Sample records for mass spectrometry tof-ms

  1. Microbial Fingerprinting using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    Microsoft Academic Search

    R. Giebel; C. Worden; S. M. Rust; G. T. Kleinheinz; M. Robbins; T. R. Sandrin

    2010-01-01

    Recent threats posed by pathogenic microorganisms in food, recreational waters, and as agents of bioterror have underscored the need for the development of more rapid, accurate, and cost-effective methods of microbial characterization and identification. This chapter focuses on the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to rapidly characterize and identify microorganisms through generation of characteristic

  2. The fast route to microbe identification: matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Dierig, Alexa; Frei, Reno; Egli, Adrian

    2015-01-01

    Rapid identification of bacterial and fungal microorganisms is critical for early and targeted antimicrobial therapy. Conventional methods for bacterial identification are time consuming. Matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized the daily process of identification in modern microbiological laboratories. The technique and its multiple current and future applications will be discussed. PMID:25741802

  3. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    PubMed

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems. PMID:24197439

  4. Optimization of matrix assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) for the characterization of Bacillus and Brevibacillus species

    PubMed Central

    AlMasoud, Najla; Xu, Yun; Nicolaou, Nicoletta; Goodacre, Royston

    2014-01-01

    Over the past few decades there has been an increased interest in using various analytical techniques for detecting and identifying microorganisms. More recently there has been an explosion in the application of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for bacterial characterization, and here we optimize this approach in order to generate reproducible MS data from bacteria belonging to the genera Bacillus and Brevibacillus. Unfortunately MALDI-TOF-MS generates large amounts of data and is prone to instrumental drift. To overcome these challenges we have developed a preprocessing pipeline that includes baseline correction, peak alignment followed by peak picking that in combination significantly reduces the dimensionality of the MS spectra and corrects for instrument drift. Following this two different prediction models were used which are based on support vector machines and these generated satisfactory prediction accuracies of approximately 90%. PMID:25086893

  5. Detection of carbapenemases using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) meropenem hydrolysis assay.

    PubMed

    Hrabák, Jaroslav

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently introduced to many diagnostic microbiological laboratories. Besides the identification of bacteria and fungi, that technique provides a potentially useful tool for the detection of antimicrobial resistance, especially of that conferred by ?-lactamases. Here, we describe an assay allowing a detection of meropenem hydrolysis in clinical isolates of Enterobacteriaceae, Pseudomonas spp., and Acinetobacter baumannii using MALDI-TOF MS. This method is able to confirm carbapenemases within 3 h. The results are important for proper and fast intervention to limit the spread of carbapenemase-producing bacteria and provide information for appropriate initial therapy of the infections caused by these microbes. PMID:25319782

  6. Optimization of matrix assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) for the characterization of Bacillus and Brevibacillus species.

    PubMed

    AlMasoud, Najla; Xu, Yun; Nicolaou, Nicoletta; Goodacre, Royston

    2014-08-20

    Over the past few decades there has been an increased interest in using various analytical techniques for detecting and identifying microorganisms. More recently there has been an explosion in the application of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for bacterial characterization, and here we optimize this approach in order to generate reproducible MS data from bacteria belonging to the genera Bacillus and Brevibacillus. Unfortunately MALDI-TOF-MS generates large amounts of data and is prone to instrumental drift. To overcome these challenges we have developed a preprocessing pipeline that includes baseline correction, peak alignment followed by peak picking that in combination significantly reduces the dimensionality of the MS spectra and corrects for instrument drift. Following this two different prediction models were used which are based on support vector machines and these generated satisfactory prediction accuracies of approximately 90%. PMID:25086893

  7. Subtype determination of Blastocystis isolates by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Martiny, D; Bart, A; Vandenberg, O; Verhaar, N; Wentink-Bonnema, E; Moens, C; van Gool, T

    2014-04-01

    The pathogenic role of the enteric parasite Blastocystis remains controversial. Recent studies have suggested that various subtypes (STs) found in human samples could be correlated to the presence or absence and variability of clinical manifestations, and that STs can differ with respect to drug sensitivity. Polymerase chain reaction (PCR) techniques used to determine these STs are expensive and are usually restricted to research laboratory settings. This study evaluates the potential application of the inexpensive matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) technique to discriminate Blastocystis STs. A database of parasitic protein signatures was constructed for five Blastocystis STs, and the reference spectra were challenged with those from 19 axenic cultures of ST1, ST2, ST3, ST4 and ST8 and those from nine xenic liquid cultures of ST3 and ST4. Samples from axenic cultures were prepared using standard formic acid extraction and direct deposition procedures. The reference spectra revealed five distinct spectral profiles, and the database library allowed for discrimination between all of the cultures with reliability indices ranging from 2.038 to greater than 2.8 when an extraction was performed. The direct deposition procedure resulted in greater variability in the discrimination and direct MALDI-TOF MS identification from xenic liquid cultures was effective in 3 out of 9 samples. MALDI-TOF MS proved to be an effective technology for efficiently discriminating Blastocystis STs in axenic cultures. PMID:24078024

  8. Differences in protein profiles of the isolates of Entamoeba histolytica and E. dispar by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS) ProteinChip assays.

    PubMed

    Makioka, Asao; Kumagai, Masahiro; Kobayashi, Seiki; Takeuchi, Tsutomu

    2007-12-01

    Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) ProteinChip assays with weak cationic exchange chips were used for protein profiling of different isolates of Entamoeba histolytica and E. dispar. When SELDI-TOF MS spectra of cell lysates from E. histolytica strain HM-1:IMSS were compared with those from four other laboratory strains (200:NIH, HK-9, DKB, and SAW755CR) grown under the same culture conditions, different peak patterns of SELDI-TOF MS were observed among these strains, independent of their zymodeme types. Similarly, five Japanese isolates of E. histolytica grown under the same culture conditions revealed different peak patterns among themselves. The SELDI-TOF MS spectra of cell lysates from two isolates of E. dispar strain AS16IR and CYNO 09:TPC showed the presence of peaks specific for E. dispar isolates and the absence of peaks common to E. histolytica isolates. This is not only the first use of SELDI-TOF MS ProteinChip technology for protein profiling of different strains of Entamoeba but also the use for parasitic protozoa. The SELDI-TOF MS spectra show a realistic view of proteins with a biological status of E. histolytica and E. dispar isolates, contributing to show their phenotypic differences of proteins and provide a unique means of distinguishing them. PMID:17846790

  9. Liquid chromatography\\/time-of-flight\\/mass spectrometry (LC\\/TOF\\/MS) for the analysis of emerging contaminants

    Microsoft Academic Search

    E. Michael Thurman

    2003-01-01

    In this review, we focus on the importance of unequivocally detecting emerging contaminants, as well as establishing their presence in the environment by accurate mass spectrometric measurement techniques. The environmental issue of emerging contaminants is tied to the analysis of wastewater samples using the new analytical methods of the last decade, especially liquid chromatography coupled to tandem mass spectrometry (LC\\/MS\\/MS)

  10. Multi-residue analysis method for analysis of pharmaceuticals using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS) in water sample

    NASA Astrophysics Data System (ADS)

    Al-Qaim, Fouad Fadhil; Abdullah, Md Pauzi; Othman, Mohamed Rozali

    2013-11-01

    In this work, a developed method using solid - phase extraction (SPE) followed by liquid chromatography - time of flight mass spectrometry (LC-ESI-TOF/MS) was developed and validated for quantification and confirmation of eleven pharmaceuticals with different therapeutic classes in water samples, Malaysia. These compounds are caffeine (CAF), prazosin (PRZ), enalapril (ENL), carbamazepine (CBZ), nifedipine (NFD), levonorgestrel (LNG), simvastatin (SMV), hydrochlorothiazide (HYD), gliclazide (GLIC), diclofenac-Na (DIC-Na) and mefenamic acid (MEF). LC was performed on a Dionex Ultimate 3000/LC 09115047 (USA) system. Chromatography was performed on a Thermo Scientific C18 (250 mm × 2.1 mm, i.d.: 5?m) column. Several parameters were optimised such as; mobile phase, gradient elution, collision energy and solvent elution for extraction of compounds from water. The recoveries obtained ranged from 30-148 % in river water. Five pharmaceutical compounds were detected in the surface water samples: caffeine, prazosin, enalpril, diclofenac-Na and mefenamic acid. The developed method is precise and accepted recoveries were got. In addition, this method is suitable to identify and quantify trace concentrations of pharmaceuticals in surface water.

  11. Rapid and highly accurate detection of steryl glycosides by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS).

    PubMed

    Oppliger, Selina R; Münger, Linda H; Nyström, Laura

    2014-10-01

    This study describes the development and validation of a fast, accurate, and precise UPLC-Q-TOF-MS method for the analysis of steryl glycosides (SGs). The best combination of separation and sensitivity was obtained with a methanol/water gradient and formic acid as additive, using electrospray ionization (ESI). SGs were detected almost exclusively as sodiated adducts, allowing identification of the intact molecule, including the sugar moiety. The TOF-MS system offered high mass accuracy (1.3 ppm), providing a valuable tool for SG identification. The method was used to quantify single SG species in oat bran and whole wheat, and it was demonstrated that reliable quantification requires accounting for the matrix effect, which may reduce the SG signal by up to 50% in some samples. The level of matrix effect also depends on food matrices with various SG contents, indicating that it should be individually considered for each sample. PMID:25175549

  12. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    PubMed

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-05-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs. PMID:25938749

  13. Elucidation of riverine and lacustrine dissolved organic matter (DOM) composition using comprehensive GC×GC time-of-flight mass spectrometry (GC×GC-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Ball, G. I.; Goldberg, S. J.; Aluwihare, L. I.

    2012-12-01

    Rivers and streams play a key role in mediating the transfer of organic carbon (both particulate and dissolved) from terrestrial to aquatic settings. Dissolved organic carbon represents the majority of the carbon pool in low alkalinity riverine and lacustrine waters, and its composition plays important roles, including affecting water clarity and stimulating heterotrophic productivity, which influences its rate of reconversion to CO2. Yet, the chemical complexity and heterogeneity of this reservoir have limited structural elucidation to primarily describing common bulk-level characteristics. Seasonal SPE-DOM samples from the Upper Truckee River, Lake Tahoe, and two surrounding lakes, as well as SPE-DOM isolated from two dissimilar California rivers, were first characterized using ?13C, ?15N, 1H-NMR, and then subjected to CuO oxidation followed by TMS derivatization and were analyzed using comprehensive GC×GC time-of-flight mass spectrometry (GC×GC-TOF-MS). Thousands of peaks were identified per sample. Simultaneous, orthogonal separation of components in two dimensions (on the basis of volatility and polarity) allowed for the identification of oxidation mixture components by both their MS spectra and, when MS spectra alone were insufficient for structural assignment and standards were absent, by the observed trajectories of homologues compound series assumed in 2-D retention-time space. Several homologous compound series were observed, including mid-to-long chain fatty acids, keto (?-1) fatty acids, (?, ?)-dioic acids, and the resolution and identification of closely related isomers, such as the benzene di-, and tricarboxylic acids, were also facilitated by this method. Furthermore, in mixed samples containing two or more end-members, such as in lake DOM samples characterized by mixed terrestrial and algal OM sources, the intensity of the phenolic elution space, which includes the lignin phenols and lignin phenolic dimers, correlates with ancillary measurements indicative of terrestrial OM loading, such as increased 1H-NMR resonance intensities for methoxy and aromatic-linked hydrogens and lower ?13C values more consistent with C3 plant versus algal sources.igure 1: Oxidized and derivatized SPE-DOM isolated from the Upper Truckee River, South Lake Tahoe, CA, and visualized in two dimensions.

  14. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS)-based identification of pathogens from positive blood culture bottles.

    PubMed

    Lagacé-Wiens, Philippe

    2015-01-01

    Since the expansion of commercial use of MALDI-TOF/MS instruments for the identification of bacteria from culture which has occurred over the past 5-8 years, techniques for the identification of bacteria directly from positive blood cultures have been developed (Lagace-Wiens et al., J Clin Microbiol 50:3324-3328, 2012; Martiny et al., Eur J Clin Microbiol Infect Dis 31:2269-2281, 2012; Moussaoui et al., Clin Microbiol Infect 16:1631-1638, 2010). These techniques have the potential to provide definitive identification of pathogens causing sepsis 18-48 h earlier than conventional methodologies, and implementation of these methods has been shown to impact morbidity and hospital costs in a positive way (Martiny et al., Clin Microbiol Infect 19:E568-E581, 2013; Loonen et al., Eur J Clin Microbiol Infect Dis 31:1575-1583, 2012). Although many methods for purification of bacterial cells have been developed, including differential centrifugation, centrifuge lysis, and preincubation on sold media (March-Rossello et al., Eur J Clin Microbiol Infect Dis 32:699-704, 2013; Saffert et al., Diagn Microbiol Infect Dis 73:21-26, 2012; Schubert et al., J Mol Diagn 13:701-706, 2011), we will describe the method by which intact bacterial cells are extracted from positive blood culture bottles using a commercially available kit (SepsiTyper™) which is based on the centrifuge lysis methodology (Lagace-Wiens et al., J Clin Microbiol 50:3324-3328, 2012; Buchan et al., J Clin Microbiol 50:346-352, 2012). PMID:25319778

  15. Interlaboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF\\/MS) based plant metabolomics

    Microsoft Academic Search

    J. William Allwood; Alexander Erban; Sjaak de Koning; Warwick B. Dunn; Alexander Luedemann; Arjen Lommen; Lorraine Kay; Ralf Löscher; Joachim Kopka; Royston Goodacre

    2009-01-01

    The application of gas chromatography–mass spectrometry (GC–MS) to the ‘global’ analysis of metabolites in complex samples\\u000a (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining\\u000a and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project’s (METAbolomics\\u000a for Plants Health and OutReach: http:\\/\\/www.meta-phor.eu\\/) priorities towards robust technology

  16. Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption / Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis

    PubMed Central

    Tani, Akio; Sahin, Nurettin; Fujitani, Yoshiko; Kato, Akiko; Sato, Kazuhiro; Kimbara, Kazuhide

    2015-01-01

    Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant–microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization- time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion. PMID:26053875

  17. Searching for novel biomarkers of centrally and peripehrally-acting neurotoxicants, using surface-enhanced laser desorption/ionisation-time-of-flight mass spectrometry (SELDI-TOF MS).

    PubMed

    Fang, M; Boobis, A R; Edwards, R J

    2007-11-01

    The neurotoxicity of chemicals to humans is difficult to monitor as there are no suitable methods of detecting early neuronal dysfunction. Here, a proof of principle study was designed to assess the potential of identifying protein biomarkers in accessible biofluids for this purpose. Groups of rats were treated with a range of doses of the model neurotoxicants, acrylamide (0, 2, 10, 50mg/kg) and methylmercury (0, 0.2, 1, 5mg/kg) for up to 3 weeks and samples of serum, urine, and cerebral spinal fluid analysed by surface-enhanced laser desorption/ionisation-time-of-flight mass spectrometry. There was no neuropathology up to the highest dose tested. Protein profiles were obtained from all samples and changes in the levels of many proteins were detected in both serum and urine, although not cerebral spinal fluid. In serum, the combination of three protein ion levels with m/z values of 4968, 9402 and 12,948 was able to correctly classify the treatment groups thus: 88% control, 100% acrylamide, 92% methylmercury. In urine, three protein ions with m/z values of 4944, 12,966 and 21,992 classified correctly the groups: 67% control, 94% acrylamide, 97% methylmercury. Similar classifications using other serum and urinary protein ions were also possible. This indicates the potential of serum and urine protein biomarkers for the assessment of sub-clinical neurotoxicity. PMID:17602814

  18. A silicon nanomembrane detector for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of large proteins.

    PubMed

    Park, Jonghoo; Blick, Robert H

    2013-01-01

    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da), aldolase (39,212 Da), bovine serum albumin (66,430 Da), and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors. PMID:24152929

  19. A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of Large Proteins

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2013-01-01

    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da), aldolase (39,212 Da), bovine serum albumin (66,430 Da), and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors. PMID:24152929

  20. [Metabolite fingerprint and biomarkers identification of rat urine after dosed with ginsenoside Rg3 based on ultra high performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOF-MS)].

    PubMed

    Wang, Jiangshan; Zhao, Xinjie; Zheng, Yufang; Kong, Hongwei; Lu, Guo; Cai, Zongwei; Xu, Guowang

    2006-01-01

    Porous particles of 1.7 microm was employed for ultra high performance liquid chromatography (UPLC), resulting in higher peak capacity, greater resolution and increased sensitivity in comparison with high performance liquid chromatography (HPLC). Time-of-flight mass spectrometer (TOF-MS) with a lockmass interface was used for the structure identification through exact mass and MS/MS experiment. The hyphenation of these two technologies made it a suitable platform for analysis of complex samples and identification of unknown compounds. Ginsenoside Rg3 has been considered as the major active component of Panax ginseng. Effect of the administration of a single dose of the Ginsenoside Rg3 to male Sprague Dawley rats on the urinary metabolite profiles of a range of endogenous metabolites had been investigated using UPLC/TOF-MS. Urine samples were collected from both dosed and control animals. Analysis of these samples revealed marked changes in the pattern of endogenous metabolites due to the effect of Ginsenoside Rg3. Significant disturbances in the urinary metabolite were observed in the first day after dose. Endogenous metabolites with significant up-regulation identified by accurate mass and MS/MS were xanthurenic acid, and kynurenic acid. PMID:16827300

  1. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass-Spectrometry (MALDI-TOF MS) Based Typing of Extended-Spectrum ?-Lactamase Producing E. coli – A Novel Tool for Real-Time Outbreak Investigation

    PubMed Central

    Egli, Adrian; Tschudin-Sutter, Sarah; Oberle, Michael; Goldenberger, Daniel; Frei, Reno; Widmer, Andreas F.

    2015-01-01

    Epidemiologically linked clusters are confirmed by typing strains with molecular typing such as pulsed-field gel electrophoresis (PFGE). We compared six extended-spectrum ?-lactamase producing E. coli of a PFGE-related cluster with Matrix-assisted laser desorption/ionization-time of flight mass-spectrometry based typing that confirmed relatedness faster and more cost-effective, but as reliable as PFGE. PMID:25860943

  2. Analysis of Wheat Prolamins, the Causative Agents of Celiac Sprue, Using Reversed Phase High Performance Liquid Chromatography (RP-HPLC) and Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS)

    PubMed Central

    Mejías, Jaime H.; Lu, Xiaoqiao; Osorio, Claudia; Ullman, Jeffrey L.; von Wettstein, Diter; Rustgi, Sachin

    2014-01-01

    Wheat prolamins, commonly known as “gluten”, are a complex mixture of 71–78 proteins, which constitute ~80% of the proteins in the wheat grains and supply 50% of the global dietary protein demand. Prolamins are also responsible for numerous gluten-induced disorders and determine the unique visco-elastic properties of the wheat dough. These properties necessitate the reliable determination of the prolamin composition in wheat grains and their derived products. Therefore, this study examined the impact of HPLC conditions, including column type, column temperature, flow rate, and the gradient of polar and non-polar solvents in the mobile phase, to improve the analytical resolution of prolamins. The following conditions were found optimal for analyses: column temperature 60 °C, flow rate 1.0 mL/min and an elution gradient of 20%–60% of 0.1% trifluoroacetic acid + acetonitrile in 60 min. For further improvement of resolution, gliadin and glutenin extracts were analyzed using MALDI-TOF-MS in combination with HPLC fractionation. Two semi-quantitative methods, densitometry of stained polyacrylamide gels and HPLC, were used to determine relative prolamin quantities and the correspondence between the methods was established. The combinatorial gluten analyses approach developed during the present study was used to analyze prolamin profiles of wheat transformants expressing DEMETER silencing artificial microRNA, and the results are discussed. PMID:24739977

  3. Metabolomic Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF MS) Uncovers the Effects of Light Intensity and Temperature under Shading Treatments on the Metabolites in Tea

    PubMed Central

    Ma, Lifeng; Yi, Xiaoyun; Ruan, Jianyun

    2014-01-01

    To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2–4°C cooling effect) with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides) decreased significantly in the shading treatments, while the contents of chlorophyll, ?-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature. PMID:25390340

  4. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea.

    PubMed

    Zhang, Qunfeng; Shi, Yuanzhi; Ma, Lifeng; Yi, Xiaoyun; Ruan, Jianyun

    2014-01-01

    To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2-4°C cooling effect) with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides) decreased significantly in the shading treatments, while the contents of chlorophyll, ?-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature. PMID:25390340

  5. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in preparation of chitosan oligosaccharides (COS) with degree of polymerization (DP) 5-12 containing well-distributed acetyl groups

    NASA Astrophysics Data System (ADS)

    Chen, Mian; Zhu, Xiqiang; Li, Zhiming; Guo, Xueping; Ling, Peixue

    2010-02-01

    COS have many biological activities, and have been widely used as a health food. Molecular size is considered as a key parameter for COS' activities. However, many criteria are used practically, and true qualities of COS from different producers may not be always comparable. This can partly explain the disagreement in COS' functional researches, as resulting in COS, even with astonish effects, have not been further developed as a drug for tumor patients. As anti-tumor activities have been studied based on DP in pharmacological researches, we employed MALDI-TOF-MS to monitor fine structure, including DP, in COS' preparation and comparison. Then one of the COS products was analyzed with the composition of DP 5-12, mainly 7-10. Moreover, that COS' product contains well-distributed acetyl groups, while typical Commercial COS sample nearly contains no acetyl groups. As fresh precise parameters, the DP and the number of acetyl groups matching with special DP can be introduced in COS' further study on structure-activity relationships (SARs) as a new drug.

  6. Profile of phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry (RRLC-ESI-TOF-MS).

    PubMed

    Ballus, Cristiano Augusto; Quirantes-Piné, Rosa; Bakhouche, Abdelhakim; da Silva, Luiz Fernando de Oliveira; de Oliveira, Adelson Francisco; Coutinho, Enilton Fick; da Croce, Dorli Mario; Segura-Carretero, Antonio; Godoy, Helena Teixeira

    2015-03-01

    In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO. PMID:25306359

  7. Identification of Dermatophyte species after implementation of the in-house MALDI-TOF MS database.

    PubMed

    Calderaro, Adriana; Motta, Federica; Montecchini, Sara; Gorrini, Chiara; Piccolo, Giovanna; Piergianni, Maddalena; Buttrini, Mirko; Medici, Maria Cristina; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Despite that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool in the clinical microbiology setting, few studies have till now focused on MALDI-TOF MS-based identification of dermatophytes. In this study, we analyze dermatophytes strains isolated from clinical samples by MALDI-TOF MS to supplement the reference database available in our laboratory. Twenty four dermatophytes (13 reference strains and 11 field isolated strains), identified by both conventional and molecular standard procedures, were analyzed by MALDI-TOF MS, and the spectra obtained were used to supplement the available database, limited to a few species. To verify the robustness of the implemented database, 64 clinical isolates other than those used for the implementation were identified by MALDI-TOF MS. The implementation allowed the identification of the species not included in the original database, reinforced the identification of the species already present and correctly identified those within the Trichophyton mentagrophytes complex previously classified as Trichophyton. tonsurans by MALDI-TOF MS. The dendrogram obtained by analyzing the proteic profiles of the different species of dermatophytes reflected their taxonomy, showing moreover, in some cases, a different clusterization between the spectra already present in the database and those newly added. In this study, MALDI-TOF MS proved to be a useful tool suitable for the identification of dermatophytes for diagnostic purpose. PMID:25216335

  8. Identification of Dermatophyte Species after Implementation of the In-House MALDI-TOF MS Database

    PubMed Central

    Calderaro, Adriana; Motta, Federica; Montecchini, Sara; Gorrini, Chiara; Piccolo, Giovanna; Piergianni, Maddalena; Buttrini, Mirko; Medici, Maria Cristina; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Despite that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool in the clinical microbiology setting, few studies have till now focused on MALDI-TOF MS-based identification of dermatophytes. In this study, we analyze dermatophytes strains isolated from clinical samples by MALDI-TOF MS to supplement the reference database available in our laboratory. Twenty four dermatophytes (13 reference strains and 11 field isolated strains), identified by both conventional and molecular standard procedures, were analyzed by MALDI-TOF MS, and the spectra obtained were used to supplement the available database, limited to a few species. To verify the robustness of the implemented database, 64 clinical isolates other than those used for the implementation were identified by MALDI-TOF MS. The implementation allowed the identification of the species not included in the original database, reinforced the identification of the species already present and correctly identified those within the Trichophyton mentagrophytes complex previously classified as Trichophyton. tonsurans by MALDI-TOF MS. The dendrogram obtained by analyzing the proteic profiles of the different species of dermatophytes reflected their taxonomy, showing moreover, in some cases, a different clusterization between the spectra already present in the database and those newly added. In this study, MALDI-TOF MS proved to be a useful tool suitable for the identification of dermatophytes for diagnostic purpose. PMID:25216335

  9. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification

    PubMed Central

    Guo, Ling; Ye, Liyan; Zhao, Qiang; Ma, Yanning; Yang, Jiyong

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. This study aimed to evaluate the accuracy of MALDI-TOF MS in clinical microbiology diagnosis by comparing it with commonly-used VITEK 2 or gene sequencing. Methods The performances of MALDI-TOF MS and VITEK 2 were compared retrospectively for identifying routine isolates. Discrepancies were analyzed by gene sequencing analysis of the 16S genes. Results For 1,025 isolates, classified as 55 species of 25 genera, 1,021 (99.60%) isolates were accurately identified at the genus level, and 957 (93.37%) isolates at the species level by using MALDI-TOF MS. A total of 949 (92.59%) isolates were completely matched by both methods. Both methods found 76 unmatched isolates among which one strain had no definite identification by MALDI-TOF MS and VITEK 2 respectively. However, MALDI-TOF MS made no errors at the genus level while VITEK 2 made 6 (0.58%) errors at the genus level. At the species level, the identification error rates for MALDI-TOF MS and VITEK 2 were 5.56% and 6.24%, respectively. Conclusions With a lower identification error rate, MALDI-TOF MS has better performance than VITEK 2 in identifying bacteria found routinely in the clinical laboratory. It is a quick and cost-effective technique, and has the potential to replace conventional phenotype methods in identifying common bacterial isolates in clinical microbiology laboratories. PMID:24822115

  10. Identification of metabolites of deoxyschizandrin in rats by UPLC-Q-TOF-MS/MS based on multiple mass defect filter data acquisition and multiple data processing techniques.

    PubMed

    Liu, Minyan; Zhao, Shaohua; Wang, Zongquan; Wang, Yufeng; Liu, Ting; Li, Song; Wang, Cuicui; Wang, Hongtao; Tu, Pengfei

    2014-02-15

    Deoxyschizandrin is an active lignin ingredient originating from Schisandra chinensis (Turcz.) Baill or Schisandrae Sphenantherae Fructus. In the present study, a novel and efficient strategy was developed for the in vivo screening and identification of deoxyschizandrin metabolites using ultra high performance liquid chromatography combined with triple TOF mass spectrometry (UPLC-TOF/MS/MS). This strategy was characterized by the following: a novel and unique multiple mass defect filter (MMDF) combined with an on-line data acquisition method that is dependent on dynamic background subtraction (DBS) was developed to trace all of the probable metabolites of deoxyschizandrin. The MMDF and DBS methods could trigger an IDA scan for the low-level metabolites that are masked by background noise and endogenous components. A combination of data processing methods including extracted ion chromatography (XIC), mass defect filtering (MDF), product ion filtering (PIF) and neutral loss filtering (NLF) were employed to identify the metabolites of deoxyschizandrin. Next, the structures of the metabolites were elucidated based on an accurate mass measurement, the fragmentation patterns of the parent drug and relevant drug bio-transformation knowledge. Finally, an important parameter ClogP was used to estimate the retention time of isomers. Based on the proposed strategy, 51 metabolites (including 49 phase I and 2 phase II metabolites) were identified in rats after the oral administration of deoxyschizandrin. Among these metabolites, 41 metabolites were characterized in the rat urine, and 28 metabolites were identified in the rat bile. The results indicated that oxidization was the main metabolic pathway and that the methoxy group and the biphenyl cyclooctene were the metabolic sites. Conjugation with sulfate and cysteine groups produced two phase-II metabolites. This study firstly reported the description of deoxyschizandrin metabolism in vivo. This study provided a practical strategy for rapidly screening and identifying metabolites, and this methodology can be widely applied for the structural characterization of the metabolites of other compounds. PMID:24487041

  11. Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry in clinical chemistry

    Microsoft Academic Search

    Laure F. Marvin; Matthew A. Roberts; Laurent B. Fay

    2003-01-01

    Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-Tof-MS) has recently become a popular and versatile method to analyze macromolecules from biological origin. In this paper, we will review the application of MALDI-Tof-MS in clinical chemistry and biology. MALDI-Tof-MS is used in clinical chemistry, e.g. disease markers can be identified with MALDI-MS analysis in combination with 1-D and 2-D gel electrophoresis separations

  12. Performance of mass spectrometric identification of bacteria and yeasts routinely isolated in a clinical microbiology laboratory using MALDI-TOF MS

    PubMed Central

    Wang, Weiping; Xi, Haiyan; Huang, Mei; Wang, Jie; Fan, Ming; Chen, Yong; Shao, Haifeng

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to identifying bacterial and yeast strains. The aim of this study was to evaluate the clinical performance of the VITEK® MS system in the identification of bacteria and yeast strains routinely isolated from clinical samples. Methods We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria and yeasts regardless of phylum or source of isolation. Discordant results were resolved with 16S rDNA or internal transcribed spacer (ITS) gene sequencing. Colonies (a single deposit on a MALDI disposable target without any prior extraction step) were analyzed using the VITEK® MS system. Peptide spectra acquired by the system were compared with the VITEK® MS IVD database Version 2.0, and the identification scores were recorded. Results Of the 1,181 isolates (1,061 bacterial isolates and 120 yeast isolates) analyzed, 99.5% were correctly identified by MALDI-TOF mass spectrometry; 95.7% identified to the species level, 3.6% identified to the genus level, and 0.3% identified within a range of species belonging to different genera. Conversely, 0.1% of isolates were misidentified and 0.4% were unidentified, partly because the species were not included in the database. Re-testing using a second deposit provided a successful identification for 0.5% of isolates unidentified with the first deposit. Our results show that the VITEK® MS system has exceptional performance in identifying bacteria and yeast by comparing acquired peptide spectra to those contained in its database. Conclusions MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive method for bacterial and yeast identification. Our results demonstrate that the VITEK® MS system is a fast and reliable technique, and has the potential to replace conventional phenotypic identification for most bacterial and yeast strains routinely isolated in clinical microbiology laboratories. PMID:24822114

  13. The application of MALDI TOF MS in biopharmaceutical research.

    PubMed

    Kafka, Alexandra P; Kleffmann, Torsten; Rades, Thomas; McDowell, Arlene

    2011-09-30

    The development and quality assessment of modern biopharmaceuticals, particularly protein and peptide drugs, requires an array of analytical techniques to assess the integrity of the bioactive molecule during formulation and administration. Mass spectrometry is one of these methods and is particularly suitable for determining chemical modifications of protein and peptide drugs. The emphasis of this review is the identification of covalent interactions between protein and peptide bioactives with polymeric pharmaceutical formulations using mass spectrometry with the main focus on matrix-assisted laser desorption/ionization (MALDI) coupled tandem time-of-flight (TOF/TOF) mass spectrometry (MS). The basics of MALDI TOF MS and collision-induced dissociation (CID)-based ion fragmentation will be explained and applications for qualitative characterization of protein and peptide drugs and their interactions with pharmaceutical polymers will be discussed using three case studies. PMID:21147205

  14. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens

    PubMed Central

    Deng, Jiankai; Fu, Liang; Wang, Ruilian; Ding, Xixia; Jiang, Lingxiao; Fang, Yanping; Jiang, Changhong; Lin, Lijuan; Che, Xiaoyan

    2014-01-01

    Objective This study was performed to evaluate the analytical and practical performance of the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) compared to the sequencing method and the Vitek 2 system for identi?cation of enteropathogens in the clinical microbiology laboratory. Methods Ten type strains and 73 clinical isolates of enteropathogens representing eight genera were analyzed by MALDI-TOF MS. All isolates were also characterized by gene sequencing allowing interpretation of the results from MALDI-TOF MS. In addition, MALDI-TOF MS was compared with the Vitek 2 system for the identi?cation of ten isolates of Aeromonas and six of Salmonella. Results As previously known, identification between Shigella and Escherichia coli is not possible to distinguish. MALDI-TOF MS produced the correct identifications for all other type strains and clinical isolates to the genus level. Fifteen Campylobacter jejuni, six Campylobacter coli, three Plesiomonas shigelloides, three Yersinia enterocolitica, two Clostridium difficile, one Vibrio parahaemolyticus, one Vibrio fluvialis, and one Vibrio cholera were all correctly identi?ed to the species level. Genus and species identifications of ten Aeromonas and six Salmonella isolates by MALDI-TOF MS were consistent with those by the Vitek 2, but with much less cost and about ten times faster. Conclusions This study demonstrates that MALDI-TOF MS is a powerful tool for fast, accurate and low-cost identi?cation of enteropathogens in the clinical microbiology laboratory. PMID:24822116

  15. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS)

    Microsoft Academic Search

    A. Jordan; S. Haidacher; G. Hanel; E. Hartungen; L. Märk; H. Seehauser; R. Schottkowsky; P. Sulzer; T. D. Märk

    2009-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) developed about 10 years ago is used today in a wide range of scientific and technical fields allowing real-time on-line measurements of volatile organic compounds in air with a high sensitivity and a fast response time. Most instruments employed so far use quadrupole filters to analyze product ions generated in the reaction drift tube. Due to

  16. GC/TOF-MS as a new method for halocarbon observation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Obersteiner, Florian; Boenisch, Harald; Hoker, Jesica; Engel, Andreas

    2015-04-01

    The need for halocarbon measurements in the atmosphere arose with the anthropogenic emission of CFCs beginning in the 1950s and the discovery of their ozone depleting potential in the 1980s. CFCs were replaced by HCFCs and are nowadays replaced by HFCs, with new compounds continuously being developed and introduced to the atmosphere. While not being harmful to the ozone layer, HFCs are still greenhouse gases and many tend to be hazardous to human health at high concentration. They can also serve as tracers to study atmospheric transport at low concentration, making high precision measurement interesting to atmospheric studies. Gas chromatography coupled with time-of-flight mass spectrometry (GC/TOF-MS) is still a new method in the field of atmospheric halocarbon measurement compared to the well-established GC/QP(quadrupole)-MS. The QP-MS is indeed a very stable and easy-to-operate instrument but also limited by mass resolution and either mass range or sensitivity. We will present the general applicability of GC/TOF-MS to regular halocarbon observation by a time series of halocarbon measurements from the Taunus Observatory (Kleiner Feldberg, Germany) and the implementation of a second, high-resolution (max. R=4000) TOF-MS system. Both GC/TOF-MS systems are characterized with respect to reproducibility, non-linearity and limits of detection (LOD). Furthermore, the advantages of a higher mass resolution are demonstrated with respect to LOD, substance identification and substance quantification.

  17. Identification of bacteria isolated from veterinary clinical specimens using MALDI-TOF MS.

    PubMed

    Pavlovic, Melanie; Wudy, Corinna; Zeller-Peronnet, Veronique; Maggipinto, Marzena; Zimmermann, Pia; Straubinger, Alix; Iwobi, Azuka; Märtlbauer, Erwin; Busch, Ulrich; Huber, Ingrid

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently emerged as a rapid and accurate identification method for bacterial species. Although it has been successfully applied for the identification of human pathogens, it has so far not been well evaluated for routine identification of veterinary bacterial isolates. This study was performed to compare and evaluate the performance of MALDI-TOF MS based identification of veterinary bacterial isolates with commercially available conventional test systems. Discrepancies of both methods were resolved by sequencing 16S rDNA and, if necessary, the infB gene for Actinobacillus isolates. A total of 375 consecutively isolated veterinary samples were collected. Among the 357 isolates (95.2%) correctly identified at the genus level by MALDI-TOF MS, 338 of them (90.1% of the total isolates) were also correctly identified at the species level. Conventional methods offered correct species identification for 319 isolates (85.1%). MALDI-TOF identification therefore offered more accurate identification of veterinary bacterial isolates. An update of the in-house mass spectra database with additional reference spectra clearly improved the identification results. In conclusion, the presented data suggest that MALDI-TOF MS is an appropriate platform for classification and identification of veterinary bacterial isolates. PMID:25876281

  18. Top-down proteomic identification of protein biomarkers of food-borne pathogens using MALDI-TOF-TOF-MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes a step-by-step protocol and discussion of top-down proteomic identification of protein biomarkers of food-borne pathogens using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF-MS/MS) and web-based software developed in the Pro...

  19. MALDI-TOF MS Distinctly Differentiates Nontypable Haemophilus influenzae from Haemophilus haemolyticus

    PubMed Central

    Zhang, Huifang; Zhang, Yongchan; Gao, Yuan; Xu, Li; Lv, Jing; Wang, Yingtong; Zhang, Jianzhong; Shao, Zhujun

    2013-01-01

    Nontypable Haemophilus influenzae (NTHi) and Haemophilus haemolyticus exhibit different pathogenicities, but to date, there remains no definitive and reliable strategy for differentiating these strains. In this study, we evaluated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a potential method for differentiating NTHi and H. haemolyticus. The phylogenetic analysis of concatenated 16S rRNA and recombinase A (recA) gene sequences, outer membrane protein P6 gene sequencing and single-gene PCR were used as reference methods. The original reference database (ORD, provided with the Biotyper software) and new reference database (NRD, extended with Chinese strains) were compared for the evaluation of MALDI-TOF MS. Through a search of the ORD, 76.9% of the NTHi (40/52) and none of the H. haemolyticus (0/20) strains were identified at the species level. However, all NTHi and H. haemolyticus strains used for identification were accurately recognized at the species level when searching the NRD. From the dendrogram clustering of the main spectra projections, the Chinese and foreign H. influenzae reference strains were categorized into two distinct groups, and H. influenzae and H. haemolyticus were also separated into two categories. Compared to the existing methods, MALDI-TOF MS has the advantage of integrating high throughput, accuracy and speed. In conclusion, MALDI-TOF MS is an excellent method for differentiating NTHi and H. haemolyticus. This method can be recommended for use in appropriately equipped laboratories. PMID:23457514

  20. Glycoprotein analysis using enzymatic digestion and MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Kornfeld, Rich; Kenny, James W.; Weinberger, Scot R.; Yang, Yi; Orlando, Ron

    1996-04-01

    A sensitive and facile method is described to identify the glycosylation sites and site-specific heterogeneity in the carbohydrate portion of glycoproteins. In this procedure, the peptide backbone of the glycoprotein is cleaved enzymatically. The peptide/glycopeptide mixture is divided into three fractions. The first fraction is analyzed directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), while the other two aliquots are analyzed by MALDI-TOF MS after enzymatic release of the N-linked and N- and O-linked chains. Comparison of these mass spectra provides the molecular weight of each carbohydrate side chain and of the peptide to which it is attached. This information combined with the protein's amino acid sequence identifies the glycosylation sites and provides information concerning site-specific oligosaccharide heterogeneity. This approach is faster and simpler than procedures currently used for glycosylation site mapping and can be performed on as little as 10 picomoles of glycoprotein.

  1. Rapid identification of oral Actinomyces species cultivated from subgingival biofilm by MALDI-TOF-MS

    PubMed Central

    Stingu, Catalina S.; Borgmann, Toralf; Rodloff, Arne C.; Vielkind, Paul; Jentsch, Holger; Schellenberger, Wolfgang; Eschrich, Klaus

    2015-01-01

    Background Actinomyces are a common part of the residential flora of the human intestinal tract, genitourinary system and skin. Isolation and identification of Actinomyces by conventional methods is often difficult and time consuming. In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has become a rapid and simple method to identify bacteria. Objective The present study evaluated a new in-house algorithm using MALDI-TOF-MS for rapid identification of different species of oral Actinomyces cultivated from subgingival biofilm. Design Eleven reference strains and 674 clinical strains were used in this study. All the strains were preliminarily identified using biochemical methods and then subjected to MALDI-TOF-MS analysis using both similarity-based analysis and classification methods (support vector machine [SVM]). The genotype of the reference strains and of 232 clinical strains was identified by sequence analysis of the 16S ribosomal RNA (rRNA). Results The sequence analysis of the 16S rRNA gene of all references strains confirmed their previous identification. The MALDI-TOF-MS spectra obtained from the reference strains and the other clinical strains undoubtedly identified as Actinomyces by 16S rRNA sequencing were used to create the mass spectra reference database. Already a visual inspection of the mass spectra of different species reveals both similarities and differences. However, the differences between them are not large enough to allow a reliable differentiation by similarity analysis. Therefore, classification methods were applied as an alternative approach for differentiation and identification of Actinomyces at the species level. A cross-validation of the reference database representing 14 Actinomyces species yielded correct results for all species which were represented by more than two strains in the database. Conclusions Our results suggest that a combination of MALDI-TOF-MS with powerful classification algorithms, such as SVMs, provide a useful tool for the differentiation and identification of oral Actinomyces. PMID:25597306

  2. Rapid identification of Streptomyces isolates by MALDI-TOF MS.

    PubMed

    Loucif, Lotfi; Bendjama, Esma; Gacemi-Kirane, Djamila; Rolain, Jean-Marc

    2014-12-01

    The recent emergence of multidrug-resistant bacteria over the last decade has led to a renewal in the discovery of new antimicrobial drugs. Streptomyces members are practically unlimited sources of new antibiotics. However, the identification of Streptomyces species is difficult and time-consuming. Therefore, there is a need for alternative methods for their rapid identification. In this study, an efficient protocol of identification using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) was developed and applied for the rapid identification of Streptomyces isolates from the El Kala lakes in northeastern Algeria. A collection of 48 Streptomyces isolates were used for this study. The optimized procedure allowed us to obtain specific and reproducible protein spectra for each Streptomyces isolate tested. The spectra generated were used to build a preliminary local database based on their initial 16S rRNA identification. The blind test used for the identification of 20 Streptomyces strains already available in our created database and 20 unknown Streptomyces isolates showed that all (100%) of the Streptomyces strains listed in the database were rapidly (<30min) identified with high scores of up to 2.8. Here, for the first time we showed that MALDI-TOF MS could be used as a cost-effective tool for the rapid identification of Streptomyces isolates. PMID:24862894

  3. Identification of unknown pesticides in fruits using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry

    Microsoft Academic Search

    Yolanda Picó; Marinel. la Farré; Carla Soler; Damià Barceló

    2007-01-01

    Ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) is an emerging technique offering more rapid and efficient separation, as well as the possibility to obtain accurate mass measurement and tandem mass spectrometry (MS\\/MS). This paper deals with the use of UPLC-QqTOF-MS to identify the pesticide residues present in complex pear extracts. Carbendazim, imazalil, and ethoxyquin were successfully identified because of the

  4. Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems.

    PubMed

    Fiori, Barbara; D'Inzeo, Tiziana; Di Florio, Viviana; De Maio, Flavio; De Angelis, Giulia; Giaquinto, Alessia; Campana, Lara; Tanzarella, Eloisa; Tumbarello, Mario; Antonelli, Massimo; Sanguinetti, Maurizio; Spanu, Teresa

    2014-10-01

    We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ? 16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ? 5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization-time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine detection of BSIs in the population we studied, although further studies are needed to evaluate their performance in other settings. PMID:25031441

  5. Advances in MALDI mass spectrometry in clinical diagnostic applications.

    PubMed

    Ng, Eddy W Y; Wong, Melody Y M; Poon, Terence C W

    2014-01-01

    The concept of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was first reported in 1985. Since then, MALDI MS technologies have been evolving, and successfully used in genome, proteome, metabolome, and clinical diagnostic research. These technologies are high-throughput and sensitive. Emerging evidence has shown that they are not only useful in qualitative and quantitative analyses of proteins, but also of other types of biomolecules, such as DNA, glycans, and metabolites. Recently, parallel fragmentation monitoring (PFM), which is a method comparable to selected reaction monitoring, has been reported. This highlights the potentials of MALDI-TOF/TOF tandem MS in quantification of metabolites. Here we critically review the applications of the major MALDI MS technologies, including MALDI-TOF MS, MALDI-TOF/TOF MS, SALDI-TOF MS, MALDI-QqQ MS, and SELDI-TOF MS, to the discovery and quantification of disease biomarkers in biological specimens, especially those in plasma/serum specimens. Using SELDI-TOF MS as an example, the presence of systemic bias in biomarker discovery studies employing MALDI-TOF MS and its possible solutions are also discussed in this chapter. The concepts of MALDI, SALDI, SELDI, and PFM are complementary to each other. Theoretically, all these technologies can be combined, leading to the next generation of the MALDI MS technologies. Real applications of MALDI MS technologies in clinical diagnostics should be forthcoming. PMID:23563502

  6. Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry in clinical chemistry

    Microsoft Academic Search

    Laure F. Marvin; Matthew A. Roberts; Laurent B. Fay

    Abstract Matrix-assisted laser desorption\\/ionization time-of-flight mass,spectrometry,(MALDI-Tof-MS) has recently become,a popular and versatile method to analyze macromolecules from biological origin. In this paper, we will review the application of MALDI-Tof-MS in clinical chemistry and biology. MALDI-Tof-MS is used in clinical chemistry, e.g. disease markers can be identified with MALDI-MS analysis in combination,with 1-D and 2-D gel electrophoresis separations thanks to either

  7. Analyses by UPLC Q-TOF MS of products of aflatoxin B(1) after ozone treatment.

    PubMed

    Luo, Xiaohu; Wang, Ren; Wang, Li; Li, Yongfu; Zheng, Ruihang; Sun, Xiulan; Wang, Yong; Chen, Zhengxing; Tao, Guanjun

    2014-01-01

    Analysing the products of ozone-treated aflatoxin B1 (AFB1) is essential in order to study the practical use of ozone treatment. In this paper, the products of AFB1 were investigated using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC Q-TOF MS). The products were well separated using UPLC, and the accurate masses of all the products were determined using Q-TOF MS. Finally, the possible pathways of fragmentation ion generation from the products of AFB1 and the structures of four products were proposed. From the view of the proposed structures of products, the C8-C9 double bond in the terminal furan ring was destroyed. According to the structure-activity relationship, the toxicity of products was significantly reduced compared with that of AFB1. The result indicated that ozone was an effective agent for degrading AFB1, and UPLC Q-TOF MS was a useful analytical tool for proposing and identifying a series of unknown products. PMID:24350699

  8. Nosocomial infection due to Enterococcus cecorum identified by MALDI-TOF MS and Vitek 2 from a blood culture of a septic patient

    PubMed Central

    Warnke, Philipp; Köller, Thomas; Stoll, Paul; Podbielski, Andreas

    2015-01-01

    We report the case of a nosocomial infection due to Enterococcus cecorum isolated from a blood culture of a 75-year-old septic male patient. Matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS) and Vitek 2 succeeded in identification of the isolate. PMID:26185687

  9. Top-down proteomic identification of bacterial protein biomarkers and toxins using MALDI-TOF-TOF-MS/MS and post-source decay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry(MALDI-TOF-TOF-MS)has provided new capabilities for the rapid identification of digested and non-digested proteins. The tandem (MS/MS) capability of TOF-TOF instruments allows precursor ion selection/isolation...

  10. MALDI-TOF MS-based identification of black yeasts of the genus Exophiala.

    PubMed

    Özhak-Baysan, Betil; Ö?ünç, Dilara; Dö?en, Aylin; Ilkit, Macit; de Hoog, G Sybren

    2015-05-01

    In this study, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. The analysis included a total of 110 Exophiala isolates, including 15 CBS strains representing 4 species, Exophiala dermatitidis (61), E. phaeomuriformis (36), E. crusticola (9), and E. heteromorpha (4), that had been previously identified based on internal transcribed spacer (ITS) regions. We also compared the relative efficacies of Sabouraud glucose agar (SGA) and Columbia agar (CA) for use in MALDI-TOF MS. Remarkably, we obtained a log-score value ?2.0 by using either SGA or CA for all 15 CBS strains, indicating species-level identification. The remaining 95 Exophiala strains were identified to the genus or species levels, with identification rates of 96.8% and 90.5%, using SGA or CA, respectively. Most of the E. dermatitidis (100% and 92.9%), E. phaeomuriformis (80.6% and 83.9%), E. crusticola (50% and 100%), and E. heteromorpha (100% and 100%) isolates were correctly identified using SGA or CA, respectively. Furthermore, 58.9% and 26.3% of the strains had log-score values of ?2.0 by using SGA and CA, respectively. Our results indicate that MALDI-TOF MS is a rapid and reliable technique with high rates of correct taxonomic identification. PMID:25851261

  11. Gold patterned biochips for on-chip immuno-MALDI-TOF MS: SPR imaging coupled multi-protein MS analysis.

    PubMed

    Kim, Young Eun; Yi, So Yeon; Lee, Chang-Soo; Jung, Yongwon; Chung, Bong Hyun

    2012-01-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of immuno-captured target protein efficiently complements conventional immunoassays by offering rich molecular information such as protein isoforms or modifications. Direct immobilization of antibodies on MALDI solid support enables both target enrichment and MS analysis on the same plate, allowing simplified and potentially multiplexing protein MS analysis. Reliable on-chip immuno-MALDI-TOF MS for multiple biomarkers requires successful adaptation of antibody array biochips, which also must accommodate consistent reaction conditions on antibody arrays during immuno-capture and MS analysis. Here we developed a facile fabrication process of versatile antibody array biochips for reliable on-chip MALDI-TOF-MS analysis of multiple immuno-captured proteins. Hydrophilic gold arrays surrounded by super-hydrophobic surfaces were formed on a gold patterned biochip via spontaneous chemical or protein layer deposition. From antibody immobilization to MALDI matrix treatment, this hydrophilic/phobic pattern allowed highly consistent surface reactions on each gold spot. Various antibodies were immobilized on these gold spots both by covalent coupling or protein G binding. Four different protein markers were successfully analyzed on the present immuno-MALDI biochip from complex protein mixtures including serum samples. Tryptic digests of captured PSA protein were also effectively detected by on-chip MALDI-TOF-MS. Moreover, the present MALDI biochip can be directly applied to the SPR imaging system, by which antibody and subsequent antigen immobilization were successfully monitored. PMID:22087467

  12. Application of electrospray mass spectrometry and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for molecular weight assignment of peptides in complex mixtures

    Microsoft Academic Search

    John R. Perkins; Brian Smith; Richard T. Gallagher; Davis S. Jones; Stephen C. Davis; Andrew D. Hoffman; Kenneth B. Tomer

    1993-01-01

    Electrospray mass spectrometry (ES\\/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI\\/TOF\\/MS)\\u000a were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI\\/TOF\\/MS.\\u000a ES\\/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of\\u000a higher molecular weight compounds was seen to occur during flow

  13. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry.

    PubMed

    Sharma, Ram Jee; Gupta, Ramesh C; Bansal, Arvind Kumar; Singh, Inder Pal

    2015-06-01

    Eugenia jambolana, commonly known as 'jamun' or Indian blackberry, is an important source of bioactive compounds. All parts of the plant like stem bark, leaves, flower, fruit pulp and seeds are traditionally used for many diseases. Metabolite profiling in medicinally important plants is critical to resolve the problems associated with standardization and quality control. Metabolite profiling of the fruit pulp of Jamun was performed by NMR, HPLC, MS, GC-MS and MALDI-TOF mass spectrometry. These hyphenated techniques helped in the identification of 68 chemically-diverse metabolites of the fruit pulp. These include anthocyanins, anthocyanidins, sugars, phenolics and volatile compounds. Five extracts of fruit pulp were prepared i.e. hexane, chloroform, ethylacetate, butanol and aqueous methanolic. Twenty-five metabolites identified and quantified in the n-butanol and aqueous-methanolic extracts of ripe jamun fruit by qNMR. LC-PDA-MS and MALDI-TOF spectrometry helped in deciphering thirty-nine metabolites out of which thirteen were quantified. PMID:26197529

  14. Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean: the crab Bythograea thermydron 2 2 Abbreviations: CHH, crustacean hyperglycemic hormone; MALDI-TOF MS, matrix-assisted laser desorption\\/ionization-time of flight mass spectrometry; RACE, rapid amplification of cDNA ends; RP-HPLC, reversed phase high performance liquid chromatography; XO, X-organ; SG, sinus gland

    Microsoft Academic Search

    Jean-Yves Toullec; Joëlle Vinh; Jean-Pierre Le Caer; Bruce Shillito; Daniel Soyez

    2002-01-01

    The structure of a well-known neurohormone involved in homeostasis regulation and stress response, the crustacean hyperglycemic hormone, was investigated in the deep-sea hydrothermal vent crab Bythograea thermydron. The neuropeptide was isolated from neurohemal organs (sinus glands) and its biological activity checked using an homologous bioassay. Partial amino acid sequence was established by a combination of Edman chemistry and mass spectrometry.

  15. Unsuitability of MALDI-TOF MS to discriminate Acinetobacter baumannii clones under routine experimental conditions

    PubMed Central

    Sousa, Clara; Botelho, João; Grosso, Filipa; Silva, Liliana; Lopes, João; Peixe, Luísa

    2015-01-01

    MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) is now in the forefront for routine bacterial species identification methodologies, being its value for clonality assessment controversial. In this work we evaluated the potential of MALDI-TOF MS for assisting infection control by depicting Acinetobacter baumannii clones. Mass spectra of 58 A. baumannii clinical isolates belonging to the worldwide spread lineages (ST98, ST103, ST208, and ST218) isolated in our country, were obtained and analyzed with several chemometric tools (pseudo gel views, peakfind function, and partial least squares discriminant analysis). The clonal lineages were obtained using the “Oxford” scheme, belonging ST98, ST208, and ST218 to the international clone II and ST103 to an epidemic clonal lineage (SG5). Additionally, mass spectra of a highly diverse international collection of 38 isolates belonging to 22 sequence types (STs) were obtained for further comparisons. Pseudo gel views and direct peak pattern analysis did not allow the discrimination of A. baumannii isolates belonging to ST98, ST103, ST208, or ST218. Moreover, a partial least square discriminant analysis of the mass spectra considering two spectral ranges (2–20 kDa and 4–10 kDa) revealed a poor degree of discrimination with only 64.6 and 65.8% of correct ST assignments, respectively. Also, mass spectra of the international isolates (n = 38, 22STs) revealed a very congruent peak pattern among them as well as among the four lineages included in this work. Despite the increasing interest of MALDI-TOF MS for bacterial typing at different taxonomical levels, we demonstrated, using routine experimental conditions, the unsuitability of this methodology for A. baumannii clonal discrimination. PMID:26042113

  16. Validation of LC-TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens.

    PubMed

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic "Spice/K2" cannabinoids and cathinone "bath salt" designer drugs. The extract was applied to LC-TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC-TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149

  17. Validation of LC–TOF-MS Screening for Drugs, Metabolites, and Collateral Compounds in Forensic Toxicology Specimens

    PubMed Central

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P.; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T.; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic “Spice/K2” cannabinoids and cathinone “bath salt” designer drugs. The extract was applied to LC–TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC–TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149

  18. Identification of Gallibacterium species by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry evaluated by multilocus sequence analysis

    Microsoft Academic Search

    Merima Alispahic; Henrik Christensen; Claudia Hess; Ebrahim Razzazi-Fazeli; Magne Bisgaard; Michael Hess

    2011-01-01

    Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF MS) whole-cell fingerprinting was used for characterization of 66 reference strains of Gallibacterium. The 4 recognised Gallibacterium species and Gallibacterium genomospecies 1 yielded reproducible and unique mass spectrum profiles, which were confirmed with Bruker Biotyper reference database version 3. The reproducibility of MALDI-TOF MS results were evaluated varying the age and storage of

  19. Analysis of Oligo-?-carrageenan by Reversed Phase Ion-pair Ultra Performance Liquid Chromatography Coupled with Electrospray Ionization-Time of Flight-Mass Spectrometry

    Microsoft Academic Search

    Yang GAO; Hai-Min CHEN; Ji-Lin XU; De-Ying CHEN; Xiao-Jun YAN

    2009-01-01

    The reverse phase ion-pair ultra performance liquid chromatography coupled with electrospray ionization time of flight mass spectrometry (RPIP-UPLC-ESI-Q-TOF-MS) method was developed for the analyses and elucidation of sulfated oligosaccharides. Mass spectra were obtained by ESI-Q-TOF-MS in both positive and negative ionization modes. Oligo-?-carrageenans were separated on BEH C18 column using heptylamine (20 mM, pH 4) as the ion-pairing reagent and

  20. Determination of molecular mass distribution of silicone oils by supercritical fluid chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and their off-line combination.

    PubMed

    Chmelík, J; Planeta, J; Rehulka, P; Chmelík, J

    2001-07-01

    Silicone oil samples were characterized by supercritical fluid chromatography (SFC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI--TOF MS), and their off-line combination. SFC was used to separate samples of silicone oils on micropacked capillary columns. The fractions for the identification studies were obtained from SFC runs at defined time intervals, when the restrictor was pulled out from the chromatographic flame ionization detector (FID) and inserted into a glass vial with acetone. MALDI--TOF MS was used for the identification of individual oligomers in the fractions separated. The molecular mass distributions determined based on SFC and MALDI--TOF MS measurements were compared. From this comparison, it follows that the results are in good agreement. However, certain differences were observed: MALDI--TOF MS was capable of detecting somewhat larger oligomers than the SFC-FID, but the lower molecular mass oligomers were not present in the MALDI spectra. Differences in the region of lower molecular masses can be explained by evaporation of the more volatile low molecular mass oligomers resulting from heating of the sample during the MALDI--TOF MS measurements as a result of the absorption of the laser shot energy. The fact that no high mass discrimination effects of the MALDI--TOF MS measurements, compared with SFC, were observed is very promising for further applications of MALDI--TOF MS in characterizing synthetic polymers of moderate polydispersity. PMID:11473399

  1. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Bacterial and Yeast Identification.

    PubMed

    Westblade, Lars F; Garner, Omai B; MacDonald, Karen; Bradford, Constance; Pincus, David H; Mochon, A Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A; Burnham, Carey-Ann D; Ginocchio, Christine C

    2015-07-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification. PMID:25926486

  2. Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures

    Microsoft Academic Search

    Erin Shammel Baker; Brian H. Clowers; Fumin Li; Keqi Tang; Aleksey V. Tolmachev; David C. Prior; Mikhail E. Belov; Richard D. Smith

    2007-01-01

    The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been\\u000a illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples\\u000a have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS\\u000a by utilizing high-pressure electrodynamic ion funnels at both

  3. Typing of Nosocomial Outbreaks of Acinetobacter baumannii by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Mencacci, Antonella; Monari, Claudia; Leli, Christian; Merlini, Luca; De Carolis, Elena; Vella, Antonietta; Cacioni, Maria; Buzi, Sara; Nardelli, Emanuela; Bistoni, Francesco; Sanguinetti, Maurizio

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been evaluated for the identification of multidrug-resistant Acinetobacter baumannii nosocomial outbreaks in comparison with the repetitive sequence-based PCR DiversiLab system. The results suggest that MALDI-TOF MS can be used for real-time detection of Acinetobacter outbreaks before results from DNA-based systems are available. PMID:23175257

  4. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis

    PubMed Central

    Kusano, Miyako; Iizuka, Yumiko; Kobayashi, Makoto; Fukushima, Atsushi; Saito, Kazuki

    2013-01-01

    Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions. PMID:24957989

  5. Comparative analysis of Gram's stain, PNA-FISH and Sepsityper with MALDI-TOF MS for the identification of yeast direct from positive blood cultures.

    PubMed

    Gorton, Rebecca L; Ramnarain, P; Barker, K; Stone, N; Rattenbury, S; McHugh, T D; Kibbler, C C

    2014-10-01

    Fungaemia diagnosis could be improved by reducing the time to identification of yeast from blood cultures. This study aimed to evaluate three rapid methods for the identification of yeast direct from blood cultures; Gram's stain analysis, the AdvanDX Peptide Nucleic Acid in Situ Hybridisation Yeast Traffic Light system (PNA-FISH YTL) and Bruker Sepsityper alongside matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS). Fifty blood cultures spiked with a known single yeast strain were analysed by blinded operators experienced in each method. Identifications were compared with MALDI-TOF MS CHROMagar Candida culture and ITS rRNA sequence-based identifications. On first attempt, success rates of 96% (48/50) and 76% (36/50) were achieved using PNA-FISH YTL and Gram's stain respectively. MALDI-TOF MS demonstrated a success rate of 56% (28/50) when applying manufacturer's species log score thresholds and 76% (38/50) using in-house parameters, including lowering the species log score threshold to >1.5. In conclusion, PNA-FISH YTL demonstrated a high success rate successfully identifying yeast commonly encountered in fungaemia. Sepsityper(™) with MALDI-TOF MS was accurate but increased sensitivity is required. Due to the misidentification of commonly encountered yeast Gram's stain analysis demonstrated limited utility in this setting. PMID:24862948

  6. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    NASA Astrophysics Data System (ADS)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ?85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  7. Identification of Corynebacterium spp. isolated from bovine intramammary infections by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Gonçalves, Juliano Leonel; Tomazi, Tiago; Barreiro, Juliana Regina; Braga, Patrícia Aparecida de Campos; Ferreira, Christina Ramires; Araújo Junior, João Pessoa; Eberlin, Marcos Nogueira; dos Santos, Marcos Veiga

    2014-09-17

    Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp. PMID:25086477

  8. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.

    PubMed

    Righettoni, M; Schmid, A; Amann, A; Pratsinis, S E

    2013-09-01

    Acetone is one of the most abundant volatile compounds in the human breath and might be important for monitoring diabetic patients. Here, a portable acetone sensor consisting of flame-made, nanostructured, Si-doped WO3 sensing films was used to analyse the end tidal fraction of the breath (collected in Tedlar bags) from eight healthy volunteers after overnight fasting (morning) and after lunch (afternoon). After breath sampling, the gaseous components were also analysed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), and each person's blood glucose level was measured. The portable sensor accurately detected the presence of acetone with fast response/recovery times (<12 s) and a high signal-to-noise ratio. Statistical analysis of the relationship between the PTR-TOF-MS measurements of breath gases (e.g., acetone, isoprene, ethanol and methanol), sensor response and the blood glucose level was performed for both sampling periods. The best correlations were found after overnight fasting (morning): in particular, between blood glucose level and breath acetone (Pearson's 0.98 and Spearman's 0.93). Whereas the portable sensor response correlated best with the blood glucose (Pearson's 0.96 and Spearman's 0.81) and breath acetone (Pearson's 0.92 and Spearman's 0.69). PMID:23959908

  9. MALDI-TOF Mass Spectrometry of Naturally-Occurring Mixtures of Mono- and Di-rhamnolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed for high-throughput screening of naturally-occurring mixtures of rhamnolipids from Pseudomonas spp. Mono- and di-rhamnolipids are readily distinguished by characteristic molecular adduct i...

  10. OLIGOSACCHARIDE STRUCTURES STUDIED BY HYDROGEN-DEUTERIUM EXCHANGE (HX) AND MALDI-TOF MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen-deuterium exchange matrix-assisted laser desorption/ionization - time-of-flight mass spectrometry (HX-MALDI-TOF MS) is reported for the first time for the determination of exchangeable protons in diverse oligosaccharide and glycoconjugate structures. The method is generally analogous to th...

  11. Rapid and generic identification of influenza A and other respiratory viruses with mass spectrometry.

    PubMed

    Majchrzykiewicz-Koehorst, Joanna A; Heikens, Esther; Trip, Hein; Hulst, Albert G; de Jong, Ad L; Viveen, Marco C; Sedee, Norbert J A; van der Plas, Jan; Coenjaerts, Frank E J; Paauw, Armand

    2015-03-01

    The rapid identification of existing and emerging respiratory viruses is crucial in combating outbreaks and epidemics. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and reliable identification method in bacterial diagnostics, but has not been used in virological diagnostics. Mass spectrometry systems have been investigated for the identification of respiratory viruses. However, sample preparation methods were laborious and time-consuming. In this study, a reliable and rapid sample preparation method was developed allowing identification of cultured respiratory viruses. Tenfold serial dilutions of ten cultures influenza A strains, mixed samples of influenza A virus with human metapneumovirus or respiratory syncytial virus, and reconstituted clinical samples were treated with the developed sample preparation method. Subsequently, peptides were subjected to MALDI-TOF MS and liquid chromatography tandem mass spectrometry (LC-MS/MS). The influenza A strains were identified to the subtype level within 3h with MALDI-TOF MS and 6h with LC-MS/MS, excluding the culturing time. The sensitivity of LC-MS/MS was higher compared to MALDI-TOF MS. In addition, LC-MS/MS was able to discriminate between two viruses in mixed samples and was able to identify virus from reconstituted clinical samples. The development of an improved and rapid sample preparation method allowed generic and rapid identification of cultured respiratory viruses by mass spectrometry. PMID:25500183

  12. A case report of Mycoplasma hominis brain abscess identified by MALDI-TOF mass spectrometry.

    PubMed

    Pailhoriès, H; Rabier, V; Eveillard, M; Mahaza, C; Joly-Guillou, M-L; Chennebault, J-M; Kempf, M; Lemarié, C

    2014-12-01

    We report the case of a 43-year-old man with a Mycoplasma hominis brain abscess occurring after a cranial trauma, which was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The presence of colonies on classic blood agar plates and the use of MALDI-TOF MS, a valuable diagnostic tool that identified M. hominis due to its presence in the VITEK MS database, allowed the rapid diagnosis of this infection. PMID:25449252

  13. Radical cation formation in characterization of novelC3-symmetric disks and their precursors by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry

    Microsoft Academic Search

    Xianwen Lou; Kelly P. van den Hout; Joost L. J. van Dongen; Jef A. J. M. Vekemans; E. W. Meijer

    2006-01-01

    Four C3-symmetrical tris(dipeptide) disks and their precursors were characterized using matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI TOF MS). The C3-symmetrical disks were based on a benzene-1,3,5-triscarboxamide core extended by oligopeptides with trialkoxyanilide tails. The results indicate that MALDI TOF MS is a powerful and straightforward analytical technique for characterizing C3-symmetrical disks and their precursors. Clear (pseudo)-molecular ion peaks could

  14. Analysis of Combustion Chamber Deposits by ESI-TOF-MS and MALDI-TOF-MS

    SciTech Connect

    Reynolds, J G; Shields, S J; Roos, J W

    2001-06-14

    Combustion chamber deposits (CCDs) in internal combustion engines have been studied by various techniques to understand the relationship of performance degradation with deposit quantity and structure. XPS, XAS, NMR, and elemental analysis have offered insight into the bulk structure of C, H, N, O and metal components [1]. MS has offered some information about compound structure, but results are limited due to the insolubility and complexity of the materials. Recent advances in MS have opened new possibilities for analysis of CCDs. Here we report initial findings on the carbon structure of these deposits determined by ESI-TOF-MS and MADLI-TOF-MS.

  15. Applications of LC/ESI-MS/MS and UHPLC QqTOF MS for the determination of 148 pesticides in berries.

    PubMed

    Wang, Jian; Leung, Daniel; Chow, Willis

    2010-05-26

    Applications of liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) and ultrahigh-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC QqTOF MS) for the determination of 148 pesticides in berry fruits are presented in this study. Pesticides were extracted from berries using a procedure known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). Quantification, with an analytical range from 5 to 500 microg/kg, was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards. The method performance parameters, which included overall recovery, intermediate precision, and measurement uncertainty, were evaluated according to a designed experiment, that is, the nested design. For LC/ESI-MS/MS, 95% of the pesticides studied had recoveries between 81 and 110%, 98% of the pesticides had intermediate precision of TOF MS showed a relatively poor repeatability and large measurement uncertainty. Ninety-five percent of the pesticides analyzed by UHPLC QqTOF MS had recoveries between 81 and 110%, 86% of the pesticides had intermediate precision of TOF MS provided accurate mass measurement and was an ideal tool for post-target screening and confirmation. PMID:19928927

  16. Determination of biogenic volatile organic compound fluxes from Harvard Forest using PTR-TOF-MS (Invited)

    NASA Astrophysics Data System (ADS)

    McKinney, K. A.; Munger, J. W.; Liu, Y.

    2013-12-01

    Forest emissions of biogenic volatile organic compounds (BVOCs) are the largest source of reactive non-methane hydrocarbons to the atmosphere, yet studies suggest that the understanding of the nature and quantity of emitted compounds remains incomplete. Recent findings have indicated the presence of reactive BVOCs within and above forest canopies that have not been quantified previously. Here we report new measurements of BVOC emissions from and concentrations above Harvard Forest, a mixed forest in the Eastern U.S., from June 8 to September 30, 2012 using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). PTR-TOF-MS represents an advance over previous quadrupole-based PTR-MS measurements in that it captures a full, high-resolution (m/?m ca. 4000) mass spectrum on every scan, resulting in positive identification of molecular formulas. In addition, scans are recorded at high time resolution (5 Hz), allowing true (non-disjunct) eddy covariance fluxes to be determined for each mass-to-charge ratio. Concentration and flux measurements were made simultaneously using a high-sensitivity quadrupole PTR-MS, and results from the two techniques are compared. Measured concentrations of most species agree to within 5%. As in past seasons, isoprene is the major BVOC emitted at Harvard Forest, reaching average midday mixing ratios of ca. 4 ppbv, and its emissions are closely tied to local temperature and light levels. Diurnal and seasonal patterns in emissions of isoprene, monoterpenes, methanol, acetone, and MEK are reported and compared with past measurements at the site. In addition, eddy covariance fluxes are calculated for all mass peaks to assess emissions of previously unidentified BVOCs from Harvard Forest.

  17. HPLC-Q-TOF-MS/MS for analysis of major chemical constituents of Yinchen-Zhizi herb pair extract.

    PubMed

    Fu, Zhiwen; Ling, Yun; Li, Zhixiong; Chen, Mingcang; Sun, Zhaolin; Huang, Chenggang

    2014-04-01

    The Yinchen-Zhizi herb pair (YZHP) consists of Herba Artemisiae Scopariae (Yinchen in Chinese) and Fructus Gardeniae (Zhizi in Chinese), and is mainly used to treat icteric hepatitis, itching skin and eczema. However, the bioactive constituents responsible for the pharmacological effects of YZHP are still unclear to date. In this work, a rapid and sensitive method was established to comprehensively study the constituents in YZHP extract by HPLC-Q-TOF MS/MS. The analysis was performed on an HPLC system equipped with an Agilent poroshell 120 EC-C18 column (100?×?2.1?mm, 2.7?mm) working in a gradient elution program coupled to quadrupole-time-of-flight mass spectrometry operating in the negative ion mode. As a result, a total of 46 compounds including 17 from Herba Artemisiae Scopariae and 36 from Fructus Gardeniae were detected and tentatively identified in YZHP extract by comparing the retention time and mass spectrometry and retrieving the reference literature. More importantly, a series of constituents, such as many iridoid glycosides, were reported for the first time in this formula. The HPLC-Q-TOF MS/MS method was developed and utilized successfully to identify the major constituents in YZHP extract and would be helpful for further metabolism and pharmacology research on YZHP. PMID:24122818

  18. Differentiation of Bacillus pumilus and Bacillus safensis Using MALDI-TOF-MS

    PubMed Central

    Branquinho, Raquel; Sousa, Clara; Lopes, João; Pintado, Manuela E.; Peixe, Luísa V.; Osório, Hugo

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) despite being increasingly used as a method for microbial identification, still present limitations in which concerns the differentiation of closely related species. Bacillus pumillus and Bacillus safensis, are species of biotechnological and pharmaceutical significance, difficult to differentiate by conventional methodologies. In this study, using a well-characterized collection of B. pumillus and B. safensis isolates, we demonstrated the suitability of MALDI-TOF-MS combined with chemometrics to accurately and rapidly identify them. Moreover, characteristic species-specific ion masses were tentatively assigned, using UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases and primary literature. Delineation of B. pumilus (ions at m/z 5271 and 6122) and B. safensis (ions at m/z 5288, 5568 and 6413) species were supported by a congruent characteristic protein pattern. Moreover, using a chemometric approach, the score plot created by partial least square discriminant analysis (PLSDA) of mass spectra demonstrated the presence of two individualized clusters, each one enclosing isolates belonging to a species-specific spectral group. The generated pool of species-specific proteins comprised mostly ribosomal and SASPs proteins. Therefore, in B. pumilus the specific ion at m/z 5271 was associated with a small acid-soluble spore protein (SASP O) or with 50S protein L35, whereas in B. safensis specific ions at m/z 5288 and 5568 were associated with SASP J and P, respectively, and an ion at m/z 6413 with 50S protein L32. Thus, the resulting unique protein profile combined with chemometric analysis, proved to be valuable tools for B. pumilus and B. safensis discrimination, allowing their reliable, reproducible and rapid identification. PMID:25314655

  19. Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Buschbach, Michael A.; Prior, David C.; Tang, Keqi; Smith, Richard D.

    2007-03-15

    Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g. from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms in regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than ~1% with continuous ion sources (e.g. ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a ~10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.

  20. MALDI-TOF MS for the identification of veterinary non-C. neoformans-C. gattii Cryptococcus spp. isolates from Italy.

    PubMed

    Danesi, Patrizia; Drigo, Ilenia; Iatta, Roberta; Firacative, Carolina; Capelli, Gioia; Cafarchia, Claudia; Meyer, Wieland

    2014-08-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers an effective alternative to phenotypic and molecular methods for the rapid identification of microorganisms. Our aim in this study was to create an in-house library for a set of strains of nine uncommonly reported human and animal cryptococcal species, including Cryptococcus adeliensis, C. albidosimilis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus, C. victoriae and C. uniguttulatus, and to use this library to make timely and correct identifications using MALDI-TOF MS for use in routine laboratory diagnostics. Protein extracts obtained via the formic acid extraction method of 62 veterinary non-C. neoformans-C. gattii cryptococcal isolates were studied. The obtained mass spectra correctly grouped all 62 studied isolates according to species identification previously obtained by internal transcribe spacer sequence analysis. The in-house database was than exported and successfully uploaded to the Microflex LT (Maldi Biotyper; Bruker Daltonics) instrument at a different diagnostic laboratory in Italy. Scores >2.7 obtained from isolates reanalyzed in the latter laboratory supported the high reproducibility of the method. The possibility of creating and transferring an in-house library adds to the usefulness MALDI-TOF MS an important tool for the rapid and inexpensive identification of pathogenic and saprophytic fungi as required for differential diagnosis of human and animal mycoses. PMID:24951721

  1. An evaluation of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Staphylococcus pseudintermedius isolates from canine infections.

    PubMed

    Silva, Marcella Braga; Ferreira, Fabienne Antunes; Garcia, Luize Neli Nunes; Silva-Carvalho, Maria Cícera; Botelho, Larissa Alvarenga Batista; Figueiredo, Agnes Marie Sá; Vieira-da-Motta, Olney

    2015-03-01

    It has been proposed, based on taxonomic and molecular studies, that all canine isolates belonging to Staphylococcus intermedius group (SIG) should be renamed Staphylococcus pseudintermedius. However, isolates of SIG and other coagulase-positive staphylococci share many phenotypic characteristics, which could lead to misidentification. The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying S. pseudintermedius isolates obtained from canine infections was evaluated, using a polymerase chain reaction (PCR)-based identification as the gold standard. In addition, MALDI-TOF MS was compared with conventional biochemical tests. A central problem was the incorrect identification of S. pseudintermedius isolates as S. intermedius by either MALDI-TOF MS or biochemical identification. From the 49 S. pseudintermedius isolates identified by the molecular method, only 21 could be assigned to this species by the biochemical approach and only 12 by MALDI-TOF MS. The 6 S. aureus isolates were correctly identified by all 3 techniques. However, using biochemical tests, 9 S. pseudintermedius were mistakenly classified as S. aureus, indicating a reduced specificity relative to the MALDI-TOF MS system. Analysis with the MALDI-TOF MS platform allowed rapid and accurate identification of the 49 isolates to the S. intermedius group but the approach was very limited in identifying S. pseudintermedius isolates, as only 12 of 49 isolates were correctly identified, a sensitivity of 0.24 (95% confidence interval: 0.13-0.39). PMID:25680922

  2. Identification of serum biomarkers for lung cancer using magnetic bead-based SELDI-TOF-MS

    Microsoft Academic Search

    Qi-bin Song; Wei-guo Hu; Peng Wang; Yi Yao; Hua-zong Zeng

    2011-01-01

    Aim:To identify novel serum biomarkers for lung cancer diagnosis using magnetic bead-based surface-enhanced laser desorption\\/ionization time-of-flight mass spectrum (SELDI-TOF-MS).Methods:The protein fractions of 121 serum specimens from 30 lung cancer patients, 30 pulmonary tuberculosis patients and 33 healthy controls were enriched using WCX magnetic beads and subjected to SELDI-TOF-MS. The spectra were analyzed using Bio-marker Wizard version 3.1.0 and Biomarker Patterns

  3. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture.

    PubMed

    Verroken, A; Defourny, L; Lechgar, L; Magnette, A; Delmée, M; Glupczynski, Y

    2015-02-01

    Speeding up the turn-around time of positive blood culture identifications is essential in order to optimize the treatment of septic patients. Several sample preparation techniques have been developed allowing direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of positive blood cultures. Yet, the hands-on time restrains their routine workflow. In this study, we evaluated an approach whereby MALDI-TOF MS identification without any additional steps was carried out on short subcultured colonies from positive blood bottles with the objective of allowing results reporting on the day of positivity detection. Over a 7-month period in 2012, positive blood cultures detected by 9 am with an automated system were inoculated onto a Columbia blood agar and processed after a 5-h incubation on a MALDI-TOF MicroFlex platform (Bruker Daltonik GmbH). Single-spotted colonies were covered with 1 ?l formic acid and 1 ?l matrix solution. The results were compared to the validated identification techniques. A total of 925 positive blood culture bottles (representing 470 bacteremic episodes) were included. Concordant identification was obtained in 727 (81.1 %) of the 896 monomicrobial blood cultures, with failure being mostly observed with anaerobes and yeasts. In 17 episodes of polymicrobic bacteremia, the identification of one of the two isolates was achieved in 24/29 (82.7 %) positive cultures. Routine implementation of MALDI-TOF MS identification on young positive blood subcultures provides correct results to the clinician in more than 80 % of the bacteremic episodes and allows access to identification results on the day of blood culture positivity detection, potentially accelerating the implementation of targeted clinical treatments. PMID:25252627

  4. GyrB sequence analysis and MALDI-TOF MS as identification tools for plant pathogenic Clavibacter.

    PubMed

    Zaluga, Joanna; Heylen, Kim; Van Hoorde, Koenraad; Hoste, Bart; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2011-09-01

    The bacterial genus Clavibacter has only one species, Clavibacter michiganensis, containing five subspecies. All five are plant pathogens, among which three are recognized as quarantine pests (mentioned on the EPPO A2 list). Prevention of their introduction and epidemic outbreaks requires a reliable and accurate identification. Currently, identification of these bacteria is time consuming and often problematic, mainly because of cross-reactions with other plant-associated bacteria in immunological tests and false-negative results in PCR detection methods. Furthermore, distinguishing closely related subspecies is not straightforward. This study aimed at evaluating the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fragment of the gyrB sequence for the reliable and fast identification of the Clavibacter subspecies. Amplification and sequencing of gyrB using a single primer set had sufficient resolution and specificity to identify each subspecies based on both sequence similarities in cluster analyses and specific signatures within the sequences. All five subspecies also generated distinct and reproducible MALDI-TOF MS profiles, with unique and specific ion peaks for each subspecies, which could be used as biomarkers for identification. Results from both methods were in agreement and were able to distinguish the five Clavibacter subspecies from each other and from representatives of closely related Rathayibacter, Leifsonia or Curtobacterium species. Our study suggests that proteomic analysis using MALDI-TOF MS and gyrB sequence are powerful diagnostic tools for the accurate identification of Clavibacter plant pathogens. PMID:21802235

  5. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis.

    PubMed

    Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry

    2013-07-01

    The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M?+?Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+?) / [M?+?H](+) parents. [M?+?Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+?) / [M?+?H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M?+?Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0?mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. PMID:23832943

  6. Quantitation of metal isotope ratios by laser desorption time-of-flight mass spectrometry.

    PubMed

    Koumenis, I L; Vestal, M L; Yergey, A L; Abrams, S; Deming, S N; Hutchens, T W

    1995-12-15

    Laser desorption time-of-flight mass spectrometry (LD/TOF-MS) is evaluated for the determination of stable metal isotope ratios. The isotope ratios of five metal ions (Cu, Ca, Mg, Fe, Zn) in atomic absorption standard solutions and two metal ions (Ca, Mg) in human serum samples are determined. With an existing LD/TOF-MS instrument we show that the technique can overcome the difficulties of the most commonly used methods for measuring metal isotope ratios: (1) all metals are ionizable without surface treatment, thus overcoming the major drawback of thermal ionization mass spectrometry (TIMS); (2) there is no matrix involved to interfere with the metal ion detection, thus overcoming the major disadvantage of inductively coupled plasma mass spectrometry (ICPMS); (3) there is no interference from hydride ions, a major disadvantage of fast atom bombardment secondary ionization mass spectrometry; (4) a mixture of metals can be detected simultaneously using a single laser wavelength, overcoming the major disadvantage of resonance ionization mass spectrometry; (5) accuracy and precision comparable to ICPMS can be achieved with the current instrumentation; (6) precision comparable to TIMS is feasible; and most importantly (7) high precision can be achieved on very small quantities of material because the LD/TOF-MS instrument permits all masses to be monitored simultaneously and very small differences in isotope ratio can be detected. PMID:8633789

  7. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF

    NASA Astrophysics Data System (ADS)

    Jesch, Christian; Dickel, Timo; Plaß, Wolfgang R.; Short, Devin; Ayet San Andres, Samuel; Dilling, Jens; Geissel, Hans; Greiner, Florian; Lang, Johannes; Leach, Kyle G.; Lippert, Wayne; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-05-01

    At TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) will extend TITAN's capabilities and facilitate mass measurements and in-trap decay spectroscopy of exotic nuclei that so far have not been possible due to strong isobaric contamination. This MR-TOF-MS will also enable mass measurements of very short-lived nuclides (half-life > 1 ms) that are produced in very low quantities (a few detected ions overall). In order to allow the installation of an MR-TOF-MS in the restricted space on the platform, on which the TITAN facility is located, novel mass spectrometric methods have been developed. Transport, cooling and distribution of the ions inside the device is done using a buffer gas-filled RFQ-based ion beam switchyard. Mass selection is achieved using a dynamic retrapping technique after time-of-flight analysis in an electrostatic isochronous reflector system. Only due to the combination of these novel methods the realization of an MR-TOF-MS based isobar separator at TITAN has become possible. The device has been built, commissioned off-line and is currently under installation at TITAN.

  8. Discrepancy in MALDI-TOF MS identification of uncommon Gram-negative bacteria from lower respiratory secretions in patients with cystic fibrosis

    PubMed Central

    AbdulWahab, Atqah; Taj-Aldeen, Saad J; Ibrahim, Emad Bashir; Talaq, Eman; Abu-Madi, Marawan; Fotedar, Rashmi

    2015-01-01

    Introduction Early identification of microbial organisms from respiratory secretions of patients with cystic fibrosis (CF) is important to guide therapeutic decisions. The objective was to compare the accuracy of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) relative to the conventional phenotypic method in identifying common bacterial isolates, including nonfermenting Gram-negative bacteria, in a cohort of patients with CF. Methods A total of 123 isolates from 50 patients with CF representing 14 bacterial species from respiratory specimens were identified using MALDI-TOF MS in parallel with conventional phenotypic methods. Discrepancies were confirmed by 16S ribosomal RNA (rRNA) gene sequencing in five Gram-negative isolates. Results The MALDI-TOF MS managed to identify 122/123 (99.2%) bacterial isolates to the genus level and 118/123 (95.9%) were identified to the species level. The MALDI-TOF MS results were 100% consistent to the species level with conventional phenotypic identification for isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, Streptococcus pyogenes, Achromobacter xylosoxidans, Stenotrophomonas maltophilia, and other uncommon organisms such as Chryseobacterium gleum and Enterobacter cloacae. The 5/123 (4.6%) isolates misidentified were all Gram-negative bacteria. The isolation of E. cloacae and Haemophilus paraphrohaemolyticus may extend the potentially pathogenic list of organisms isolated from patients with CF. Conclusion Although the technique provides an early identification and antimicrobial therapy approach in patients with CF, limitation in the diagnosis of uncommon Gram-negative bacteria may exist. PMID:25995646

  9. Detection of an Extended Human Volatome with Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry

    PubMed Central

    Phillips, Michael; Cataneo, Renee N.; Chaturvedi, Anirudh; Kaplan, Peter D.; Libardoni, Mark; Mundada, Mayur; Patel, Urvish; Zhang, Xiang

    2013-01-01

    Background Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOF MS) has been proposed as a powerful new tool for multidimensional analysis of complex chemical mixtures. We investigated GCxGC-TOF MS as a new method for identifying volatile organic compounds (VOCs) in normal human breath. Methods Samples of alveolar breath VOCs and ambient room air VOC were collected with a breath collection apparatus (BCA) onto separate sorbent traps from 34 normal healthy volunteers (mean age = 40 yr, SD = 17 yr, male/female = 19/15). VOCs were separated on two serial capillary columns separated by a cryogenic modulator, and detected with TOF MS. The first and second dimension columns were non-polar and polar respectively. Results BCA collection combined with GC×GC-TOF MS analysis identified approximately 2000 different VOCs in samples of human breath, many of which have not been previously reported. The 50 VOCs with the highest alveolar gradients (abundance in breath minus abundance in ambient room air) mostly comprised benzene derivatives, acetone, methylated derivatives of alkanes, and isoprene. Conclusions Collection and analysis of breath VOCs with the BCA-GC×GC-TOF MS system extended the size of the detectable human volatile metabolome, the volatome, by an order of magnitude compared to previous reports employing one-dimensional GC-MS. The size of the human volatome has been under-estimated in the past due to coelution of VOCs in one-dimensional GC analytical systems. PMID:24086492

  10. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products.

    PubMed

    S Haglund, Peter; Löfstrand, Karin; Siek, Kevin; Asplund, Lillemor

    2013-01-01

    Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied. PMID:24349937

  11. Characterization of the cultivable microbial community in a spinach-processing plant using MALDI-TOF MS.

    PubMed

    Hausdorf, Lena; Mundt, Kerstin; Winzer, Michaela; Cordes, Christiana; Fröhling, Antje; Schlüter, Oliver; Klocke, Michael

    2013-06-01

    A better and regular control of the production chain of fresh fruits and vegetables is necessary, because a contamination of the product by human- and phyto-pathogenic microorganisms may result in high losses during storage and poses a threat to human health. Therefore, detailed knowledge about the occurrence and the diversity of microorganisms within single processing steps is required to allow target-oriented produce safety control. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was successfully used to identify bacterial colonies. Bacteria can be identified with high accuracy by comparing them with generated spectra of a reference database. In this study, spinach and wash water samples were taken of the complete process line of a spinach-washing plant. Bacteria in the samples were grown on plate-count, Arcobacter selective, marine and blood agar. In total, 451 colonies were evaluated by MALDI-TOF MS, 16S rRNA gene sequence and phylogenetic analysis. 50% of the detected species belonged to the class of Gammaproteobacteria. Firmicutes were present with 22%. Mostly, the detected species showed 16S rRNA gene sequence dissimilarities larger than 1% to known reference species and, hence, could not be assigned to a distinct species. However, many isolated species belonged to genera which contain pathogenic or opportunistic pathogenic bacteria. In addition, the bacterial diversity on the spinach surface increased after the first washing step indicating a process-borne contamination of the spinach. PMID:23541209

  12. On-target derivatization of keratan sulfate oligosaccharides with pyrenebutyric acid hydrazide for MALDI-TOF/TOF-MS.

    PubMed

    Zhang, Yuntao; Iwamoto, Takeo; Radke, Gary; Kariya, Yutaka; Suzuki, Kiyoshi; Conrad, Abigail H; Tomich, John M; Conrad, Gary W

    2008-06-01

    In the present work, a rapid and novel method of on-target plate derivatization of keratan sulfate (KS) oligosaccharides for subsequent analysis by matrix-assisted laser desorption and ionization (MALDI) mass spectrometry is described. MALDI-(time-of-flight)-TOF spectra of labeled KS oligosaccharides revealed that significantly improved ionization can be accomplished through derivatization with pyrenebutyric acid hydrazide (PBH), and the most abundant peak in each spectrum corresponds to the singly charged molecular ion [M - H]- or [M + (n - 1)Na - nH]-, where n = the number of sulfates (n = 1, 2, 3...). The high-energy collision-induced dissociation (heCID) spectra of labeled KS oligosaccharides displayed fragments of compounds similar to those observed with laser-induced dissociation (LID) analysis, suggesting that both heCID and LID fragmentations can be used to analyze KS oligosaccharides. Moreover, fragmentation analysis of all labeled KS oligosaccharides was performed by MALDI-TOF/TOF-MS. With LID mode, sodium adducts showed fragmentation of glycosidic linkages with mainly Y/B/C ions, as well as various cross-ring cleavages providing exact information for the positions of sulfate groups along the KS oligosaccharide chains. This one-step on-target derivatization method makes MALDI-TOF/TOF-MS identification of KS fast, simple and highly throughput for trace amounts of biological samples. PMID:18205237

  13. Peptidomic analysis of Chinese shrimp ( Fenneropenaeus chinensis) hemolymph by magnetic bead-based MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Wang, Baojie; Liu, Mei; Jiang, Keyong; Zhang, Guofan; Wang, Lei

    2013-03-01

    Peptides in shrimp hemolymph play an important role in the innate immune response. Analysis of hemolymph will help to detect and identify potential novel biomarkers of microbial infection. We used magnetic bead-based purification (ClinProt system) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to characterize shrimp hemolymph peptides. Shrimp serum and plasma were used as the source of samples for comparative analysis, and it was found that serum was more suitable for shrimp hemolymph peptidomic analysis. To screen potential specific biomarkers in serum of immune-challenged shrimps, we applied magnetic bead-based MALDI-TOF MS to serum samples from 10 immune-challenged and 10 healthy shrimps. The spectra were analyzed using FlexAnalysis 3.0 and ClinProTools 2.1 software. Thirteen peptide peaks significantly different between the two groups were selected as candidate biomarkers of lipopolysaccharide (LPS)-infection. The diagnostic model established by genetic algorithm using five of these peaks was able to discriminate LPS-challenged shrimps from healthy control shrimps with a sensitivity of 90% and a specificity of 100%. Our approach in MALDITOF MS-based peptidomics is a powerful tool for screening bioactive peptides or biomarkers derived from hemolymph, and will help to enable a better understanding of the innate immune response of shrimps.

  14. Determination of Diethylpyrocarbonate-Modified Amino Acid Residues in ? 1Acid Glycoprotein by High-Performance Liquid Chromatography Electrospray Ionization–Mass Spectrometry and Matrix-Assisted Laser Desorption\\/Ionization Time-of-Flight–Mass Spectrometry

    Microsoft Academic Search

    Jeffrey L. Dage; Haijun Sun; H. Brian Halsall

    1998-01-01

    The chemical modification reagent diethylpyrocarbonate (DEPC) was used to modify ?1-acid glycoprotein (orosomucoid, OMD) under various conditions. The extents of DEPC modification of the histidine and tyrosine residues were followed by UV spectrophotometry. The resulting modified OMD was analyzed using enzyme digestion, reverse-phase HPLC, electrospray ionization–mass spectrometry (ESI\\/MS), and matrix-assisted laser desorption ionization time-of-flight–mass spectrometry (MALDI-TOF\\/MS). The inherent problem of

  15. Application of capillary electrophoresis, high-performance liquid chromatography, on-line electrospray mass spectrometry and matrix-assisted laser desorption ionization-time of flight mass spectrometry to the characterization of single-chain plasminogen activator

    Microsoft Academic Search

    A. Apffel; J. Chakel; S. Udiavar; W. S. Hancock; C. Souders; E. Pungor

    1995-01-01

    The analysis of recombinant Desmodus salivary plasminogen activator (DSPA?1), a heterogeneous glycoprotein, is demonstrated through the use of high-performance liquid chromatography (HPLC), high-performance capillary electrophoresis (HPCE), liquid chromatography-electrospray mass spectrometry (LC-ES-MS), and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The protein is analyzed at three specific levels of detail: the intact protein, proteolytic digests of the protein, and

  16. Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry.

    PubMed

    Abreu, Lucas M; Moreira, Gláucia M; Ferreira, Douglas; Rodrigues-Filho, Edson; Pfenning, Ludwig H

    2014-12-01

    We assessed the species diversity among 45 strains of Clonostachys from different substrates and localities in Brazil using molecular phylogenetics, and compared the results with the phenotypic classification of strains obtained from matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Phylogenetic analyses were based on beta tubulin (Tub), ITS-LSU rDNA, and a combined Tub-ITS DNA dataset. MALDI-TOF MS analyses were performed using intact conidia and conidiophores of strains cultivated on oatmeal agar and 4% malt extract agar. Six known species were identified: Clonostachys byssicola, Clonostachys candelabrum, Clonostachys pseudochroleuca, Clonostachys rhizophaga, Clonostachys rogersoniana, and Clonostachys rosea. Two clades and two singleton lineages did not correspond to known species represented in the reference DNA dataset and were identified as Clonostachys sp. 1-4. Multivariate cluster analyses of MALDI-TOF MS data classified the strains into eight clusters and three singletons, corresponding to the ten identified species plus one additional cluster containing two strains of C. rogersoniana that split from the other co-specific strains. The consistent results of MALDI-TOF MS supported the identification of strains assigned to C. byssicola and C. pseudochroleuca, which did not form well supported clades in all phylogenetic analyses, but formed distinct clusters in the MALDI-TOF dendrograms. PMID:25457948

  17. Online CE-MALDI-TOF MS using a rotating ball interface.

    PubMed

    Musyimi, Harrison K; Narcisse, Damien A; Zhang, Xia; Stryjewski, Wieslaw; Soper, Steven A; Murray, Kermit K

    2004-10-01

    We report on the construction and performance of a rotating ball interface for online coupling of capillary electrophoresis (CE) to matrix-assisted laser desorption ionization (MALDI) mass spectrometry with a time-of-flight (TOF) mass analyzer. The interface is based on a rotating stainless steel ball that transports samples from atmospheric pressure to the high vacuum of the mass spectrometer for desorption and ionization. The sample is deposited directly from a 50-microm-i.d. separation capillary onto the 19-mm ball that is rotating at 0.03 to 0.3 rpm. The sample is mixed online with matrix flowing from a separate 50-microm-i.d. capillary. The sample deposit dries before it is rotated past a polymer gasket and into the laser ionization region. Cleaning of the interface is accomplished using solvent-saturated felt, which cleans the ball surface after it rotates out of the ionization chamber. On-line CE-MALDI is demonstrated, and the performance is evaluated with the analysis of a mixture of three peptides: [Lsy8] vasopressin, substance P, and neurotensin. The rotating ball interface to MALDI-TOF MS demonstrated mass detection limit in the high femtomole range. The interface has negligible memory effect and shows no significant electrophoretic peak broadening when operated under optimized conditions. PMID:15456323

  18. Applications of LC/ESI-MS/MS and UHPLC QqTOF MS for the determination of 148 pesticides in fruits and vegetables.

    PubMed

    Wang, Jian; Chow, Willis; Leung, Daniel

    2010-02-01

    This paper presented the applications of liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) and ultra-high-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC QqTOF MS) for the determination of 148 pesticides in fruits and vegetables. Pesticides were extracted from fruits and vegetables using a buffered QuEChERS method. Quantification was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analog as internal standards in an analytical range from 5 to 500 microg/kg. The method performance parameters including overall recovery, intermediate precision, and measurement uncertainty were evaluated according to a statistically designed experiment, i.e., a nested design. For LC/ESI-MS/MS, 95% of the pesticides had recoveries between 81% and 110%; 97% had an intermediate precision < or = 20%; and 95% (in fruits) or 93% (in vegetables) showed measurement uncertainty < or = 40%. Compared to LC/ESI-MS/MS, UHPLC QqTOF MS showed a relatively poor repeatability and large measurement uncertainty. About 93% (in fruits) or 94% (in vegetables) of the pesticides had recoveries between 81% and 110%; 86% (in fruits) or 90% (in vegetables) had an intermediate precision < or = 20%; and 79% (in fruits) or 88% (in vegetables) showed measurement uncertainty < or = 40%. LC/ESI-MS/MS proved to be the first choice for quantification or pre-target analysis due to its superior sensitivity and good repeatability. UHPLC QqTOF MS provided accurate mass measurement and isotopic patterns, and was an ideal tool for post-target screening and confirmation. PMID:20063156

  19. Rapid Identification of Protein Biomarkers of E. coli O157:H7 by MALDI-TOF-TOF Mass Spectrometry and Top-Down Proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified six protein biomarkers from two strains of E. coli O157:H7 and one non-pathogenic E. coli strain by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight tandem mass spectrometry (TOF/TOF-MS/MS) and top-down proteomics. Mature, intact proteins were ext...

  20. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit

    PubMed Central

    West, Brett J.; Jensen, C. Jarakae

    2013-01-01

    Cornus mas L. is indigenous to Europe and parts of Asia. Although Cornus is widely considered to be an iridoid rich genera, only two iridoids have been previously found in this plant. The lack of information on taxonomically and biologically active iridoids prompted us to develop and optimize an analytical method for characterization of additional phytochemicals in C. mas fruit. An ultra performance liquid chromatography (UPLC) coupled with photodiode array spectrophotometry (PDA) and electrospray time-of-flight mass spectrometry (ESI-TOF-MS) was employed and mass parameters were optimized. Identification was made by elucidating the mass spectral data and further confirmed by comparing retention times and UV spectra of target peaks with those of reference compounds. Primary DNA damage and antigenotoxicity tests in E. coli PQ37 were used to screen the iridoids for biological activity. As a result, ten phytochemicals were identified, including iridoids loganic acid, loganin, sweroside, and cornuside. Nine of these were reported for the first time from C. mas fruit. The iridoids did not induce SOS repair of DNA, indicating a lack of genotoxic activity in E. coli PQ37. However, loganin, sweroside, and cornuside did reduce the amount of DNA damage caused by 4-nitroquinoline 1-oxide, suggesting potential antigenotoxic activity. PMID:24228188

  1. Comparison of PCR/Electron spray Ionization-Time-of-Flight-Mass Spectrometry versus Traditional Clinical Microbiology for active surveillance of organisms contaminating high-use surfaces in a burn intensive care unit, an orthopedic ward and healthcare workers

    PubMed Central

    2012-01-01

    Background Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools. Methods Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital. High-use environmental surfaces were assessed in 9 burn ICU and 10 orthopedic patient rooms. Clinical cultures during the study period were reviewed for pathogen comparison with investigational molecular diagnostic methods. Results From 158 samples, 142 organisms were identified by TCM and 718 by PCR/ESI-TOF-MS. The molecular diagnostic method detected more organisms (4.5?±?2.1 vs. 0.9?±?0.8, p?TOF-MS. Gram-negative organisms were less commonly identified than gram-positive by both methods; especially by TCM. Among all detected bacterial species, similar percentages were typical nosocomial pathogens (18-19%) for TCM vs. PCR/ESI-TOF-MS. PCR/ESI-TOF-MS also detected mecA in 112 samples, vanA in 13, and KPC-3 in 2. MecA was associated (p?TOF-MS detected more organisms, especially gram-negatives, compared to TCM, but the current assay format is limited by the number of antibiotic resistance determinants it covers. Further large-scale assessments of PCR/ESI-TOF-MS for hospital surveillance are warranted. PMID:23050585

  2. Identification of Rare Pathogenic Bacteria in a Clinical Microbiology Laboratory: Impact of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard

    2013-01-01

    During the past 5 years, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories. PMID:23637301

  3. Simultaneous determination of ferulic acid and phthalides of Angelica sinensis based on UPLC-Q-TOF/MS.

    PubMed

    Wei, Wen-Long; Huang, Lin-Fang

    2015-01-01

    The radix of Angelica sinensis (AS) is one of the most commonly used as a herbal medicine. To investigate the geoherbalism and quality evaluation of AS, an ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF/MS) method was established to analyze and identify ferulic acid and phthalides in AS. The results showed that among samples collected in four regions, the relative contents of ferulic acid and phthalides were highest in samples collected in Gansu, and the samples from the four different regions were apparently classified into four groups. Meanwhile, the relative content in non-fumigated root was higher than after sulfur-fumigation and the sulfur-fumigated and non-fumigated samples were obviously divided into two groups by PCA. The paper establishes a systematic and objective evaluation system to provide a scientific basis for evaluating the quality of AS. PMID:25781070

  4. HPLC-Q-TOF-MS identification of antioxidant and antihypertensive peptides recovered from cherry (Prunus cerasus L.) subproducts.

    PubMed

    García, María Concepción; Endermann, Jochan; González-García, Estefanía; Marina, María Luisa

    2015-02-11

    The processing of fruits, such as cherries, is characterized by generating a lot of waste material such as fruit stones, skins, etc. To contribute to environmental sustainability, it is necessary to recover these residues. Cherry stones contain seeds with a significant amount of proteins that are underused and undervalued. The aim of this work was to extract cherry seed proteins, to evaluate the presence of bioactive peptides, and to identify them by mass spectrometry. The digestion of cherry seed proteins was optimized, and three different enzymes were employed: Alcalase, Thermolysin, and Flavourzyme. Peptide extracts obtained by the digestion of the cherry seed protein isolate with Alcalase and Thermolysin yielded the highest antioxidant and antihypertensive capacities. Ultrafiltration of hydrolysates allowed obtaining fractions with high antioxidant and antihypertensive capabilities. HPLC-Q-TOF-MS together with bioinformatics tools enabled one to identify peptides in these fractions. PMID:25599260

  5. Whole-cell matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry for rapid identification of bacteria cultured in liquid media

    Microsoft Academic Search

    Na Zhou; Na Wang; Bin Xu; Jie Wang; JunJian Fang; FangTing Dong; Kun He; XiaoHong Yang

    2011-01-01

    Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for many years to\\u000a rapidly identify whole bacteria. However, no consistent methodology exists for the rapid identification of bacteria cultured\\u000a in liquid media. Thus, in this study we explored the use of MALDI-TOF MS analysis for rapid identification of cells cultured\\u000a in liquid media. We determined that 2,5-dihydroxybenzoic acid

  6. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS.

    PubMed

    Ziegler, Dominik; Pothier, Joël F; Ardley, Julie; Fossou, Romain Kouakou; Pflüger, Valentin; de Meyer, Sofie; Vogel, Guido; Tonolla, Mauro; Howieson, John; Reeve, Wayne; Perret, Xavier

    2015-07-01

    Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS. PMID:25776061

  7. Chemical profiling of Wu-tou decoction by UPLC-Q-TOF-MS.

    PubMed

    Qi, Yao; Li, Shizhe; Pi, Zifeng; Song, Fengrui; Lin, Na; Liu, Shu; Liu, Zhiqiang

    2014-01-01

    Wu-tou decoction (WTD), a traditional Chinese medicine (TCM) formula, is composed of Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata, and it has been used for more than a thousand years to treat rheumatic arthritis, rheumatoid arthritis and pain of joints, while the active constitutions of WTD are unclear. In this research, an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method in both positive and negative ion mode was established to investigate the major constitutions in WTD. A Waters ACQUITY UPLC BEH C18 column was used to separate the aqueous extract of WTD. Acetonitrile and 0.1% aqueous formic acid (v/v) were used as the mobile phase. 74 components including alkaloids, monoterpene glycosides, triterpene saponins, flavones and flavone glycosides were identified or tentatively characterized in WTD based on the accurate mass within 15 ppm error and tandem MS behavior. All the constitutions were also detected in the corresponding individual herbs. These results will provide a basis for further study in vivo of WTD and the information of potential new drug structure for treating rheumatic arthritis and rheumatoid arthritis. PMID:24274266

  8. Qualitative and quantitative analyses of alkaloids in Uncaria species by UPLC-ESI-Q-TOF/MS.

    PubMed

    Wang, Hai-Bo; Qi, Wen; Zhang, Lin; Yuan, Dan

    2014-01-01

    An ultra performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF/MS) method has been optimized and established for the rapid analysis of the alkaloids in 22 samples originating from five Uncaria (U.) species. The accurate mass measurement of all the protonated molecules and subsequent fragment ions offers higher quality structural information for the interpretation of fragmentation pathways of the various groups of alkaloids. A total of 19 oxindole alkaloids, 16 indole alkaloids and 1 flavone were identified by co-chromatography of the sample extract with authentic standards, comparison of the retention time, characteristic molecular ions and fragment ions, or were tentatively identified by MS/MS determination. Moreover, the method was validated for the simultaneous quantification of the 24 components within 10.5 min. The potential chemical markers were identified for classification of the U. species samples by principal component analysis (PCA) and orthogonal partial least squared discriminant analysis (OPLS-DA). The results demonstrate the similarity and differences in alkaloids among the five U. species, which is helpful for the standardization and quality control of the medical materials of the U. Ramulus Cum Unics (URCU). Furthermore, with multivariate statistical analysis, the determined markers are more definite and useful for chemotaxonomy of the U. genus. PMID:25366313

  9. Characterization of Microorganisms by MALDI Mass Spectrometry

    SciTech Connect

    Petersen, Catherine E.; Valentine, Nancy B.; Wahl, Karen L.

    2008-10-02

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for characterization and analysis of microorganisms, specifically bacteria, is described here as a rapid screening tool. The objective of this technique is not comprehensive protein analysis of a microorganism but rather a rapid screening of the organism and the accessible protein pattern for characterization and distinction. This method is based on the ionization of the readily accessible and easily ionizable portion of the protein profile of an organism that is often characteristic of different bacterial species. The utility of this screening approach is yet to reach its full potential but could be applied to food safety, disease outbreak monitoring in hospitals, culture stock integrity and verification, microbial forensics or homeland security applications.

  10. Microbial typing by matrix-assisted laser desorption ionization-time of flight mass spectrometry: do we need guidance for data interpretation?

    PubMed

    Spinali, Sébastien; van Belkum, Alex; Goering, Richard V; Girard, Victoria; Welker, Martin; Van Nuenen, Marc; Pincus, David H; Arsac, Maud; Durand, Géraldine

    2015-03-01

    The integration of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology has revolutionized species identification of bacteria, yeasts, and molds. However, beyond straightforward identification, the method has also been suggested to have the potential for subspecies-level or even type-level epidemiological analyses. This minireview explores MALDI-TOF MS-based typing, which has already been performed on many clinically relevant species. We discuss the limits of the method's resolution and we suggest interpretative criteria allowing valid comparison of strain-specific data. We conclude that guidelines for MALDI-TOF MS-based typing can be developed along the same lines as those used for the interpretation of data from pulsed-field gel electrophoresis (PFGE). PMID:25056329

  11. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  12. Ion Mobility SpectrometryMass Spectrometry Performance Using Electrodynamic Ion Funnels and Elevated Drift Gas Pressures

    SciTech Connect

    Baker, Erin Shammel; Clowers, Brian H.; Li, Fumin; Tang, Keqi; Tolmachev, Aleksey V.; Prior, David C.; Belov, Mikhail E.; Smith, Richard D.

    2007-06-28

    The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared to a previous design. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear (exit) ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, allowing the instrument to have an effective drift region of 98 cm. Two differentially pumped quadrupole regions were used to couple the IMS and TOF MS to focus and minimize the ion transient time between the stages. The resolution of the instrument was evaluated at pressures ranging from 4 to12 Torr and ion mobility drift voltages of 16 V/cm (4 Torr) to 43 V/cm (12 Torr). An increase in resolution from 55 to 80 was observed from 4 to 12 Torr nitrogen drift gas with no loss in sensitivity. Given the increased usage of ion funnels prior to ion mobility separations, additional attention was directed towards the influence of drift gas on the observed ion populations trapped and transmitted using an electrodynamic ion funnel. The choice of drift gas was shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.

  13. Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS.

    PubMed

    Hammarström, Björn; Nilson, Bo; Laurell, Thomas; Nilsson, Johan; Ekström, Simon

    2014-11-01

    Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently changing the clinical routine for identification of microbial pathogens. One important application is the rapid identification of bacteria for the diagnosis of bloodstream infections (BSI). A novel approach based on acoustic trapping and an integrated selective enrichment target (ISET) microchip that improves the sample preparation step for this type of analysis is presented. The method is evaluated on clinically relevant samples in the form of Escherichia coli infected blood cultures. It is shown that noncontact acoustic trapping enables capture, enrichment, and washing of bacteria directly from the complex background of crude blood cultures. The technology replaces centrifugation-based separation with a faster and highly automated sample preparation method that minimizes manual handling of hazardous pathogens. The presented method includes a solid phase extraction step that was optimized for enrichment of the bacterial proteins and peptides that are used for bacterial identification. The acoustic trapping-based assay provided correct identification in 12 out 12 cases of E. coli positive blood cultures with an average score of 2.19 ± 0.09 compared to 1.98 ± 0.08 when using the standard assay. This new technology opens up the possibility to automate and speed up an important and widely used diagnostic assay for bloodstream infections. PMID:25269087

  14. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS

    PubMed Central

    Dong, Xiaoli; Cheng, Jinsheng; Li, Jinghong; Wang, Yinsheng

    2010-01-01

    Graphene was utilized for the first time as matrix for the analysis of low-molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with conventional matrix, graphene exhibited high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allowed for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as matrix avoided the fragmentation of analytes and provided good reproducibility and high salt tolerance, underscoring the potential application of graphene as matrix for MALDI-MS analysis of practical samples in complex sample matrices. We also demonstrated that the use of graphene as adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low-molecular weight compounds in areas such as metabolism research and natural products characterization. PMID:20565059

  15. Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization\\/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry

    Microsoft Academic Search

    Gabor Balizs; Christoph Weise; Christel Rozycki; Tobias Opialla; Stefanie Sawada; Jutta Zagon; Alfonso Lampen

    2011-01-01

    A method has been developed for determining the origin of meat and bone meal (MBM) by detecting species-specific osteocalcin (OC) using matrix-assisted laser desorption ionization\\/time-of-flight (MALDI\\/TOF) and high-resolution hybrid mass spectrometry (HR-Q\\/TOF MS). The analysis is based on the detection of typical species-specific OC and its tryptic peptide fragments which differ in mass due to differences in the amino-acid sequences

  16. Detection of biomarkers of pathogenic Naegleria fowleri through mass spectrometry and proteomics.

    PubMed

    Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R

    2015-01-01

    Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. PMID:25231600

  17. Identification of flea species using MALDI-TOF/MS.

    PubMed

    Yssouf, Amina; Socolovschi, Cristina; Leulmi, Hamza; Kernif, Tahar; Bitam, Idir; Audoly, Gilles; Almeras, Lionel; Raoult, Didier; Parola, Philippe

    2014-05-01

    In the present study, a molecular proteomics (MALDI-TOF/MS) approach was used as a tool for identifying flea vectors. We measured the MS spectra from 38 flea specimens of 5 species including Ctenocephalides felis, Ctenocephalides canis, Archaeopsylla erinacei, Xenopsylla cheopis and Stenoponia tripectinata. A blind test performed with 24 specimens from species included in a library spectral database confirmed that MALDI-TOF/MS is an effective tool for discriminating flea species. Although fresh and 70% ethanol-conserved samples subjected to MALDI-TOF/MS in blind tests were correctly classified, only MS spectra of quality from fresh specimens were sufficient for accurate and significant identification. A cluster analysis highlighted that the MALDI Biotyper can be used for studying the phylogeny of fleas. PMID:24878069

  18. Potential Pitfalls in MALDI-TOF MS Analysis of Abiotically Synthesized RNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Burcar, Bradley T.; Cassidy, Lauren M.; Moriarty, Elizabeth M.; Joshi, Prakash C.; Coari, Kristin M.; McGown, Linda B.

    2013-06-01

    Demonstration of the abiotic polymerization of ribonucleotides under conditions consistent with conditions that may have existed on the prebiotic Earth is an important goal in "RNA world" research. Recent reports of abiotic RNA polymerization with and without catalysis rely on techniques such as HPLC, gel electrophoresis, and MALDI-TOF MS to analyze the reaction products. It is essential to understand the limitations of these techniques in order to accurately interpret the results of these analyses. In particular, techniques that rely on mass for peak identification may not be able to distinguish between a single, linear RNA oligomer and stable aggregates of smaller linear and/or cyclic RNA molecules. In the case of MALDI-TOF MS, additional complications may arise from formation of salt adducts and MALDI matrix complexes. This is especially true for abiotic RNA polymerization reactions because the concentration of longer RNA chains can be quite low and RNA, as a polyelectrolyte, is highly susceptible to adduct formation and aggregation. Here we focus on MALDI-TOF MS analysis of abiotic polymerization products of imidazole-activated AMP in the presence and absence of montmorillonite clay as a catalyst. A low molecular weight oligonucleotide standard designed for use in MALDI-TOF MS and a 3'-5' polyadenosine monophosphate reference standard were also run for comparison and calibration. Clay-catalyzed reaction products of activated GMP and UMP were also examined. The results illustrate the ambiguities associated with assignment of m/z values in MALDI mass spectra and the need for accurate calibration of mass spectra and careful sample preparation to minimize the formation of adducts and other complications arising from the MALDI process.

  19. Nano liquid chromatography with hybrid quadrupole time-of-flight mass spectrometry for the determination of yessotoxin in marine phytoplankton

    Microsoft Academic Search

    Isabel Ruppén Cañás; Brett Hamilton; Mónica Fernández Amandi; Ambrose Furey; Kevin J. James

    2004-01-01

    Studies of yessotoxin involving confirmation of fragmentation processes using a high-resolution orthogonal hybrid quadrupole time-of-flight (QqTOF) mass spectrometer and nanoLC hybrid quadrupole TOF MS have been undertaken. The fragmentation of YTX was studied in negative mode using nano electrospray (nanoESI) QqTOF mass spectrometry. Three major molecule-related ions were observed, [M ? 2Na + H]?, [M ? Na]? and [M ?

  20. Characterization of Cryptosporidium parvum by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    Microsoft Academic Search

    MATTHEW L. MAGNUSON; JAMES H. OWENS; CATHERINE A. KELTY

    2000-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns for C. parvum were distinguishable from those obtained for Cryptosporidium muris. One

  1. Toward prediction: using chemometrics for the optimization of sample preparation in MALDI-TOF MS of synthetic polymers.

    PubMed

    Brandt, Heike; Ehmann, Thomas; Otto, Matthias

    2010-10-01

    In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a powerful tool for the study of synthetic polymers although its mechanism is still not understood in detail. Sample preparation plays the key role in obtaining reliable MALDI mass spectra, in particular, the proper choice of matrix, cationization reagent, and solvent. There is still no general sample preparation protocol for MALDI analysis of synthetic polymers. For known synthetic polymers, such as polystyrenes and other frequently investigated polymers, application tables in review articles might be a guide for selecting a MALDI matrix, cationization reagent, and solvent. For unknown polymers (polymers which were not analyzed by MALDI-TOF MS before but whose structures are in part known from the manufacturing process and from NMR analysis as well), the selection of matrix and solvent is based upon the polarity-similarity principle. Chemometric methods provide a useful tool for the investigation of sample preparation because huge data sets can be evaluated in short time, that is, for extracting relevant information and for classification of samples, as well. Furthermore, chemometrics provide a suitable way for the selection of a proper matrix, cationization reagent, and solvent. In this paper, a prediction model is presented using the partial least-squares (PLS) regression. By applying the model, the suitability of appropriate (nontested) combinations (matrix, cationization reagent, solvent) can be predicted for a certain synthetic polymer based upon the investigation of a few combinations. This model may help find suitable combinations in a short time and serve as a starting point for the investigation of unknown polymers. Results are exemplary presented for polystyrene PS2850. PMID:20879802

  2. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    PubMed

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. PMID:26040746

  3. Label-free detection and identification of protein ligands captured by receptors in a polymerized planar lipid bilayer using MALDI-TOF MS.

    PubMed

    Liang, Boying; Ju, Yue; Joubert, James R; Kaleta, Erin J; Lopez, Rodrigo; Jones, Ian W; Hall, Henry K; Ratnayaka, Saliya N; Wysocki, Vicki H; Saavedra, S Scott

    2015-04-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) coupled with affinity capture is a well-established method to extract biological analytes from complex samples followed by label-free detection and identification. Many bioanalytes of interest bind to membrane-associated receptors; however, the matrices and high-vacuum conditions inherent to MALDI-TOF MS make it largely incompatible with the use of artificial lipid membranes with incorporated receptors as platforms for detection of captured proteins and peptides. Here we show that cross-linking polymerization of a planar supported lipid bilayer (PSLB) provides the stability needed for MALDI-TOF MS analysis of proteins captured by receptors embedded in the membrane. PSLBs composed of poly(bis-sorbylphosphatidylcholine) (poly(bis-SorbPC)) and doped with the ganglioside receptors GM1 and GD1a were used for affinity capture of the B subunits of cholera toxin, heat-labile enterotoxin, and pertussis toxin. The three toxins were captured simultaneously, then detected and identified by MS on the basis of differences in their molecular weights. Poly(bis-SorbPC) PSLBs are inherently resistant to nonspecific protein adsorption, which allowed selective toxin detection to be achieved in complex matrices (bovine serum and shrimp extract). Using GM1-cholera toxin subunit B as a model receptor-ligand pair, we estimated the minimal detectable concentration of toxin to be 4 nM. On-plate tryptic digestion of bound cholera toxin subunit B followed by MS/MS analysis of digested peptides was performed successfully, demonstrating the feasibility of using the PSLB-based affinity capture platform for identification of unknown, membrane-associated proteins. Overall, this work demonstrates that combining a poly(lipid) affinity capture platform with MALDI-TOF MS detection is a viable approach for capture and proteomic characterization of membrane-associated proteins in a label-free manner. PMID:25694144

  4. UPLC/Q-TOF MS-Based Metabolomics and qRT-PCR in Enzyme Gene Screening with Key Role in Triterpenoid Saponin Biosynthesis of Polygala tenuifolia

    PubMed Central

    Li, Zhenyu; Xu, Xiaoshuang; Peng, Bing; Qin, Xuemei; Du, Guanhua

    2014-01-01

    Background The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear. Methodology/Findings In this study, ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS)-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1) were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS), squalene monooxygenase (SQE), and beta-amyrin synthase (?-AS) were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis. Conclusions/Significance This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or ?-AS to increase the triterpenoid saponin production of P. tenuifolia. PMID:25148032

  5. Product ion distributions for the reactions of NO+ with some physiologically significant aldehydes obtained using a SRI-TOF-MS instrument

    PubMed Central

    Mochalski, Pawe?; Unterkofler, Karl; Špan?l, Patrik; Smith, David; Amann, Anton

    2014-01-01

    Product ion distributions for the reactions of NO+ with 22 aldehydes involved in human physiology have been determined under the prevailing conditions of a selective reagent ionization time of flight mass spectrometry (SRI-TOF-MS) at an E/N in the flow/drift tube reactor of 130 Td. The chosen aldehydes were fourteen alkanals (the C2–C11 n-alkanals, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, and 2-ethyl hexanal), six alkenals (2-propenal, 2-methyl 2-propenal, 2-butenal, 3-methyl 2-butenal, 2-methyl 2-butenal, and 2-undecenal), benzaldehyde, and furfural. The product ion fragmentations patterns were determined for both dry air and humid air (3.5% absolute humidity) used as the matrix buffer/carrier gas in the drift tube of the SRI-TOF-MS instrument. Hydride ion transfer was seen to be a common ionization mechanism in all these aldehydes, thus generating (M?H)+ ions. Small fractions of the adduct ion, NO+M, were also seen for some of the unsaturated alkenals, in particular 2-undecenal, and heterocyclic furfural for which the major reactive channel was non-dissociative charge transfer generating the M+ parent ion. Almost all of the reactions resulted in partial fragmentation of the aldehyde molecules generating hydrocarbon ions; specifically, the alkanal reactions resulted in multiple product ions, whereas, the alkenals reactions produced only two or three product ions, dissociation of the nascent excited product ion occurring preferentially at the 2-position. The findings of this study are of particular importance for data interpretation in studies of aldehydes reactions employing SRI-TOF-MS in the NO+ mode. PMID:25844049

  6. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities.

    PubMed

    Kim, Ga Ryun; Jung, Eun Sung; Lee, Sarah; Lim, Sun-Hyung; Ha, Sun-Hwa; Lee, Choong Hwan

    2014-01-01

    Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques. PMID:25268721

  7. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Dubois, Damien; Leyssene, David; Chacornac, Jean Paul; Kostrzewa, Markus; Schmit, Pierre Olivier; Talon, Régine; Bonnet, Richard; Delmas, Julien

    2010-03-01

    Whole-cell fingerprinting by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in combination with a dedicated bioinformatic software tool (MALDI Biotyper 2.0) was used to identify 152 staphylococcal strains corresponding to 22 staphylococcal species. Spectra of the 152 isolates, previously identified at the species level using a sodA gene-based oligonucleotide array, were analyzed against the main spectra of 3,030 microorganisms. A total of 151 strains out of 152 (99.3%) were correctly identified at the species level; only one strain was identified at the genus level. The MALDI-TOF MS method revealed different clonal lineages of Staphylococcus epidermidis that were of either human or environmental origin, which suggests that the MALDI-TOF MS method could be useful in the profiling of staphylococcal strains. The topology of the dendrogram generated by the MALDI Biotyper 2.0 software from the spectra of 120 Staphylococcus reference strains (representing 36 species) was in general agreement with that inferred from the 16S rRNA gene-based analysis. Our findings indicate that the MALDI-TOF MS technology, associated with a broad-spectrum reference database, is an effective tool for the swift and reliable identification of Staphylococci. PMID:20032251

  8. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library.

    PubMed

    Becker, Pierre T; de Bel, Annelies; Martiny, Delphine; Ranque, Stéphane; Piarroux, Renaud; Cassagne, Carole; Detandt, Monique; Hendrickx, Marijke

    2014-11-01

    The identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) relies mainly on a robust and extensive database of reference spectra. To this end, a large in-house library containing 760 strains and representing 472 species was built and evaluated on 390 clinical isolates by comparing MALDI-TOF MS with the classical identification method based on morphological observations. The use of MALDI-TOF MS resulted in the correct identification of 95.4% of the isolates at species level, without considering LogScore values. Taking into account the Brukers' cutoff value for reliability (LogScore >1.70), 85.6% of the isolates were correctly identified. For a number of isolates, microscopic identification was limited to the genus, resulting in only 61.5% of the isolates correctly identified at species level while the correctness reached 94.6% at genus level. Using this extended in-house database, MALDI-TOF MS thus appears superior to morphology in order to obtain a robust and accurate identification of filamentous fungi. A continuous extension of the library is however necessary to further improve its reliability. Indeed, 15 isolates were still not represented while an additional three isolates were not recognized, probably because of a lack of intraspecific variability of the corresponding species in the database. PMID:25349253

  9. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.

    PubMed

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Spanu, Teresa; Fiori, Barbara; Posteraro, Brunella; Sanguinetti, Maurizio

    2014-09-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection. PMID:25212071

  10. The Effect of Culture Conditions on Microorganism Identification by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B.; Wunschel, Sharon C.; Wunschel, David S.; Petersen, Catherine E.; Wahl, Karen L.

    2005-01-01

    Abstract Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to identify bacteria based upon protein signatures. This research shows that while some different proteins are produced by vegetative bacteria when they are cultured in different growth media, positive identification with MALDI-TOF MS is still possible with the protocol established at Pacific Northwest National Laboratory (PNNL)(11). A core set of small proteins remain constant under at least four different culture media conditions including minimal medium -M9, rich media - tryptic soy broth (TSB) or Luria-Bertani (LB) broth and blood agar plates such that analysis of the intact cells by matrix-assisted laser desorption/ionization mass spectrometry allows for consistent identification.

  11. Micro-scale strategy to detect spermine and spermidine by MALDI-TOF MS in foods and identification of apoptosis-related proteins by nano-flow UPLC-MS/MS after treatment with spermine and spermidine.

    PubMed

    Su, Huai-Hsin; Chuang, Lea-Yea; Tseng, Wei-Lung; Lu, Chi-Yu

    2015-01-26

    Spermine and spermidine are multiple-nitrogen compounds found in many foods. Both compounds are essential for cell growth and human health. This study established a simple and fast method of detecting spermine and spermidine in food samples by matrix-assisted laser desorption/ionization combined with time-of-flight mass spectrometry (MALDI-TOF MS). After a simple sample preparation procedure, spermine and spermidine were directly detected by MALDI-TOF MS with no additional purification procedure. The calibration curves for spermine and spermidine ranged from 0.1 to 10 ?g/mL. In intra- and inter-batch assays of three different concentrations of spermine and spermidine, all relative standard deviations and relative errors were below 18.9%. These experimental results confirmed the practicability and effectiveness of the proposed MALDI-TOF MS method for fast determination of spermine and spermidine in food samples. Furthermore, since spermine and spermidine have important roles in apoptosis, up-regulation and down-regulation of spermine and spermidine during apoptosis were analyzed. After treating NRK-52E cells with spermine and spermidine, the cells were lysed, and cell proteins were collected, and digested. Apoptosis-related proteins were then identified by tandem MS. PMID:25541472

  12. Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, J. Scott; Thakur, Rohan A.

    Mass spectrometry (MS) is unique among the various spectroscopy techniques in both theory and instrumentation. As you may recall, spectroscopy involves the interaction of electromagnetic radiation or some form of energy with molecules. The molecules absorb the radiation and produce a spectrum either during the absorption process or as the excited molecules return to the ground state. MS works by placing a charge on a molecule, thereby converting it to an ion in a process called ionization. The generated ions are then resolved according to their mass-to-charge ratio (m/z) by subjecting them to electrostatic fields (mass analyzer) and finally detected. An additional stage of ion fragmentation may be included before detection to elicit structural information in a technique known as tandem MS. The result of ion generation, separation, fragmentation, and detection is manifested as a mass spectrum that can be interpreted to yield molecular weight or structural information. The uniqueness of this process allows the method to be used for both detection and identification of an unknown compound.

  13. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization-Tandem Time of Flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...

  14. MALDI-TOF mass spectrometry: any use for Aspergilli?

    PubMed

    Sanguinetti, Maurizio; Posteraro, Brunella

    2014-12-01

    Recently, relentless efforts to develop rapid, cost-effective, and reliable laboratory methods for daily diagnosis of fungal diseases such as aspergillosis appear to be materialized in the relatively new, but revolutionary matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) technology. As for Aspergilli, MALDI-TOF MS profiling of isolates growing in culture--characteristic protein spectra are obtainable by means of simple and reproducible preanalytical and analytical procedures--ensures that single species within the different sections or complexes can be easily and accurately identified, including species that are morphologically and phylogenetically similar to each other. Thus, resort to longer and more onerous molecular biology techniques is restricted to those cases for which no spectra in the reference fungal database or library are available at the time of analysis. However, it is necessary to interrogate reference libraries composed of spectra that have been obtained using procedures similar to those used to obtain the test isolate's mass spectrum, as well as to continuously update these libraries for enriching them with fungal strains/species not (or not well) represented in their current versions. Compared to mold identification, very limited work was reported on the use of MALDI-TOF MS to perform strain typing or antifungal susceptibility testing for Aspergilli. If these complementing areas will be potentiated in the near future, MALDI-TOF MS could effectively support the clinical microbiology/mycology laboratory in its primary role of assisting either infection control specialists or physicians for the diagnosis and treatment of aspergillosis. PMID:25001870

  15. Separation and identification of mouse liver membrane proteins using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS

    NASA Astrophysics Data System (ADS)

    Thanh Tran, The; Phan, Van Chi

    2010-03-01

    In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5?Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations.

  16. Application of high-performance liquid chromatography-electrospray ionization mass spectrometry and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry in combination with selective enzymatic modifications in the characterization of glycosylation patterns in single-chain plasminogen activator

    Microsoft Academic Search

    Alex Apffel; John A. Chakel; William S. Hancock; Carrie Souders; Thabiso M'Timkulu; Erno Pungor

    1996-01-01

    The application of high-performance liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and selective enzymatic deglycosylation treatments is demonstrated in the analysis of glycosylation patterns in recombinant Desmodus salivary plasminogen activator, a heterogeneous glycoprotein. The sample was initially digested with a proteolytic enzyme (endoproteinase Lys-C) and then further treated with either PNGase

  17. Development and Validation of an In-House Database for Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Yeast Identification Using a Fast Protein Extraction Procedure

    PubMed Central

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Posteraro, Patrizia; Ricciardi, Walter; Posteraro, Brunella

    2014-01-01

    In recent studies evaluating the usefulness of the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based identification of yeasts for the routine diagnosis of fungal infections, preanalytical sample processing has emerged as a critical step for reliable MALDI-TOF MS outcomes, especially when the Bruker Daltonics Biotyper software was used. In addition, inadequate results often occurred due to discrepancies between the methods used for clinical testing and database construction. Therefore, we created an in-house MALDI-TOF MS library using the spectra from 156 reference and clinical yeast isolates (48 species in 11 genera), which were generated with a fast sample preparation procedure. After a retrospective validation study, our database was evaluated on 4,232 yeasts routinely isolated during a 6-month period and fast prepared for MALDI-TOF MS analysis. Thus, 4,209 (99.5%) of the isolates were successfully identified to the species level (with scores of ?2.0), with 1,676 (39.6%) having scores of >2.3. For the remaining 23 (0.5%) isolates, no reliable identification (with scores of <1.7) was obtained. Interestingly, these isolates were almost always from species uniquely represented or not included in the database. As the MALDI-TOF MS results were, except for 23 isolates, validated without additional phenotypic or molecular tests, our proposed strategy can enhance the rapidity and accuracy of MALDI-TOF MS in identifying medically important yeast species. However, while continuous updating of our database will be necessary to enrich it with more strains/species of new and emerging yeasts, the present in-house MALDI-TOF MS library can be made publicly available for future multicenter studies. PMID:24554755

  18. Proteolytic cleavage of glucagon-like peptide-1 by pancreatic ? cells and by fetal calf serum analyzed by mass spectrometry

    Microsoft Academic Search

    Harald Tammen; Wolf-Georg Forssmann; Rudolf Richter

    1999-01-01

    Fetal calf serum and a ?-cell line exhibit a proteolytic activity essential for the biological function of glucagon-like peptide-1 (GLP-1). This process of cleavage was investigated using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). To generate processing products, GLP-1 was subjected to rat insulinoma m5F (RINm5F) cell cultures or to fetal calf serum (FCS). For detection of processing products,

  19. Bacteriocin Detection from Whole Bacteria by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    Microsoft Academic Search

    Thomas Hindre; Sandrine Didelot; Jean-Paul Le Pennec; Dominique Haras; Alain Dufour; Karine Vallee-Rehel

    2003-01-01

    Class I bacteriocins (lantibiotics) and class II bacteriocins are antimicrobial peptides secreted by gram- positive bacteria. Using two lantibiotics, lacticin 481 and nisin, and the class II bacteriocin coagulin, we showed that bacteriocins can be detected without any purification from whole producer bacteria grown on plates by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). When we compared the

  20. Characterisation of Stevia Rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry

    Microsoft Academic Search

    Jaroslav Pól; Barbora Hohnová; Tuulia Hyötyläinen

    2007-01-01

    Comprehensive two-dimensional liquid chromatography (LC×LC) connected on-line to electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS) was employed for analysis of aqueous extract of Stevia rebaudiana. Different combinations of strong cation-exchange (SCX), amino (NH2), and octadecyl siloxane (C18) stationary phases were tested in the separation of all nine known sweet Stevia glycosides. A combination of C18 as the first-dimension column and NH2

  1. Identification of Low Molecular Weight Gel Separated Proteins by MALDI MS and MALDI-QqTOF MS.

    E-print Network

    Ens, Werner

    Identification of Low Molecular Weight Gel Separated Proteins by MALDI MS and MALDI-QqTOF MS. Anna proteins by high mass accuracy MALDI peptide mapping has become a powerful tool in proteomic research to identify low molecular weight proteins (MW MALDI mapping, since only a few peptides can

  2. Identification and Subtyping of Clinically Relevant Human and Ruminant Mycoplasmas by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Renaudin, H.; Cauvin, E.; Del Prá Netto Machado, L.; Tricot, A.; Benoit, F.; Treilles, M.; Bébéar, C.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) recently emerged as a technology for the identification of bacteria. In this study, we aimed to evaluate its applicability to human and ruminant mycoplasmal identification, which can be demanding and time-consuming when using phenotypic or molecular methods. In addition, MALDI-TOF MS was tested as a subtyping tool for certain species. A total of 29 main spectra (MSP) from 10 human and 13 ruminant mycoplasma (sub)species were included in a mycoplasma MSP database to complete the Bruker MALDI Biotyper database. After broth culture and protein extraction, MALDI-TOF MS was applied for the identification of 119 human and 143 ruminant clinical isolates that were previously identified by antigenic or molecular methods and for subcultures of 73 ruminant clinical specimens that potentially contained several mycoplasma species. MALDI-TOF MS resulted in accurate (sub)species-level identification with a score of ?1.700 for 96% (251/262) of the isolates. The phylogenetically closest (sub)species were unequivocally distinguished. Although mixtures of the strains were reliably detected up to a certain cellular ratio, only the predominant species was identified from the cultures of polymicrobial clinical specimens. For typing purposes, MALDI-TOF MS proved to cluster Mycoplasma bovis and Mycoplasma agalactiae isolates by their year of isolation and genome profiles, respectively, and Mycoplasma pneumoniae isolates by their adhesin P1 type. In conclusion, MALDI-TOF MS is a rapid, reliable, and cost-effective method for the routine identification of high-density growing mycoplasmal species and shows promising prospects for its capacity for strain typing. PMID:23903545

  3. Identification and subtyping of clinically relevant human and ruminant mycoplasmas by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Pereyre, S; Tardy, F; Renaudin, H; Cauvin, E; Del Prá Netto Machado, L; Tricot, A; Benoit, F; Treilles, M; Bébéar, C

    2013-10-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) recently emerged as a technology for the identification of bacteria. In this study, we aimed to evaluate its applicability to human and ruminant mycoplasmal identification, which can be demanding and time-consuming when using phenotypic or molecular methods. In addition, MALDI-TOF MS was tested as a subtyping tool for certain species. A total of 29 main spectra (MSP) from 10 human and 13 ruminant mycoplasma (sub)species were included in a mycoplasma MSP database to complete the Bruker MALDI Biotyper database. After broth culture and protein extraction, MALDI-TOF MS was applied for the identification of 119 human and 143 ruminant clinical isolates that were previously identified by antigenic or molecular methods and for subcultures of 73 ruminant clinical specimens that potentially contained several mycoplasma species. MALDI-TOF MS resulted in accurate (sub)species-level identification with a score of ?1.700 for 96% (251/262) of the isolates. The phylogenetically closest (sub)species were unequivocally distinguished. Although mixtures of the strains were reliably detected up to a certain cellular ratio, only the predominant species was identified from the cultures of polymicrobial clinical specimens. For typing purposes, MALDI-TOF MS proved to cluster Mycoplasma bovis and Mycoplasma agalactiae isolates by their year of isolation and genome profiles, respectively, and Mycoplasma pneumoniae isolates by their adhesin P1 type. In conclusion, MALDI-TOF MS is a rapid, reliable, and cost-effective method for the routine identification of high-density growing mycoplasmal species and shows promising prospects for its capacity for strain typing. PMID:23903545

  4. Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pflieger, D.; Forest, E.; Vinh, J.

    For twenty years or so now, mass spectrometry has been used to get exact measurements of the mass of biological molecules such as proteins, nucleic acids,oligosaccharides, and so on. Over the past ten years, this technology has followed the trend toward miniaturisation and the samples required can be much smaller. In particular, the nanoelectrospray source (online or by needle) allow one to work at flow rates of a few tens of nanolitres/min. There are many applications, both in the field of proteomics and in the analysis of protein structure, dynamics, and interactions. Combining this source with nanoHPLC, complex mixtures only available in small quantities can be separated and analysed online. There are also some advantages over conventional HPLC, despite a set of constraints related to the small dimensions and low flow rates. Combining capillary electrophoresis with the electrospray source also gives useful results, with its own set of advantages and constraints. Finally, developments are currently underway to combine this source with chips, providing a means of separation and analysis online.

  5. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots.

    PubMed

    Kukula-Koch, Wirginia; Mroczek, Tomasz

    2015-03-01

    A rapid hydrostatic counter-current chromatography-thin-layer chromatography-electrospray-ionization time-of-flight mass spectrometry (CCC-TLC-ESI-TOF-MS) technique was established for use in seeking potent anti-Alzheimer's drugs among the acethylcholinesterase inhibitors in Argemone mexicana L. underground parts, with no need to isolate components in pure form. The dichloromethane extract from the roots of Mexican prickly poppy that was most rich in secondary metabolites was subjected to hydrostatic-CCC-based fractionation in descending mode, using a biphasic system composed of petroleum ether-ethyl acetate-methanol-water at the ratio of 1.5:3:2.1:2 (v/v). The obtained fractions were analyzed in a TLC-based AChE-inhibition "Fast Blue B" test. All active components in the fractions, including berberine, protopine, chelerithrine, sanguinarine, coptisine, palmatine, magnoflorine, and galanthamine, were identified in a direct TLC-HPLC-ESI-TOF-MS assay with high accuracy. This is the first time galanthamine has been reported in the extract of Mexican prickly poppy and the first time it has been identified in any member of the Papaveraceae family, in the significant quantity of 0.77%. PMID:25618762

  6. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods

    PubMed Central

    Cox, C. R.; Jensen, K. R.; Saichek, N. R.; Voorhees, K. J.

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid approach for clinical bacterial identification. However, current protein-based commercial bacterial ID methods fall short when differentiating closely related species/strains. To address this shortcoming, we employed CeO2-catalyzed fragmentation of lipids to produce fatty acids using the energy inherent to the MALDI laser as a novel alternative to protein profiling. Fatty acid profiles collected from Enterobacteriaceae, Acinetobacter, and Listeria using CeO2-catalyzed metal oxide laser ionization (MOLI MS), processed by principal component analysis, and validated by leave–one-out cross-validation (CV), showed 100% correct classification at the species level and 98% at the strain level. In comparison, protein profile data from the same bacteria yielded 32%, 54% and 67% mean species-level accuracy using two MALDI-TOF MS platforms, respectively. In addition, several pathogens were misidentified by protein profiling as non-pathogens and vice versa. These results suggest novel CeO2-catalyzed lipid fragmentation readily produced (i) taxonomically tractable fatty acid profiles by MOLI MS, (ii) highly accurate bacterial classification and (iii) consistent strain-level ID for bacteria that were routinely misidentified by protein-based methods. PMID:26190224

  7. Development of aptamer-conjugated magnetic graphene/gold nanoparticle hybrid nanocomposites for specific enrichment and rapid analysis of thrombin by MALDI-TOF MS.

    PubMed

    Xiong, Ya; Deng, Chunhui; Zhang, Xiangmin

    2014-11-01

    Simple, rapid and sensitive analysis of thrombin (a tumor biomarker) in complex samples is quite clinical relevant and essential for the development of disease diagnosis and pharmacotherapy. Herein, we developed a novel method based on aptamer-conjugated magnetic graphene/gold nanoparticles nanocomposites (MagG@Au) for specific enrichment and rapid analysis of thrombin in biological samples using MALDI-TOF-MS. At first, gold nanoparticles were compactly deposited on PDDA functionalized magnetic graphene through electrostatic interaction. Afterwards, aptamer was easily conjugated to gold nanoparticles via Au-S bond formation. The as-made aptamer-conjugated nanocomposites took advantage of the magnetism of magnetic graphene, the high affinity and specificity of aptamer, facilitating a high-efficient separation and enrichment of thrombin. More importantly, due to the large surface area of the hybrid substrate, the average coverage density of aptamer achieved 0.34 nmol/mg, which enhanced the thrombin binding capacity and the recovery of thrombin in real samples. In turn, the enriched thrombin attributed to the sensitive output of MALDI-TOF mass spectrometry signal, 0.085 ng ?L(-1) (2.36 nM) thrombin could be detected. This proposed method has a relatively wide linear relation ranging from 0.1 ng ?L(-1) to 10 ng ?L(-1), and satisfactory specificity. The proposed high-throughput method based on MALDI-TOF MS is expected to the application in the disease biomarker detection and clinical diagnosis. PMID:25127596

  8. Selective identification by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry of different types of gluten in foods made with cereal mixtures

    Microsoft Academic Search

    Emilio Camafeita; Juan Sol??s; Patricia Alfonso; Juan Antonio López; Luis Sorell; Enrique Méndez

    1998-01-01

    The gluten toxic fractions responsible for the mucosal damage in coeliac disease (CD), so-called gliadins, hordeins, secalins and avenins from a large number (30–40) of wheat, barley, rye and oats cultivars respectively, have been mass analyzed by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF–MS). Gliadin, secalin and avenin characteristic mass profiles are nearly identical amongst distinct cultivars from the corresponding

  9. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    PubMed Central

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968

  10. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    PubMed Central

    Emami, Kaveh; Askari, Vahid; Ullrich, Matthias; Mohinudeen, Khwajah; Anil, Arga Chandrashekar; Khandeparker, Lidita; Burgess, J. Grant; Mesbahi, Ehsan

    2012-01-01

    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time. PMID:22685576

  11. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Identification of Tick Vectors

    PubMed Central

    Yssouf, Amina; Flaudrops, Christophe; Drali, Rezak; Kernif, Tahar; Socolovschi, Cristina; Berenger, Jean-Michel; Raoult, Didier

    2013-01-01

    A method for rapid species identification of ticks may help clinicians predict the disease outcomes of patients with tick bites and may inform the decision as to whether to administer postexposure prophylactic antibiotic treatment. We aimed to establish a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) spectrum database based on the analysis of the legs of six tick vectors: Amblyomma variegatum, Rhipicephalus sanguineus, Hyalomma marginatum rufipes, Ixodes ricinus, Dermacentor marginatus, and Dermacentor reticulatus. A blind test was performed on a trial set of ticks to identify specimens of each species. Subsequently, we used MALDI-TOF MS to identify ticks obtained from the wild or removed from patients. The latter tick samples were also identified by 12S ribosomal DNA (rDNA) sequencing and were tested for bacterial infections. Ticks obtained from the wild or removed from patients (R. sanguineus, I. ricinus, and D. marginatus) were accurately identified using MALDI-TOF MS, with the exception of those ticks for which no spectra were available in the database. Furthermore, one damaged specimen was correctly identified as I. ricinus, a vector of Lyme disease, using MALDI-TOF MS only. Six of the 14 ticks removed from patients were found to be infected by pathogens that included Rickettsia, Anaplasma, and Borrelia spp. MALDI-TOF MS appears to be an effective tool for the rapid identification of tick vectors that requires no previous expertise in tick identification. The benefits for clinicians include the more targeted surveillance of patients for symptoms of potentially transmitted diseases and the ability to make more informed decisions as to whether to administer postexposure prophylactic treatment. PMID:23224087

  12. Simultaneous determination nucleosides in marine organisms using ultrasound-assisted extraction followed by hydrophilic interaction liquid chromatography-electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Hengqiang; Chen, Junhui; Shi, Qian; Li, Xin; Zhou, Wenhui; Zhang, Daolai; Zheng, Li; Cao, Wei; Wang, Xiaoru; Lee, Frank Sen-Chun

    2011-10-01

    A new method has been developed based on ultrasound-assisted extraction (UAE) followed by hydrophilic interaction chromatography (HILIC) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF/MS) for the simultaneous determination of 16 nucleosides and nucleobases in medicinal extracts of various marine organisms. The separation was achieved on a Venusil HILIC column (250×4.6 mm id, 5 ?m) and gradient elution using a solution of acetonitrile and buffer (0.20% formic acid and 20 mmol/L ammonium acetate) as the mobile phase. Identification of the 16 target nucleosides and nucleobases was based on the retention time, UV spectra, and mass measurements of the protonated molecules ([M+H](+)) and main fragment ions (ESI-TOF/MS). In addition, non-target compounds of 2'-deoxyinosine and four other amino acids were also tentatively identified by ESI-TOF/MS. The 16 target compounds were quantified by HILIC-ESI-TOF/MS under optimized mass conditions. All calibration curves showed good linearity (r(2)>0.9951). The recoveries were 84.72-124.10%, and the limits of detection of the 16 target compounds were 0.6-130.0 ng/mL. The developed method was applied to quantify the target compounds in 15 batches of various marine organisms. The method has potential applicability for the identification and determination of highly polar and low-concentration active compounds in marine organisms. PMID:21837626

  13. Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow's milk.

    PubMed

    Calvano, Cosima Damiana; Monopoli, Antonio; Loizzo, Pasqua; Faccia, Michele; Zambonin, Carlo

    2013-02-27

    Milk and cheese are expensive foodstuffs, and their consumption is spread among the population because of their high nutritional value; for this reason they are often subjected to adulterations. Among the common illegal practices, the addition of powdered derivatives seems very difficult to detect because the adulterant materials have almost the same chemical composition of liquid milk. However, the high temperatures (180-200 °C) used for milk powder production could imply the occurrence of some protein modifications (e.g., glycation, lactosylation, oxidation, deamidation, dehydration). The modified proteins or peptides could then be used as markers for the presence of powdered milk. In this work, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to analyze tryptic digests relevant to samples of raw liquid (without heat treatment), commercial liquid, and powdered cow's milk. Samples were subjected to two-dimensional gel electrophoresis (2-DE); differences among liquid and powder milk were detected at this stage and eventually confirmed by MALDI analysis of the in gel digested proteins. Some diagnostic peptides of powdered milk, attributed to modified whey proteins and/or caseins, were identified. Then, a faster procedure was optimized, consisting of the separation of caseins from milk whey and the subsequent in-solution digestion of the two fractions, with the advantage of obtaining almost the same information in a limited amount of time. Finally, analyses were carried out with the fast procedure on liquid milk samples adulterated with powdered milk at different percentages, and diagnostic peptides were detected down to 1% of adulteration level. PMID:22931122

  14. The power of hyphenated chromatography/time-of-flight mass spectrometry in public health laboratories.

    PubMed

    Ibáñez, María; Portolés, Tania; Rúbies, Antoni; Muñoz, Eva; Muñoz, Gloria; Pineda, Laura; Serrahima, Eulalia; Sancho, Juan V; Centrich, Francesc; Hernández, Félix

    2012-05-30

    Laboratories devoted to the public health field have to face the analysis of a large number of organic contaminants/residues in many different types of samples. Analytical techniques applied in this field are normally focused on quantification of a limited number of analytes. At present, most of these techniques are based on gas chromatography (GC) or liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS). Using these techniques only analyte-specific information is acquired, and many other compounds that might be present in the samples would be ignored. In this paper, we explore the potential of time-of-flight (TOF) MS hyphenated to GC or LC to provide additional information, highly useful in this field. Thus, all positives reported by standard reference targeted LC-MS/MS methods were unequivocally confirmed by LC-QTOF MS. Only 61% of positives reported by targeted GC-MS/MS could be confirmed by GC-TOF MS, which was due to its lower sensitivity as nonconfirmations corresponded to analytes that were present at very low concentrations. In addition, the use of TOF MS allowed searching for additional compounds in large-scope screening methodologies. In this way, different contaminants/residues not included in either LC or GC tandem MS analyses were detected. This was the case of the insecticide thiacloprid, the plant growth regulator paclobutrazol, the fungicide prochloraz, or the UV filter benzophenone, among others. Finally, elucidation of unknowns was another of the possibilities offered by TOF MS thanks to the accurate-mass full-acquisition data available when using this technique. PMID:22578112

  15. Characterization of drug-lysozyme conjugates by sheathless capillary electrophoresis-time-of-flight mass spectrometry.

    PubMed

    Haselberg, R; Harmsen, S; Dolman, M E M; de Jong, G J; Kok, R J; Somsen, G W

    2011-07-18

    Drug-protein conjugates have been widely used for the cell-specific targeting of drugs to cells that can bind and internalize the proteinaceous carrier. For renal drug targeting, lysozyme (LZM) can be used as an effective carrier that accumulates in proximal tubular cells. We used capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF-MS) for the characterization of different drug-LZM conjugates. A recently developed prototype porous tip sprayer was employed for sheathless electrospray ionization (ESI) CE-MS interfacing. In order to prevent adsorption of LZM conjugates to the capillary wall, a positively charged polyethylenimine capillary coating was used in combination with a low-pH background electrolyte. Drug-LZM products had been prepared by first coupling BOC-l-methionine hydroxysuccinimide ester (BOCmet) to lysine residues of LZM followed by conjugation with the kinase inhibitors LY364947, erlotinib, or Y27632 via a platinum(II)-based linker. CE-TOF-MS of each preparation showed narrow symmetrical peaks for the various reaction products demonstrating that drug-LZM conjugates remained stable during the CE analysis and subsequent ESI. Components observed in the drug-LZM products were assigned based on their relative migration times and on molecular mass as obtained by TOF-MS. The TOF-MS data obtained for the individual components revealed that the preparations contained LZM carrying one or two drug molecules, next to unmodified and BOCmet-modified LZM. Based on relative peak areas (assuming an equimolar response for each component) a quantitative conjugate profile could be derived for every preparation leading to drug loading values of 0.4-0.6 mol drug per mole protein. PMID:21645662

  16. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry.

    PubMed

    Plenz, Bastian; Schmidt, Volker; Grosse-Herrenthey, Anke; Krüger, Monika; Pees, Michael

    2015-03-14

    The aim of this study was to identify aerobic bacterial isolates from the respiratory tract of boids with matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). From 47 boid snakes, swabs from the oral cavity, tracheal wash samples and, in cases in which postmortem examination was performed, pulmonary tissue samples were taken. Each snake was classified as having inflammation of the respiratory tract and/or oral cavity, or without evidence of inflammation based on combination of clinical, cytological and histopathological findings. Samples collected from the respiratory tract and oral cavity were inoculated onto routine media and bacteria were cultured aerobically. All morphologically distinct individual colonies obtained were analysed using MALDI-TOF MS. Unidentified isolates detected in more than three snakes were selected for further 16S rDNA PCR and sequencing. Among all examined isolates (n=243), 49 per cent (n=119) could be sufficiently speciated using MALDI-TOF MS. Molecular biology revealed several bacterial species that have not been previously described in reptiles. With an average of 6.3 different isolates from the respiratory tract and/or oral cavity, boids with inflammatory disease harboured significantly more bacterial species than boids without inflammatory disease (average 2.8 isolates). PMID:25487809

  17. Identification of Medically Relevant Species of Arthroconidial Yeasts by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories. PMID:23678074

  18. Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry

    Microsoft Academic Search

    R. Rial-Otero; R. J. Carreira; F. M. Cordeiro; A. J. Moro; H. M. Santos; G. Vale; I. Moura; J. L. Capelo

    2007-01-01

    Two different ultrasonic energy sources, the sonoreactor and the ultrasonic probe, are compared for enzymatic digestion of proteins for protein identification by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using the peptide mass fingerprint (PMF) procedure. Variables such as (i) trypsin\\/protein ratio; (ii) sonication time; (iii) ultrasound amplitude; and (iv) protein concentration are studied and compared. As a general rule,

  19. Analysis and classification of bacteria by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry and a chemometric approach

    Microsoft Academic Search

    Daniela Parisi; Maria Magliulo; Paolo Nanni; Monica Casale; Michele Forina; Aldo Roda

    2008-01-01

    Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a useful technique for the\\u000a identification of bacteria on the basis of their characteristic protein mass spectrum fingerprint. Highly standardized instrumental\\u000a analytical performance and bacterial culture conditions are required to achieve useful information. A chemometric approach\\u000a based on multivariate analysis techniques was developed for the analysis of MALDI data of different

  20. 3Hydroxycoumarin as a new matrix for matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry of DNA

    Microsoft Academic Search

    Zhenying Zhang; Lihua Zhou; Shankai Zhao; Huimin Deng; Qinying Deng

    2006-01-01

    3-Hydroxycoumarin (3-HC) was designed, synthesized, and tested as a matrix for matrix-assisted laser desorption\\/ionization\\u000a time-of-flight mass spectrometry (MALDI-TOF MS) analyses of a variety of synthetic oligodeoxynucleotides ranging long from\\u000a three to 70 bases. Using the matrix solution of 3-HC dissolved in a mixed solvent of acetone and diammonium hydrogen citrate,\\u000a DNA segments over the mass range 800 Da to 6900

  1. Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences

    Microsoft Academic Search

    Wei Wang; Jibin Sun; Manfred Nimtz; Wolf-Dieter Deckwer; An-Ping Zeng

    2003-01-01

    Separation of proteins by two-dimensional gel electrophoresis (2-DE) coupled with identification of proteins through peptide mass fingerprinting (PMF) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is the widely used technique for proteomic analysis. This approach relies, however, on the presence of the proteins studied in public-accessible protein databases or the availability of annotated genome sequences of an

  2. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry.

    PubMed

    Paauw, Armand; Jonker, Debby; Roeselers, Guus; Heng, Jonathan M E; Mars-Groenendijk, Roos H; Trip, Hein; Molhoek, E Margo; Jansen, Hugo-Jan; van der Plas, Jan; de Jong, Ad L; Majchrzykiewicz-Koehorst, Joanna A; Speksnijder, Arjen G C L

    2015-01-01

    E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli. PMID:25912807

  3. [Analysis and identification of chemical constituents in Siwu decoction by UPLC-Q-TOF-MS(E)].

    PubMed

    Wang, Zhen-Fang; Zhao, Yang; Pang, Xu; Yu, He-Shui; Kang, Li-Ping; Gao, Yue; Ma, Bai-Ping

    2013-11-01

    This research analyzed the chemical constituents of Siwu decoction by UPLC-Q-TOF-MS(E). Base on the data of mass and related-literatures, 43 peaks were profiled and 25 compounds, which contain 8 monoterpene glycosides from Paeonia lactiflora and 13 phthalides from Rhizoma chuanxiong and Radix angelica sinensis mainly, were identified in both positive and negative mode respectively. Meanwhile, chemical constituents of water extract and 60% ethanol extract of Siwu decoction were compared by the principal constituent analysis with MarkerLynx software, which provides the basis for the active ingredients of Siwu decoction. PMID:24494558

  4. N-(1-Naphthyl) Ethylenediamine Dinitrate: A New Matrix for Negative Ion MALDI-TOF MS Analysis of Small Molecules

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu

    2012-09-01

    An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules ( m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as ?-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range ( m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.

  5. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-05-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 ?g kg-1 was obtained for DCD with a linear working range from 100 to 10000 ?g kg-1 and a satisfactory correlation coefficient (R2) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control.

  6. A sensitive and effective proteomic approach to identify she-donkey's and goat's milk adulterations by MALDI-TOF MS fingerprinting.

    PubMed

    Di Girolamo, Francesco; Masotti, Andrea; Salvatori, Guglielmo; Scapaticci, Margherita; Muraca, Maurizio; Putignani, Lorenza

    2014-01-01

    She-donkey's milk (DM) and goat's milk (GM) are commonly used in newborn and infant feeding because they are less allergenic than other milk types. It is, therefore, mandatory to avoid adulteration and contamination by other milk allergens, developing fast and efficient analytical methods to assess the authenticity of these precious nutrients. In this experimental work, a sensitive and robust matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling was designed to assess the genuineness of DM and GM milks. This workflow allows the identification of DM and GM adulteration at levels of 0.5%, thus, representing a sensitive tool for milk adulteration analysis, if compared with other laborious and time-consuming analytical procedures. PMID:25110863

  7. A Sensitive and Effective Proteomic Approach to Identify She-Donkey’s and Goat’s Milk Adulterations by MALDI-TOF MS Fingerprinting

    PubMed Central

    Di Girolamo, Francesco; Masotti, Andrea; Salvatori, Guglielmo; Scapaticci, Margherita; Muraca, Maurizio; Putignani, Lorenza

    2014-01-01

    She-donkey’s milk (DM) and goat’s milk (GM) are commonly used in newborn and infant feeding because they are less allergenic than other milk types. It is, therefore, mandatory to avoid adulteration and contamination by other milk allergens, developing fast and efficient analytical methods to assess the authenticity of these precious nutrients. In this experimental work, a sensitive and robust matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling was designed to assess the genuineness of DM and GM milks. This workflow allows the identification of DM and GM adulteration at levels of 0.5%, thus, representing a sensitive tool for milk adulteration analysis, if compared with other laborious and time-consuming analytical procedures. PMID:25110863

  8. Characterization of saccharide using high fluorescent 5-(((2-(carbohydrazino)methyl)thio)acetyl)-aminofluorescein tag by Capillary-HPLC-LIF and MALDI-TOF-MS.

    PubMed

    Wang, Chaofeng; Gao, Mingxia; Huang, Zhi; Zhang, Xiangmin

    2013-12-15

    The new approach to one-step derivatization of saccharide with 5-(((2-(carbohydrazino)methyl)thio)acetyl)-aminofluorescein (C356) was described. In this approach, high fluorescent C356 was applied to label saccharide to enhance the response of derivative saccharide and high sensitive capillary high performance liquid chromatography with laser-induced fluorescence (Capillary-HPLC-LIF) associated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used to characterize C356 labeled saccharide. The effect of derivatization conditions was evaluated and discussed. The limit of detection (LOD) of neutral saccharide in our method attained the level of femtomolar. As a result, this method could be successfully applied to determine the structure of N-glycans of glycoprotein. PMID:24209334

  9. Peptide-Mass Profiles of Polyvinylidene Difluoride-Bound Proteins by Matrix-Assisted Laser Desorption\\/Ionization Time-of-Flight Mass Spectrometry in the Presence of Nonionic Detergents

    Microsoft Academic Search

    Farzin Gharahdaghi; Michele Kirchner; Joseph Fernandez; Sheenah M. Mische

    1996-01-01

    Matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in conjunction with enzymatic digestion of proteins and molecular weight search of peptide-mass database is a powerful technique for peptide\\/protein identification. Ideally, peptide mixtures should be compatible with both MALDI-TOF and microsequencing. In our laboratory, enzymatic digestion and extraction of peptides from polyvinylidene difluoride (PVDF)-bound proteins is performed in the presence of

  10. Potato glycoalkaloids in soil-optimising liquid chromatography-time-of-flight mass spectrometry for quantitative studies.

    PubMed

    Jensen, Pia H; Juhler, René K; Nielsen, Nikoline J; Hansen, Thomas H; Strobel, Bjarne W; Jacobsen, Ole S; Nielsen, John; Hansen, Hans Christian B

    2008-02-22

    Potato glycoalkaloids are produced in high amounts in potato fields during the growth season and losses to soil potentially impact shallow groundwater and via tiles to fresh water ecosystems. A quantitative liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) method for determination and quantification of potato glycoalkaloids and their metabolites in aqueous soil extracts was developed. The LC-ESI-TOF-MS method had linearities up to 2000microg/L for alpha-solanine and alpha-chaconine and up to 760microg/L for solanidine. No matrix effect was observed, and the detection limits found were in the range 2.2-4.7microg/L. The method enabled quantification of the potato glycoalkaloids in environmental samples. PMID:18221744

  11. RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis

    PubMed Central

    Hartmer, Ralf; Storm, Niels; Boecker, Sebastian; Rodi, Charles P.; Hillenkamp, Franz; Jurinke, Christian; van den Boom, Dirk

    2003-01-01

    Here we devise a new method for high-throughput comparative sequence analysis. The developed protocol comprises a homogeneous in vitro transcription/RNase cleavage system with the accuracy and data acquisition speed of matrix-assisted laser desorption/ionization coupled with time-of-flight mass spectrometry (MALDI-TOF MS). In summary, the target region is PCR amplified using primers tagged with promoter sequences of T7 or SP6 RNA polymerase. Using RNase T1, the in vitro transcripts are base-specifically cleaved at every G-position. This reaction results in a characteristic pattern of fragment masses that is indicative of the original target sequence. To enable high-throughput analysis, samples are processed with automated liquid handling devices and nanoliter amounts are dispensed onto SpectroCHIP arrays for reliable and homogeneous MALDI preparation. This system enables rapid automated comparative sequence analysis for PCR products up to 1 kb in length. We demonstrate the feasibility of the devised method for analysis of single nucleotide polymorphisms (SNPs) and pathogen identification. PMID:12711692

  12. New insights on the structure of algaenan from Botryoccocus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray–mass spectrometry techniques

    Microsoft Academic Search

    Andre J Simpson; Xu Zang; Robert Kramer; Patrick G Hatcher

    2003-01-01

    Through solution state NMR spectroscopy and quadrupole-time-of-flight mass spectrometry (Q-TOF MS) studies of the hexane insoluble botryal extract of the algae Botryococcus braunii race A, coupled with high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy of the algaenan from this alga, it has been possible to advance the structural understanding of this geochemically important biopolymer. It was found that the hexane insoluble botryals

  13. Capillary electrophoresis to characterize ricin and its subunits with matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry

    Microsoft Academic Search

    Dong Hee Na; Cheong Kwan Cho; Yu Seok Youn; Youngju Choi; Kang Ro Lee; Sun Dong Yoo; Kang Choon Lee

    2004-01-01

    Capillary electrophoresis (CE) and matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have been employed as highly efficient methods to characterize ricin, its subunits, and the chemically deglycosylated forms. As a CE method, sodium dodecyl sulfate–capillary gel electrophoresis (SDS–CGE) was used because of its merit over the conventional slab gel techniques. SDS–CGE showed higher resolution capability over other analytical tools

  14. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Blood Isolates of Acinetobacter Species

    PubMed Central

    Hsueh, Po-Ren; Kuo, Lu-Cheng; Chang, Tsung-Chain; Lee, Tai-Fen; Teng, Shih-Hua; Chuang, Yu-Chung; Teng, Lee-Jene

    2014-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (Bruker Biotyper) was able to accurately identify 98.6% (142/144) of Acinetobacter baumannii isolates, 72.4% (63/87) of A. nosocomialis isolates, and 97.6% (41/42) of A. pittii isolates. All Acinetobacter junii, A. ursingii, A. johnsonii, and A. radioresistens isolates (n = 28) could also be identified correctly by Bruker Biotyper. PMID:24899038

  15. Characterization and pattern recognition of oil–sand naphthenic acids using comprehensive two-dimensional gas chromatography\\/time-of-flight mass spectrometry

    Microsoft Academic Search

    Chunyan Hao; John V. Headley; Kerry M. Peru; Richard Frank; Paul Yang; Keith R. Solomon

    2005-01-01

    Oil–sand naphthenic acids (NAs) are organic wastes produced during the oil–sand digestion and extraction processes and are very difficult to separate and analyze as individual components due to their complex compositions. A comprehensive two-dimensional gas chromatography\\/time of flight mass spectrometry (GC×GC\\/TOF–MS) system was applied for the characterization of two commercial mixtures of naphthenic acids (Fluka and Acros) and a naphthenic

  16. Quantitative analysis of multiple urinary biomarkers of carcinoid tumors through gold-nanoparticle-assisted laser desorption\\/ionization time-of-flight mass spectrometry

    Microsoft Academic Search

    Tsung-Rong Kuo; Jinn-Shiun Chen; Yu-Chen Chiu; Chia-Yi Tsai; Cho-Chun Hu; Chia-Chun Chen

    2011-01-01

    A simple technique for quantitative analysis of four urinary biomarkers, tryptophan (TRP), 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) of carcinoid tumors is developed using gold nanoparticles as the assisted matrix in surface-assisted laser desorption\\/ionization time-of-flight mass spectrometry (SALDI–TOF MS). The optimal SALDI conditions for the efficient ionization of those biomarkers are systematically explored by the adjustments of

  17. Profiling of compounds and degradation products from the postharvest treatment of pears and apples by ultra-high pressure liquid chromatography quadrupole-time-of-flight mass spectrometry

    Microsoft Academic Search

    Yolanda Picó; Marinel la Farré; Ramon Segarra; Damià Barceló

    2010-01-01

    This study deals with a simple strategy to pinpoint potential unknown compounds in full scan mass spectrometry (MS) experiments. Forty samples of apples and pears intended for human consumption were analyzed by ultra-high performance liquid chromatography quadrupole-time-of-flight (UPLC–QqTOF-MS), after extraction of the possible contaminants by rinsing the peel of the fruit with ethyl acetate. The peaks were visually recognized in

  18. A Strategy to Locate Cysteine Residues in Proteins by Specific Chemical Cleavage Followed by Matrix-Assisted Laser Desorption\\/Ionization Time-of-Flight Mass Spectrometry

    Microsoft Academic Search

    Jiang Wu; Douglas A. Gage; J. Throck Watson

    1996-01-01

    A simple methodology has been developed to characterize the number and location of free cysteine and cystine groups in peptides and proteins, using chemical modification and matrix-assisted laser desorption\\/ionization time-of flight mass spectrometry (MALDI-TOF MS). This new approach employs a specific reaction between free sulfhydryls and 2-nitro-5-thiocyanobenzoic acid (NTCB) to selectively cyanylate cysteine thiols. The N-terminal peptide bond of the

  19. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: validation in the clinical laboratory.

    PubMed

    Packeu, A; De Bel, A; l'Ollivier, C; Ranque, S; Detandt, M; Hendrickx, M

    2014-09-01

    The performance of a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) workflow using an extensive reference database for dermatophyte identification was evaluated on 176 clinical strains. Using a direct-deposit procedure after 3 incubation days yielded 40% correct identification. Both increasing incubation time and using an extraction procedure resulted in 100% correct identification. PMID:25031434

  20. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cystic Fibrosis Patients

    Microsoft Academic Search

    Nicolas Degand; Etienne Carbonnelle; Brunhilde Dauphin; Jean-Luc Beretti; Muriel Le Bourgeois; Isabelle Sermet-Gaudelus; Christine Segonds; Patrick Berche; Xavier Nassif; Agnes Ferroni; UniversiteParis Descartes; Service de Pediatrie Generale

    2008-01-01

    The identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis (CF) patients is usually achieved by using phenotype-based techniques and eventually molecular tools. These techniques remain time-consuming, expensive, and technically demanding. We used a method based on matrix- assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) for the identi- fication of these bacteria. A set of reference strains belonging

  1. Cryogen-free cryostat for large-scale arrays of superconducting tunnel junction ion detectors in time-of-flight mass spectrometry

    Microsoft Academic Search

    A. Kushino; M. Ohkubo; Y. E. Chen; M. Ukibe; S. Kasai; K. Fujioka

    2006-01-01

    Nb-based superconducting tunnel junction (STJ) detectors have a fast time resolution of a few 100ns and high operating temperature of 0.3K. These advantages expand their applicable fields to time-of-flight mass spectrometry (TOF-MS). In order to enlarge effective detection area, we have built arrays based on hundreds of large STJ elements. To realize the fast readout and no-cross talk, coaxial cables

  2. Fast analysis of volatile organic compounds and disinfection by-products in drinking water using solid-phase microextraction–gas chromatography\\/time-of-flight mass spectrometry

    Microsoft Academic Search

    Vadoud H. Niri; Leslie Bragg; Janusz Pawliszyn

    2008-01-01

    A fast method was developed for the extraction and analysis of volatile organic compounds, including disinfection by-products (DBPs), with headspace solid-phase microextraction (HS-SPME) and gas chromatography\\/mass spectrometry (GC\\/MS) techniques. A GC\\/time-of-flight (TOF)–MS instrument, which had fast acquisition rates and powerful deconvolution software, was used. Under optimum conditions total runtime was 45s. Volatile organic compounds (VOCs), including purgeable A and B

  3. Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy — effects of freezing and thawing

    Microsoft Academic Search

    Jürgen Schiller; Jürgen Arnhold; Hans-Jürgen Glander; Klaus Arnold

    2000-01-01

    In the present study, the applicability of proton NMR spectroscopy and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to the analysis of the lipid composition of human spermatozoa and seminal fluids as well as changes after cryopreservation of human spermatozoa was investigated. Whereas NMR spectra primarily indicated a high content of double bonds within the spermatozoa but

  4. Fast and Accurate Identification of Dermatophytes by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Validation in the Clinical Laboratory

    PubMed Central

    De Bel, A.; l'Ollivier, C.; Ranque, S.; Detandt, M.; Hendrickx, M.

    2014-01-01

    The performance of a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) workflow using an extensive reference database for dermatophyte identification was evaluated on 176 clinical strains. Using a direct-deposit procedure after 3 incubation days yielded 40% correct identification. Both increasing incubation time and using an extraction procedure resulted in 100% correct identification. PMID:25031434

  5. Development of soft extraction method for structural characterization of boreal forest soil proteins with MALDI-TOF/MS

    NASA Astrophysics Data System (ADS)

    Kanerva, Sanna; Ketola, Raimo A.; Kitunen, Veikko; Smolander, Aino; Kotiaho, Tapio

    2010-05-01

    Nitrogen (N) is usually the nutrient restricting productivity in boreal forests. Forest soils contain a great amount of nitrogen, but only a small part of it is in mineral form. Most part of soil N is bound in the structures of different organic compounds such as proteins, peptides, amino acids and more stabilized, refractory compounds. Due to the fact that soil organic N has a very important role in soil nutrient cycling and in plant nutrition, there is a need for more detailed knowledge of its chemistry in soil. Conventional methods to extract and analyze soil organic N are usually very destructive for structures of higher molecular weight organic compounds, such as proteins. The aim of this study was to characterize proteins extracted from boreal forest soil by "soft" extraction methods in order to maintain their molecular structure. The organic layer (F) from birch forest floor containing 78% of organic matter was sieved, freeze dried, pulverized, and extracted with a citrate or phosphate buffer (pH 6 or 8). Sequential extraction with the citrate or phosphate buffer and an SDS buffer (pH 6.8), slightly modified from the method of Chen et al. (2009, Proteomics 9: 4970-4973), was also done. Proteins were purified from the soil extract by extraction with buffered phenol and precipitated with methanol + 0.1M ammonium acetate at -20°C. Characterization of proteins was performed with matrix assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/MS) and the concentration of total proteins was measured using Bradford's method. Bovine serum albumin (BSA) was used as a positive control in the extractions and as a standard protein in Bradford's method. Our results showed that sequential extraction increased the amount of extracted proteins compared to the extractions without the SDS-buffer; however, it must be noted that the use of SDS-buffer very probably increased denaturization of proteins. Purification of proteins from crude soil extracts by phenol extraction was essential prior to measurement of total proteins; there seemed to be a lot of compounds in crude soil extracts that interfere with the analysis of total proteins, causing overestimation in protein concentration. pH of the buffer solution did not seem to be very crucial for the extractability of soil natural proteins, but at the higher pH, the amount of interfering compounds increased. However, the recovery of BSA added was clearly higher at the higher pH. When the protein precipitates were analyzed with MALDI-TOF/MS, a large curve, most likely formed from wide peaks of several compounds, indicate that most of the compounds in the precipitate were <15 kDa or ~20-50 kDa in molecular weight. It seems that in order to identify individual proteins from mass spectra, a separation of compounds with varying molecular weight is needed before the MALDI-TOF/MS analysis. Due to the fact that a relatively high amount of BSA added was not recovered by the extractions and that the intensity of the signals observed in mass spectra was low, it is questionable whether it is possible to extract soil natural proteins effectively from soils containing a high amount of organic matter without destructing the structures of proteins.

  6. Recalcitrance of poly(vinylpyrrolidone): evidence through matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Trimpin, S; Eichhorn, P; Räder, H J; Müllen, K; Knepper, T P

    2001-12-14

    The aerobic biodegradability of an extensively used synthetic polymer was monitored the first time on a laboratory-scale fixed-bed bioreactor (FBBR) applying matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polymeric poly(vinylpyrrolidone) (PVP) was spiked at concentrations of 10 mg l(-1) onto the FBBR run with river water and the biodegradation monitored after lyophilization of aliquots of the test liquor applying MALDI-TOF-MS. The latter proved to be a powerful tool for qualitative screening purposes of PVP in a molecular mass range <20 kDa in particularly yielding a high sensitivity and shot-to-shot reproducibility. The sample-to-sample reproducibility was enhanced applying the anchor target device. Post-source decay-MALDI-TOF-MS fragmentation investigations determined the unknown end groups of PVP unambiguously. Poor biodegradability of PVP can be assumed, since even after 30 days, no oxidation of the terminal groups and no difference in the repeating units was observed. A decrease in the molecular mass distribution can be drawn back rather to adsorption of PVP in the FBBR other than to biodegradation. This was further investigated performing an adsorption experiment with sewage sludge as solid matrix and analyses of the aqueous phase and sludge samples. Extrapolating these results to the situation in wastewater treatment plants, it is highly likely that PVP is eliminated from the dissolved phase by adsorption onto sludge particles. PMID:11771848

  7. Enhanced In-Source Fragmentation in MALDI-TOF-MS of Oligonucleotides Using 1,5-Diaminonapthalene

    NASA Astrophysics Data System (ADS)

    Hagan, Nathan A.; Smith, Christine A.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.; Demirev, Plamen A.

    2012-04-01

    The capability to rapidly and confidently determine or confirm the sequences of short oligonucleotides, including native and chemically-modified DNA and RNA, is important for a number of fields. While matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been used previously to sequence short oligonucleotides, the typically low fragmentation efficiency of in-source or post-source decay processes necessitates the accumulation of a large number of spectra, thus limiting the throughput of these methods. Here we introduce a novel matrix, 1,5-diaminonapthalene (DAN), for facile in-source decay (ISD) of DNA and RNA molecular anions, which allows for rapid sequence confirmation. d-, w-, and y-series ions are prominent in the spectra, complementary to the ( a-B)- and w- ions that are typically produced by MALDI post-source decay (PSD). Results are shown for several model DNA and RNA oligonucleotides, including combinations of DAN-induced fragmentation with true tandem TOF MS (MS/MS) for pseudo-MS3 and "activated-ion PSD."

  8. Identification and characterization of a new IgE-binding protein in mackerel ( Scomber japonicus) by MALDI-TOF-MS

    NASA Astrophysics Data System (ADS)

    Wang, Bangping; Li, Zhenxing; Zheng, Lina; Liu, Yixuan; Lin, Hong

    2011-03-01

    As fish is one source of the `big eight' food allergens, the prevalence of fish allergy has increased over the past few years. In order to better understand fish allergy, it is necessary to identify fish allergens. Based on the sera from fish-allergenic patients, a 28 kDa protein from local mackerel ( Scomber japonicus), which has not been reported as a fish allergen, was found to be reactive with most of the patients' sera. The 28 kDa protein was analyzed by MALDI-TOF-MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry). Mascot search in NCBI database (Date: 08/07/2010) showed that the top protein matched, i.e. triosephosphate isomerase (TPI) from Xiphophorus maculatus and Poecilia reticulata, had a mowse (molecular weight search) score of 98. In addition, TPI from Epinephelus coioides also matched this mackerel protein with a mowse score of 96. Because TPI is considered as an allergen in other non-fish organisms, such as lychee, wheat, latex, archaeopotamobius ( Archaeopotamobius sibiriensis) and crangon ( Crangon crangon), we consider that it may also be an allergen in mackerel.

  9. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics.

    PubMed

    Farag, Mohamed A; El-Ahmady, Sherweit H; Elian, Fatma S; Wessjohann, Ludger A

    2013-11-01

    The demand to develop efficient and reliable analytical methods for the quality control of herbal medicines and nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of active principles. Here, we describe an ultra-high performance liquid chromatography method (UHPLC) coupled with quadrupole high resolution time of flight mass spectrometry (qTOF-MS) analysis for the comprehensive measurement of metabolites from three Cynara scolymus (artichoke) cultivars: American Green Globe, French Hyrious, and Egyptian Baladi. Under optimized conditions, 50 metabolites were simultaneously quantified and identified including: eight caffeic acid derivatives, six saponins, 12 flavonoids and 10 fatty acids. Principal component analysis (PCA) was used to define both similarities and differences among the three artichoke leaf cultivars. In addition, batches from seven commercially available artichoke market products were analysed and showed variable quality, particularly in caffeic acid derivatives, flavonoid and fatty acid contents. PCA analysis was able to discriminate between various preparations, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UHPLC-MS based metabolite fingerprinting to reveal secondary metabolite compositional differences in artichoke leaf extracts. PMID:23902683

  10. Metabolome classification of commercial Hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics.

    PubMed

    Farag, Mohamed A; Wessjohann, Ludger A

    2012-03-01

    The growing interest in the efficacy of phytomedicines and herbal supplements but also the increase in legal requirements for safety and reliable contents of active principles drive the development of analytical methods for the quality control of complex, multicomponent mixtures as found in plant extracts of value for the pharmaceutical industry. Here, we describe an ultra-performance liquid chromatography method (UPLC) coupled with quadrupole time of flight mass spectrometry (qTOF-MS) measurements for the large scale analysis of H. perforatum plant material and its commercial preparations. Under optimized conditions, we were able to simultaneously quantify and identify 21 metabolites including 4 hyperforins, 3 catechins, 3 naphthodianthrones, 5 flavonoids, 3 fatty acids, and a phenolic acid. Principal component analysis (PCA) was used to ensure good analytical rigorousness and define both similarities and differences among Hypericum samples. A selection of batches from 9 commercially available H. perforatum products available on the German and Egyptian markets showed variable quality, particularly in hyperforins and fatty acid content. PCA analysis was able to discriminate between various preparations according to their global composition, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UPLC-MS-based metabolic fingerprinting to reveal secondary metabolite compositional differences in Hypericum extract. PMID:22271082

  11. Analysis of roasted and unroasted Pistacia terebinthus volatiles using direct thermal desorption-GCxGC-TOF/MS.

    PubMed

    Gogus, F; Ozel, M Z; Kocak, D; Hamilton, J F; Lewis, A C

    2011-12-01

    The objective of this study was to determine the effects of roasting time on volatile components of Pistacia terebinthus L., a fruit growing wild in Turkey. The whole fruit samples were pan roasted for 0, 5, 10, 15, 20 and 25min at 200°C. Volatile compounds were isolated and identified using the direct thermal desorption (DTD) method coupled with comprehensive gas chromatography - time of flight mass spectrometry (GCxGC-TOF/MS). The major components of the fresh hull of P. terebinthus were ?-pinene (10.37%), limonene (8.93%), ?-pinene (5.53%), 2-carene (4.47%) and ?-muurolene (4.29%). Eighty-three constituents were characterised from the volatiles of fresh whole P. terebinthus fruits obtained by direct thermal desorption with ?-pinene (9.62%), limonene (5.54%), ?-cadinane (5.48%), ?-pinene (5.46%), ?-caryophyllene (5.24%) being the major constituents. The type and the number of constituents characterised were observed to change with differing roasting times. Limonene (5.56%), ?-pinene (4.84%), 5-methylfurfural (4.78%), 5-hydroxymethylfurfural (5-HMF, 3.89%), dimethylmetoxyfuranone (3.67%) and 3-methyl-2(5H)furanone (3.12%) were identified as the major components among the 104 compounds characterised in the volatiles of P. terebinthus, roasted for 25min. In addition, volatiles of fully roasted P. terebinthus fruits contained furans and furanones (15.42%), pyridines (4.45%) and benzene derivatives (3.81%) as the major groups. PMID:25212365

  12. Structural determination of O-glycans by tandem mass spectrometry.

    PubMed

    Robbe, Catherine; Michalski, Jean-Claude; Capon, Calliope

    2006-01-01

    Nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-Q-TOF-MS) provides a sensitive means for mapping and sequencing underivatized O-glycans. This chapter describes fragmentation rules of O-glycans by ESI-MS/MS and provides a series of diagnostic ions relevant for the determination of the core type, position, and linkage of fucose, sialic acid, and sulphate residues, as well as information on type I or II chains. Positive-ion mode gives information about core type, linkage, and position of fucose residues. Negative-ion mode can be applied for differentiation between isomeric molecules and for analysis of sulphated or sialylated glycans. The current technology successfully determines the sequence of underivatized oligosaccharides in complex mixtures and provides a significant step toward the goal of characterizing all aspects of carbohydrate structure using a single instrument. PMID:17072007

  13. An in situ silver cationization method for hydrocarbon mass spectrometry.

    PubMed

    Grace, Louis I; Abo-Riziq, Ali; deVries, Mattanjah S

    2005-04-01

    We have developed a novel cationization method for the analysis of long-chain hydrocarbons via UV laser desorption mass spectrometry. In this technique we electrospray a thin coating of AgNO3 over a sample and perform UV laser desorption to produce Ag+ cationization of sample molecules. Use of this technique in our microscope/TOF-MS allows us to determine the spatial distribution of the species we detect in the sample. We demonstrate 8-mu spatial resolution, and submicron resolution is possible in principle. In mixed samples containing aromatic and aliphatic compounds, the aromatic compounds ionize directly and do not form adducts, and thus give single peaks as opposed to doublets from silver cations. This enables distinction between aromatic and aliphatic compounds that are in the same sample. PMID:15792711

  14. MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex

    PubMed Central

    Firacative, Carolina; Trilles, Luciana; Meyer, Wieland

    2012-01-01

    Background The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. Methodology Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. Results The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. Conclusions MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this species complex in the clinical laboratory. The obtained mass spectra provide further evidence that the major molecular types warrant variety or even species status. PMID:22666368

  15. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae.

    PubMed

    Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2014-12-10

    Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951cm(-1) were specific to the Xoo strains, while one peak at 1572cm(-1) was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars. PMID:24996215

  16. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium.

    PubMed

    Idelevich, E A; Schüle, I; Grünastel, B; Wüllenweber, J; Peters, G; Becker, K

    2014-10-01

    Rapid identification of the causative microorganism is important for appropriate antimicrobial therapy of bloodstream infections. Bacteria from positive blood culture (BC) bottles are not readily available for identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lysis and centrifugation procedures suggested for direct MALDI-TOF MS from positive BCs without previous culture are associated with additional hands-on processing time and costs. Here, we describe an alternative approach applying MALDI-TOF MS from bacterial cultures incubated very briefly on solid medium. After plating of positive BC broth on Columbia blood agar (n = 165), MALDI-TOF MS was performed after 1.5, 2, 3, 4, 5, 6, 7, 8, 12 and (for control) 24 h of incubation until reliable identification to the species level was achieved (score ?2.0). Mean incubation time needed to achieve species-level identification was 5.9 and 2.0 h for Gram-positive aerobic cocci (GPC, n = 86) and Gram-negative aerobic rods (GNR, n = 42), respectively. Short agar cultures with incubation times ?2, ?4, ?6, ?8 and ?12 h yielded species identification in 1.2%, 18.6%, 64.0%, 96.5%, 98.8% of GPC, and in 76.2%, 95.2%, 97.6%, 97.6%, 97.6% of GNR, respectively. Control species identification at 24 h was achieved in 100% of GPC and 97.6% of GNR. Ethanol/formic acid protein extraction performed for an additional 34 GPC isolates cultivated from positive BCs showed further reduction in time to species identification (3.1 h). MALDI-TOF MS using biomass subsequent to very short-term incubation on solid medium allows very early and reliable bacterial identification from positive BCs without additional time and cost expenditure. PMID:24698361

  17. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus.

    PubMed

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2015-02-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. PMID:25411180

  18. High-Throughput Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry as an Alternative Approach to Monitoring Drug Resistance of Hepatitis B Virus

    PubMed Central

    Rybicka, Magda; Dreczewski, Marcin; Smiatacz, Tomasz

    2014-01-01

    Long-term antiviral therapy of chronic hepatitis B virus (HBV) infection can lead to the selection of drug-resistant HBV variants and treatment failure. Moreover, these HBV strains are possibly present in treatment-naive patients. Currently available assays for the detection of HBV drug resistance can identify mutants that constitute ?5% of the viral population. Furthermore, drug-resistant HBV variants can be detected when a viral load is >104 copies/ml (1,718 IU/ml). The aim of this study was to compare matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and multitemperature single-strand conformation polymorphism (MSSCP) with commercially available assays for the detection of drug-resistant HBV strains. HBV DNA was extracted from 87 serum samples acquired from 45 chronic hepatitis B (CHB) patients. The 37 selected HBV variants were analyzed in 4 separate primer extension reactions on the MALDI-TOF MS. Moreover, MSSCP for identifying drug-resistant HBV YMDD variants was developed and turned out to be more sensitive than INNOLiPA HBV DR and direct sequencing. MALDI-TOF MS had the capability to detect mutant strains within a mixed viral population occurring with an allelic frequency of approximately 1% (with a specific value of ?102 copies/ml, also expressed as ?17.18 IU/ml). In our study, MSSCP detected 98% of the HBV YMDD variants among strains detected by the MALDI-TOF MS assay. The routine tests revealed results of 40% and 11%, respectively, for INNOLiPA and direct sequencing. The commonly available HBV tests are less sensitive than MALDI-TOF MS in the detection of HBV-resistant variants, including quasispecies. PMID:24068014

  19. Advantages and limitations of coupling isotachophoresis and comprehensive isotachophoresis-capillary electrophoresis to time-of-flight mass spectrometry.

    PubMed

    Peterson, Zlatuse D; Bowerbank, Christopher R; Collins, David C; Graves, Steven W; Lee, Milton L

    2003-04-11

    Capillary isotachophoresis (ITP) and comprehensive isotachophoresis-capillary electrophoresis (ITP-CE) were successfully coupled to electrospray ionization (ESI) orthogonal acceleration time-of-flight mass spectrometry (TOF-MS) using angiotensin peptides as model analytes. The utility of ITP-TOF-MS and ITP-CE-TOF-MS for the analysis of samples containing analyte amounts sufficient to form flat-top ITP zones (30 microM) as well as for samples with trace analyte amounts (0.3 microM) was studied. Separations were performed in 150 microm internal diameter (I.D.) capillaries for the ITP experiments, and in 200 microm I.D. (ITP) and 50 microm I.D. (CE) capillaries for ITP-CE experiments. The fused-silica columns were coated with poly(vinyl alcohol) to suppress electroosmotic flow that can disrupt ITP zone profiles. The sample loading capacity in both ITP and comprehensive ITP-CE was greatly enhanced (up to 10 microl) compared with typical nanoliter-sized injection volumes in CE. It was concluded that ITP-TOF-MS alone was adequate for the separation and detection of high concentration samples. The outcome was different at lower analyte concentrations where mixed zones or very sharp peaks formed. With formation of mixed zones, ion suppression and discrimination could occur, complicating quantitative determination of the analytes. This problem was effectively overcome by inserting a CE capillary between the ITP and TOF-MS. In such an arrangement, samples were preconcentrated in the high load WTP capillary and then injected into a CE capillary where they were separated into non-overlapping peaks prior to their detection by TOF-MS. The advantage of this comprehensive arrangement, which we have described previously, is that there is no need to discard portions of the sample in order to avoid overloading of the CE capillary. The whole sample is analyzed by multiple injections from ITP to CE. Thus, this method can be used for the analysis of complex samples with wide ranges of component concentrations. PMID:12735473

  20. UPLC-Q/TOF MS standardized Chinese formula Xin-Ke-Shu for the treatment of atherosclerosis in a rabbit model.

    PubMed

    Liu, Yue-Tao; Peng, Jing-Bo; Jia, Hong-Mei; Cai, Da-Yong; Zhang, Hong-Wu; Yu, Chang-Yuan; Zou, Zhong-Mei

    2014-09-25

    Xin-Ke-Shu (XKS), a patent traditional Chinese medicine (TCM) preparation, has been commonly used for the treatment of coronary heart disease in China. In order to understand its mechanism of action, a metabonomic approach based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) was utilized to profile the plasma metabolic fingerprints of atherosclerosis (AS) rabbits with and without XKS treatment. The metabolic profile of model group clearly separated from normal, and that of XKS group was closer to the control group. Metabolites with significant changes during atherosclerosis were characterized as potential biomarkers related to the development of atherosclerosis by using orthogonal partial least-squares-discriminate analysis (OPLS-DA). Twenty potential biomarkers, including l-acetylcarnitine (1), propionylcarnitine (2), unknown (3), phytosphingosine (4), glycoursodeoxycholic acid (5), LPC(14:0) (6), sphinganine (7), LPC(20:5) (8), LPC(16:1) (9), LPC(18:2) (10), LPC(18:3) (11), LPC(22:5) (12), LPC(16:0) (13), LPC(18:1) (14), LPC(22:4) (15), LPC(17:0) (16), LPC(20:2) (17), elaidic carnitine (18), LPC(18:0) (19) and LPC(20:1) (20), were identified by their accurate mass and MS(E) spectra. The derivations of those biomarkers can be regulated by administration of XKS, which suggested that the intervention effect of XKS against AS may involve in regulating the lipid perturbation including fatty acid ?-oxidation pathway, sphingolipid metabolism, glycerophospholipid metabolism and bile acid biosynthesis. This study indicated that the UPLC-Q/TOF MS-based metabonomics not only gave a systematic view of the pathomechanism of AS, but also provided a powerful tool to study the efficacy and mechanism of complex TCM prescriptions. PMID:24916703

  1. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry. PMID:24929682

  2. Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization–time-of-flight mass spectrometry (MALDI–TOF MS)

    Microsoft Academic Search

    Anke Grosse-Herrenthey; Thomas Maier; Frank Gessler; Reiner Schaumann; Helge Böhnel; Markus Kostrzewa; Monika Krüger

    2008-01-01

    Diverse techniques were applied to effect the identification and classification of isolated clostridial strains. Nevertheless, the correct identification of clostridial strains remains a laborious, time-consuming task which entails a not inconsiderable degree of expertise. In addition to this, traditional methods based on the metabolic properties of the bacteria require rigorously standardized media and growth conditions to assure the attainment of

  3. The potential of using laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS) in the forensic analysis of micro debris

    Microsoft Academic Search

    Cameron J. Scadding; R. John Watling; Allen G. Thomas

    2005-01-01

    The majority of crimes result in the generation of some form of physical evidence, which is available for collection by crime scene investigators or police. However, this debris is often limited in amount as modern criminals become more aware of its potential value to forensic scientists. The requirement to obtain robust evidence from increasingly smaller sized samples has required refinement

  4. Analysis of modified polyamide 6.6 using coupled liquid chromatography and MALDI-TOF-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Weidner, Steffen M.; Just, Ulrich; Wittke, Wolfgang; Rittig, Frank; Gruber, Freddy; Friedrich, Joerg F.

    2004-11-01

    A new approach of analysis of polyamide 6.6 using the principle of coupling polymer liquid chromatography to matrix assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) is presented. In contrast to the known technique of two-dimensional chromatography, MALDI-TOF-MS was applied in the 2nd chromatographic dimension. According to the synthesis of polyamide 6.6 various species with different end groups are expected. Due to the capping of the end groups during the synthesis, either performed by the addition of mono-functional amines or acids, additional structures are formed and found. Although the resolution of chromatography applied for separation was poor in comparison to the broad variety of expected species, a complete identification of those components was achieved applying the MALDI-TOF-MS technique. The results were presented in a two-dimensional plot, which can be used as a fingerprint method for the analysis of polyamide 6.6.

  5. Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection.

    PubMed

    Lange, Christoph; Schubert, Sören; Jung, Jette; Kostrzewa, Markus; Sparbier, Katrin

    2014-12-01

    Antibiotic resistance in Gram-negative microorganisms is an increasing health care problem. The rapid detection of such resistance is crucial for starting an early specific therapy and to enable initiation of the required hygiene measures. With continued emphasis on reducing the cost of laboratory testing, only economical/low-cost approaches have a chance of being implemented. During recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed to be a standard method in microbiology laboratories for the rapid and cost-efficient identification of microorganisms. Extending the usage of MALDI-TOF MS in the clinical microbiology laboratory to the area of resistance testing is an attractive option. Quantitative MALDI-TOF MS using an internal standard facilitates the measurement of the quantity of peptides and small proteins within a spectrum. These quantities correlate to the number of microorganisms and therefore to the growth of a microorganism. The comparison of growth in the presence or absence of an antibiotic allows for analysis of the susceptibility behavior of a strain. Here, we describe a novel method and its application in the analysis of 108 Klebsiella sp. isolates. After 1 h of incubation at a meropenem concentration of 8 ?g/ml, a sensitivity of 97.3% and a specificity of 93.5% were achieved (compared to Etest results). PMID:25232164

  6. Identification of European mosquito species by MALDI-TOF MS.

    PubMed

    Yssouf, Amina; Parola, Philippe; Lindström, Anders; Lilja, Tobias; L'Ambert, Grégorie; Bondesson, Ulf; Berenger, Jean-Michel; Raoult, Didier; Almeras, Lionel

    2014-06-01

    MALDI-TOF MS profiling has proved to be efficient for arthropod identification at the species level. However, prior to entomological monitoring, the reference spectra database should cover relevant species. Here, 74 specimens were field-collected from 11 mosquito species captured in two distinct European areas and used either to increment our database or for blind tests. Misidentification was not noted, underlining the power of this approach. Nevertheless, three out of the 26 specimens used for the blind test did not reach the significant identification threshold value set, attributed to lower spectral quality. In the future, the quality control spectra parameters need to be defined to avoid not achieving significant threshold identification. PMID:24737398

  7. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC.

    PubMed

    Yang, Huan; Li, Xu; Li, Xue; Yu, Huimin; Shen, Zhongyao

    2015-03-01

    A three-stage linear gradient strategy using reverse-phase high-performance liquid chromatography (HPLC) was optimized for rapid, high-quality, and simultaneous purification of the lipopeptide isoforms of iturin, fengycin, and surfactin, which may differ in composition by only a single amino acid and/or the fatty acid residue. Matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) was applied to detect the lipopeptides harvested from each reversed-phase HPLC peak. Amino acid analysis based on phenyl isothiocyanate derivatization was further used for confirmation of the amino acid species and molar ratio in a certain HPLC fraction. By this MALDI-TOF-MS/MS coupled with amino acid analysis, it was revealed that iturin at m/z 1,043 consists of a circular Asn-Tyr-Asn-Gln-Pro-Asn-Ser peptide and C14 ?-OH fatty acid. Surfactin homologs from Bacillus subtilis THY-7 at m/z 1,030, 1,044, 1,058, and 1,072 possess a circular Glu-Leu-Leu-Val-Asp-Leu-Leu peptide and the ?-OH fatty acid with a different length (C13-C16). Fengycin species at m/z 1,463 and 1,477 are homologs possessing the circular peptide Glu-Orn-Tyr-Thr-Glu-Ala-Pro-Gln-Tyr-Ile linked to a C16 or C17 ?-OH fatty acid, whereas fengycin at m/z 1,505 contains a Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Tyr-Ile sequence with a Val instead of Ala at position 6. The method developed in this work provided an efficient approach for characterization of diverse lipopeptide isoforms from the iturin, fengycin, and surfactin families. PMID:25662934

  8. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria.

    PubMed

    Veloo, A C M; Elgersma, P E; Friedrich, A W; Nagy, E; van Winkelhoff, A J

    2014-12-01

    With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), bacteria can be identified quickly and reliably. This accounts especially for anaerobic bacteria. Because growth rate and oxygen sensitivity differ among anaerobic bacteria, we aimed to study the influence of incubation time, exposure to oxygen and sample preparation on the quality of the spectrum using the Bruker system. Also, reproducibility and inter-examiner variability were determined. Twenty-six anaerobic species, representing 17 genera, were selected based on gram-stain characteristics, growth rate and colony morphology. Inter-examiner variation showed that experience in the preparation of the targets can be a significant variable. The influence of incubation time was determined between 24 and 96 h of incubation. Reliable species identification was obtained after 48 h of incubation for gram-negative anaerobes and after 72 h for gram-positive anaerobes. Exposure of the cultures to oxygen did not influence the results of the MALDI-TOF MS identifications of all tested gram-positive species. Fusobacterium necrophorum and Prevotella intermedia could not be identified after >24 h and 48 h of exposure to oxygen, respectively. Other tested gram-negative bacteria could be identified after 48 h of exposure to oxygen. Most of the tested species could be identified using the direct spotting method. Bifidobacterium longum and Finegoldia magna needed on-target extraction with 70% formic acid in order to obtain reliable species identification and Peptoniphilus ivorii a full extraction. Spectrum quality was influenced by the amount of bacteria spotted on the target, the homogeneity of the smear and the experience of the examiner. PMID:25039504

  9. Comparison of the Accuracy of Two Conventional Phenotypic Methods and Two MALDI-TOF MS Systems with That of DNA Sequencing Analysis for Correctly Identifying Clinically Encountered Yeasts

    PubMed Central

    Chao, Qiao-Ting; Lee, Tai-Fen; Teng, Shih-Hua; Peng, Li-Yun; Chen, Ping-Hung; Teng, Lee-Jene; Hsueh, Po-Ren

    2014-01-01

    We assessed the accuracy of species-level identification of two commercially available matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Bruker Biotyper and Vitek MS) and two conventional phenotypic methods (Phoenix 100 YBC and Vitek 2 Yeast ID) with that of rDNA gene sequencing analysis among 200 clinical isolates of commonly encountered yeasts. The correct identification rates of the 200 yeast isolates to species or complex (Candida parapsilosis complex, C. guilliermondii complex and C. rugosa complex) levels by the Bruker Biotyper, Vitek MS (using in vitro devices [IVD] database), Phoenix 100 YBC and Vitek 2 Yeast ID (Sabouraud's dextrose agar) systems were 92.5%, 79.5%, 89%, and 74%, respectively. An additional 72 isolates of C. parapsilosis complex and 18 from the above 200 isolates (30 in each of C. parapsilosis, C. metapsilosis, and C. orthopsilosis) were also evaluated separately. Bruker Biotyper system could accurately identify all C. parapsilosis complex to species level. Using Vitek 2 MS (IVD) system, all C. parapsilosis but none of C. metapsilosis, or C. orthopsilosis could be accurately identified. Among the 89 yeasts misidentified by the Vitek 2 MS (IVD) system, 39 (43.8%), including 27 C. orthopsilosis isolates, could be correctly identified Using the Vitek MS Plus SARAMIS database for research use only. This resulted in an increase in the rate of correct identification of all yeast isolates (87.5%) by Vitek 2 MS. The two species in C. guilliermondii complex (C. guilliermondii and C. fermentati) isolates were correctly identified by cluster analysis of spectra generated by the Bruker Biotyper system. Based on the results obtained in the current study, MALDI-TOF MS systems present a promising alternative for the routine identification of yeast species, including clinically commonly and rarely encountered yeast species and several species belonging to C. parapsilosis complex, C. guilliermondii complex, and C. rugosa complex. PMID:25330370

  10. MALDI-TOF MS of Trichoderma: A model system for the identification of microfungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This investigation aimed to assess whether MALDI-TOF MS analysis of proteomics could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of proteomics would reveal ap...

  11. Genotyping of Plasmodium falciparum pyrimethamine resistance by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Marks, Florian; Meyer, Christian G; Sievertsen, Jürgen; Timmann, Christian; Evans, Jennifer; Horstmann, Rolf D; May, Jürgen

    2004-02-01

    Increasing resistance, recrudescences, and treatment failure have led to the replacement of chloroquine with the combination of pyrimethamine (PYR) and sulfadoxine (SDX) as the first-line antimalarial drugs for treatment of uncomplicated Plasmodium falciparum malaria in several areas where this disease is endemic. The development of resistance to PYR-SDX is favored by incomplete treatment courses or by subtherapeutic levels in plasma. PYR-SDX resistance has been associated with several single-nucleotide polymorphisms (SNPs) in the P. falciparum dihydrofolate reductase (pfdhfr) and the P. falciparum dihydropteroate synthetase (pfdhps) genes. We have established assays based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) that conveniently allow the identification of SNPs associated with PYR resistance. Variants occurring at codon positions 16, 51, 59, and 108 of the pfdhfr gene were analyzed by MALDI-TOF MS in synthetic oligonucleotides to determine the detection threshold. In addition, 63 blood samples from subjects with P. falciparum parasitemia of various degrees were analyzed. The results were compared to those obtained by DNA sequencing of the respective gene fragment. The results of MALDI-TOF MS and DNA sequencing were consistent in 40 samples. In 23 samples two or three pfdhfr variants were detected by MALDI-TOF assays, whereas DNA-sequencing revealed one variant only. Simultaneous detection of two different mutations by biplex assays was, in principle, feasible. As demonstrated by the example of PYR resistance, MALDI-TOF MS allows for rapid and automated high-throughput assessment of drug sensitivity in P. falciparum malaria. PMID:14742196

  12. MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers.

    PubMed

    Panda, Ashutosh; Ghosh, Anup K; Mirdha, Bijay R; Xess, Immaculata; Paul, Saikat; Samantaray, Jyotish C; Srinivasan, Alagiri; Khalil, Shehla; Rastogi, Neha; Dabas, Yubhisha

    2015-02-01

    This study aimed to evaluate the identification of clinical fungal isolates (yeast and molds) by protein profiling using Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS). A total of 125 clinical fungal culture isolates (yeast and filamentous fungi) were collected. The test set included 88 yeast isolates (Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida parapsilosis, Candida rugosa, Candida tropicalis and Cryptococcus neoformans) and 37 isolates of molds (Alternaria spp., Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Cunninghamella spp., Histoplasma capsulatum, Microsporum gypseum, Microsporum nanum, Rhizomucor spp. and Trichophyton spp.). The correlation between MALDI TOF MS and conventional identification for all these 125 fungal isolates included in the study was 87.2% at the species level and 90.4% at the genus level. MALDI TOF MS results revealed that the correlation in yeast (n=88) identification was 100% both at the genus and species levels whereas, the correlation in mold (n=37) identification was more heterogeneous i.e. 10.81% isolates had correct identification up to the genus level, 56.7% isolates had correct identification both at the genus and species levels, whereas 32.42% isolates were deemed Not Reliable Identification (NRI). But, with the modification in sample preparation protocol for molds, there was a significant improvement in identification. 86.4% isolates had correct identification till the genus and species levels whereas, only 2.7% isolates had Not Reliable Identification. In conclusion, this study demonstrates that MALDI-TOF MS could be a possible alternative to conventional techniques both for the identification and differentiation of clinical fungal isolates. However, the main limitation of this technique is that MS identification could be more precise only if the reference spectrum of the fungal species is available in the database. PMID:25541362

  13. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry.

    PubMed

    Wenning, Mareike; Breitenwieser, Franziska; Konrad, Regina; Huber, Ingrid; Busch, Ulrich; Scherer, Siegfried

    2014-08-01

    The food industry requires easy, accurate, and cost-effective techniques for microbial identification to ensure safe products and identify microbial contaminations. In this work, FTIR spectroscopy and MALDI-TOF mass spectrometry were assessed for their suitability and applicability for routine microbial diagnostics of food-related microorganisms by analyzing their robustness according to changes in incubation time and medium, identification accuracy and their ability to differentiate isolates down to the strain level. Changes in the protocol lead to a significantly impaired performance of FTIR spectroscopy, whereas they had only little effects on MALDI-TOF MS. Identification accuracy was tested using 174 food-related bacteria (93 species) from an in-house strain collection and 40 fresh isolates from routine food analyses. For MALDI-TOF MS, weaknesses in the identification of bacilli and pseudomonads were observed; FTIR spectroscopy had most difficulties in identifying pseudomonads and enterobacteria. In general, MALDI-TOF MS obtained better results (52-85% correct at species level), since the analysis of mainly ribosomal proteins is more robust and seems to be more reliable. FTIR spectroscopy suffers from the fact that it generates a whole-cell fingerprint and intraspecies diversity may lead to overlapping species borders which complicates identification. In the present study values between 56% and 67% correct species identification were obtained. On the opposite, this high sensitivity offers the opportunity of typing below the species level which was not possible using MALDI-TOF MS. Using fresh isolates from routine diagnostics, both techniques performed well with 88% (MALDI-TOF) and 75% (FTIR) correct identifications at species level, respectively. PMID:24878140

  14. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  15. Analysis of Hanford-related Organics using Matrix-assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry

    SciTech Connect

    Campbell, James A.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Hess, Wayne P.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Lohman, Jeremy R.(ASSOC WESTERN UNIVERSITY) [ASSOC WESTERN UNIVERSITY; Goheen, Steven C.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB)

    2001-01-01

    Matrix-assisted laser desorption/ionization coupled with time-of-flight mass spectrometry (MALDI/TOF-MS) was used for the analysis of low-molecular phosphate compounds found in Hanford tank wastes. The mass spectra of these compounds indicate protonated peaks as well as sodium adducts. Analytical methods presently utilized for the analysis of the phosphate-related organics are both time consuming and labor intensive. A promising alternative is MALDI/TOFMS. The MALDI process produces both positive and negative ions directly and very little sample is required. In addition,there is limited sample preparation and minimal hazardous waste production.

  16. What is Mass Spectrometry?

    NSDL National Science Digital Library

    Chiu, Chia M.

    This site from the American Society for Mass Spectrometry includes information about what mass spectometry is and how it is used. It has many useful figures and references to other materials. The material answers questions such as "What is mass spectrometry and what can it do for you?"

  17. Elemental, Isotopic, and Organic Analysis on Mars with Laser TOF-MS

    NASA Astrophysics Data System (ADS)

    Brinckerhoff, W. B.; Cornish, T. J.

    2000-07-01

    The in-depth landed exploration of Mars will require increasingly sophisticated robotic analytical tools for both in situ composition science [1] and reconnaissance for sample return [2]. Beyond dust, rock surfaces, and topsoil, samples must be accessed within rocks and ice, well below surface soil, and possibly in elevated deposit layers. A range of spatial scales will be studied, and for the most information-rich microscopic analyses, samples must be acquired, prepared, and positioned with high precision. In some cases samples must also be brought into a vacuum chamber. After expending such resources, it will be important to apply techniques that provide a wide range of information about the samples. Microscopy, mineralogy, and molecular/organic, elemental, and isotopic analyses are all needed, at a minimum, to begin to address the in situ goals at Mars. These techniques must work as an efficient suite to provide layers of data, each layer helping to determine if further analysis on a given sample is desired. In the spirit of broad-band and efficient data collection, we are developing miniature laser time-of-flight mass spectrometers (TOF-MS) for elemental, isotopic, and molecular/organic microanalysis of unprepared solid samples. Laser TOF-MS uses a pulsed laser to volatilize and ionize material from a small region on the sample. The laser energy and focus can be adjusted for atomic and molecular content, sampling area, and depth. Ions travel through the instrument and are detected at a sequence of times proportional to the square root of their mass-to- charge ratios. Thus, each laser pulse produces a complete mass spectrum (in less than 50 microseconds). These instruments can now be significantly miniaturized (potentially to the size of a soda can) without a loss in performance. This effort is reviewed here with an emphasis on applications to Mars exploration.

  18. Elemental, Isotopic, and Organic Analysis on Mars with Laser TOF-MS

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Cornish, T. J.

    2000-01-01

    The in-depth landed exploration of Mars will require increasingly sophisticated robotic analytical tools for both in situ composition science [1] and reconnaissance for sample return [2]. Beyond dust, rock surfaces, and topsoil, samples must be accessed within rocks and ice, well below surface soil, and possibly in elevated deposit layers. A range of spatial scales will be studied, and for the most information-rich microscopic analyses, samples must be acquired, prepared, and positioned with high precision. In some cases samples must also be brought into a vacuum chamber. After expending such resources, it will be important to apply techniques that provide a wide range of information about the samples. Microscopy, mineralogy, and molecular/organic, elemental, and isotopic analyses are all needed, at a minimum, to begin to address the in situ goals at Mars. These techniques must work as an efficient suite to provide layers of data, each layer helping to determine if further analysis on a given sample is desired. In the spirit of broad-band and efficient data collection, we are developing miniature laser time-of-flight mass spectrometers (TOF-MS) for elemental, isotopic, and molecular/organic microanalysis of unprepared solid samples. Laser TOF-MS uses a pulsed laser to volatilize and ionize material from a small region on the sample. The laser energy and focus can be adjusted for atomic and molecular content, sampling area, and depth. Ions travel through the instrument and are detected at a sequence of times proportional to the square root of their mass-to- charge ratios. Thus, each laser pulse produces a complete mass spectrum (in less than 50 microseconds). These instruments can now be significantly miniaturized (potentially to the size of a soda can) without a loss in performance. This effort is reviewed here with an emphasis on applications to Mars exploration.

  19. Identification of Anaerobic Bacteria by Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry with On-Plate Formic Acid Preparation

    PubMed Central

    Schmitt, Bryan H.; Cunningham, Scott A.; Dailey, Aaron L.; Gustafson, Daniel R.

    2013-01-01

    Identification of anaerobic bacteria using phenotypic methods is often time-consuming; methods such as 16S rRNA gene sequencing are costly and may not be readily available. We evaluated 253 clinical isolates of anaerobic bacteria using the Bruker MALDI Biotyper (Bruker Daltonics, Billerica, MA) matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system with a user-supplemented database and an on-plate formic acid-based preparation method and compared results to those of conventional identification using biochemical testing or 16S rRNA gene sequencing. A total of 179 (70.8%) and 232 (91.7%) isolates were correctly identified to the species and genus levels, respectively, using manufacturer-recommended score cutoffs. MALDI-TOF MS offers a rapid, inexpensive method for identification of anaerobic bacteria. PMID:23254126

  20. Analysis of Whole Bacterial Cells by Flow Field-Flow Fractionation and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    SciTech Connect

    Lee, Hookeun; Williams, Kim R.; Wahl, Karen L.; Valentine, Nancy B.

    2003-06-01

    The purpose of this study is to develop a novel bacterial analysis method by coupling the flow field-flow fractionation (flow FFF) separation technique with detection by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The composition of carrier liquid used for flow FFF was selected based on retention of bacterial cells and compatibility with the MALDI process. The feasibility of coupling flow FFF and MALDI-TOF MS was demonstrated for P. putida and E. coli. Fractions of the whole cells were collected after separation by FFF and further analyzed by MALDI-MS. Each fraction, collected over different time intervals, corresponded to different sizes and possibly different growth stages of bacteria. The bacterial analysis by flow FFF/MALDI-TOF MS was completed within 1 hour with only preliminary optimization of the process.

  1. Molecular diversity of cereulide detected by means of nano-HPLC-ESI-Q-TOF-MS

    NASA Astrophysics Data System (ADS)

    Pitchayawasin, Suthasinee; Isobe, Minoru; Kuse, Masaki; Franz, Thomas; Agata, Norio; Ohta, Michio

    2004-07-01

    Cereulide is a cyclic dodecadepsipeptide from a pathogenic bacteria Bacillus cereus, which shows the emetic toxicity. Molecular diversity, or variety in homologation was found as a minor constituent of this cyclic peptide. Its molecular weight is 1152 but its homologs were observed as 1138 and 1166, which had 14 mass lower and higher differences from cereulide. This homologation was observed in about 10% of cereulide. It seemed to be difficult to determine the heterogeneous amino acids directly by MS/MS analysis on the intact molecules of cereulide. And hydrolysis of this cyclic peptide gave dipeptides, which were analyzed to determine their heterogeneous components by means of nano-HPLC-ESI-Q-TOF-MS and MS/MS. Among all amino- and oxy-acids, we found that O-Val and O-Leu were the keys of variation in cereulide. These findings will be significant to establish an identification method for pathogenic bacteria on the basis of biosynthetic pathways.

  2. A novel dereplication strategy for the identification of two new trace compounds in the extract of Gastrodia elata using UHPLC/Q-TOF-MS/MS.

    PubMed

    Li, Zhifeng; Wang, Yawei; Ouyang, Hui; Lu, Yu; Qiu, Yan; Feng, Yulin; Jiang, Hongliang; Zhou, Xin; Yang, Shilin

    2015-04-15

    An ultra performance liquid chromatography (UHPLC) coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was used in the structural determination of natural compounds in Gastrodia elata. A total of 64 compounds were identified or tentatively characterized. The strategy used for characterization was comparing their retention time and fragmentation behaviors with those of the reference standards, or investigating their accurate mass measurements and characteristic fragmentation patterns followed by low-energy collision dissociation tandem mass spectrometry (CID-MS/MS). Phenolic conjugates mainly underwent consecutive losses of gastrodin residues and combined losses of H2O and CO2 from their citric acid units under negative MS/MS conditions. According to these rules, we have successfully characterized fifteen potential novel compounds. To confirm the reliability of this strategy, two targeted unknown trace parishins were obtained from G. elata by LC/MS-guided isolation. Based on the analysis of data from NMR spectroscopy and other techniques, the two unknown parishins were identified as 2-[4-O-(?-d-glucopyranosyl)benzyl]-3-methyl-citrate (parishin J) and 1,2-di-[4-O-(?-d-glucopyranosyl)benzyl]-3-methyl-citrate (parishin K), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our knowledge on parishins in Gastrodia species, and the proposed strategy was proven efficient and reliable in the discovery of new minor compounds from herbal extracts. PMID:25746751

  3. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  4. Misidentification of Saprochaete clavata as Magnusiomyces capitatus in Clinical Isolates: Utility of Internal Transcribed Spacer Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Importance of Reliable Databases

    PubMed Central

    Desnos-Ollivier, Marie; Blanc, Catherine; Garcia-Hermoso, Dea; Hoinard, Damien; Alanio, Alexandre

    2014-01-01

    Saprochaete clavata and Magnusiomyces capitatus are human pathogens that are frequently mistaken for each other due to their similar phenotypes and erroneous or limited databases. Based on internal transcribed spacer (ITS) sequences, we propose species-specific carbon assimilation patterns and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) fingerprints that enable the identification of S. clavata, M. capitatus, and Galactomyces candidus to the species level. PMID:24696028

  5. Determination of Oligopeptide Diversity within a Natural Population of Microcystis spp. (Cyanobacteria) by Typing Single Colonies by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    Microsoft Academic Search

    JUTTA FASTNER; MARCEL ERHARD; HANS VON DOHREN

    2001-01-01

    Besides the most prominent peptide toxin, microcystin, the cyanobacteria Microcystis spp. have been shown to produce a large variety of other bioactive oligopeptides. We investigated for the first time the oligopeptide diversity within a natural Microcystis population by analyzing single colonies directly with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The results demonstrate a high diversity of

  6. Rapid analysis of multiple pesticide residues in fruit-based baby food using programmed temperature vaporiser injection–low-pressure gas chromatography–high-resolution time-of-flight mass spectrometry

    Microsoft Academic Search

    Tomas Cajka; Jana Hajslova; Ondrej Lacina; Katerina Mastovska; Steven J. Lehotay

    2008-01-01

    A rapid method using programmed temperature vaporiser injection–low-pressure gas chromatography–high-resolution time-of-flight mass spectrometry (PTV–LP-GC–HR-TOF-MS) for the analysis of multiple pesticide residues in fruit-based baby food was developed. The fast and inexpensive buffered QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction method and “conventional” approach that employs ethyl acetate extraction followed by gel permeation chromatography (GPC) cleanup were employed for

  7. An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies.

    PubMed

    Liu, Zhao-Ying

    2012-12-01

    Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time-of-flight MS coupled with LC (LC-IT-TOF-MS) has successfully integrated ease of operation, compatibility with LC flow rates and data-dependent MS(n) with high mass accuracy and mass resolving power. The MS(n) and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC-IT-TOF-MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT-TOF instrument. Then, a general workflow for metabolite profiling using LC-IT-TOF-MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC-IT-TOF-MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. PMID:23280752

  8. "DUST BUSTER" - A Single Photon Ionization TOF MS for Cometary Dusts

    NASA Technical Reports Server (NTRS)

    Chen, C.-Y.; Calaway, W. F.; Lee, Typhoon; Moore, J. F.; Pellin, M. J.; Veryovkin, I. V.

    2003-01-01

    It is hard to predict the properties and composition of dust that will be returned by STARDUST from WED- 2. The most interesting but challenging case would be grains, pg to fg in weight, each carrying its own isotopic signature characteristic of its source zones in a variety of stars. How do we extract the maximum amount of science from such grains? Clearly, the best that can be accomplished is to measure every atom in each grain.Academia Sinica and Argonne National Laboratory (ANL) have entered into a collaboration to develop a SPI TOF MS instrument for analysis of stardust grains. A new instrument will be built at Academia Sinica based on the new TOF mass spectrometer design developed, built and operating at ANL. The instrument is intended for SPI TOF MS analysis of elements from Ca to Cu plus Li after first using SIMS to measure H, C, N, 0, Si, and S. There are still technical challenges facing the technique. We will need to improve submicrometer sample handling, avoid the effects of space charge, and increase the Mamie range of the detector. The most difficult obstacle to overcome may be the fact that the flux density of present high repetition rate, WV lasers is below the level needed to ensure full ionization (saturation) in the source region, which must be several mm in size to achieve the high useful yield needed for analysis of small stardust grains. A potential breakthrough effort is to exploit the novel free electron laser being pioneered at ANL. In principle, this FEL can reach ionization saturation and is tunable up to photon energies of 25 eV, which is higher than the ionization potential of any element.

  9. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    PubMed

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect. PMID:25820813

  10. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-05-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides ?-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis.

  11. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide.

    PubMed

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-08-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides ?-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis. Graphical Abstract ?. PMID:25990923

  12. MALDI-TOF mass spectrometry as a tool for the discrimination of high-risk Escherichia coli clones from phylogenetic groups B2 (ST131) and D (ST69, ST405, ST393).

    PubMed

    Novais, Â; Sousa, C; de Dios Caballero, J; Fernandez-Olmos, A; Lopes, J; Ramos, H; Coque, T M; Cantón, R; Peixe, L

    2014-08-01

    Reliable, quick and low-cost methods are needed for the early detection of multidrug-resistant and highly virulent high-risk B2 and D Escherichia coli clones or clonal complexes (HiRCC). Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) seems to have a good discriminatory potential at different subspecies levels, but it was never evaluated for the discrimination of E. coli clones. We assessed the potential of MALDI-TOF MS coupled to multivariate data analysis to discriminate representative E. coli B2 and D HiRCC. Seventy-three E. coli isolates from B2 (including ST131 and B2 non-ST131 clones) and D (ST69, ST393, ST405) with variable pulsed-field gel electrophoresis (PFGE) patterns, origins and dates (1980-2010) were tested. MS spectra were acquired from independent extracts obtained from different plate cultures in two different Microflex LT MALDI-TOF devices (Bruker) after a standard extraction procedure. MALDI-TOF MS fingerprinting analysis revealed a good discriminatory ability between the four HiRCC analysed (ST131, ST69, ST405, ST393) and between B2 ST131 and other B2 non-ST131 isolates. Clusters defined by MALDI-TOF MS were consistent with the clonal complexes assigned by multilocus sequence typing (MLST), although differences were detected regarding the composition of clusters obtained by the comparison of PFGE profiles. We demonstrate, for the first time, that characteristic mass fingerprints of different E. coli HiRCC are sufficiently discriminatory and robust to enable their differentiation by MALDI-TOF MS, which might represent a promising tool for the optimisation of infection control, individual patient management and large-scale epidemiological studies of public health relevance. The good correlation between phenotypic and genotypic features further corroborates phylogenetic relationships delineated by MLST. PMID:24599708

  13. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS

    PubMed Central

    2012-01-01

    Background Lymph node status is not part of the staging system for cervical cancer, but provides important information for prognosis and treatment. We investigated whether lymph node status can be predicted with proteomic profiling. Material & methods Serum samples of 60 cervical cancer patients (FIGO I/II) were obtained before primary treatment. Samples were run through a HPLC depletion column, eliminating the 14 most abundant proteins ubiquitously present in serum. Unbound fractions were concentrated with spin filters. Fractions were spotted onto CM10 and IMAC30 surfaces and analyzed with surface-enhanced laser desorption time of flight (SELDI-TOF) mass spectrometry (MS). Unsupervised peak detection and peak clustering was performed using MASDA software. Leave-one-out (LOO) validation for weighted Least Squares Support Vector Machines (LSSVM) was used for prediction of lymph node involvement. Other outcomes were histological type, lymphvascular space involvement (LVSI) and recurrent disease. Results LSSVM models were able to determine LN status with a LOO area under the receiver operating characteristics curve (AUC) of 0.95, based on peaks with m/z values 2,698.9, 3,953.2, and 15,254.8. Furthermore, we were able to predict LVSI (AUC 0.81), to predict recurrence (AUC 0.92), and to differentiate between squamous carcinomas and adenocarcinomas (AUC 0.88), between squamous and adenosquamous carcinomas (AUC 0.85), and between adenocarcinomas and adenosquamous carcinomas (AUC 0.94). Conclusions Potential markers related with lymph node involvement were detected, and protein/peptide profiling support differentiation between various subtypes of cervical cancer. However, identification of the potential biomarkers was hampered by the technical limitations of SELDI-TOF MS. PMID:22694804

  14. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species.

    PubMed

    Pence, M A; McElvania TeKippe, E; Wallace, M A; Burnham, C-A D

    2014-10-01

    The rapid identification of yeast is essential for the optimization of antifungal therapy. The objective of our study was to evaluate two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platforms, the bioMérieux VITEK MS (IVD Knowledgebase v.2.0) and Bruker Biotyper (software version 3.1), for the rapid identification of medically relevant yeast. One hundred and seventeen isolates, representing six genera and 18 species, were analyzed using multiple direct smear methods to optimize identification. Sequence analysis was the gold standard for comparison. Isolates were analyzed with VITEK MS using the direct smear method +/- a 25 % formic acid on-plate extraction. For Biotyper, isolates were analyzed using direct smear without formic acid, and with 25 % and 100 % formic acid on-plate extractions. When all methods were included, VITEK MS correctly identified 113 (96.6 %) isolates after 24 h with one misidentification, and Biotyper correctly identified 77 (65.8 %) isolates using a threshold of ?2.0 with no misidentifications. Using a revised threshold of ?1.7, Biotyper correctly identified 103 (88.0 %) isolates, with 3 (2.6 %) misidentifications. For both platforms, the number of identifications was significantly increased using a formic acid overlay (VITEK MS, p?

  15. [The mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids].

    PubMed

    Lysytsia, A V; Rebriiev, A V

    2014-01-01

    In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the membrane has been explained by the model proposed. According to this model PHGM can adhere to negatively charged plasma membrane of bacterial cell due to electrostatic interaction and the formation of loop-like structures. Similar stereochemistry mechanism makes the adsorption of the investigated polycation to membrane robust. The mechanism described together with additional destructive factors provides a reasonable explanation for the PHMG induced damage of bacterial cell plasma membrane and the biocide action of disinfectants prepared on the basis of the PHMG salts. PMID:24834718

  16. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive technique which provides chemical information in both the mass spectra and chemical images. PMID:24447453

  17. Identification of Haemophilus influenzae Type b Isolates by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Månsson, Viktor; Resman, Fredrik; Kostrzewa, Markus; Nilson, Bo; Riesbeck, Kristian

    2015-07-01

    Haemophilus influenzae type b (Hib) is, in contrast to non-type b H. influenzae, associated with severe invasive disease, such as meningitis and epiglottitis, in small children. To date, accurate H. influenzae capsule typing requires PCR, a time-consuming and cumbersome method. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) provides rapid bacterial diagnostics and is increasingly used in clinical microbiology laboratories. Here, MALDI-TOF MS was evaluated as a novel approach to separate Hib from other H. influenzae. PCR-verified Hib and non-Hib reference isolates were selected based on genetic and spectral characteristics. Mass spectra of reference isolates were acquired and used to generate different classification algorithms for Hib/non-Hib differentiation using both ClinProTools and the MALDI Biotyper software. A test series of mass spectra from 33 Hib and 77 non-Hib isolates, all characterized by PCR, was used to evaluate the algorithms. Several algorithms yielded good results, but the two best were a ClinProTools model based on 22 separating peaks and subtyping main spectra (MSPs) using MALDI Biotyper. The ClinProTools model had a sensitivity of 100% and a specificity of 99%, and the results were 98% reproducible using a different MALDI-TOF MS instrument. The Biotyper subtyping MSPs had a sensitivity of 97%, a specificity of 100%, and 93% reproducibility. Our results suggest that it is possible to use MALDI-TOF MS to differentiate Hib from other H. influenzae. This is a promising method for rapidly identifying Hib in unvaccinated populations and for the screening and surveillance of Hib carriage in vaccinated populations. PMID:25926500

  18. Use of non-porous reversed-phase high-performance liquid chromatography for protein profiling and isolation of proteins induced by temperature variations for Siberian permafrost bacteria with identification by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry and capillary electrophoresis–electrospray ionization mass spectrometry

    Microsoft Academic Search

    Bathsheba E. Chong; Jeongkwon Kim; David M. Lubman; James M. Tiedje; Sohpia Kathariou

    2000-01-01

    Non-porous reversed-phase high-performance liquid chromatography (NP-RP-HPLC) has been used to separate and isolate proteins from whole cell lysates of ED 7-3, a bacterium from the buried Siberian permafrost sediment. The proteins collected from the liquid eluent of this separation were then analyzed by matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis–electrospray ionization mass spectrometry (CE–ESI-MS). In order to

  19. Implementation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Routine Clinical Laboratories Improves Identification of Coagulase-Negative Staphylococci and Reveals the Pathogenic Role of Staphylococcus lugdunensis.

    PubMed

    Argemi, Xavier; Riegel, Philippe; Lavigne, Thierry; Lefebvre, Nicolas; Grandpré, Nicolas; Hansmann, Yves; Jaulhac, Benoit; Prévost, Gilles; Schramm, Frédéric

    2015-07-01

    The use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for staphylococcal identification is now considered routine in laboratories compared with the conventional phenotypical methods previously used. We verified its microbiological relevance for identifying the main species of coagulase-negative staphylococci (CoNS) by randomly selecting 50 isolates. From 1 January 2007 to 31 August 2008, 12,479 staphylococci were isolated with phenotypic methods, of which 4,594 were identified as Staphylococcus aureus and 7,885 were coagulase negative staphylococci. Using MALDI-TOF MS from 1 January 2011 to 31 August 2012, 14,913 staphylococci were identified, with 5,066 as S. aureus and 9,847 as CoNS. MALDI-TOF MS allowed the identification of approximately 85% of the CoNS strains, whereas only 14% of the CoNS strains were identified to the species level with phenotypic methods because they were often considered contaminants. Furthermore, the use of MALDI-TOF MS revealed the occurrence of recently characterized Staphylococcus species, such as S. pettenkoferi, S. condimenti, and S. piscifermentans. Microbiological relevance analysis further revealed that some species displayed a high rate of microbiological significance, i.e., 40% of the S. lugdunensis strains included in the analysis were associated with infection risk. This retrospective microbiological study confirms the role of MALDI-TOF MS in clinical settings for the identification of staphylococci with clinical consequences. The species distribution reveals the occurrence of the recently identified species S. pettenkoferi and putative virulent species, including S. lugdunensis. PMID:25878345

  20. SELDI-TOF MS analysis of alkylphenol exposed Atlantic cod with phenotypic variation in gonadosomatic index.

    PubMed

    Nilsen, Mari Mæland; Meier, Sonnich; Andersen, Odd Ketil; Hjelle, Anne

    2011-11-01

    Proteomics is a new and promising approach to evaluate potential effects of pollution. In order to investigate if there is a direct link between the protein expression profiles obtained by the SELDI-TOF MS technology and effects observed at the organism level in fish, plasma samples from unexposed and 20 ppb alkylphenol exposed female Atlantic cod (Gadus morhua) with high phenotypic variation in gonadosomatic index (GSI) were analyzed by SELDI-TOF MS. Principle component analysis (PCA) showed that the major proteomic variation present in the dataset (i.e. 23.6%) could be significantly correlated to the individual variation in GSI, which indicates that SELDI-TOF MS data can reflect effects observed at higher levels of organization in fish. Further exploration of the other principal components revealed an additional proteomic pattern specific for the alkylphenol exposed females. Hence, this study supports the usefulness of SELDI-TOF MS as a proteomic tool in ecotoxicological research. PMID:21945013

  1. MALDI-TOF mass spectrometry analysis of amphipol-trapped membrane proteins.

    PubMed

    Bechara, Chérine; Bolbach, Gérard; Bazzaco, Paola; Sharma, K Shivaji; Durand, Grégory; Popot, Jean-Luc; Zito, Francesca; Sagan, Sandrine

    2012-07-17

    Amphipols (APols) are amphipathic polymers with the ability to substitute detergents to keep membrane proteins (MPs) soluble and functional in aqueous solutions. APols also protect MPs against denaturation. Here, we have examined the ability of APol-trapped MPs to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For that purpose, we have used ionic and nonionic APols and as model proteins (i) the transmembrane domain of Escherichia coli outer membrane protein A, a ?-barrel, eubacterial MP, (ii) Halobacterium salinarum bacteriorhodopsin, an ?-helical archaebacterial MP with a single cofactor, and (iii, iv) two eukaryotic MP complexes comprising multiple subunits and many cofactors, cytochrome b(6)f from the chloroplast of the green alga Chlamydomonas reinhardtii and cytochrome bc(1) from beef heart mitochondria. We show that these MP/APol complexes can be readily analyzed by MALDI-TOF-MS; most of the subunits and some lipids and cofactors were identified. APols alone, even ionic ones, had no deleterious effects on MS signals and were not detected in mass spectra. Thus, the combination of MP stabilization by APols and MS analyses provides an interesting new approach to investigating supramolecular interactions in biological membranes. PMID:22703540

  2. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory

    PubMed Central

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A.; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C.J.; Nassif, Xavier; Armengaud, Jean

    2014-01-01

    Whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640–12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. PMID:23916798

  3. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  4. Qualitative and quantitative analysis on chemical constituents from Curculigo orchioides using ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    He, Yongjing; Dong, Xin; Jia, Xiaoxuan; Li, Mei; Yuan, Tingting; Xu, Hongtao; Qin, Luping; Han, Ting; Zhang, Qiaoyan

    2015-01-01

    A rapid ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF/MS) method was developed for qualitative and quantitative determination of constituents in the rhizome of Curculigo orchioides. Qualitative analysis was performed on a Waters ACQUITY UHPLC @ HSS T3 column (1.8 ?m 100 × 2.1mm) using gradient elution with mobile phase of 0.1% formic acid and acetonitrile. Quantitative analysis was performed on an Agilent ZORBAX Eclipse plus C18 column (1.7 ?m 100 × 2.1mm) using gradient elution with mobile phase of 0.1% acetic acid and acetonitrile for at least 20 min. Quadrupole TOF/MS in either full scan mode or extracted ion mode was used for qualitative and quantitative analysis of the constituents. According to the mass spectrometric fragmentation mechanism and UHPLC-ESI-Q-TOF-MS data, chemical structures of 45 constituents in the rhizome of Curculigo orchioides, including 19 phenols and phenolic glycosides, 16 lignans and lignan glycosides, 8 triterpenoid saponins, one flavone and one sesquiterpene, were identified tentatively on-line without the time-consuming process of isolation. In addition, 8 phenolic glycosides including 5-hydroxymethylfurfural (HMF), 2-hydroxy-5-(2-hydroxyethyl) phenyl-?-D-glucopyranoside (HPG), anacardoside (ACD), orcinol glucoside (OGD), orcinol-1-O-?-D-apiofuranosyl-(1 ? 6)-?-D-glucopyranoside (OAG), 2,6-dimethoxybenzoic acid (DBA), curculigoside (CUR) and curculigine A (CCL) were quantitated in 11 collected samples and 10 commercial samples from different providers. The results show that UHPLC-ESI-Q-TOF-MS is a viable method for analysis and quality evaluation of the constituents from the rhizome of Curculigo orchioides. PMID:25305598

  5. Sequence analysis of styrenic copolymers by tandem mass spectrometry.

    PubMed

    Yol, Aleer M; Janoski, Jonathan; Quirk, Roderic P; Wesdemiotis, Chrys

    2014-10-01

    Styrene and smaller molar amounts of either m-dimethylsilylstyrene (m-DMSS) or p-dimethylsilylstyrene (p-DMSS) were copolymerized under living anionic polymerization conditions, and the compositions, architectures, and sequences of the resulting copolymers were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem mass spectrometry (MS(2)). MS analysis revealed that linear copolymer chains containing phenyl-Si(CH3)2H pendants were the major product for both DMSS comonomers. In addition, two-armed architectures with phenyl-Si(CH3)2-benzyl branches were detected as minor products. The comonomer sequence in the linear chains was established by MS(2) experiments on lithiated oligomers, based on the DMSS content of fragments generated by backbone C-C bond scissions and with the help of reference MS(2) spectra obtained from a polystyrene homopolymer and polystyrene end-capped with a p-DMSS block. The MS(2) data provided conclusive evidence that copolymerization of styrene/DMSS mixtures leads to chains with a rather random distribution of the silylated comonomer when m-DMSS is used, but to chains with tapered block structures, with the silylated units near the initiator, when p-DMSS is used. Hence, MS(2) fragmentation patterns permit not only differentiation of the sequences generated in the synthesis, but also the determination of specific comonomer locations along the polymer chain. PMID:25181590

  6. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 ?g kg(-1) was obtained for DCD with a linear working range from 100 to 10000 ?g kg(-1) and a satisfactory correlation coefficient (R(2)) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD?=?3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control. Graphical Abstract ?. PMID:25930094

  7. OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139 and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay

    PubMed Central

    2014-01-01

    Background Cholera is an acute diarrheal disease caused by Vibrio cholerae. Outbreaks are caused by a genetically homogenous group of strains from serogroup O1 or O139 that are able to produce the cholera toxin. Rapid detection and identification of these epidemic strains is essential for an effective response to cholera outbreaks. Results The use of ferulic acid as a matrix in a new MALDI-TOF MS assay increased the measurable mass range of existing MALDI-TOF MS protocols for bacterial identification. The assay enabled rapid discrimination between epidemic V. cholerae O1/O139 strains and other less pathogenic V. cholerae strains. OmpU, an outer membrane protein whose amino acid sequence is highly conserved among epidemic strains of V. cholerae, appeared as a discriminatory marker in the novel MALDI-TOF MS assay. Conclusions The extended mass range of MALDI-TOF MS measurements obtained by using ferulic acid improved the screening for biomarkers in complex protein mixtures. Differences in the mass of abundant homologous proteins due to variation in amino acid sequences can rapidly be examined in multiple samples. Here, a rapid MALDI-TOF MS assay was developed that could discriminate between epidemic O1/O139 strains and other less pathogenic V. cholerae strains based on differences in mass of the OmpU protein. It appeared that the amino acid sequence of OmpU from epidemic V. cholerae O1/O139 strains is unique and highly conserved. PMID:24943244

  8. Analysis of RNA cleavage by MALDI-TOF mass spectrometry.

    PubMed

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2013-01-01

    A method of analysis is presented that utilizes matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to monitor the kinetics and products of RNA cleavage, by use of a program designed to mass-match observed MS peaks with predicted RNA cleavage products. The method is illustrated through application to the study of targeted oxidation of RNA stem loops from HIV-1 Rev Response Element mRNA (RRE RNA) and ribosomal 16S A-site RNA (16S RNA) by metallonucleases. Following incubation of each RNA with catalysts and/or redox co-reactants, reaction mixtures were desalted, and MALDI-TOF MS was used to monitor both time-resolved formation of cleavage products and disappearance of full-length RNA. For each RNA, a unique list was generated that contained the predicted masses of both the full-length, and all of the possible RNA cleavage fragments that resulted from the combination of all possible cleavage sites and each of the six expected overhangs formed at nascent termini adjacent to the cleavage sites. The overhangs corresponded to 2',3'-cyclic phosphate, 3'-phosphate, 3'-phosphoglycolate, 5'- hydroxyl and 5'- phosphate, which corresponded to differing oxidative, hydrolytic, and/or 2'-OH-mediated-endonucleolytic modes of scission. Each mass spectrum was compared with a corresponding list of predicted masses, and peaks were rapidly assigned by use of a Perl script, with a mass-matching tolerance of 200 ppm. Both time-dependent cleavage mediated by metallonucleases and MALDI-TOF-induced fragmentation were observed, and these were distinguished by time-dependent experiments. The resulting data allowed a semi-quantitative assessment of the rate of formation of each overhang at each nucleotide position. Limitations included artifactual skewing of quantification by mass bias, a limited mass range for quantification, and a lack of detection of secondary cleavage products. Nevertheless, the method presented herein provides a rapid, accurate, highly-detailed and semi-quantitative analysis of RNA cleavage that should be widely applicable. PMID:22941655

  9. Analysis of RNA cleavage by MALDI-TOF mass spectrometry

    PubMed Central

    Joyner, Jeff C.; Keuper, Kevin D.; Cowan, J. A.

    2013-01-01

    A method of analysis is presented that utilizes matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to monitor the kinetics and products of RNA cleavage, by use of a program designed to mass-match observed MS peaks with predicted RNA cleavage products. The method is illustrated through application to the study of targeted oxidation of RNA stem loops from HIV-1 Rev Response Element mRNA (RRE RNA) and ribosomal 16S A-site RNA (16S RNA) by metallonucleases. Following incubation of each RNA with catalysts and/or redox co-reactants, reaction mixtures were desalted, and MALDI-TOF MS was used to monitor both time-resolved formation of cleavage products and disappearance of full-length RNA. For each RNA, a unique list was generated that contained the predicted masses of both the full-length, and all of the possible RNA cleavage fragments that resulted from the combination of all possible cleavage sites and each of the six expected overhangs formed at nascent termini adjacent to the cleavage sites. The overhangs corresponded to 2?,3?-cyclic phosphate, 3?-phosphate, 3?-phosphoglycolate, 5?- hydroxyl and 5?- phosphate, which corresponded to differing oxidative, hydrolytic, and/or 2?-OH-mediated-endonucleolytic modes of scission. Each mass spectrum was compared with a corresponding list of predicted masses, and peaks were rapidly assigned by use of a Perl script, with a mass-matching tolerance of 200 ppm. Both time-dependent cleavage mediated by metallonucleases and MALDI-TOF-induced fragmentation were observed, and these were distinguished by time-dependent experiments. The resulting data allowed a semi-quantitative assessment of the rate of formation of each overhang at each nucleotide position. Limitations included artifactual skewing of quantification by mass bias, a limited mass range for quantification, and a lack of detection of secondary cleavage products. Nevertheless, the method presented herein provides a rapid, accurate, highly-detailed and semi-quantitative analysis of RNA cleavage that should be widely applicable. PMID:22941655

  10. Detecting monoclonal immunoglobulins in human serum using mass spectrometry.

    PubMed

    Mills, John R; Barnidge, David R; Murray, David L

    2015-06-15

    Established guidelines from the International Myeloma Working Group recommend diagnostic screening for patients suspected of plasma cell proliferative disease using protein electrophoresis (PEL), free light chain measurements and immunofixation electrophoresis (IFE) of serum and urine in certain cases. Plasma cell proliferative disorders are generally classified as monoclonal gammopathies given most are associated with the excess secretion of a monoclonal immunoglobulin or M-protein. In clinical practice, the M-protein is detected in a patients' serum by the appearance of a distinct protein band migrating within regions typically occupied by immunoglobulins. Given each M-protein is comprised by a sequence of amino acids pre-defined by somatic recombination unique to each clonal plasma cell, the molecular mass of the M-protein can act as a surrogate marker. We established a mass spectrometry based method to assign molecular mass to the immunoglobulin light chain of the M-protein and used this to detect the presence of M-proteins. Our method first enriches serum for immunoglobulins, followed by reduction to separate light chains from heavy chains, followed by microflow LC-ESI-Q-TOF MS. The multiply charged light chain ions are converted to their molecular mass and reconstructed peak area calculations are used for quantification. Using this method, we term "monoclonal immunoglobulin Rapid Accurate Molecular Mass" or miRAMM, the presence of M-proteins can be reliably detected with superior sensitivity compared to current gel-based PEL and IFE techniques. PMID:25916620

  11. Novel Approach for Differentiating Shigella Species and Escherichia coli by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Khot, Prasanna D.

    2013-01-01

    Shigella species are so closely related to Escherichia coli that routine matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) cannot reliably differentiate them. Biochemical and serological methods are typically used to distinguish these species; however, “inactive” isolates of E. coli are biochemically very similar to Shigella species and thus pose a greater diagnostic challenge. We used ClinProTools (Bruker Daltonics) software to discover MALDI-TOF MS biomarker peaks and to generate classification models based on the genetic algorithm to differentiate between Shigella species and E. coli. Sixty-six Shigella spp. and 72 E. coli isolates were used to generate and test classification models, and the optimal models contained 15 biomarker peaks for genus-level classification and 12 peaks for species-level classification. We were able to identify 90% of E. coli and Shigella clinical isolates correctly to the species level. Only 3% of tested isolates were misidentified. This novel MALDI-TOF MS approach allows laboratories to streamline the identification of E. coli and Shigella species. PMID:23985919

  12. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fangous, Marie-Sarah; Mougari, Faiza; Gouriou, Stéphanie; Calvez, Elodie; Raskine, Laurent; Cambau, Emmanuelle; Payan, Christopher; Héry-Arnaud, Geneviève

    2014-09-01

    Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs. PMID:25009048

  13. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of beta-hemolytic streptococci

    PubMed Central

    Zhou, Chunmei; Tao, Lili; Ma, Jian; Ye, Xiangru; Huang, Shenglei; Ma, Yan; Shan, Yuzhang

    2015-01-01

    Objective Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as promising technology for species identification. The purpose of this investigation was to compare the performance of MS and the traditional method for identification of beta-hemolytic streptococci (BHS). Methods Clinical BHS isolates were identified by the BD Phoenix SMIC/ID Streptococcal panels, and two MALDI-TOF MS platforms: the VITEK MS and the Bruker MALDI Biotyper systems respectively. In case of discordant results, 16sRNA sequencing was performed to provide the reference ID. Results A total of 96 isolates of BHS were analyzed. Thirty-six isolates (20.8%) were re-tested by BD Phoenix for identification failure; and four isolates (4.2%) were rerun on the Bruker system for low identification score. No isolate need a second run for identification by Vitek MS system. Overall, BD Phoenix, BioTyper and Vitek MS automated system accurately identified 76 strains (79.2%), 91 (94.7%) strains and 92 (95.8%) strains, respectively. Conclusions Our study suggests that MALDI-TOF MS is a superior method to conventional phenotypic methods for BHS identification. PMID:25973224

  14. Classification Algorithm for Subspecies Identification within the Mycobacterium abscessus Species, Based on Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fangous, Marie-Sarah; Mougari, Faiza; Gouriou, Stéphanie; Calvez, Elodie; Raskine, Laurent; Cambau, Emmanuelle; Payan, Christopher

    2014-01-01

    Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs. PMID:25009048

  15. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry.

    PubMed

    Serna, Jorge; García-Seisdedos, David; Alcázar, Alberto; Lasunción, Miguel Ángel; Busto, Rebeca; Pastor, Óscar

    2015-07-01

    Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins. PMID:26004846

  16. Mass Spectrometry-Based Metabolite Profiling in the Mouse Liver following Exposure to Ultraviolet B Radiation

    PubMed Central

    Park, Hye Min; Shon, Jong Cheol; Lee, Mee Youn; Liu, Kwang-Hyeon; Kim, Jeong Kee; Lee, Sang Jun; Lee, Choong Hwan

    2014-01-01

    Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light. PMID:25275468

  17. Studies on substantially increased proteins in follicular fluid of bovine ovarian follicular cysts using 2-D PAGE and MALDI-TOF MS

    PubMed Central

    Maniwa, Jiro; Izumi, Shunsuke; Isobe, Naoki; Terada, Takato

    2005-01-01

    Background The objective of this study was to identify substantially increased proteins in bovine cystic follicular fluid (FF) in order to clarify the pathology and etiology of bovine ovarian follicular cysts (BOFC). Methods Proteins in normal and cystic FF samples were subjected to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and were compared using silver stained gel images with PDQuest image analysis software. Peptides from these increased spots were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and were identified based on the NCBI database by a peptide mass fingerprinting method. Results Comparative proteomic analysis showed 8 increased protein spots present in cystic FF. MS analysis and database searching revealed that the increased proteins in cystic FF were bovine mitochondrial f1-atpase (BMFA), erythroid associated factor (EAF), methionine synthase (MeS), VEGF-receptor, glyceraldehydes 3-phosphate dehydrogenase (GAPDH), heat shock protein 70 (HSP70), ?-lactoglobulin (BLG) and succinate dehydrogenase Ip subunit (SD). Conclusion Our results suggest that these proteins are overexpressed in BOFC, and that they may play important roles in the pathogenesis of BOFC. Furthermore, these proteins in the FF could be useful biomarkers for BOFC. PMID:15941490

  18. Direct Bacterial Identification in Positive Blood Cultures by Use of Two Commercial Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Systems

    PubMed Central

    Chen, Jonathan H. K.; Ho, Pak-Leung; Kwan, Grace S. W.; She, Kevin K. K.; Siu, Gilman K. H.; Cheng, Vincent C. C.; Yuen, Kwok-Yung

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service. PMID:23515548

  19. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    PubMed

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients with prosthetic joints, providing species-level identification that may inform culture interpretation of pathogens versus contaminants. PMID:25533615

  20. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections.

    PubMed

    Ghosh, A K; Paul, S; Sood, P; Rudramurthy, S M; Rajbanshi, A; Jillwin, T J; Chakrabarti, A

    2015-04-01

    Few studies have systematically standardised and evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of yeasts from bloodstream infections. This is rapidly becoming pertinent for early identification of yeasts and appropriate antifungal therapy. We used 354 yeast strains identified by polymerase chain reaction (PCR) sequencing for standardisation and 367 blind clinical strains for validation of our MALDI-TOF MS protocols. We also evaluated different sample preparation methods and found the on-plate formic acid extraction method as most cost- and time-efficient. The MALDI-TOF assay correctly identified 98.9% of PCR-sequenced yeasts. Novel main spectrum projections (MSP) were developed for Candida auris, C. viswanathii and Kodamaea ohmeri, which were missing from the Bruker MALDI-TOF MS database. Spectral cut-offs computed by receiver operating characteristics (ROC) analysis showed 99.4% to 100% accuracy at a log score of ?1.70 for C. tropicalis, C. parapsilosis, C. pelliculosa, C. orthopsilosis, C. albicans, C. rugosa, C. guilliermondii, C. lipolytica, C. metapsilosis, C. nivariensis. The differences in the species-specific scores of our standardisation and blind validation strains were not statistically significant, implying the optimal performance of our test protocol. The MSPs of the three new species also were validated. We conclude that MALDI-TOF MS is a rapid, accurate and reliable tool for identification of bloodstream yeasts. With proper standardisation, validation and regular database expansion, its efficiency can be further enhanced. PMID:25658527

  1. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-07-22

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques. PMID:26070716

  2. MALDI-TOF MS and chemometric based identification of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species.

    PubMed

    Sousa, Clara; Botelho, João; Silva, Liliana; Grosso, Filipa; Nemec, Alexandr; Lopes, João; Peixe, Luísa

    2014-07-01

    MALDI-TOF MS is becoming the technique of choice for rapid bacterial identification at species level in routine diagnostics. However, some drawbacks concerning the identification of closely related species such as those belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex lead to high rates of misidentifications. In this work we successfully developed an approach that combines MALDI-TOF MS and chemometric tools to discriminate the six Acb complex species (A. baumannii, Acinetobacter nosocomialis, Acinetobacter pittii, A. calcoaceticus, genomic species "Close to 13TU" and genomic species "Between 1 and 3"). Mass spectra of 83 taxonomically well characterized clinical strains, reflecting the breadth of currently known phenetic diversity within the Acb complex, were achieved from intact cells and cell extracts and analyzed with hierarchical cluster analysis (HCA) and partial least squares discriminant analysis (PLSDA). This combined approach lead to 100% of correct species identification using mass spectra obtained from intact cells. Moreover, it was possible to discriminate two Acb complex species (genomic species "Close to 13TU" and genomic species "Between 1 and 3") not included in the MALDI Biotyper database. PMID:24877727

  3. Diagnostic ion filtering strategy for chemical characterization of Guge Fengtong Tablet with high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Zeng, Su-Ling; Liu, Xin-Guang; Lai, Chang-Jiang-Sheng; Liu, E-Hu; Li, Ping

    2015-05-01

    The present study was designed to characterize the chemical constituents of Guge Fengtong Tablet (GGFTT). Based on the chromatographic retention behavior, fragmentation pathways of chemical components and the published literatures, a diagnostic ion filtering strategy with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-Q-TOF/MS) was established to identify the multiple bioactive constituents of GGFTT. The rapid identification of forty-seven components, including 18 phenolic acids, 8 saponins, 14 gingerol-related compounds, and 7 diarylhepatonoids, was accomplished using this newly developed method. The coupling of HPLC-ESI-Q-TOF/MS with the diagnostic ion filtering strategy was useful and efficient for the in-depth structural elucidation of chemical compounds of GGFTT. PMID:25986289

  4. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS.

    PubMed

    Grace, Mary H; Warlick, Charles W; Neff, Scott A; Lila, Mary Ann

    2014-09-01

    Preparative isolation of complex mixtures of compounds from walnut polar extracts was established by a combination of high-speed counter-current chromatography (HSCCC) and electrospray ionization-ion trap-time of flight mass spectrometry (ESI-IT-TOF-MS). Compounds were isolated after a solvent optimisation selection based on solute distribution in a biphasic solvent system. Isolation was achieved through one or two successive HSCCC runs, and final purification on Sephadex LH-20. Isolated compounds included ellagitannins (1-11), gallic acid (12), dicarboxylic acid glucosides (13-15), hydrojuglone glucoside (16), catechin (17), procyanidin B2 (18), and megasterone glucosides (19-20). Praecoxin D (4) was isolated for the first time from walnut, while praecoxin A methyl ester (5) and glansreginin A n-butyl ester (14) are newly identified compounds. The purity and identity of isolated compounds were confirmed by NMR and HPLC-ESI-MS/MS. These results provided a foundation for in depth characterisation of walnut compounds and offered an efficient strategy for isolation of potentially health-relevant phytochemicals from walnuts. PMID:24731336

  5. QSRR using evolved artificial neural network for 52 common pharmaceuticals and drugs of abuse in hair from UPLC-TOF-MS.

    PubMed

    Noorizadeh, Hadi; Farmany, Abbas; Narimani, Hojat; Noorizadeh, Mehrab

    2013-05-01

    A quantitative structure-retention relationship (QSRR) study based on an artificial neural network (ANN) was carried out for the prediction of the ultra-performance liquid chromatography-Time-of-Flight mass spectrometry (UPLC-TOF-MS) retention time (RT) of a set of 52 pharmaceuticals and drugs of abuse in hair. The genetic algorithm was used as a variable selection tool. A partial least squares (PLS) method was used to select the best descriptors which were used as input neurons in neural network model. For choosing the best predictive model from among comparable models, square correlation coefficient R(2) for the whole set calculated based on leave-group-out predicted values of the training set and model-derived predicted values for the test set compounds is suggested to be a good criterion. Finally, to improve the results, structure-retention relationships were followed by a non-linear approach using artificial neural networks and consequently better results were obtained. This also demonstrates the advantages of ANN. PMID:21905247

  6. UPLC Q-TOF/MS-Based Metabolic Profiling of Urine Reveals the Novel Antipyretic Mechanisms of Qingkailing Injection in a Rat Model of Yeast-Induced Pyrexia.

    PubMed

    Gao, Xiaoyan; Guo, Mingxing; Peng, Long; Zhao, Baosheng; Su, Jiankun; Liu, Haiyu; Zhang, Li; Bai, Xu; Qiao, Yanjiang

    2013-01-01

    Fever is one of the most common clinical symptoms of many diseases. Qingkailing (QKL) injection is widely used in China as a clinical emergency medicine due to its good antipyretic effects. It is a herbal formula which is composed by eight kinds of traditional Chinese medicines (TCM). As a kind of typical multiple constituents and multiple actions of TCM, it is very difficult to elaborate the antipyretic mechanism by conventional pharmacological method. Metabonomics technique provides beneficial tool for this challenge. In this study, an ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) metabonomics method was developed to explore the changing process of biochemical substances in rats of yeast-induced pyrexia. Partial least squares discriminate analysis (PLS-DA) was used to distinguish the normal control group, the pyrexia model group, and the pyrexia model group treated by QKL injection. The potential biomarkers related to pyrexia were confirmed and identified. MetPA was used to find the possible metabolic pathways. The results indicated that the antipyretic effect of QKL injection on yeast-induced pyrexia rats was performed by repairing the perturbed metabolism of amino acids. PMID:23840267

  7. UHPLC UHD Q-TOF MS/MS analysis of the impact of sulfur fumigation on the chemical profile of Codonopsis Radix (Dangshen).

    PubMed

    Ma, Xiao-qing; Leung, Alexander Kai Man; Chan, Chi Leung; Su, Tao; Li, Wei-dong; Li, Su-mei; Fong, David Wang Fun; Yu, Zhi-Ling

    2014-01-21

    Over recent decades sulfur fumigation has been becoming abused in processing some freshly harvested Chinese medicinal herbs, although it is questioned whether sulfur fumigation can result in changes in efficacy and safety of the herbs. One of the herbs commonly processed by sulfur fumigation is Codonopsis Radix (Dangshen). A report showed that lobetyolin content in sulfur-fumigated Dangshen was lower than in air-dried Dangshen. Whereas there is no investigation designed to compare the chemical profiles of the sulfur-fumigated Dangshen and the air-dried Dangshen. In the present study, a rapid and versatile ultra-high-performance liquid chromatography coupled with ultra-high resolution quadrupole time-of-flight mass spectrometry (UHPLC UHD Q-TOF MS/MS) method was developed for comprehensive analysis of the chemical profiles of sulfur-fumigated and air-dried Dangshen samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) demonstrated that there were significant chemical differences between sulfur-fumigated and air-dried Dangshen samples. Among the changed components, 57 compounds were identified, in which 15 sulfur-containing compounds were detected only in sulfur-fumigated samples. The established methods were successfully applied to discriminate sulfur-fumigated Dangshen among commercial samples. Whether the chemical changes caused by sulfur fumigation affect the clinical efficacy and safety of Dangshen needs to be further investigated. PMID:24286102

  8. A combined XAFS, ESI TOF-MS and LIBD study on the formation of polynuclear Zr(IV), Th(IV) and Pu(IV) species

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Walther, C.; Brendebach, B.; Büchner, S.; Fuss, M.; Denecke, M. A.; Geckeis, H.

    2009-11-01

    The long term radiotoxicity of spent nuclear fuel disposed of in deep underground repositories after discharge from nuclear power reactors is determined by actinide elements, mainly plutonium. Water intrusion into the repository might cause container corrosion and leaching of the waste matrices, leading to the release of Pu and other actinides into the geological environment. Performance assessment for a future nuclear waste repository requires detailed knowledge on actinide aqueous chemistry in the aquifer surrounding the disposal site. Tetravalent actinides exhibit a strong tendency towards hydrolysis and subsequent polymerization and/or colloid formation. These species provide a potential pathway for migration of actinides away from the repository. Therefore, it is of fundamental interest to study their generation and properties in-situ. To this end, X-ray Absorption Fine Structure Spectroscopy (XAFS) at the INE-Beamline for actinide research at ANKA, Electrospray Mass-Spectrometry (ESI TOF-MS) and Laser Induced Breakdown Detection (LIBD) are combined at FZK-INE in a comprehensive attempt to characterize Zr(IV) (An(IV) analogue), Th(IV) and Pu(IV) polymerization and colloid formation.

  9. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; Tawalbeh, R.; Glenar, D.; Elsila, J. E.; Callahan, M.

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  10. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield ? (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage. PMID:24789774

  11. MALDI-TOF MS based identification of food-borne yeast isolates.

    PubMed

    Pavlovic, Melanie; Mewes, Anne; Maggipinto, Marzena; Schmidt, Wolfgang; Messelhäußer, Ute; Balsliemke, Joachim; Hörmansdorfer, Stefan; Busch, Ulrich; Huber, Ingrid

    2014-11-01

    In this study, food-borne yeast isolates (n=96), comprising at least 33 species, were identified using MALDI-TOF MS and conventional methods (API ID 32 C and Phoenix Yeast ID). Discrepancies of both methods were resolved by sequencing the ITS1-5.8S-rRNA-ITS2 region. For ten isolates, mainly classified to Rhodotorula and Trichosporon species, no clear final species identification was possible. 62 isolates were correctly identified to species level using either MALDI-TOF MS or conventional tests. 15 isolates were misidentified when applying conventional assays. In contrary, no species misidentifications were observed after MALDI-TOF MS based classification. In return, 16 isolates were not identifiable after matching their protein fingerprints against MALDI Biotyper 4.0.0.1 library. MALDI TOF MS in-house database update clearly improved the identification. In conclusion, the presented data suggest that MALDI-TOF MS is an appropriate platform for reliable classification and identification of food-borne yeast isolates. PMID:25193440

  12. Understanding Chemistry: Mass Spectrometry

    NSDL National Science Digital Library

    Clark, Jim

    This website, which is part of a larger project "ChemGuide" provides a nice introduction to mass spectrometry that is suitable for use by introductory analytical chemistry students. Content includes an introduction to the instrumentation, explanation of fragmentation and how it can be used to identify compound structure, the origin of the M+ and (M+1)+ peaks. Each section is succinct, well written and provides a simple example. As such the site should be useful to faculty introducing mass spectrometry in the analytical classroom and to chemistry students.

  13. Rapid, sensitive, and validated UPLC/Q-TOF-MS method for quantitative determination of vasicine in Adhatoda vasica and its in vitro culture

    PubMed Central

    Madhukar, Garg; Tamboli, Ennus Tajuddin; Rabea, Parveen; Ansari, S. H.; Abdin, M. Z.; Sayeed, Ahmad

    2014-01-01

    Background: Adhatoda vasica a perennial herb has been used in Ayurvedic and Unani system of medicines since last 2000 years and has been employed for the treatment of respiratory tract ailments. Objective: To develop and validate new, rapid, and highly sensitive high throughput ultra-performance liquid chromatography/quadrupole-time-of-flight mass-spectrometry (UPLC/Q-TOF-MS) method for the quantitative estimation of vasicine in the leaves and to establish in vitro cultures of Adhatoda vasica for production of vasicine. Materials and Methods: The chromatographic separation was achieved on a Waters ACQUITY UPLC™ BEH C8 (100.0 × 2.1 mm; 1.7 ?m) column packing using isocratic mobile phase consisting of acetonitrile: 20 mM ammonium acetate (90:10; v/v) in a multiple reactions monitoring mode using the transitions m/z 189.09 ? 171.08 for vasicine. Results: The vasicine was eluted at 2.58 ± 0.05 min and established a dynamic range of linearity over the concentration range of 1-1000 ng/ml (r2 = 0.999 ± 0.0005). The lower limit of detection and quantification was 0.68 and 1.0 ng/ml, respectively. There was no significant difference observed in the content of vasicine (0.92-1.04%w/w) among the eleven samples collected from different locations of India. The in vitro cultures developed showed that addition of extra 28 mM KNO3 and 100 mM NaCl in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) + benzyladenine (BA) + indole acetic acid (IAA) (1 ppm each) produces faster biomass and higher amount of quinazoline alkaloids. Conclusion: Rapid, efficient, and sensitive UPLC/Q-TOF-MS method was developed for the estimation of vasicine and an efficient protocol for development of in vitro cultures was proposed, which can be used at large scale for industrial production of vasicine using bioreactors. PMID:24914304

  14. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics

    PubMed Central

    2013-01-01

    Background Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method. Results Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature. Conclusions Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides. PMID:24373546

  15. Exploratory analysis of human urine by LC–ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols

    Microsoft Academic Search

    Rocío García-Villalba; Alegría Carrasco-Pancorbo; Ekaterina Nevedomskaya; Oleg A. Mayboroda; André M. Deelder; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez

    2010-01-01

    Olive oil polyphenols have important biological properties which closely depend on their bioavailability; it is, therefore,\\u000a essential to understand how polyphenols are absorbed, metabolized, and eliminated from the body. An analytical method based\\u000a on rapid-resolution liquid chromatography (RRLC) coupled with mass spectrometric detection with a time-of-flight analyzer\\u000a (RRLC–ESI-TOF MS) has been developed for analysis of the main olive oil phenolic

  16. Comparative study of laser induced breakdown spectroscopy and mass spectrometry for the analysis of cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Kokkinaki, O.; Mihesan, C.; Velegrakis, M.; Anglos, D.

    2013-07-01

    Analysis by laser-induced breakdown spectroscopy (LIBS) is compared, on the basis of a hybrid experimental set-up, with laser ablation time-of-flight mass spectrometry (LA-TOF-MS) for the characterization of materials relevant to cultural heritage. The present study focuses on the analysis of selected paint materials such as lithopone, a white inorganic pigment, and two synthetic organic paint formulations, lemon yellow and phthalocyanine blue. Optical emission spectra, obtained by LIBS, lead to rapid, straightforward identification of the elemental content of the paint samples while mass spectra yield, additionally to elemental analysis, complementary isotopic analysis and, more importantly, enable detection of molecules and molecular fragments, permitting a more complete structural and compositional characterization of composite materials. Mass spectra were recorded either simultaneously with the optical emission ones, or sequentially. The latter was preferred for materials having significantly lower fluence threshold for desorption/ionization relative to plasma formation resulting to optimum mass resolution and minimal surface damage. In all, the results of this study demonstrate the advantages of instrumentally complementing LIBS with TOF-MS in relation to applications in cultural heritage materials analysis, with exciting prospects when laser ablation sampling can be carried out under ambient atmosphere.

  17. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat

    PubMed Central

    2010-01-01

    Background Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF × SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. Results At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. Conclusions PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat. PMID:20573275

  18. Isotope dilution mass spectrometry

    Microsoft Academic Search

    Klaus G. Heumann

    1992-01-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g.

  19. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  20. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  1. Tissue-specific metabolites profiling and quantitative analyses of flavonoids in the rhizome of Belamcanda chinensis by combining laser-microdissection with UHPLC-Q/TOF-MS and UHPLC-QqQ-MS.

    PubMed

    Chen, Yu Jie; Liang, Zhi Tao; Zhu, Yan; Xie, Guo Yong; Tian, Mei; Zhao, Zhong Zhen; Qin, Min Jian

    2014-12-01

    The rhizome of Belamcanda chinensis (L.) DC. is a traditionally used medicinal material in China. Due to increasing demand, B. chinensis has been cultivated widely, and thus the study on its rational utilization of medicinal part and guidelines for the optimal cultivation and harvest is an important issue. Considering flavonoids were the main bioactive secondary metabolites of B. chinensis, fluorescence microscopy, laser microdissection (LMD), ultra-high performance liquid chromatography-quadrupole/time-of-flight-mass spectrometry (UHPLC-Q/TOF-MS), and UHPLC coupled with triple quadrupole mass spectrometer (UHPLC-QqQ-MS) were applied to profile and determine flavonoids in various tissues in this study. Consequently, 43 peaks were detected by UHPLC-Q/TOF-MS, and 26 flavonoid compounds combined with seven triterpene compounds were identified or tentatively identified in the tissue extractions. The results indicated that the hydrophobic compounds, especially flavonoid or isoflavonoid aglycones and xanthone mainly accumulated in the cork, whereas the hydrophilic compounds, namely the flavonoid and isoflavonoid glycosides were usually found in the cortex or center (the part inside of endodermis). Samples of rhizomes from different growth ages and origins were simultaneously analyzed. It was shown that the bulb or lateral part of the rhizome generally possessed more total flavonoids than the vertical part or the primordium. The present study established a new practical method to evaluate the quality of the rhizome of B. chinensis and to explore the relationship between distribution patterns of secondary metabolites and growth years of plants, thus important information for cultivation and processing was provided. PMID:25159450

  2. Rapid Identification of Viridans Streptococci by Mass Spectrometric Discrimination?

    PubMed Central

    Friedrichs, C.; Rodloff, A. C.; Chhatwal, G. S.; Schellenberger, W.; Eschrich, K.

    2007-01-01

    Viridans streptococci (VS) are responsible for several systemic diseases, such as endocarditis, abscesses, and septicemia. Unfortunately, species identification by conventional methods seems to be more difficult than species identification of other groups of bacteria. The aim of the present study was to evaluate the use of cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) for the rapid identification of 10 different species of VS. A total of 99 VS clinical isolates, 10 reference strains, and 20 strains from our in-house culture collection were analyzed by MALDI-TOF-MS. To evaluate the mass-spectrometric discrimination results, all strains were identified in parallel by phenotypic and genotypic methods. MALDI-TOF-MS identified 71 isolates as the mitis group, 23 as the anginosus group, and 5 as Streptococcus salivarius. Comparison of the species identification results obtained by the MALDI-TOF-MS analyses and with the phenotypic/genotypic identification systems showed 100% consistency at the species level. Thus, MALDI-TOF-MS seems to be a rapid and reliable method for the identification of species of VS from clinical samples. PMID:17553974

  3. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry

    Microsoft Academic Search

    V. Schmidt; A. Jarosch; P. März; C. Sander; V. Vacata; W. Kalka-Moll

    Blood culture is probably the most significant specimen used for the diagnosis of bacterial infections, especially for bloodstream\\u000a infections. In the present study, we compared the resin-containing BD BACTEC™ Plus-Aerobic (Becton Dickinson), non-charcoal-containing\\u000a BacT\\/Alert® SA (bioMérieux), and charcoal-containing BacT\\/Alert® FA (bioMérieux) blood culture bottles with direct identification by matrix-assisted laser desorption ionization time-of-flight\\u000a mass spectrometry (MALDI-TOF MS). A total of

  4. Rapid identification of positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry using prewarmed agar plates.

    PubMed

    Bhatti, M M; Boonlayangoor, S; Beavis, K G; Tesic, V

    2014-12-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation. PMID:25232166

  5. Rapid Identification of Positive Blood Cultures by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Using Prewarmed Agar Plates

    PubMed Central

    Bhatti, M. M.; Boonlayangoor, S.; Beavis, K. G.

    2014-01-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation. PMID:25232166

  6. VMSL: Virtual Mass Spectrometry Laboratory

    NSDL National Science Digital Library

    2011-07-05

    This site presents a series of case studies that can be explored using modern mass spectrometry methods. The problem-solving nature of the site provides students a virtual laboratory experience that can supplement access to mass spectrometry instrumentation.

  7. A quick method for determination of psychoactive agents in serum and hair by using capillary electrophoresis and mass spectrometry.

    PubMed

    Wo?niakiewicz, Aneta; Wietecha-Pos?uszny, Renata; Wo?niakiewicz, Micha?; Bryczek, Ewelina; Ko?cielniak, Pawe?

    2015-07-10

    The aim of the research was to develop a new sensitive method for simultaneously the determination of psychoactive drugs: 1-benzylpiperazine, 7-aminoclonazepam, alprazolam, clonazepam, diazepam, estazolam, lorazepam and tetrazepam in human serum and hair samples. In the preparation step, microwave-assisted extraction (MAE) was used. Extracts were analyzed by means of capillary electrophoresis with mass spectrometry time-of-flight detection (CE-TOF-MS). In the validation study of the MAE/CE-TOF-MS analytical method, three concentration levels of analytes (10, 100 and 250 ng/mL for serum and 0.2, 2.2 and 5.6 ng/mL for hair) were taken into account. Such parameters as limit of detection (0.4-1.2 ng/mL for serum, 6.0-23.0 pg/mg for hair), limit of quantification (1.3-4.1 ng/mL for serum, 20.0-77.0 pg/mg for hair), precision (3.0-11.3% for serum, 2.4-14.2% for hair), accuracy of the assay (RE) (-8.0 to 12.0% for serum, -8.0 to 11.0% for hair), recovery (88.6-113.4% for serum, 86.1-107.4% for hair) and matrix effects (87.9-110.7% for serum, 85.1-108.4% for hair) were calculated for the studied compounds. Then, the MAE/CE-TOF-MS method was successfully applied to the analysis of hair samples taken from patients treated with benzodiazepines. PMID:25890213

  8. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nocardia Species?

    PubMed Central

    Verroken, A.; Janssens, M.; Berhin, C.; Bogaerts, P.; Huang, T.-D.; Wauters, G.; Glupczynski, Y.

    2010-01-01

    The identification of Nocardia species, usually based on biochemical tests together with phenotypic in vitro susceptibility and resistance patterns, is a difficult and lengthy process owing to the slow growth and limited reactivity of these bacteria. In this study, a panel of 153 clinical and reference strains of Nocardia spp., altogether representing 19 different species, were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). As reference methods for species identification, full-length 16S rRNA gene sequencing and phenotypical biochemical and enzymatic tests were used. In a first step, a complementary homemade reference database was established by the analysis of 110 Nocardia isolates (pretreated with 30 min of boiling and extraction) in the MALDI BioTyper software according to the manufacturer's recommendations for microflex measurement (Bruker Daltonik GmbH, Leipzig, Germany), generating a dendrogram with species-specific cluster patterns. In a second step, the MALDI BioTyper database and the generated database were challenged with 43 blind-coded clinical isolates of Nocardia spp. Following addition of the homemade database in the BioTyper software, MALDI-TOF MS provided reliable identification to the species level for five species of which more than a single isolate was analyzed. Correct identification was achieved for 38 of the 43 isolates (88%), including 34 strains identified to the species level and 4 strains identified to the genus level according to the manufacturer's log score specifications. These data suggest that MALDI-TOF MS has potential for use as a rapid (<1 h) and reliable method for the identification of Nocardia species without any substantial costs for consumables. PMID:20861335

  9. Application of gas chromatography time-of-flight mass spectrometry for target and non-target analysis of pesticide residues in fruits and vegetables.

    PubMed

    Cervera, M I; Portolés, T; Pitarch, E; Beltrán, J; Hernández, F

    2012-06-29

    In this work, the capability of gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF MS) for quantitative analysis of pesticide residues has been evaluated. A multiclass method for rapid screening of pesticides (insecticides, acaricides, herbicides and fungicides) in fruit and vegetable matrices has been developed and validated, including detection, identification and quantification of the analytes. To this aim, several food matrices were selected: high water content (apples, tomatoes and carrots), high acid content (oranges) and high oil content (olives) samples. The well known QuEChERS procedure was applied for extraction of pesticides, and matrix-matched calibration using relative responses versus internal standard was used for quantification. The sample extracts were analyzed by GC-TOF MS. Up to five ions using narrow window (0.02 Da)-extracted ion chromatograms at the expected retention time were monitored using a target processing method. The most abundant ion was used for quantification while the remaining ones were used for confirmation of the analyte identity. Method validation was carried out for 55 analytes in the five sample matrices tested at three concentrations (0.01, 0.05 and 0.5 mg/kg). Most recoveries were between 70% and 120% with relative standard deviations (RSDs) lower than 20% at 0.05 and 0.5mg/kg. At 0.01 mg/kg, roughly half of the pesticides could be satisfactorily validated due to sensitivity limitations of GC-TOF MS, which probably affected the ion ratios used for confirmation of identity. In the case of olive samples, results were not satisfactory due to the high complexity of the matrix. An advantage of TOF MS is the possibility to perform a non-target investigation in the samples by application of a deconvolution software, without any additional injection being required. Accurate-mass full-spectrum acquisition in TOF MS provides useful information for analytes identification, and has made feasible in this work the discovery of non-target imazalil, fluoranthene and pyrene in some of the samples analyzed. PMID:22608778

  10. Mass Spectrometry and Glycomics

    PubMed Central

    2010-01-01

    Abstract Glycosylation defines the adhesive properties of animal cell surfaces and the surrounding extracellular environments. Because cells respond to stimuli by altering glycan expression, glycan structures vary according to spatial location in tissue and temporal factors. These dynamic structural expression patterns, combined with the essential roles glycans play in physiology, drive the need for analytical methods for glycoconjugates. In addition, recombinant glycoprotein drug products represent a multibillion dollar market. Effective analytical methods are needed to speed the identification of new targets and the development of industrial glycoprotein products, both new and biosimilar. Mass spectrometry is an enabling technology in glycomics. This review summarizes mass spectrometry of glycoconjugate glycans. The intent is to summarize appropriate methods for glycans given their chemical properties as distinct from those of proteins, lipids, and small molecule metabolites. Special attention is given to the uses of mass spectral profiling for glycomics with respect to the N-linked, O-linked, ganglioside, and glycosaminoglycan compound classes. Next, the uses of tandem mass spectrometry of glycans are summarized. The review finishes with an update on mass spectral glycoproteomics. PMID:20443730

  11. Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies.

    PubMed

    Abbady, A Q; Al-Daoude, A; Al-Mariri, A; Zarkawi, M; Muyldermans, S

    2012-05-15

    The deployment of today's antibodies that are able to distinguish Brucella from the closely similar pathogens, such as Yersinia, is still considered a great challenge since both pathogens share identical LPS (lipopolysaccharide) O-ring epitopes. In addition, because of the great impact of Brucella on health and economy in many countries including Syria, much effort is going to the development of next generation vaccines, mainly on the identification of new immunogenic proteins of this pathogen. In this context, Brucella-specific nanobodies (Nbs), camel genetic engineered heavy-chain antibody fragments, could be of great value. Previously, a large Nb library was constructed from a camel immunized with heat-killed Brucella. Phage display panning of this 'immune' library with Brucella total lysate resulted in a remarkable fast enrichment for a Nb referred to as NbBruc02. In the present work, we investigated the main characteristics of this Nb that can efficiently distinguish under well-defined conditions the Brucella from other bacteria including Yersinia. NbBruc02 showed a strong and specific interaction with its antigen within the crude lysate as tested by a surface plasmon resonance (SPR) biosensor and it was also able to pull down its cognate antigen from such lysate by immuno-capturing. Using matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), NbBruc02 specific antigen was identified as chaperonin GroEL, also known as heat shock protein of 60 kDa (HSP-60), which represents a Brucella immunodominant antigen responsible of maintaining proteins folding during stress conditions. Interestingly, the antigen recognition by NbBruc02 was found to be affected by the state of GroEL folding. Thus, the Nb technology applied in the field of infectious diseases, e.g. brucellosis, yields two outcomes: (1) it generates specific binders that can be used for diagnosis, and perhaps treatment, and (2) it identifies the immunogenic candidate antigens for developing vaccines. PMID:22472910

  12. MALDI-TOF MS imaging of metabolites with a N-(1-naphthyl) ethylenediamine dihydrochloride matrix and its application to colorectal cancer liver metastasis.

    PubMed

    Wang, Jianing; Qiu, Shulan; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Wang, Jiyun; Zhang, Ning; Hou, Jian; He, Qing; Nie, Zongxiu

    2015-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a label-free technique for identifying multiplex metabolites and determining both their distribution and relative abundance in situ. Our previous study showed that N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) could act as a matrix for laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) detection of oligosaccharides in solution. In the present study, NEDC-assisted LDI-TOF MSI yielded many more endogenous compound peaks between m/z 60 and m/z 1600 than 9-aminoacridine (9-AA). Our results show that NEDC-assisted LDI-TOF MSI is especially well-suited for examining distributions of glycerophospholipids (GPs) in addition to low molecular weight metabolites below m/z 400. Particularly, NEDC matrix allowed the LDI-TOF MSI of glucose in animal tissue. Furthermore, NEDC-assisted LDI-TOF MSI was applied to a mouse model of colorectal cancer liver metastasis. We revealed the distinct spatio-molecular signatures of many detected compounds in tumor or tumor-bearing liver, and we found that taurine, glucose, and some GPs decreased in tumor-bearing liver as the tumor developed in liver. Importantly, we also found a glucose gradient in metastatic tumor foci for the first time, which further confirms the energy competition between tumors and liver remnant due to the Warburg effect. Our results suggest that NEDC-assisted LDI MSI provides an in situ label-free analysis of multiple glycerophospholipids and low molecular weight metabolites (including glucose) with abundant peaks and high spatial resolution. This will allow future application to in situ definition of biomarkers, signaling pathways, and disease mechanisms. PMID:25474421

  13. Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry.

    PubMed

    Rowell, Frederick; Seviour, John; Lim, Angelina Yimei; Elumbaring-Salazar, Cheryl Grace; Loke, Jason; Ma, Jan

    2012-09-10

    The ability of two mass spectrometric methods, surface-assisted laser desorption/ionization-time of flight-mass spectrometry (SALDI-TOF-MS) and direct analysis in real time (DART-MS), to detect the presence of seven common explosives (six nitro-organic- and one peroxide-type) in spiked latent fingermarks has been examined. It was found that each explosive could be detected with nanogram sensitivity for marks resulting from direct finger contact with a glass probe by DART-MS or onto stainless steel target plates using SALDI-TOF-MS for marks pre-dusted with one type of commercial black magnetic powder. These explosives also could be detected in latent marks lifted from six common surfaces (paper, plastic bag, metal drinks can, wood laminate, adhesive tape and white ceramic tile) whereas no explosive could be detected in equivalent pre-dusted marks on the surface of a commercial lifting tape by the DART-MS method due to high background interference from the tape material. The presence of TNT and Tetryl could be detected in pre-dusted latent fingermarks on a commercial lifting tape for up to 29 days sealed and stored under ambient conditions. PMID:22551694

  14. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  15. Mass Spectrometry and Glycomics

    Microsoft Academic Search

    Jasna Peter-Katalinic

    Mass spectrometry (MS) in biochemical and biophysical research of complex carbohydrates has to meet a number of challenges\\u000a if compared to other biomacromolecules, like proteins and nucleic acids. MS, as an universal and indispensible tool for analysis\\u000a of biological samples after introduction of soft ionization techniques, like Fast Atom Bombardment (FAB), electrospray (ESI)\\u000a and matrix-assisted laser desorption ionization (MALDI), allows

  16. Ellagitannin Composition of Blackberry As Determined by HPLC-ESI-MS and MALDI-TOF-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apache blackberries (Rubus sp.) were evaluated by HPLC-MS and MALDI-TOF-MS to identify ellagitannins present in the flesh, torus (receptacle tissue), and seeds. Most ellagitannins were only present or detectable in seed tissues. Ellagitannins identified by HPLC-MS in the seeds included pedunculagi...

  17. Laser probe mass spectrometry

    NASA Astrophysics Data System (ADS)

    Campana, Joseph E.

    1991-04-01

    Fourier transform mass spectrometry (FT/MSR) has been recognized as a powerful analytical technique for the determination of elemental compositions and the molecular structure of materials. The simultaneous measurement of all species, produced in a single event, in a Fourier transform mass spectrometer provides a natural combination with pulsed lasers, where the pulsed laser is used to ablate and ionize a portion of a sample. This unique combination of lasers with FTMS provides elemental and molecular information from inorganic and organic materials and from surface layers and from bulk materials. Microanalysis of materials, allowing spatially-resolved high-resolution mass spectra to be obtained, is possible with small laser spot sizes and optical systems for viewing samples inside the mass spectrometer. The advantages of FTMS are reviewed, and several examples of laser probe FTMS are illustrated to demonstrate applications of the technique to industrial problem solving.

  18. Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry.

    PubMed

    Umar, Arzu; Dalebout, Johannes C H; Timmermans, A Mieke; Foekens, John A; Luider, Theo M

    2005-07-01

    Appropriate methods for the analysis of microdissected solid tumour tissues by matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-TOF MS) are not yet well established. Optimisation of sample preparation was performed first on undissected tissue slices, representing approximately 200 000 cells, which were solubilised either in urea containing buffer, trifluoroethanol/NH4HCO3, 0.1% sodium dodecyl sulphate (SDS) or in 0.1% RapiGest solution, then trypsin digested and analysed by MALDI-TOF MS. Solubilisation in 0.1% SDS resulted in detection of the highest number of sample specific peak signals. Interestingly, there was little overlap in detectable peaks using the different buffers, implying that they can be used complementarily to each other. Additionally, we fractionated tryptic digests on a monolithic high-performance liquid chromatography column. Fractionation of tryptic digest from whole tissue sections resulted in a four-fold increase in the total number of peaks detected. To prove this principle, we used 0.1% SDS to generate peptide patterns from 2000 microdissected tumour and stromal cells from five different breast carcinoma tumours. The tumour and stroma specific peaks could be detected upon comparison of the peptide profiles. Identification of differentially expressed peaks by MALDI-TOF/TOF MS was performed on fractionated tryptic digests derived from a whole tissue slice. In conclusion, we describe a method that is suitable for direct peptide profiling on small amounts of microdissected cells obtained from breast cancer tissues. PMID:15892168

  19. Off-line combination of reversed-phase liquid chromatography and laser desorption/ionization time-of-flight mass spectrometry with seamless post-source decay fragment ion analysis for characterization of square-planar nickel(II) complexes.

    PubMed

    Rehulka, Pavel; Popkov, Alexander; Nádvorník, Milan; Planeta, Josef; Mazanec, Karel; Chmelík, Josef

    2006-04-01

    Characterization of square-planar nickel(II) complexes of the Schiff base of (S)-N-benzylproline (2-benzoylphenyl)amide and various amino acids that are used as efficient alpha-amino acids synthons was carried out using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) in off-line combination with liquid chromatography. A mixture of four square-planar nickel(II) complexes was separated using reversed-phase liquid chromatography (RPLC) and the separated fractions from the chromatographic run were spotted on the metal target directly from the column outlet using a lab-made sample deposition device. The separated fractions were then analyzed by LDI-TOF MS. Seamless postsource decay (sPSD) fragment ion analysis was used for their structural characterization, which made possible the confirmation of expected chemical structures of the analyzed compounds. The off-line combination of the separation by RPLC and analysis by LDI-TOF MS allowed successful separation, sensitive detection and structure elucidation of the square-planar nickel(II) complexes. PMID:16453277

  20. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    PubMed

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-01

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". PMID:26088782

  1. Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway.

    PubMed

    Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-01-01

    Characterization of nonfluorescent chlorophyll catabolites (NCCs) and dioxobilane-type nonfluorescent chlorophyll catabolite (DNCC) in peel extracts of ripened lemon fruits (Citrus limon L.) was performed by HPLC/ESI-high resolution-qTOF-MS method. Compounds were identified in samples on the basis of measured accurate mass, isotopic pattern, and characteristic fragmentation profile with an implemented software postprocessing routine. Three NCC structures already identified in other vegetal tissues were present in the lemon fruit peels (Cl-NCC1; Cl-NCC2; Cl-NCC4) while a new structure not defined so far was characterized (Cl-NCC3). This catabolite exhibits an exceptional arrangement of the peripheral substituents, allowing concluding that the preferences for the NCC modifications could be a species-related matter. PMID:25741450

  2. Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway

    PubMed Central

    Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-01-01

    Characterization of nonfluorescent chlorophyll catabolites (NCCs) and dioxobilane-type nonfluorescent chlorophyll catabolite (DNCC) in peel extracts of ripened lemon fruits (Citrus limon L.) was performed by HPLC/ESI-high resolution-qTOF-MS method. Compounds were identified in samples on the basis of measured accurate mass, isotopic pattern, and characteristic fragmentation profile with an implemented software postprocessing routine. Three NCC structures already identified in other vegetal tissues were present in the lemon fruit peels (Cl-NCC1; Cl-NCC2; Cl-NCC4) while a new structure not defined so far was characterized (Cl-NCC3). This catabolite exhibits an exceptional arrangement of the peripheral substituents, allowing concluding that the preferences for the NCC modifications could be a species-related matter. PMID:25741450

  3. Mass Spectrometry and Biotechnology Resource

    NSDL National Science Digital Library

    Ionsource is a website that provides access to an index of resources including tutorials, links to downloadable sites, jobs and conference information involving mass spectrometry and biotechnology subjects. Examples of tutorials include lessons on atomic mass and amino acid residue mass. For a review of mass spectrometry or biotechnology or for an introduction, this site provides a well-rounded source of information.

  4. Identification of Brucella by MALDI-TOF Mass Spectrometry. Fast and Reliable Identification from Agar Plates and Blood Cultures

    PubMed Central

    Ferreira, Laura; Vega Castaño, Silvia; Sánchez-Juanes, Fernando; González-Cabrero, Sandra; Menegotto, Fabiola; Orduña-Domingo, Antonio

    2010-01-01

    Background MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures. Methodology/Principal Findings We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct. Conclusions/Significance MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles. PMID:21151913

  5. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry.

    PubMed

    Li, Hui; Xia, Xi; Li, Xiaowei; Naren, Gaowa; Fu, Qin; Wang, Yang; Wu, Congming; Ding, Shuangyang; Zhang, Suxia; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong

    2015-02-01

    Campylobacter jejuni, an important foodborne microorganism, poses severe and emergent threats to human health as antibiotic resistance becomes increasingly prevalent. The mechanisms of drug resistance are hard to decipher, and little is known at the metabolic level. Here we apply metabolomic profiling to discover metabolic changes associated with amphenicol (chloramphenicol and florfenicol) resistance mutations of Campylobacter jejuni. An optimized sample preparation method was combined with ultra-high-performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS) and pattern recognition for the analysis of small-molecule biomarkers of drug resistance. UHPLC-triple quadrupole MS operated in multiple reaction monitoring mode was used for quantitative analysis of metabolic features from UHPLC-TOF/MS profiling. Up to 41 differential metabolites involved in glycerophospholipid metabolism, sphingolipid metabolism, and fatty acid metabolism were observed in a chloramphenicol-resistant mutant strain of Campylobacter jejuni. A panel of 40 features was identified in florfenicol-resistant mutants, demonstrating changes in glycerophospholipid metabolism, sphingolipid metabolism, and tryptophan metabolism. This study shows that the UHPLC-MS-based metabolomics platform is a promising and valuable tool to generate new insights into the drug-resistant mechanism of Campylobacter jejuni. PMID:25491530

  6. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification.

    PubMed

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  7. Identification of Leishmania at the species level with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Cassagne, C; Pratlong, F; Jeddi, F; Benikhlef, R; Aoun, K; Normand, A-C; Faraut, F; Bastien, P; Piarroux, R

    2014-06-01

    Matrix-assisted laser desorption ionization time-of-flightMALDI-TOF mass spectrometry (MS) is now widely recognized as a powerful tool with which to identify bacteria and fungi at the species level, and sometimes in a rapid and accurate manner. We report herein an approach to identify, at the species level, Leishmania promastigotes from in vitro culture. We first constructed a reference database of spectra including the main Leishmania species known to cause human leishmaniasis. Then, the performance of the reference database in identifying Leishmania promastigotes was tested on a panel of 69 isolates obtained from patients. Our approach correctly identified 66 of the 69 isolates tested at the species level with log (score) values superior to 2. Two Leishmania isolates yielded non-interpretable MALDI-TOF MS patterns, owing to low log (score) values. Only one Leishmania isolate of Leishmania peruviana was misidentified as the closely related species Leishmania braziliensis, with a log (score) of 2.399. MALDI-TOF MS is a promising approach, providing rapid and accurate identification of Leishmania from in vitro culture at the species level. PMID:24165542

  8. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  9. Application of MALDI-TOF mass spectrometry in screening and diagnostic research.

    PubMed

    Pusch, W; Kostrzewa, M

    2005-01-01

    During the last years, mass spectrometry has revolutionised protein biochemistry and has advanced to a superior tool for the identification and detailed analysis of peptides and proteins. The high throughput allowed by some mass spectrometry platforms has enabled the important step from analysis of individual proteins to proteomics. Recently, an additional field of mass spectrometry applications has emerged - namely screening and diagnostic research. In contrast to protein identification, screening applications have to detect analyte molecules of defined molecular weights which can be calculated beforehand, for example by means of chemical structures. Here, the accuracy and sensitivity of mass spectrometry has to be combined with the requirements of high-throughput analyses, in particular speed and automation. These criteria are especially fulfilled by state of the art matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) instruments. The first high throughput screening (HTS) application proved to be genotyping of single nucleotide polymorphisms. The same principle was later applied for several quality control issues, for example for oligonucleotides, peptide or compound libraries. This development has culminated in the screening and profiling of complex biomarker patterns in clinical proteomics to detect a molecular fingerprint for specific diseases in biological samples. Thus, mass spectrometry based methods are expected to enable a very early diagnosis of diseases with minimally invasive methods of investigation. This type of high end screening application has the potential to revolutionise the early diagnosis of many diseases. Here, we give an overview of the application of mass spectrometry in the fields of screening and diagnostic research. PMID:16101460

  10. Triple bioaffinity mass spectrometry concept for thyroid transporter ligands.

    PubMed

    Aqai, Payam; Fryganas, Christos; Mizuguchi, Mineyuki; Haasnoot, Willem; Nielen, Michel W F

    2012-08-01

    For the analysis of thyroid transporter ligands, a triple bioaffinity mass spectrometry (BioMS) concept was developed, with the aim at three different analytical objectives: rapid screening of any ligand, confirmation of known ligands in accordance with legislative requirements, and identification of emerging yet unknown ligands. These three purposes share the same biorecognition element, recombinant thyroid transport protein transthyretin (rTTR), and dedicated modes of liquid chromatography-mass spectrometry (LC-MS). For screening, a rapid and radiolabel-free competitive inhibition MS binding assay was developed with fast ultrahigh performance-liquid chromatography-electrospray ionization-triple-quadrupole-MS (UPLC-QqQ-MS) as the readout system. It uses the nonradioactive stable isotopic thyroid hormone (13)C(6)-L-thyroxine as the label of which the binding to rTTR is inhibited by any ligand such as thyroid drugs and thyroid endocrine disrupting chemicals (EDCs). To this end, rTTR is either used in solution or immobilized on paramagnetic microbeads. The concentration-dependent inhibition of the label by the natural thyroid hormone l-thyroxine (T4), as a model analyte, is demonstrated in water at part-per-trillion and in urine at part-per-billion level. For confirmation of identity of known ligands, rTTR was used for bioaffinity purification for confirmation of naturally present free T4 in urine. As a demonstrator for identification of unknown ligands, the same rTTR was used again but in combination with nano-UPLC-quadrupole time-of-flight-MS (nLC-Q-TOF-MS) and urine samples spiked with the model "unknown" EDCs triclosan and tetrabromobisphenol-A. This study highlights the potential of BioMS using one affinity system, both for rapid screening and for confirmation and identification of known and unknown emerging thyroid EDCs. PMID:22741556

  11. Rapid, sensitive and simultaneous determination of fluorescence-labeled designated substances controlled by the Pharmaceutical Affairs Law in Japan by ultra-performance liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry.

    PubMed

    Min, Jun Zhe; Hatanaka, Suguru; Toyo'oka, Toshimasa; Inagaki, Shinsuke; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2009-11-01

    A simultaneous determination method based on ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS) was developed for 16 "designated substances" (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan. These substances were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole at 60 degrees C for 2 h in 0.1 M borax (pH 9.3). The resulting fluorophores were well separated by reversed-phase chromatography using an Acquity UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1 mm i.d.) by isocratic elution with a mixture of water and acetonitrile-methanol (20:80) containing 0.1% formic acid. The separated derivatives were sensitively detected by both FL and TOF-MS. However, the determination of several designated substances by FL detection showed interference from endogenous substances in biological samples. Therefore, the determination in real samples was carried out by a combination of UPLC separation and ESI-TOF-MS detection. The structures of the designated substances were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. The calibration curves obtained from the peak area ratios of the internal standard (I.S.), i.e., 3-phenyl-1-propylamine, and the designated substances versus the injection amounts showed good linearity. The limits of detection (S/N = 3) and the limits of quantification (S/N = 10) in 0.1 mL of human plasma and urine for the present method were 0.30-150 pmol and 1.0-500 pmol, respectively. Good accuracy and precision (according to intraday and interday assays) were also obtained with the present procedure. This method was applied to analyses of human plasma, urine and real products. PMID:19756548

  12. Isotope Ratio Mass Spectrometry.

    PubMed

    Muccio, Zeland; Jackson, Glen P

    2009-02-01

    Isotope Ratio Mass Spectrometry (IRMS) is a specialized technique used to provide information about the geographic, chemical, and biological origins of substances. The ability to determine the source of an organic substance stems from the relative isotopic abundances of the elements which comprise the material. Because the isotope ratios of elements such as carbon, hydrogen, oxygen, sulfur, and nitrogen can become locally enriched or depleted through a variety of kinetic and thermodynamic factors, measurement of the isotope ratios can be used to differentiate between samples which otherwise share identical chemical compositions. Several sample introduction methods are now available for commercial isotope ratio mass spectrometers. Combustion is most commonly used for bulk isotopic analysis, whereas gas and liquid chromatography are predominately used for the real-time isotopic analysis of specific compounds within a mixture. Here, highlights of advances in instrumentation and applications within the last three years are provided to illustrate the impact of this rapidly growing area of research. Some prominent new applications include authenticating organic food produce, ascertaining whether or not African elephants are guilty of night-time raids on farmers' crops, and linking forensic drug and soil samples from a crime scene to a suspected point of origin. For the sake of brevity, we focus this Minireview on the isotope ratio measurements of lighter-elements common to organic sources; we do not cover the equally important field of inorganic isotope ratio mass spectrometry. PMID:19173039

  13. Quantitative biomedical mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Leenheer, Andrép; Thienpont, Linda M.

    1992-09-01

    The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

  14. Mass spectrometry of priority pollutants

    SciTech Connect

    Middleditch, B.S.; Hines, H.B.; Missler, S.R.

    1981-01-01

    This book presents information on the following subjects: anintroduction to gas chromatography; mass spectrometry; review of available methods for comparing spectra; selective ion monitoring; problems associated with the analysis of volatile samples and problems of data processing; use of mass spectrometry in environmental science, cosmo-chemistry, geochemistry, and the pharmaceutical and petrochemical industries; and modern mass spectrometers.

  15. The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system

    PubMed Central

    Zhou, Chunmei; Huang, Shenglei; Shan, Yuzhang; Ye, Xiangru

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed as a new-type soft ionization mass spectrometry in the recent year. Increasing number of clinical microbiological laboratories consider it as an innovate approach for bacterial identification. Methods A total of 876 clinical strains, comprising 52 species in 27 genus, were obtained from Fudan University Affiliated Zhongshan Hospital. We compared the identification accuracy of the Vitek MS system (bioMerieux, Marcy l’Etoile) to other conventional methods for bacterial identification. 16S rRNA gene sequencing was performed as a reference identification method in cases of discrepant results. Results The Vitek MS system consistently produced accurate results within minutes of loading, while conventional methods required several hours to produce identification results. Among the 876 isolates, the overall performance of Vitek MS was significantly better than the conventional method both for correct species identification (830, 94.7% vs. 746, 85.2%, respectively, P=0.000). Conclusions Compared to traditional identification methods, MALDI-TOF MS is a rapid, accurate and economical technique to enhance the clinical value of microorganism identification. PMID:24822117

  16. Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data.

    PubMed

    Wang, San-Yuan; Kuo, Ching-Hua; Tseng, Yufeng J

    2015-03-01

    Able to detect known and unknown metabolites, untargeted metabolomics has shown great potential in identifying novel biomarkers. However, elucidating all possible liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) ion signals in a complex biological sample remains challenging since many ions are not the products of metabolites. Methods of reducing ions not related to metabolites or simply directly detecting metabolite related (pure) ions are important. In this work, we describe PITracer, a novel algorithm that accurately detects the pure ions of a LC/TOF-MS profile to extract pure ion chromatograms and detect chromatographic peaks. PITracer estimates the relative mass difference tolerance of ions and calibrates the mass over charge (m/z) values for peak detection algorithms with an additional option to further mass correction with respect to a user-specified metabolite. PITracer was evaluated using two data sets containing 373 human metabolite standards, including 5 saturated standards considered to be split peaks resultant from huge m/z fluctuation, and 12 urine samples spiked with 50 forensic drugs of varying concentrations. Analysis of these data sets show that PITracer correctly outperformed existing state-of-art algorithm and extracted the pure ion chromatograms of the 5 saturated standards without generating split peaks and detected the forensic drugs with high recall, precision, and F-score and small mass error. PMID:25622715

  17. Evaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin Analysis

    PubMed Central

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely ?-cyano-4-hydroxycinnamic acid (CHCA), in combination with ?-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100–600) in the positive ion mode offers a “fingerprint” of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study. PMID:23300342

  18. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow injection fingerprints combined with principal component analysis.

    PubMed

    Gao, Boyan; Lu, Yingjian; Sheng, Yi; Chen, Pei; Yu, Liangli Lucy

    2013-03-27

    High-performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultraperformance liquid chromatograph with a quadrupole-time-of-flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min and could potentially be developed for high-throughput applications, whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time. PMID:23464755

  19. Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis.

    PubMed

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely ?-cyano-4-hydroxycinnamic acid (CHCA), in combination with ?-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100-600) in the positive ion mode offers a "fingerprint" of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study. PMID:23300342

  20. Rapid peptidomic profiling of peritoneal fluid by MALDI-TOF mass spectrometry for the identification of biomarkers of endometriosis.

    PubMed

    Siciliano, Rosa Anna; Mazzeo, Maria Fiorella; Spada, Valentina; Facchiano, Angelo; d'Acierno, Antonio; Stocchero, Matteo; De Franciscis, Pasquale; Colacurci, Nicola; Sannolo, Nicola; Miraglia, Nadia

    2014-08-11

    Abstract Peptidomic profiling of peritoneal fluid by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) may represent a promising, suitable, rapid method for early diagnosis and staging of endometriosis. In a case-control study, peritoneal fluid was collected from 23 patients affected by endometriosis (eight minimal/mild endometriosis and 15 moderate/severe endometriosis) and six "endometriosis free" women undergoing laparoscopy. MALDI-TOF mass spectra of the peptide fraction extracted from peritoneal fluid samples lead to identify biomarkers potentially suitable for discriminating between peritoneal fluid samples from women affected by minimal/mild endometriosis and those from women affected by moderate/severe endometriosis. Peptidomic analysis of peritoneal fluid samples may define putative peptide biomarkers suitable for staging endometriosis and improve our understanding of the pathogenesis of endometriosis. PMID:25111755

  1. Methane ice photochemistry and kinetic study using laser desorption time-of-flight mass spectrometry at 20 K.

    PubMed

    Bossa, J-B; Paardekooper, D M; Isokoski, K; Linnartz, H

    2015-06-24

    The ice photochemistry of pure methane (CH4) is studied at 20 K upon VUV irradiation from a microwave discharge H2 flow lamp. Laser Desorption Post-Ionization Time-Of-Flight Mass Spectrometry (LDPI TOF-MS) is used for the first time to determine branching ratios of primary reactions leading to CH3, CH2, and CH radicals, typically for fluences as expected in space. This study is based on a stable end-products analysis and the mass spectra are interpreted using an appropriate set of coupled reactions and rate constants. This yields clearly different values from previous gas phase studies. The matrix environment as well as the higher efficiency of reverse reactions in the ice clearly favor CH3 radical formation as the main first generation photoproduct. PMID:26073296

  2. Phylogenetic analysis of microalgae based on highly abundant proteins using mass spectrometry.

    PubMed

    Lee, Hae-Won; Roh, Seong Woon; Cho, Kichul; Kim, Kil-Nam; Cha, In-Tae; Yim, Kyung June; Song, Hye Seon; Nam, Young-Do; Oda, Tatsuya; Chung, Young-Ho; Kim, Soo Jung; Choi, Jong-Soon; Kim, Daekyung

    2015-01-01

    The blooms of toxic phototrophic microorganisms, such as microalgae and cyanobacteria, which are typically found in freshwater and marine environments, are becoming more frequent and problematic in aquatic systems. Due to accumulation of toxic algae, harmful algal blooms (HABs) exert negative effects on aquatic systems. Therefore, rapid detection of harmful microalgae is important for monitoring the occurrence of HABs. Mass spectrometry-based methods have become sensitive, specific techniques for the identification and characterization of microorganisms. Matrix-assisted laser desorption/ionization (MALDI) with time-of-flight (TOF) mass spectrometry (MS) allows us to measure a unique molecular fingerprint of highly abundant proteins in a microorganism and has been used for the rapid, accurate identification of bacteria and fungi in clinical microbiology. Here, we tested the specificity of MALDI-TOF MS using microalgal strains (Heterocapsa, Alexandrium, Nannochloropsis, Chaetoceros, Chlorella, and Dunaliella spp.). Our research suggested that this method was comparable in terms of the rapid identification of microalgea to conventional methods based on genetic information and morphology. Thus, this efficient mass spectrometry-based technique may have applications in the rapid identification of harmful microorganisms from aquatic environmental samples. PMID:25476355

  3. In vitro biotransformation of red ginseng extract by human intestinal microflora: metabolites identification and metabolic profile elucidation using LC-Q-TOF/MS.

    PubMed

    Wang, Huai-You; Hua, Hai-Ying; Liu, Xing-Yan; Liu, Ji-Hua; Yu, Bo-Yang

    2014-09-01

    Ginseng is an important and widely used herbal medicine in Asia and has gained popularity in the western countries. Ginseng products are usually administered orally, after which their complicated components are brought into contact with intestinal microflora in the alimentary tract and metabolized. The metabolic investigation of ginseng in intestinal tract is necessary for elucidating its pharmacological activities. However, most of the reports about the metabolism of ginseng with intestinal microflora are focused on single ginseng saponin with the whole action of ginseng extract ignored. In the present paper, in vitro biotransformation of red ginseng extract by human intestinal microflora was conducted, and a rapid liquid chromatography with time-of-flight mass spectrometry (LC-Q-TOF/MS) method was used for rapid identification of the metabolites and metabolic profile of ginseng saponins. A total of 37 ginseng saponins in red ginseng extract were characterized, 17 of which were assessed to be metabolized by human intestinal microflora. Also, 30 metabolites, mostly deglycosylated, were detected and identified in the biotransformed red ginseng extract, including 4 original ingredients of red ginseng, 6 ginsenoside lactate esters, and 2 glycosylated metabolites. The metabolic profile of ginseng saponins biotransformed by human intestinal microflora was elucidated based on the metabolite information. The results indicated that deglycosylation was the major metabolic pathway of saponins in red ginseng. The esterification and glycosylation reaction also occurred during the biotransformation. Our study indicated that there was some differences in the biotransformation of single ginseng saponin and red ginseng extract. It must be noted that the ginsenoside lactate esters were firstly found in the metabolites of ginsenosides. PMID:24973593

  4. HPLC-DAD-Q-TOF-MS/MS analysis and HPLC quantitation of chemical constituents in traditional Chinese medicinal formula Ge-Gen Decoction.

    PubMed

    Yan, Yan; Chai, Cheng-Zhi; Wang, Da-Wei; Yue, Xin-Yi; Zhu, Dan-Ni; Yu, Bo-Yang

    2013-06-01

    Ge-Gen Decoction (GGD) is a classical formula of traditional Chinese medicine. It is generally used for treating common cold, fever and influenza in China and South East Asia. In this study, a systematic method was established for the qualitative and quantitative analysis of the major constituents in GGD. For qualitative analysis, a method of liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) was developed for identification of multi-constituents. Based on the UV spectra, retention time and MS spectra, sixty compounds in GGD extract were identified or tentatively characterized by comparing with reference substances or literatures. According to the qualitative results, a new quantitative analysis method of GGD was established by HPLC-DAD. Fourteen representative compounds unequivocally identified were chosen as marker components which were derived from five herbs in GGD excluding Zingiberis Rhizoma Recens and Jujubae Fructus. The analytical method was validated through intra- and inter-day precision, repeatability and stability, and the R.S.D. was less than 3.18%, 4.48%, 3.36% and 3.54%, respectively. The LODs and the LOQs for the analytes were less than 1.06 and 3.12?gmL(-1), respectively. The overall recoveries ranged from 94.8% to 105.6%, with the R.S.D. ranging from 0.68% to 3.23%. Then the new method was applied to determine twelve batches of GGD commercial products of three dosage forms. The results indicated that the new approach was applicable in the routine analysis and quality control of GGD products. The study might provide a basis for quality control of GGD, and further study of GGD in vivo. PMID:23584078

  5. End-Group Characterization of Poly(O-benzyl-L-tyrosine) by NALDI-TOF MS

    SciTech Connect

    Pickel, Deanna L [ORNL; Messman, Jamie M [ORNL; Politakos, Nikolaos [ORNL; Avgeropoulos, Apostolos [ORNL

    2009-01-01

    The primary amine initiated polymerization of N-carboxyanhydrides of amino acids (NCAs) has been proposed to proceed by two mechanisms: normal amine mechanism and activated monomer mechanism. Recently, Hadjichristidis et al. showed that high vacuum techniques could be employed to synthesize poly(amino acid)s initiated with primary amines exclusively via the normal amine mechanism. Unfortunately, no end group characterization was reported. Herein we report the end group characterization of the amine-initiated polymerization of the NCA of O-benzyl-L-tyrosine by MALDI-TOF MS and NALDI TM-TOF MS. We show that when synthesized via high vacuum techniques the reaction proceeds exclusively by the normal amine mechanism. The activated monomer mechanism is detected in samples prepared by less rigorous techniques.

  6. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear MALDI-TOF mass spectrometry

    SciTech Connect

    Hack, Christopher A.; Benner, W. Henry

    2001-10-31

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF MS) spectra is presented. The method involves fitting a parabola to a plot of Dm vs. mass data where Dm is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to a CHCA matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.

  7. Novel strategy for typing Mycoplasma pneumoniae isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry coupled with ClinProTools.

    PubMed

    Xiao, Di; Zhao, Fei; Zhang, Huifang; Meng, Fanliang; Zhang, Jianzhong

    2014-08-01

    The typing of Mycoplasma pneumoniae mainly relies on the detection of nucleic acid, which is limited by the use of a single gene target, complex operation procedures, and a lengthy assay time. Here, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and to generate a classification model based on a genetic algorithm (GA) to differentiate between type 1 and type 2 M. pneumoniae isolates. Twenty-five M. pneumoniae strains were used to construct an analysis model, and 43 Mycoplasma strains were used for validation. For the GA typing model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra and the recognition capability value, which reflects the model's ability to correctly identify its component spectra, were all 100%. This model contained 7 biomarker peaks (m/z 3,318.8, 3,215.0, 5,091.8, 5,766.8, 6,337.1, 6,431.1, and 6,979.9) used to correctly identify 31 type 1 and 7 type 2 M. pneumoniae isolates from 43 Mycoplasma strains with a sensitivity and specificity of 100%. The strain distribution map and principle component analysis based on the GA classification model also clearly showed that the type 1 and type 2 M. pneumoniae isolates can be divided into two categories based on their peptide mass fingerprints. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for M. pneumoniae typing. PMID:24920781

  8. Multiplexed immunoassay: quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS.

    PubMed

    Wang, Kai-Yi; Chuang, Szu-An; Lin, Po-Chiao; Huang, Li-Shing; Chen, Shu-Hua; Ouarda, Saib; Pan, Wen-Harn; Lee, Ping-Ying; Lin, Chun-Cheng; Chen, Yu-Ju

    2008-08-15

    Taking advantage of efficient affinity extraction by surface-functionalized magnetic nanoparticles (MNPs) and accurate MALDI-TOF MS readout, we present a multiplexed immunoassay for simultaneous enrichment and quantitation of multiple disease-associated antigens, serum amyloid A (SAA), C-reactive protein (CRP), and serum amyloid P (SAP) from human serum. To obtain reproducible MALDI signal response with direct on-MNP detection, the seed-layer method improved homogeneity of the cocrystallization of MNPs and captured antigens. Our methodology demonstrated good quantitation linearity of targeted analytes (R(2) approximately 0.97) with reduced signal variation (RSD < 10%). The lower limit of quantitation is in the nanogram level with overall assay precision (intraday, 7.0%; interday, 11.3%) and accuracy (intraday, 6.3%; interday, 17.5%) including steps of nanoprobe extraction and MALDI-TOF MS analysis. This triplexed immunoassay showed overexpression of SAA and CRP in patients with cardiac catheterization or gastric cancer (P < 0.05), consistent with single-analyte ELISA and previous studies. Compared to the determination of disease onset by single protein quantitation, our multiplexed immunoassay revealed a distinct triplexed pattern in the control group, patients with gastric cancer, and cardiac catheterization. On the basis of the advantages of flexibility in nanoprobe preparation, high specificity and sensitivity, and rapid screening by MALDI-TOF MS, this platform may provide a new methodology for disease diagnosis. PMID:18642877

  9. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-06-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO + isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are not included in MEGAN 2.1. After a severe hailstorm event, 22 ion mass peaks (attributed to six compound classes plus some unknown compounds) showed an elevated flux for the two following days. The sum of monoterpene emissions was 4-23 times higher compared to emissions prior to the hailstorm while MBO emissions remained unchanged. If one heavy storm occurs at this site every month we calculate that the monthly monoterpene emissions (in mg compound m-2) would be underestimated by 40% if this disturbance source is not considered.

  10. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-12-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks, including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters, showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light- and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site-specific leaf cuvette measurements. While the modeled and measured MBO + isoprene fluxes agree well, the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are not included in MEGAN 2.1. After a severe hailstorm event, 22 ion mass peaks (attributed to six compound classes plus some unknown compounds) showed an elevated flux for the two following days. The sum of monoterpene emissions was 4-23 times higher compared to emissions prior to the hailstorm while MBO emissions remained unchanged. The monoterpene emission (in mg compound m-2) during this measurement period is underestimated by 40% if the effect of this disturbance source is not considered.

  11. Mass spectrometry of oligosaccharides.

    PubMed

    Zaia, Joseph

    2004-01-01

    Glycosylation is a common post-translational modification to cell surface and extracellular matrix (ECM) proteins as well as to lipids. As a result, cells carry a dense coat of carbohydrates on their surfaces that mediates a wide variety of cell-cell and cell-matrix interactions that are crucial to development and function. Because of the historical difficulties with the analysis of complex carbohydrate structures, a detailed understanding of their roles in biology has been slow to develop. Just as mass spectrometry has proven to be the core technology behind proteomics, it stands to play a similar role in the study of functional implications of carbohydrate expression, known as glycomics. This review summarizes the state of knowledge for the mass spectrometric analysis of oligosaccharides with regard to neutral, sialylated, and sulfated compound classes. Mass spectrometric techniques for the ionization and fragmentation of oligosaccharides are discussed so as to give the reader the background to make informed decisions to solve structure-activity relations in glycomics. PMID:14966796

  12. Mass spectrometry in ionospheric research.

    PubMed

    Ferguson, Eldon E

    2007-01-01

    Mass spectrometry played a key role in the development of the understanding of the earth's ionosphere. Of primary importance was its use for in situ atmospheric measurements of the ion and neutral composition of the atmosphere. Mass spectrometry has also played an essential role in the laboratory measurement of critical ionospheric molecular processes. Examples of both are given. PMID:17099890

  13. Analysis of synovial fluid in knee joint of osteoarthritis:5 proteome patterns of joint inflammation based on matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry

    Microsoft Academic Search

    Xiaohua Pan; Liling Huang; Jiakai Chen; Yong Dai; Xiaofen Chen

    Purpose  The purpose of this study was to use matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)\\u000a in osteoarthritis research. Our aim was to find differentially expressed disease-related and condition-specific peptide in\\u000a synovial fluid in the knee joint of patients suffering from osteoarthritis (OA), and to develop and validate the peptide classification\\u000a model for OA diagnosis.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Based on the American College of

  14. Quantitative profiling of perfluoroalkyl substances by ultrahigh-performance liquid chromatography and hybrid quadrupole time-of-flight mass spectrometry.

    PubMed

    Picó, Yolanda; Farré, Marinella; Barceló, Damià

    2015-06-01

    The accurate determination of perfluoroalkyl substances (PFSAs) in water, sediment, fish, meat, and human milk was achieved by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QqTOF-MS) with an ABSciex Triple TOF®. A group of 21 PFSAs was selected as target to evaluate the quantitative possibilities. Full scan MS acquisition data allows quantification at relevant low levels (0.1-50 ng L(-1) in water, 0.05-2 ng g(-1) in sediments, 0.01-5 ng g(-1) in fish and meat, and 0.005-2 ng g(-1) in human milk depending on the compound). Automatic information dependent acquisition product ion mass spectrometry (IDA-MS/MS) confirms the identity even for those compounds that presented only one product ion. The preparation of a homemade database using the extracted ion chromatogram (XIC) Manager of the software based upon retention time, accurate mass, isotopic pattern, and MS/MS library searching achieves not only the successful identification of PFSAs but also of some pharmaceuticals, such as acetaminophen, ibuprofen, salicylic acid, and gemfibrozid. Mean recoveries and relative standard deviation (RSD) were 67-99 % (9-16 % RSD) for water, 62-103 % (8-18 % RSD) for sediment, 60-95 % (8-17 % RSD) for fish, 64-95 % (8-15 % RSD) for meat, and 63-95 % (8-16 %) for human milk. The quantitative data obtained for 60 samples by UHPLC-QqTOF-MS agree with those obtained by LC-MS/MS with a triple quadrupole (QqQ). PMID:25633215

  15. Rapid determination of pesticide residues in fruits and vegetables, using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry.

    PubMed

    Sivaperumal, P; Anand, P; Riddhi, L

    2015-02-01

    A multiresidue method, based on the sample preparation by solid-phase extraction cartridges and detection by ultra-high-performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF-MS), was used for the analysis of 60 pesticides in vegetable and fruit samples. Quantitation by UHPLC/TOF-MS is accomplished by measuring the accurate mass of the protonated molecules [M+H](+). The mass accuracy typically obtained is routinely better than 2ppm. The rates of recovery for pesticides studied were satisfactory, ranging from 74% to 111% with a relative standard deviation (RSD) of less than 13.2%, at concentrations below 10?gkg(-1). The method limit of quantification (MLOQ) for most compounds was below the MRLs established by the Food Safety Standard Authority of India and the European Union. The uncertainty was determined using repeatability, recovery and calibration curves data for each pesticide. The method illustrated is suitable for routine quantitative analyses of pesticides in food samples. PMID:25172721

  16. Demonstration of single-flux-quantum readout circuits for time-of-flight mass spectrometry systems using superconducting strip ion detectors

    NASA Astrophysics Data System (ADS)

    Sano, Kyosuke; Takahashi, Yoshihiro; Yamanashi, Yuki; Yoshikawa, Nobuyuki; Zen, Nobuyuki; Ohkubo, Masataka

    2015-07-01

    We have been developing a superconducting time-of-flight mass spectrometry (TOF-MS) system that consists of a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter. In this study, we implement a prototype TOF-MS system using an SSID and an SFQ readout circuit in which output signals from the SSID are read out by the SFQ readout circuit and output to room-temperature electronics. The SFQ readout circuit, which consists of a current discriminator, a Josephson transmission line and an SFQ/dc converter, was fabricated using the AIST Nb standard process (STP2), and installed in a 4.2 K cryostat with a meander-shaped NbN SSID measuring 200 ?m square. The dark count rate for the SSID was measured as increasing exponentially with the increase in the bias current of the SSID by using the SFQ readout circuit. Mass spectrum measurements of biomolecules, Angiotensin I, which has a molecular weight of 1296 Da, were demonstrated by using the matrix-assisted laser desorption/ionization method, and a clear corresponding peak was observed in the mass spectrum.

  17. Sample deposition device for off-line combination of supercritical fluid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Planeta, Josef; Rehulka, Pavel; Chmelík, Josef

    2002-08-01

    A new sample deposition device for off-line SFC-MALDI combination of supercritical fluid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was assembled. This device was successfully applied to the detailed characterization of synthetic silicone oils. SFC was used to separate samples of silicone oils on micropacked capillary columns and to determine their molecular mass distribution. The separated fractions for the identification studies were obtained from SFC runs at defined time intervals. Using the constructed deposition device, these fractions were sprayed directly from the restrictor on the target probe covered with a proper matrix. MALDI-TOF MS was used for the identification of individual oligomers in the separated fractions and also in the unfractionated sample. The determined molecular mass distributions based on supercritical fluid chromatography with flame ionization detector, MALDI-TOF MS, and combined SFC-MALDI measurements were compared and the results were in a good agreement. The sample deposition device is based on a common plotter unit, complemented by a microcontroller PIC16C84. The unit is connected by an RS-232 interface to a PC with the main control software running under MS Windows. The new sample deposition device made the off-line combination SFC-MALDI simpler, faster, and more sensitive. PMID:12175184

  18. [High throughput analysis of cerebroside molecular species from sea cucumber Parastichopus californicus by liquid chromatography-quadrupole-time-of-flight mass spectrometry].

    PubMed

    Xing, Peipei; Xu, Jie; Cong, Peixu; Wang, Yang; Xue, Changhu

    2014-01-01

    Cerebrosides from sea cucumber Parastichopus californicus were identified by using liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF MS/ MS). The samples were extracted with chloroform-methanol (2: 1, v/v) solution and purified by a SPE cartridge. In positive ion mode electrospray ionization (ESI), the precursor ion scan mass spectra and product ion scan mass spectra were obtained through the automatic MS/MS mode. Cerebroside molecules were selected according to the neutral loss fragments of 180 Da, and then were identified according to long-chain base (LCB) fragments and fatty acid (FA) fragments. One hundred and twenty-three cerebroside molecular species were identified. There are 18 species of LCB, and the relative content ratio of phytosphingosines and sphingosines is 1: 2. The carbon numbers of fatty acids are mainly 18 - 25, of which 24 carbon fatty acids are predominant. The relative content ratio of saturated fatty acids and monounsaturated fatty acid is about 1: 3, and the presence of 2-hydroxy fatty acids is about 58.62%. LC-Q-TOF MS/MS method is sensitive, accurate and simple. At the same time, this study provided a theoretical basis for structure-activity relationship studies and functional food development of Parastichopus californicus as well. PMID:24783865

  19. Characterization of proteins utilized in the desulfurization of petroleum products by matrix-assisted laser desorption ionization time-of-flight mass spectrometry

    SciTech Connect

    Wolf, B.P.; Sumner, L.W.; Shields, S.J.; Russell, D.H. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry] [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Nielsen, K.; Gray, K.A. [Energy Biosystems Corp., The Woodlands, TX (United States)] [Energy Biosystems Corp., The Woodlands, TX (United States)

    1998-07-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) with delayed extraction is utilized in linear, reflected-ion and post-source decay (PSD) modes to directly characterize enzymes being developed for use in a petroleum desulfurization process. The DNA sequence for the genes isolated from Rhodococcus sp. strain IGTS8 that produce three of the four enzymes under study had been previously reported with a discrepancy in residue assignments for one of the enzymes, dsz-C. The use of proteolytic digests followed by MALDI/TOF/MS with delayed extraction in the reflected-ion mode provided sequence-specific information with mass accuracies exceeding 40 ppm over a range of masses and signal-to-noise values. Peptide mapping of >80% of the residues was accomplished for all four proteins. The use of PSD established the true sequence for dsz-C, resolving the discrepancy in the literature. A posttranslational loss of N-terminal methionine was observed for each of the four proteins in linear MALDI/MS and was reconfirmed by peptide mapping for three of the proteins.

  20. Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry.

    PubMed

    Kuo, Tsung-Rong; Wang, Di-Yan; Chiu, Yu-Chen; Yeh, Yun-Chieh; Chen, Wei-Ting; Chen, Ching-Hui; Chen, Chun-Wei; Chang, Huan-Cheng; Hu, Cho-Chun; Chen, Chia-Chun

    2014-01-27

    This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N(-1) ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or ?-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications. PMID:24418138

  1. Analysis of soils - Part II: Determination of oligosaccharides in soils by MALDI-time-of-flight mass spectrometry

    SciTech Connect

    Schuerch, S.; Howald, M.; Schlunegger, U.P. [Univ. of Berne (Switzerland)

    1995-12-31

    Polysaccharides are the most abundant organic compounds in nature. Decomposition of plant and animal residues leads to a high polysaccharide content in soils. The decomposition of carbohydrates and subsequent mineralization of the products are part of the cycle of life on earth. In extracts of soils collected in the Valle Onsernone (Ticino, Switzerland), oligosaccharides of different size and structure have been identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The selected soils show identical climatic parameters and pedological factors, whereas the age of fallow land is the only varying factor. Identification and structure elucidation of the oligosaccharides is performed by substrate-specific enzymatic hydrolysis. Moreover the appearance and the distribution of the oligosaccharides is correlated to soil genesis.

  2. Chemical Analysis of the Chinese Liquor Luzhoulaojiao by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yao, Feng; Yi, Bin; Shen, Caihong; Tao, Fei; Liu, Yumin; Lin, Zhixin; Xu, Ping

    2015-04-01

    Luzhoulaojiao liquor is a type of Chinese liquor that dates back hundreds of years, but whose precise chemical composition remains unknown. This paper describes the screening of the liquor and the identification of its compounds using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOF-MS). Samples were prepared by both liquid-liquid extraction and solid-phase microextraction, which facilitated the detection of thousands of compounds in the liquor, thus demonstrating the superior performance of the proposed method over those reported in previous studies. A total of 320 compounds were common to all 18 types of Luzhoulaojiao liquor studied here, and 13 abundant and potentially bioactive compounds were further quantified. The results indicated that the high-performance method presented here is well suited for the detection and identification of compounds in liquors. This study also contributes to enriching our knowledge of the contents of Chinese liquors.

  3. Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.

    PubMed

    Yao, Feng; Yi, Bin; Shen, Caihong; Tao, Fei; Liu, Yumin; Lin, Zhixin; Xu, Ping

    2015-01-01

    Luzhoulaojiao liquor is a type of Chinese liquor that dates back hundreds of years, but whose precise chemical composition remains unknown. This paper describes the screening of the liquor and the identification of its compounds using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOF-MS). Samples were prepared by both liquid-liquid extraction and solid-phase microextraction, which facilitated the detection of thousands of compounds in the liquor, thus demonstrating the superior performance of the proposed method over those reported in previous studies. A total of 320 compounds were common to all 18 types of Luzhoulaojiao liquor studied here, and 13 abundant and potentially bioactive compounds were further quantified. The results indicated that the high-performance method presented here is well suited for the detection and identification of compounds in liquors. This study also contributes to enriching our knowledge of the contents of Chinese liquors. PMID:25857434

  4. Chemical Analysis of the Chinese Liquor Luzhoulaojiao by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry

    PubMed Central

    Yao, Feng; Yi, Bin; Shen, Caihong; Tao, Fei; Liu, Yumin; Lin, Zhixin; Xu, Ping

    2015-01-01

    Luzhoulaojiao liquor is a type of Chinese liquor that dates back hundreds of years, but whose precise chemical composition remains unknown. This paper describes the screening of the liquor and the identification of its compounds using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOF-MS). Samples were prepared by both liquid-liquid extraction and solid-phase microextraction, which facilitated the detection of thousands of compounds in the liquor, thus demonstrating the superior performance of the proposed method over those reported in previous studies. A total of 320 compounds were common to all 18 types of Luzhoulaojiao liquor studied here, and 13 abundant and potentially bioactive compounds were further quantified. The results indicated that the high-performance method presented here is well suited for the detection and identification of compounds in liquors. This study also contributes to enriching our knowledge of the contents of Chinese liquors. PMID:25857434

  5. Investigating isoprene photo-oxidation at low-NOx conditions using PTR-TOF-MS

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Martin, S. T.; McKinney, K. A.

    2011-12-01

    Recent studies have shown that gas-phase isoprene chemistry plays an important role in the formation of secondary organic aerosol as well as in HOx radical recycling, but many uncertainties remain in the mechanisms governing these processes. Photo-oxidation of isoprene was investigated in the Harvard Environmental Chamber at steady-state mode using H2O2 as the primary HOx source. The concentrations of isoprene, H2O2 and NO, with typical values of 10-80 ppb, 10 ppm, and <0.15 ppb, respectively, were precisely controlled such that the isoprene peroxy radical chemistry was dominated by the HO2 pathway. There are few other laboratory studies that specifically probe this reaction channel, which is important in remote regions of the atmosphere with low NOx levels. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) equipped with switchable reagent ion capability (SRI, including H3O+, NO+ and O2+) was used to measure isoprene and its oxidation products. Isomeric ketones and aldehydes, such as the two major isoprene oxidation products methyl vinyl ketone (MVK, C4H6O) and methacrolein (MAC, C4H6O), which cannot be separated using the normal H3O+ ionization, were successfully differentiated using NO+ at optimized drift tube conditions. The NO+ ion reacted with MAC to give mainly dehydrogenated cations C4H5O+ and a small amount of C4H6O.NO+ cluster ions, whereas it reacted with MVK to give only C4H6O.NO+ cluster ions. This feature was used to separately quantify MVK and MAC yields from isoprene oxidation. Since the production of MVK and MAC via the HO2 pathway may be accompanied by HOx recycling, the quantified yields of MVK and MAC are valuable for understanding possible HOx recycling mechanisms in remote regions of the atmosphere with low NOx levels. The extensive information on molecular formulas and chemical functionality provided by the TOF and SRI capabilities is also being used to facilitate the identification of other oxidation products of isoprene.

  6. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections.

    PubMed

    Gao, Fangyuan; Hu, Yongsheng; Ye, Xiaolan; Li, Ji; Chen, Zhao; Fan, Guorong

    2013-12-01

    A confirmatory and reliable procedure has been developed for extraction and determination of Cnidii fructus by accelerated solvent extraction (ASE) and high-performance liquid chromatography coupled with photodiode array, electrospray ionisation ion trap tandem mass spectrometry and time of flight mass spectrometry (HPLC-PDA-ESI-ITMS(n)/TOF-MS). The determination method enabled the characterisation of sixteen bioactive components in C. fructus and quantification of three major coumarins, namely osthole, imperatorin and isopimpinellin. Response surface methodology (RSM) was employed to optimise the extraction parameters yielding the optimum conditions of ASE (extraction temperature 122 °C, extraction time 5 min and two static cycles). And the total contents of three major coumarins extracted by ASE under the optimum conditions was significantly higher than those by reflux and ultrasonic extraction (P<0.05) with better reproducibility. At last, the proposed method coupled with pattern recognition was applied to analysis of C. fructus from eight different regions in China. PMID:23870916

  7. Mass Spectrometry and Protein Analysis

    NSDL National Science Digital Library

    Bruno Domon (ETH Zurich; Institute of Molecular Systems Biology)

    2006-04-14

    Mass spectrometry is a central analytical technique for protein research and for the study of biomolecules in general. Driven by the need to identify, characterize, and quantify proteins at ever increasing sensitivity and in ever more complex samples, a wide range of new mass spectrometryâ??based analytical platforms and experimental strategies have emerged. Here we review recent advances in mass spectrometry instrumentation in the context of current and emerging research strategies in protein science.

  8. A computational drug metabolite detection using the stable isotopic mass-shift filtering with high resolution mass spectrometry in pioglitazone and flurbiprofen.

    PubMed

    Uchida, Masashi; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Sezaki, Hiroshi; Ando, Akihiro; Miyamoto, Yohei

    2013-01-01

    The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS). We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery. PMID:24084721

  9. Toward the Complete Characterization of Atmospheric Organic Particulate Matter: Derivatization and Two-Dimensional Comprehensive Gas Chromatography/Time of Flight Mass Spectrometry as a Method for the Determination of Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra Jeanne

    Understanding the composition of atmospheric organic particulate matter (OPM) is essential for predicting its effects on climate, air quality, and health. However, the polar oxygenated fraction (PO-OPM), which includes a significant mass contribution from carboxylic acids, is difficult to speciate and quantitatively determine by current analytical methods such as gas chromatography-mass spectrometry (GC-MS). The method of chemical derivatization and two-dimensional GC with time of flight MS (GCxGC/TOF-MS) was examined in this study for its efficacy in: 1) quantifying a high percentage of the total organic carbon (TOC) mass of a sample containing PO-OPM; 2) quantitatively determining PO-OPM components including carboxylic acids at atmospherically relevant concentrations; and 3) tentatively identifying PO-OPM components. Two derivatization reagent systems were used in this study: BF3/butanol for the butylation of carboxylic acids, aldehydes, and acidic ketones, and BSTFA for the trimethylsilylation (TMS) of carboxylic acids and alcohols. Three alpha-pinene ozonolysis OPM filter samples and a set of background filter samples were collected by collaborators in a University of California, Riverside environmental chamber. Derivatization/GCxGC TOF-MS was used to tentatively identify some previously unidentified ?-pinene ozonolysis products, and also to show the characteristics of all oxidation products determined. Derivatization efficiencies as measured were 40-70% for most butyl derivatives, and 50-58% for most trimethylsilyl derivatives. A thermal optical method was used to measure the TOC on each filter, and a value of the quantifiable TOC mass using a gas chromatograph was calculated for each sample using GCxGC separation and the mass-sensitive response of a flame ionization detector (FID). The TOC quantified using TMS and GCxGC-FID (TMS/TOCGCxGC FID) accounted for 15-23% of the TOC measured by the thermal-optical method. Using TMS and GCxGC/TOF-MS, 8.85% of the thermal optical TOC was measured and 48.2% of the TMS/TOCGCxGC-FID was semi-quantified using a surrogate standard. The carboxylic acids tentatively identified using TMS and GCxGC/TOF-MS accounted for 8.28% of the TOC measured by thermal optical means. GCxGC TOF-MS chromatograms of derivatized analytes showed reduced peak tailing due in part to the lesser interactions of the derivatized analytes with the stationary phase of the chromatography column as compared to the chromatograms of underivatized samples. The improved peak shape made possible the greater separation, quantification, and identification of high polarity analytes. Limits of detection using derivatization and GCxGC/TOF-MS were <1 ng per ?L injected for a series of C2-C6 di-acids, cis-pinonic acid, and dodecanoic acid using both butylation and TMS. Derivatization with GCxGC/TOF-MS was therefore effective for determining polar oxygenated compounds at low concentrations, for determining specific oxidation products not previously identified in OPM, and also for characterizing the probable functional groups and structures of ?-pinene ozonolysis products.

  10. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. PMID:18470926

  11. [[Molecular composition of saturated hydrocarbons in diesels by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry

    PubMed

    Niu, Luna; Liu, Zelong; Zhou, Jian; Cai, Xinheng; Tian, Songbai

    2014-11-01

    An analytical method for separation and identification of the saturated hydrocarbons in diesels at molecular level by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC x GC-TOF MS)was established. The saturated hydrocarbons were pre-separated from diesel samples by solid phase extraction before GC x GC-TOF MS analysis. More than 1,000 individual compounds (including paraffins, naphthenes and ole- fins) in coker diesel were tentatively identified based on NIST library search, mass spectrum resolution, boiling point distribution law and separation characteristics. Normal paraffins showed great regularity and could be identified easily through the relative position with pristane and phytane. The cyclic alkanes arranged above paraffins with the increasing number of rings. The normal alkyl cyclohexanes and cyclopentanes were well distinguished due to the difference of their polarity. Normal ?-olefins which were often neglected in the past were also identified. With the support of the above-introduced identification, the distribution by structural type and carbon number were presented using peak area normalization. This analytical method was suc- cessfully used to investigate the molecular composition of saturated fractions in different diesel samples. All the results indicated that the molecular compositions of saturates in catalytic cracking diesel and coker diesel were significantly different because of the processing mechanism. This method provided technical support for the characterization of saturated hydrocar- bons in diesels and the investigation of processing mechanism. PMID:25764659

  12. Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Giebel, Rebecca A; Fredenberg, Weston; Sandrin, Todd R

    2008-02-01

    Currently available bacterial source-tracking tools are often technically demanding, time consuming, and have limited accuracy in grouping isolates according to their respective sources. There is a need for the development of bacterial source-tracking tools that would allow for more rapid and accurate grouping of isolates by source. We examined the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the characterization of environmental isolates of Enterococcus. Our main objectives were to develop sample preparation protocols for obtaining reproducible MALDI-TOF mass spectra from Enterococcus isolates and to evaluate methods of data analysis to maximize repeatability of the method and its ability to group isolates according to their respective sources. Our data showed that treatment of 21 Enterococcus isolates from seven unique sources with lysozyme for 20 h, followed by calculation of similarity coefficients using the Pearson product-moment correlation coefficient, facilitated a repeatability level of 91% as well as grouping by source for isolates obtained from several sources including human waste. Our data suggest that MALDI-TOF-MS-based fingerprinting of environmental isolates of Enterococcus has potential as a rapid and accurate bacterial source tracking (BST) tool, but requires further development, specifically regarding the time requirements needed for pre-treatment of isolates with lysozyme. PMID:17931682

  13. Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid mixtures: a negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected example.

    PubMed

    Fuchs, Beate; Bischoff, Annabell; Süss, Rosmarie; Teuber, Kristin; Schürenberg, Martin; Suckau, Detlev; Schiller, Jürgen

    2009-12-01

    Phospholipids (PL) are increasingly analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). As in the case of polar molecules, however, the careful selection of the matrix is crucial for optimum results. 9-Aminoacridine (9-AA) was recently suggested as the matrix of choice to analyze PL mixtures because of (a) the improved sensitivity and (b) the reduction of suppression effects compared to other matrices. However, the distinction of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the negative ion mode is obscured as PC is also detectable as -CH3+ ion if 9-AA is used as matrix. This may result in the erroneous assignment of PC as a PE species. Using an organic extract from hen egg yolk as example it will be shown that the contribution of PC must be taken into consideration if the negative ion mass spectra are used to evaluate the fatty acyl compositions of PE mixtures. 9-AA can as well be used in hyphenated thin-layer chromatography (TLC)-MALDI-TOF MS where PC and PE are chromatographically well separated for unequivocal assignments. PMID:19690837

  14. Quantitative Analysis of Polymer Additives with MALDI-TOF MS Using an Internal Standard Approach

    NASA Astrophysics Data System (ADS)

    Schwarzinger, Clemens; Gabriel, Stefan; Beißmann, Susanne; Buchberger, Wolfgang

    2012-06-01

    MALDI-TOF MS is used for the qualitative analysis of seven different polymer additives directly from the polymer without tedious sample pretreatment. Additionally, by using a solid sample preparation technique, which avoids the concentration gradient problems known to occur with dried droplets and by adding tetraphenylporphyrine as an internal standard to the matrix, it is possible to perform quantitative analysis of additives directly from the polymer sample. Calibration curves for Tinuvin 770, Tinuvin 622, Irganox 1024, Irganox 1010, Irgafos 168, and Chimassorb 944 are presented, showing coefficients of determination between 0.911 and 0.990.

  15. Measuring protein synthesis using metabolic ²H labeling, high-resolution mass spectrometry, and an algorithm.

    PubMed

    Kasumov, Takhar; Ilchenko, Serguey; Li, Ling; Rachdaoui, Nadia; Sadygov, Rovshan G; Willard, Belinda; McCullough, Arthur J; Previs, Stephen

    2011-05-01

    We recently developed a method for estimating protein dynamics in vivo with heavy water ((2)H(2)O) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) [16], and we confirmed that (2)H labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the (2)H enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In the current study, we used nanospray linear trap Fourier transform ion cyclotron resonance mass spectrometry (LTQ FT-ICR MS) to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor/product labeling ratio can be obtained by measuring the labeling of water and a protein (or peptide) of interest, thereby minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given (2)H(2)O. PMID:21256107

  16. Identification of a novel biomarker candidate, a 4.8-kDa peptide fragment from a neurosecretory protein VGF precursor, by proteomic analysis of cerebrospinal fluid from children with acute encephalopathy using SELDI-TOF-MS

    PubMed Central

    2011-01-01

    Background Acute encephalopathy includes rapid deterioration and has a poor prognosis. Early intervention is essential to prevent progression of the disease and subsequent neurologic complications. However, in the acute period, true encephalopathy cannot easily be differentiated from febrile seizures, especially febrile seizures of the complex type. Thus, an early diagnostic marker has been sought in order to enable early intervention. The purpose of this study was to identify a novel marker candidate protein differentially expressed in the cerebrospinal fluid (CSF) of children with encephalopathy using proteomic analysis. Methods For detection of biomarkers, CSF samples were obtained from 13 children with acute encephalopathy and 42 children with febrile seizure. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology, which is currently applied in many fields of biological and medical sciences. Diagnosis was made by at least two pediatric neurologists based on the clinical findings and routine examinations. All specimens were collected for diagnostic tests and the remaining portion of the specimens were used for the SELDI-TOF MS investigations. Results In experiment 1, CSF from patients with febrile seizures (n = 28), patients with encephalopathy (n = 8) (including influenza encephalopathy (n = 3), encephalopathy due to rotavirus (n = 1), human herpes virus 6 (n = 1)) were used for the SELDI analysis. In experiment 2, SELDI analysis was performed on CSF from a second set of febrile seizure patients (n = 14) and encephalopathy patients (n = 5). We found that the peak with an m/z of 4810 contributed the most to the separation of the two groups. After purification and identification of the 4.8-kDa protein, a 4.8-kDa proteolytic peptide fragment from the neurosecretory protein VGF precursor (VGF4.8) was identified as a novel biomarker for encephalopathy. Conclusions Expression of VGF4.8 has been reported to be decreased in pathologically degenerative changes such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and encephalopathy. Thus, the VGF4.8 peptide might be a novel marker for degenerative brain conditions. PMID:21838886

  17. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: Characterization by Internal Transcribed Spacer, ?-Tubulin, and Calmodulin Gene Sequencing, Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Tam, Emily W. T.; Chen, Jonathan H. K.; Lau, Eunice C. L.; Ngan, Antonio H. Y.; Fung, Kitty S. C.; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung

    2014-01-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, ?-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. ?-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability. PMID:24452174

  18. Mass Spectrometry & Proteomics Services Unit

    E-print Network

    Graham, Nick

    Mass Spectrometry & Proteomics Services Unit Peptide and Protein Submission Form Website: http for analysis is dependent on sample complexity. Normally it takes 1-2 days for mass determination, and 3-5 days for protein identification by in-gel digestion and LC MS/MS analysis. 2. Mass spectrometric analysis Operator

  19. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  20. Mass Spectrometry in the Postgenomic Era

    E-print Network

    Chait, Brian T.

    Mass Spectrometry in the Postgenomic Era Brian T. Chait Laboratory for Mass Spectrometry reserved 0066-4154/11/0707-0239$20.00 Keywords cellular systems, proteomics, protein complexes, native mass spectrometry, lipidomics Abstract Mass spectrometry (MS) is rapidly becoming an essential tool for bi- ologists

  1. Identification of estrogen receptor proteins in breast cancer cells using matrix-assisted laser desorption/ionization time of flight mass spectrometry (Review)

    PubMed Central

    HEGER, ZBYNEK; RODRIGO, MIGUEL ANGEL MERLOS; KRIZKOVA, SONA; ZITKA, ONDREJ; BEKLOVA, MIROSLAVA; KIZEK, RENE; ADAM, VOJTECH

    2014-01-01

    Estrogen receptors [ERs (subtypes ? and ?)], classified as a nuclear receptor super family, are intracellular proteins with an important biological role as the transcription factors for estrogen target genes. For ER-induced transcription, an interaction must exist between ligand and coregulators. Coregulators may stimulate (coactivators) or inhibit (corepressors) transcription, following binding with a specific region of the gene, called the estrogen response element. Misbalanced activity of coregulators or higher ligand concentrations may cause increased cell proliferation, resulting in specific types of cancer. These are exhibited as overexpression of ER proteins. Breast cancer currently ranks first in the incidence and second in the mortality of cancer in females worldwide. In addition, 70% of breast tumors are ER? positive and the importance of these proteins for diagnostic use is indisputable. Early diagnosis of the tumor and its classification has a large influence on the selection of appropriate therapy, as ER-positive tumors demonstrate a positive response to hormonal therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) has been hypothesized to have great potential, as it offers reliable, robust and efficient analysis methods for biomarker monitoring and identification. The present review discusses ER protein analysis by MALDI TOF MS, including the crucial step of protein separation. PMID:24765135

  2. New possibilities of matrix-assisted laser desorption ionization time of flight mass spectrometry to analyze barley malt quality. Highly sensitive detection of mycotoxins.

    PubMed

    Blechová, Petra; Havlová, Pavla; Gajdosová, Dagmar; Havel, Josef

    2006-08-01

    The occurrence of mycotoxins in agricultural commodities is a major health concern for livestock, humans, and the environment. Barley and subsequently malt quality is of fundamental importance to obtain good quality beer. Classical methods of analysis often require tedious, laborious, and expensive processes. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) instrumentation enables highly sensitive and fast analysis and/or detection using a very small sample. The possibilities of MALDI-TOF MS for he identification and/or detection of trichothecene mycotoxins (deoxynivalenol (DON) and nivalenol (NIV), respectively) in barley malt were examined, and it was found that almost all classical MALDI matrices failed to ionize the compounds being studied. This detailed study of the ionization conditions and the search for unconventional matrices led to the discovery of suitable MALDI matrices, which enable ionization of trichothecene mycotoxins. These were: fine powdered synthetic diamond, sodium azide, or hydrazine hydrate. It is possible to detect 8.5 x 10(-12) mol (2.5 ng) of deoxynivalenol or 64 x 10(-12) mol (20 ng) of nivalenol in just 1 microL of barley malt extract (equivalent to 600 microg of DON in 1 kg of barley malt). The procedure developed enables fast determination of DON and NIV in barley, malt, or similar products. PMID:16841326

  3. Identification of the Corn Pathogen Pantoea stewartii by Mass Spectrometry of Whole-Cell Extracts and Its Detection with Novel PCR Primers ?

    PubMed Central

    Wensing, Annette; Zimmermann, Stefan; Geider, Klaus

    2010-01-01

    Pantoea stewartii subsp. stewartii is the causative agent of Stewart's wilt, a bacterial disease transmitted by the corn flea beetle mainly to sweet corn (Zea mays). In many countries, it is classified as a quarantine organism and must be differentiated from other yellow enteric bacteria frequently occurring with corn. We have created novel primers from the pstS-glmS region of P. stewartii for use in conventional PCR (cPCR) and quantitative PCR (qPCR). To facilitate rapid diagnosis, we applied matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using whole-cell protein extracts, profiles were generated with a Bruker microflex machine, and the bacteria classified. P. stewartii strains were clearly distinguished from strains of Pantoea agglomerans, Pantoea dispersa, and Pantoea ananatis. Dendrogram analysis of the protein profiles confirmed the score values and showed the formation of separate clades for each species. The identification achieved by MALDI-TOF MS analysis agrees with the diagnosis by specific PCR primers. The combination of both methods allows a rapid and simple identification of the corn pathogen. P. stewartii subsp. stewartii and P. stewartii subsp. indologenes are highly related and can be distinguished not only by virulence assays and indole tests but also by a characteristic pattern in the nucleotide sequence of recA. PMID:20656863

  4. Utilization of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for structural studies related to biology and disease

    NASA Astrophysics Data System (ADS)

    Costello, Catherine E.; Helin, Jari; Ngoka, Lambert C. M.

    1996-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), because of its high sensitivity and relatively straightforward requirements for sample preparation, is contributing to the solution of structural problems in biology and to the development of therapeutic approaches through increased understanding of pharmacology and enhanced capabilities for quality control of pharmaceuticals. We are using a reflectron TOF- MS for the determination of molecular weights of individual compounds and the components of mixtures that are naturally occurring or are generated through enzymic digests, and employing the post-source decay mode to elucidate structural details. To maximize the sensitivity and information content of the spectra, varied matrices, derivative, and stepwise degradation procedures are being explored. Present studies include investigations of oligosaccharides, neutral glycolipids, gangliosides, glycoproteins, neuropeptides and proteins. Rules for fragmentation are being developed with model compounds and used for the structural elucidation of unknowns. When adequate sample amounts are available, the results are compared with low- and high-energy collision-induced decomposition spectra obtained with tandem MS in order to provide a data base for the correlation of spectral features and guidance in selection of approaches for scarce biological samples. Current projects include biophysical studies of glycoplipids, glycoproteins and oligosaccharides and investigations of the substance P receptor, transthyretin genetic variants and cisplatin-DNA interactions.

  5. Analysis of daidzein in nanoparticles after oral co-administration with sodium caprate to rats by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry.

    PubMed

    Ma, Yiran; Zhang, Li; Zhao, Xinyi; Shen, Qi

    2012-10-15

    An ultra-performance-liquid-chromatography-quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method was developed and validated for the quantitation of daidzein (DZ) in rat plasma. Ethylparaben was chosen as internal standards (IS). DZ was linear over the range of 0.001-5 ?g/mL. The lower limit of quantification (LLOQ) was 0.001 ?g/mL and the limit of detection (LOD) was 0.0005 ?g/mL. The intra-day and inter-day relative standard deviations (RSDs) were ranged from 3.59% to 6.43% and 5.35% to 7.25%, respectively. This UPLC/Q-TOF-MS method provided good specifity, highly sensitivity, accurate and high-speed detection (6 min), applicable to the pharmacokinetics study in rats in vivo after oral administration of free daidzein solution, daidzein-loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (D-NPs) suspension and D-NPs co-administered with sodium caprate (C(10)) which as the oral absorption promoter. It was shown that the pharmacokinetics behavior was significantly improved after the oral administration of D-NPs suspension co-administered with absorption promoter C(10) by the fact that the relative bioavailability were enhanced about 4.24-fold, compared to that of DZ suspension. PMID:23010479

  6. MALDI-TOF Mass Spectrometry Is a Fast and Reliable Platform for Identification and Ecological Studies of Species from Family Rhizobiaceae

    PubMed Central

    Ferreira, Laura; Sánchez-Juanes, Fernando; García-Fraile, Paula; Rivas, Raúl; Mateos, Pedro F.; Martínez-Molina, Eustoquio; González-Buitrago, José Manuel; Velázquez, Encarna

    2011-01-01

    Family Rhizobiaceae includes fast growing bacteria currently arranged into three genera, Rhizobium, Ensifer and Shinella, that contain pathogenic, symbiotic and saprophytic species. The identification of these species is not possible on the basis of physiological or biochemical traits and should be based on sequencing of several genes. Therefore alternative methods are necessary for rapid and reliable identification of members from family Rhizobiaceae. In this work we evaluated the suitability of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for this purpose. Firstly, we evaluated the capability of this methodology to differentiate among species of family Rhizobiaceae including those closely related and then we extended the database of MALDI Biotyper 2.0 including the type strains of 56 species from genera Rhizobium, Ensifer and Shinella. Secondly, we evaluated the identification potential of this methodology by using several strains isolated from different sources previously identified on the basis of their rrs, recA and atpD gene sequences. The 100% of these strains were correctly identified showing that MALDI-TOF MS is an excellent tool for identification of fast growing rhizobia applicable to large populations of isolates in ecological and taxonomic studies. PMID:21655291

  7. Application of Whole-Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Rapid Identification and Clustering Analysis of Pantoea Species ? †

    PubMed Central

    Rezzonico, Fabio; Vogel, Guido; Duffy, Brion; Tonolla, Mauro

    2010-01-01

    Pantoea agglomerans is an ecologically diverse taxon that includes commercially important plant-beneficial strains and opportunistic clinical isolates. Standard biochemical identification methods in diagnostic laboratories were repeatedly shown to run into false-positive identifications of P. agglomerans, a fact which is also reflected by the high number of 16S rRNA gene sequences in public databases that are incorrectly assigned to this species. More reliable methods for rapid identification are required to ascertain the prevalence of this species in clinical samples and to evaluate the biosafety of beneficial isolates. Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) methods and reference spectra (SuperSpectrum) were developed for accurate identification of P. agglomerans and related bacteria and used to detect differences in the protein profile within variants of the same strain, including a ribosomal point mutation conferring streptomycin resistance. MALDI-TOF MS-based clustering was shown to generally agree with classification based on gyrB sequencing, allowing rapid and reliable identification at the species level. PMID:20453125

  8. Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS.

    PubMed

    Zhang, Qiu-Xiang; Wu, Hui; Ling, Yu-Fang; Lu, Rong-Rong

    2013-08-01

    To isolate and identify antioxidant peptides from enzymatically hydrolysed whey protein, whey protein isolate was hydrolysed by different protease (trypsin, pepsin, alcalase 2·4L, promatex, flavourzyme, protease N). The hydrolysate generated by alcalase 2·4L had the highest antioxidant activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide radicals and in a linoleic acid peroxidation system induced by Fe2+. The IC50 values of DPPH and superoxide radical scavenging activities of the hydrolysate decreased significantly (6·89 and 38·88%, respectively) after treatment with macroporous adsorption resin. Seven different peptides showing strong antioxidant activities were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration chromatography and high-performance liquid chromatography. The molecular mass and amino acids sequences of the purified peptides were determined using a Quadrupole time-of-flight mass spectrometer (Q-TOF MS). One of the antioxidative peptides, Trp-Tyr-Ser-Leu, displayed the highest DPPH radical scavenging activity (IC50=273·63 ?m) and superoxide radical scavenging activity (IC50=558·42 ?m). These results suggest that hydrolysates from whey proteins are good potential source of natural antioxidants. PMID:23876604

  9. Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS.

    PubMed

    Zhong, Ning; Cui, Yazhou; Zhou, Xiaoyan; Li, Tianliang; Han, Jinxiang

    2015-02-01

    Membrane proteins are an important source of potential targets for anticancer drugs or biomarkers for early diagnosis. In this study, we used a modified aqueous two-phase partition system combined with two-dimensional (2D) matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS, 2D-MALDI-TOF-TOF-MS/MS) analysis to isolate and identify membrane proteins in PANC-1 pancreatic cancer cells. Using this method, we identified 55 proteins, of which 31 (56.4 %) were membrane proteins, which, according to gene ontology annotation, are associated with various cellular processes including cell signal transduction, differentiation, and apoptosis. Immunohistochemical analysis showed that the expression level of one of the identified mitochondria membrane proteins, prohibitin 1 (PHB1), is correlated with pancreatic carcinoma differentiation; PHB1 is expressed at a higher level in normal pancreatic tissue than in well-differentiated carcinoma tissue. Further studies showed that PHB1 plays a proapoptotic role in human pancreatic cancer cells, which suggests that PHB1 has antitumorigenic properties. In conclusion, we have provided a modified method for isolating and identifying membrane proteins and demonstrated that PHB1 may be a promising biomarker for early diagnosis and therapy of pancreatic (and potentially other) cancers. PMID:25344214

  10. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  11. Enhanced detection of in-gel released N-glycans by MALDI-TOF-MS.

    PubMed

    Weiz, Stefan; Kamalakumar, Aryaline; Biskup, Karina; Blanchard, Véronique

    2015-05-01

    Many biologically relevant glycoproteins need to be separated on 1D- or 2D-gels prior to analysis and are available in picomole amounts. Therefore, it is important to have optimized methods to unravel the glycome that combine in-gel digestions with MALDI-TOF-MS. In this technical report, we investigated how the detection of in-gel released N-glycans could be improved by MALDI-TOF-MS. First, an AnchorChip target was tested and compared to ground steel target using several reference oligosaccharides. The highest signals were obtained with an AnchorChip target and D-arabinosazone as the matrix; a LOD of 1.3 to 10 fmol was attained. Then, the effect of octyl-?-glucopyranoside, a nonionic detergent, was studied during in-gel peptide-N(4) -(acetyl-ß-glucosaminyl) asparagine amidase F digestion of standard glycoproteins and during glycan extraction. Octyl-?-glucopyranoside increased the intensity and the amount of detected neutral as well as acidic N-glycans. A LOD of under 7 pmol glycoprotein could be achieved. PMID:25524447

  12. Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection

    Microsoft Academic Search

    Katja Morgenthal; Stefanie Wienkoop; Matthias Scholz; Joachim Selbig; Wolfram Weckwerth

    2005-01-01

    A novel approach is presented combining quantitative metabolite and protein data and multivariate statistics for the analysis of time-related regulatory effects of plant metabolism at a systems level. For the analysis of metabolites, gas chromatography coupled to a time-of-flight mass analyzer (GC-TOF-MS) was used. Proteins were identified and quantified using a novel procedure based on shotgun sequencing as described recently

  13. Protein Quantitation Using Mass Spectrometry

    PubMed Central

    Zhang, Guoan; Ueberheide, Beatrix M.; Waldemarson, Sofia; Myung, Sunnie; Molloy, Kelly; Eriksson, Jan; Chait, Brian T.; Neubert, Thomas A.; Fenyö, David

    2013-01-01

    Mass spectrometry is a method of choice for quantifying low-abundance proteins and peptides in many biological studies. Here, we describe a range of computational aspects of protein and peptide quantitation, including methods for finding and integrating mass spectrometric peptide peaks, and detecting interference to obtain a robust measure of the amount of proteins present in samples. PMID:20835801

  14. A Glossary for Mass Spectrometry

    NSDL National Science Digital Library

    Busch, Kenneth L.

    This useful article from the journal Mass Spectrometry features a compilation of some of the more widely used terms that non-mass spectrometrists may encounter, and for which a simple definition would be helpful. The link will lead users to a PDF file which may be downloaded or viewed online.

  15. Detection of drugs in lifted cyanoacrylate-developed latent fingermarks using two laser desorption/ionisation mass spectrometric methods.

    PubMed

    Sundar, Latha; Rowell, Frederick

    2014-02-01

    This paper describes a method for lifting cyanoacrylate (CNA)-developed latent fingermarks from a glass surface and the detection of five drugs in lifted marks from fingers that had been in contact with the drugs, using Surface Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry (SALDI-TOF-MS) or Matrix Assisted Laser Desorption Ionisation TOF-MS (MALDI-TOF-MS). Two drugs of abuse (cocaine and methadone) and three therapeutic drugs (aspirin, paracetamol and caffeine) were used as contact residues. Latent fingermarks spiked with the drugs were subjected to CNA fuming followed by dusting with ARRO SupraNano™ MS black magnetic powder (SALDI-TOF-MS) or 2,5-dihydroxybenzoic acid (DHB) (MALDI-TOF-MS). The dusted mark was then exposed to solvent vapour before lifting with a commercial fingerprint lifting tape following established procedures. The presence of the drugs was then confirmed by direct analysis on the tape without further processing using SALDI- or MALDI-TOF-MS. The black magnetic fingerprint powder provided visual enhancement of the CNA-fingermark while no visual enhancement was observed for marks dusted with DHB powder. Similar [M + H](+) peaks for all the drug analytes were observed for both methods along with some sodium and potassium adducts for SALDI-MS and some major fragment ions but the SALDI signals were generally more intense. Simple exposure to acetone vapour of the CNA-developed marks enabled their effective transfer onto the tape which was crucial for subsequent MS detection of the analytes. PMID:24319772

  16. Improved Identification of Membrane Proteins by MALDI-TOF MS/MS Using Vacuum Sublimated Matrix Spots on an Ultraphobic Chip Surface

    PubMed Central

    Poetsch, Ansgar; Schlüsener, Daniela; Florizone, Christine; Eltis, Lindsay; Menzel, Christoph; Rögner, Matthias; Steinert, Kerstin; Roth, Udo

    2008-01-01

    Integral membrane proteins are notoriously difficult to identify and analyze by mass spectrometry because of their low abundance and limited number of trypsin cleavage sites. Our strategy to address this problem is based on a novel technology for MALDI-MS peptide sample preparation that increases the success rate of membrane protein identification by increasing the sensitivity of the MALDI-TOF system. For this, we used sample plates with predeposited matrix spots of CHCA crystals prepared by vacuum sublimation onto an extremely low wettable (ultraphobic) surface. In experiments using standard peptides, an up to 10-fold gain of sensitivity was found for on-chip preparations compared with classical dried-droplet preparations on a steel target. In order to assess the performance of the chips with membrane proteins, three model proteins (bacteriorhodopsin, subunit IV(a) of ATP synthase, and the cp47 subunit from photosystem II) were analyzed. To mimic realistic analysis conditions, purified proteins were separated by SDS-PAGE and digested with trypsin. The digest MALDI samples were prepared either by dried-droplet technique on steel plates using CHCA as matrix, or applied directly onto the matrix spots of the chip surface. Significantly higher signal-to-noise ratios were observed for all of the spectra resulting from on-chip preparations of different peptides. In a second series of experiments, the membrane proteome of Rhodococcus jostii RHA1 was investigated by AIEC/SDS-PAGE in combination with MALDI-TOF MS/MS. As in the first experiments, Coomassie-stained SDS-PAGE bands were digested and the two different preparation methods were compared. For preparations on the Mass·Spec·Turbo Chip, 43 of 60 proteins were identified, whereas only 30 proteins were reliably identified after classical sample preparation. Comparison of the obtained Mascot scores, which reflect the confidence level of the protein identifications, revealed that for 70% of the identified proteins, higher scores were obtained by on-chip sample preparation. Typically, this gain was a consequence of higher sequence coverage due to increased sensitivity. PMID:19137096

  17. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Meropenem Hydrolysis Assay with NH4HCO3, a Reliable Tool for Direct Detection of Carbapenemase Activity.

    PubMed

    Papagiannitsis, Costas C; Študentová, Vendula; Izdebski, Radoslaw; Oikonomou, Olga; Pfeifer, Yvonne; Petinaki, Efthimia; Hrabák, Jaroslav

    2015-05-01

    A comparison of a matrix-assisted laser desorption ionization-time of flight mass spectrometric (MALDI-TOF MS) meropenem hydrolysis assay with the Carba NP test showed that both methods exhibited low sensitivity (approximately 76%), mainly due to the false-negative results obtained with OXA-48-type producers. The addition of NH4HCO3 to the reaction buffer for the MALDI-TOF MS assay dramatically improved its sensitivity (98%). Automatic interpretation of the MALDI-TOF MS assay, using the MBT STAR-BL software, generally agreed with the results obtained after manual analysis. For the Carba NP test, spectrophotometric analysis found six additional carbapenemase producers. PMID:25694522

  18. Symposium on accelerator mass spectrometry

    SciTech Connect

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  19. Digital Imaging Mass Spectrometry

    Microsoft Academic Search

    Casimir Bamberger; Uwe Renz; Andreas Bamberger

    2011-01-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield\\u000a novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass\\u000a resolution spectra spot-by-spot and thereby scan the object’s surface. Thus, imaging is slow and image reconstruction remains\\u000a cumbersome. Here we describe an imaging mass spectrometer that exploits

  20. Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Serrano, Roque; Portolés, Tania; Blanes, Miguel A; Hernández, Félix; Navarro, Juan C; Varó, Inmaculada; Amat, Francisco

    2012-09-01

    In this paper, gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS) has been applied to evaluate organic pollution in a hyper-saline aquatic environment. Firstly, a target screening was made for a list of 150 GC-amenable organic micro-contaminants, including PAHs, octyl/nonyl phenols, PCBs, PBDEs, and a notable number of pesticides, such us insecticides (organochlorines, organophosphorus, carbamates and pyrethroids), herbicides (triazines and chloroacetanilides), fungicides and several transformation products. This methodology was applied to brine samples, with a salt content from 112 g/L to saturation, and to samples from Artemia populations (crustacean Anostraca) collected during 1 year from three sampling stations in saltworks bodies sited in the Ebro river delta. Around 50 target contaminants, belong to chemical families included in the list of priority substances within the framework on European water policy. Additionally, a non-target analysis was performed in both types of samples with the objective of investigating the presence of other non-selected organic compounds taking advantage of the potential of GC-TOF MS (high sensitivity in full-spectrum acquisition mode, accurate mass measurements) for searching unknowns. Organophosphorus pesticides were the contaminants more frequently detected in brine samples. Other compounds usually present in urban and industrial wastewaters, like caffeine, methylparaben, butylated-hydroxytoluene and N-butylbenzenesulfonamide were also detected in brines. The herbicide simazine and the insecticide chlorpyrifos were among the contaminants detected in Artemia samples. Results of this work reveal a potential threat to vulnerable populations inhabiting the hyper-saline ecosystem. The valuable contribution of GC-TOF MS in environmental analysis, allowing the rapid screening of a large number of organic contaminants, is also demonstrated in this paper. PMID:22789816

  1. Digital Imaging Mass Spectrometry

    E-print Network

    Bamberger, Casimir; Bamberger, Andreas

    2011-01-01

    Methods to visualize the two-dimensional distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by MALDI directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84\\pm35) \\mu m with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allowed parallel imaging of s...

  2. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector. PMID:22378023

  3. Size Characterization of Colloidal Platinum Nanoparticles by MALDI-TOF Mass Spectrometry

    SciTech Connect

    Navin, Jason K.; Grass, Michael E.; Somorjai, Gabor A.; Marsh, Anderson L.

    2009-08-15

    In this work, matrix assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) has been utilized to characterize colloidal platinum nanoparticles synthesized in the 1-4 nm size range. The nanoparticles were prepared via a solution-based method in which the size could be controlled by varying reaction conditions, such as the alcohol used as the reductant. Poly(vinylpyrrolidone), or PVP, (MW = 29,000 g/mol) was employed as a capping agent to stabilize the synthesized nanoparticles in solution. A model for determining the size of the metallic nanoparticle core from MALDI-TOF mass spectra has been developed and verified through correlation with particle sizes from transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. In this model it was assumed that 1.85 nm nanoparticles are capped by one PVP chain, which was verified through experiments performed with capped and uncapped nanoparticles. Larger nanoparticles are capped by either two (2.60 and 2.94 nm) or three (3.69 nm) PVP chains. These findings clearly indicate the usefulness of MALDI-TOF MS as a technique for fully characterizing nanoscale materials in order to elucidate structure-property relationships.

  4. SELDI-TOF-MS Proteomic Profiling of Serum, Urine, and Amniotic Fluid in Neural Tube Defects

    PubMed Central

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection. PMID:25054433

  5. Development and characterization of cIEF-MALDI-TOF MS for protein analysis.

    PubMed

    Silvertand, Linda H H; Toraño, Javier Sastre; de Jong, Gerhardus J; van Bennekom, Wouter P

    2009-05-01

    This paper describes the hyphenation of cIEF and MALDI-TOF MS via a fractionation or spotting device. After focusing in cIEF the compounds are hydrodynamically mobilized and deposited on a MALDI target plate using a sheath liquid interface, which provides the catholyte solution and the electrical ground. From previous experiments, sample conditions that resulted in a high resolution in cIEF and acceptable protein signal intensity in MS were selected [Silvertand et al., Electrophoresis, 2008, 29, 1985-1996]. Besides the mixture of test proteins, the sample solution contains 1% Pharmalyte, 0.3% hydroxyethyl cellulose and 0.1% Tween 20 and is used for both optimization as well as characterization of the cIEF-MALDI-TOF MS system. Hyphenation problems encountered are mainly due to transfer of the liquid from the needle to the MALDI target plate and are solved by choosing the proper sheath catholyte (200 mM NH4OH in 50% methanol with 0.1% Tween20). MS electropherograms were reconstructed by plotting the intensities of the m/z values corresponding to the proteins versus migration time (related to spot number). Reproducibility, peak width and signal intensity for different focusing and spotting (fractionation) times were calculated using these reconstructed MS electropherograms as well as the UV electropherograms. The best results were obtained with focusing time of 75 min (no under- or overfocusing) and a spotting time of 5 s (highest protein signal intensity in MS). The applicability of the system is demonstrated by the analysis of a biopharmaceutical (glucagon) and its deamidation product. PMID:19391148

  6. Tandem Mass Spectrometry in Physiology

    NSDL National Science Digital Library

    2007-12-01

    Tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS) allows identification of proteins in a complex mixture without need for protein purification ("shotgun" proteomics). Recent progress in LC-MS/MS-based quantification, phosphoproteomic analysis, and targeted LC-MS/MS using multiple reaction monitoring (MRM) has made LC-MS/MS a powerful tool for the study of cell physiology.

  7. A comparison of Api 20A vs MALDI-TOF MS for routine identification of clinically significant anaerobic bacterial strains to the species level.

    PubMed

    Kierzkowska, Marta; Majewska, Anna; Kuthan, Robert T; Sawicka-Grzelak, Anna; M?ynarczyk, Gra?yna

    2013-02-15

    Adequate identification of anaerobic bacteria still presents a challenge for laboratories conducting microbiological diagnostics. The aim of this study was to compare the use of Api 20A and MALDI-TOF MS techniques for identification of obligate anaerobes. The results indicate that MALDI-TOF MS ensures a rapid and accurate identification of the species isolated from patients. PMID:23262031

  8. Combination of selective enrichment and MALDI-TOF MS for rapid detection of Streptococcus agalactiae colonisation of pregnant women.

    PubMed

    Ábrók, Marianna; Arcson, Ágnes; Lázár, Andrea; Urbán, Edit; Deák, Judit

    2015-07-01

    Sample preparation was optimized for MALDI-TOF MS directly from selective enrichment broth to detect Streptococcus agalactiae. The method was tested on 100 vaginal samples of pregnant women; positive and negative predictive values were 100 and 91%, respectively. If it indicates positivity, colonisation can be reported 18-24h after sample collection. PMID:25934546

  9. Ambient Ionization Mass Spectrometry

    Microsoft Academic Search

    Min-Zong Huang; Cheng-Hui Yuan; Sy-Chyi Cheng; Yi-Tzu Cho; Jentaie Shiea

    2010-01-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing

  10. Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography-diode array detection-ion trap time-of-flight tandem mass spectrometry.

    PubMed

    Li, Xiu Qin; Zhang, Qing He; Ma, Kang; Li, Hong Mei; Guo, Zhen

    2015-09-01

    An accurate method combining high performance liquid chromatography (HPLC) with diode array detection (DAD) and ion-trap time-of-flight mass spectrometry (IT-TOF/MS) was developed for simultaneous identification and quantification of 34 water-soluble synthetic dyes in foodstuff. Fragmentation patterns of synthetic dyes were proposed based on IT-TOF/MS. The molecular ion [M+H](+) was not observed in the conventional single-stage mass spectra for most of synthetic dyes. The single-stage mass spectra of synthetic dyes all afforded the diagnostic ions [(M-nNa+nH)+H](+) or [(M-nNa+nH)-H](-) in the positive or negative mode. Doubly charged ions were the characteristic ions of azo dyes. An HPLC-DAD method was developed to analyze 34 synthetic dyes in foodstuffs. The limits of detection (LOD) for the dyes were 0.01-0.05 ?g/mL. The recoveries were between 76.1% and 105.0% with a RSD ranging from 1.4% to 6.4%. This method was successfully applied to analyzing the 34 water-soluble synthetic dyes in 21 commercial foods. PMID:25842343

  11. Assessment of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry based methods for investigating 206 dioxin-like micropollutants in animal-derived food matrices.

    PubMed

    Planche, Christelle; Ratel, Jérémy; Mercier, Frédéric; Blinet, Patrick; Debrauwer, Laurent; Engel, Erwan

    2015-05-01

    This paper evaluates different multiresidue methods based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF/MS) to analyze dioxin-related micropollutants in complex food matrices. In a first step, the column sets Rtx-PCB/BPX-50 and Rtx-Dioxin2/BPX-50 were compared in terms of peak shape (width and symmetry) and resolution for the separation of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in solvent. A satisfactory separation of 206 dioxin-related micropollutants including the 17 toxic PCDD/Fs was achieved in 75 min with the column set Rtx-Dioxin2/BPX-50. In a second time, the GC×GC-TOF/MS method was spread to the analysis of dioxin-related micropollutants in complex food matrices. An extraction procedure including accelerated solvent extraction (ASE), centrifugal evaporation and gel permeation chromatography (GPC) was optimized. Starting with meat as a model matrix, a micropollutant spiking method was then set up by comparing seven methods in terms of recoveries and reproducibility. The method combining immersion of the meat in a large volume of solvent containing micropollutants followed by homogenization by blender induced recoveries in the acceptable range of 70-130% and satisfactory standard deviations (?10%) for most of the compounds studied. Limits of detection of the GC×GC-TOF/MS method ranged between 50 and 100 pg/g of spiked fresh meat for PCBs and between 65 and 227 pg/g for PCDD/Fs. Potential applications of this method are discussed. PMID:25814331

  12. Advantages of Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry as a Rapid Diagnostic Tool for Identification of Yeasts and Mycobacteria in the Clinical Microbiological Laboratory

    PubMed Central

    Chen, Jonathan H. K.; Yam, Wing-Cheong; Ngan, Antonio H. Y.; Fung, Ami M. Y.; Woo, Wai-Lan; Yan, Mei-Kum; Choi, Garnet K. Y.; Ho, Pak-Leung; Cheng, Vincent C. C.

    2013-01-01

    Yeast and mycobacteria can cause infections in immunocompromised patients and normal hosts. The rapid identification of these organisms can significantly improve patient care. There has been an increasing number of studies on using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for rapid yeast and mycobacterial identifications. However, studies on direct comparisons between the Bruker Biotyper and bioMérieux Vitek MS systems for the identification of yeast and mycobacteria have been limited. This study compared the performance of the two systems in their identification of 98 yeast and 102 mycobacteria isolates. Among the 98 yeast isolates, both systems generated species-level identifications in >70% of the specimens, of which Candida albicans was the most commonly cultured species. At a genus-level identification, the Biotyper system identified more isolates than the Vitek MS system for Candida (75/78 [96.2%]versus 68/78 [87.2%], respectively; P = 0.0426) and non-Candida yeasts (18/20 [90.0%]versus 7/20 [35.0%], respectively; P = 0.0008). For mycobacterial identification, the Biotyper system generated reliable identifications for 89 (87.3%) and 64 (62.8%) clinical isolates at the genus and species levels, respectively, from solid culture media, whereas the Vitek MS system did not generate any reliable identification. The MS method differentiated 12/21 clinical species, despite the fact that no differentiation between Mycobacterium abscessus and Mycobacterium chelonae was found by using 16S rRNA gene sequencing. In summary, the MALDI-TOF MS method provides short turnaround times and a standardized working protocol for the identification of yeast and mycobacteria. Our study demonstrates that MALDI-TOF MS is suitable as a first-line test for the identification of yeast and mycobacteria in clinical laboratories. PMID:24048537

  13. Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory.

    PubMed

    Chen, Jonathan H K; Yam, Wing-Cheong; Ngan, Antonio H Y; Fung, Ami M Y; Woo, Wai-Lan; Yan, Mei-Kum; Choi, Garnet K Y; Ho, Pak-Leung; Cheng, Vincent C C; Yuen, Kwok-Yung

    2013-12-01

    Yeast and mycobacteria can cause infections in immunocompromised patients and normal hosts. The rapid identification of these organisms can significantly improve patient care. There has been an increasing number of studies on using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid yeast and mycobacterial identifications. However, studies on direct comparisons between the Bruker Biotyper and bioMérieux Vitek MS systems for the identification of yeast and mycobacteria have been limited. This study compared the performance of the two systems in their identification of 98 yeast and 102 mycobacteria isolates. Among the 98 yeast isolates, both systems generated species-level identifications in >70% of the specimens, of which Candida albicans was the most commonly cultured species. At a genus-level identification, the Biotyper system identified more isolates than the Vitek MS system for Candida (75/78 [96.2%]versus 68/78 [87.2%], respectively; P = 0.0426) and non-Candida yeasts (18/20 [90.0%]versus 7/20 [35.0%], respectively; P = 0.0008). For mycobacterial identification, the Biotyper system generated reliable identifications for 89 (87.3%) and 64 (62.8%) clinical isolates at the genus and species levels, respectively, from solid culture media, whereas the Vitek MS system did not generate any reliable identification. The MS method differentiated 12/21 clinical species, despite the fact that no differentiation between Mycobacterium abscessus and Mycobacterium chelonae was found by using 16S rRNA gene sequencing. In summary, the MALDI-TOF MS method provides short turnaround times and a standardized working protocol for the identification of yeast and mycobacteria. Our study demonstrates that MALDI-TOF MS is suitable as a first-line test for the identification of yeast and mycobacteria in clinical laboratories. PMID:24048537

  14. Rapid inactivation of Mycobacterium and nocardia species before identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Dunne, W Michael; Doing, Kirk; Miller, Elizabeth; Miller, Eric; Moreno, Erik; Baghli, Mehdi; Mailler, Sandrine; Girard, Victoria; van Belkum, Alex; Deol, Parampal

    2014-10-01

    The identification of mycobacteria outside biocontainment facilities requires that the organisms first be rendered inactive. Exposure to 70% ethanol (EtOH) either before or after mechanical disruption was evaluated in order to establish a safe, effective, and rapid inactivation protocol that is compatible with identification of Mycobacterium and Nocardia species using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A combination of 5 min of bead beating in 70% EtOH followed by a 10-min room temperature incubation period was found to be rapidly bactericidal and provided high-quality spectra compared to spectra obtained directly from growth on solid media. The age of the culture, the stability of the refrigerated or frozen lysates, and freeze-thaw cycles did not adversely impact the quality of the spectra or the identification obtained. PMID:25078917

  15. Small-scale, high-throughput method for plant N-glycan preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.

    PubMed

    Matsuo, Kouki

    2011-06-15

    A simple, small-scale, and high-throughput method for preparation of plant N-glycans for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is described. This method entailed the extraction of soluble proteins, pepsin digestion, release of N-glycans by glycopeptidase A, and a three-step chromatographic purification process using cation exchange, anion exchange, and graphitized carbon. Homemade minicolumns using commercially available filter unit devices were used for N-glycan purification steps. All purification steps were designed to be easy. Using this method, N-glycans from 10-mg leaf samples of different plant species and only 2 ?g of pure horseradish peroxidase were successfully purified. PMID:21320463

  16. Characterization of metabolic profile of honokiol in rat feces using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and (13)C stable isotope labeling.

    PubMed

    Dong, Yinfeng; Tang, Minghai; Song, Hang; Li, Rong; Wang, Chunyu; Ye, Haoyu; Qiu, Neng; Zhang, Yongkui; Chen, Lijuan; Wei, Yuquan

    2014-03-15

    As fecal excretion is one of important routes of elimination of drugs and their metabolites, it is indispensable to investigate the metabolites in feces for more comprehensive information on biotransformation in vivo. In this study, a sensitive and reliable approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF-MS) was applied to characterize the metabolic profile of honokiol in rat feces after the administration of an equimolar mixture of honokiol and [(13)C6]-labeled honokiol. Totally 42 metabolites were discovered and tentatively identified in rat feces samples, 26 metabolites were first reported, including two novel classes of metabolites, methylated and dimeric metabolites of honokiol. Moreover, this study provided basic comparative data on the metabolites in rat plasma, feces and urine, which gave better understanding of the metabolic fate of honokiol in vivo. PMID:24566334

  17. ENUMERATION OF CARBOHYDRATE HYDROXYL GROUPS BY SILYLATION AND MATRIX ASSISTED LASER DESORPTION/IONIZATION TIME-OF-FLIGHT MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for enumerating hydroxyl group in analytes is described and applied to various carbohydrates and polyols. The analytes were derivatized in solution by using trimethylsilylimidazole (TMSI) and the products were analyzed without chromatography in a MALDI-TOF-MS. The mass spectra revealed co...

  18. THERMOSPRAY MASS SPECTROMETRY AND THERMOSPRAY MASS SPECTROMETRY/MASS SPECTROMETRY OF TWO DEOXYGUANOSINE CARCINOGEN ADDUCTS

    EPA Science Inventory

    Analysis of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) by thermospray mass spectrometry (TSP/MS) provided (MH)+ ions. TSP/MS/MS of the (MH)+ ions produced (BH2)+ ions....

  19. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  20. A PROTEOMIC (SELDI-TOF-MS) APPROACH TO ESTROGEN AGONIST SCREENING

    EPA Science Inventory

    A small fish model and surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) were used to investigate plasma protein expression as a means to screen chemicals for estrogenic activity. Adult male sheepshead minnows (Cyprinodon variegatus) were place...

  1. LC\\/TOF-MS Identification of Organic Components in Cloud and Fog Water Samples

    Microsoft Academic Search

    L. R. Rinehart; X. Shen; J. L. Collett

    2006-01-01

    The nature and identity of organic compounds in cloud and fog droplets are not well understood. Approximately 80 percent of the total organic carbon remains unidentified due to several confounding factors. Traditionally, many of the organic compound analyses have been accomplished by the use of gas chromatography (GC) \\/ mass spectrometry (MS) methods. These methods require analytes to be extracted

  2. Multidimensional gas chromatography in combination with accurate mass, tandem mass spectrometry, and element-specific detection for identification of sulfur compounds in tobacco smoke.

    PubMed

    Ochiai, Nobuo; Mitsui, Kazuhisa; Sasamoto, Kikuo; Yoshimura, Yuta; David, Frank; Sandra, Pat

    2014-09-01

    A method is developed for identification of sulfur compounds in tobacco smoke extract. The method is based on large volume injection (LVI) of 10?L of tobacco smoke extract followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography (GC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (Q-TOF-MS) using electron ionization (EI) and positive chemical ionization (PCI), with parallel sulfur chemiluminescence detection (SCD). In order to identify each individual sulfur compound, sequential heart-cuts of 28 sulfur fractions from (1)D GC to (2)D GC were performed with the three MS detection modes (SCD/EI-TOF-MS, SCD/PCI-TOF-MS, and SCD/PCI-Q-TOF-MS). Thirty sulfur compounds were positively identified by MS library search, linear retention indices (LRI), molecular mass determination using PCI accurate mass spectra, formula calculation using EI and PCI accurate mass spectra, and structure elucidation using collision activated dissociation (CAD) of the protonated molecule. Additionally, 11 molecular formulas were obtained for unknown sulfur compounds. The determined values of the identified and unknown sulfur compounds were in the range of 10-740ngmg total particulate matter (TPM) (RSD: 1.2-12%, n=3). PMID:25087743

  3. Mass Spectrometry and Computational Proteomics Vineet Bafna

    E-print Network

    Bafna, Vineet

    Mass Spectrometry and Computational Proteomics Vineet Bafna Computer Science & Engineering, Univ Abstract Mass Spectrometry is the tool of choice for Proteomics, with applications to peptide sequencing of algorithms for interpreting mass spectrometry (MS) data is provided. This overview is not intended

  4. A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry.

    PubMed

    Geyer, Hildegard; Geyer, Rudolf; Pingoud, Vera

    2004-01-01

    Photochemical crosslinking is a method for studying the molecular details of protein-nucleic acid interactions. In this study, we describe a novel strategy to localize crosslinked amino acid residues that combines laser-induced photocrosslinking, proteolytic digestion, Fe3+-IMAC (immobilized metal affinity chromatography) purification of peptide-oligodeoxynucleotide heteroconjugates and hydrolysis of oligodeoxynucleotides by hydrogen fluoride (HF), with efficient matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The new method is illustrated by the identification of the DNA-binding site of the restriction endonuclease MboI. Photoactivatable 5-iododeoxyuridine was incorporated into a single site within the DNA recognition sequence (GATC) of MboI. Ultraviolet irradiation of the protein-DNA complex with a helium/cadmium laser at 325 nm resulted in 15% crosslinking yield. Proteolytic digestion with different proteases produced various peptide-oligodeoxynucleotide adducts that were purified together with free oligodeoxynucleotide by Fe3+-IMAC. A combination of MS analysis of the peptide-nucleosides obtained after hydrolysis by HF and their fragmentation by MS/MS revealed that Lys209 of MboI was crosslinked to the MboI recognition site at the position of the adenine, demonstrating that the region around Lys209 is involved in specific binding of MboI to its DNA substrate. This method is suitable for the fast identification of the site of contact between proteins and nucleic acids starting from picomole quantities of crosslinked complexes. PMID:15383647

  5. Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry of polychlorinated biphenyls.

    PubMed

    Matsui, Taiki; Uchimura, Tomohiro; Imasaka, Totaro

    2011-05-23

    A sample mixture of polychlorinated biphenyls (PCBs) was measured by gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) using four types of laser sources. When a fourth harmonic emission (266 nm) of a picosecond Nd:YAG laser (1064 nm) was utilized, highly chlorinated PCBs larger than hepta-CBs were not observed. A fifth harmonic emission (213 nm) of the picosecond Nd:YAG laser allowed the measurement of PCBs from di-CBs to octa-CBs, and the limit of detection (LOD) was several pg for each component of PCBs. The LOD for the total amount of PCBs, which was calculated using the protocol provided by the Ministry of the Environment, Japan, was 1000 pg. The signal intensity of the congeners with chlorine atoms at the ortho positions (non-coplanar PCBs) was enhanced by using the fifth harmonic emission. When the fourth harmonic emission remaining after fifth harmonic generation was simultaneously used, the LOD for total PCBs was improved to 667 pg. The PCB sample was also measured using a third harmonic emission (267 nm) of a femtosecond Ti:sapphire laser (800 nm), providing an LOD of 677 pg. Thus, the two-color beam (266/213 nm) of a picosecond Nd:YAG laser had a comparable, or even slightly superior, performance to the more expensive femtosecond Ti:sapphire laser. PMID:21565310

  6. Structural characterization of neutral glycosphingolipids using high-performance liquid chromatography-electrospray ionization mass spectrometry with a repeated high-speed polarity and MSn switching system.

    PubMed

    Ito, Emi; Waki, Hiroaki; Miseki, Kozo; Shimada, Takashi; Sato, Taka-Aki; Kakehi, Kazuaki; Suzuki, Minoru; Suzuki, Akemi

    2013-12-01

    Four types of neutral glycosphingolipids (LacCer, Gb3Cer, Gb4Cer, and IV3?GalNAc-Gb4Cer; 10 pmol each) were analyzed using high-performance liquid chromatography (HPLC)-electrospray ionization quadrupole ion trap time-of-flight (ESI-QIT-TOF) mass spectrometry (MS) with a repeated high-speed polarity and MSn switching system. This system can provide six types of mass spectra, including positive and negative ion MS, MS2, and MS3 spectra, within 1 s per cycle. Using HPLC with a normal-phase column, information on the molecular weights of major molecular species of four neutral glycosphingolipids was obtained by detecting [M+Na]+ in the positive ion mode mass spectra and [M?H]? in the negative ion mode mass spectra. Sequences of glycosphingolipid oligosaccharide were obtained in the negative ion MS2 spectra. In addition, information on the ceramide structures was clearly obtained in the negative ion MS3 mass spectra. GlcCer molecular species were analyzed by HPLC-ESI-QIT-TOF MS with a reversed-phase column using 1 pmole of GlcCer. The structures of the seven molecular species of GlcCer, namely, d18:1-C16:0, d18:1-C18:0, d18:1-C20:0, d18:1-C22:0, d18:1-C23:0, d18:1-C24:1, and d18:1-C24:0, were characterized using positive ion MS and negative ion MS, MS2, and MS3. The established HPLC-ESI-QIT-TOF MS with MSn switching and a normal phase column has been successfully applied to the structural characterization of LacCer and Gb4Cer in a crude mixture prepared from human erythrocytes. PMID:23959431

  7. Proteomic identification of technologically modified proteins in malt by combination of protein fractionation using convective interaction media and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Bobalova, Janette; Chmelik, Josef

    2007-09-01

    A method for the fast separation of proteins and identification of their modifications based on the use of monolithic chromatographic media and mass spectrometric techniques is described. This method has been developed and applied to the analysis of malt proteins and its posttranslational modifications (glycation). Glycation, one of the most common forms of posttranslational modifications (PTM), can be detected in both biological and industrial samples. Our attention was focused on the investigations of possible chemical modifications of water-soluble barley proteins during malting process by combination of anion-exchange chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The malt extract was directly fractioned by anion-exchange chromatography using short monolithic columns and a linear gradient from 0 to 700 mM NaCl. Sufficient fractionation was obtained for malt sample, which demonstrates the potential of anion-exchange chromatography on this type of column. Proteins in separated fractions were identified by MALDI-TOF/TOF MS. Our proteomic analysis provided the identification of the major proteins present in the malt that were found to be heterogeneously glycated after malting. One of these proteins: nonspecific lipid transfer protein 1 (LTP1) can be used as a marker for characterization of glycation during malting. This protein and its modifications can be easily determined by the developed method. PMID:17586515

  8. Rapid separation and identification of multiple constituents in traditional Chinese medicine formula Shenqi Fuzheng Injection by ultra-fast liquid chromatography combined with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Liu, Meng-Hua; Tong, Xin; Wang, Jin-Xu; Zou, Wei; Cao, Hui; Su, Wei-Wei

    2013-02-23

    Shenqi Fuzheng Injection (SFI) a well-known traditional Chinese medicine (TCM) formula, has been extensively used as an adjuvant to chemotherapy for cancer treatment in clinic. However, the chemical constituents in SFI, especially water-soluble ingredients, had not been investigated so far. In this study, an ultra-fast liquid chromatography (UFLC) coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) method was established for rapid separation and structural identification of the constituents in SFI. Separation was performed on a C18 reversed-phase column (2.1 mm × 100 mm, 1.8 ?m) by gradient elution mode, using methanol-water containing 0.1% formic acid as mobile phase at the flow-rate of 0.2 mL/min. Accurate mass measurement for molecular ions and characteristic fragment ions could represent reliable identification criteria for these compounds. As a result, eighty-one major constituents including organic acids, amino acids, oligosaccharides, alkaloids, nucleosides, phenylpropanoids, polyacetylenes, flavonoids, isoflavonoids and saponins were identified or tentatively characterized by comparing their retention times and MS spectra with those of authentic standards or literature data. All compounds were further assigned in the individual raw material. In conclusion, the UFLC-Q-TOF-MS/MS is a highly efficient technique to separate and identify constituents in complex matrices of traditional Chinese medicines. These results obtained in this research will provide a basis for quality control and further study in vivo of SFI. PMID:23245245

  9. Ultra-performance liquid chromatography tandem mass spectrometry combined with automated MetaboLynx analysis approach to screen the bioactive components and their metabolites in Wen-Xin-Formula.

    PubMed

    Cao, Hongxin; Zhang, Aihua; Zhang, Fang-mei; Wang, Qin-qin; Zhang, He; Song, Yan-hua; Zhou, Ying; Sun, Hui; Yan, Guang-li; Han, Ying; Wang, Xijun

    2014-12-01

    Wen-Xin-Formula (WXF), a famous traditional prescription, has been widely used to treat myocardial ischemia syndrome for thousands of years. However, the constituents absorbed into blood after oral administration of WXF remain unknown. Here, an integrative ultra performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS) combined with the MetaboLynx approach was established to investigate the absorbed constituents in rats after oral administration of WXF. A hyphenated electrospray ionization and quadrupole-time-of-flight analyzer was used for the determination of accurate mass of the molecule and fragment ions. With this rapid and automated analysis method, a total of 32 peaks were tentatively characterized in vivo based on MS and MS/MS data and comparison with available databasess, 26 of which were parent components and six metabolites. These components mainly were ginsenosides, paeoniflorin, galloyl glucose, berberis alkaloids, phenolic, phenolic glycosides and unsaturated fatty acids, glucuronide products of original berberis alkaloids. The present study demonstrates that integrative UPLC-ESI-Q-TOF-MS technique and MetaboLynx data processing method were successfully applied for the rapid discovery of potentially bioactive components and metabolites from WXF, and proved that the established method could help to explore the effective substances for further research into WXF. PMID:24853889

  10. [Analysis of the volatile components in Minnan oolong tea by headspace solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time of flight mass spectrometry and the application in its variety identification].

    PubMed

    Cheng, Quan; Yang, Fang; Li, Jie; Lu, Shengyu; Lan, Jinchang; Jiang, Jinbin

    2015-02-01

    A method to analyze the volatile components in Minnan oolong tea was developed based on headspace solid phase microextraction (HS-SPME) coupled with comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-TOF MS). Volatile compounds of 48 oolong tea samples with different qualities and production seasons from five varieties (Tieguanyin, Huangjingui, Benshan, Maoxie and Meizhan) were extracted by HS-SPME and analyzed by GC×GC-TOF MS. More than 2 000 peaks were obtained from each sample, and 51 common compounds were tentatively identified by comparison with the standard mass spectrum databases, retention indices and structure spectra. The projection score of the common compounds obtained from principal component analysis ( PCA) had presented a straightforward classification trend for different oolong tea varieties. In addition, 9 compounds which had significant impact on the classification were selected by stepwise discriminate analysis, and used as variables to establish four discriminated functions by Fisher's discriminate analysis (FDA). The accuracy for the recognition of 48 samples was 97. 9%. The results had demonstrated the feasibility of the method to be used to discriminate the oolong tea varieties. PMID:25989691

  11. Novel PDD-PDT system based on spectrophotometric real-time fluorescence monitoring and MALDI-TOF-MS analysis of tumors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takato O.; Kohno, Eiji; Dodeller, Marc; Sakurai, Takashi; Yamamoto, Seiji; Terakawa, Susumu

    2009-06-01

    In the PDT practice for tumor patients, the dose and irradiation time for the treatment are chosen by experience and not by real need. To establish advanced PDD-PDT model system for patients, we developed a method for monitoring the cell-death based on a spectrophotometric real-time change in fluorescence in HeLa-tumors during Photofrin®-PDT and ALA-PDT. Here, we describe the results of application of the new PDD-PDT system to human tumors. The fluorescence spectra obtained from human tumors were analyzed by the differential spectral analysis. The mass-spectral changes of tumor tissues during PDD-PDT were also examined by MALDI-TOF-MS/MS. The first author's seborrheic keratosis was monitored with this system during the PDD-PDT with a topically applied ALA-ointment. The changes in fluorescence spectrum were successfully detected, and the tumor regressed completely within 5 months. The differential spectral analysis of PDD-PDT-fluorescence monitoring spectra of tumors and isolated mitochondria showed a marked decrease of three peaks in the red region indicative of the PDD (600 - 720 nm), and a transient rise followed by a decline of peaks in the green region indicative of the PDT (450 - 580 nm). The MALDI-TOF-MS analysis of PDD-PDT HeLa-tumors showed a consumption of Photofrin-deuteroporphyrin and ALA-PpIX, and decreases in protein mass in the range of 4,000 - 16,000 Da, m/z 4929, 8564, 10089, 15000, and an increase in m/z 7002 in a Photofrin® PDD-PDT monitoring tumor.

  12. Mass spectrometry-based proteomics

    Microsoft Academic Search

    Ruedi Aebersold; Matthias Mann

    2003-01-01

    Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology. These include the study of protein-protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the generation

  13. Visualizing life with ambient mass spectrometry.

    PubMed

    Hsu, Cheng-Chih; Dorrestein, Pieter C

    2015-02-01

    Since the development of desorption electrospray ionization (DESI), many other ionization methods for ambient and atmospheric pressure mass spectrometry have been developed. Ambient ionization mass spectrometry has now been used for a wide variety of biological applications, including plant science, microbiology, neuroscience, and cancer pathology. Multimodal integration of atmospheric ionization sources with the other biotechnologies, as well as high performance computational methods for mass spectrometry data processing is one of the major emerging area's for ambient mass spectrometry. In this opinion article, we will highlight some of the most influential technological advances of ambient mass spectrometry in recent years and their applications to the life sciences. PMID:25146170

  14. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    SciTech Connect

    Kaser, L.; Karl, T.; Guenther, Alex B.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, David; Keutsch, Frank N.; Hansel, A.

    2013-12-09

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOFMS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration ompounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1mgcompoundm?2 h?1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50 %), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10 %). The total MBO+isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of 20 monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO+isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are not included in MEGAN 2.1.

  15. Chemical profiling and quantification of Gua-Lou-Gui-Zhi decoction by high performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and ultra-performance liquid chromatography/triple quadrupole mass spectrometry.

    PubMed

    Xu, Wen; Huang, Mingqing; Li, Huang; Chen, Xianwen; Zhang, Yuqin; Liu, Jie; Xu, Wei; Chu, Kedan; Chen, Lidian

    2015-04-01

    Gua-Lou-Gui-Zhi decoction (GLGZD) is a classical formula of traditional Chinese medicine, which has been commonly used to treat dysfunction after stroke, epilepsy and spinal cord injury. In this study, a systematic method was established for chemical profiling and quantification analysis of the major constituents in GLGZD. For qualitative analysis, a method of high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (Q-TOF MS) was developed. 106 compounds, including monoterpene glycosides, galloyl glucoses, phenolic acids, flavonoids, gingerols and triterpene saponins were identified or tentatively presumed by comparison with reference standards or literature data. According to the qualitative results, a new quantitative analysis method of ultra-performance liquid chromatography/triple quadrupole mass spectrometry (QqQ-MS) was established. 24 representative compounds were simultaneously detected in 10 batches of GLGZD samples in 7.5 min. The calibration curves for all analytes showed good linearity (r>0.9959) within the test ranges. The LODs and the LOQs were less than 30.6 and 70.9 ng/mL, respectively. The RSDs of intra- and inter-day precision, repeatability and stability were below 3.64%, 4.85%, 4.84% and 3.87%, respectively. The overall recoveries ranged from 94.94% to 103.66%, with the RSDs within 5.12%. This study established a high sensitive and efficient method for the integrating quality control, including identification and quantification of Chinese medicinal preparation. PMID:25710597

  16. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  17. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    PubMed

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC). PMID:24370091

  18. Developments in ion mobility spectrometry-mass spectrometry

    Microsoft Academic Search

    D. Collins; M. Lee

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments

  19. Interlaboratory Comparison of Sample Preparation Methods, Database Expansions, and Cutoff Values for Identification of Yeasts by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Using a Yeast Test Panel

    PubMed Central

    Vlek, Anneloes; Kolecka, Anna; Khayhan, Kantarawee; Theelen, Bart; Groenewald, Marizeth; Boel, Edwin

    2014-01-01

    An interlaboratory study using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) to determine the identification of clinically important yeasts (n = 35) was performed at 11 clinical centers, one company, and one reference center using the Bruker Daltonics MALDI Biotyper system. The optimal cutoff for the MALDI-TOF MS score was investigated using receiver operating characteristic (ROC) curve analyses. The percentages of correct identifications were compared for different sample preparation methods and different databases. Logistic regression analysis was performed to analyze the association between the number of spectra in the database and the percentage of strains that were correctly identified. A total of 5,460 MALDI-TOF MS results were obtained. Using all results, the area under the ROC curve was 0.95 (95% confidence interval [CI], 0.94 to 0.96). With a sensitivity of 0.84 and a specificity of 0.97, a cutoff value of 1.7 was considered optimal. The overall percentage of correct identifications (formic acid-ethanol extraction method, score ? 1.7) was 61.5% when the commercial Bruker Daltonics database (BDAL) was used, and it increased to 86.8% by using an extended BDAL supplemented with a Centraalbureau voor Schimmelcultures (CBS)-KNAW Fungal Biodiversity Centre in-house database (BDAL+CBS in-house). A greater number of main spectra (MSP) in the database was associated with a higher percentage of correct identifications (odds ratio [OR], 1.10; 95% CI, 1.05 to 1.15; P < 0.01). The results from the direct transfer method ranged from 0% to 82.9% correct identifications, with the results of the top four centers ranging from 71.4% to 82.9% correct identifications. This study supports the use of a cutoff value of 1.7 for the identification of yeasts using MALDI-TOF MS. The inclusion of enough isolates of the same species in the database can enhance the proportion of correctly identified strains. Further optimization of the preparation methods, especially of the direct transfer method, may contribute to improved diagnosis of yeast-related infections. PMID:24920782

  20. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel.

    PubMed

    Vlek, Anneloes; Kolecka, Anna; Khayhan, Kantarawee; Theelen, Bart; Groenewald, Marizeth; Boel, Edwin; Boekhout, Teun

    2014-08-01

    An interlaboratory study using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to determine the identification of clinically important yeasts (n = 35) was performed at 11 clinical centers, one company, and one reference center using the Bruker Daltonics MALDI Biotyper system. The optimal cutoff for the MALDI-TOF MS score was investigated using receiver operating characteristic (ROC) curve analyses. The percentages of correct identifications were compared for different sample preparation methods and different databases. Logistic regression analysis was performed to analyze the association between the number of spectra in the database and the percentage of strains that were correctly identified. A total of 5,460 MALDI-TOF MS results were obtained. Using all results, the area under the ROC curve was 0.95 (95% confidence interval [CI], 0.94 to 0.96). With a sensitivity of 0.84 and a specificity of 0.97, a cutoff value of 1.7 was considered optimal. The overall percentage of correct identifications (formic acid-ethanol extraction method, score ? 1.7) was 61.5% when the commercial Bruker Daltonics database (BDAL) was used, and it increased to 86.8% by using an extended BDAL supplemented with a Centraalbureau voor Schimmelcultures (CBS)-KNAW Fungal Biodiversity Centre in-house database (BDAL+CBS in-house). A greater number of main spectra (MSP) in the database was associated with a higher percentage of correct identifications (odds ratio [OR], 1.10; 95% CI, 1.05 to 1.15; P < 0.01). The results from the direct transfer method ranged from 0% to 82.9% correct identifications, with the results of the top four centers ranging from 71.4% to 82.9% correct identifications. This study supports the use of a cutoff value of 1.7 for the identification of yeasts using MALDI-TOF MS. The inclusion of enough isolates of the same species in the database can enhance the proportion of correctly identified strains. Further optimization of the preparation methods, especially of the direct transfer method, may contribute to improved diagnosis of yeast-related infections. PMID:24920782

  1. Improved analysis of oligosaccharides for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using aminopyrazine as a derivatization reagent and a co-matrix.

    PubMed

    Cai, Yan; Zhang, Ying; Yang, Pengyuan; Lu, Haojie

    2013-11-01

    Analysis of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is often limited by their low ionization efficiency and inadequate fragmentation information. Derivatizations of oligosaccharides to enhance their ionization in MS are widely used, but most of these methods require tedious cleanup steps that may cause sample losses. Here, aminopyrazine is developed as the derivatization reagent as well as the co-matrix to improve the detection of oligosaccharides by MALDI-TOF MS. The purification step is eliminated because aminopyrazine acts as the co-matrix after nonreductive amination derivatization of oligosaccharides. Under optimal conditions, nearly complete derivatization (>95%) is obtained and S/N ratios of oligosaccharide are increased by about 2-6 fold with good signal reproducibility (RSD = 7%). Improved analysis of glycans is also achieved without any prior separation from the mixture of glycans and deglycosylated tryptic digest of glycoproteins. In addition, enhancement of MS/MS fragmentation of derivatized oligosaccharides facilitates their structural elucidation. The proposed derivatization technique is successfully applied to the profiling of N-linked glycans derived from chicken ovalbumin. PMID:24010128

  2. Matrix-Assisted Laser Desorption Ionization (MALDI)-Time of Flight Mass Spectrometry- and MALDI Biotyper-Based Identification of Cultured Biphenyl-Metabolizing Bacteria from Contaminated Horseradish Rhizosphere Soil?

    PubMed Central

    Uhlik, Ondrej; Strejcek, Michal; Junkova, Petra; Sanda, Miloslav; Hroudova, Miluse; Vlcek, Cestmir; Mackova, Martina; Macek, Tomas

    2011-01-01

    Bacteria that are able to utilize biphenyl as a sole source of carbon were extracted and isolated from polychlorinated biphenyl (PCB)-contaminated soil vegetated by horseradish. Isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The usage of MALDI Biotyper for the classification of isolates was evaluated and compared to 16S rRNA gene sequence analysis. A wide spectrum of bacteria was isolated, with Arthrobacter, Serratia, Rhodococcus, and Rhizobium being predominant. Arthrobacter isolates also represented the most diverse group. The use of MALDI Biotyper in many cases permitted the identification at the level of species, which was not achieved by 16S rRNA gene sequence analyses. However, some isolates had to be identified by 16S rRNA gene analyses if MALDI Biotyper-based identification was at the level of probable or not reliable identification, usually due to a lack of reference spectra included in the database. Overall, this study shows the possibility of using MALDI-TOF MS and MALDI Biotyper for the fast and relatively nonlaborious identification/classification of soil isolates. At the same time, it demonstrates the dominant role of employing 16S rRNA gene analyses for the identification of recently isolated strains that can later fill the gaps in the protein-based identification databases. PMID:21821747

  3. Part-per-trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    PubMed

    Matamoros, Víctor; Jover, Eric; Bayona, Josep M

    2010-01-15

    An analytical procedure based on comprehensive two-dimensional gas chromatography (GC x GC) coupled with time-of-flight mass spectrometry (TOF-MS) for the simultaneous determination of 97 organic contaminants at trace concentration in river water is presented. The target analytes included 13 pharmaceuticals, 18 plasticizers, 8 personal care products, 9 acid herbicides, 8 triazines, 10 organophosphorous compounds, 5 phenylureas, 12 organochlorine biocides, 9 polycyclic aromatic hydrocarbons (PAHs), and 5 benzothiazoles and benzotriazoles. The best resolution of the target analytes in the contour plots was obtained when a nonpolar stationary phase was used in the first dimension and polar one in the second. However, in the opposite configuration, polar-nonpolar, the retention time in the second dimension exhibited a strong correlation with the log Kow (p < 0.01), and it was proposed as an additional identification criteria. The developed methodology is based on a polymeric solid-phase extraction followed by in GC-port methylation and GC x GC/TOF-MS determination. Moreover, limits of detection (LODs) and quantification (LOQs) ranged from 0.5 to 100 ng/L and from 2 to 185 ng/L, respectively. Repeatability was always lower than 20%. Finally, the developed method has been successfully applied to the determination of incurred target analytes in four river waters subjected to a different anthropogenic pressure. PMID:20038094

  4. Fraction collection in capillary electrophoresis for various stand-alone mass spectrometers.

    PubMed

    Helmja, Kati; Borissova, Maria; Knjazeva, Tatjana; Jaanus, Martin; Muinasmaa, Urmas; Kaljurand, Mihkel; Vaher, Merike

    2009-04-24

    A procedure for collecting fractions during capillary electrophoresis for their analysis using various stand-alone instruments is described. The results of a systematic study of the optimization and application of capillary electrophoresis (CE) in conjunction with a reverse-phase high-performance liquid chromatography electrospray ionization quadrupole time of flight-tandem mass spectrometry (RP-HPLC-ESI-Q-TOF-MS/MS) and inductively-coupled mass spectrometry (ICP-MS) to the analysis of the seed extract of the Japanese Pagoda Tree (Sophora japonica) are presented. The off-line coupling of CE to the matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) for the proteins mixture was applied. The cathode end of the capillary was placed inside a stainless steel needle using a coaxial liquid-sheath-flow configuration. The optimization of experimental parameters resulted in an efficient methodology for MS analysis of fractions. Several components contained in the extract of S. japonica were identified, some not previously known. It was demonstrated that low sensitivity, which is a real problem in off-line CE-MS analysis, could be tolerated because of a more flexible optimization of the CE separation conditions and the choice of independent stand-alone instruments for analysis of separated fractions. The estimated limit of detection for CE-RP-HPLC-ESI-Q-TOF-MS was 50 microM of polyphenols and for CE-ICP-MS, 1-100 microg/l. PMID:19147148

  5. An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry

    PubMed Central

    2011-01-01

    Background Mass spectrometry (MS) based metabolite profiling has been increasingly popular for scientific and biomedical studies, primarily due to recent technological development such as comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS). Nevertheless, the identifications of metabolites from complex samples are subject to errors. Statistical/computational approaches to improve the accuracy of the identifications and false positive estimate are in great need. We propose an empirical Bayes model which accounts for a competing score in addition to the similarity score to tackle this problem. The competition score characterizes the propensity of a candidate metabolite of being matched to some spectrum based on the metabolite's similarity score with other spectra in the library searched against. The competition score allows the model to properly assess the evidence on the presence/absence status of a metabolite based on whether or not the metabolite is matched to some sample spectrum. Results With a mixture of metabolite standards, we demonstrated that our method has better identification accuracy than other four existing methods. Moreover, our method has reliable false discovery rate estimate. We also applied our method to the data collected from the plasma of a rat and identified some metabolites from the plasma under the control of false discovery rate. Conclusions We developed an empirical Bayes model for metabolite identification and validated the method through a mixture of metabolite standards and rat plasma. The results show that our hierarchical model improves identification accuracy as compared with methods that do not structurally model the involved variables. The improvement in identification accuracy is likely to facilitate downstream analysis such as peak alignment and biomarker identification. Raw data and result matrices can be found at http://www.biostat.iupui.edu/~ChangyuShen/index.htm Trial Registration 2123938128573429 PMID:21985394

  6. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  7. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D. (Pleasanton, CA); Fought, Eric R. (Livermore, CA)

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  8. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-? and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-?, TNF, LPS and LPS+IFN-?, and the M2 agonists, IL-4, TGF-?1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. PMID:22967923

  9. Mass spectrometry of fluoroalkyl substituted fullerenes

    SciTech Connect

    McEwen, C.N.; Krusic, P.J.; Fagan, P.J. [E.I. du Pont de Nemours & Co., Wilmington, DE (United States)

    1994-12-31

    Mass spectrometry has played a significant role in the discovery of fullerenes and in the analysis of their chemical derivatives. Because these electron deficient spherical polyene structures readily attach electrons to produce stable anions, negative ionization methods are frequently used in the analysis of these materials by mass spectrometry. Addition of electron withdrawing substituents to buckminsterfullerene should increase the cross-section for electron attachment and make these compounds even more susceptible to analysis by negative ion mass spectrometry.

  10. Comparing the identification of Clostridium spp. by two Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry platforms to 16S rRNA PCR sequencing as a reference standard: a detailed analysis of age of culture and sample preparation.

    PubMed

    Chean, Roy; Kotsanas, Despina; Francis, Michelle J; Palombo, Enzo A; Jadhav, Snehal R; Awad, Milena M; Lyras, Dena; Korman, Tony M; Jenkin, Grant A

    2014-12-01

    We compared the identification of Clostridium species using mass spectrometry by two different Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) platforms (Bruker MS and Vitek MS) against 16S rRNA sequencing as the reference standard. We then examined the impact of different sample preparations and (on one of those platforms) age of bacterial colonial growth on the performance of the MALDI-TOF MS systems. We identified 10 different species amongst the 52 isolates by 16S rRNA sequencing, with Clostridium perfringens the most prevalent (n=30). Spectrometric analysis using Vitek MS correctly speciated 47/52 (90.4%) isolates and was not affected by the sample preparation used. Performance of the Bruker MS was dependent on sample preparation with correct speciation obtained for 36 of 52 (69.2%) isolates tested using the Direct Transfer [DT] protocol, but all 52 (100%) isolates were correctly speciated using either an Extended Direct Transfer [EDT] or a Full Formic Extraction [EX] protocol. We then examined the effect of bacterial colonial growth age on the performance of Bruker MS and found substantial agreement in speciation using DT (Kappa=0.62, 95% CI: 0.46-0.75), almost perfect agreement for EDT (Kappa=0.94, 95% CI: 0.86-1.00) and exact agreement for EX (Kappa=1.00) between different days. PMID:25230331

  11. ACCOUNT AND PERSPECTIVE Macromolecule Mass Spectrometry

    E-print Network

    Karypis, George

    ACCOUNT AND PERSPECTIVE Macromolecule Mass Spectrometry: Citation Mining of User Documents Ronald N the identification and structural analysis of biological macromolecules. In particular, Fenn and Tanaka focused

  12. Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data

    Microsoft Academic Search

    Sean R. Downing; Dohyun Kim; William C. Hahn; Cheng Li; Philip W. Kantoff; L. J. Wei

    2007-01-01

    Motivation: Analysis of high-throughput proteomic\\/genomic data, in particular, surface-enhanced laser desorption\\/ionization time-of- flight mass spectrometry (SELDI-TOF MS) data and microarray data, has led to a multitude of techniques aimed at identifying potential biomarkers. Most of the statistical techniques for compar- ing two groups are based on qualitative measures such as P-value. A quantitative way such as interval estimation for the

  13. Quantification of Terpenes by 1DGC-MS and 2DGC-TOF-MS

    NASA Astrophysics Data System (ADS)

    Flores, R. M.; Perlinger, J. A.; Doskey, P. V.

    2009-12-01

    Biogenic emissions are the primary source of volatile organic compounds in the global troposphere. Deciduous and coniferous forests are the principal emitters of a complex mixture of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24). Sesquiterpenes are readily oxidized in the atmosphere producing secondary organic aerosols (SOA) with 100% yields. The SOA are hydrophilic and scatter light, and thus, increase albedo and lead to a cooling effect. In addition, both monoterpene and sesquiterpene generated SOA are effective cloud condensation nuclei leading to an increase in the particle number concentration and to the formation of clouds that also increase albedo. To quantify the complex mixture of terpenes and their oxidation products requires development of on-line extraction and comprehensive two-dimensional gas chromatographic techniques. One objective of this work was to compare one-dimensional gas chromatography-mass spectrometry (1DGC-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (2DGC-TOFMS) for quantifying eight monoterpenes (alpha- and beta-pinene, limonene, 3-carene, linalool, terpinolene, myrcene and ocimene) and eight sesquiterpenes (beta-caryophyllene, humulene, alpha-cedrene, cis-nerolidol, trans-nerolidol, cedrol, camphene and farnesene) in air samples collected in Northern Michigan. Future research involves coupling thermal desorption and supercritical fluid extraction devices to a GC×2GC for routine quantification of the complex mixture of terpenes and their oxidation products in rural and urban air.

  14. Identification of Microorganisms by FilmArray and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Prior to Positivity in the Blood Culture System

    PubMed Central

    Almuhayawi, Mohammed; Altun, Osman; Strålin, Kristoffer

    2014-01-01

    In this study, we investigated the performance of the FilmArray and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) in identifying microorganisms from blood culture (BC) bottles prior to positivity. First, we used simulated BacT/Alert FA Plus BC bottles with five each for Escherichia coli and Staphylococcus aureus isolates. The FilmArray identified all 10 isolates before BC positivity with 9/10 at 5 h and 1 at 7.5 h after incubation in the BC system. MALDI-TOF MS failed to identify the isolates prior to positivity. When the bottles were incubated for 2.5 h at room temperature (RT) before we put them into the BC system, the FilmArray identified 6/10 at 2.5 h and the remaining 4 at 5 h. Finally, we tested simulated BC bottles after incubation at RT. Interestingly, 9/10 isolates were identified with the FilmArray after 8 h of incubation at RT. Second, we studied clinical BC bottles in quadruplicate. When three-fourths of the parallel bottles signaled positive, the FilmArray was run on the fourth nonsignaled bottle and was found to be positive in 14/15 such cases. Third, we analyzed the performance of the FilmArray in the identification of microorganisms from clinical BC bottles before incubation in the system. Two milliliters of broth from 400 BC bottles was collected after arrival at the laboratory and stored at ?70°C. Sixteen bottles later signaled positive in the system. When the frozen broth from these bottles was analyzed, the FilmArray identified all the microorganisms in 8/16 bottles prior to incubation in the BC system. This study shows that the FilmArray can identify microorganisms from BC bottles prior to positivity and in some cases even prior to incubation in the BC system. PMID:24951811

  15. Reliable and reproducible method for rapid identification of Nocardia species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Toyokawa, Masahiro; Kimura, Keigo; Nishi, Isao; Sunada, Atsuko; Ueda, Akiko; Sakata, Tomomi; Asari, Seishi

    2013-01-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenged for the identification of Nocardia species. However, the standard ethanol-formic acid extraction alone is insufficient in allowing the membrane proteins of Nocardia species to be ionized by the matrix. We therefore aimed to establish our new extraction method for the MALDI-TOF MS-based identification of Nocardia species isolates. Our modified extraction procedure is through dissociation in 0.5% Tween-20 followed by bacterial heat-inactivation, mechanical breaking of the cell wall by acid-washed glass beads and protein extraction with formic acid and acetonitrile. As reference methods for species identification, full-length 16S rRNA gene sequencing and some phenotypical tests were used. In a first step, we made our own Nocardia database by analyzing 13 strains (13 different species including N. elegans, N. otitidiscaviarum, N. asiatica, N. abscessus, N. brasiliensis, N. thailandica, N. farcinica, N. nova, N. mikamii, N. cyriacigeorgica, N. asteroids, Nocardiopsis alba, and Micromonospora sp.) and registered to the MALDI BioTyper database. Then we established our database. The analysis of 12 challenge strains using the our database gave a 100% correct identification, including 8 strains identified to the species level and 4 strains to the genus level (N. elegans, N. nova, N. farcinica, Micromonospora sp.) according to the manufacture's log score specifications. In the estimation of reproducibility of our method intended for 4 strains, both within-run and between-run reproducibility were excellent. These data indicates that our method for rapid identification of Nocardia species is with reliability, reproducibility and cost effective. PMID:24800394

  16. A NEW METHOD OF PEAK DETECTION FOR ANALYSIS OF COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY MASS SPECTROMETRY DATA.

    PubMed

    Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang

    2014-06-01

    We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models. PMID:25264474

  17. Atmospheric Pressure Mass Spectrometry: A New Analytical

    E-print Network

    Seitzinger, Sybil

    Atmospheric Pressure Mass Spectrometry: A New Analytical Chemical Characterization Method climate, air quality, and ecosystem processes. Atmospheric pressure electrospray ionization mass, Piscataway, New Jersey 08854-8058 The complex mixture of organic compounds in the atmosphere influences

  18. VUV photodissociation of thiazole molecule investigated by TOF-MS and photoelectron photoion coincidence spectroscopy.

    PubMed

    Lago, A F; Januário, R D; Simon, M; Dávalos, J Z

    2014-11-01

    Photoelectron photoion coincidence measurements have been performed for the thiazole (C3H3NS) molecule in gas phase, using time-of-flight mass spectrometry in the electron-ion coincidence mode and vacuum ultraviolet synchrotron radiation. photoelectron photoion coincidence spectra have been recorded as a function of the photon energy covering the valence range from 10 to 21?eV. The resulting photoionization products as well as the dissociation pathways leading to the ionic species were proposed and discussed. We have also performed density functional theory and ab initio calculations for the neutral molecule, its cation and the ion fragments produced in order to determine their electronic and structural parameters. PMID:25395132

  19. Modified 16S-23S rRNA intergenic region restriction endonuclease analysis for species identification of Enterococcus strains isolated from pigs, compared with identification using classical methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Nowakiewicz, Aneta; Zió?kowska, Gra?yna; Zi?ba, Przemys?aw; Tro?cia?czyk, Aleksandra; Banach, Tomasz; Kowalski, Cezary

    2015-03-01

    Fast and reliable identification of bacteria to at least the species level is currently the basis for correct diagnosis and appropriate treatment of infections. This is particularly important in the case of bacteria of the genus Enterococcus, whose resistance profile is often correlated with their species (e.g. resistance to vancomycin). In this study, we evaluated restriction endonuclease analysis of the 16S-23S rRNA gene intergenic transcribed spacer (ITS) region for species identification of Enterococcus. The utility of the method was compared with that of phenotypic methods [biochemical profile evaluation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)]. Identification was based on 21 Enterococcus reference strains, of the species E. faecalis, E. faecium, E. hirae, E. durans, E. casseliflavus, E. gallinarum, E. avium, E. cecorum and E. columbae, and 47 Enterococcus field strains isolated from pigs. Restriction endonuclease analysis of the ITS-PCR product using HinfI, RsaI and MboI, in the order specified, enabled species differentiation of the Enterococcus reference and field strains, and in the case of the latter, the results of species identification were identical (47/47) to those obtained by MALDI-TOF MS. Moreover, as a result of digestion with MboI, a unique restriction profile was also obtained for the strains (3/3) identified by MALDI-TOF MS as E. thailandicus. In our opinion, restriction endonuclease analysis of the 16S-23S rRNA gene ITS region of Enterococcus may be a simple and relatively fast (less than 4 h) alternative method for identifying the species occurring most frequently in humans and animals. PMID:25587074

  20. Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry.

    PubMed

    Zeng, Jun; Kuang, Hua; Hu, Chunxiu; Shi, Xianzhe; Yan, Min; Xu, Liguang; Wang, Libing; Xu, Chuanlai; Xu, Guowang

    2013-07-01

    Bisphenol A (BPA), a chemical widely used in the manufacture of polycarbonate plastics, has raised considerable concern in recent decades because of its hormone-like properties. Whether BPA exposure is a health risk remains controversial in many countries. A metabolomics study based on capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) was performed to study the urine metabolic profiles of Sprague-Dawley rats fed with four dose levels of BPA (0, 1, 10, and 100 ?g/kg body weight) for 45 days. Multivariate pattern recognition directly reflected the metabolic perturbations caused by BPA. On the basis of univariate analysis, 42 metabolites including amino acids, polyamines, nucleosides, organic acids, carbohydrates, pterins, polyphenols, and sugar phosphates were found as the most significantly differential metabolites. The marked perturbations were related with valine, leucine and isoleucine biosynthesis, D-glutamine and D-glutamate metabolism, etc. Significant alterations of neurotransmitters (glutamate, gamma-aminobutyric acid, and noradrenaline) and neurotransmitter-related metabolites (tyrosine, histamine, valine, and taurine) suggested that the toxic effects of small-dose BPA (below 50 mg/kg/day) may contribute to its interactions with the neuromediating system. Our study demonstrated that metabolomics may offer more specific insights into the molecular changes underlying the physiological effects of BPA. PMID:23746042

  1. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry.

    PubMed

    Liu, Xinyu; Zheng, Peng; Zhao, Xinjie; Zhang, Yuqing; Hu, Chunxiu; Li, Jia; Zhao, Jieyu; Zhou, Jingjing; Xie, Peng; Xu, Guowang

    2015-05-01

    Major depressive disorder (MDD) is a debilitating mental disease with a pronounced impact on the quality of life of many people; however, it is still difficult to diagnose MDD accurately. In this study, a nontargeted metabolomics approach based on ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to find the differential metabolites in plasma samples from patients with MDD and healthy controls. Furthermore, a validation analysis focusing on the differential metabolites was performed in another batch of samples using a targeted approach based on the dynamic multiple reactions monitoring method. Levels of acyl carnitines, ether lipids, and tryptophan pronouncedly decreased, whereas LPCs, LPEs, and PEs markedly increased in MDD subjects as compared with the healthy controls. Disturbed pathways, mainly located in acyl carnitine metabolism, lipid metabolism, and tryptophan metabolism, were clearly brought to light in MDD subjects. The binary logistic regression result showed that carnitine C10:1, PE-O 36:5, LPE 18:1 sn-2, and tryptophan can be used as a combinational biomarker to distinguish not only moderate but also severe MDD from healthy control with good sensitivity and specificity. Our findings, on one hand, provide critical insight into the pathological mechanism of MDD and, on the other hand, supply a combinational biomarker to aid the diagnosis of MDD in clinical usage. PMID:25784130

  2. [Application of metabolomics in treating polycystic ovary syndrome with berberine based on ultra high performance liquid chromatography-mass spectrometry].

    PubMed

    Li, Yanjie; Zhang, Chunlan; Zhang, Han; Zhao, Xinjie; Hou, Lihui; Xu, Guowang

    2014-05-01

    Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder, which seriously impacts the health of reproductive age women. Thus reasonable individual-based treatment is important. In this study, the serum samples of 15 overweight PCOS patients before and after treatment with berberine for three months were collected for clinic biochemical test and metabolomic research. Metabolomic profiling based on ultra high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight mass spectrometry (q-TOF MS) was used to investigate metabolic changes of PCOS. Compared with before treatment, the patients after berberine treatment can be separated into distinct clusters as displayed by the orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) score plot with model parameter: R2Y = 0.892, Q2 (cum) = 0.577, which indicated changes in metabolites after berberine treatment. The differential metabolites related to berberine treatment were selected when their variable importance values were more than 1, and p < 0.05 with nonparametric test. These differential metabolites were all involved in lipids metabolism, including phosphatidylcholines, sphingomyelin, stearic acid and erucamide. The pharmacological results and metabolomic data revealed that berberine can strengthen the sensitivity of insulin and rectify the dyslipidemia of overweight PCOS patients. This study also illustrates that the LC-MS based metabolomic method is helpful for evaluating the treatment of traditional Chinese medicines. PMID:25185305

  3. Low-flow sheathless capillary electrophoresis-mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins.

    PubMed

    Haselberg, Rob; de Jong, Gerhardus J; Somsen, Govert W

    2013-02-19

    Capillary electrophoresis coupled to time-of-flight mass spectrometry (CE-TOF-MS) via a porous tip sheathless electrospray ionization (ESI) interface was studied for the characterization of pharmaceutical glycoproteins. To achieve optimal glycoform separation, background electrolytes of low pH were used in conjunction with a capillary with a neutral coating exhibiting near-zero electroosmotic flow. Crucial interfacing parameters, like ESI voltage and ESI tip-to-end plate distance, were optimized for very low flow rates (?5 nL/min) in order to attain maximum sensitivity and stable performance. Under optimal conditions, the sheathless CE-MS interface provided significantly increased ionization efficiencies for intact proteins and decreased ionization suppression leading to detection limits in the picomolar-range. Analysis of a sample of recombinant human interferon-? allowed the assignment of at least 18 glycoforms, plus a variety of deamidation, succinimide, and oxidation products, representing a considerable improvement over sheath-liquid CE-MS. The sheathless CE-MS system also proved highly suitable for the glycoprofiling of recombinant human erythropoietin, revealing 74 glycoforms in a 60-min run. In addition, oxidation and acetylation products were detected, overall resulting in assignment of more than 250 different isoforms. Semiquantitative glycoprofiles could be derived for both pharmaceutical proteins, with estimated glycoform concentrations analyzed ranging from 0.35 to 950 nM. These profiles may be very useful for quality control of biopharmaceuticals and their biosimilars. PMID:23323765

  4. An accurate and reliable analysis of trimethylamine using thermal desorption and gas chromatography-time of flight mass spectrometry.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-05-30

    Trimethylamine (TMA) is well-known for manifesting the odor of rotting fish and urine. The analysis of TMA in environmental samples generally suffers from low reproducibility and poor sensitivity. In this study, a technique for the quantitative analysis of gas phase TMA was developed using thermal desorption (TD)-gas chromatography (GC)-time of flight mass spectrometry (TOF-MS). This new approach yielded good linearity (R(2)=0.9930), precision (RSE=1.59%), and high sensitivity with the method detection limit (MDL) of 51 pg, i.e., detection of 0.021 ppb of TMA at 1L sample (limit of detection (LOD): 5.32 pg (0.002 ppb). This method was tested against gas samples collected from two representative sources of TMA: (1) rotten thornback fish and (2) cat urine-soaked clay. The concentration of TMA in these samples, when analyzed after treatment at varying dilution ratios, averaged 293±29.7 ppm (RSE=3.82%) and 74.1±5.78 ppb (RSE=3.19%), respectively. The feasibility of this approach, when tested with TD-GC-Quadruple (Q) MS, showed a good compatibility with moderately reduced sensitivity. The results of this study demonstrated that one can achieve highly reliable and reproducible analysis of TMA from environmental samples when using thermal desorption (for pretreatment) and detection (by the TOF or Q-MS system). PMID:23680550

  5. Profiling the metabolism of astragaloside IV by ultra performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry.

    PubMed

    Cheng, Xu-Dong; Wei, Ming-Gang

    2014-01-01

    Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS)-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV. PMID:25407723

  6. Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry

    PubMed Central

    Miyamoto, Suzanne; Taylor, Sandra L.; Barupal, Dinesh K.; Taguchi, Ayumu; Wohlgemuth, Gert; Wikoff, William R.; Yoneda, Ken Y.; Gandara, David R.; Hanash, Samir M.; Kim, Kyoungmi; Fiehn, Oliver

    2015-01-01

    Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a total of 437 metabolites, of which 148 were identified as known compounds and 289 identified as unknown compounds. Differential analysis identified 15 known metabolites in one study and 18 in a second study that were statistically different (p-values <0.05). Levels of maltose, palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer samples while amino acids tryptophan, lysine and histidine decreased. Many of the metabolites were found to be significantly different in both studies, suggesting that metabolomics appears to be robust enough to find systemic changes from lung cancer, thus showing the potential of this type of analysis for lung cancer detection. PMID:25859693

  7. Combined Reversed Phase HPLC, Mass Spectrometry, and NMR Spectroscopy for a Fast Separation and Efficient Identification of Phosphatidylcholines

    PubMed Central

    Willmann, Jan; Thiele, Herbert; Leibfritz, Dieter

    2011-01-01

    In respect of the manifold involvement of lipids in biochemical processes, the analysis of intact and underivatised lipids of body fluids as well as cell and tissue extracts is still a challenging task, if detailed molecular information is required. Therefore, the advantage of combined use of high-pressure liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy will be shown analyzing three different types of extracts of the ubiquitous membrane component phosphatidylcholine. At first, different reversed phase modifications were tested on phosphatidylcholines (PC) with the same effective carbon number (ECN) for their applicability in lipid analysis. The results were taken to improve the separation of three natural PC extract types and a new reversed phase (RP)-HPLC method was developed. The individual species were characterized by one- and two-dimensional NMR and positive or negative ion mode quadrupole time of flight (q-TOF)-MS as well as MS/MS techniques. Furthermore, ion suppression effects during electrospray ionisation (ESI), difficulties, limits, and advantages of the individual analytical techniques are addressed. PMID:20871812

  8. MEASURING OF PROTEIN SYNTHESIS USING METABOLIC 2H-LABELING, HIGH-RESOLUTION MASS SPECTROMETRY AND AN ALGORITHM

    PubMed Central

    Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen

    2013-01-01

    We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107

  9. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  10. Data mining in proteomic mass spectrometry

    Microsoft Academic Search

    Asha Thomas; Georgia D. Tourassi; Adel S. Elmaghraby; Roland Valdes; Saeed A. Jortani

    2006-01-01

    Data mining application to proteomic data from mass spectrometry has gained much interest in recent years. Advances made in\\u000a proteomics and mass spectrometry have resulted in considerable amount of data that cannot be easily visualized or interpreted.\\u000a Mass spectral proteomic datasets are typically high dimensional but with small sample size. Consequently, advanced artificial\\u000a intelligence and machine learning algorithms are increasingly

  11. Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry.

    PubMed

    Kumar, Awanish; Misra, Pragya; Sisodia, Brijesh; Shasany, Ajit Kumar; Sundar, Shyam; Dube, Anuradha

    2015-08-01

    Visceral leishmaniasis (VL) is a major fatal disease prevalent in North-East India, caused by a protozoan parasite Leishmania donovani. The parasite multiplies and thrives inside mammalian macrophages and is transmitted by the bite of the sandfly. Due to the unsatisfactory treatment measures, increasing drug resistance and the advent of HIV-Leishmania co-infection there has been an urgent need to develop novel drug/vaccine targets against VL. Target identification is the key step in drug discovery and proteomics seems to be a suitable strategy for it due to the availability of Leishmania major, Leishmania infantum, Leishmania braziliensis, Leishmania donovani, Leishmania mexicana and Leishmania tarentolae genome sequence. Since, majority of proteome analyses of Leishmania have, so far, been performed on whole-cell extracts; this study is dealing with the sub-proteome analysis of the membrane-enriched protein (MEP) fractions of L. donovani. The analysis of 95 protein spots of the MEPs from two dimensional (2-D) gel image through matrix asserted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) endorsed the identification of various relevant functional proteins. Out of 95 the MEP spots 72 have been identified and were classified on the basis of their biological function. Several proteins of unknown function that belong to different classes like cell signaling, transmembrane receptors, and transporters have been identified which could be the new potential therapeutic targets against VL in future. The proteome array of the MEPs contributes to further elucidation of the biological system of L. donovani as well as host-parasite relationships which may be further investigated for their crucial biological role in L. donovani for disease management. PMID:25597695

  12. Identification of serum biomarkers for occupational medicamentosa-like dermatitis induced by trichloroethylene using mass spectrometry

    SciTech Connect

    Hong, Wen-Xu; Liu, Wei [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Zhang, Yanfang [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Ye, Jinbo; Huang, Haiyan [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Tang, Haiyan [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Zhou, Guifeng [Medical School of Hunan Normal University, Changsha 410006 (China); Huang, Xinfeng; Zhuang, Zhixiong [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Liu, Jianjun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China)

    2013-11-15

    Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become a serious occupational health hazard. In the present study, we collected fasting blood samples from patients with OMLDT (n = 18) and healthy volunteers (n = 33) to explore serum peptidome patterns. Peptides in sera were purified using weak cation exchange magnetic beads (MB-WCX), and analyzed by matrix-assisted laser desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and ClinProTools bioinformatics software. The intensities of thirty protein/peptide peaks were significantly different between the healthy control and OMLDT patients. A pattern of three peaks (m/z 2106.3, 2134.5, and 3263.67) was selected for supervised neural network (SNN) model building to separate the OMLDT patients from the healthy controls with a sensitivity of 95.5% and a specificity of 73.8%. Furthermore, two peptide peaks of m/z 4091.61 and 4281.69 were identified as fragments of ATP-binding cassette transporter family A member 12 (ABCA12), and cationic trypsinogen (PRRS1), respectively. Our findings not only show that specific proteomic fingerprints in the sera of OMLDT patients can be served as a differentiated tool of OMLDT patients with high sensitivity and high specificity, but also reveal the novel correlation between OMLDT with ABC transports and PRRS1, which will be of potential value for clinical and mechanistic studies of OMLDT. - Highlights: • Identify 30 differential protein/peptide peaks between OMLDT and healthy control • The test sensitivity and test specificity were 95.5% and 73.8%, respectively. • ABCA12 and PRSS1 were identified as potential biomarkers in OMLDT patients.

  13. I-Mass: International Mass Spectrometry Web Resource

    NSDL National Science Digital Library

    Coined as "Mass Spectroscopy's Web Address," this is a site with information for and about mass spectrometry. It features news and articles related to mass spectrometry, gleans important updates from scientific journals on mass spectroscopy, and provides conference and career links. The page also features links to classic articles, definitions, history, Nobel Prizes, protocols, resources, techniques, troubleshooting and tutorials. A link to a repository for jobs involving mass spectroscopy is also given.

  14. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass spectrometry and accelerator mass spectrometry for the determination of long-lived radionuclides in quite different materials.

  15. Glycoprotein profiling by electrospray mass spectrometry

    E-print Network

    Jiang, Hui; Desaire, Heather; Butnev, V. Y.; Bousfield, George R.

    2004-05-01

    This work compares several different methods of site-specific analysis of glycoproteins using electrospray mass spectrometry. The glycoprotein, oLHalpha (ovine luteinizing hormone, a-subunit) was chosen as an appropriate example protein...

  16. Identification of the absorbed components and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Zhu, Heyun; Bi, Kaishun; Han, Fei; Guan, Jiao; Zhang, Xiaoshu; Mao, Xinjuan; Zhao, Longshan; Li, Qing; Hou, Xiaohong; Yin, Ran

    2015-07-10

    Zhi-Zi-Da-Huang decoction (ZZDHD), consisting of Gardenia jasminoides Ellis, Rheum palmatum L., Citrus aurantium L. and Sojae Semen Praeparatum, is a widely used traditional Chinese medicine preparation for the treatment of acute or chronic hepatic diseases. In the present study, a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed to separate and identify the absorbed components and metabolites in rat plasma after oral administration of ZZDHD. The plasma samples were pretreated by protein precipitation and separated on a Shim-pack XR-ODS C18 column (75mm×3.0mm, 2.2?m) using a gradient elution program. Mass spectrometric detection was performed on an Agilent 6520 Q-TOF mass spectrometer equipped with electrospray ionization (ESI) source in positive and negative ion modes. By comparing the retention time, high resolution mass data of blank plasma and dosed plasma, a total of 43 constituents, including 21 prototype compounds and 22 metabolites were identified or tentatively characterized. Results indicated that glucuronidation and sulfation were the main metabolic pathways of iridoid glycosides and anthraquinones, glucuronidation was the main metabolic pathways of flavanone-related compounds. It is concluded the developed UHPLC-Q-TOF-MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of ZZDHD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of ZZDHD. PMID:25912849

  17. Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis.

    PubMed

    Qiao, Liang; Roussel, Christophe; Wan, Jingjing; Yang, Pengyuan; Girault, Hubert H; Liu, Baohong

    2007-12-01

    An on-plate specific enrichment method is presented for the direct analysis of peptides phosphorylation. An array of sintered TiO 2 nanoparticle spots was prepared on a stainless steel plate to provide porous substrate with a very large specific surface and durable functions. These spots were used to selectively capture phosphorylated peptides from peptide mixtures, and the immobilized phosphopeptides could then be analyzed directly by MALDI MS after washing away the nonphosphorylated peptides. beta-Casein and protein mixtures were employed as model samples to investigate the selection efficiency. In this strategy, the steps of phosphopeptide capture, purification, and subsequent mass spectrometry analysis are all successfully accomplished on a single target plate, which greatly reduces sample loss and simplifies analytical procedures. The low detection limit, small sample size, and rapid selective entrapment show that this on-plate strategy is promising for online enrichment of phosphopeptides, which is essential for the analysis of minute amount of samples in high-throughput proteome research. PMID:18047269

  18. Photocleavable peptide-oligonucleotide conjugates for protein kinase assays by MALDI-TOF MS.

    PubMed

    Zhou, Guangchang; Khan, Faraz; Dai, Qing; Sylvester, Juliesta E; Kron, Stephen J

    2012-09-01

    Robust methods for highly parallel, quantitative analysis of cellular protein tyrosine kinase activities may provide tools critically needed to decipher oncogenic signaling, discover new targeted drugs, diagnose cancer and monitor patients. Here, we describe proof-of-principle for a novel protein kinase assay with the potential to help overcome these challenges. MALDI-TOF mass spectrometry provides an ideal tool for label-free multiplexed analysis of peptide phosphorylation, but is poorly matched to homogeneous assays and complex samples. Thus, we conjugated a common oligonucleotide tag to multiple peptide substrates, offering efficient capture from solution-phase kinase reactions by annealing to the complementary sequence tethered to PEG-passivated superparamagnetic microparticles. To enable reversible conjugation, we developed a novel bifunctional cross-linker allowing simple and efficient preparation of photocleavable peptide-oligonucleotide conjugates. After washing away contaminants and following photorelease, MALDI-TOF analysis yielded relative phosphorylation of each peptide with high sensitivity and specificity. Validating the hybridization-mediated multiplexed kinase assay, when three peptide substrate-oligonucleotide conjugates were mixed with the tyrosine kinase c-Abl and ATP, we readily observed their differential phosphorylation yet measured a common IC(50) for the Abl kinase inhibitor imatinib. This new assay enables analysis of protein kinase activities in a multiplexed format amenable to screening inhibitors against multiple kinases in parallel, an important capability for drug discovery and predictive diagnostics. PMID:22772337

  19. Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli.

    PubMed

    Larrouy-Maumus, Gérald; Puzo, Germain

    2015-01-01

    Mycobacterium tuberculosis (Mtb) lipids including glycolipids and lipoglycans play a crucial role in the modulation of the host immune response by targeting the innate receptors C-type lectins, TLRs and the CD1 proteins of class 1. Glycolipids have been shown to be biomarkers of M. tuberculosis strains and also of opportunistic mycobacteria called non-tuberculous mycobacteria. Most of the structural and functional work of the Mtb lipids has been done using lipids arising from M. tuberculosis cell growth in vitro. However it is likely that lipid structures can change during infection or among the M. tuberculosis or opportunistic clinical strains. Here we describe a new, rapid and sensitive analysis of lipids directly on whole mycobacteria which can be done in few minutes and on less than 1000 mycobacteria by direct matrix-assisted laser desorption/ionization mass spectrometry using an unusual solvent matrix. By this new methodology, which does not require extraction or purification steps, we are able to discriminate mycobacteria belonging to the Mtb complex as well as opportunistic and non-pathogenic mycobacteria. This method was also found to be successful for identification of an envelope lipid mutant. This work opens a new analytical route for in vivo analysis of mycobacterial lipids. PMID:25488848

  20. Isotope ratio mass spectrometry in nutrition research

    Microsoft Academic Search

    Luke

    1994-01-01

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography\\/combustion\\/isotope ratio mass spectrometry (GC\\/C\\/IRMS) as a tool for

  1. 16S rRNA Gene Sequencing, Multilocus Sequence Analysis, and Mass Spectrometry Identification of the Proposed New Species “Clostridium neonatale”

    PubMed Central

    Bouvet, Philippe; Ferraris, Laurent; Dauphin, Brunhilde; Popoff, Michel-Robert; Butel, Marie Jose

    2014-01-01

    In 2002, an outbreak of necrotizing enterocolitis in a Canadian neonatal intensive care unit was associated with a proposed novel species of Clostridium, “Clostridium neonatale.” To date, there are no data about the isolation, identification, or clinical significance of this species. Additionally, C. neonatale has not been formally classified as a new species, rendering its identification challenging. Indeed, the C. neonatale 16S rRNA gene sequence shows high similarity to another Clostridium species involved in neonatal necrotizing enterocolitis, Clostridium butyricum. By performing a polyphasic study combining phylogenetic analysis (16S rRNA gene sequencing and multilocus sequence analysis) and phenotypic characterization with mass spectrometry, we demonstrated that C. neonatale is a new species within the Clostridium genus sensu stricto, for which we propose the name Clostridium neonatale sp. nov. Now that the status of C. neonatale has been clarified, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used for better differential identification of C. neonatale and C. butyricum clinical isolates. This is necessary to precisely define the role and clinical significance of C. neonatale, a species that may have been misidentified and underrepresented during previous neonatal necrotizing enterocolitis studies. PMID:25232167

  2. Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry.

    PubMed

    Josten, Michaele; Dischinger, Jasmin; Szekat, Christiane; Reif, Marion; Al-Sabti, Nahed; Sahl, Hans-Georg; Parcina, Marijo; Bekeredjian-Ding, Isabelle; Bierbaum, Gabriele

    2014-11-01

    A small peptide called PSM-mec is encoded on the type II, III and VIII SCCmec cassettes present in the genomes of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) strains. This peptide is excreted by agr-positive strains, which represent about 89% of the strains of our collection and can be identified by the presence of delta toxin in mass spectrometry. The presence of the peptide in the MALDI-TOF MS spectra of whole cells was proved by a knock-down experiment employing a clone that expressed antisense RNA to psm-mec. Furthermore, evaluation of a collection of clinical agr-positive MRSA and MSSA isolates and type strains showed that, using a detection window of m/z 2411-2419, the PSM-mec is detected by mass spectrometry of whole cells with a sensitivity of 0.95 and a specificity of 1, thereby enabling rapid identification of a subgroup of MRSA with a method that is used during routine identification procedures. PMID:25116838

  3. Mass spectrometry of proteins of known mass Andrew D. Miranker*

    E-print Network

    Miranker, Andrew

    Commentary Mass spectrometry of proteins of known mass Andrew D. Miranker* Department of Molecular measurements in biochemistry are as fundamental as mass. Whereas the mass of a macromolecule is often in- ferred by its migration through polymer gels, direct measure may only be deter- mined by mass

  4. Solar photo-Fenton degradation of nalidixic acid in waters and wastewaters of different composition. Analytical assessment by LC-TOF-MS.

    PubMed

    Sirtori, Carla; Zapata, Ana; Gernjak, Wolfgang; Malato, Sixto; Lopez, Antonio; Agüera, Ana

    2011-02-01

    This work assessed the solar photo-Fenton degradation of nalidixic acid (NXA), a quinolone antibacterial agent, in several different aqueous solutions. It has been proven that the composition of the water clearly affects the efficiency of the photo-Fenton process. The presence of chlorine ions induces the concurrence of different mechanisms involving Cl() and Cl(2)(-) radicals, which slow down the process. Up to 35 transformation products (TPs) were identified and their structures characterized by accurate LC-TOF-MS mass measurements during treatment of the different model waters. Photocatalytic degradation was thus observed to proceed mainly through the attack of the hydroxyl radicals on the double bond C((2))C((3)) which induce further ring opening. All the TPs identified persisted after total degradation of NXA. NXA in real pharmaceutical effluent was treated by photo-Fenton as a first stage before biological treatment. As NXA has been demonstrated to be recalcitrant to biological treatment, photo-Fenton treatment of the effluent was continued until its total degradation. Although NXA was efficiently degraded, LC-MS analyses demonstrated that some of the TPs identified after the photo-Fenton treatment were also recalcitrant to biological treatment, persisting after the combined treatment. These results show that analytical assessment of photocatalytic water treatments is essential to assure they are functioning as intended. PMID:21146848

  5. Methods for recalibration of mass spectrometry data

    DOEpatents

    Tolmachev, Aleksey V. (Richland, WA); Smith, Richard D. (Richland, WA)

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  6. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna

    2010-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.

  7. Mass Spectrometric Screening of Ovarian Cancer with Serum Glycans

    PubMed Central

    Kim, Jae-Han; Park, Chang Won; Um, Dalho; Baek, Ki Hwang; Jo, Yohahn; An, Hyunjoo; Kim, Yangsun; Kim, Tae Jin

    2014-01-01

    Changes of glycosylation pattern in serum proteins have been linked to various diseases including cancer, suggesting possible development of novel biomarkers based on the glycomic analysis. In this study, N-linked glycans from human serum were quantitatively profiled by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and compared between healthy controls and ovarian cancer patients. A training set consisting of 40 healthy controls and 40 ovarian cancer cases demonstrated an inverse correlation between P value of ANOVA and area under the curve (AUC) of each candidate biomarker peak from MALDI-TOF MS, providing standards for the classification. A multibiomarker panel composed of 15 MALDI-TOF MS peaks resulted in AUC of 0.89, 80~90% sensitivity, and 70~83% specificity in the training set. The performance of the biomarker panel was validated in a separate blind test set composed of 23 healthy controls and 37 ovarian cancer patients, leading to 81~84% sensitivity and 83% specificity with cut-off values determined by the training set. Sensitivity of CA-125, the most widely used ovarian cancer marker, was 74% in the training set and 78% in the test set, respectively. These results indicate that MALDI-TOF MS-mediated serum N-glycan analysis could provide critical information for the screening of ovarian cancer. PMID:24648610

  8. Quantitation of resveratrol in red wines by means of stable isotope dilution analysis-ultra-performance liquid chromatography-Quan-time-of-flight mass spectrometry and cross validation.

    PubMed

    Stark, Timo; Wollmann, Nadine; Lösch, Sofie; Hofmann, Thomas

    2011-05-01

    A stable isotope dilution analysis (SIDA) was developed for the quantitative analysis of the health-promoting phytoalexin (E)-resveratrol in red wines by means of UPLC-QuanTOF-MS. After hemisynthetic preparation of (E)-3,5,4'-trihydroxy-2,4,6-trideuterostilbene ((E)-[(2)H(3)]-resveratrol) as the stable isotope labeled internal standard, validation experiments revealed recovery rate of 96.2 ± 0.8% RSD, thus demonstrating the robustness and accuracy of the SIDA-UPLC-QuanTOF-MS method. Repeatability and reproducibility expressed as RSD showed excellent values of 3.0% and 4.0% for (E)-[(2)H(3)]-resveratrol. Cross validation against a SIDA-HPLC-MS/MS analysis using a triple quadrupole mass spectrometer revealed comparable data, but the SIDA-UPLC-QuanTOF-MS was four times faster, thus making the latter method preferential for an accurate high-throughput analysis of wine samples. Comparison of the SIDA data to those obtained by quantitation using a standard addition method and external calibration, respectively, revealed 97.7% and 32.4% of the resveratrol concentration determined by means of SIDA-UPLC-QuanTOF-MS and 101.0% and 12.7% of the resveratrol levels found by using SIDA-HPLC-MS/MS. PMID:21438545

  9. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest.

    PubMed

    Wragg, P; Randall, L; Whatmore, A M

    2014-10-01

    Recent advances in phenotypic and chemotaxonomic methods have improved the ability of systems to resolve bacterial identities at the species level. Key to the effective use of these systems is the ability to draw upon databases which can be augmented with new data gleaned from atypical or novel isolates. In this study we compared the performance of the Biolog GEN III identification system (hereafter, GEN III) with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing in the identification of isolates of veterinary interest. The use of strains that had proven more difficult to identify by routine methods was designed to test the systems' abilities at the extremes of their performance range. Over an 18month period, 100 strains were analysed by all three methods. To highlight the importance of identification to species level, a weighted scoring system was devised to differentiate the capacity to identify at genus and species levels. The overall relative weighted scores were 0.869:0.781:0.769, achieved by 16S rRNA gene sequencing, GEN III and MALDI-TOF MS respectively, when compared to the 'gold standard'. Performance to the genus level was significantly better using 16S rRNA gene sequencing; however, performance to the species level was similar for all three systems. PMID:25014253

  10. A new approach to untargeted integration of high resolution liquid chromatography-mass spectrometry data.

    PubMed

    van der Kloet, Frans M; Hendriks, Margriet; Hankemeier, Thomas; Reijmers, Theo

    2013-11-01

    Because of its high sensitivity and specificity, hyphenated mass spectrometry has become the predominant method to detect and quantify metabolites present in bio-samples relevant for all sorts of life science studies being executed. In contrast to targeted methods that are dedicated to specific features, global profiling acquisition methods allow new unspecific metabolites to be analyzed. The challenge with these so-called untargeted methods is the proper and automated extraction and integration of features that could be of relevance. We propose a new algorithm that enables untargeted integration of samples that are measured with high resolution liquid chromatography-mass spectrometry (LC-MS). In contrast to other approaches limited user interaction is needed allowing also less experienced users to integrate their data. The large amount of single features that are found within a sample is combined to a smaller list of, compound-related, grouped feature-sets representative for that sample. These feature-sets allow for easier interpretation and identification and as important, easier matching over samples. We show that the automatic obtained integration results for a set of known target metabolites match those generated with vendor software but that at least 10 times more feature-sets are extracted as well. We demonstrate our approach using high resolution LC-MS data acquired for 128 samples on a lipidomics platform. The data was also processed in a targeted manner (with a combination of automatic and manual integration) using vendor software for a set of 174 targets. As our untargeted extraction procedure is run per sample and per mass trace the implementation of it is scalable. Because of the generic approach, we envision that this data extraction lipids method will be used in a targeted as well as untargeted analysis of many different kinds of TOF-MS data, even CE- and GC-MS data or MRM. The Matlab package is available for download on request and efforts are directed toward a user-friendly Windows executable. PMID:24139572

  11. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wang, Ming-Chuan; Lee, Yi-Hui; Liao, Pao-Chi

    2015-02-01

    Tyrosine phosphorylation is an important regulator of signaling in cellular pathways, and dysregulated tyrosine phosphorylation causes several diseases. Mass spectrometry has revealed the importance of global phosphoproteomic characterization. Analysis of tyrosine phosphorylation by studying the mass-spectrometry (MS)-determined phosphoproteome remains difficult because of the relatively low abundance of tyrosine phosphoproteins. To effectively evaluate tyrosine-phosphopeptide enrichment and reduce ion suppression from non-phosphorylated peptides in MS analysis, three trypsin-digested BSA peptides and 14 standard phosphopeptides, including six tyrosine phosphopeptides, four serine phosphopeptides, and four threonine phosphopeptides, were subjected to titanium dioxide immunoaffinity-based enrichment and also to combined enrichment using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS) analyses. The enrichment factors were evaluated to determine the efficiency of each enrichment procedure. Comparison of five optimized enrichment methods, including TiO2-based immunoaffinity purification in Tris and MOPS buffer systems, TiO2-immunoaffinity enrichment, and immunoaffinity-TiO2 enrichment fo