolution with HOPS, the Herschel Orion Protostar Survey

    NASA Astrophysics Data System (ADS)

    Fischer, Will; Megeath, Tom; Furlan, Elise; Ali, Babar; Stutz, Amy; Booker, Joseph; Tobin, John; Stanke, Thomas; Osorio, Mayra

    2013-07-01

    HOPS, the Herschel Orion Protostar Survey, is an unprecedented program of large surveys with the Herschel, Spitzer, Hubble, and APEX observatories, as well as near-IR observations from the IRTF and other telescopes. Together these are providing a comprehensive observational assessment of protostellar evolution, from the earliest phases (see poster by A. Stutz) through the dissipation of the protostellar envelope. The BLT (bolometric luminosity and temperature) diagram for the ˜300 HOPS protostars resembles those constructed for other nearby star-forming regions. We fit the 1-870 um SEDs of the protostars with our grid of radiative transfer models to determine their luminosities, envelope densities, cavity angles, and inclinations (see poster by E. Furlan). High-resolution HST images of the scattered light nebulae provide additional constraints on envelope density, disk geometry, cavity geometry, and inclination angle (see poster by J. Booker). Finally, near-IR atomic hydrogen lines provide independent estimates of reddening and accretion luminosity in the less embedded sources. This multi-pronged modeling approach provides a more reliable assessment of envelope evolution than raw observational diagnostics like the bolometric temperature. We will compare the distributions of envelope densities and protostellar luminosities to the predictions of star-formation models.

  4. OBSERVATIONS OF INFALLING AND ROTATIONAL MOTIONS ON A 1000 AU SCALE AROUND 17 CLASS 0 AND 0/I PROTOSTARS: HINTS OF DISK GROWTH AND MAGNETIC BRAKING?

    SciTech Connect

    Yen, Hsi-Wei; Koch, Patrick M.; Takakuwa, Shigehisa; Ho, Paul T. P.; Ohashi, Nagayoshi; Tang, Ya-Wen

    2015-02-01

    We perform imaging and analyses of SMA 1.3 mm continuum, C{sup 18}O (2-1) and {sup 12}CO (2-1) line data of 17 Class 0 and 0/I protostars to study their gas kinematics on a 1000 AU scale. Continuum and C{sup 18}O (2-1) emission are detected toward all the sample sources and show central primary components with sizes of ∼600-1500 AU associated with protostars. The velocity gradients in C{sup 18}O (2-1) have wide ranges of orientations from parallel to perpendicular to the outflows, with magnitudes from ∼1 to ∼530 km s{sup –1} pc{sup –1}. We construct a simple kinematic model to reproduce the observed velocity gradients, estimate the infalling and rotational velocities, and infer the disk radii and the protostellar masses. The inferred disk radii range from <5 AU to >500 AU with estimated protostellar masses from <0.1 M {sub ☉} to >1 M {sub ☉}. Our results hint that both large and small disks are possibly present around Class 0 protostars, which could be a sign of disk growth at the Class 0 stage. In addition, the directions of the overall velocity gradients in 7 out of the 17 sources are close to perpendicular to their outflow axes (Δθ > 65°), which is a signature of significant rotational motions. From our model fitting, the specific angular momenta in these sources are estimated to be >2 × 10{sup –4} km s{sup –1} pc, suggesting that magnetic braking is unlikely efficient on a 1000 AU scale in these Class 0 and 0/I sources. In a sub-sample with observed magnetic field orientations, we find no source with large specific angular momenta together with closely aligned magnetic field and outflow axes. This possibly hints that the magnetic field, if originally aligned with the rotational axis, can play a role in removing angular momentum from infalling material at the Class 0 stage. We discuss our results in comparison with theoretical models of collapsing dense cores with and without magnetic fields in the context of disk

  5. Observations of Infalling and Rotational Motions on a 1000 AU Scale around 17 Class 0 and 0/I Protostars: Hints of Disk Growth and Magnetic Braking?

    NASA Astrophysics Data System (ADS)

    Yen, Hsi-Wei; Koch, Patrick M.; Takakuwa, Shigehisa; Ho, Paul T. P.; Ohashi, Nagayoshi; Tang, Ya-Wen

    2015-02-01

    We perform imaging and analyses of SMA 1.3 mm continuum, C18O (2-1) and 12CO (2-1) line data of 17 Class 0 and 0/I protostars to study their gas kinematics on a 1000 AU scale. Continuum and C18O (2-1) emission are detected toward all the sample sources and show central primary components with sizes of ~600-1500 AU associated with protostars. The velocity gradients in C18O (2-1) have wide ranges of orientations from parallel to perpendicular to the outflows, with magnitudes from ~1 to ~530 km s-1 pc-1. We construct a simple kinematic model to reproduce the observed velocity gradients, estimate the infalling and rotational velocities, and infer the disk radii and the protostellar masses. The inferred disk radii range from <5 AU to >500 AU with estimated protostellar masses from <0.1 M ⊙ to >1 M ⊙. Our results hint that both large and small disks are possibly present around Class 0 protostars, which could be a sign of disk growth at the Class 0 stage. In addition, the directions of the overall velocity gradients in 7 out of the 17 sources are close to perpendicular to their outflow axes (Δθ > 65°), which is a signature of significant rotational motions. From our model fitting, the specific angular momenta in these sources are estimated to be >2 × 10-4 km s-1 pc, suggesting that magnetic braking is unlikely efficient on a 1000 AU scale in these Class 0 and 0/I sources. In a sub-sample with observed magnetic field orientations, we find no source with large specific angular momenta together with closely aligned magnetic field and outflow axes. This possibly hints that the magnetic field, if originally aligned with the rotational axis, can play a role in removing angular momentum from infalling material at the Class 0 stage. We discuss our results in comparison with theoretical models of collapsing dense cores with and without magnetic fields in the context of disk formation.

  6. Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Cabrit, S.; Codella, C.; Kristensen, L. E.; Ceccarelli, C.; van Dishoeck, E. F.; Boogert, A. C. A.; Bottinelli, S.; Castets, A.; Caux, E.; Comito, C.; Demyk, K.; Herpin, F.; Lefloch, B.; McCoey, C.; Mottram, J. C.; Parise, B.; Taquet, V.; van der Tak, F. F. S.; Visser, R.; Yıldız, U. A.

    2013-12-01

    Context. The measure of the water deuterium fractionation is a relevant tool for understanding mechanisms of water formation and evolution from the prestellar phase to the formation of planets and comets. Aims: The aim of this paper is to study deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B, to compare their HDO abundance distributions with other star-forming regions, and to constrain their HDO/H2O abundance ratios. Methods: Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k = 22-168 K) towards these protostars and an outflow position. Non-local thermal equilibrium radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results: The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component and a narrow absorbing component. In the protostellar envelope of NGC 1333 IRAS 4A, the HDO inner (T ≥ 100 K) and outer (T < 100 K) abundances with respect to H2 are estimated with a 3σ uncertainty at 7.5-3.0+3.5 × 10-9 and 1.2-0.4+0.4 × 10-11, respectively, whereas in NGC 1333 IRAS 4B they are 1-0.9+1.8 × 10-8 and 1.2-0.4+0.6 × 10-10, respectively. Similarly to the low-mass protostar IRAS 16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources, as well as parts of the outflows. In the outflows emanating from NGC 1333 IRAS 4A, the HDO column density is estimated at about (2-4) × 1013 cm-2, leading to an abundance of about (0.7-1.9) × 10-9. An HDO/H2O ratio between 7 × 10-4 and 9 × 10-2 is also derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1 × 10

  7. A submillimeter line survey of low-mass protostars: prelude to ALMA and Herschel

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Jørgensen, J. K.; Maret, S.; Ceccarelli, C.; Caux, E.; Schöier, F. L.; Castets, A.; Tielens, A. G. G. M.

    2005-01-01

    The results from a single-dish molecular line survey of a set of 18 deeply embedded young stellar objects are summarized. More than 40 lines from 16 different species were observed with the JCMT, Onsala, IRAM 30m and SEST telescopes. The multi-transition data are analyzed using a temperature and density structure derived from models of the dust continuum emission. For the outer envelope (>300 AU), the data indicate a "drop" abundance profile for many species, with normal abundances in the outer- and innermost regions and highly depleted abundances in an intermediate zone. This zone is bounded at the outer edge by the density where the timescale for freeze-out becomes longer than the life-time of the core, and at the inner edge by the evaporation temperature of the species involved. In the innermost envelope (<300 AU), all ices evaporate resulting in jumps in the abundances of complex organic molecules such as CH3OH. A key project for Herschel will be to survey gas-phase water in these objects, whose abundance shows extreme variations with temperature. ALMA will be able to directly image the chemical variations throughout the envelope and zoom in on the inner hot core and protoplanetary disks on scales on tens of AU.

  8. The first Galaxy scale hunt for the youngest high-mass protostars

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Bontemps, S.; Wyrowski, F.; Menten, K. M.; Leurini, S.; Urquhart, J. S.; Motte, F.; Schuller, F.; Testi, L.; Bronfman, L.; Beuther, H.; Longmore, S.; Commerçon, B.; Henning, Th.; Palau, A.; Tan, J. C.; Fuller, G.; Peretto, N.; Duarte-Cabral, A.; Traficante, A.

    2016-05-01

    The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M⊙ on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Our first results using the intermediate scales revealed by the ALMA ACA array providing 3-5'' angular resolution, corresponding to ˜0.05 - 0.1 pc size-scales, reveals a sample of compact objects. These massive, dense cores are on average two-times more massive than previous studies of similar types of objects. We expect that once the full survey is completed, it will provide a comprehensive view on the origin of the most massive stars.

  9. Evidence Of Episodic Mass Accretion In Low-luminosity, Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Jeong; Evans, N. J., II; Dunham, M. M.; Lee, J.

    2012-01-01

    We present Spitzer IRS spectroscopy of CO2 ice toward 19 young stellar objects (YSOs) with luminosity lower than 1 Lsun. Pure CO2 ice forms only at elevated temperature, T > 20 K, and thus at higher luminosity. Pure CO2 ice formation processes are irreversible. It will not disappear unless it evaporates. Current internal luminosities of YSOs with L < 1 Lsun do not provide such conditions out to radii of typical envelopes. Significant amounts of pure CO2 ice would signify a higher past luminosity. We analyze 15.2 micron CO2 ice bending mode absorption lines in comparison to the laboratory data. We decompose pure CO2 ice from 15 out of 19 young low luminosity sources. Eight sources show a significant double peak in the optical depth, which provides unambiguous evidence for pure CO2 ice. The presence of the pure CO2 ice component indicate high dust temperature and hence high luminosity in past. The total CO2 ice amount can be explained by long period of low luminosity stage between episodic accretion bursts as predicted in an episodic accretion scenario. Chemical modeling shows that the episodic accretion scenario explains the observed total CO2 ice amount best. A detailed analysis has been performed for one low luminosity Class 0 object CB130-1-IRS1. A full SED fitting with a radiative transfer model shows that the internal luminosity of CB130-1-IRS1 is as low as 0.14 - 0.16 Lsun. The best fitting chemical evolution model requires episodic accretion and the formation of CO2 ice from CO ice during the low luminosity periods. This process removes C from the gas phase, providing a much improved fit to the observed gas-phase molecular lines and the CO2 ice absorption feature. Also we detected the pure CO2 ice component around CB130-1-IRS1, which is an evidence of past heating.

  10. DISK AND ENVELOPE STRUCTURE IN CLASS 0 PROTOSTARS. I. THE RESOLVED MASSIVE DISK IN SERPENS FIRS 1

    SciTech Connect

    Enoch, Melissa L.; Duchene, Gaspard; Corder, Stuartt

    2009-12-10

    We present the first results of a program to characterize the disk and envelope structure of typical Class 0 protostars in nearby low-mass star-forming regions. We use Spitzer Infrared Spectrograph (IRS) mid-infrared spectra, high-resolution Combined Array for Research in Millimeter-wave Astronomy (CARMA) 230 GHz continuum imaging, and two-dimensional radiative transfer models to constrain the envelope structure, as well as the size and mass of the circumprotostellar disk in Serpens FIRS 1. The primary envelope parameters (centrifugal radius, outer radius, outflow opening angle, and inclination) are well constrained by the spectral energy distribution (SED), including Spitzer IRAC and MIPS photometry, IRS spectra, and 1.1 mm Bolocam photometry. These together with the excellent uv-coverage (4.5-500 klambda) of multiple antenna configurations with CARMA allow for a robust separation of the envelope and a resolved disk. The SED of Serpens FIRS 1 is best fit by an envelope with the density profile of a rotating, collapsing spheroid with an inner (centrifugal) radius of approximately 600 AU, and the millimeter data by a large resolved disk with M{sub disk} approx 1.0 M {sub sun} and R{sub disk} approx 300 AU. These results suggest that large, massive disks can be present early in the main accretion phase. Results for the larger, unbiased sample of Class 0 sources in the Perseus, Serpens, and Ophiuchus molecular clouds are needed to determine if relatively massive disks are typical in the Class 0 stage.

  11. The VLA Nascent Disk and Multiplicity Survey (VANDAM): Resolved Candidate Disks around Class 0 and I Protostars

    NASA Astrophysics Data System (ADS)

    Segura-Cox, Dominique; Harris, Robert J.; Tobin, John J.; Looney, Leslie; Li, Zhi-Yun; Chandler, Claire J.; Kratter, Kaitlin M.; Dunham, Michael; Sadavoy, Sarah; Perez, Laura M.; Melis, Carl

    2016-01-01

    The properties of young protostellar disks, particularly Class 0 disks, are not well studied observationally, and their expected properties are controversial. In particular, there is debate about whether or not the earliest disks are large and massive and about when and how disks form. To characterize the properties of the youngest disks and binaries we are conducting the VLA Nascent Disk and Multiplicity survey (VANDAM) toward all known protostars in the Perseus molecular cloud (d ~ 230 pc). The survey is the largest and most complete high-resolution millimeter/centimeter wavelength survey of protostellar disks and binaries. We present the dust emission results toward a sample of ~15 protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VANDAM survey with ~0.05'' or 12 AU resolution. We have begun to confirm the disk candidacy of these sources by fitting the Ka-band 8 mm dust-continuum data in the uv-plane to a simple, parametrized model based on the Shakura-Sunyaev disk model. The seven candidate disks this analysis has been performed on are well-fit by the disk shaped model, and have estimated masses from the measured flux in agreement with masses of previously known disks. The inner-disk surface densities of the VANDAM candidate disks have shallower density profiles compared to disks around more evolved Class II systems. The best-fit model radii of the seven early-result candidate disks are R > 10 AU; at 8 mm, the radii reflect lower limits on the disk size since dust continuum emission is tied to grain size and large grains radially drift inwards. These disks, if confirmed kinematically, are inconsistent with theoretical models where the disk size is limited by strong magnetic braking to < 10 AU at early times.

  12. Mid-infrared spectra of Class I protostars in Taurus

    NASA Astrophysics Data System (ADS)

    Green, J. D.; Watson, D. M.; Furlan, E.; Forrest, W. J.; Chen, C. H.; Kemper, F.; Calvet, N.; Hartmann, L.; Uchida, K. I.; Keller, L. D.; Sargent, B.; Sloan, G. C.; Herter, T. L.; Brandl, B. R.; Houck, J. R.; Barry, D. J.; Hall, P.; Morris, P. W.; Jura, M.; Najita, J.; D'Alessio, P.; Myers, P. C.

    2004-05-01

    We present Spitzer Infrared Spectrograph (IRS)* observations in the 5.3-20 μ m range of five young stellar objects in Taurus that have Class I continuum spectral energy distributions, often taken to represent the younger stellar objects in this star-formation region. The spectra include a rich collection of broad absorption features that we identify with amorphous silicates and various ices, notably those of water, methanol, and carbon dioxide. This is apparently the first detection of such ice features in the disks of low-mass (below a solar mass) young stellar objects. We use these spectral features to estimate the relative contributions of disk and envelope to the absorption spectrum, and compare the spectra to detailed models to derive a view of the thermal structure of these components of circumstellar material. We conclude that the objects represent a range of envelope mass and line-of-sight orientation, and that objects can be classified in terms of these properties from mid-infrared spectra, even in the absence of supporting information from infrared images. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through Contract Number 1257184 issued by JPL/Caltech, and through the Spitzer Fellowship Program, under award 011 808-001. * The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and the Ames Research Center.

  13. Studies of low-mass star formation with the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Tielens, Alexander G. G. M.

    1984-01-01

    Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds.

  14. Slingshot mechanism in Orion: Kinematic evidence for ejection of protostars by filaments

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Gould, Andrew

    2016-05-01

    By comparing three constituents of Orion A (gas, protostars, and pre-main-sequence stars), both morphologically and kinematically, we derive the following conclusions. The gas surface density near the integral-shaped filament (ISF) is very well represented by a power law, Σ(b) = 37 M⊙ pc-2(b/pc)-5/8, for the entire range to which we are sensitive, 0.05 pc < b < 8.5 pc, of projected separation from the filament ridge. Essentially all Class 0 and Class I protostars lie superposed on the ISF or on identifiable filament ridges farther south, while almost all pre-main-sequence (Class II) stars do not. Combined with the fact that protostars are moving ≲ 1 km s-1 relative to the filaments, while stars are moving several times faster, this implies that protostellar accretion is terminated by a slingshot-like "ejection" from the filaments. The ISF is the third in a series of identifiable star bursts that are progressively moving south, with separations of several Myr in time and 2-3 pc in space. This, combined with the observed undulations in the filament (both spatial and velocity), suggest that repeated propagation of transverse waves through the filament is progressively digesting the material that formerly connected Orion A and B into stars in discrete episodes. We construct a simple, circularly symmetric gas density profile ρ(r) = 17 M⊙ pc-3(r/pc)-13/8 consistent with the two-dimensional data. The model implies that the observed magnetic fields in this region are subcritical on spatial scales of the observed undulations, suggesting that the transverse waves propagating through the filament are magnetically induced. Because the magnetic fields are supercritical on scales of the filament as a whole (as traced by the power law), the system as a whole is relatively stable and long lived. Protostellar "ejection" (i.e., the slingshot) occurs because the gas accelerates away from the protostars, not the other way around. The model also implies that the ISF is

  15. New VLA Observations of Massive Protostars: A Search for Jets

    NASA Astrophysics Data System (ADS)

    Rosero, Viviana; Hofner, Peter; Claussen, Mark

    2015-08-01

    Molecular outflows appear to be an ubiquitous phenomena among stars of all masses. However, to date only a handful of sources with disks and collimated jets have been detected in young massive objects (YMOs). It is not clear if the lack of detections are due to intrinsic properties of YMOs or due to observational disadvantages. We have performed a survey of ~60 YMOs with unprecedented sensitivity, using the Karl G. Jansky Very Large Array (VLA) to achieve ~3-10 microJy RMS in C and K-band images (about 10-100 times more sensitive than previous efforts). The sample is composed of the earliest stages of massive star formation: hot molecular cores and infrared dark cloud cores. Moreover, all the sources show signatures of massive star formation such as methanol and water masers and outflow phenomena. This study provides a sample of jet candidates which is a valuable basis for a follow up search for associated disks. In this contribution we present our observational results from the survey. We have a high detection rate of weak radio continuum emission from the YMOs in our sample, most of which were previously undetected. In addition to the jet scenario, we are analyzing which other processes could be producing the radio emission; some of the detections appear to be from non-thermal emission, and others could be associated with ultra-compact HII regions. Before the upgrade of the VLA, most of the HII regions detected were B0 type stars (or earlier). Hence, these highly sensitive sample of YSOs open a new door of results, from HII regions associated with late B-type stars to very weak, collimated ionized jets associated to very early YMOs.

  16. WATER ABSORPTION FROM GAS VERY NEAR THE MASSIVE PROTOSTAR AFGL 2136 IRS 1

    SciTech Connect

    Indriolo, Nick; Neufeld, D. A.; Seifahrt, A.; Richter, M. J.

    2013-10-10

    We present ground-based observations of the ν{sub 1} and ν{sub 3} fundamental bands of H{sub 2}O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 μm and 2.561 μm. Analysis of these features indicates the absorption arises in warm (T = 506 ± 25 K), very dense (n(H{sub 2}) > 5 × 10{sup 9} cm{sup –3}) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H{sub 2}O) = (1.02 ± 0.02) × 10{sup 19} cm{sup –2}, giving a relative abundance of N(H{sub 2}O)/N(H{sub 2}) ≈ 10{sup –4}. Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters.

  17. An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Offner, Stella S. R.; Pineda, Jaime E.; Bourke, Tyler L.; Tobin, John J.; Arce, Héctor G.; Chen, Xuepeng; Di Francesco, James; Johnstone, Doug; Lee, Katherine I.; Myers, Philip C.; Price, Daniel; Sadavoy, Sarah I.; Schnee, Scott

    2016-06-01

    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or <2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ∼108 cm‑3, with the exact density dependent on the viewing geometry. Bonnor–Ebert spheres, on the other hand, remain undetected to central densities at least as high as 1010 cm‑3. Our starless core non-detections are used to infer that either the star-formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor–Ebert spheres. We outline future work necessary to distinguish between these two possibilities.

  18. THE EXTRAORDINARY FAR-INFRARED VARIATION OF A PROTOSTAR: HERSCHEL/PACS OBSERVATIONS OF LRLL54361

    SciTech Connect

    Balog, Zoltan; Detre, Örs H.; Bouwmann, Jeroen; Nielbock, Markus; Klaas, Ulrich; Krause, Oliver; Henning, Thomas; Muzerolle, James; Flaherty, Kevin; Furlan, Elise; Gutermuth, Rob; Juhasz, Attila; Bally, John; Marton, Gabor

    2014-07-10

    We report Herschel/Photodetector Array Camera and Spectrometer (PACS) photometric observations at 70 μm and 160 μm of LRLL54361—a suspected binary protostar that exhibits periodic (P = 25.34 days) flux variations at shorter wavelengths (3.6 μm and 4.5 μm) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well correlated with the variations at shorter wavelengths. At 70 μm the object increases its flux by a factor of six while at 160 μm the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 μm with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation, indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and envelope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.

  19. VLT integral field spectroscopy of embedded protostars: using near-infrared emission lines as tracers of accretion and outflow

    NASA Astrophysics Data System (ADS)

    Davis, C. J.; Cervantes, B.; Nisini, B.; Giannini, T.; Takami, M.; Whelan, E.; Smith, M. D.; Ray, T. P.; Chrysostomou, A.; Pyo, T. S.

    2011-04-01

    velocities (as reported in the literature). Flow opening angles, over the first few hundred AU in each source, are measured to be in the range 21°-42° in both H2 and [Fe ii]. Finally, from our 3-D data we are also able to map the extinction and electron density at the base of the outflows from some of our targets: within a few hundred AU, both decrease sharply with distance from the source. Conclusions: It seems clear that collimated atomic and molecular jets, which may initially exhibit a wide opening angle, are a feature of outflows from Class I protostars, Class II T Tauri stars, and possibly even Class 0 sources, and that these jets can be traced to within a few hundred AU of the driving source. A common jet collimation and acceleration mechanism seems inescapable for all stages of low mass star formation. Data obtained at the VLT under project 078.C-0390(B)Appendices are only available in electronic form at http://www.aanda.org

  20. Subarcsecond Analysis of the Infalling-Rotating Envelope around the Class I Protostar IRAS 04365+2535

    NASA Astrophysics Data System (ADS)

    Sakai, Nami; Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Sakai, Takeshi; Hirota, Tomoya; Aikawa, Yuri; Ceccarelli, Cecilia; Lefloch, Bertrand; Caux, Emmanuel; Vastel, Charlotte; Kahane, Claudine; Yamamoto, Satoshi

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling-rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling-rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  1. ALMA observations of infalling flows toward the Keplerian disk around the class I protostar L1489 IRS

    SciTech Connect

    Yen, Hsi-Wei; Takakuwa, Shigehisa; Ohashi, Nagayoshi; Aikawa, Yuri; Aso, Yusuke; Koyamatsu, Shin; Machida, Masahiro N.; Saigo, Kazuya; Saito, Masao; Tomida, Kengo; Tomisaka, Kohji

    2014-09-20

    We have conducted ALMA observations in the 1.3 mm continuum and {sup 12}CO (2-1), C{sup 18}O (2-1), and SO (5{sub 6}-4{sub 5}) lines toward L1489 IRS, a Class I protostar surrounded by a Keplerian disk and an infalling envelope. The Keplerian disk is clearly identified in the {sup 12}CO and C{sup 18}O emission, and its outer radius (∼700 AU) and mass (∼0.005 M {sub ☉}) are comparable to those of disks around T Tauri stars. The protostellar mass is estimated to be 1.6 M {sub ☉} with the inclination angle of 66°. In addition to the Keplerian disk, there are blueshifted and redshifted off-axis protrusions seen in the C{sup 18}O emission pointing toward the north and the south, respectively, adjunct to the middle part of the Keplerian disk. The shape and kinematics of these protrusions can be interpreted as streams of infalling flows with a conserved angular momentum following parabolic trajectories toward the Keplerian disk, and the mass infalling rate is estimated to be ∼5 × 10{sup –7} M {sub ☉} yr{sup –1}. The specific angular momentum of the infalling flows (∼2.5 × 10{sup –3} km s{sup –1} pc) is comparable to that at the outer radius of the Keplerian disk (∼4.8 × 10{sup –3} km s{sup –1} pc). The SO emission is elongated along the disk major axis and exhibits a linear velocity gradient along the axis, which is interpreted to mean that the SO emission primarily traces a ring region in the flared Keplerian disk at radii of ∼250-390 AU. The local enhancement of the SO abundance in the ring region can be due to the accretion shocks at the centrifugal radius where the infalling flows fall onto the disk. Our ALMA observations unveiled both the Keplerian disk and the infalling gas onto the disk, and the disk can further grow by accreting material and angular momenta from the infalling gas.

  2. GIANT PLANET FORMATION BY DISK INSTABILITY IN LOW MASS DISKS?

    SciTech Connect

    Boss, Alan P.

    2010-12-20

    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043 M{sub sun} from 4 to 20 AU in orbit around a 1 M{sub sun} protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (T{sub o}) temperatures. Models with T{sub o} = 20 K are able to form a single self-gravitating clump, whereas models with T{sub o} = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least {approx}0.043 M{sub sun} inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer-disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.

  3. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.

    2015-12-01

    We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.

  4. Stellar physics. Observing the onset of outflow collimation in a massive protostar.

    PubMed

    Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F

    2015-04-01

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. PMID:25838383

  5. Massive Protostars In Young Dense Clusters: Disk Disruption And Binary Capture

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas

    2007-12-01

    Massive stars are typically found in the centers of young, dense clusters. Encounters between massive protostars and their less-massive cluster siblings are frequent enough to impact their formation processes. We present the results of numerical studies concerning the interaction of a massive-star disk system and an impacting star, which suggest that disk-assisted capture can contribute significantly to the high multiplicity of massive stars. We discuss the results of N-body simulations of this process, as well as the observational clues that point to this scenario. A potential example of a capture process in Cepheus A is presented along with modeling of this system. This work was supported by NASA grant NNA04CC11A to the CU Center for Astrobiology.

  6. First results from the CALYPSO IRAM-PdBI survey. II. Resolving the hot corino in the Class 0 protostar NGC 1333-IRAS2A

    NASA Astrophysics Data System (ADS)

    Maury, A. J.; Belloche, A.; André, Ph.; Maret, S.; Gueth, F.; Codella, C.; Cabrit, S.; Testi, L.; Bontemps, S.

    2014-03-01

    Aims: We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class 0 protostar NGC 1333-IRAS2A, to determine if the COM emission lines trace an embedded disk, shocks from the protostellar jet, or the warm inner parts of the protostellar envelope. Methods: In the framework of the CALYPSO IRAM Plateau de Bure survey, we obtained large bandwidth spectra at sub-arcsecond resolution towards NGC 1333-IRAS2A. We identify the emission lines towards the central protostar and perform Gaussian fits to constrain the size of the emitting region for each of these lines, tracing various physical conditions and scales. Results: The emission of numerous COMs such as methanol, ethylene glycol, and methyl formate is spatially resolved by our observations. This allows us to measure, for the first time, the size of the COM emission inside the protostellar envelope, finding that it originates from a region of radius 40-100 AU, centered on the NGC 1333-IRAS2A protostellar object. Our analysis shows no preferential elongation of the COM emission along the jet axis, and therefore does not support the hypothesis that COM emission arises from shocked envelope material at the base of the jet. Down to similar sizes, the dust continuum emission is well reproduced with a single power-law envelope model, and therefore does not favor the hypothesis that COM emission arises from the thermal sublimation of grains embedded in a circumstellar disk. Finally, the typical scale ~60 AU observed for COM emission is consistent with the size of the inner envelope where Tdust > 100 K is expected. Our data therefore strongly suggest that the COM emission traces the hot corino in IRAS2A, i.e., the warm inner envelope material where the icy mantles of dust grains evaporate because they are passively heated by the central protostellar object. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG

  7. High Resolution 4.7 Micron Keck/NIRSPEC Spectra of Protostars. 1; Ices and Infalling Gas in the Disk of L1489 IRS

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Hogerheijde, M. R.; Blake, G. A.

    2001-01-01

    We explore the infrared M band (4.7 micron) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R =25,000; (Delta)v =12 km s(exp -1). A large number of narrow absorption lines of gas phase (12)CO, (13)CO, and C(sup 18)O are detected, as well as a prominent band of solid (12)CO. The gas phase (12)CO lines have red shifted absorption wings (up to 100 km s(exp -1)), which likely originate from warm disk material falling toward the central object. Both the isotopes and the extent of the (12)CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object. This shows that the inward motions seen in millimeter wave emission lines continue to within approx. 0.1 AU from the star. The amount of high velocity infalling gas is however overestimated by this model, suggesting that only part of the disk is infalling, e.g. a hot surface layer or hot gas in magnetic field tubes. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated, the depletion factor of CO onto grains is remarkably low (approx. 7%), and the CO2 traced in the CO band profile was possibly formed energetically. This study shows that high spectral resolution 4.7 micron observations provide important and unique information on the dynamics and structure of protostellar disks and the origin and evolution of ices in these disks.

  8. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  9. VLA and CARMA Observations of Protostars in the Cepheus Clouds: Sub-arcsecond Proto-binaries Formed via Disk Fragmentation

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Chandler, Claire J.; Wilner, David J.; Looney, Leslie W.; Loinard, Laurent; Chiang, Hsin-Fang; Hartmann, Lee; Calvet, Nuria; D'Alessio, Paola; Bourke, Tyler L.; Kwon, Woojin

    2013-12-01

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ~0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ~0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ~3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ~0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ~20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  10. VLA and CARMA observations of protostars in the Cepheus clouds: Sub-arcsecond proto-binaries formed via disk fragmentation

    SciTech Connect

    Tobin, John J.; Looney, Leslie W.; Chandler, Claire J.; Wilner, David J.; Bourke, Tyler L.; Loinard, Laurent; D'Alessio, Paola; Chiang, Hsin-Fang; Hartmann, Lee; Calvet, Nuria; Kwon, Woojin

    2013-12-20

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ∼0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ∼0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ∼3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ∼0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ∼20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  11. A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS

    SciTech Connect

    Bans, Alissa; Koenigl, Arieh E-mail: akonigl@uchicago.edu

    2012-10-20

    Protostellar systems, ranging from low-luminosity classical T Tauri and Herbig Ae stars to high-luminosity Herbig Be stars, exhibit a near-infrared (NIR) excess in their spectra that is dominated by a bump in the monochromatic luminosity with a peak near 3 {mu}m. The bump can be approximated by a thermal emission component of temperature {approx}1500 K that is of the order of the sublimation temperature of interstellar dust grains. In the currently popular 'puffed-up rim' scenario, the bump represents stellar radiation that propagates through the optically thin inner region of the surrounding accretion disk and is absorbed and reemitted by the dust that resides just beyond the dust sublimation radius r {sub sub}. However, this model cannot account for the strongest bumps measured in these sources, and it predicts a pronounced secondary bounce in the interferometric visibility curve that is not observed. In this paper we present an alternative interpretation, which attributes the bump to reemission of stellar radiation by dust that is uplifted from the disk by a centrifugally driven wind. Winds of this type are a leading candidate for the origin of the strong outflows associated with protostars, and there is observational evidence for disk winds originating on scales {approx}r {sub sub}. Using a newly constructed Monte Carlo radiative transfer code and focusing on low-luminosity sources, we show that this model can account for the NIR excess emission even in bright Herbig Ae stars such as AB Auriga and MWC 275, and that it successfully reproduces the basic features of the visibilities measured in these protostars. We argue that a robust dusty outflow in these sources could be self-limiting-through shielding of the stellar FUV photons-to a relatively narrow launching region between r {sub sub} and {approx}2 r {sub sub}. We also suggest that the NIR and scattered-light variability exhibited by a source like MWC 275 can be attributed in this picture to the uplifting of

  12. Near-IR Spectroscopic Monitoring of Class I Protostars: Variability of Accretion and Wind Indicators

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Greene, Thomas P.

    2014-06-01

    We present the results of a program that monitored the near-IR spectroscopic variability of a sample of 19 embedded protostars. Spectra were taken on time intervals from 2 days to 3 yr, over a wavelength range from 0.85 μm to 2.45 μm, for 4-9 epochs of observations per target. We found that the spectra of all targets are variable and that every emission feature observed is also variable (although not for all targets). With one exception, there were no drastic changes in the continua of the spectra, nor did any line completely disappear, nor did any line appear that was not previously apparent. This analysis focuses on understanding the connection between accretion (traced by H Br γ and CO) and the wind (traced by He I, [Fe II], and sometimes H2). For both accretion and wind tracers, the median variability was constant versus the time interval between observations; however, the maximum variability that we observed increased with the time interval between observations. Extinction is observed to vary within the minimum sampling time of 2 days, suggesting extinguishing material within a few stellar radii at high disk latitudes. The variability of [Fe II] and H2 were correlated for most (but not all) of the 7 young stellar objects showing both features, and the amplitude of the variability depends on the veiling. Although the occurrence of CO and Br γ emission are connected, their variability is uncorrelated, suggesting that these emissions originate in separate regions near the protostar (e.g., disk and wind). The variability of Br γ and wind tracers were found to be positively correlated, negatively correlated, or uncorrelated, depending on the target. The variability of Br γ, [Fe II], and H2 always lies on a plane, although the orientation of the plane in three dimensions depends on the target. While we do not understand all interactions behind the variability that we observed, we have shown that spectroscopic variability is a powerful tool toward understanding

  13. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}ȯ ≲ M * ≲ 103 {M}ȯ . The formation of very massive (≳250 {M}ȯ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}ȯ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}ȯ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  14. HERSCHEL/PACS SPECTROSCOPIC SURVEY OF PROTOSTARS IN ORION: THE ORIGIN OF FAR-INFRARED CO EMISSION

    SciTech Connect

    Manoj, P.; Watson, D. M.; Yu, Vincent; Neufeld, D. A.; Megeath, S. T.; Fischer, W. J.; Poteet, C. A.; Vavrek, R.; Tobin, J. J.; Stutz, A. M.; Ali, B.; Di Francesco, J.; Osorio, M.; Maret, S.

    2013-02-15

    We present far-infrared (57-196 {mu}m) spectra of 21 protostars in the Orion molecular clouds. These were obtained with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel Space observatory as part of the Herschel Orion Protostar Survey program. We analyzed the emission lines from rotational transitions of CO, involving rotational quantum numbers in the range J {sub up} = 14-46, using PACS spectra extracted within a projected distance of {approx}<2000 AU centered on the protostar. The total luminosity of the CO lines observed with PACS (L {sub CO}) is found to increase with increasing protostellar luminosity (L {sub bol}). However, no significant correlation is found between L {sub CO} and evolutionary indicators or envelope properties of the protostars such as bolometric temperature, T {sub bol}, or envelope density. The CO rotational (excitation) temperature implied by the line ratios increases with increasing rotational quantum number J, and at least 3-4 rotational temperature components are required to fit the observed rotational diagram in the PACS wavelength range. The rotational temperature components are remarkably invariant between protostars and show no dependence on L {sub bol}, T {sub bol}, or envelope density, implying that if the emitting gas is in local thermodynamic equilibrium, the CO emission must arise in multiple temperature components that remain independent of L {sub bol} over two orders of magnitudes. The observed CO emission can also be modeled as arising from a single-temperature gas component or from a medium with a power-law temperature distribution; both of these require sub-thermally excited molecular gas at low densities (n(H{sub 2}) {approx}< 10{sup 6} cm{sup -3}) and high temperatures (T {approx}> 2000 K). Our results suggest that the contribution from photodissociation regions, produced along the envelope cavity walls from UV-heating, is unlikely to be the dominant component of the CO emission observed with

  15. Detection of CH3SH in protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Majumdar, L.; Gratier, P.; Vidal, T.; Wakelam, V.; Loison, J.-C.; Hickson, K. M.; Caux, E.

    2016-05-01

    The nature of the main sulphur reservoir in star-forming regions is a long standing mystery. The observed abundance of sulphur-bearing species in dense clouds is only about 0.1 per cent of the same quantity in diffuse clouds. Therefore, the main sulphur species in star-forming regions of the interstellar medium are still unknown. IRAS 16293-2422 is one of the regions where production of S-bearing species is favourable due to its conditions which allows the evaporation of ice mantles. We carried out observations in the 3 mm band towards the solar type protostar IRAS 16293-2422 with the IRAM 30 m telescope. We observed a single frequency setup with the EMIR heterodyne 3 mm receiver with an Lower Inner tuning frequency of 89.98 GHz. Several lines of the complex sulphur species CH3SH were detected. Observed abundances are compared with simulations using the NAUTILUS gas-grain chemical model. Modelling results suggest that CH3SH has the constant abundance of 4 × 10-9 (compared to H2) for radii lower than 200 au and is mostly formed on the surfaces. Detection of CH3SH indicates that there may be several new families of S-bearing molecules (which could form starting from CH3SH) which have not been detected or looked for yet.

  16. RESOLVING THE CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR DRIVING THE HH 80-81 JET

    SciTech Connect

    Carrasco-Gonzalez, Carlos; Galvan-Madrid, Roberto; Anglada, Guillem; Osorio, Mayra; D'Alessio, Paola; Rodriguez, Luis F.; Hofner, Peter; Linz, Hendrik; Araya, Esteban D.

    2012-06-20

    We present new high angular resolution observations toward the driving source of the HH 80-81 jet (IRAS 18162-2048). Continuum emission was observed with the Very Large Array at 7 mm and 1.3 cm, and with the Submillimeter Array at 860 {mu}m, with angular resolutions of {approx}0.''1 and {approx}0.''8, respectively. Submillimeter observations of the sulfur oxide (SO) molecule are reported as well. At 1.3 cm the emission traces the well-known radio jet, while at 7 mm the continuum morphology is quadrupolar and seems to be produced by a combination of free-free and dust emission. An elongated structure perpendicular to the jet remains in the 7 mm image after subtraction of the free-free contribution. This structure is interpreted as a compact accretion disk of {approx}200 AU radius. Our interpretation is favored by the presence of rotation in our SO observations observed at larger scales. The observations presented here add to the small list of cases where the hundred-AU scale emission from a circumstellar disk around a massive protostar has been resolved.

  17. Unraveling the 10 micron "silicate" feature of protostars: the detection of frozen interstellar ammonia

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Faraji, H.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    We present infrared spectra of four embedded protostars in the 750-1230 cm-1 (13.3-8.1 microns) range. For NGC 7538 IRS 9, a new band is reported at 1110 cm-1 (9.01 microns, and several others may be present near 785, 820, 900, 1030, and 1075 cm-1 (12.7, 12.2, 11.1, 9.71, and 9.30 microns). The band 1110 cm-1 is attributed to frozen NH3. Its position and width imply that the NH3 is frozen in a polar, H2O-rich interstellar ice component. The NH3/H2O ice ratio inferred for NGC 7538 IRS 9 is 0.1, making NH3 as important a component as CH3OH and CO2 in the polar ices along this line of sight. At these concentrations, hydrogen bonding between the NH3 and H2O can account for much of the enigmatic low-frequency wing on the 3240 cm-1 (3.09 microns) H2O interstellar ice band. The strength of the implied NH3 deformation fundamental at 1624 cm-1 (6.158 microns) can also account for the absorption at this position reported by ISO.

  18. SOFIA/EXES detection of absorption by water vapor in a massive protostar

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.; Indriolo, Nick; DeWitt, Curtis N.; Richter, Matthew; Boogert, Adwin; Harper, Graham; Jaffe, Daniel T.; Kulas, Kristin; McKelvey, Mark; Ryde, Nils; Vacca, William

    2015-08-01

    Using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have detected ten absorption features of water vapor toward the massive protostar AFGL 2591. These features, detected in the 6.086 - 6.135 μm spectral region, have been observed with a resolving power λ/dλ ~ 85,000, allowing individual rovibrational transitions to be cleanly separated from each other and from telluric lines. The observations provide an unequivocal detection of the 6.116 μm ν2 111 - 000 line, Doppler-shifted out of its telluric counterpart, which probes the ground rotational state of para-H2O and demonstrates the potential of SOFIA/EXES to observe absorption by cold interstellar water toward bright 6 μm continuum sources. EXES on SOFIA provides our first opportunity to observe the 6 μm vibrational band of astrophysical water vapor since the Infrared Space Observatory (ISO) in the late-1990s, and provides a spectral resolution that is almost two orders of magnitude better than what had previously been possible with ISO. A simultaneous fit to the EXES-observed transitions toward AFGL 2591 yields an inferred H2O column density of (1.3 ± 0.3) x 1019 cm-2, a source covering factor of 0.25, and a rotational temperature of 640 ± 80 K.

  19. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    SciTech Connect

    Davidson, J. A.; Li, Z.-Y.; Hull, C. L. H.; Plambeck, R. L.; Kwon, W.; Crutcher, R. M.; Looney, L. W.; Novak, G.; Chapman, N. L.; Matthews, B. C.; Stephens, I. W.; Tobin, J. J.; Jones, T. J.

    2014-12-20

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

  20. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    SciTech Connect

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  1. The census of complex organic molecules in the solar-type protostar IRAS16293-2422

    SciTech Connect

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.

    2014-08-10

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  2. The Census of Complex Organic Molecules in the Solar-type Protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.

    2014-08-01

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (gsim30-40 K) and released in the gas phase at dust temperatures of gsim100 K. However, recent detections of COMs in lsim20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (lsim30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10-10. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  3. Mass growth of the first stars under radiative feedback

    NASA Astrophysics Data System (ADS)

    Stacy, Athena; Greif, Thomas H.; Bromm, Volker

    2012-09-01

    We perform 3-D cosmological simulations to examine the growth of metal-free, Population III (Pop III) stars under radiative feedback. We trace the evolution of gas and dark matter until the formation of the first minihalo, and follow the collapse of the minihalo's gas up to densities of n = 1012cm-3. We then implement the sink particle method while modeling the effect of Lyman-Werner (LW) and ionizing radiation emitted by the initial protostar over the next 5000 yr. A disk assembles around the first protostar, and radiative feedback does not prevent further fragmentation of the disk to form multiple Pop III stars. Feedback leads to heating of the dense gas to several thousand Kelvin, and this warm region expands outward at the gas sound speed. Once this region extends to the size of the disk, the disk mass declines while the accretion rate onto the protostars is reduced by an order of magnitude. The main sink will approach an asymptotic value of 30 Msolar by the time it reaches the main sequence. Such unexpectedly low Pop III masses may have important consequences for the occurrence of pair-instability supernovae in the early Universe as well as the Pop III chemical signature in the oldest stars observable today.

  4. Spectral Line Survey toward the Young Massive Protostar NGC 2264 CMM3 in the 4 mm, 3 mm, and 0.8 mm Bands

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimasa; Sakai, Nami; López-Sepulcre, Ana; Furuya, Ryuta; Sakai, Takeshi; Hirota, Tomoya; Liu, Sheng-Yuan; Su, Yu-Nung; Yamamoto, Satoshi

    2015-08-01

    Spectral line survey observations are conducted toward the high-mass protostar candidate NGC 2264 CMM3 in the 4, 3, and 0.8 mm bands with the Nobeyama 45 m telescope and the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. In total, 265 emission lines are detected in the 4 and 3 mm bands, and 74 emission lines in the 0.8 mm band. As a result, 36 molecular species and 30 isotopologues are identified. In addition to the fundamental molecular species, many emission lines of carbon-chain molecules such as HC5N, C4H, CCS, and C3S are detected in the 4 and 3 mm bands. Deuterated molecular species are also detected with relatively strong intensities. On the other hand, emission lines of complex organic molecules such as HCOOCH3 and CH3OCH3 are found to be weak. For the molecules for which multiple transitions are detected, rotation temperatures are derived to be 7-33 K except for CH3OH. Emission lines with high upper-state energies (Eu > 150 K) are detected for CH3OH, indicating the existence of a hot core. In comparison with the chemical composition of the Orion KL, carbon-chain molecules and deuterated molecules are found to be abundant in NGC 2264 CMM3, while sulfur-bearing species and complex organic molecules are deficient. These characteristics indicate the chemical youth of NGC 2264 CMM3 in spite of its location at the center of the cluster forming core, NGC 2264 C.

  5. Morphology and kinematics of the gas envelope of protostar L1527 as obtained from ALMA observations of the C18O(2-1) line emission

    NASA Astrophysics Data System (ADS)

    Tuan-Anh, P.; Nhung, P. T.; Hoai, D. T.; Diep, P. N.; Phuong, N. T.; Thao, N. T.; Darriulat, P.

    2016-09-01

    Using ALMA observations of the C18O(2-1) line emission of the gas envelope of protostar L1527, we have reconstructed its morphology and kinematics under the assumption of axisymmetry about the west-east axis. The main original contribution to our understanding of the formation process of L1527 is the presentation of a simple 3D parameterisation based solely on regions that are not dominated by absorption. In the explored range (˜0.7 to 5 arcsec from the star) the model reproduces observations better than earlier attempts. The main results include: a measurement of the rotation velocity that confirms its evolution to Keplerian toward short distances; a measurement of the mean in-fall velocity, 0.43±0.10 km s-1, lower than free fall velocity, with no evidence for the significant r-dependence suggested by an earlier analysis; a measurement of the central mass, 0.23±0.06 M⊙ within a distance of 1.5 arcsec from the star, in agreement with earlier estimates obtained from a different range of distances; evidence for a strong disc plane depression of the in-falling flux resulting in an X shaped flow possibly caused by the freeze-out of CO molecules on dust grains; a measurement of the accretion rate, 3.5±1.0 10-7M⊙ yr-1at a distance of 1 arcsec (140 au) from the star; evidence for a 10° tilt of the symmetry plane of the envelope about the line of sight, cancelling below ˜3 arcsec from the star, but matching infrared observations and being also apparent on the sky map of the mean Doppler velocity.

  6. Census of High- and Medium-mass Protostars (CHaMP) Survey: Continuum Emission Parameter Maps and Protostellar Clump Evolution

    NASA Astrophysics Data System (ADS)

    Pitts, Rebecca; Barnes, Peter John; CHaMP Team

    2016-01-01

    The CHaMP survey attempts to characterize the gas properties and evolutionary timescales of all stages of massive star formation by creating the largest-yet compendium of high-resolution, unbiased observations of both line and continuum emission from molecular cloud clumps in the Milky Way. Here we present preliminary greybody parameter maps of the 209 massive molecular gas clumps previously identified in the Mopra and Nanten maps of the 20° x 6° region of the galactic plane in Centaurus, Carina, and Vela. We probe continuum emission from 8 to 870 μm at spatial resolutions of ~30" using collated data from the LABOCA bolometer array at APEX, the PACS and SPIRE photometers on the Herschel Space Observatory, bands 3 and 4 of WISE, and the MIPS and IRAC instruments on the Spitzer Space Telescope. To these data we fit pixel-by-pixel modified Planck spectral energy distributions (SEDs) to the clumps and their immediate surroundings to map the emissivity indices, and effective temperatures and peak fluxes (of each component where both warm and cool components were found). Here we also present comparisons of the parameter maps to the line emission maps of 12CO, as well as 13CO, C18O, and HCO+ where available.

  7. Conditions for Circumstellar Disc Formation II: Effects of Initial Cloud Stability and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-09-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate onto the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brake the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with nonuniform densities.

  8. MULTIWAVELENGTH OBSERVATIONS OF V2775 Ori, AN OUTBURSTING PROTOSTAR IN L 1641: EXPLORING THE EDGE OF THE FU ORIONIS REGIME

    SciTech Connect

    Fischer, William J.; Megeath, S. Thomas; Kounkel, Marina; Tobin, John J.; Stutz, Amelia M.; Henning, Thomas; Ali, Babar; Stanke, Thomas; Osorio, Mayra; Wilson, T. L.

    2012-09-01

    Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I {lambda}10830 absorption, strong H{sub 2}O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from the Infrared Telescope Facility, the Two Micron All Sky Survey, the Hubble Space Telescope, Spitzer, the Wide-field Infrared Survey Explorer, Herschel, and the Atacama Pathfinder Experiment that span from 1 to 70 {mu}m pre-outburst and from 1 to 870 {mu}m post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from {approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} to {approx}10{sup -5} M{sub Sun} yr{sup -1} during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L{sub Sun }, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.

  9. High-Resolution 4.7 Micron Keck/NIRSPEC Spectra of Protostars. II. Detection of the 13CO Isotope in Icy Grain Mantles

    NASA Astrophysics Data System (ADS)

    Boogert, A. C. A.; Blake, G. A.; Tielens, A. G. G. M.

    2002-09-01

    The high-resolution (R=25,000) infrared M-band spectrum of the massive protostar NGC 7538 IRS 9 shows a narrow absorption feature at 4.779 μm (2092.3 cm-1) that we attribute to the vibrational stretching mode of the 13CO isotope in pure CO icy grain mantles. This is the first detection of 13CO in icy grain mantles in the interstellar medium. The 13CO band is a factor of 2.3 narrower than the apolar component of the 12CO band. With this in mind, we discuss the mechanisms that broaden solid-state absorption bands. It is shown that ellipsoidally shaped pure CO grains fit the bands of both isotopes at the same time. Slightly worse but still reasonable fits are also obtained by CO embedded in N2-rich ices and thermally processed O2-rich ices. In addition, we report new insights into the nature and evolution of interstellar CO ices by comparing the very high resolution multicomponent solid 12CO spectrum of NGC 7538 IRS 9 with that of the previously studied low-mass source L1489 IRS. The narrow absorption of apolar CO ices is present in both spectra but much stronger in NGC 7538 IRS 9. It is superposed on a smooth broad absorption feature well fitted by a combination of CO2 and H2O-rich laboratory CO ices. The abundances of the latter two ices, scaled to the total H2O ice column, are the same in both sources. We thus suggest that thermal processing manifests itself as evaporation of apolar ices only and not the formation of CO2 or polar ices. Finally, the decomposition of the 12CO band is used to derive the 12CO/13CO abundance ratio in apolar ices. A ratio of 12CO/13CO=71+/-15 (3 σ) is deduced, in good agreement with gas-phase CO studies (~77) and the solid 12CO2/13CO2 ratio of 80+/-11 found in the same line of sight. The implications for the chemical path along which CO2 is formed are discussed. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  10. The Distribution of YSO Masses in Dense Hubs and Less Dense Filaments

    NASA Astrophysics Data System (ADS)

    Kirk, Helen; Myers, P.

    2010-01-01

    Dense "hubs" and less dense radiating "filaments" are common features of nearby star-forming regions and infrared dark clouds. Cores and young stars are more concentrated in such hubs than in their radiating filaments. Accreting protostars may gain less mass in such low-density filaments, since low-density gas takes longer to accrete, and since the accretion must draw gas from a greater distance in filamentary geometry. We present an investigation of the mass distributions of YSOs in dense clusters and low-density filaments in the nearest molecular clouds, to test whether YSO masses depend on environment density and geometry. HK is supported by an NSERC PDF.

  11. Boundary-Layer Origin for Jets, and Non-Existence of the Boundary Layer in Young Jet-Producing Protostars

    NASA Astrophysics Data System (ADS)

    Williams, Peter T.

    2016-01-01

    Twenty-five years ago, Pringle suggested a boundary-layer origin for jets from YSOs. The jets were driven by a toroidal magnetic field generated by strong shear in the accretion boundary layer. Such a mechanism is clearly non-magnetocentrifugal in nature.Nearly fifteen years ago, we suggested a cartoon of the jet-launching mechanism in protostars in which shear, acting upon MHD turbulence generated by the magnetorotational instability (MRI), generated a tangled, toroidal magnetic field capable of driving a jet. This picture, which is also manifestly non-magnetocentrifugal in nature, relied upon a novel model for MRI-driven MHD turbulence based on a viscoelastic, rather than a viscous, prescription for the turbulent stress. Our hypothesis has some clear similarities to Pringle's mechanism, but it relied upon a large envelope surrounding the central star.An accretion boundary layer has long been recognized as a promising source for protostellar jets in good part because in a standard thin disk, matter loses circa half of all its accretion energy in this layer, but it is problematic to drive a well-collimated outflow from a boundary layer in a thin disk. In this presentation, we argue paradoxically that the "boundary layer" can drive jets when a true boundary layer, like the thin disk, does not exist. This changes the inner boundary condition for viscous angular momentum flux in the disk.The standard argument for a thin boundary layer is, we argue, circular. In high accretion-rate systems, or when the gas cannot cool efficiently, there is no reason to suspect the turbulent viscosity in this boundary layer to be small, and therefore neither is the boundary layer. When the boundary layer becomes larger than the central accretor itself, it is arguably no longer a boundary layer, but rather an envelope. It is still, however, a substantial source of power and toroidal MRI-driven magnetic fields.It is, again, only in relatively hot or high-accretion rate systems in which

  12. H II REGIONS, EMBEDDED PROTOSTARS, AND STARLESS CORES IN SHARPLESS 2-157

    SciTech Connect

    Chen, Chian-Chou; Williams, Jonathan P.; Pandian, Jagadheep D. E-mail: jpw@ifa.hawaii.edu

    2012-06-20

    We present arcsecond resolution 1.4 mm observations of the high-mass star-forming region, Sharpless 2-157, that reveal the cool dust associated with the first stages of star formation. These data are compared with archival images at optical, infrared, and radio wavelengths, and complemented with new arcsecond resolution mid-infrared data. We identify a dusty young H II region, numerous infrared sources within the cluster envelope, and four starless condensations. Three of the cores lie in a line to the south of the cluster peak, but the most massive one is right at the center and associated with a jumble of bright radio and infrared sources. This presents an interesting juxtaposition of high- and low-mass star formation within the same cluster which we compare with similar observations of other high-mass star-forming regions and discuss in the context of cluster formation theory.

  13. Large-scale numerical simulations of star formation put to the test. Comparing synthetic images and actual observations for statistical samples of protostars

    NASA Astrophysics Data System (ADS)

    Frimann, S.; Jørgensen, J. K.; Haugbølle, T.

    2016-02-01

    Context. Both observations and simulations of embedded protostars have progressed rapidly in recent years. Bringing them together is an important step in advancing our knowledge about the earliest phases of star formation. Aims: To compare synthetic continuum images and spectral energy distributions (SEDs), calculated from large-scale numerical simulations, to observational studies, thereby aiding in both the interpretation of the observations and in testing the fidelity of the simulations. Methods: The adaptive mesh refinement code, RAMSES, is used to simulate the evolution of a 5 pc × 5 pc × 5 pc molecular cloud. The simulation has a maximum resolution of 8 AU, resolving simultaneously the molecular cloud on parsec scales and individual protostellar systems on AU scales. The simulation is post-processed with the radiative transfer code RADMC-3D, which is used to create synthetic continuum images and SEDs of the protostellar systems. In this way, more than 13 000 unique radiative transfer models, of a variety of different protostellar systems, are produced. Results: Over the course of 0.76 Myr the simulation forms more than 500 protostars, primarily within two sub-clusters. The synthetic SEDs are used to calculate evolutionary tracers Tbol and Lsmm/Lbol. It is shown that, while the observed distributions of the tracers are well matched by the simulation, they generally do a poor job of tracking the protostellar ages. Disks form early in the simulation, with 40% of the Class 0 protostars being encircled by one. The flux emission from the simulated disks is found to be, on average, a factor ~6 too low relative to real observations; an issue that can be traced back to numerical effects on the smallest scales in the simulation. The simulated distribution of protostellar luminosities spans more than three order of magnitudes, similar to the observed distribution. Cores and protostars are found to be closely associated with one another, with the distance distribution

  14. Tracing the origin of warm water emission through the stages of low-mass star formation

    NASA Astrophysics Data System (ADS)

    Vilhelm Persson, Magnus; Jorgensen, Jes K.; Coutens, Audrey; van Dishoeck, Ewine

    2015-08-01

    Water is a crucial molecule in the physics and chemistry of star- and planet formation, but its evolution from cold cores to disks is still poorly constrained. The gas-phase abundance of water varies between cold and warm regions up to a factor of 105 and this abundance variation makes water an excellent diagnostic of the physical structure in these sources.The origin of the warm water emission in deeply-embedded low-mass protostars is still debated, however. Current options include the innermost envelope (‘hot corino’), heated by the luminosity from the central protostar; a young disk heated by shocks related to ongoing accretion or the warm disk surface layers heated radiatively by the young star. Determining the location and kinematics of the warm water is important because it provides insights into whether water, and the locked up complex organics, actually moves from the outer envelope into the disk, and if so, whether it enters the disk mostly as gas or ice. Evolutionary models suggest that water and complex species enter the disk mostly as ice but this is so far unconfirmed observationally.Thus, in our collaboration we are undertaking a study of warm water in low-mass protostars. So far we have obtained interferometric maps of several isotopologues of water toward four deeply-embedded (i.e. Class 0) low-mass protostars with PdBI and ALMA. The detected water emission is compact toward the Class 0 sources, and a significant source of uncertainty in determining the abundances is the poorly constrained physical structure in the inner regions. Thus we try to constrain this physical structure by fitting simple disk models to the dust continuum visibilities that are left after subtracting a model of the spherical envelope. Furthermore we estimate upper limits to the warm water content toward the Class I protostars TMC-1A and L1527 from observations with PdBI.In this talk I will summarize our ongoing work in tracing the warm water emission through the various

  15. Protostar Formation in Supersonic Flows: Growth and Collapse of Spherical Cores

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Ostriker, Eve C.

    2009-07-01

    We present a unified model for molecular core formation and evolution, based on numerical simulations of converging, supersonic flows. Our model applies to star formation in giant molecular clouds dominated by large-scale turbulence, and contains four main stages: core building, core collapse, envelope infall, and late accretion. During the building stage, cores form out of dense, post-shock gas, and become increasingly centrally stratified as the mass grows over time. Even for highly supersonic converging flows, the dense gas is subsonic, consistent with observations showing quiescent cores. When the shock radius defining the core boundary exceeds R ≈ 4a(4πGρmean)-1/2, where a is the isothermal sound speed, a wave of collapse propagates from the edge to the center. During the building and collapse stages, density profiles can be fitted by Bonnor-Ebert profiles with temperature 1.2-2.9 times the true value, similar to many observed cores. As found previously for initially static equilibria, outside-in collapse leads to a Larson-Penston density profile ρ ≈ 8.86a 2/(4πGr 2). The third stage, consisting of an inside-out wave of gravitational rarefaction leading to ρ vprop r -3/2, v vprop r -1/2, is also similar to that for initially static spheres, as originally described by Shu. We find that the collapse and infall stages have comparable duration, ~t ff, consistent with estimates for observed prestellar and protostellar (Class 0/I) cores. Core building takes longer, but does not produce high-contrast objects until shortly before collapse. The time to reach core collapse, and the core mass at collapse, decrease with increasing inflow Mach number. For all cases, the accretion rate is Gt a 3/G early on but sharply drops off; the final system mass depends on the duration of late-stage accretion, set by large-scale conditions in a cloud.

  16. EXTREMELY LARGE AND HOT MULTILAYER KEPLERIAN DISK AROUND THE O-TYPE PROTOSTAR W51N: THE PRECURSORS OF THE HCH II REGIONS?

    SciTech Connect

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-12-10

    We present sensitive high angular resolution (0.''57-0.''78) SO, SO{sub 2}, CO, C{sub 2}H{sub 5}OH, HC{sub 3}N, and HCOCH{sub 2}OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.''7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH{sub 2}OH reveals the possible presence of a warm 'companion' located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO{sub 2} is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  17. The complete far-infrared and submillimeter spectrum of the Class 0 protostar Serpens SMM1 obtained with Herschel. Characterizing UV-irradiated shocks heating and chemistry

    NASA Astrophysics Data System (ADS)

    Goicoechea, J. R.; Cernicharo, J.; Karska, A.; Herczeg, G. J.; Polehampton, E. T.; Wampfler, S. F.; Kristensen, L. E.; van Dishoeck, E. F.; Etxaluze, M.; Berné, O.; Visser, R.

    2012-12-01

    We present the first complete ~55-671 μm spectral scan of a low-mass Class 0 protostar (Serpens SMM1) taken with the PACS and SPIRE spectrometers onboard Herschel. More than 145 lines have been detected, most of them rotationally excited lines of 12CO (full ladder from Ju = 4-3 to 42-41 and Eu/k = 4971 K), H2O (up to 818-707 and Eu/k = 1036 K), OH (up to 2Π1/2 J = 7/2-5/2 and Eu/k = 618 K), 13CO (up to Ju = 16-15), HCN and HCO+ (up to Ju = 12-11). Bright [O i]63, 145 μm and weaker [C ii]158 and [C i]370, 609 μm lines are also detected, but excited lines from chemically related species (NH3, CH+, CO+, OH+ or H2O+) are not. Mid-infrared spectra retrieved from the Spitzer archive are also first discussed here. The ~10-37 μm spectrum has many fewer lines, but shows clear detections of [Ne ii], [Fe ii], [Si ii] and [S i] fine structure lines, as well as weaker H2 S(1) and S(2) pure rotational lines. The observed line luminosity is dominated by CO (~54%), H2O (~22%), [O i] (~12%) and OH (~9%) emission. A multi-component radiative transfer model allowed us to approximately quantify the contribution of the three different temperature components suggested by the 12CO rotational ladder (Tkhot ≈ 800 K, Tkwarm ≈ 375 K and Tkcool ≈ 150 K). Gas densities n(H2) ≳ 5 × 106 cm-3 are needed to reproduce the observed far-IR lines arising from shocks in the inner protostellar envelope (warm and hot components) for which we derive upper limit abundances of x(CO) ≲ 10-4, x(H2O) ≲ 0.2 × 10-5 and x(OH) ≲ 10-6 withrespect to H2. The lower energy submm 12CO and H2O lines show more extended emission that we associate with the cool entrained outflow gas. Fast dissociative J-shocks (vs > 60 km s-1) within an embedded atomic jet, as well as lower velocity small-scale non-dissociative shocks (vs ≲ 20 km s-1) are needed to explain both the atomic fine structure lines and the hot CO and H2O lines respectively. Observations also show the signature of UV radiation (weak [C ii

  18. OUTFLOW, INFALL, AND PROTOSTARS IN THE STAR-FORMING CORE W3-SE

    SciTech Connect

    Zhu Lei; Zhao Junhui; Wright, M. C. H. E-mail: jzhao@cfa.harvard.edu

    2011-10-20

    We report new results on outflow and infall in the star-forming cores W3-SE SMA-1 and SMA-2 based on analysis of {approx}2.''5 resolution observations of the molecular lines HCN(3-2), HCO{sup +}(3-2), N{sub 2}H{sup +}(3-2), and CH{sub 3}OH(5{sub 2,3}-4{sub 1,3}) with the Submillimeter Array (SMA). A high-velocity bipolar outflow originating from the protostellar core SMA-1 was observed in the HCN(3-2) line, with a projected outflow axis at a position angle of 48{sup 0}. The detection of the outflow is confirmed from other molecular lines. An inverse P-Cygni profile in the HCN(3-2) line toward SMA-1 suggests that at least one of the double cores accretes matter from the molecular core. A filamentary structure in the molecular gas surrounds SMA-1 and SMA-2. Based on the SMA observations, our analysis suggests that the double pre-stellar cores SMA-1 and SMA-2 result from fragmentation in the collapsing massive molecular core W3-SE, and it is likely that they are forming intermediate- to high-mass stars which will be new members of a star cluster in the W3-SE region.

  19. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  20. 2MASS J17112318-2724315: A DEEPLY EMBEDDED LOW-MASS PROTOSTELLAR SYSTEM IN THE B59 MOLECULAR CLOUD

    SciTech Connect

    Riaz, B.; Martin, E. L.; Bouy, H.; Tata, R.

    2009-08-01

    We present near-infrared observations of the low-mass deeply embedded Class 0/I system 2MASS J17112318-2724315 (2M171123) in the B59 molecular cloud. Bright scattered light nebulosity is observed toward this source in the K{sub s} images, that seems to trace the edges of an outflow cavity. We report the detection of a low-luminosity protostar 2M17112255-27243448 (2M17112255) that lies {approx}8'' ({approx}1000 AU) from 2M171123. This is a Class I system, as indicated by its 2-8 {mu}m slope and Infrared Array Camera colors, with an estimated internal luminosity of {approx}0.3 L{sub sun}. We estimate a mass of {approx}0.12-0.25 M{sub sun} for this source, at an age of 0.1-1 Myr. Also presented is detailed modeling of the 2M171123 system. The best-fit parameters indicate a large envelope density of the order of {approx}10{sup -13} g cm{sup -3}, and an intermediate inclination between 53 deg. and 59 deg. The observed K{sub s} -band variability for this system could be explained by slight variability in the mass infall rate between 2.5E-5 and 1.8E-5 M{sub sun} yr{sup -1}. The protostar 2M171123 exhibits a rarely observed absorption feature near 11.3 {mu}m within its 10 {mu}m silicate band. We find a strong correlation between the strength in this 11.3 {mu}m 'edge' and the H{sub 2}O-ice column density, indicating the origin of this feature in the thickness of the ice mantle over the silicate grains.

  1. Formation of Primordial Supermassive Stars by Rapid Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Inayoshi, Kohei; Omukai, Kazuyuki; Yoshida, Naoki

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion (\\dot{M}_*\\gtrsim 0.1 \\,M_\\odot \\,yr^{-1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 104 - 5 M ⊙. Our stellar evolution calculations show that a star becomes supermassive while passing through the "supergiant protostar" stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ~= 100 AU for M * >~ 104 M ⊙, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 104 K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M * >~ 105 M ⊙ can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 105 M ⊙. An extremely massive black hole should form after the collapse of the inner core.

  2. Low-Mass Star Formation and the Initial Mass Function in Young Clusters

    NASA Astrophysics Data System (ADS)

    Luhman, Kevin Lee

    I have used optical and near-infrared spectroscopy and imaging to measure spectral types and luminosities for young (/tau<10 Myr), embedded (AV=0[-]50), low-mass (0.1-1 Msolar) stars in three nearby (d<300 pc) clusters: L1495E, IC 348, and ρ Ophiuchi. In conjunction with theoretical evolutionary tracks, I have derived the star formation history and initial mass function for each stellar population. A large number of brown dwarf candidates have been identified in the photometry, several of which are confirmed through spectroscopy. Finally, I have measured the frequency and survival times of circumstellar disks and investigated the photometric and spectroscopic properties of protostars. In S 2, I apply observational tests to the available sets of evolutionary models for low-mass stars, concluding that the calculations of D'Antona & Mazzitelli are preferred for the range of masses and ages considered here. In S 3 and S 4, I examine in detail the spectroscopic characteristics and substellar nature of two brown dwarf candidates. The study then expands to include the populations within the clusters L1495E (S 5), IC 348 (S 6), and ρ Ophiuchi (S 7). In S 8, I briefly discuss the past, present, and future of scientific research related to this thesis.

  3. Mass accretion flows in the high-mass star forming complex NGC 6334

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Schilke, P.; Zernickel, A.; Schmiedeke, A.; Möller, Th.; Qin, S.-L.

    2016-05-01

    The formation of high-mass stars is one of the major topics of astrophysical research, in particular the process of accretion from large-scale clouds down to small-scale cores. We have selected the nearby, filamentary, high-mass star forming complex NGC 6334 to study the gas velocity at different scales and probe the infall rates onto the protostellar cores embedded in the NGC 6334-I and I(N) clusters. This study makes use of single-dish and interferometric submillimeter observations, complemented with 3D numerical non-LTE radiative transfer modeling. We measure a mass accretion rate of 10-5 M⊙ yr-1 throughout the filament increasing up to 10-3 M⊙ yr-1 towards the densest regions where high-mass stars are forming. At smaller scales, our 3D model is consistent with accretion rates of 10-3 M⊙ yr-1 towards the clusters, and 10-4 M⊙ yr-1 onto the protostars.

  4. Characterizing the small scale structures in the earliest stages of low-mass star formation

    NASA Astrophysics Data System (ADS)

    Vilhelm Persson, Magnus; van Dishoeck, Ewine; Tobin, John; Harsono, Daniel; Jørgensen, Jes K.

    2015-08-01

    In deeply-embedded low-mass protostars, the density and temperature distribution in the inner few hundred AU’s are poorly constrained. In sources where the envelope is less massive, i.e. the Class I stage, disks with Keplerian rotation have been inferred using C18O lines. However, constraining the various disk characteristics turns out to be difficult even in this case. Continuum and molecular line observations of optically thin tracers at very high sensitivity and resolution are needed to constrain the density, temperature and kinematics. Ultimately the assumed structure affects the determination of molecular abundances.We are attempting to model high-resolution dust continuum radio-interferometric observations of a few deeply-embedded low-mass protostars with a power-law disk model embedded in a spherical envelope.We model the interferometric visibilities taken with either the Plateau de Bure Interferometer or the ALMA telescope, probing scales down to a few tens of AU in some cases. Given the assumptions, the study shows disk sizes in the deeply-embedded phase that could be slightly larger than typical found in the more evolved Class I sources. The fitting also highlights that models for the physical structure of the inner envelope, on 500-2000 AU scales, needs to be improved. With future high sensitivity observations, we could potentially also be able to constrain any vertical density and temperature structure. In this poster I will present the

  5. Results from DROXO. IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85

    NASA Astrophysics Data System (ADS)

    Pizzocaro, D.; Stelzer, B.; Paladini, R.; Tiengo, A.; Lisini, G.; Novara, G.; Vianello, G.; Belfiore, A.; Marelli, M.; Salvetti, D.; Pillitteri, I.; Sciortino, S.; D'Agostino, D.; Haberl, F.; Watson, M.; Wilms, J.; Salvaterra, R.; De Luca, A.

    2016-03-01

    X-ray emission from young stellar objects (YSOs) is a key ingredient in understanding star formation. For the early, protostellar (Class I) phase, a very limited (and controversial) quantity of X-ray results is available to date. Within the EXTraS (Exploring the X-ray Transient and variable Sky) project, we have discovered transient X-ray emission from a source whose counterpart is ISO-Oph 85, a strongly embedded YSO in the ρ Ophiuchi star-forming region. We extract an X-ray light curve for the flaring state, and determine the spectral parameters for the flare from XMM-Newton/EPIC data with a method based upon quantile analysis. We combine photometry from infrared to millimeter wavelengths from the literature with mid-IR Spitzer and unpublished submm Herschel photometry that we analysed for this work, and we describe the resulting spectral energy distribution (SED) with a set of precomputed models. The X-ray flare of ISO-Oph 85 lasted ~2500 s and is consistent with a highly-absorbed one-component thermal model (NH = 1.0-0.5+1.2 × 1023 cm-2 and kT= 1.15-0.65+2.35 keV). The X-ray luminosity during the flare is log LX [erg/s] = 31.1+2.0-1.2; during quiescence we set an upper limit of log LX [erg/s] < 29.5. We do not detect other flares from this source. The submillimeter fluxes suggest that the object is a Class I protostar. We caution, however, that the offset between the Herschel and optical/infrared position is larger than that for other YSOs in the region, leaving some doubt on this association. To the best of our knowledge, this is the first X-ray flare from a YSO that has been recognised as a candidate Class I protostar via the analysis of its complete SED, including the submm bands that are crucial for detecting the protostellar envelope. This work shows how the analysis of the whole SED is fundamental to the classification of YSOs, and how the X-ray source detection techniques we have developed can open a new era in time-resolved analysis of the X

  6. VizieR Online Data Catalog: 6.7GHz methanol masers survey of low-mass YSO (Minier+, 2003)

    NASA Astrophysics Data System (ADS)

    Minier, V.; Ellingsen, S. P.; Norris, R. P.; Booth, R. S.

    2003-07-01

    We report the results of a search for 6.7-GHz methanol masers toward low-mass young stellar objects (YSOs) and (pre)protostellar condensations with the Australia Telescope Compact Array (ATCA). Our sample consisted of 13 class 0 protostars and 44 class I YSOs as well as 66 (pre)protostellar condensations. A single detection was obtained toward NGC 2024: FIR4 in the Orion B region. This is the first detection of a 6.7-GHz methanol maser in Orion. The nature of FIR4 has been a subject of debate with some evidence suggesting that it is a very cold high-mass (pre)protostellar condensation and others arguing that it is a low-mass YSO. The discovery of a methanol maser associated with this source is inconsistent with both of these hypotheses and we suggest that FIR4 probably harbours an intermediate- or high-mass YSO. (1 data file).

  7. The First Stars: A Low-Mass Formation Mode

    NASA Technical Reports Server (NTRS)

    Stacy, Athena; Bromm, Volker

    2014-01-01

    We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as approx. 1 AU, corresponding to gas densities of 10(exp 16)/cu cm. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1Stellar Mass to approx. 5 Stellar Mass by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.

  8. Galaxy masses

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Cappellari, Michele; de Jong, Roelof S.; Dutton, Aaron A.; Emsellem, Eric; Hoekstra, Henk; Koopmans, L. V. E.; Mamon, Gary A.; Maraston, Claudia; Treu, Tommaso; Widrow, Lawrence M.

    2014-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods all provide review material on galaxy masses in a self-consistent manner.

  9. Mid-IR Photometry and Near-IR Spectroscopy of the FU Ori Protostar V2775 Ori (HOPS 223)

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily J.; Megeath, S. Thomas; Terebey, Susan; Soto, Edith; Wilson, Thomas L.; Adams, Joseph D.

    2016-02-01

    On 2015 November 20.39, we obtained mid-IR photometry of V2775 Ori (HOPS 223) with the FORCAST instrument aboard SOFIA. This is a low-mass embedded young stellar object that was reported to have undergone a luminosity outburst by Caratti o Garatti et al. (2011, A & A, 526, L1). Fischer et al. (2012, ApJ, 756, 99) dated the beginning of the outburst to between 2005 April and 2007 March and discussed the similarity of its near-IR spectrum to that of FU Orionis.

  10. VLA Ammonia Observations of IRAS 16253-2429: A Very Young and Low Mass Protostellar System

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2011-01-01

    IRAS l6253-2429. the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source as possibly one of the youngest and lowest mass sources in formation yet known.

  11. Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl

    NASA Technical Reports Server (NTRS)

    Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.

    2012-01-01

    Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.

  12. Observations of two ``millimetre-only'' cores as candidates for early high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Balnozan, Egon; Lo, Nadia; Jones, Paul; Cunningham, Maria; Hill, Tracey; Bronfman, Leonardo

    2013-04-01

    We wish to image at high spectral resolution two “millimetre-only” sources from a subset of 10 identified by Hill et al. (2005) in a 1.2-mm continuum survey. These very bright mm-only sources (also featuring strong NH3 emission) are believed to be excellent candidates for early-stage protostars (C2102-2009JULS) through their characteristic similarity to known massive star-forming sources, despite lacking typical features of massive star formation such as methanol masers and radio continuum. We present evidence of methanol emission in these sources from a recent spectral analysis, along with other molecular species indicative of very early-stage star-formation in cores featuring outflows but devoid of HII regions. High-resolution observations are critical in discriminating between maser and thermal methanol line emission mechanisms that can distinguish between early-stage massive star formation and lower-mass objects. These observations will allow us to quantify the frequency, spatial position and scale of molecular emission to further understanding of the chemistry that distinguishes between low and high-mass star formation, investigate the possible relation between mm-only radio sources and massive protostars, while also gathering data relevant to creating chemical timelines of their early evolution.

  13. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  14. Spectral and Structure Modeling of Low and High Mass Young Stars Using a Radiative Trasnfer Code

    NASA Astrophysics Data System (ADS)

    Robson Rocha, Will; Pilling, Sergio

    The spectroscopy data from space telescopes (ISO, Spitzer, Herchel) shows that in addition to dust grains (e.g. silicates), there is also the presence of the frozen molecular species (astrophysical ices, such as H _{2}O, CO, CO _{2}, CH _{3}OH) in the circumstellar environments. In this work we present a study of the modeling of low and high mass young stellar objects (YSOs), where we highlight the importance in the use of the astrophysical ices processed by the radiation (UV, cosmic rays) comes from stars in formation process. This is important to characterize the physicochemical evolution of the ices distributed by the protostellar disk and its envelope in some situations. To perform this analysis, we gathered (i) observational data from Infrared Space Observatory (ISO) related with low mass protostar Elias29 and high mass protostar W33A, (ii) absorbance experimental data in the infrared spectral range used to determinate the optical constants of the materials observed around this objects and (iii) a powerful radiative transfer code to simulate the astrophysical environment (RADMC-3D, Dullemond et al, 2012). Briefly, the radiative transfer calculation of the YSOs was done employing the RADMC-3D code. The model outputs were the spectral energy distribution and theoretical images in different wavelengths of the studied objects. The functionality of this code is based on the Monte Carlo methodology in addition to Mie theory for interaction among radiation and matter. The observational data from different space telescopes was used as reference for comparison with the modeled data. The optical constants in the infrared, used as input in the models, were calculated directly from absorbance data obtained in the laboratory of both unprocessed and processed simulated interstellar samples by using NKABS code (Rocha & Pilling 2014). We show from this study that some absorption bands in the infrared, observed in the spectrum of Elias29 and W33A can arises after the ices

  15. Formation of primordial supermassive stars by rapid mass accretion

    SciTech Connect

    Hosokawa, Takashi; Yoshida, Naoki; Yorke, Harold W.; Inayoshi, Kohei; Omukai, Kazuyuki E-mail: hosokwtk@gmail.com

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  16. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  17. MASS DISTRIBUTIONS OF STARS AND CORES IN YOUNG GROUPS AND CLUSTERS

    SciTech Connect

    Michel, Manon; Kirk, Helen; Myers, Philip C. E-mail: hkirk@cfa.harvard.edu

    2011-07-01

    We investigate the relation of the stellar initial mass function and the dense core mass function (CMF), using stellar masses and positions in 14 well-studied young groups. Initial column density maps are computed by replacing each star with a model initial core having the same star formation efficiency (SFE). For each group the SFE, core model, and observational resolution are varied to produce a realistic range of initial maps. A clump-finding algorithm parses each initial map into derived cores, derived core masses, and a derived CMF. The main result is that projected blending of initial cores causes derived cores to be too few and too massive. The number of derived cores is fewer than the number of initial cores by a mean factor of 1.4 in sparse groups and 5 in crowded groups. The mass at the peak of the derived CMF exceeds the mass at the peak of the initial CMF by a mean factor of 1.0 in sparse groups and 12.1 in crowded groups. These results imply that in crowded young groups and clusters, the mass distribution of observed cores may not reliably predict the mass distribution of protostars that will form in those cores.

  18. The first stars: A low-mass formation mode

    SciTech Connect

    Stacy, Athena; Bromm, Volker

    2014-04-10

    We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as ∼1 AU, corresponding to gas densities of 10{sup 16} cm{sup –3}. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1 M {sub ☉} to ∼5 M {sub ☉} by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.

  19. Toward a Chemical Evolutionary Sequence in High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas; Beuther, Henrik; Semenov, Dmitry; Linz, Hendrik; Vasyunina, Tatiana; Henning, Thomas

    Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. The chemistry plays two main roles here: to study the evolution from simple to complex molecules, and to investigate the underlying physical processes. With these aims in mind, we observed a diverse sample of 60 high-mass star-forming regions in different evolutionary stages. In the early phase, quiescent Infrared Dark Clouds (IRDCs), consisting of cold and dense gas and dust, and emitting mainly at (sub-)millimeter wavelength, are formed. In the next phase, the so called High Mass Protostellar Objects (HMPOs) form, which host a central, likely still accreting protostar and already show emission at mid-infrared wavelengths. In the Hot Molecular Core phase (HMC) the central source heats up the surrounding environment, evaporating molecular-rich ices, which gives rise to a rich chemistry leading to complex molecules such as long carbon chains. Finally the UV-radiation from the embedded protostars ionizes the gas around and forms an Ultra Compact HII (UCHII) region. In these objects many of the previously formed complex molecules are not longer detected as they got destroyed by the ionizing radiation. For our observations, we used the IRAM 30m telescope with the total bandpass of 16 GHz and good spectral resolution (˜0.3/0.7 km/s at 1/3 mm). We derived their large-scale chemical abundances, assuming LTE and optically thin emission. To set these results into context, we model the chemical evolution in such environments with a state-of-the-art chemical model. This enables us to put constraints on the chemical evolution, the age and parameters such as the temperature and the density of the molecular clouds.

  20. Abdominal mass

    MedlinePlus

    Several conditions can cause an abdominal mass: Abdominal aortic aneurysm can cause a pulsating mass around the navel. ... This could be a sign of a ruptured aortic aneurysm, which is an emergency condition. Contact your health ...

  1. Abdominal mass

    MedlinePlus

    ... Several conditions can cause an abdominal mass: Abdominal aortic aneurysm can cause a pulsating mass around the navel. ... This could be a sign of a ruptured aortic aneurysm, which is an emergency condition. Contact your health ...

  2. Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES). Multiplicity and the Physical Environment in L1448N

    NASA Astrophysics Data System (ADS)

    Lee, Katherine I.; Dunham, Michael M.; Myers, Philip C.; Tobin, John J.; Kristensen, Lars E.; Pineda, Jaime E.; Vorobyov, Eduard I.; Offner, Stella S. R.; Arce, Héctor G.; Li, Zhi-Yun; Bourke, Tyler L.; Jørgensen, Jes K.; Goodman, Alyssa A.; Sadavoy, Sarah I.; Chandler, Claire J.; Harris, Robert J.; Kratter, Kaitlin; Looney, Leslie W.; Melis, Carl; Perez, Laura M.; Segura-Cox, Dominique

    2015-12-01

    We present continuum and molecular line observations at 230 and 345 GHz from the Submillimeter Array (SMA) toward three protostars in the Perseus L1448N region. The data are from the large project “Mass Assembly of Stellar Systems and their Evolution with the SMA.” Three dust continuum sources, Source B, Source NW, and Source A, are detected at both frequencies. These sources have corresponding emission peaks in C18O (J=2\\to 1), 13CO (J=2\\to 1), and HCO+ (J=4\\to 3), and have offsets with N2D+ (J=3\\to 2) peaks. High angular resolution data from a complementary continuum survey with the Karl G. Jansky Very Large Array show that Source B is associated with three 8 mm continuum objects, Source NW with two, and Source A remains single. These results suggest that multiplicity in L1448N exists at different spatial scales from a few thousand AU to <100 AU. Velocity gradients in each source obtained from two-dimensional fits to the SMA C18O emission are found to be perpendicular to within 20° of the outflow directions as revealed by 12CO (J=2\\to 1). We have observed that Sources B and NW with multiplicity have higher densities than Source A without multiplicity. This suggests that thermal Jeans fragmentation can be relevant in the fragmentation process. However, we have not observed a difference in the ratio between rotational and gravitational energy between sources with and without multiplicity. We also have not observed a trend between non-thermal velocity dispersions and the level of fragmentation. Our study has provided the first direct and comprehensive comparison between multiplicity and core properties in low-mass protostars, although based on small number statistics.

  3. The VLA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. Resolving the Sub-arcsecond Binary System in NGC 1333 IRAS2A

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Dunham, Michael M.; Looney, Leslie W.; Li, Zhi-Yun; Chandler, Claire J.; Segura-Cox, Dominique; Sadavoy, Sarah I.; Melis, Carl; Harris, Robert J.; Perez, Laura M.; Kratter, Kaitlin; Jørgensen, Jes K.; Plunkett, Adele L.; Hull, Charles L. H.

    2015-01-01

    We are conducting a Jansky Very Large Array (VLA) Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.4 cm) survey of all known protostars in the Perseus Molecular Cloud, providing resolution down to ~0.''06 and ~0.''35 in the Ka band and C band, respectively. Here we present first results from this survey that enable us to examine the source NGC 1333 IRAS2A in unprecedented detail and resolve it into a protobinary system separated by 0.''621 ± 0.''006 (~143 AU) at 8 mm, 1 cm, and 4 cm. These two sources (IRAS2A VLA1 and VLA2) are likely driving the two orthogonal outflows known to originate from IRAS2A. The brighter source IRAS2A VLA1 is extended perpendicular to its outflow in the VLA data, with a deconvolved size of 0.''055 (~13 AU), possibly tracing a protostellar disk. The recently reported candidate companions (IRAS2A MM2 and MM3) are not detected in either our VLA data, Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1.3 mm data, or Submillimeter Array (SMA) 850 μm data. SMA CO (J = 3 → 2), CARMA CO (J = 2 → 1), and lower-resolution CARMA CO (J = 1 → 0) observations are used to examine the outflow origins and the nature of the candidate companions to IRAS2A VLA1. The CO (J = 3 → 2) and (J = 2 → 1) data show that IRAS2A MM2 is coincident with a bright CO emission spot in the east-west outflow, and IRAS2A MM3 is within the north-south outflow. In contrast, IRAS2A VLA2 lies at the east-west outflow symmetry point. We propose that IRAS2A VLA2 is the driving source of the east-west outflow and a true companion to IRAS2A VLA1, whereas IRAS2A MM2 and MM3 may not be protostellar.

  4. THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY OF PERSEUS PROTOSTARS. RESOLVING THE SUB-ARCSECOND BINARY SYSTEM IN NGC 1333 IRAS2A

    SciTech Connect

    Tobin, John J.; Looney, Leslie W.; Dunham, Michael M.; Li, Zhi-Yun; Chandler, Claire J.; Perez, Laura M.; Segura-Cox, Dominique; Harris, Robert J.; Hull, Charles L. H.; Sadavoy, Sarah I.; Melis, Carl; Kratter, Kaitlin; Jørgensen, Jes K.; Plunkett, Adele L. E-mail: jeskj@nbi.dk

    2015-01-01

    We are conducting a Jansky Very Large Array (VLA) Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.4 cm) survey of all known protostars in the Perseus Molecular Cloud, providing resolution down to ∼0.''06 and ∼0.''35 in the Ka band and C band, respectively. Here we present first results from this survey that enable us to examine the source NGC 1333 IRAS2A in unprecedented detail and resolve it into a protobinary system separated by 0.''621 ± 0.''006 (∼143 AU) at 8 mm, 1 cm, and 4 cm. These two sources (IRAS2A VLA1 and VLA2) are likely driving the two orthogonal outflows known to originate from IRAS2A. The brighter source IRAS2A VLA1 is extended perpendicular to its outflow in the VLA data, with a deconvolved size of 0.''055 (∼13 AU), possibly tracing a protostellar disk. The recently reported candidate companions (IRAS2A MM2 and MM3) are not detected in either our VLA data, Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1.3 mm data, or Submillimeter Array (SMA) 850 μm data. SMA CO (J = 3 → 2), CARMA CO (J = 2 → 1), and lower-resolution CARMA CO (J = 1 → 0) observations are used to examine the outflow origins and the nature of the candidate companions to IRAS2A VLA1. The CO (J = 3 → 2) and (J = 2 → 1) data show that IRAS2A MM2 is coincident with a bright CO emission spot in the east-west outflow, and IRAS2A MM3 is within the north-south outflow. In contrast, IRAS2A VLA2 lies at the east-west outflow symmetry point. We propose that IRAS2A VLA2 is the driving source of the east-west outflow and a true companion to IRAS2A VLA1, whereas IRAS2A MM2 and MM3 may not be protostellar.

  5. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  6. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  7. Chemistry in low-mass protostellar and protoplanetary regions.

    PubMed

    van Dishoeck, Ewine F

    2006-08-15

    When interstellar clouds collapse to form new stars and planets, the surrounding gas and dust become part of the infalling envelopes and rotating disks, thus providing the basic material from which new solar systems are formed. Instrumentation to probe the chemistry in low-mass star-forming regions has only recently become available. The results of a systematic program to study the abundances in solar-mass protostellar and protoplanetary regions are presented. Surveys at submillimeter and infrared wavelengths reveal a rich chemistry, including simple and complex (organic) gases, ices, polycyclic aromatic hydrocarbons, and silicates. Each of these species traces different aspects of the physical and chemical state of the objects as they evolve from deeply embedded protostars to pre-main sequence stars with planet-forming disks. Quantitative information on temperatures, densities, and abundances is obtained through molecular excitation and radiative transfer models as well as from analysis of solid-state line profiles. The chemical characteristics are dominated by freeze-out in the coldest regions and ice evaporation in the warmer zones. In the surface layers of disks, UV radiation controls the chemistry. The importance of complementary laboratory experiments and calculations to obtain basic molecular data is emphasized. PMID:16894165

  8. Chemistry in low-mass protostellar and protoplanetary regions

    PubMed Central

    van Dishoeck, Ewine F.

    2006-01-01

    When interstellar clouds collapse to form new stars and planets, the surrounding gas and dust become part of the infalling envelopes and rotating disks, thus providing the basic material from which new solar systems are formed. Instrumentation to probe the chemistry in low-mass star-forming regions has only recently become available. The results of a systematic program to study the abundances in solar-mass protostellar and protoplanetary regions are presented. Surveys at submillimeter and infrared wavelengths reveal a rich chemistry, including simple and complex (organic) gases, ices, polycyclic aromatic hydrocarbons, and silicates. Each of these species traces different aspects of the physical and chemical state of the objects as they evolve from deeply embedded protostars to pre-main sequence stars with planet-forming disks. Quantitative information on temperatures, densities, and abundances is obtained through molecular excitation and radiative transfer models as well as from analysis of solid-state line profiles. The chemical characteristics are dominated by freeze-out in the coldest regions and ice evaporation in the warmer zones. In the surface layers of disks, UV radiation controls the chemistry. The importance of complementary laboratory experiments and calculations to obtain basic molecular data is emphasized. PMID:16894165

  9. Inertial Mass

    ERIC Educational Resources Information Center

    King, Kenneth P.

    2007-01-01

    The inertial balance is one device that can help students to quantify the quality of inertia--a body's resistance to a change in movement--in more generally understood terms of mass. In this hands-on activity, students use the inertial balance to develop a more quantitative idea of what mass means in an inertial sense. The activity also helps…

  10. Rotation and Outflow Motions in the Very Low-Mass Class 0 Protostellar System HH 211 at Subarcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Hirano, Naomi; Palau, Aina; Ho, Paul T. P.; Bourke, Tyler L.; Zhang, Qizhou; Shang, Hsien

    2009-07-01

    HH 211 is a nearby young protostellar system with a highly collimated jet. We have mapped it in 352 GHz continuum, SiO (J = 8 - 7), and HCO+ (J = 4 - 3) emission at up to ~0farcs2 resolution with the Submillimeter Array (SMA). The continuum source is now resolved into two sources, SMM1 and SMM2, with a separation of ~ 84 AU. SMM1 is seen at the center of the jet, probably tracing a (inner) dusty disk around the protostar driving the jet. SMM2 is seen to the southwest of SMM1 and may trace an envelope-disk around a small binary companion. A flattened envelope-disk is seen in HCO+ around SMM1 with a radius of ~ 80 AU perpendicular to the jet axis. Its velocity structure is consistent with a rotation motion and can be fitted with a Keplerian law that yields a mass of ~50 ± 15 M Jup (a mass of a brown dwarf) for the protostar. Thus, the protostar could be the lowest mass source known to have a collimated jet and a rotating flattened envelope-disk. A small-scale (~200 AU) low-speed (~2 km s-1) outflow is seen in HCO+ around the jet axis extending from the envelope-disk. It seems to rotate in the same direction as the envelope-disk and may carry away part of the angular momentum from the envelope-disk. The jet is seen in SiO close to ~100 AU from SMM1. It is seen with a "C-shaped" bending. It has a transverse width of lsim 40 AU and a velocity of ~ 170 ± 60 km s-1. A possible velocity gradient is seen consistently across its innermost pair of knots, ~0.5 km s-1 at ~10 AU, consistent with the sense of rotation of the envelope-disk. If this gradient is an upper limit of the true rotational gradient of the jet, then the jet carries away a very small amount of angular momentum of lsim 5 AU km s-1 and thus must be launched from the very inner edge of the disk near the corotation radius.

  11. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 μm, 163.1 μm between the 2Π1/2 J = 1/2 states, and 119.2 μm, a ground transition between the 2Π3/2 J = 3/2 states), at angular resolutions of 16.̋3, 16.̋3, and 11.̋9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 μm are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 μm triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that

  12. Protostars are Nature's Chemical Factories

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A. III; Johnson, Natasha M.

    2005-01-01

    H(2-2), N2 and CO are the most abundant molecular constituents in astrophysical environments, including protostellar nebulae. Although some organic molecules may be produced on very long timescales by the irradiation of ices formed on the cold surfaces of interstellar grains and these molecules may be an important source of raw materials leading to the origin of life on Earth, pre-solar organics could be swamped by the efficient conversion of nebular H2, N2 and CO to simple organic materials.

  13. Coeval Intermediate-mass Star Formation in N4W

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Zhang, Shaobo; Zhang, Miaomiao; Jiang, Zhibo; Tamura, Motohide; Kwon, Jungmi

    2016-05-01

    Protostars are mostly found in star-forming regions, where the natal molecular gas still remains. At about 5\\prime west of the molecular bubble N4, N4W is identified as a star-forming clump hosting three Class II (IRS 1–3), and one Class I (IRS 4) young stellar objects (YSOs), as well as a submillimeter source SMM1. The near-IR polarization imaging data of N4W reveal two infrared reflection nebulae close to each other, which are in favor of the outflows of IRS 1 and IRS 2. The bipolar mid-IR emission centered on IRS 4 and the arc-like molecular gas shell are lying on the same axis, indicating a bipolar molecular outflow from IRS 4. There are two dust temperature distributions in N4W. The warmer one is widely distributed and has a temperature of {T}{{d}}≳ 28 {{K}}, with the colder one being from the embedded compact submillimeter source SMM1. N4W’s mass is estimated to be ˜ 2.5× {10}3 {M}ȯ , and the mass of SMM1 is ˜ 5.5× {10}2 {M}ȯ at {T}{{d}}=15 {{K}}, calculated from the CO 1 ‑ 0 emission and 870 μm dust continuum emission, respectively. Based on the estimates of the bolometric luminosity of IRS 1–4, these four sources are intermediate-mass YSOs at least. SMM1 is gravitationally bound, and is capable of forming intermediate-mass stars or even possibly massive stars. The co-existence of the IR bright YSOs and the submillimeter source represents potential sequential star formation processes separated by ˜0.5 Myr in N4W. This small age spread implies that the intermediate-mass star formation processes happening in N4W are almost coeval.

  14. Mass Deacidification.

    ERIC Educational Resources Information Center

    Harris, Carolyn

    1979-01-01

    Reviews methods being developed for mass deacidification of books to prevent deterioration of paper. The use of diethyl zinc, liquified gas, and morpholine, and the advantages, disadvantages, and cost of each are considered. A 26-item bibliography is included. (JD)

  15. The characteristic black hole mass resulting from direct collapse in the early Universe

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Schmidt, W.; Niemeyer, J. C.

    2013-12-01

    Black holes of a billion solar masses are observed in the infant Universe a few hundred million years after the big bang. The direct collapse of protogalactic gas clouds in primordial haloes with Tvir ≥ 104 K provides the most promising way to assemble massive black holes. In this study, we aim to determine the characteristic mass scale of seed black holes and the time evolution of the accretion rates resulting from the direct collapse model. We explore the formation of supermassive black holes via cosmological large eddy simulations (LES) by employing sink particles and following their evolution for 20 000 yr after the formation of the first sink. As the resulting protostars were shown to have cool atmospheres in the presence of strong accretion, we assume here that UV feedback is negligible during this calculation. We confirm this result in a comparison run without sinks. Our findings show that black hole seeds with characteristic mass of 105 M⊙ are formed in the presence of strong Lyman-Werner flux which leads to an isothermal collapse. The characteristic mass is about two times higher in LES compared to the implicit large eddy simulations. The accretion rates increase with time and reach a maximum value of 10 M⊙ yr-1 after 104 yr. Our results show that the direct collapse model is clearly feasible as it provides the expected mass of the seed black holes.

  16. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  17. Chemical Changes During Star Formation: High vs. Low-mass YSOs

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine F.

    An overview of recent single-dish surveys of molecular species at infrared and submillimeter wavelengths in a set of high- and low-mass young stellar objects will be presented. The importance of flexible radiative transfer tools for deriving reliable abundances will be emphasized. The temperature and density structures of the envelopes ---an essential ingredient in the analysis--- are constrained from observations of the dust continuum and CS excitation. In high mass objects, clear evidence is seen for abundance jumps of various molecules in the inner warm part of the envelopes. Systematic trends in the abundances and gas/solid ratios with enhanced dust and gas temperatures are found, which may be related to the evolutionary state of the objects. Recent results on combined ISO-SWS, ISO-LWS and SWAS observations of H2O are summarized. The results for high-mass objects will be compared with those for low-mass class 0 and I objects, with special emphasis on the deeply embedded IRAS 16293 -2422 protostar. Geometry appears to play a more important role in the analysis of data for low-mass objects. The observations are interpreted with detailed time-dependent chemical models using the inferred physical structure as input. The importance of freeze-out in the outer envelope as well as ice evaporation and high-temperature reactions in the inner envelope are discussed. See: astro-ph/0205457; astro-ph/0205292; astro-ph/0205068; astro-ph/0201317.

  18. A Multiwavelength Study of the Process of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Howard, Eric M.

    1996-06-01

    powering bipolar outflows which last > 1.5 × 105yrs. Detailed analyses of the four individual regions, including population studies of associated stellar cluster members, are made and a general picture of the process of high mass star formation is presented including: triggered formation of toroidal (proto-cluster) cloud core(s); fragmentation of the core(s) and formation of high-mass protostar(s), ultracompact HII region(s) and associated stellar cluster(s); and evolution of outflows from bipolar ionized jets to massive, extended molecular outflows.

  19. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  20. Scrotal masses

    MedlinePlus

    ... your provider to determine if it may be testicular cancer. Prevention You can prevent scrotal masses caused by sexually ... 21095426 . U.S. Preventive Services Task Force. Screening for Testicular Cancer: U.S. Preventive Services Task Force reaffirmation recommendation statement. Ann Intern ...

  1. Insights into the origin of the stellar initial mass function from Herschel Gould Belt survey observations

    NASA Astrophysics Data System (ADS)

    André, Philippe; Roy, Arabindo; Arzoumanian, Doris

    2015-08-01

    The origin of the stellar initial mass function (IMF) is one of the most debated issues in astrophysics. Two major features of the IMF are 1) a fairly robust power-law slope at the high-mass end known since Salpeter (1955), and 2) a broad peak below 1 Mo corresponding to a characteristic stellar mass scale. In recent years, the dominant theoretical model proposed to account for these features has been the "gravo-turbulent fragmentation" picture, whereby the properties of interstellar turbulence lead to the Salpeter power law and gravity sets the characteristic mass scale (Jeans mass). I will discuss modifications to this picture based on extensive submillimeter imaging observations of nearby molecular clouds with the Herschel Space Observatory which set strong constraints on the formation process of prestellar cores.The Herschel results point to the key role of the quasi-universal filamentary structure pervading the cold interstellar medium and support a scenario in which star formation occurs in two main steps: first, the dissipation of kinetic energy in large-scale MHD flows (turbulent or not) generates ~ 0.1 pc-wide filaments in the cold ISM; second, the densest filaments grow and fragment into prestellar cores (and ultimately protostars) by gravitational instability above a critical threshold ~ 16 Mo/pc in mass per unit length or ~ 160 Mo/pc2 in gas surface density (AV ~ 8).In our observationally-driven scenario, the dense cores making up the peak of the prestellar core mass function (CMF) - likely responsible for the characteristic IMF mass scale - result from gravitational fragmentation of filaments near the critical threshold for global gravitational instability. The power-law tail of the CMF/IMF arises either from the characteristic power spectrum of initial density fluctuations measured along the Herschel filaments (Roy et al. submitted) or from the power-law distribution of masses per unit length observed for supercritical filaments.

  2. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  3. Mass Sensor

    SciTech Connect

    Adams, B.E.

    2001-01-18

    The purpose of this CRADA was to use Honeywell's experience in low temperature cofire ceramics and traditional ceramics to assemble a relatively low-cost, mass-producible miniature mass analyzer. The specific design, given to us by Mass Sensors, LLC, was used to test for helium. The direct benefit for the participant was to have a prototype unit assembled for the purpose of proof of concept and the ability to secure venture capital investors. From that, the company would begin producing their own product for sale. The consumer/taxpayer benefits come from the wide variety of industries that can utilize this technology to improve quality of life. Medical industry can use this technology to improve diagnostic ability; manufacturing industry can use it for improved air, water, and soil monitoring to minimize pollution; and the law enforcement community can use this technology for identification of substances. These are just a few examples of the benefit of this technology. The benefits to DOE were in the area of process improvement for cofire and ceramic materials. From this project we demonstrated nonlinear thickfilm fine lines and spaces that were 5-mil wide with 5-mil spaces; determined height-to diameter-ratios for punched and filled via holes; demonstrated the ability to punch and fill 5-mil microvias; developed and demonstrated the capability to laser cut difficult geometries in 40-mil ceramic; developed and demonstrated coupling LTCC with standard alumina and achieving hermetic seals; developed and demonstrated three-dimensional electronic packaging concepts; and demonstrated printing variable resistors within 1% of the nominal value and within a tightly defined ratio. The capability of this device makes it invaluable for many industries. The device could be used to monitor air samples around manufacturing plants. It also could be used for monitoring automobile exhaust, for doing blood gas analysis, for sampling gases being emitted by volcanoes, for studying

  4. Modeling the Submillimeter Dust Continuum Emission from Nearby Low Mass Star Forming Cores

    NASA Astrophysics Data System (ADS)

    Shirley, Y. L.; Young, C. H.; Evans, N. J., II; Rawlings, J. M. C.

    2001-12-01

    Current theories of a low mass star formation predict the evolution of the density distribution, n({r}, t), temperature distribution, T({r}, t), and the velocity field ,{v}({r}, t), of the envelope of protostellar cores with time. Optically thin dust emission at submillimeter wavelengths provides a powerful diagnostic to constrain the envelope density and temperature structure. In this study, thirty-nine low mass cores were mapped with SCUBA at 850 and 450 μ m on the JCMT during sixteen nights between January 1998 and February 2000. The sources were selected from the earliest phases (pre-T Tauri) in the proposed evolutionary scheme for low mass protostars (6 Pre-protostellar Cores (PPCs), 15 Class 0, 18 Class I) with luminosities indicative of low mass star formation (Lbol < 50 Lsun) and with distances less than 450 pc. High signal-to-noise maps allowed azimuthally averaged radial profiling out to 60 arcseconds from the continuum centroid. The similarities and differences in the submillimeter continuum emission properties of the envelopes of PPCs, Class 0, and Class I sources on 103 to 104 AU scales are summarized. We have modeled the normalized radial intensity distributions and spectral energy distributions (SED) for sixteen sources from the SCUBA survey (3 PPCs, 7 Class 0, and 6 Class I) using a one dimensional radiative transfer code (Egan, Leung, & Spagna 1988) with internal heating from a central protostar (Class 0 and I objects) and external heating from the interstellar radiation field (all objects) to calculate the dust temperature distribution. Power law, Bonnor-Ebert, Shu inside-out collapse, and Plummer density distributions were tested to match the observed normalized radial profiles and observed SED simultaneously. Realistic beam profiles and chopping were used to simulate the observations. We find Bonnor-Ebert spheres with central densities of 105 to 106 cm-3 reproduce the PPC radial profiles while power law models (n(r) ~ r-p, p = 1.1 - 2

  5. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  6. DR21(OH) - a high-mass star cluster in formation observed with Herschel-HIFI, and the IRAM PdBI

    NASA Astrophysics Data System (ADS)

    Bontemps, S.; Csengeri, T.; Herpin, F.; Schneider, N.; Motte, F.; Chavarria, L.; Baudry, A.

    2011-05-01

    With 7000 M_⊙ inside a radius of 0.3 pc, DR21(OH) is the most massive nearby sub-parsec size scale clump at less than 3 kpc from Sun (Motte et al. 2007, A&A 476, 1243). With a size similar to the Orion Nebula Cluster (ONC), it has the potential to form a 3 times more massive cluster than the ONC. It already contains a hot core/HCHII region (Araya et al. 2009, ApJ 698, 1321), as well as at least 2 class 0 like massive protostars (Bontemps et al. 2010, A&A 524, 18). It is also the possible location of the impact of a flow of material from a large scale filament detected in CS/N2H+ by Schneider et al. (2010, A&A 520, 49) falling on the clump. Using the IRAM PdBI we have resolved out the complex structure of the region both in the dust continuum and in several molecular lines (N2H+, CH3CN, H2CO, HC3N) and have found that it is actually governed by supersonic flows (see Csengeri et al. 2011, A&A 527, 135). Using the HIFI instrument, and as part of the WISH guaranteed time key program, we have observed DR21(OH) in more than 10 transitions of water and isotopologues which have all been detected with complex line profiles which are tracing the kinematics in the inner regions of the proto-cluster. From these high resolution observations and new water observations we will discuss the origin of water emission in high-mass protostellar objects and will use these results to further contrain the origin of high-mass stars and accompanying clusters. This detailed investigation will also serve to discuss the origin of water emission from other Herschel-HIFI observations of (more distant) high-mass protostars.

  7. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  8. Water and methanol in low-mass protostellar outflows: gas-phase synthesis, ice sputtering and destruction

    NASA Astrophysics Data System (ADS)

    Suutarinen, A. N.; Kristensen, L. E.; Mottram, J. C.; Fraser, H. J.; van Dishoeck, E. F.

    2014-05-01

    Water in outflows from protostars originates either as a result of gas-phase synthesis from atomic oxygen at T ≳ 200 K, or from sputtered ice mantles containing water ice. We aim to quantify the contribution of the two mechanisms that lead to water in outflows, by comparing observations of gas-phase water to methanol (a grain surface product) towards three low-mass protostars in NGC 1333. In doing so, we also quantify the amount of methanol destroyed in outflows. To do this, we make use of James Clerk Maxwell Telescope and Herschel-Heterodyne Instrument for the Far-Infrared data of H2O, CH3OH and CO emission lines and compare them to RADEX non-local thermodynamic equilibrium excitation simulations. We find up to one order of magnitude decrease in the column density ratio of CH3OH over H2O as the velocity increases in the line wings up to ˜15 km s-1. An independent decrease in X(CH3OH) with respect to CO of up to one order of magnitude is also found in these objects. We conclude that gas-phase formation of H2O must be active at high velocities (above 10 km s-1 relative to the source velocity) to re-form the water destroyed during sputtering. In addition, the transition from sputtered water at low velocities to form water at high velocities must be gradual. We place an upper limit of two orders of magnitude on the destruction of methanol by sputtering effects.

  9. Millimeter continuum measurements of circumstellar dust around very young low-mass stars

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Chandler, C. J.; Andre, P.

    1994-01-01

    We investigate the question of disk formation during the protostar phase. We build on the results of Keene and Masson (1990) whose analysis of L1551 showed the millimeter continuum emission comes from both an unresolved circumstellar component, i.e., a disk and an extended cloud core. We model the dust continuum emission from the cloud core and show how it is important at 1.3 mm but negligible at 2.7 mm. Combining new 2.7 mm Owens Valley Interferometer data of IRAS-Dense cores with data from the literature we conclude that massive disks are also seen toward a number of other sources. However, 1.3 mm data from the IRAM 30 m telescope for a larger sample shows that massive disks are relatively rare, occurring around perhaps 5% of young embedded stars. This implies that either massive disks occur briefly during the embedded phase or that relatively few young stars form massive disks. At 1.3 mm the median flux of IRAS-Dense cores is nearly the same as T Tauri stars in the sample of Beckwith et al. (1990). We conclude that the typical disk mass during the embedded phase is nearly the same or less than the typical disk mass during the T Tauri phase.

  10. Unveiling the gas kinematics at 10 AU scales in high-mass star-forming regions. Milliarcsecond structure of 6.7 GHz methanol masers

    NASA Astrophysics Data System (ADS)

    Moscadelli, L.; Sanna, A.; Goddi, C.

    2011-12-01

    Context. High-mass stars play a prominent role in Galactic evolution, but their formation mechanism is still poorly understood. This lack of knowledge reflects the observational limitations of present instruments, whose angular resolution (at the typical distances of massive protostars) precludes probing circumstellar gas on scales of 1-100 AU, relevant for a detailed investigation of accretion structures and launch/collimation mechanims of outflows in high-mass star formation. Aims: This work presents a study of the milliarcsecond structure of the 6.7 GHz methanol masers at high-velocity resolution (0.09 km s-1) in four high-mass star-forming regions: G16.59-0.05, G23.01-0.41, IRAS 20126 + 4104, and AFGL 5142. Methods: We studied these sources by means of multi-epoch VLBI observations in the 22 GHz water and 6.7 GHz methanol masers, to determine the 3-D gas kinematics within a few thousand AU from the (proto)star. Our results demonstrate the ability of maser emission to trace kinematic structures close to the (proto)star, revealing the presence of fast wide-angle and/or collimated outflows (traced by the H2O masers), and of rotation and infall (indicated by the CH3OH masers). The present work exploits the 6.7 GHz maser data collected so far to investigate the milliarcsecond structure of this maser emission at high-velocity resolution. Results: Most of the detected 6.7 GHz maser features present an ordered (linear, or arc-like) distribution of maser spots on the plane of the sky, together with a regular variation in the spot LSR velocity (VLSR) with position. Typical values for the amplitude of the VLSR gradients (defined in terms of the derivative of the spot VLSR with position) are found to be 0.1-0.2 km s-1 mas-1. In each of the four target sources, the orientation and the amplitude of most of the feature VLSR gradients remain remarkably stable in time, on timescales of (at least) several years. We also find that the data are consistent with having the VLSR

  11. Linking low- to high-mass young stellar objects with Herschel-HIFI observations of water

    NASA Astrophysics Data System (ADS)

    San José-García, I.; Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; van der Tak, F. F. S.; Braine, J.; Herpin, F.; Johnstone, D.; van Kempen, T. A.; Wyrowski, F.

    2016-01-01

    Context. Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is therefore a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs, an important step in understanding the fundamental mechanisms regulating star formation. Aims: As part of the WISH key programme, we investigate excited water line properties as a function of source luminosity, in particular the dynamics and the excitation conditions of shocks along the outflow cavity wall. Methods: Velocity-resolved Herschel-HIFI spectra of the H2O 202-111 (988 GHz), 211-202 (752 GHz) and 312-303 (1097 GHz) lines were analysed, together with 12CO J = 10-9 and 16-15, for 52 YSOs with bolometric luminosities ranging from <1 to >105 L⊙. The H2O and 12CO line profiles were decomposed into multiple Gaussian components which are related to the different physical structures of the protostellar system. The non-LTE radiative transfer code radex was used to constrain the excitation conditions of the shocks along the outflow cavity. Results: The profiles of the three excited water lines are similar, indicating that they probe the same gas. Two main emission components are seen in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall ("cavity shocks") and a narrow component associated with the quiescent envelope material. More than 60% of the total integrated intensity in the excited water lines comes from the broad cavity shock component, while the remaining emission comes mostly from the envelope for low-mass Class I, intermediate- and high-mass objects, and dissociative "spot shocks" for low-mass Class 0 protostars. The widths of the water lines are surprisingly similar from low- to high-mass YSOs, whereas 12CO J = 10-9 line widths increase slightly with Lbol. The excitation analysis of the cavity shock component shows stronger 752 GHz emission for high-mass

  12. Low-Mass Star Formation and the Initial Mass Function in the ρ Ophiuchi Cloud Core

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Rieke, G. H.

    1999-11-01

    We have obtained moderate-resolution (R=800-1200) K-band spectra for ~100 stars within and surrounding the cloud core of ρ Oph. We have measured spectral types and continuum veilings and have combined this information with results from new deep imaging. Using the latest evolutionary tracks of D'Antona & Mazzitelli to interpret the H-R diagram for ρ Oph, we infer ages ranging between 0.1 and 1 Myr for the class II and III sources (i.e., those that have emerged from their natal cocoons). A few stars may be slightly older. The initial mass function (IMF) peaks at about 0.4 Msolar and slowly declines to the hydrogen-burning limit with a slope of ~-0.5 in logarithmic units (Salpeter is +1.35). Our lower limits on the numbers of substellar objects demonstrate that the IMF probably does not fall more steeply below the hydrogen-burning limit, at least down to ~0.02 Msolar. The derived IMF is consistent with previous findings that the ρ Oph IMF is roughly flat from 0.05 to 1 Msolar. The exact shape of the mass function remains a function of the theoretical evolutionary tracks and, at the lowest masses, the conversion from spectral types to effective temperatures. We then make the first comparison of mass functions of stars and prestellar clumps measured in the same region. The similar behavior of the two mass functions in ρ Oph supports the suggestion of Motte et al. and Testi & Sargent that the stellar mass function in young clusters is a direct product of the process of cloud fragmentation. We have also studied the very young and often still embedded class I and flat-spectrum objects. After considering the effect of extinction on the SED classifications of the sample, we find that ~17% of the ρ Oph stars are class I, implying ~0.1 Myr for the lifetime of this stage. In spectra separated by 2 yr, we observe simultaneous variability in the Brγ emission and K-band continuum veiling for two stars, where the hydrogen emission is brighter in the more heavily veiled data

  13. OT2_alopezse_3: Mapping the cosmic ray ionisation rate across the Northern end of the Orion A iant molecular cloud

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.

    2011-09-01

    Cosmic rays (CR) are ubiquitous in the Galaxy and have the important role of ionizing the dens gas of the ISM. New Herschel observations have shown the huge diagnostic power of the OH+ fundamental transition to measure the CR ionization rate in diffuse clouds. Based on previous "serendipity" observations toward OMC2-FIR4 within the KP CHESS, we discovered a tenuous foreground cloud absorbing the fundamental OH+ line. Similarly, Gupta et al. (2010) found an OH+ absorption component at a similar velocity towards Orion KL and estimated a large CR ionization rate more than 10 times larger than the average value observed in diffuse clouds . We propose here to roughly map the CR ionization rate in the direction of the OMC2 and OMC3 complex to understand its extent, nature, and, finally, the source of ionization.

  14. HIGH RESOLUTION H{alpha} IMAGES OF THE BINARY LOW-MASS PROPLYD LV 1 WITH THE MAGELLAN AO SYSTEM

    SciTech Connect

    Wu, Y.-L.; Close, L. M.; Males, J. R.; Follette, K.; Morzinski, K.; Kopon, D.; Rodigas, T. J.; Hinz, P.; Puglisi, A.; Esposito, S.; Pinna, E.; Riccardi, A.; Xompero, M.; Briguglio, R.

    2013-09-01

    We utilize the new Magellan adaptive optics system (MagAO) to image the binary proplyd LV 1 in the Orion Trapezium at H{alpha}. This is among the first AO results in visible wavelengths. The H{alpha} image clearly shows the ionization fronts, the interproplyd shell, and the cometary tails. Our astrometric measurements find no significant relative motion between components over {approx}18 yr, implying that LV 1 is a low-mass system. We also analyze Large Binocular Telescope AO observations, and find a point source which may be the embedded protostar's photosphere in the continuum. Converting the H magnitudes to mass, we show that the LV 1 binary may consist of one very-low-mass star with a likely brown dwarf secondary, or even plausibly a double brown dwarf. Finally, the magnetopause of the minor proplyd is estimated to have a radius of 110 AU, consistent with the location of the bow shock seen in H{alpha}.

  15. Primary mass standard based on atomic masses

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Gläser, Michael

    2006-04-01

    The paper summarises the activities of several national and international Metrology Institutes in replacing the kilogram artefact, the unit of mass, by the mass of a certain number of atoms, in particular the atomic masses of silicon or bismuth. This task is based on two different experiments: a very accurate determination of the Avogadro constant, NA, measuring the density and lattice parameter of an enriched silicon-28 crystal, and the accumulation of decelerated bismuth-209 ions by using a mass separator. The relative measurement uncertainties reached so far are in the first case 2 parts in 107, and in the latter several part in 104. The bismuth experiment is still in an early state of the work. The ratios between the masses of 28Si or 209Bi, respectively, and the present atomic mass standard, the mass of 12C, can be determined with an accuracy now approaching 10-10 using high precision Penning traps mass spectrometers.

  16. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. III. NGC 1333 IRAS 4A/4B envelope, outflow, and ultraviolet heating

    NASA Astrophysics Data System (ADS)

    Yıldız, Umut A.; Kristensen, Lars E.; van Dishoeck, Ewine F.; Belloche, Arnaud; van Kempen, Tim A.; Hogerheijde, Michiel R.; Güsten, Rolf; van der Marel, Nienke

    2012-06-01

    Context. The NGC 1333 IRAS 4A and IRAS 4B sources are among the most well-studied Stage 0 low-mass protostars, which drive prominent bipolar outflows. Spectrally resolved molecular emission lines provide crucial information about the physical and chemical structure of the circumstellar material as well as the dynamics of the different components. Most studies have so far concentrated on the colder parts (T ≤ 30 K) of these regions. Aims: The aim is to characterize the warmer parts of the protostellar envelope using the new generation of submillimeter instruments. This will allow us to quantify the feedback of the protostars on their surroundings in terms of shocks, ultraviolet (UV) heating, photodissociation, and outflow dispersal. Methods: The dual frequency 2 × 7 pixel 650/850 GHz array receiver CHAMP+ mounted on APEX was used to obtain a fully sampled, large-scale ~4' × 4' map at 9″ resolution of the IRAS 4A/4B region in the 12CO J = 6-5 line. Smaller maps were observed in the 13CO 6-5 and [C i] J = 2-1 lines. In addition, a fully sampled 12CO J = 3-2 map made with HARP-B on the JCMT is presented and deep isotopolog observations are obtained at selected outflow positions to constrain the optical depth. Complementary Herschel-HIFI and ground-based lines of CO and its isotopologs, from J = 1-0 up to 10-9 (Eu/k ≈ 300 K), are collected at the source positions and used to construct velocity-resolved CO ladders and rotational diagrams. Radiative-transfer models of the dust and lines are used to determine the temperatures and masses of the outflowing and photon-heated gas and infer the CO abundance structure. Results: Broad CO emission-line profiles trace entrained shocked gas along the outflow walls, which have an average temperature of ~100 K. At other positions surrounding the outflow and the protostar, the 6-5 line profiles are narrow indicating UV excitation. The narrow 13CO 6-5 data directly reveal the UV heated gas distribution for the first time. The

  17. An all-sky sample of intermediate-mass star-forming regions

    SciTech Connect

    Lundquist, Michael J.; Kobulnicky, Henry A.; Alexander, Michael J.; Kerton, Charles R.; Arvidsson, Kim

    2014-04-01

    We present an all-sky sample of 984 candidate intermediate-mass Galactic star-forming regions that are color selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog and morphologically classify each object using mid-infrared Wide-field Infrared Survey Explorer (WISE) images. Of the 984 candidates, 616 are probable star-forming regions (62.6%), 128 are filamentary structures (13.0%), 39 are point-like objects of unknown nature (4.0%), and 201 are galaxies (20.4%). We conduct a study of four of these regions, IRAS 00259+5625, IRAS 00420+5530, IRAS 01080+5717, and IRAS 05380+2020, at Galactic latitudes |b| > 5° using optical spectroscopy from the Wyoming Infrared Observatory, along with near-infrared photometry from the Two-Micron All Sky Survey, to investigate their stellar content. New optical spectra, color-magnitude diagrams, and color-color diagrams reveal their extinctions, spectrophotometric distances, and the presence of small stellar clusters containing 20-78 M {sub ☉} of stars. These low-mass diffuse star clusters contain ∼65-250 stars for a typical initial mass function, including one or more mid-B stars as their most massive constituents. Using infrared spectral energy distributions we identify young stellar objects near each region and assign probable masses and evolutionary stages to the protostars. The total infrared luminosity lies in the range 190-960 L {sub ☉}, consistent with the sum of the luminosities of the individually identified young stellar objects.

  18. SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Guzman, Andres E.; Garay, Guido; Brooks, Kate J.; Voronkov, Maxim A.

    2012-07-01

    We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets toward high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8, and 8.6 GHz, made with angular resolutions of about 7'', 4'', 2'', and 1'', respectively, toward six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L{sub bol} > 2 Multiplication-Sign 10{sup 4} L{sub Sun }), but underluminous in radio emission compared with that expected from its bolometric luminosity. This criterion makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact H II regions and two ultracompact H II regions. The two jets discovered are associated with two of the most luminous (7 Multiplication-Sign 10{sup 4} and 1.0 Multiplication-Sign 10{sup 5} L{sub Sun }) HMYSOs known to harbor this type of object, showing that the phenomena of collimated ionized winds appear in the formation process of stars at least up to masses of {approx}20 M{sub Sun} and provide strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for {approx}4 Multiplication-Sign 10{sup 4} yr.

  19. ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING

    SciTech Connect

    Dopcke, Gustavo; Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S.

    2013-04-01

    The first stars to form in the universe are believed to have distribution of masses biased toward massive stars. This contrasts with the present-day initial mass function, which has a predominance of stars with masses lower than 1 M{sub Sun }. Therefore, the mode of star formation must have changed as the universe evolved. Such a transition is attributed to a more efficient cooling provided by increasing metallicity. Especially dust cooling can overcome the compressional heating, which lowers the gas temperature thus increasing its instability to fragmentation. The purpose of this paper is to verify if dust cooling can efficiently cool the gas, and enhance the fragmentation of gas clouds at the early stages of the universe. To confirm that, we calculate a set of hydrodynamic simulations that include sink particles, which represent contracting protostars. The thermal evolution of the gas during the collapse is followed by making use of a primordial chemical network and also a recipe for dust cooling. We model four clouds with different amounts of metals (10{sup -4}, 10{sup -5}, 10-6 Z{sub Sun }, and 0), and analyze how this property affect the fragmentation of star-forming clouds. We find evidence for fragmentation in all four cases, and hence conclude that there is no critical metallicity below which fragmentation is impossible. Nevertheless, there is a clear change in the behavior of the clouds at Z {approx}< 10{sup -5} Z{sub Sun }, caused by the fact that at this metallicity, fragmentation takes longer to occur than accretion, leading to a flat mass function at lower metallicities.

  20. Ultra High Mass Range Mass Spectrometer System

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  1. The Concept of "Mass"

    ERIC Educational Resources Information Center

    Escarpit, Robert

    1977-01-01

    Suggests that "mass effect" arises when one's channels of communication are inadequate for the number of people one must deal with. Defines current "masses" as intricate systems of group-sets evolving from an effort to avoid "mass effect". (MH)

  2. Adaptive Optics 0.2" Resolution Infrared Images of HL Tauri: Direct Images of an Active Accretion Disk around a Protostar

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Roddier, François; J. Northcott, Malcolm; Roddier, Claude; Elon Graves, J.

    1997-03-01

    mass of ~0.04 M⊙.

  3. An IRAS Hires study of low mass star formation in the Taurus molecular ring

    NASA Technical Reports Server (NTRS)

    Terebey, Susan; Surace, Jason A.

    1994-01-01

    The Taurus molecular cloud supposedly has no star clusters but only isolated star formation. However, the Infrared Astronomical Satellite (IRAS) shows us that a small star cluster is currently forming in Taurus. Most of the sources are deeply embedded and are probably low-mass protostars. We use High Resolution (HiRes) images of the IRAS data from the Infrared Processing and Analysis Center (IPAC) to look for additional infrared members of the cluster. We also investigate the question of whether the infrared emission matches predictions for protostellar sources by examining whether the dust emission is resolved on scales of one arcminute (approx. 10(exp 17) cm). With the exception of a luminous visible star, HD 29647, we find that the sources L1527, TMC1A, TMC1, TMC1C, tMR1, and IC2087 are unresolved in the HiRes images at 60 microns. Further analysis of IC2087 shows that it is unresolved at all four IRAS wavelengths.

  4. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  5. On the origin of the IMF: First detection of a low-mass star ejected from a triple stellar system

    NASA Astrophysics Data System (ADS)

    Loinard, L.; Rodriguez, L. F.; Rodriguez, M.

    2002-12-01

    Using high-resolution, multi-epoch VLA observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and rho-Ophiuchus molecular complexes. The masses obtained from Kepler's third law are of the order of 0.5 to 1 Msun, as would have been expected for such low-mass protostars. In addition, in one of the sources studied (a triple system in Taurus), one of the three component appears to have been recently ejected from the system. During the first 15 of the 20 years covered by the observations, this component has been on a closed elliptical orbit with a velocity of a few km/s, but in the last 5 years, it has started to spiral out at high speed (20 km/s). Such an ejection is not unexpected in a triple system, because such systems are thought to exhibit chaotic behaviours. However, this is the first time that it is detected directly. The implications for the IMF will be discussed

  6. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  7. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  8. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  9. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  10. A MULTI-EPOCH, SIMULTANEOUS WATER AND METHANOL MASER SURVEY TOWARD INTERMEDIATE-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Bae, Jae-Han; Kim, Kee-Tae; Youn, So-Young; Kim, Won-Ju; Byun, Do-Young; Kang, Hyunwoo; Oh, Chung Sik E-mail: whorujh@kasi.re.kr

    2011-10-01

    We report a multi-epoch, simultaneous 22 GHz H{sub 2}O and 44 GHz Class I CH{sub 3}OH maser line survey toward 180 intermediate-mass young stellar objects, including 14 Class 0 and 19 Class I objects, and 147 Herbig Ae/Be stars. We detected H{sub 2}O and CH{sub 3}OH maser emission toward 16 (9%) and 10 (6%) sources with one new H{sub 2}O and six new CH{sub 3}OH maser sources. The detection rates of both masers rapidly decrease as the central (proto)stars evolve, which is contrary to the trends in high-mass star-forming regions. This suggests that the excitations of the two masers are closely related to the evolutionary stage of the central (proto)stars and the circumstellar environments. H{sub 2}O maser velocities deviate on average 9 km s{sup -1} from the ambient gas velocities whereas CH{sub 3}OH maser velocities match quite well with the ambient gas velocities. For both maser emissions, large velocity differences (|v{sub H{sub 2}O} - v{sub sys}| > 10kms{sup -1} and |v{sub CH3OH} - v{sub sys}| > 1kms{sup -1}) are mostly confined to Class 0 objects. The formation and disappearance of H{sub 2}O masers is frequent and their integrated intensities change by up to two orders of magnitude. In contrast, CH{sub 3}OH maser lines usually show no significant change in intensity, shape, or velocity. This is consistent with the previous suggestion that H{sub 2}O maser emission originates from the base of an outflow while 44 GHz Class I CH{sub 3}OH maser emission arises from the interaction region of the outflow with the ambient gas. The isotropic maser luminosities are well correlated with the bolometric luminosities of the central objects. The fitted relations are L{sub H2O}= 1.71x10{sup -9}(L{sub bol}){sup 0.97} and L{sub CH3OH}= 1.71x10{sup -10}(L{sub bol}){sup 1.22}.

  11. CCS and NH3 Emission Associated with Low-Mass Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    de Gregorio-Monsalvo, Itziar; Gómez, José F.; Suárez, Olga; Kuiper, Thomas B. H.; Rodríguez, Luis F.; Jiménez-Bailón, Elena

    2006-05-01

    In this work we present a sensitive and systematic single-dish survey of CCS emission (complemented with ammonia observations) at 1 cm, toward a sample of low- and intermediate-mass young star-forming regions known to harbor water maser emission, made with NASA's 70 m antenna at Robledo de Chavela, Spain. Out of the 40 star-forming regions surveyed in the CCS (21-10) line, only six low-mass sources show CCS emission: one transitional object between the prestellar and protostellar Class 0 phase (GF9-2), three Class 0 protostars (L1448-IRS3, L1448C, and B1-IRS), a Class I source (L1251A), and a young T Tauri star (NGC 2071 North). Since CCS is considered an ``early-time'' (<~105 yr) molecule, we explain these results by either proposing a revision of the classification of the age of NGC 2071 North and L1251A, or suggesting the possibility that the particular physical conditions and processes of each source affect the destruction/production of the CCS. No statistically significant relationship was found between the presence of CCS and parameters of the molecular outflows and their driving sources. Nevertheless, we found a significant relationship between the detectability of CCS and the ammonia peak intensity (higher in regions with CCS), but not with its integrated intensity. This tendency may suggest that the narrower ammonia line widths in the less turbulent medium associated with younger cores may compensate for the differences in ammonia peak intensity, rendering differences in integrated intensity negligible. From the CCS detection rate we derive a lifetime of this molecule of ~=(0.7-3)×104 yr in low-mass star-forming regions.

  12. Current Advances in the Computational Simulation of the Formation of Low-Mass Stars

    SciTech Connect

    Klein, R I; Inutsuka, S; Padoan, P; Tomisaka, K

    2005-10-24

    Developing a theory of low-mass star formation ({approx} 0.1 to 3 M{sub {circle_dot}}) remains one of the most elusive and important goals of theoretical astrophysics. The star-formation process is the outcome of the complex dynamics of interstellar gas involving non-linear interactions of turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations, from the moment they are assembled by turbulent flows to the time they reach stellar densities, spans an enormous range of scales, resulting in a major computational challenge for simulations. Since the previous Protostars and Planets conference, dramatic advances in the development of new numerical algorithmic techniques have been successfully implemented on large scale parallel supercomputers. Among such techniques, Adaptive Mesh Refinement and Smooth Particle Hydrodynamics have provided frameworks to simulate the process of low-mass star formation with a very large dynamic range. It is now feasible to explore the turbulent fragmentation of molecular clouds and the gravitational collapse of cores into stars self-consistently within the same calculation. The increased sophistication of these powerful methods comes with substantial caveats associated with the use of the techniques and the interpretation of the numerical results. In this review, we examine what has been accomplished in the field and present a critique of both numerical methods and scientific results. We stress that computational simulations should obey the available observational constraints and demonstrate numerical convergence. Failing this, results of large scale simulations do not advance our understanding of low-mass star formation.

  13. Heavy quark masses

    NASA Technical Reports Server (NTRS)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  14. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  15. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  16. Alienation, Mass Society and Mass Culture.

    ERIC Educational Resources Information Center

    Dam, Hari N.

    This monograph examines the nature of alienation in mass society and mass culture. Conceptually based on the "Gemeinschaft-Gesellschaft" paradigm of sociologist Ferdinand Tonnies, discussion traces the concept of alienation as it appears in the philosophies of Hegel, Marx, Kierkegaard, Sartre, and others. Dwight Macdonald's "A Theory of Mass…

  17. Witnessing the birth of a supermassive protostar

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Hartwig, T.

    2016-05-01

    The detection of z > 6 quasars reveals the existence of supermassive black holes of a few 109 M⊙. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of 105-106 M⊙. An isothermal direct collapse mandates that haloes should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial haloes employing a detailed chemical model which includes H- cooling as well as realistic opacities for both the bound-free H- emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of ˜10-3 g cm-3 and to scales of about 10-4 au. Our results show that the gas cools down to ˜5000 K in the presence of H- cooling, and induces fragmentation at scales of about 8000 au in one of the two simulated haloes, which may lead to the formation of a binary. In addition, fragmentation also occurs on the au scale in one of the haloes but the clumps are expected to merge on short time-scales. Our results confirm that H- cooling does not prevent the formation of a supermassive star and the trapping of cooling radiation stabilizes the collapse on small scales.

  18. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  19. Duplicity and Masses

    NASA Astrophysics Data System (ADS)

    Pourbaix, D.

    2005-01-01

    Duplicity is still the only hypothesis-free method to derive stellar masses. Whereas other techniques such as asteroseismology rely upon some stellar model, orbits of binary stars yield quantities directly related to either the sum of the masses or the individual masses of the two components. However, in order to derive those individual masses, it is necessary to combine at least two types of observations, e.g., visual and spectroscopic or photometric and spectroscopic. Gaia will make the three of them available but their combination will be an efficient source of masses for sub-groups of binaries only. For instance, given the precision of the radial velocities, how many orbital visual binaries (for which the mass sum is therefore accessible) will lead to a spectroscopic orbit required to derive the mass ratio and thus the individual masses?

  20. Body mass index

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007196.htm Body mass index To use the sharing features on this ... your height is to figure out your body mass index (BMI). You and your health care provider ...

  1. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  2. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  3. On Defining Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2011-01-01

    Though central to any pedagogical development of physics, the concept of mass is still not well understood. Properly defining mass has proven to be far more daunting than contemporary textbooks would have us believe. And yet today the origin of mass is one of the most aggressively pursued areas of research in all of physics. Much of the excitement…

  4. Outflow Detection in a 70 μm Dark High-Mass Core

    NASA Astrophysics Data System (ADS)

    Feng, Siyi; Beuther, Henrik; Zhang, Qizhou; Liu, Hauyu Baobab; Zhang, Zhiyu; Wang, Ke; Qiu, Keping

    2016-09-01

    We present observations toward a high-mass (\\gt 40 {M}ȯ ), low-luminosity (\\lt 10 {L}ȯ ) 70 μ {{m}} dark molecular core G28.34 S-A at 3.4 mm, using the IRAM 30 m telescope and the NOEMA interferometer. We report the detection of {SiO} J=2\\to 1 line emission, which is spatially resolved in this source at a linear resolution of ∼0.1 pc, while the 3.4 mm continuum image does not resolve any internal sub-structures. The SiO emission exhibits two W–E oriented lobes centering on the continuum peak. Corresponding to the redshifted and blueshifted gas with velocities up to 40 {km} {{{s}}}-1 relative to the quiescent cloud, these lobes clearly indicate the presence of a strong bipolar outflow from this 70 μ {{m}} dark core, a source previously considered as one of the best candidates of “starless” core. Our SiO detection is consistent with ALMA archival data of {SiO} J=5\\to 4, whose high-velocity blueshifted gas reveals a more compact lobe spatially closer to the dust center. This outflow indicates that the central source may be in an early evolutionary stage of forming a high-mass protostar. We also find that the low-velocity components (in the range of {{Vlsr}}-5+3 {km} {{{s}}}-1) have an extended, NW–SE oriented distribution. Discussing the possible accretion scenarios of the outflow-powering young stellar object, we argue that molecular line emission and the molecular outflows may provide a better indication of the accretion history of the forming young stellar object, than snapshot observations of the present bolometric luminosity. This is particularly significant for cases of episodic accretion, which may occur during the collapse of the parent molecular core.

  5. Mass Spectrometric Radionuclide Analyses

    SciTech Connect

    Wacker, John F.; Eiden, Greg C.; Lehn, Scott A.

    2006-02-01

    Measurement of ionized atoms by mass spectrometry is an alternative to radiation detection for measuring radioactive isotopes. These systems are large and complex; they require trained operators and extensive maintenance. They began as research systems but have been developed commercially for measuring amounts of radioactive isotopes and their atom ratios to other isotopes. Several types of mass spectrometer systems are in use. This chapter covers the basics of mass spectrometry and surveys the application of these instruments for radionuclide detection and discusses the circumstances under which use of mass spectrometers is advantageous, the type of mass spectrometer used for each purpose, and the conditions of sample preparation, introduction and analysis.

  6. Direct Neutrino Mass Searches

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  7. The Cosmological Mass Function

    NASA Astrophysics Data System (ADS)

    Monaco, Pierluigi

    1997-10-01

    This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.

  8. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  9. The Formation and Evolution of Young Low-mass Stars within Halos with High Concentration of Dark Matter Particles

    NASA Astrophysics Data System (ADS)

    Casanellas, Jordi; Lopes, IlíDio

    2009-11-01

    The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M sun. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, these stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|ΔT eff|>103 K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M sun will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density ρχ = 109 GeV cm-3. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.

  10. A first-look atmospheric modeling study of the young directly imaged planet-mass companion, ROXS 42Bb

    SciTech Connect

    Currie, Thayne; Daemgen, Sebastian; Burrows, Adam

    2014-06-01

    We present and analyze JK{sub s}L' photometry and our previously published H-band photometry and K-band spectroscopy for ROXs 42Bb, an object Currie et al. first reported as a young directly imaged planet-mass companion. ROXs 42Bb exhibits IR colors redder than field L dwarfs but consistent with other planet-mass companions. From the H{sub 2}O-2 spectral index, we estimate a spectral type of L0 ± 1; weak detections/non-detections of the CO bandheads, Na I, and Ca I support evidence for a young, low surface gravity object primarily derived from the H{sub 2}(K) index. ROXs 42Bb's photometry/K-band spectrum are inconsistent with limiting cases of dust-free atmospheres (COND) and marginally inconsistent with the AMES/DUSTY models and the BT-SETTL models. However, ROXS 42Bb data are simultaneously fit by atmosphere models incorporating several micron-sized dust grains entrained in thick clouds, although further modifications are needed to better reproduce the K-band spectral shape. ROXs 42Bb's best-estimated temperature is T {sub eff} ∼ 1950-2000 K, near the low end of the empirically derived range in Currie et al. For an age of ∼1-3 Myr and considering the lifetime of the protostar phase, ROXs 42Bb's luminosity of log(L/L {sub ☉}) ∼ –3.07 ± 0.07 implies a mass of 9{sub −3}{sup +3} M{sub J} , making it one of the lightest planetary-mass objects yet imaged.

  11. A First-look Atmospheric Modeling Study of the Young Directly Imaged Planet-mass Companion, ROXs 42Bb

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Burrows, Adam; Daemgen, Sebastian

    2014-06-01

    We present and analyze JKsL' photometry and our previously published H-band photometry and K-band spectroscopy for ROXs 42Bb, an object Currie et al. first reported as a young directly imaged planet-mass companion. ROXs 42Bb exhibits IR colors redder than field L dwarfs but consistent with other planet-mass companions. From the H2O-2 spectral index, we estimate a spectral type of L0 ± 1; weak detections/non-detections of the CO bandheads, Na I, and Ca I support evidence for a young, low surface gravity object primarily derived from the H2(K) index. ROXs 42Bb's photometry/K-band spectrum are inconsistent with limiting cases of dust-free atmospheres (COND) and marginally inconsistent with the AMES/DUSTY models and the BT-SETTL models. However, ROXS 42Bb data are simultaneously fit by atmosphere models incorporating several micron-sized dust grains entrained in thick clouds, although further modifications are needed to better reproduce the K-band spectral shape. ROXs 42Bb's best-estimated temperature is T eff ~ 1950-2000 K, near the low end of the empirically derived range in Currie et al. For an age of ~1-3 Myr and considering the lifetime of the protostar phase, ROXs 42Bb's luminosity of log(L/L ⊙) ~ -3.07 ± 0.07 implies a mass of 9^{+3}_{-3} MJ , making it one of the lightest planetary-mass objects yet imaged.

  12. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  13. On Negative Mass

    NASA Astrophysics Data System (ADS)

    Belletête, Jonathan; Paranjape, M. B.

    2013-06-01

    The Schwarzschild solution to the matter free, spherically symmetric Einstein equations has one free parameter, the mass. But the mass can be of any sign. What is the meaning of the negative mass solutions? The answer to this question for the case of a pure Schwarzschild negative mass black solution is still elusive, however, in this essay, we will consider negative mass solutions within a Schwarzschild-de Sitter geometry. We show that there exist reasonable configurations of matter, bubbles of distributions of matter, that satisfy the dominant energy condition everywhere, that are nonsingular and well behaved everywhere, but correspond to the negative mass Schwarzschild-de Sitter geometry outside the matter distribution. These negative mass bubbles could occur as the end state of a quantum tunneling transition.

  14. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  15. Mass drivers. 3: Engineering

    NASA Technical Reports Server (NTRS)

    Arnold, W.; Bowen, S.; Cohen, S.; Fine, K.; Kaplan, D.; Kolm, M.; Kolm, H.; Newman, J.; Oneill, G. K.; Snow, W.

    1979-01-01

    The last of a series of three papers by the Mass-Driver Group of the 1977 Ames Summer Study is presented. It develops the engineering principles required to implement the basic mass-driver. Optimum component mass trade-offs are derived from a set of four input parameters, and the program used to design a lunar launcher. The mass optimization procedures is then incorporated into a more comprehensive mission optimization program called OPT-4, which evaluates an optimized mass-driver reaction engine and its performance in a range of specified missions. Finally, this paper discusses, to the extent that time permitted, certain peripheral problems: heating effects in buckets due to magnetic field ripple; an approximate derivation of guide force profiles; the mechanics of inserting and releasing payloads; the reaction mass orbits; and a proposed research and development plan for implementing mass drivers.

  16. Linking pre- and proto-stellar objects in the intermediate-/high-mass star forming region IRAS 05345+3157

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Zhang, Q.; Caselli, P.; Bourke, T. L.

    2009-05-01

    Context: To better understand the initial conditions of the high-mass star formation process, it is crucial to study at high angular resolution the morphology, the kinematics, and the interactions of the coldest condensations associated with intermediate-/high-mass star forming regions. Aims: This paper studies the cold condensations in the intermediate-/high-mass proto-cluster IRAS 05345+3157, focusing on the interaction with the other objects in the cluster. Methods: We performed millimeter high-angular resolution observations, both in the continuum and several molecular lines, with the PdBI and the SMA. In a recent paper, we published part of these data. The main finding of that work was the detection of two cold and dense gaseous condensations, called N and S (masses ˜ 2 and ˜ 9 M_⊙), characterised by high values of deuterium fractionation (˜ 0.1 in both cores) obtained from the column density ratio N(N{2}D+)/N(N{2}H+). In this paper, we present a full report of the observations, and a complete analysis of the data obtained. Results: The millimeter maps reveal the presence of 3 cores inside the interferometer primary beam, called C1-a, C1-b and C2. None of them are associated with cores N and S. C1-b is very likely associated with a newly formed early-B ZAMS star embedded inside a hot core, while C1-a is more likely associated with a class 0 intermediate-mass protostar. The nature of C2 is unclear. Both C1-a and C1-b are good candidates as driving sources of a powerful 12CO outflow, which strongly interacts with N, as demonstrated by the velocity gradient of the gas along this condensation. The N{2}H+ linewidths are between ˜ 1 and 2 km s-1 in the region where the continuum cores are located, and smaller (˜ 0.5-1.5 km s-1) towards N and S, indicating that the gas in the deuterated condensations is more quiescent than that associated with the continuum sources. This is consistent with the fact that they are still in the pre-stellar phase and hence the

  17. The Pillars of Creation revisited with MUSE: gas kinematics and high-mass stellar feedback traced by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Dale, J. E.; Ginsburg, A.; Ercolano, B.; Gritschneder, M.; Ramsay, S.; Testi, L.

    2015-06-01

    Integral field unit (IFU) data of the iconic Pillars of Creation in M16 are presented. The ionization structure of the pillars was studied in great detail over almost the entire visible wavelength range, and maps of the relevant physical parameters, e.g. extinction, electron density, electron temperature, line-of-sight velocity of the ionized and neutral gas are shown. In agreement with previous authors, we find that the pillar tips are being ionized and photoevaporated by the massive members of the nearby cluster NGC 6611. They display a stratified ionization structure where the emission lines peak in a descending order according to their ionization energies. The IFU data allowed us to analyse the kinematics of the photoevaporative flow in terms of the stratified ionization structure, and we find that, in agreement with simulations, the photoevaporative flow is traced by a blueshift in the position-velocity profile. The gas kinematics and ionization structure have allowed us to produce a sketch of the 3D geometry of the Pillars, positioning the pillars with respect to the ionizing cluster stars. We use a novel method to detect a previously unknown bipolar outflow at the tip of the middle pillar and suggest that it has an embedded protostar as its driving source. Furthermore we identify a candidate outflow in the leftmost pillar. With the derived physical parameters and ionic abundances, we estimate a mass-loss rate due to the photoevaporative flow of 70 M⊙ Myr-1 which yields an expected lifetime of approximately 3 Myr.

  18. Top quark mass measurements

    SciTech Connect

    Hill, Christopher S.; /UC, Santa Barbara

    2004-12-01

    The top quark, with its extraordinarily large mass (nearly that of a gold atom), plays a significant role in the phenomenology of EWSB in the Standard Model. In particular, the top quark mass when combined with the W mass constrains the mass of the as yet unobserved Higgs boson. Thus, a precise determination of the mass of the top quark is a principal goal of the CDF and D0 experiments. With the data collected thus far in Runs 1 and 2 of the Tevatron, CDF and D0 have measured the top quark mass in both the lepton+jets and dilepton decay channels using a variety of complementary experimental techniques. The author presents an overview of the most recent of the measurements.

  19. Neutrino Mass Anarchy

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence; Murayama, Hitoshi; Weiner, Neal

    2000-03-01

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.

  20. Neutrino mass anarchy

    PubMed

    Hall; Murayama; Weiner

    2000-03-20

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries. PMID:11017272

  1. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  2. Atomic mass evaluation

    SciTech Connect

    Wang, M.; Audi, G.; Kondev, F. G.; Xu, X.; Pfeiffer, B.

    2012-11-12

    The atomic masses are important input parameters for nuclear astrophysics calculations. The Atomic Mass Evaluation (AME) is the most reliable source for comprehensive information related to atomic masses. The latest AME was published in 2003. A new version, which will include the impact of a wealth of new, high-precision experimental data, will be published in December 2012. In this paper we will give the current status of AME2012. The mass surface has been changed significantly compared to AME2003, and the impact on astrophysics calculations is discussed.

  3. APEX CO (9-8) MAPPING OF AN EXTREMELY HIGH VELOCITY AND JET-LIKE OUTFLOW IN A HIGH-MASS STAR-FORMING REGION

    SciTech Connect

    Qiu Keping; Wyrowski, Friedrich; Menten, Karl M.; Guesten, Rolf; Leurini, Silvia; Leinz, Christian

    2011-12-10

    Atacama Pathfinder Experiment (APEX) mapping observations in CO (9-8) and (4-3) toward a high-mass star-forming region, NGC 6334 I, are presented. The CO (9-8) map has a 6.''4 resolution, revealing a {approx}0.5 pc, jet-like, and bipolar outflow. This is the first map of a molecular outflow in a THz line. The CO (9-8) and (4-3) lines arising from the outflow lobes both show extremely high velocity line wings, and their ratios indicate a gas temperature greater than 100 K and a density higher than 10{sup 4} cm{sup -3}. The spatial-velocity structure of the CO (9-8) data is typical of a bow-shock-driven flow, which is consistent with the association between the bipolar outflow and the infrared bow-shaped tips. In short, the observations unveil a highly excited and collimated component in a bipolar outflow that is powered by a high-mass protostar, and provide insights into the driving mechanism of the outflow. Meanwhile, the observations demonstrate that high-quality mapping observations can be performed with the new THz receiver on APEX.

  4. Mass Media: A Casebook.

    ERIC Educational Resources Information Center

    Hixson, Richard F., Ed.

    Recognizing that mass media--now at a stage of viewing critically its effects and responsibilities--and society at large are interdependent, this casebook reviews the many facets of the media and mass communication as they relate to both producers and consumers of messages. The 23 chapters include discussions of the media's responsibility toward…

  5. The Origins of Mass

    SciTech Connect

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  6. Cyclotrons as mass spectrometers

    SciTech Connect

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  7. "Mass" in Communication Research.

    ERIC Educational Resources Information Center

    Corner, John

    1979-01-01

    Summarizes the arguments against the use of the term "mass" in communication research based on confusions which relate it to the theses of mass society theory or the notion that the term is too simple for the complex nature of communication. (JMF)

  8. The Origins of Mass

    ScienceCinema

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  9. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  10. Masses and Structure

    SciTech Connect

    Cakirli, R. B.; Casten, R. F.

    2010-08-04

    The use of nuclear masses to elucidate structure and its evolution with Z and N is discussed, with emphasis on two-neutron separation energies and the proton-neutron interaction as extracted from double differences of binding energies. The enhanced sensitivity of masses to structure in deformed nuclei is also discussed.

  11. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  12. Geometry of mass.

    PubMed

    Dietrich, D D

    2015-08-01

    We study the effect of mass on geometric descriptions of gauge field theories. In an approach in which the massless theory resembles general relativity, the introduction of the mass entails non-zero torsion and the generalization to Einstein-Cartan-Sciama-Kibble theories. The relationships to pure torsion formulations (teleparallel gravity) and to higher gauge theories are also discussed. PMID:26124248

  13. Direct Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Mertens, Susanne

    2016-05-01

    With a mass at least six orders of magnitudes smaller than the mass of an electron – but non-zero – neutrinos are a clear misfit in the Standard Model of Particle Physics. On the one hand, its tiny mass makes the neutrino one of the most interesting particles, one that might hold the key to physics beyond the Standard Model. On the other hand this minute mass leads to great challenges in its experimental determination. Three approaches are currently pursued: An indirect neutrino mass determination via cosmological observables, the search for neutrinoless double β-decay, and a direct measurement based on the kinematics of single β-decay. In this paper the latter will be discussed in detail and the status and scientific reach of the current and near-future experiments will be presented.

  14. Multicomponent mass transfer

    SciTech Connect

    Taylor, R.; Krishna, R.

    1993-01-01

    This is an important book on multicomponent mass transfer, meant for readers already acquainted with the theory of mass transfer and the fundamentals of transport phenomena. Part 1, entitled Molecular Diffusion, contains the following chapters: Preliminary Concepts; The Maxwell-Stefan Relations; Fick's Law; Estimation of Diffusion Coefficients; Solution of multicomponent Diffusion Problems: The Linearized Theory; and Solution of Multicomponent Diffusion Problems: Effective Diffusivity Methods. Part 2, entitled Interphase Transfer, contains the following chapters: Mass-Transfer Coefficients; Film Theory; Unsteady-State Mass-Transfer Models; Mass Transfer in Turbulent Flow; and Simultaneous Mass and Energy Transfer. Part 3, entitled Design, contains the following chapters: Multicomponent Distillation: Mass-Transfer Models; Multicomponent Distillation: Efficiency Models; Multicomponent Distillation: A Nonequilibrium Stage Model; and Condensation of Vapor Mixtures. Appendices are provided on matrix algebra, equation-solving and estimation of a thermodynamic derivative matrix. A computer diskette is provided with the book; the examples in Chapters 1--13 are solvable using this diskette and the commercial package Mathcad which the user must obtain. A separate software package, Chemsep, is needed for some of the exercises in Chapter 14.

  15. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  16. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  17. Probabilistic Mass Growth Uncertainties

    NASA Technical Reports Server (NTRS)

    Plumer, Eric; Elliott, Darren

    2013-01-01

    Mass has been widely used as a variable input parameter for Cost Estimating Relationships (CER) for space systems. As these space systems progress from early concept studies and drawing boards to the launch pad, their masses tend to grow substantially, hence adversely affecting a primary input to most modeling CERs. Modeling and predicting mass uncertainty, based on historical and analogous data, is therefore critical and is an integral part of modeling cost risk. This paper presents the results of a NASA on-going effort to publish mass growth datasheet for adjusting single-point Technical Baseline Estimates (TBE) of masses of space instruments as well as spacecraft, for both earth orbiting and deep space missions at various stages of a project's lifecycle. This paper will also discusses the long term strategy of NASA Headquarters in publishing similar results, using a variety of cost driving metrics, on an annual basis. This paper provides quantitative results that show decreasing mass growth uncertainties as mass estimate maturity increases. This paper's analysis is based on historical data obtained from the NASA Cost Analysis Data Requirements (CADRe) database.

  18. THE SPATIAL DISTRIBUTION OF ORGANICS TOWARD THE HIGH-MASS YSO NGC 7538 IRS9

    SciTech Connect

    Oeberg, Karin I.; Boamah, Mavis D.; Fayolle, Edith C.; Garrod, Robin T.; Cyganowski, Claudia J.; Van der Tak, Floris

    2013-07-10

    Complex molecules have been broadly classified into three generations dependent on the mode of formation and the required formation temperature (<25, 25-100 K, and >100 K). Around massive young stellar objects (MYSOs), icy grain mantles and gas are exposed to increasingly higher temperatures as material accretes from the outer envelope in toward the central hot region. The combination of this temperature profile and the generational chemistry should result in a changing complex molecular composition with radius around MYSOs. We combine IRAM 30 m and Submillimeter Array observations to explore the spatial distribution of organic molecules around the high-mass young stellar object NGC 7538 IRS9, whose weak complex molecule emission previously escaped detection. We find that emission from N-bearing organics and CH{sub 3}OH present substantial increases in emission around 8000 AU and R < 3000 AU, while unsaturated O-bearing molecules and hydrocarbons do not. The increase in line flux for some complex molecules in the envelope, around 8000 AU or 25 K, is consistent with recent model predictions of an onset of complex ice chemistry at 20-30 K. The emission increase for many of the same molecules at R < 3000 AU suggests the presence of a weak hot core, where thermal ice evaporation and hot gas-phase reactions drive the chemistry. Complex organics thus form at all radii and temperatures around this protostar, but the composition changes dramatically as the temperature increases, which is used together with an adapted gas-grain astrochemical model to constrain the chemical generation(s) to which different classes of molecules belong.

  19. Dynamical Mass Generation

    SciTech Connect

    Bashir, A.; Raya, A.

    2006-09-25

    Understanding the origin of mass, in particular that of the fermions, is one of the most uncanny problems which lie at the very frontiers of particle physics. Although the celebrated Standard Model accommodates these masses in a gauge invariant fashion, it fails to predict their values. Moreover, the mass thus generated accounts for only a very small percentage of the mass which permeates the visible universe. Most of the observed mass is accounted for by the strong interactions which bind quarks into protons and neutrons. How does that exactly happen in its quantitative details is still an unsolved mystery. Lattice formulation of quantum chromodynamics (QCD) or continuum studies of its Schwinger-Dyson equations (SDEs) are two of the non-perturbative means to try to unravel how quarks, starting from negligible current masses can acquire enormously large constituent masses to account for the observed proton and neutron masses. Analytical studies of SDEs in this context are extremely hard as one has to resort to truncation schemes whose quantitative reliability can be established only after a very careful analysis. Let alone the far more complicated realm of QCD, arriving at reliable truncation schemes in simpler scenarios such as quantum electrodynamics (QED) has also proved to be a hard nut to crack. In the last years, there has been an increasing group of physicists in Mexico which is taking up the challenge of understanding how the dynamical generation of mass can be understood in a reliable way through SDEs of gauge theories in various contexts such as (i) in arbitrary space-time dimensions d as well as d {<=} 4 (ii) finite temperatures and (ii) in the presence of magnetic fields. In this article, we summarise some of this work.

  20. SINTERED REFRACTORY MASS

    DOEpatents

    Williams, A.E.

    1955-09-01

    A method is given for joining sintered masses of refractory compounds. It consists in maintaining the masses in contact with each other by application of a moderate pressure, while they are at sintering temperature. The sintered masses are subjected to am applied pressure of about 1/2 to 1 ton per square inch of the surface in contact for about 10 minutes, and the temperature employed may be fropn about 1400 deg C to 2000 deg C. Refractory oxides to which the invention may be applied are beryllia, alumina, thoria, and magnesia.

  1. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  2. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  3. Mass Psychogenic Illness

    MedlinePlus

    ... been exposed to something harmful. An outbreak of mass psychogenic illness is a time of anxiety and worry. During an outbreak, a lot of media coverage and the presence of ambulances or emergency ...

  4. Paperbacks in Mass Communication

    ERIC Educational Resources Information Center

    Hardt, Hanno

    1978-01-01

    Lists paperback books on mass communication, divided into six categories: history and biography; appraisals of the press, law, and ethics; cultural, psychological, and social aspects; radio, television, film, photography; international communication; and journalism techniques, miscellaneous. (GW)

  5. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  6. Top Quark Mass Measurements

    SciTech Connect

    Heinson, A.P.; /UC, Riverside

    2006-08-01

    First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.

  7. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  8. Body Mass Index Table

    MedlinePlus

    ... Families ( We Can! ) Health Professional Resources Body Mass Index Table 1 for BMI greater than 35, go ... to content Twitter Facebook YouTube Google+ SEARCH | SITE INDEX | ACCESSIBILITY | PRIVACY STATEMENT | FOIA | OIG | CONTACT US National ...

  9. Idiopathic calcified myocardial mass

    PubMed Central

    Patterson, David; Gibson, Derek; Gomes, Ricardo; McDonald, Lawson; Olsen, Eckhardt; Parker, John; Ross, Donald

    1974-01-01

    Patterson, D., Gibson, D., Gomes, R., McDonald, L., Olsen, E., Parker, J., and Ross, D. (1974).Thorax,29, 589-594. Idiopathic calcified myocardial mass. Myocardial calcification can be subdivided into three groups—metastatic, dystrophic or an extension inwards from the pericardium. This case in which the calcified myocardial mass was initially delineated by radiography and by echocardiography and subsequently removed does not fit into any subdivision and has been termed idiopathic. Images PMID:4279467

  10. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  11. Deconstructed transverse mass variables

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; Walker, Devin G. E.

    2015-04-01

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. We demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton, jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop- and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.

  12. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  13. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  14. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  15. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques. PMID:26070716

  16. Filamentary structure and Keplerian rotation in the high-mass star-forming region G35.03+0.35 imaged with ALMA

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Sánchez-Monge, Á.; Cesaroni, R.; Kumar, M. S. N.; Galli, D.; Walmsley, C. M.; Etoka, S.; Furuya, R. S.; Moscadelli, L.; Stanke, T.; van der Tak, F. F. S.; Vig, S.; Wang, K.-S.; Zinnecker, H.; Elia, D.; Schisano, E.

    2014-11-01

    Context. Theoretical scenarios propose that high-mass stars are formed by disk-mediated accretion. Aims: To test the theoretical predictions on the formation of massive stars, we wish to make a thorough study at high-angular resolution of the structure and kinematics of the dust and gas emission toward the high-mass star-forming region G35.03+0.35, which harbors a disk candidate around a B-type (proto)star. Methods: We carried out ALMA Cycle 0 observations at 870 μm of dust of typical high-density, molecular outflow, and cloud tracers with resolutions of < 0''&dotbelow;5. Complementary Subaru COMICS 25 μm observations were carried out to trace the mid-infrared emission toward this star-forming region. Results: The submillimeter continuum emission has revealed a filamentary structure fragmented into six cores, called A-F. The filament could be in quasi-equilibrium taking into account that the mass per unit length of the filament, 200-375 M⊙/pc, is similar to the critical mass of a thermally and turbulently supported infinite cylinder, ~335 M⊙/pc. The cores, which are on average separated by ~0.02 pc, have deconvolved sizes of 1300-3400 AU, temperatures of 35-240 K, H2 densities >107 cm -3, and masses in the range 1-5 M⊙, and they are subcritical. Core A, which is associated with a hypercompact Hii region and could be the driving source of the molecular outflow observed in the region, is the most chemically rich source in G35.03+0.35 with strong emission of typical hot core tracers such as CH3CN. Tracers of high density and excitation show a clear velocity gradient along the major axis of the core, which is consistent with a disk rotating about the axis of the associated outflow. The PV plots along the SE-NW direction of the velocity gradient show clear signatures of Keplerian rotation, although infall could also be present, and they are consistent with the pattern of an edge-on Keplerian disk rotating about a star with a mass in the range 5-13 M⊙. The high

  17. Anatomy of a high-mass star forming cloud: The G24.78+0.08 (proto)stellar cluster

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Codella, C.; Furuya, R. S.; Testi, L.

    2003-04-01

    We present the results of an interferometric and single-dish study of G24.78+0.08, a region associated with high-mass star formation. Observations have been carried out in several molecular species, which are suitable to trace environments with different densities and temperatures. Evidence for this region to contain a cluster of very young massive stellar objects has been presented in a previous paper (Furuya et al. \\cite{furu}). We suggest that the embedded stars might be too young to have affected the surrounding molecular cloud significantly on a large scale. This gives us the opportunity to investigate the configuration of the cloud as it was prior to the star formation episode. We assess that the (proto)stellar cluster lies at the center of a molecular clump with diameter of ~ 2 pc: to a good approximation this may be described as a spherically symmetric clump with density profile of the type nH_2~ R-1.8. Inside 0.5 pc from the center, instead, the gas is much more inhomogeneous and concentrated in a few high-density cores surrounding the (proto)stars. Our findings indicate that a self-regulating formation mechanism for the high-mass stars in G24.78 is plausible: in the proposed scenario star formation would occur from inside-out collapse of the parsec-scale clump, followed by infall reversal due to outflows powered by the newly formed massive stars. We also find that one of the two bipolar outflows powered by the embedded YSOs is more extended and hence older than the other, thus confirming the evolutionary sequence proposed in our previous article.

  18. Water in low-mass star-forming regions with Herschel. The link between water gas and ice in protostellar envelopes

    NASA Astrophysics Data System (ADS)

    Schmalzl, M.; Visser, R.; Walsh, C.; Albertsson, T.; van Dishoeck, E. F.; Kristensen, L. E.; Mottram, J. C.

    2014-12-01

    Aims: Our aim is to determine the critical parameters in water chemistry and the contribution of water to the oxygen budget by observing and modelling water gas and ice for a sample of eleven low-mass protostars, for which both forms of water have been observed. Methods: A simplified chemistry network, which is benchmarked against more sophisticated chemical networks, is developed that includes the necessary ingredients to determine the water vapour and ice abundance profiles in the cold, outer envelope in which the temperature increases towards the protostar. Comparing the results from this chemical network to observations of water emission lines and previously published water ice column densities, allows us to probe the influence of various agents (e.g., far-ultraviolet (FUV) field, initial abundances, timescales, and kinematics). Results: The observed water ice abundances with respect to hydrogen nuclei in our sample are 30-80 ppm, and therefore contain only 10-30% of the volatile oxygen budget of 320 ppm. The keys to reproduce this result are a low initial water ice abundance after the pre-collapse phase together with the fact that atomic oxygen cannot freeze-out and form water ice in regions with Tdust ≳ 15 K. This requires short prestellar core lifetimes ≲0.1 Myr. The water vapour profile is shaped through the interplay of FUV photodesorption, photodissociation, and freeze-out. The water vapour line profiles are an invaluable tracer for the FUV photon flux and envelope kinematics. Conclusions: The finding that only a fraction of the oxygen budget is locked in water ice can be explained either by a short pre-collapse time of ≲0.1 Myr at densities of nH ~ 104 cm-3, or by some other process that resets the initial water ice abundance for the post-collapse phase. A key for the understanding of the water ice abundance is the binding energy of atomic oxygen on ice. Herschel is an ESA space observatory with science instruments provided by European

  19. Atomic mass compilation 2012

    SciTech Connect

    Pfeiffer, B.; Venkataramaniah, K.; Czok, U.; Scheidenberger, C.

    2014-03-15

    Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

  20. Millimeter Continuum Measurements of Circumstellar Dust Around Very Young Low Mass Stars

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Chandler, C. J.; Andre, P.

    1992-01-01

    We investigate the question of disk formation during the protostar phase. We build on the results of Keene and Masson (1990) who analysis of L1551 showed themillimeter continuum emission comes from both an unresolved circumstellar conponent i.e. disk and an extended cloud core.

  1. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  2. Gaugino mass without singlets

    SciTech Connect

    Giudice, Gian F.; Luty, Markus A.; Murayama, Hitoshi; Rattazzi, Riccardo

    1998-12-21

    In models with dynamical supersymmetry breaking in the hidden sector, the gaugino masses in the observable sector have been believed to be extremely suppressed (below 1 keV), unless there is a gauge singlet in the hidden sector with specific couplings to the observable sector gauge multiplets. We point out that there is a pure supergravity contribution to gaugino masses at the quantum level arising from the superconformal anomaly. Our results are valid to all orders in perturbation theory and are related to the ''exact'' beta functions for soft terms. There is also an anomaly contribution to the A terms proportional to the beta function of the corresponding Yukawa coupling. The gaugino masses are proportional to the corresponding gauge beta functions, and so do not satisfy the usual GUT relations.

  3. Mass transport contamination study

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1972-01-01

    A theoretical analysis was performed to determine the effects of outgassing and waste dumping on the contamination field around an orbiting spacecraft. The spacecraft was assumed to be spherical in shape with the mass flow emitting uniformly from the spherical surface at a constant rate and in a D'Lambertian spatial distribution. The outflow of gases were assumed to be neutrally charged and of a single species with a molecular weight characteristic of a composite of the actual species involved in the mass flow. The theoretical analysis showed that, for outgassing only, less than 1.5 percent of the outgas products will return to the Skylab spacecraft as a result of intermolecular collisions. When the total mass flow from the spacecraft, including waste dumps and reaction control motor firings, was considered, it was estimated that about 30 percent will return to the spacecraft.

  4. Mass discrimination during weightlessness

    NASA Technical Reports Server (NTRS)

    Ross, H.

    1981-01-01

    An experiment concerned with the ability of astronauts to discriminate between the mass of objects when both the objects and the astronauts are in weightless states is described. The main object of the experiment is to compare the threshold for weight-discrimination on Earth with that for mass-discrimination in orbit. Tests will be conducted premission and postmission and early and late during the mission while the crew is experiencing weightlessness. A comparison of early and late tests inflight and postflight will reveal the rate of adaptation to zero-gravity and 1-g. The mass discrimination box holds 24 balls which the astronaut will compare to one another in a random routine.

  5. Ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Inventor); Clay, D. R.; Goldstein, B. E.; Goldstein, R.

    1984-01-01

    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling.

  6. Class I methanol masers in low-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Kalenskii, S. V.; Kurtz, S.; Bergman, P.

    2013-02-01

    Results of observations of Class I methanol masers in regions of low-mass star formation (MMIL) are summarized and analyzed. Four masers were detected at 44, 84, and 95 GHz towards "chemically active" bipolar outflows in the low-mass star-forming regions NGC1333 I4A, NGC 1333 I2A, HH 25, and L1157. Another maser was found at 36 GHz towards a similar outflow in NGC 2023. Thus, all the detected MMILs are associated with chemically active outflows. The brightness temperatures of the strongest 44-GHz maser spots in NGC 1333 I4A, HH 25, and L1157 exceed 2000 K, whereas the brightness temperature in NGC 1333 I2A is only 176 K, although a rotational-diagram analysis shows that this last source is also amaser. The flux densities of the newly detectedmasers are no higher than 18 Jy, and are much lower than those of strong masers in regions of high-mass star formation (MMIH). The MMIL luminosities match the maser luminosity-protostar luminosity relation established earlier for MMIHs. No MMIL variability was detected in 2004-2011. The radial velocities of the newly detected masers are close to the systemic velocities of the associated regions, except for NGC 2023, where the maser radial velocity is lower than the systemic velocity by approximately 3.5 km/s. Thus, the main MMILproperties are similar to those of MMIHs. MMILs are likely to be an extension of the MMIH population toward lower luminosities of both the masers and the associated young stellar objects. The results of VLA observations of MMILs can be explained using a turbulent-cloud model, which predicts that compact maser spots can arise in extended sources because the coherence lengths along some directions randomly appear to be longer than the mean coherence length in a turbulent velocity field. However, one must assume that the column density of methanol towardM1, the strongest maser in L1157, is appreciably higher than the mean column density of the clump B0a where the maser arises. The shape of the maser lines

  7. Bioreactor Mass Transport Studies

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  8. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  9. Ballistics/mass properties

    NASA Technical Reports Server (NTRS)

    Drendel, Albert S.; Richards, M. C.

    1989-01-01

    The propulsion performance and reconstructed mass properties data from Morton Thiokol's RSRM-4 motors, which were assigned to the STS-30R launch, are presented. The composite type solid propellant burn rates were close to predicted. The performance of the pair of motors were compared to some CEI Specification CPW1-3600 for compliance. Some aspects of the CEI Specification could not be compared because of low sampling of data. The performance of the motors were well within the CEI specification requirements. Post flight reconstructured RSRM mass properties are within expected values for the RSRM quarterweight and halfweight configurations.

  10. A new mass spectrograph.

    PubMed

    Matsuo, T; Ishihara, M

    1993-05-01

    The optical designs of two new types of mass spectrographs were studied. The first is a system that possesses a specially shaped magnet output boundary to satisfy the double-focusing condition for a wide mass range. The focal plane is usually curved. The second system is one in which a parallel ion beam is generated before the magnet, forming a straight double-focusing line. By introducing a quadrupole lens doublet such that the ion beam may be deflected in the same direction through the electric and magnetic fields, the overall image magnification can be arbitrarily controlled and stigmatic focusing achieved for the median ray. PMID:24234934

  11. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  12. Congenital midline nasofrontal masses.

    PubMed

    Saettele, Megan; Alexander, Alan; Markovich, Brian; Morelli, John; Lowe, Lisa H

    2012-09-01

    Congenital midline nasal masses are uncommon anomalies including nasal dermoids/epidermoids, nasal glial heterotopias and encephaloceles. These lesions can occur at the nasal bridge, extend intranasally and have intracranial extension with communication to the subarachnoid space. Therefore, accurate diagnosis of these lesions is critically important for presurgical planning and prevention of potentially fatal complications. Neuroimaging is essential in the evaluation of congenital midline nasal masses to identify the specific type of lesion, evaluate for the presence of intracranial extension and allow for appropriate presurgical planning. PMID:22648391

  13. Automated transportable mass spectrometer

    NASA Astrophysics Data System (ADS)

    Echo, M. W.

    1981-09-01

    The need was identified for a mass spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of special nuclear material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromograph (GC) portions of a Hewlett-Packard Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software.

  14. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  15. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 mass-to-light ratio and its GSMF data. Results: Assuming ℳg0 ≈ 1011ℳ⊙ as the local value of the average galactic mass, the LF approach results in LB ∝ (1 + z)(2.40 ± 0.03) and ℳg ∝ (1 + z)(1.1 ± 0.2). However, using the GSMF results to calculate the average galactic mass produces ℳg ∝ (1 + z)(- 0.58 ± 0.22). We chose the latter result because it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to finally calculate the GCMF, which can be fitted by a Schechter function, but whose fitted parameter values are different from the values found in the literature for the GSMF. Conclusions: This GCMF behavior follows the theoretical predictions from the cold dark matter models in which the less massive objects form first, followed later by more massive ones. In the range 0.5

  16. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. IV. Mechanical and radiative feedback

    NASA Astrophysics Data System (ADS)

    Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; Hogerheijde, M. R.; Karska, A.; Belloche, A.; Endo, A.; Frieswijk, W.; Güsten, R.; van Kempen, T. A.; Leurini, S.; Nagy, Z.; Pérez-Beaupuits, J. P.; Risacher, C.; van der Marel, N.; van Weeren, R. J.; Wyrowski, F.

    2015-04-01

    Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims: Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods: Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the Atacama Pathfinder EXperiment (12CO and 13CO 6-5; Eup ~ 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope (12CO and 13CO 3-2; Eup ~ 30 K). The maps have high spatial resolution, particularly the CO 6-5 maps taken with a 9″ beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from 13CO 6-5 observations. Results: All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, FCO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock

  17. Transverse Mass Kink

    SciTech Connect

    Cho, W. S.; Choi, K.; Kim, Y. G.; Park, C. B.

    2008-11-23

    We present a study of the collider observable m{sub T2} applied for pair-produced superparticles decaying to visible particles and a pair of invisible lightest supersymmetric particles (LSPs) at the LHC experiment. We also investigate the possibility to measure the top quark mass using the m{sub T2}.

  18. Electromagnetic mass revisited

    NASA Astrophysics Data System (ADS)

    Schwinger, Julian

    1983-03-01

    Examples of uniformly moving charge distributions that possess conserved electromagnetic stress tensors are exhibited. These constitute stable systems with covariantly characterized electromagnetic mass. This note, on a topic to which Paul Dirac made a significant contribution in 1938, is dedicated to him for his 80th birthday.

  19. Stateline: Critical Mass

    ERIC Educational Resources Information Center

    Christie, Kathy

    2005-01-01

    In Physics "critical mass" refers to the minimum amount of fissionable material required to sustain a chain reaction. The adoption of state education policy isn't often equated with this concept, but occasionally solutions and ideas seem to gather around a common problem. If the solution at hand is simple, easily understood, and strengthened with…

  20. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  1. Mass Media and Society.

    ERIC Educational Resources Information Center

    Wells, Alan

    Designed to serve as a basic text for general liberal arts courses in mass communication, this book presents essays, largely from recent magazine articles, written from the layman (although there are a few more overtly scholarly articles). It begins with an examination of the media industries in the United States, treating them as complex…

  2. UNESCO's Mass Media Declaration.

    ERIC Educational Resources Information Center

    Journal of Communication, 1979

    1979-01-01

    Presents the text of the declaration of fundamental principles concerning the contribution of the mass media to strengthening peace and international understanding, promoting human rights, and countering racialism, apartheid and incitement to war. Adopted by the UNESCO General Conference in November 1978. (JMF)

  3. Assessment in Mass Communication.

    ERIC Educational Resources Information Center

    Eastman, Susan Tyler

    Departments of mass communication employ about l5 different types of assessment to measure either their students' individual achievement or the curriculum and teaching. Of these, exit examinations for seniors have raised the most apprehension. This paper reports the results of a national survey of 276 four-year colleges and universities teaching…

  4. Ethnographies of Mass Communication.

    ERIC Educational Resources Information Center

    Lull, James

    Noting that there is growing interest in systematic, ethnographic studies of mass media and their primary audiences (families), this paper seeks to encourage additional ethnographic study of audience behavior by discussing some theoretical concerns that bear on the qualitative research enterprise. To do this, the paper first introduces a variety…

  5. Leptons Masses and Mixing

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2016-03-01

    We apply our successful modest revision of the quark mass sector of the Standard Model to leptons. We include the effects of the possibility of dark matter fermions, which appear as a number of sterile neutrinos. Email: tjgoldman@post.harvard.edu.

  6. Thesaurus: Mass Communication.

    ERIC Educational Resources Information Center

    Viet, Jean

    Produced for UNESCO on the initiative of the Division of Communication Research and Planning, this thesaurus is a documentation language divised for the purpose of analyzing works, articles, reports, and other documents relating to the problems of mass communication according to the particular medium to which they refer: books, the press, records,…

  7. Top Quark Mass Measurements

    SciTech Connect

    Heinson, A. P.

    2006-11-17

    First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and DO collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. It is based on a talk I gave at the Conference on the Intersections of Particle and Nuclear Physics in Puerto Rico, May 2006, which also included discussion of measurements of other top quark properties.

  8. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  10. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  11. Parametric Mass Reliability Study

    NASA Technical Reports Server (NTRS)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  12. Mass Digitization of Books

    ERIC Educational Resources Information Center

    Coyle, Karen

    2006-01-01

    Mass digitization of the bound volumes that we generally call "books" has begun, and, thanks to the interest in Google and all that it does, it is getting widespread media attention. The Open Content Alliance (OCA), a library initiative formed after Google announced its library book digitization project, has brought library digitization projects…

  13. Mass extinction causes debated

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A highly charged atmosphere and a tacit agreement to disagree marked the first Union session at the 1985 AGU Fall Meeting,“Where Are We Now on Iridium, Anomalies, Extinctions, Impacts, Volcanism, and Periodicity?” The session brought together a remarkably large and varied group of participants who are studying topics related to mass extinctions. “The important thing is bringing all these people together, sharing … how they think,” said J. John Sepkoski, Jr., of the University of Chicago, who presented one of the session's invited papers.The controversies under discussion included the nature of the catastrophic events that may have occurred 65 million years ago to precipitate mass extinctions between the Cretaceous and Tertiary periods and whether mass extinctions have occurred at regular intervals (and if so, what those intervals are). Both the group advocating extraterrestrial impacts and that advocating episodes of unusual terrestrial volcanism seemed to agree that both kinds of catastrophes would have brought on highly acidic precipitation that could have threatened many life forms. In fact, one paleontologist called for closer examination of patterns of survival during periods of mass extinctions in order to gain clues about the nature of the events that may have brought on the extinctions. “The survivors … set limits on what could have occurred,” said William A. Clemens of the University of California, Berkeley.

  14. Atrial mass: a myxoma?

    PubMed

    Chatzis, Andrew C; Kostopanagiotou, Kostas; Kousi, Theofili; Mitropoulos, Fotios

    2016-08-01

    A middle-aged woman with a history of resected colorectal cancer and receiving chemotherapy presented with a right atrial mass and the provisional diagnosis of myxoma supported by echocardiography, computed tomography, and magnetic resonance imaging. Successful surgical removal revealed organized thrombus instead. Atrial thrombus may be mistaken for myxoma and long-term intracardiac indwelling catheters can be thrombogenic. PMID:27525099

  15. Mass - Metric Weight.

    ERIC Educational Resources Information Center

    Sisk, Diane

    This autoinstructional program, developed for high, medium and low level achievers, is directed toward a course in general science in middle schools. Mathematics of fractions and decimals is described as a prerequisite to the use of the packet. Two behavioral objectives are listed. Both involve the students' determining mass, first to the nearest…

  16. CLASSICAL T TAURI-LIKE OUTFLOW ACTIVITY IN THE BROWN DWARF MASS REGIME

    SciTech Connect

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-12-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s{sup -1} and spectro-astrometric analysis constrains the position angle of this outflow to 240{sup 0} +- 7{sup 0}. The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (V{sub RAD} = -20 km s{sup -1}, +40 km s{sup -1}) and with a P.A. of 193{sup 0}-209{sup 0}. A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass (<0.1 M{sub sun}) supports the idea that BD outflow activity is scaled down from low-mass protostellar activity. Also note that although asymmetries are unexceptional, it is uncommon for the redshifted lobe to be the brightest as some obscuration by the accretion disk is assumed. This phenomenon has only been observed in one other source, the classical T Tauri (CTTS) star RW Aur. The physical

  17. Geochemical Speciation Mass Transfer

    SciTech Connect

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineral phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.

  18. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (ESTSC)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  19. Rotation and Mass Loss

    NASA Astrophysics Data System (ADS)

    Owocki, S.

    2008-06-01

    Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.

  20. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  1. Far-infrared molecular lines from low- to high-mass star forming regions observed with Herschel

    NASA Astrophysics Data System (ADS)

    Karska, A.; Herpin, F.; Bruderer, S.; Goicoechea, J. R.; Herczeg, G. J.; van Dishoeck, E. F.; San José-García, I.; Contursi, A.; Feuchtgruber, H.; Fedele, D.; Baudry, A.; Braine, J.; Chavarría, L.; Cernicharo, J.; van der Tak, F. F. S.; Wyrowski, F.

    2014-02-01

    Aims: Our aim is to study the response of the gas-to-energetic processes associated with high-mass star formation and compare it with previously published studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The quantified far-IR line emission and absorption of CO, H2O, OH, and [O i] reveals the excitation and the relative contribution of different atomic and molecular species to the gas cooling budget. Methods: Herschel/PACS spectra covering 55-190 μm are analyzed for ten high-mass star forming regions of luminosities Lbol ~ 104-106 L⊙ and various evolutionary stages on spatial scales of ~104 AU. Radiative transfer models are used to determine the contribution of the quiescent envelope to the far-IR CO emission. Results: The close environments of high-mass protostars show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines, often in absorption at the shorter wavelengths and in emission at the longer wavelengths. CO transitions from J = 14 - 13 up to typically 29 - 28 (Eu/kB ~ 580-2400 K) show a single temperature component with a rotational temperature of Trot ~ 300 K. Typical H2O excitation temperatures are Trot ~250 K, while OH has Trot ~ 80 K. Far-IR line cooling is dominated by CO (~75%) and, to a smaller extent, by [O i] (~20%), which becomes more important for the most evolved sources. H2O is less important as a coolant for high-mass sources because many lines are in absorption. Conclusions: Emission from the quiescent envelope is responsible for ~45-85% of the total CO luminosity in high-mass sources compared with only ~10% for low-mass YSOs. The highest- J lines (Jup ≥ 20) originate most likely in shocks, based on the strong correlation of CO and H2O with physical parameters (Lbol, Menv) of the sources from low- to high-mass YSOs. The excitation of warm CO described by Trot ~ 300 K is very similar for all mass regimes, whereas H2O

  2. Twisted mass finite volume effects

    SciTech Connect

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  3. Buoyancy contribution to uncertainty of mass, conventional mass and force

    NASA Astrophysics Data System (ADS)

    Malengo, Andrea; Bich, Walter

    2016-04-01

    The conventional mass is a useful concept introduced to reduce the impact of the buoyancy correction in everyday mass measurements, thus avoiding in most cases its accurate determination, necessary in measurements of ‘true’ mass. Although usage of conventional mass is universal and standardized, the concept is considered as a sort of second-choice tool, to be avoided in high-accuracy applications. In this paper we show that this is a false belief, by elucidating the role played by covariances between volume and mass and between volume and conventional mass at the various stages of the dissemination chain and in the relationship between the uncertainties of mass and conventional mass. We arrive at somewhat counter-intuitive results: the volume of the transfer standard plays a comparatively minor role in the uncertainty budget of the standard under calibration. In addition, conventional mass is preferable to mass in normal, in-air operation, as its uncertainty is smaller than that of mass, if covariance terms are properly taken into account, and the uncertainty over-stating (typically) resulting from neglecting them is less severe than that (always) occurring with mass. The same considerations hold for force. In this respect, we show that the associated uncertainty is the same using mass or conventional mass, and, again, that the latter is preferable if covariance terms are neglected.

  4. Water in star-forming regions with Herschel (WISH). VI. Constraints on UV and X-ray irradiation from a survey of hydrides in low- to high-mass young stellar objects

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Bruderer, S.; van Dishoeck, E. F.; Melchior, M.; Wampfler, S. F.; van der Tak, F.; Goicoechea, J. R.; Indriolo, N.; Kristensen, L. E.; Lis, D. C.; Mottram, J. C.; Bergin, E. A.; Caselli, P.; Herpin, F.; Hogerheijde, M. R.; Johnstone, D.; Liseau, R.; Nisini, B.; Tafalla, M.; Visser, R.; Wyrowski, F.

    2016-05-01

    objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects. Conclusions: If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L⊙, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.

  5. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  6. Mass spectrometric immunoassay

    SciTech Connect

    Nelson, R.W.; Krone, J.R.; Bieber, A.L.; Williams, P.

    1995-04-01

    A new, general method of immunoassay is demonstrated. The approach is based on the microscale immunoaffinity capture of target antigens followed by mass-specific identification and quantitation using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Immunoaffinity capture of antigens effectively overcomes signal suppression effects typically encountered during traditional matrix-assisted laser desorption/ionization analysis of complex biological mixtures while simultaneously concentrating the analyte into a small volume. Sample incubation and processing methods were such that a typical analysis could be performed in less than 1 h while subnanomolar sensitivities were maintained. The technique has been used for the rapid, selective, and quantitative screening of human blood for the presence of myotoxin a, and Mojave toxin from the venoms of the prairie rattlesnake, Crotalus virdis virdis, and the Mojave rattlesnake, Crotalus scutulatus scutulatus. 18 refs., 8 figs.

  7. Nanoscale mass conveyors

    DOEpatents

    Regan, Brian C.; Aloni, Shaul; Zettl, Alexander K.

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  8. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  9. Mass Loss from Betelgeuse

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.

    2013-05-01

    Betelgeuse is just starting to produce a wind which is thick enough to form dust. However, the grains seem to coalesce at much greater distances than those in "dust-driven" winds from later-stage AGB and RSG stars. Is the mass loss mechanism different, and how will it evolve? We know a great deal about the kinematics of the more evolved winds, thanks to sub-au imaging using masers, and easily-resolved CO shells, but Betelgeuse is a much fainter target, only resolved with great difficulty (although ALMA will change that). On the other hand, Betelgeuse was the first star other than the Sun to be imaged in detail in the radio as well as optical. Radio studies from the photosphere to the astropause will reveal: How is mass lost from the stellar surface? In what form is this returned to the ISM? These results could even help to answer: How will Betelgeuse evolve in the next few millennia?

  10. A mystifying mass

    PubMed Central

    Sharp, Gary; Railton, Nicholas; Kadirkamanathan, Sritharan

    2014-01-01

    A 57-year-old male was referred by his general practitioner (GP) to hospital with right upper quadrant pain and a palpable mass (10 × 9 cm). He had been assessed by his GP several weeks earlier and represented as initial treatment failed. On his second presentation a mass was evident and thought to represent cholecystitis by the referring GP. However, the correct and prompt use of appropriate radiological imaging enabled swift diagnosis and management of atypical acute appendicitis through microbial specific therapy. Atypical appendicitis delays diagnosis and treatment which represents greater levels of appendiceal ischaemia and heightened perforation risk. This case study highlights the non-surgical management of acute atypical appendicitis and also reinforces the use of appropriate imaging modalities. PMID:24876326

  11. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  12. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  13. Masses in the membranes.

    PubMed

    Suresh, Sandip; Abel, Anne S; Younge, Brian R; Bilyk, Jurij R; Lee, Michael S

    2016-01-01

    A 24-year-old woman with systemic lupus erythematosus presented with a 1-year history of painless vision loss in the right eye. Examination was notable for a bitemporal hemianopia. Brain imaging revealed multiple contrast enhancing dural masses, including one along the planum sphenoidale. She underwent excisional biopsy for a presumed diagnosis of multiple meningiomas. Five years later, she developed worsening vision in the left eye, hypesthesia in the V1 distribution, and oculomotor nerve palsy. Repeat imaging showed an enhancing mass in the cavernous sinus and orbital apex. Biopsy demonstrated a lymphoplasmacyte rich infiltrate in dense extracellular material. She was diagnosed with lupus-induced hypertrophic pachymeningitis and started on immunosuppressive therapy. On further worsening of symptoms, her initial biopsy was reexamined and revealed a kappa light chain restricted B-cell and plasmacyte population. This led to the final diagnosis of central nervous system extranodal marginal zone lymphoma. PMID:26453797

  14. Coronal mass ejections

    SciTech Connect

    Steinolfson, R.S.

    1990-01-01

    Coronal mass ejections (CMEs) are now recognized as an important component of the large-scale evolution of the solar corona. Some representative observations of CMEs are reviewed with emphasis on more recent results. Recent observations and theory are examined as they relate to the following aspects of CMEs: (1) the role of waves in determining the white-light signature; and (2) the mechanism by which the CME is driven (or launched) into the corona.

  15. Laser ionization mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernardez, Luis J., III; Siekhaus, W. J.

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument used is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which was frequency-quadrupled to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10(exp -8) and 10(exp -9) Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment.

  16. Laser ionization mass spectroscopy

    SciTech Connect

    Bernardez, L.J. III; Siekhaus, W.J. )

    1989-10-01

    Laser Ionization Mass Spectroscopy (LIMS) is a simple technique with several advantages and disadvantages over standard mass spectroscopy techniques. The LIMS technique uses a laser to vaporize a small portion of a sample. The vapor from the sample consists of a mixture of charged and neutral atoms or fragments. Using electrostatic grids, the ions (positive or negative) are given a known amount of kinetic energy and sent down a time-of-flight tube. The time it takes the ions to travel down the flight tube is recorded. Knowing the ions' energy, the length of the flight tube, and the time it takes the ions to travel that distance, the masses of the ions can be calculated. The instrument we use is a LIMA 3 made by Cambridge Mass Spectrometry. It has a Quanta Ray DCR-11 Nd:YAG laser, which we frequency-quadruple to 266 nm. The laser spot size is typically between 2 and 5 microns in diameter and the pulse width is between 5 and 10 nanoseconds. The energy of the laser is continually variable between 0.1 and 3.0 millijoules. The detector is a 17-stage venetian-blind multiplier made by Thorn EMI. The analysis is carried out under vacuum, usually between 10{sup {minus}8} and 10{sup {minus}9} Torr. The LIMA 3 has several useful features such as: a He-Ne pilot laser used to target the Nd:YAG laser; a microscope (which is used to view the sample through the laser optics); and a precision sample stage for accurate sample alignment. 6 figs., 1 tab.

  17. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  18. Body Mass Index

    PubMed Central

    Nuttall, Frank Q.

    2015-01-01

    The body mass index (BMI) is the metric currently in use for defining anthropometric height/weight characteristics in adults and for classifying (categorizing) them into groups. The common interpretation is that it represents an index of an individual’s fatness. It also is widely used as a risk factor for the development of or the prevalence of several health issues. In addition, it is widely used in determining public health policies.The BMI has been useful in population-based studies by virtue of its wide acceptance in defining specific categories of body mass as a health issue. However, it is increasingly clear that BMI is a rather poor indicator of percent of body fat. Importantly, the BMI also does not capture information on the mass of fat in different body sites. The latter is related not only to untoward health issues but to social issues as well. Lastly, current evidence indicates there is a wide range of BMIs over which mortality risk is modest, and this is age related. All of these issues are discussed in this brief review. PMID:27340299

  19. Neutrino mass models

    NASA Astrophysics Data System (ADS)

    King, S. F.

    2004-02-01

    This is a review article about neutrino mass models, particularly see-saw models involving three active neutrinos that are capable of describing both the atmospheric neutrino oscillation data and the large mixing angle (LMA) MSW solar solution, which is now uniquely specified by recent data. We briefly review the current experimental status, show how to parametrize and construct the neutrino mixing matrix, and present the leading order neutrino Majorana mass matrices. We then introduce the see-saw mechanism and discuss a natural application of it to current data using the sequential dominance mechanism, which we compare with an early proposal for obtaining LMAs. We show how both the Standard Model and the Minimal Supersymmetric Standard Model may be extended to incorporate the see-saw mechanism and show how the latter case leads to the expectation of lepton flavour violation. The see-saw mechanism motivates models with additional symmetries such as unification and family symmetry models, and we tabulate some possible models before focusing on two particular examples based on SO(10) grand unification and either U(1) or SU(3) family symmetry as specific examples. This review contains extensive appendices that include techniques for analytically diagonalizing different types of mass matrices involving two LMAs and one small mixing angle, to leading order in the small mixing angle.

  20. Mass extinction: a commentary

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  1. Inferring the Evolutionary Stages of High-mass Star-forming Regions from Chemistry

    NASA Astrophysics Data System (ADS)

    Feng, Siyi; Beuther, H.; Henning, T.; Semenov, D.; Linz, H.; InstituteAstronomy, Max-Planck

    2014-01-01

    The earliest phases of the high-mass star-forming regions (HMSFRs) have so many extremely complicated astrophysical processes, such as infall, outflows, and fragmentations that kinematic studies are not enough to understand all the mysteries, therefore, chemistry has developed into a powerful tool in probing the nature of them. Using PdBI at 1.3 mm, we observed two typical HMSFRs, NGC 7538 S and NGC 7538 IRS. Continuums are presented, the spectra from different substructures in each source are extracted and the intensity-integrated distribution maps for different species are imaged. We then calculate their column densities, and abundances in each identified substructure, assuming local thermal equilibrium, optically thin and uniform widths lines for all species. With spatial resolution of 0.4'' (800 AU), NGC 7538 S fragmentations into at least three cores, having similar continuum flux densities but different kinematic temperatures nor line properties, and exhibiting evolutionary sequence from northeast to southwest: MM1 is more evolved, and is a typical hot molecular core, associated with an accretion disk and several outflows, which enhance certain molecular abundances in the projected direction; MM2 is a high mass protostar object, where majority of molecules have abundances lower than in MM1, except for the lower temperature tracers, e.g., ketene, formaldehyde; whereas MM3 is still a cold starless core, and the spectral emissions in this substructure are only from molecules with low vibration temperatures. Since they are embedded in the same cluster but behave different properties, they should have the similar ages but different warm-up timescales. In comparison, IRS1 remains unresolved, though, large amount of complex organic molecules indicates it as the most evolved hot core in all the substructures here we studied. Absorption feature only appears on the spectrum extracted from the continuum peak, and that may come from its precession accretion disk

  2. Mass Loss from Low- and Intermediate-mass Stars

    NASA Astrophysics Data System (ADS)

    Wood, P. R.

    2007-11-01

    Low- and intermediate-mass single stars (LIMS) have initial masses M<~6-7 Msolar. They end up as white dwarfs of ~0.6-1.4 Msolar, the rest of their mass being lost during their nuclear-burning lifetimes. Stellar pulsation theory can be used to estimate current (as opposed to initial) stellar masses and can be used to trace accumulated mass loss when the initial mass is known. Some examples are given for RR Lyrae stars, first giant branch (FGB) and asymptotic giant branch (AGB) stars, and Cepheid variables. Most of the mass loss from LIMS is thought to occur on the FGB and AGB, although it has been argued that pulsation masses derived for Cepheids suggest that there is significant mass loss in earlier evolutionary phases. Direct estimates of mass loss rates can also be used to estimate the amounts of mass lost from LIMS. Some recent Spitzer-based estimates of mass loss rates for AGB stars in the Magellanic Clouds are discussed. Finally, binary and variable AGB stars that may be related to asymmetic mass loss such as that seen in elliptical and bipolar planetary nebulae are discussed.

  3. High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Schilke, P.

    2016-05-01

    A review on current theories and observations of high-mass star formation is given. Particularly the influence of magnetic fields and feedback mechanisms, and of varying initial conditions on theories are discussed. The, in my biased view, most important observations to put strong constraints on models of high-mass star formation are presented, in particular bearing on the existence and properties of high-mass starless cores, the role of filaments in the mass transport to high-mass cores, and the properties of disks around high-mass stars.

  4. HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES

    SciTech Connect

    Konopacky, Q. M.; Ghez, A. M.; McLean, I. S.; Barman, T. S.; Rice, E. L.; Bailey, J. I.; White, R. J.; Duchene, G. E-mail: ghez@astro.ucla.ed E-mail: barman@lowell.ed E-mail: white@chara.gsu.ed

    2010-03-10

    We present the results of a three year monitoring program of a sample of very low mass (VLM) field binaries using both astrometric and spectroscopic data obtained in conjunction with the laser guide star adaptive optics system on the W. M. Keck II 10 m telescope. Among the 24 systems studied, 15 have undergone sufficient orbital motion, allowing us to derive their relative orbital parameters and hence their total system mass. These measurements more than double the number of mass measurements for VLM objects, and include the most precise mass measurement to date (<2%). Among the 11 systems with both astrometric and spectroscopic measurements, six have sufficient radial velocity variations to allow us to obtain individual component masses. This is the first derivation of the component masses for five of these systems. Altogether, the orbital solutions of these low mass systems show a correlation between eccentricity and orbital period, consistent with their higher mass counterparts. In our primary analysis, we find that there are systematic discrepancies between our dynamical mass measurements and the predictions of theoretical evolutionary models (TUCSON and LYON) with both models either underpredicting or overpredicting the most precisely determined dynamical masses. These discrepancies are a function of spectral type, with late-M through mid-L systems tending to have their masses underpredicted, while one T-type system has its mass overpredicted. These discrepancies imply that either the temperatures predicted by evolutionary and atmosphere models are inconsistent for an object of a given mass, or the mass-radius relationship or cooling timescales predicted by the evolutionary models are incorrect. If these spectral-type trends are correct and hold into the planetary mass regime, the implication is that the masses of directly imaged extrasolar planets are overpredicted by the evolutionary models.

  5. Target Mass Corrections Revisited

    SciTech Connect

    W. Melnitchouk; F. Steffens

    2006-03-07

    We propose a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x {yields} 1 limit. We illustrate the differences between the new approach and existing prescriptions by considering specific examples for the F{sub 2} and F{sub L} structure functions, and discuss the broader implications of our results, which call into question the notion of universal parton distribution at finite Q{sup 2}.

  6. Quantitative biomedical mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Leenheer, Andrép; Thienpont, Linda M.

    1992-09-01

    The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

  7. Robust hybrid mass damper

    NASA Astrophysics Data System (ADS)

    Collette, C.; Chesné, S.

    2016-08-01

    In this paper, the design of a hybrid mass damper (HMD) is proposed for the reduction of the resonant vibration amplitude of a multiple degree-of-freedom structure. HMD includes both passive and active elements. Combining these elements the system is fail-safe and its performances are comparable to usual purely active systems. The control law is a revisited direct velocity feedback. Two zeros are added to the controller to interact with the poles of the plant. The developed control law presents the particularity to be simple and hyperstable. The proposed HMD is compared to other classical control approaches for similar purpose in term of vibration attenuation, power consumption and stroke.

  8. Heat and mass exchanger

    SciTech Connect

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  9. Heat and mass exchanger

    SciTech Connect

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  10. Mass diffusion in liquids

    NASA Astrophysics Data System (ADS)

    Walter, H. U.

    Dimensionless number analysis indicates that diffusion-controlled conditions with liquid samples having characteristic dimensions larger than one millimetre can only be established under microgravity conditions.Consequently, heat and mass transport properties of fluids can only be quantitatively investigated in space.Results obtained from experiments on selfdiffusion, interdiffusion and thermodiffusion carried out during the SL-1 and D-1 Spacelab missions clearly demonstrate the potential of space platforms to determine such properties with a precision unattainable on earth. These results imply also that crystal growth from solutions, vapours and melts in the diffusive regime can be realised in space only.

  11. Bioaffinity Mass Spectrometry Screening.

    PubMed

    Yang, Ben; Feng, Yun Jiang; Vu, Hoan; McCormick, Brendan; Rowley, Jessica; Pedro, Liliana; Crowther, Gregory J; Van Voorhis, Wesley C; Forster, Paul I; Quinn, Ronald J

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay. PMID:26773071

  12. Calculate Your Body Mass Index

    MedlinePlus

    ... Can! ) Health Professional Resources Calculate Your Body Mass Index Body mass index (BMI) is a measure of body fat based ... to content Twitter Facebook YouTube Google+ SEARCH | SITE INDEX | ACCESSIBILITY | PRIVACY STATEMENT | FOIA | OIG | CONTACT US National ...

  13. Nanopore Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bush, Joseph; Mihovilovic, Mirna; Maulbetsch, William; Frenchette, Layne; Moon, Wooyoung; Pruitt, Cole; Bazemore-Walker, Carthene; Weber, Peter; Stein, Derek

    2013-03-01

    We report on the design, construction, and characterization of a nanopore-based ion source for mass spectrometry. Our goal is to field-extract ions directly from solution into the high vacuum to enable unit collection efficiency and temporal resolution of sequential ion emissions for DNA sequencing. The ion source features a capillary whose tip, measuring tens to hundreds of nanometers in inner diameter, is situated in the vacuum ~ 1.5 cm away from an extractor electrode. The capillary was filled with conductive solution and voltage-biased relative to the extractor. Applied voltages of hundreds of volts extracted tens to hundreds of nA of current from the tip. A mass analysis of the extracted ions showed primarily singly charged clusters comprising the cation or anion solvated by several solvent molecules. Our interpretation of these results, based on the works of Taylor and of de la Mora, is that the applied electric stresses distort the fluid meniscus into a Taylor cone, where electric fields reach ~ 1V/nm and induce significant ion evaporation. Accordingly, the abundances of extracted ionic clusters resemble a Boltzmann distribution. This work was supported by NIH grant NHGRI 1R21HG005100-01.

  14. Archimedes Mass Filter Vaporizer

    NASA Astrophysics Data System (ADS)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  15. Top quark mass measurements

    SciTech Connect

    L. Cerrito

    2004-07-16

    Preliminary results on the measurement of the top quark mass at the Tevatron Collider are presented. In the dilepton decay channel, the CDF Collaboration measures m{sub t} = 175.0{sub -16.9}{sup +17.4}(stat.){+-}8.4(syst.) GeV/c{sup 2}, using a sample of {approx} 126 pb{sup -1} of proton-antiproton collision data at {radical}s = 1.96 TeV (Run II). In the lepton plus jets channel, the CDF Collaboration measures 177.5{sub -9.4}{sup +12.7}(stat.) {+-} 7.1(syst.) GeV/c{sup 2}, using a sample of {approx} 102 pb{sup -1} at {radical}s = 1.96 TeV. The D0 Collaboration has newly applied a likelihood technique to improve the analysis of {approx} 125 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.8 TeV (Run I), with the result: m{sub t} = 180.1 {+-} 3.6(stat.) {+-}3.9(syst.) GeV/c{sup 2}. The latter is combined with all the measurements based on the data collected in Run I to yield the most recent and comprehensive experimental determination of the top quark mass: m{sub t} = 178.0 {+-} 2.7(stat.) {+-} 3.3(syst.) GeV/c{sup 2}.

  16. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  17. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES

    SciTech Connect

    Farr, Will M.; Sravan, Niharika; Kalogera, Vicky; Cantrell, Andrew; Kreidberg, Laura; Bailyn, Charles D.; Mandel, Ilya E-mail: niharika.sravan@gmail.com E-mail: andrew.cantrell@yale.edu E-mail: charles.bailyn@yale.edu

    2011-11-10

    We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and 5 high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically-as a power law, exponential, Gaussian, combination of two Gaussians, or log-normal distribution-and non-parametrically-as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a 'gap' between the most massive neutron stars and the least massive black holes by considering the value, M{sub 1%}, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. Our analysis generates posterior distributions for M{sub 1%}; the best model (the power law) fitted to the low-mass systems has a distribution of lower bounds with M{sub 1%}>4.3 M{sub sun} with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M{sub 1%}>4.5 M{sub sun} with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al., although our broad model selection analysis more reliably reveals the best-fit quantitative description of the

  18. The electromagnetic mass analyser EMMA

    NASA Astrophysics Data System (ADS)

    Davids, B.

    2014-01-01

    EMMA is a recoil mass spectrometer for ISAC-II at TRIUMF that will be used to separate the recoils of nuclear reactions from the beam and to disperse them according to their mass-to-charge ratios. EMMA has been designed for both efficiency and selectivity, possessing large acceptances in angle, mass, and energy without sacrificing the necessary beam suppression and mass resolving power.

  19. Mass measurement of radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Kluge, H.-J.; Blaum, K.; Scheidenberger, C.

    2004-10-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  20. The double well mass filter

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.; Rax, Jean-Marcel

    2014-02-15

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. The radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  1. Developing World and Mass Media.

    ERIC Educational Resources Information Center

    International Organization of Journalists, Prague (Czechoslovakia).

    This volume presents six keynote papers submitted by noted scholars to the Working Group on Mass Media and Developing Nations at the International Scientific Conference of the International Association for Mass Communication Research held at Leipzig, Germany, in September 1974. The following titles are included: "Mass Media and Developing Nations:…

  2. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  3. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  4. The double well mass filter

    DOE PAGESBeta

    Gueroult, Renaud; Rax, Jean -Marcel; Fisch, Nathaniel J.

    2014-02-03

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. Lastly, the radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  5. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  6. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  7. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  8. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  9. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  10. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  11. ATLASGAL - Kinematic distances and the dense gas mass distribution of the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Wienen, M.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Csengeri, T.; Walmsley, C. M.; Bontemps, S.; Russeil, D.; Bronfman, L.; Koribalski, B. S.; Schuller, F.

    2015-07-01

    Context. The formation of high mass stars and clusters occurs in giant molecular clouds. Objects in evolved stages of massive star formation such as protostars, hot molecular cores, and ultracompact HII regions have been studied in more detail than earlier, colder objects. Further progress thus requires the analysis of the time before massive protostellar objects can be probed by their infrared emission. With this in mind, the APEX Telescope Large Area Survey of the whole inner Galactic plane at 870 μm (ATLASGAL) has been carried out to provide a global view of cold dust and star formation at submillimetre wavelengths. Aims: We derive kinematic distances to a large sample of massive cold dust clumps from their measured line velocities. We estimate masses and sizes of ATLASGAL sources, for which the kinematic distance ambiguity is resolved. Methods: The ATLASGAL sample is divided into groups of sources, which are located close together, mostly within a radius of 2 pc, and have velocities in a similar range with a median velocity dispersion of ~1 km s-1. We use NH3, N2H+, and CS velocities to calculate near and far kinematic distances to those groups. Results: We obtain 296 groups of ATLASGAL sources in the first quadrant and 393 groups in the fourth quadrant, which are coherent in space and velocity. We analyse HI self-absorption and HI absorption to resolve the kinematic distance ambiguity to 689 complexes of submm clumps. They are associated with 12CO emission probing large-scale structure and 13CO (1-0) line as well as the 870 μm dust continuum on a smaller scale. We obtain a scale height of ~28 ± 2 pc and displacement below the Galactic midplane of ~-7 ± 1 pc. Within distances from 2 to 18 kpc ATLASGAL clumps have a broad range of gas masses with a median of 1050 M⊙ as well as a wide distribution of radii with a median of 0.4 pc. Their distribution in galactocentric radii is correlated with spiral arms. Conclusions: Using a statistically significant

  12. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass. PMID:24793822

  13. The Role of SiO as a Tracer of Past Star-formation Events: The Case of the High-mass Protocluster NGC 2264-C

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, Ana; Watanabe, Yoshimasa; Sakai, Nami; Furuya, Ryuta; Saruwatari, Osamu; Yamamoto, Satoshi

    2016-05-01

    NGC 2264-C is a high-mass protocluster where several star formation events are known to have occurred. To investigate whether past protostellar activity has left a chemical imprint in this region, we mapped it in SiO(J=2-1), which is a shock tracer, and several other molecular lines with the Nobeyama 45 m telescope. Our observations show the presence of a complex network of protostellar outflows. The strongest SiO emission lies beyond a radius of ∼0.1 pc with respect to the center of the clump and is characterized by broad (\\gt 10 km s‑1) lines and abundances of ∼ 1.4× {10}-8 with respect to H2. Interestingly, SiO appears to be relatively depleted ({χ }{SiO}∼ 4× {10}-9) within this radius, despite it being affected by molecular outflow activity. We attribute this to the fast condensation of SiO back onto dust grains and/or rapid gas-phase destruction of SiO, which is favored by the high density present in this area (\\gt {10}6 cm‑3). Finally, we identify a peripheral, narrow-line (∼2 km s‑1) component where SiO has an abundance of a few times 10‑11. After considering different options, we conclude that this weak emission may be tracing protostellar shocks from the star formation episode that preceded the current one, which have decelerated over time and eventually resulted in SiO being largely depleted/destroyed. Alternatively, a population of unresolved, low-mass protostars may be responsible for the narrow SiO emission. High-angular resolution observations are necessary to distinguish between these two possibilities, and thus to understand the role of SiO as a chemical tracer of past star formation episodes in massive protoclusters.

  14. Accelerator mass spectrometry

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.; Finkel, R.; Nelson, D.E.

    1995-06-01

    Accelerator mass spectroscopy (AMS) can be used for efficient detection of long-lived isotopes at part-per-quadrillion sensitivities with good precision. In this article we present an overview of AMS and its recent use in archaeology, geochemistry and biomolecular tracing. All AMS systems use cesium sputter ion sources to produce negative ions from a small button of a solid sample containing the element of interest, such as graphite, metal halide, or metal oxide, often mixed with a metal powder as binder and thermal conductor. Experience shows that both natural and biomedical samples are compatible in a single AMS system, but few other AMS sites make routine {sup 14}C measurements for both dating and tracing. AMS is, in one sense, just `a very sensitive decay counter`, but if AMS sensitivity is creatively coupled to analytical chemistry of certain isotopes, whole new areas of geosciences, archaeology, and life sciences can be explored. 29 refs., 2 figs., 1 tab.

  15. Phosphoproteomics for the masses.

    PubMed

    Grimsrud, Paul A; Swaney, Danielle L; Wenger, Craig D; Beauchene, Nicole A; Coon, Joshua J

    2010-01-15

    Protein phosphorylation serves as a primary mechanism of signal transduction in the cells of biological organisms. Technical advancements over the last several years in mass spectrometry now allow for the large-scale identification and quantitation of in vivo phosphorylation at unprecedented levels. These developments have occurred in the areas of sample preparation, instrumentation, quantitative methodology, and informatics so that today, 10 000-20 000 phosphorylation sites can be identified and quantified within a few weeks. With the rapid development and widespread availability of such data, its translation into biological insight and knowledge is a current obstacle. Here we present an overview of how this technology came to be and is currently applied, as well as future challenges for the field. PMID:20047291

  16. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  17. Phosphoproteomics for the masses

    PubMed Central

    Grimsrud, Paul A.; Swaney, Danielle L.; Wenger, Craig D.; Beauchene, Nicole A.; Coon, Joshua J.

    2010-01-01

    Protein phosphorylation serves as a primary mechanism of signal transduction in the cells of biological organisms. Technical advancements over the last several years in mass spectrometry now allow for the large-scale identification and quantitation of in vivo phosphorylation at unprecedented levels. These developments have occurred in the areas of sample preparation, instrumentation, quantitative methodology, and informatics so that today, ten to twenty thousand phosphorylation sites can be identified and quantified within a few weeks. With the rapid development and widespread availability of such data, its translation into biological insight and knowledge is a current obstacle. Here we present an overview of how this technology came to be and is currently applied, as well as future challenges for the field. PMID:20047291

  18. Intrinsic Negative Mass from Nonlinearity

    NASA Astrophysics Data System (ADS)

    Di Mei, F.; Caramazza, P.; Pierangeli, D.; Di Domenico, G.; Ilan, H.; Agranat, A. J.; Di Porto, P.; DelRe, E.

    2016-04-01

    We propose and provide experimental evidence of a mechanism able to support negative intrinsic effective mass. The idea is to use a shape-sensitive nonlinearity to change the sign of the mass in the leading linear propagation equation. Intrinsic negative-mass dynamics is reported for light beams in a ferroelectric crystal substrate, where the diffusive photorefractive nonlinearity leads to a negative-mass Schrödinger equation. The signature of inverted dynamics is the observation of beams repelled from strongly guiding integrated waveguides irrespective of wavelength and intensity and suggests shape-sensitive nonlinearity as a basic mechanism leading to intrinsic negative mass.

  19. Progress in Atomic Mass Evaluation

    SciTech Connect

    Audi, Georges

    2005-05-24

    Different types of experimental data require different procedures for collection and for evaluation. I am more directly concerned with the evaluation of the masses of nuclei, more precisely their atomic masses: the 'Atomic Mass Evaluation' (AME). And also, directly connected to the masses, by the properties of ground states and long-lived isomers of nuclei, their spins, half-lives, excitation energies, and decay modes, called the NUBASE evaluation. Masses as well as nuclear and decay properties have in common requiring 'horizontal' collection and evaluation. Here I describe the most prominent features of the AME, the reasons for its complexity, and how they are faced and solved. The masses of still unknown nuclides we estimate from the regularity of the surface of masses. We finally succeeded in having AME and NUBASE co-ordinated and published for the first time together in December 2003.

  20. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.