Science.gov

Sample records for mass spectrometry tof-ms

  1. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    PubMed

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. PMID:25882136

  2. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  3. The fast route to microbe identification: matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Dierig, Alexa; Frei, Reno; Egli, Adrian

    2015-01-01

    Rapid identification of bacterial and fungal microorganisms is critical for early and targeted antimicrobial therapy. Conventional methods for bacterial identification are time consuming. Matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized the daily process of identification in modern microbiological laboratories. The technique and its multiple current and future applications will be discussed. PMID:25741802

  4. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable

  5. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    PubMed

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-01

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons. PMID:26633261

  6. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for species identification of bacteria of genera Arcanobacterium and Trueperella.

    PubMed

    Hijazin, M; Hassan, A A; Alber, J; Lämmler, C; Timke, M; Kostrzewa, M; Prenger-Berninghoff, E; Zschöck, M

    2012-05-25

    In the present study matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for species identification of 98 bacteria previously classified phenotypically and genotypically to genera Arcanobacterium and Trueperella. Species identification was carried out by comparing the main spectra of each strain with the main spectra of reference strains of both genera and 3740 database entries included in the MALDI Biotyper 2.0 software package (Bruker Daltonik GmbH, Bremen, Germany). MALDI-TOF MS correctly identified (log (score) values ≥ 2.0) all investigated strains of the species A. (T.) bialowiezense (n=3), A. (T.) bonasi (n=7), A. haemolyticum (n=10), A. pluranimalium (n=1) and A. (T.) pyogenes (n=77). According to the present results MALDI-TOF MS had a comparable discriminating power than previously conducted tests on DNA level. Further studies with strains isolated from human infections would show the robustness of MALDI-TOF MS for identification of bacteria of these genera. PMID:22270885

  7. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    PubMed

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems. PMID:24197439

  8. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  9. Optimization of matrix assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) for the characterization of Bacillus and Brevibacillus species

    PubMed Central

    AlMasoud, Najla; Xu, Yun; Nicolaou, Nicoletta; Goodacre, Royston

    2014-01-01

    Over the past few decades there has been an increased interest in using various analytical techniques for detecting and identifying microorganisms. More recently there has been an explosion in the application of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for bacterial characterization, and here we optimize this approach in order to generate reproducible MS data from bacteria belonging to the genera Bacillus and Brevibacillus. Unfortunately MALDI-TOF-MS generates large amounts of data and is prone to instrumental drift. To overcome these challenges we have developed a preprocessing pipeline that includes baseline correction, peak alignment followed by peak picking that in combination significantly reduces the dimensionality of the MS spectra and corrects for instrument drift. Following this two different prediction models were used which are based on support vector machines and these generated satisfactory prediction accuracies of approximately 90%. PMID:25086893

  10. Subtype determination of Blastocystis isolates by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Martiny, D; Bart, A; Vandenberg, O; Verhaar, N; Wentink-Bonnema, E; Moens, C; van Gool, T

    2014-04-01

    The pathogenic role of the enteric parasite Blastocystis remains controversial. Recent studies have suggested that various subtypes (STs) found in human samples could be correlated to the presence or absence and variability of clinical manifestations, and that STs can differ with respect to drug sensitivity. Polymerase chain reaction (PCR) techniques used to determine these STs are expensive and are usually restricted to research laboratory settings. This study evaluates the potential application of the inexpensive matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) technique to discriminate Blastocystis STs. A database of parasitic protein signatures was constructed for five Blastocystis STs, and the reference spectra were challenged with those from 19 axenic cultures of ST1, ST2, ST3, ST4 and ST8 and those from nine xenic liquid cultures of ST3 and ST4. Samples from axenic cultures were prepared using standard formic acid extraction and direct deposition procedures. The reference spectra revealed five distinct spectral profiles, and the database library allowed for discrimination between all of the cultures with reliability indices ranging from 2.038 to greater than 2.8 when an extraction was performed. The direct deposition procedure resulted in greater variability in the discrimination and direct MALDI-TOF MS identification from xenic liquid cultures was effective in 3 out of 9 samples. MALDI-TOF MS proved to be an effective technology for efficiently discriminating Blastocystis STs in axenic cultures. PMID:24078024

  11. The use of two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS) for metabolomic analysis of polar metabolites.

    PubMed

    Ralston-Hooper, Kimberly; Jannasch, Amber; Adamec, Jiri; Sepúlveda, Maria

    2011-01-01

    Metabolites produced by an organism can be quite extensive, and one analytical technique alone is not capable of their comprehensive detection and identification. The majority of environmental metabolomic studies have implemented proton nuclear magnetic resonance ((1)H-NMR) spectroscopy with little attention given to mass spectrometry (MS) techniques. In this chapter, an analytical technique is outlined that incorporates two-dimensional gas chromatography-time-of-flight MS (GC×GC-TOF-MS) for the identification and quantification of polar metabolites. PMID:21207292

  12. Identification of Arcanobacterium (Trueperella) abortisuis, a novel species of veterinary importance, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Hijazin, Muaz; Ulbegi-Mohyla, Hivda; Alber, Jörg; Lämmler, Christoph; Hassan, Abdulwahed Ahmed; Timke, Markus; Kostrzewa, Markus; Prenger-Berninghoff, Ellen; Weiss, Reinhard; Zschöck, Michael

    2012-01-01

    In the present study A. (T.) abortisuis isolated from pigs and bovines could be reliably identified by determination of phenotypic properties, genotypically by polymerase chain reaction with the help of A. (T.) abortisuis 16s-23S rDNA intergenic spacer region specific oligonucleotide primer and by Matrix-Assisted Laser Desorption Ionization-Time Of Flight mass spectrometry (MALDI-TOF MS). The latter appeared to be a promising tool for fast and cost effective identification of this species and might help to elucidate the role A. (T.) abortisuis plays in infections of pigs, bovines, possibly other animals or humans. PMID:22372322

  13. Gram-stain plus MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) for a rapid diagnosis of urinary tract infection.

    PubMed

    Burillo, Almudena; Rodríguez-Sánchez, Belén; Ramiro, Ana; Cercenado, Emilia; Rodríguez-Créixems, Marta; Bouza, Emilio

    2014-01-01

    Microbiological confirmation of a urinary tract infection (UTI) takes 24-48 h. In the meantime, patients are usually given empirical antibiotics, sometimes inappropriately. We assessed the feasibility of sequentially performing a Gram stain and MALDI-TOF MS mass spectrometry (MS) on urine samples to anticipate clinically useful information. In May-June 2012, we randomly selected 1000 urine samples from patients with suspected UTI. All were Gram stained and those yielding bacteria of a single morphotype were processed for MALDI-TOF MS. Our sequential algorithm was correlated with the standard semiquantitative urine culture result as follows: Match, the information provided was anticipative of culture result; Minor error, the information provided was partially anticipative of culture result; Major error, the information provided was incorrect, potentially leading to inappropriate changes in antimicrobial therapy. A positive culture was obtained in 242/1000 samples. The Gram stain revealed a single morphotype in 207 samples, which were subjected to MALDI-TOF MS. The diagnostic performance of the Gram stain was: sensitivity (Se) 81.3%, specificity (Sp) 93.2%, positive predictive value (PPV) 81.3%, negative predictive value (NPV) 93.2%, positive likelihood ratio (+LR) 11.91, negative likelihood ratio (-LR) 0.20 and accuracy 90.0% while that of MALDI-TOF MS was: Se 79.2%, Sp 73.5, +LR 2.99, -LR 0.28 and accuracy 78.3%. The use of both techniques provided information anticipative of the culture result in 82.7% of cases, information with minor errors in 13.4% and information with major errors in 3.9%. Results were available within 1 h. Our serial algorithm provided information that was consistent or showed minor errors for 96.1% of urine samples from patients with suspected UTI. The clinical impacts of this rapid UTI diagnosis strategy need to be assessed through indicators of adequacy of treatment such as a reduced time to appropriate empirical treatment or earlier withdrawal of unnecessary antibiotics. PMID:24466289

  14. Determination of phthalates in raw bovine milk by gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS) and dietary intakes.

    PubMed

    Kim, Meekyung; Yun, Seon Jong; Chung, Gab-Soo

    2009-01-01

    Low levels of phthalates, including di(2-ethylhexyl) phthalate (DEHP), in raw bovine milk were determined using gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). A fast and convenient process of sample treatment combined with TOF-MS analysis (medium resolution >5000), yielded good recoveries (85-125%) and low limits of detection (<0.002 mg kg(-1)). The most commonly used phthalate, DEHP, was found in 15 out of 30 samples monitored in this study. DEHP concentrations in raw milk ranged from not detected to 0.154 mg kg(-1), and the mean concentration was 0.057 mg kg(-1). The dietary intake of DEHP was about 0.004 mg kg(-1) body weight day(-1) if a child (24 months, 13 kg body weight) drinks 1 L day(-1) of milk that contains the mean concentration of DEHP found in raw milk. The estimated dietary intake corresponded to 8% of the European Union tolerable daily intake (TDI) of 0.05 mg kg(-1) body weight day(-1). Dimethyl phthalate (DMP) and di-n-butyl phthalate (DBP) were found from two and 20 samples, respectively, at low levels. Diethyl phthalate (DEP), butylbenzyl phthalate (BBP), and di-n-octyl phthalate (DnOP) were not found in any of the samples. PMID:19680881

  15. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics for comparison of caffeinated and decaffeinated coffee and its implications for Alzheimer's disease.

    PubMed

    Chang, Kai Lun; Ho, Paul C

    2014-01-01

    Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer's disease (AD). The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed distinct separation between the two types of coffee (cumulative Q(2) = 0.998). A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research. PMID:25098597

  16. Application of porous metal enrichment probe sampling to single cell analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS).

    PubMed

    Fu, Qiang; Tang, Jun; Cui, Meng; Xing, Junpeng; Liu, Zhiqiang; Liu, Shuying

    2016-01-01

    There is an increasing need for analyzing metabolism in a single cell, which is important to understand the nature of cellular heterogeneity, disease, growth and specialization, etc. However, single cell analysis is often challenging for the traces of samples. In the present study, porous metal enrichment probe sampling combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) has been applied for in situ analysis of live onion epidemic cell. Porous probe, treated by corroding copper wire with HCl, was directly inserted into a single cell to get cell solution. A self-made linear actuator was enough to control the penetration of probe into the target cell accurately. Then samples on the tip of probe were eluted and detected by a commercial MALDI-TOF-MS directly. The formation of porous microstructure on the probe surface increased the adsorptive capacity of cell solution. The sensitivity of porous probe sampling was 6 times higher than uncorroded probes generally. This method provides a sensitive and convenient way for the sampling and detection of single cell solution. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26757073

  17. Rapid Identification of Bacillus anthracis Spores in Suspicious Powder Samples by Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    van der Laaken, Anton L.; Blatny, Janet Martha; Paauw, Armand

    2013-01-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 106 spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min. PMID:23811517

  18. Multi-residue analysis method for analysis of pharmaceuticals using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS) in water sample

    NASA Astrophysics Data System (ADS)

    Al-Qaim, Fouad Fadhil; Abdullah, Md Pauzi; Othman, Mohamed Rozali

    2013-11-01

    In this work, a developed method using solid - phase extraction (SPE) followed by liquid chromatography - time of flight mass spectrometry (LC-ESI-TOF/MS) was developed and validated for quantification and confirmation of eleven pharmaceuticals with different therapeutic classes in water samples, Malaysia. These compounds are caffeine (CAF), prazosin (PRZ), enalapril (ENL), carbamazepine (CBZ), nifedipine (NFD), levonorgestrel (LNG), simvastatin (SMV), hydrochlorothiazide (HYD), gliclazide (GLIC), diclofenac-Na (DIC-Na) and mefenamic acid (MEF). LC was performed on a Dionex Ultimate 3000/LC 09115047 (USA) system. Chromatography was performed on a Thermo Scientific C18 (250 mm × 2.1 mm, i.d.: 5μm) column. Several parameters were optimised such as; mobile phase, gradient elution, collision energy and solvent elution for extraction of compounds from water. The recoveries obtained ranged from 30-148 % in river water. Five pharmaceutical compounds were detected in the surface water samples: caffeine, prazosin, enalpril, diclofenac-Na and mefenamic acid. The developed method is precise and accepted recoveries were got. In addition, this method is suitable to identify and quantify trace concentrations of pharmaceuticals in surface water.

  19. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].

    PubMed

    Steiner, Wes E; Harden, Charles S; Hong, Feng; Klopsch, Steve J; Hill, Herbert H; McHugh, Vincent M

    2006-02-01

    The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported. PMID:16413205

  20. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    PubMed

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-04-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs. PMID:25938749

  1. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing.

    PubMed

    Adam, T W; Clairotte, M; Streibel, T; Elsasser, M; Pommeres, A; Manfredi, U; Carriero, M; Martini, G; Sklorz, M; Krasenbrink, A; Astorga, C; Zimmermann, R

    2012-07-01

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated. PMID:22644155

  2. Evaluation of the Bruker Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) System for the Identification of Clinically Important Dermatophyte Species.

    PubMed

    Karabıçak, Nilgün; Karatuna, Onur; İlkit, Macit; Akyar, Işın

    2015-10-01

    Dermatophytes can invade the stratum corneum of the skin and other keratinized tissues and are responsible for a broad diversity of diseases of skin, nails and hair. Although the standard identification of dermatophytoses depends on macroscopic and microscopic characterization of the colonies grown on special media, there are a number of limitations owing to intraspecies morphological variability, atypical morphology or interspecies morphological similarity which entails improvement in the identification methods. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a novel method which proved to be effective for rapid and reliable identification of dermatophytes grown in cultures when compared to conventional methods. We evaluated the performance of Bruker MALDI-TOF MS System (Bruker Daltonics, Germany) for identification of clinically relevant dermatophytes. In order to increase the identification capacity of the system, we created supplemental spectral database entries using ten reference dermatophyte strains (ten species in two genera). The utility of the generated database was then challenged using a total of 126 dermatophytes (115 clinical isolates and 11 additional reference strains). The results were evaluated by both manufacturer-recommended and lowered cutoff scores. MALDI-TOF MS provided correct identification in 122 (96.8 %) and 113 (89.7 %) of the isolates with the lowered scores and using the supplemented database, respectively, versus 65 (51.6 %) and 17 (13.5 %) correct identifications obtained by the unmodified database and recommended scores at the genus and species levels, respectively. Our results support the potential utility of MALDI-TOF MS as a routine tool for accurate and reliable identification of dermatophytes. PMID:25971934

  3. Sensomics analysis of key hazelnut odorants (Corylus avellana L. 'Tonda Gentile') using comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC×GC-TOF-MS).

    PubMed

    Kiefl, Johannes; Pollner, Gwendola; Schieberle, Peter

    2013-06-01

    Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) has been used a few times to identify and quantitate single aroma-active compounds, but the capability of this technique to monitor a complete set of key odorants evoking the aroma of a given food in one run has not been exploited so far. A fast, multiodorant analysis using GC×GC-TOF-MS in combination with stable isotope dilution assays (SIDA) was developed to quantitate the entire set of aroma compounds, the sensometabolome, of raw and roasted hazelnuts ( Corylus avellana L. 'Tonda Gentile') previously established by GC-olfactometry. The capability of the method to evaluate the aroma contribution of each sensometabolite was evaluated by introducing a new term, the limit of odor activity value (LOAV), indicating whether a given aroma compound can be determined down to an odor activity value (OAV) of 1 (odor activity value = ratio of concentration to odor threshold). The advantage of the new method was proven by comparing the performance parameters with a traditional one-dimensional approach using GC-ion trap mass-spectrometry (GC-IT-MS). The results showed that the detector linearity and sensitivity of GC×GC-TOF-MS was on average higher by a factor of 10 compared to GC-IT-MS, thus enabling the quantitation of the aroma relevant amounts of 22 key odorants of hazelnuts in one run of the 30 aroma-active compounds. Seven novel isotopically labeled internal standards were synthesized to meet the analytical requirements defined by electron impact ionization in TOF-MS, that is, to keep the label. On the basis of the quantitative results obtained, it was possible to closely mimic the aroma of raw and roasted 'Tonda Gentile' hazelnuts by preparing an aroma recombinate containing the key odorants at their natural concentrations occurring in the nuts. PMID:23663170

  4. Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by Matrix-Assisted-Laser-Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in response to varying growth conditions.

    PubMed

    Usbeck, Julia C; Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2013-12-01

    The growth of spoiling yeasts in beverages results in reduced quality, economic and image losses. Therefore, biochemical and DNA-based identification methods have been developed but are mostly time-consuming and laborious. Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) could deliver discriminative peptide mass fingerprints within minutes and could thus be a rapid and reliable tool for identification and differentiation. However, routine analysis of yeasts by MALDI-TOF MS is yet impaired by low reproducibility and effects of different physiological states of organisms on the reliability of the identification method are still controversial. The aim of this study was to optimize sample preparation and measurement parameterization using three spoilage yeasts (Saccharomyces cerevisiae var. diastaticus, Wickerhamomyces anomalus and Debaryomyces hansenii). The influence of environmental or physiological parameters including oxygen availability, different nutrients, cell density and growth phase were analysed and revealed small differences in mass fingerprints. Yeasts grown in the presence or absence of oxygen were precisely differentiated along these differences in mass fingerprints and a crude classification of growth phase was possible. Cell concentration did not affect the spectra distinctly, neither qualitatively nor quantitatively, and an influence of available nutrients could not be measured in each case. However, core mass peaks remained constant under all tested conditions enabling reliable identification. PMID:24010620

  5. Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS).

    PubMed

    Baharum, Syarul Nataqain; Bunawan, Hamidun; Ghani, Ma'aruf Abd; Mustapha, Wan Aida Wan; Noor, Normah Mohd

    2010-01-01

    The essential oil in leaves of Polygonum minus Huds., a local aromatic plant, were identified by a pipeline of gas chromatography (GC) techniques coupled with mass-spectrometry (MS), flame ionization detector (FID) and two dimensional gas chromatography time of flight mass spectrometry (GC x GC-TOF MS). A total of 48 compounds with a good match and high probability values were identified using this technique. Meanwhile, 42 compounds were successfully identified in this study using GC-MS, a significantly larger number than in previous studies. GC-FID was used in determining the retention indices of chemical components in P. minus essential oil. The result also showed the efficiency and reliability were greatly improved when chemometric methods and retention indices were used in identification and quantification of chemical components in plant essential oil. PMID:20944520

  6. Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF-MS)-Based Metabolomics for Comparison of Caffeinated and Decaffeinated Coffee and Its Implications for Alzheimer’s Disease

    PubMed Central

    Chang, Kai Lun; Ho, Paul C.

    2014-01-01

    Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer’s disease (AD). The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed distinct separation between the two types of coffee (cumulative Q2 = 0.998). A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research. PMID:25098597

  7. Source-Identifying Biomarker Ions between Environmental and Clinical Burkholderia pseudomallei Using Whole-Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Srisanga, Kitima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2014-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei. PMID:24914956

  8. Biomarker- and similarity coefficient-based approaches to bacterial mixture characterization using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)

    PubMed Central

    Zhang, Lin; Smart, Sonja; Sandrin, Todd R

    2015-01-01

    MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that has previously been shown to be useful in identification of individual bacteria in pure cultures and simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively applied to identification of individual bacteria in pure cultures. Both strategies were developed and evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed that most peaks in mixture spectra could be assigned to those found in spectra of each component bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-coded samples containing more than two isolates, bacteria were more effectively identified using a biomarker-based strategy. PMID:26537565

  9. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and Bayesian phylogenetic analysis to characterize Candida clinical isolates.

    PubMed

    Angeletti, Silvia; Lo Presti, Alessandra; Cella, Eleonora; Dicuonzo, Giordano; Crea, Francesca; Palazzotti, Bernardetta; Dedej, Etleva; Ciccozzi, Massimo; De Florio, Lucia

    2015-12-01

    Clinical Candida isolates from two different hospitals in Rome were identified and clustered by MALDI-TOF MS system and their origin and evolution estimated by Bayesian phylogenetic analysis. The different species of Candida were correctly identified and clustered separately, confirming the ability of these techniques to discriminate between different Candida species. Focusing MALDI-TOF analysis on a single Candida species, Candida albicans and Candida parapsilosis strains clustered differently for hospital setting as well as for period of isolation than Candida glabrata and Candida tropicalis isolates. The evolutionary rates of C. albicans and C. parapsilosis (1.9310(-2) and 1.1710(-2)substitutions/site/year, respectively) were in agreement with a higher rate of mutation of these species, even in a narrow period, than what was observed in C. glabrata and C. tropicalis strains (6.9910(-4) and 7.5210(-3)substitutions/site/year, respectively). C. albicans resulted as the species with the highest between and within clades genetic distance values in agreement with the temporal-related clustering found by MALDI-TOF and the high evolutionary rate 1.9310(-2)substitutions/site/year. PMID:26551247

  10. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS)-based identification of pathogens from positive blood culture bottles.

    PubMed

    Lagacé-Wiens, Philippe

    2015-01-01

    Since the expansion of commercial use of MALDI-TOF/MS instruments for the identification of bacteria from culture which has occurred over the past 5-8 years, techniques for the identification of bacteria directly from positive blood cultures have been developed (Lagace-Wiens et al., J Clin Microbiol 50:3324-3328, 2012; Martiny et al., Eur J Clin Microbiol Infect Dis 31:2269-2281, 2012; Moussaoui et al., Clin Microbiol Infect 16:1631-1638, 2010). These techniques have the potential to provide definitive identification of pathogens causing sepsis 18-48 h earlier than conventional methodologies, and implementation of these methods has been shown to impact morbidity and hospital costs in a positive way (Martiny et al., Clin Microbiol Infect 19:E568-E581, 2013; Loonen et al., Eur J Clin Microbiol Infect Dis 31:1575-1583, 2012). Although many methods for purification of bacterial cells have been developed, including differential centrifugation, centrifuge lysis, and preincubation on sold media (March-Rossello et al., Eur J Clin Microbiol Infect Dis 32:699-704, 2013; Saffert et al., Diagn Microbiol Infect Dis 73:21-26, 2012; Schubert et al., J Mol Diagn 13:701-706, 2011), we will describe the method by which intact bacterial cells are extracted from positive blood culture bottles using a commercially available kit (SepsiTyper™) which is based on the centrifuge lysis methodology (Lagace-Wiens et al., J Clin Microbiol 50:3324-3328, 2012; Buchan et al., J Clin Microbiol 50:346-352, 2012). PMID:25319778

  11. Direct characterization of polyurethanes and additives by atmospheric solid analysis probe with time-of-flight mass spectrometry (ASAP-TOF-MS).

    PubMed

    Lebeau, Diane; Ferry, Muriel

    2015-09-01

    Because of the wide range of formulations, polyurethanes (PURs) are among the most used copolymers. According to their applications, the nature and concentration of the monomers, as well as the additives, are adjusted. As copolymer, this material is difficult to characterize directly by mass spectrometry without sample pretreatment. In this work, atmospheric solid analysis probe mass spectrometry (ASAP-MS) is used to characterize model and commercial PURs with different formulations. Application of a temperature gradient over the ASAP probe allows a soft vaporization of all sample components: additives are detected at lower gas temperature, whereas the polymer is detected at higher gas temperature. Thus, a temporal separation of the molecules as a function of their volatilization and/or degradation temperature is observed. The vaporized products are identified by ASAP thanks to pyrolysis, but also by low energy source fragmentation observed during the analysis. Thus, complete analysis of PURs with only a single time-of-flight (TOF) mass analyzer is realized. The ability of ASAP-MS for differentiation of different chemical structures of PURs (polyester and polyether based PURs) is demonstrated; the main advantage of this technique being that the analysis is performed in one step, directly on the crude polymer. PMID:26229024

  12. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents.

    PubMed

    John, Harald; Breyer, Felicitas; Thumfart, Jörg Oliver; Höchstetter, Hans; Thiermann, Horst

    2010-11-01

    Toxic organophosphorus compounds (OPC), e.g., pesticides and nerve agents (NA), are known to phosphylate distinct endogenous proteins in vivo and in vitro. OPC adducts of butyrylcholinesterase and albumin are considered to be valuable biomarkers for retrospective verification of OPC exposure. Therefore, we have detected and identified novel adducts of human serum albumin (HSA) by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pure albumin and plasma were incubated with numerous pesticides and NA of the V- and G-type in different molar ratios. Samples were prepared either by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel enzymatic cleavage using endoproteinase Glu-C (Glu-C) or by combining highly albumin-selective affinity extraction with ultrafiltration followed by reduction, carbamidomethylation, and enzymatic cleavage (Glu-C) prior to MALDI-TOF MS analysis. Characteristic mass shifts for phosphylation revealed tyrosine adducts at Y(411) (Y(401)KFQNALLVRY(411)TKKVPQVSTPTLVE(425)), Y(148) and Y(150) (I(142)ARRHPY(148)FY(150)APE(153), single and double labeled), and Y(161) (L(154)LFFAKRY(161)KAAFTE(167)) produced by original NA (tabun, sarin, soman, cyclosarin, VX, Chinese VX, and Russian VX) as well as by chlorpyrifos-oxon, diisopropyl fluorophosphate (DFP), paraoxon-ethyl (POE), and profenofos. MALDI-MS/MS of the single-labeled I(142)-E(153) peptide demonstrated that Y(150) was phosphylated with preference to Y(148). Aged albumin adducts were not detected. The procedure described was reproducible and feasible for detection of adducts at the most reactive Y(411)-residue (S/N ≥ 3) when at least 1% of total albumin was labeled. This was achieved by incubating plasma with molar HSA/OPC ratios ranging from approximately 1:0.03 (all G-type NA, DFP, and POE) to 1:3 (V-type NA, profenofos). Relative signal intensity of the Y(411) adduct correlated well with the spotted relative molar amount underlining the usefulness for quantitative adduct determination. In conclusion, the current analytical design exhibits potential as a verification tool for high-dose exposure. PMID:20730528

  13. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization.

    PubMed

    Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève

    2015-05-01

    This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter. PMID:25702991

  14. Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption / Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis

    PubMed Central

    Tani, Akio; Sahin, Nurettin; Fujitani, Yoshiko; Kato, Akiko; Sato, Kazuhiro; Kimbara, Kazuhide

    2015-01-01

    Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant–microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization- time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion. PMID:26053875

  15. Volatile Organic Compound emissions from soil: using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) for the real time observation of microbial processes

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Behrendt, T.; Klapthor, A.; Meixner, F. X.; Williams, J.

    2014-08-01

    In this study we report on the emissions of volatile organic compounds (VOC) and nitric oxide (NO) from two contrasting soils (equatorial rainforest and arid cotton field) analyzed in a laboratory based dynamic chamber system. The effect of soil moisture and soil temperature on VOC and NO emission was examined in laboratory incubation experiments by measuring as a pre-saturated soil dried out. Our results suggest that real time monitoring of VOC emissions from soil using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) instrument can be used to improve our understanding of the release mechanisms of trace gases (e.g. NO, N2O) that are involved in the nitrogen cycle. Moreover, we report on the release rate of various VOC species, many of which exhibit a temperature dependent response indicative of biological production, namely a temperature amplification factor (Q10) ∼ 2-3. Contrary to the conventional modeling of NO emissions from soils, that the release of NO from the overall community across the range of soil water content can be modeled as an optimum function, we suggest that VOC measurements indicate there exist multiple distinct contributing microbial guilds releasing NO. These microbial guilds could likely be individually identified with the observed VOC profiles. Using a cotton field soil sample from a Sache oasis (Taklimakan desert, Xinijang, P. R. China), we identify five VOC emission groups with varying degrees of NO co-emission. An equatorial rainforest soil (Suriname) was shown to emit a variety of VOC including acetaldehyde, acetone, DMS, formaldehyde, and isoprene that vary strongly and individually as a function of temperature and soil moisture content. PTR-TOF-MS with high time resolution, sensitivity, and molecular specificity is an ideal tool for the real time analysis of VOC and NO emitting processes in soil systems. These experiments can be used as a template for future experiments to more completely and specifically identify the active microbial guilds in soils and to characterize the impact of soil VOC emissions on the atmosphere.

  16. Comparative evaluation of two matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems, Vitek MS and Microflex LT, for the identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories.

    PubMed

    Lee, Miae; Chung, Hae-Sun; Moon, Hee-Won; Lee, Sun Hwa; Lee, Kyungwon

    2015-06-01

    We evaluated the performance of two MALDI-TOF MS systems for the identification of clinically important Gram-positive cocci. Vitek MS and Microflex LT correctly identified 97.2% and 94.7%, respectively. Both systems offer reliable and rapid identification of clinically important Gram-positive cocci isolated in clinical laboratories, including staphylococci, streptococci, and enterococci. Expanding the databases, especially of coagulase-negative staphylococci and viridans streptococci, would enhance performance. PMID:25818760

  17. Metabolomic Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF MS) Uncovers the Effects of Light Intensity and Temperature under Shading Treatments on the Metabolites in Tea

    PubMed Central

    Ma, Lifeng; Yi, Xiaoyun; Ruan, Jianyun

    2014-01-01

    To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2–4°C cooling effect) with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides) decreased significantly in the shading treatments, while the contents of chlorophyll, β-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature. PMID:25390340

  18. Analysis of Wheat Prolamins, the Causative Agents of Celiac Sprue, Using Reversed Phase High Performance Liquid Chromatography (RP-HPLC) and Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS)

    PubMed Central

    Mejías, Jaime H.; Lu, Xiaoqiao; Osorio, Claudia; Ullman, Jeffrey L.; von Wettstein, Diter; Rustgi, Sachin

    2014-01-01

    Wheat prolamins, commonly known as “gluten”, are a complex mixture of 71–78 proteins, which constitute ~80% of the proteins in the wheat grains and supply 50% of the global dietary protein demand. Prolamins are also responsible for numerous gluten-induced disorders and determine the unique visco-elastic properties of the wheat dough. These properties necessitate the reliable determination of the prolamin composition in wheat grains and their derived products. Therefore, this study examined the impact of HPLC conditions, including column type, column temperature, flow rate, and the gradient of polar and non-polar solvents in the mobile phase, to improve the analytical resolution of prolamins. The following conditions were found optimal for analyses: column temperature 60 °C, flow rate 1.0 mL/min and an elution gradient of 20%–60% of 0.1% trifluoroacetic acid + acetonitrile in 60 min. For further improvement of resolution, gliadin and glutenin extracts were analyzed using MALDI-TOF-MS in combination with HPLC fractionation. Two semi-quantitative methods, densitometry of stained polyacrylamide gels and HPLC, were used to determine relative prolamin quantities and the correspondence between the methods was established. The combinatorial gluten analyses approach developed during the present study was used to analyze prolamin profiles of wheat transformants expressing DEMETER silencing artificial microRNA, and the results are discussed. PMID:24739977

  19. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in preparation of chitosan oligosaccharides (COS) with degree of polymerization (DP) 5-12 containing well-distributed acetyl groups

    NASA Astrophysics Data System (ADS)

    Chen, Mian; Zhu, Xiqiang; Li, Zhiming; Guo, Xueping; Ling, Peixue

    2010-02-01

    COS have many biological activities, and have been widely used as a health food. Molecular size is considered as a key parameter for COS' activities. However, many criteria are used practically, and true qualities of COS from different producers may not be always comparable. This can partly explain the disagreement in COS' functional researches, as resulting in COS, even with astonish effects, have not been further developed as a drug for tumor patients. As anti-tumor activities have been studied based on DP in pharmacological researches, we employed MALDI-TOF-MS to monitor fine structure, including DP, in COS' preparation and comparison. Then one of the COS products was analyzed with the composition of DP 5-12, mainly 7-10. Moreover, that COS' product contains well-distributed acetyl groups, while typical Commercial COS sample nearly contains no acetyl groups. As fresh precise parameters, the DP and the number of acetyl groups matching with special DP can be introduced in COS' further study on structure-activity relationships (SARs) as a new drug.

  20. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea.

    PubMed

    Zhang, Qunfeng; Shi, Yuanzhi; Ma, Lifeng; Yi, Xiaoyun; Ruan, Jianyun

    2014-01-01

    To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2-4°C cooling effect) with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides) decreased significantly in the shading treatments, while the contents of chlorophyll, β-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature. PMID:25390340

  1. Analysis of wheat prolamins, the causative agents of celiac sprue, using reversed phase high performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS).

    PubMed

    Mejías, Jaime H; Lu, Xiaoqiao; Osorio, Claudia; Ullman, Jeffrey L; von Wettstein, Diter; Rustgi, Sachin

    2014-04-01

    Wheat prolamins, commonly known as "gluten", are a complex mixture of 71-78 proteins, which constitute ~80% of the proteins in the wheat grains and supply 50% of the global dietary protein demand. Prolamins are also responsible for numerous gluten-induced disorders and determine the unique visco-elastic properties of the wheat dough. These properties necessitate the reliable determination of the prolamin composition in wheat grains and their derived products. Therefore, this study examined the impact of HPLC conditions, including column type, column temperature, flow rate, and the gradient of polar and non-polar solvents in the mobile phase, to improve the analytical resolution of prolamins. The following conditions were found optimal for analyses: column temperature 60 °C, flow rate 1.0 mL/min and an elution gradient of 20%-60% of 0.1% trifluoroacetic acid + acetonitrile in 60 min. For further improvement of resolution, gliadin and glutenin extracts were analyzed using MALDI-TOF-MS in combination with HPLC fractionation. Two semi-quantitative methods, densitometry of stained polyacrylamide gels and HPLC, were used to determine relative prolamin quantities and the correspondence between the methods was established. The combinatorial gluten analyses approach developed during the present study was used to analyze prolamin profiles of wheat transformants expressing DEMETER silencing artificial microRNA, and the results are discussed. PMID:24739977

  2. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass-Spectrometry (MALDI-TOF MS) Based Typing of Extended-Spectrum β-Lactamase Producing E. coli – A Novel Tool for Real-Time Outbreak Investigation

    PubMed Central

    Egli, Adrian; Tschudin-Sutter, Sarah; Oberle, Michael; Goldenberger, Daniel; Frei, Reno; Widmer, Andreas F.

    2015-01-01

    Epidemiologically linked clusters are confirmed by typing strains with molecular typing such as pulsed-field gel electrophoresis (PFGE). We compared six extended-spectrum β-lactamase producing E. coli of a PFGE-related cluster with Matrix-assisted laser desorption/ionization-time of flight mass-spectrometry based typing that confirmed relatedness faster and more cost-effective, but as reliable as PFGE. PMID:25860943

  3. Effect of metformin on the urinary metabolites of diet-induced-obese mice studied by ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF/MS).

    PubMed

    Zhu, Yunyun; Feng, Yi; Shen, Lan; Xu, Desheng; Wang, Bin; Ruan, Kefeng; Cong, Wenjuan

    2013-04-15

    Obesity is becoming a health concern worldwide and metformin, a first line anti-diabetic drug, was associated with weight loss under different backgrounds. However, most researches focused on the anti-diabetic mechanism and less attention has been paid on the mechanism of weight loss of metformin. Therefore, we established a metabonomic method to evaluate metformin action in preventing obesity in a high fat diet-induced-obesity (DIO) mice model. 36 male C57BL/6 mice (8-week old) were randomly divided into control group (n=12, normal chow), model group (n=12, high fat chow) and metformin group (n=12, high fat chow and dosed with metformin) over 16 weeks. A urinary metabonomic study using UPLC-TOF/MS was performed in combination with multivariate statistical analysis. In addition, indices of body weight and food intake as well as fasting blood glucose, fed blood glucose, oral glucose tolerance test (OGTT) and plasma insulin were collected. Significant weight loss in metformin-treated mice was achieved and 21 potential biomarkers were identified. Decreased glucose, myristic acid, stearidonic acid, lysoPC (16:0), lysoPC (18:0), L-glutamic acid, L-methionine, L-threonine, L-phenylalanine, L-histidine, L-carnitine, L-malic acid and pantothenic acid in urine indicated that metformin may have exerted effects on energy metabolism. Further, based on the biomarkers, we cautiously propose that tricarboxylic acid cycle (TCA) may have been compromised by metformin and might contribute to the activation of adenosine monophosphate kinase (AMPK), then AMPK activation led to more β-oxidation of certain fatty acids and augmented lipolysis and thus induced weight loss. Related cellular and molecular studies are being considered to further investigate the underlying mechanism. PMID:23523884

  4. Profile of phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry (RRLC-ESI-TOF-MS).

    PubMed

    Ballus, Cristiano Augusto; Quirantes-Pin, Rosa; Bakhouche, Abdelhakim; da Silva, Luiz Fernando de Oliveira; de Oliveira, Adelson Francisco; Coutinho, Enilton Fick; da Croce, Dorli Mario; Segura-Carretero, Antonio; Godoy, Helena Teixeira

    2015-03-01

    In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO. PMID:25306359

  5. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. PMID:26407296

  6. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.).

    PubMed

    Wang, Aili; Liu, Li; Peng, Yanchun; Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. PMID:26407296

  7. Applications of MALDI-TOF MS in environmental microbiology.

    PubMed

    Santos, Inês C; Hildenbrand, Zacariah L; Schug, Kevin A

    2016-05-10

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is an emerging technique for microbial identification, characterization, and typing. The single colony method can be used for obtaining a protein fingerprint or profile unique to each microorganism. This technique has been mainly used in the clinical field, but it also has significant potential in the environmental field. The applications of MALDI-TOF MS in environmental microbiology are discussed in this review. An overview on the use of MALDI-TOF MS for environmental proteomics and metabolomics is given as well as its use for bacterial strain typing and bioremediation research. A more detailed review on the use of this technique for the identification, differentiation, and categorization of environmental microorganisms is given. Some of the parameters that can influence the results and reproducibility of MALDI-TOF MS are also discussed. PMID:27072574

  8. An automated GCxGC-TOF-MS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential 13C-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells.

    PubMed

    Kempa, Stefan; Hummel, Jan; Schwemmer, Thorsten; Pietzke, Matthias; Strehmel, Nadine; Wienkoop, Stefanie; Kopka, Joachim; Weckwerth, Wolfram

    2009-02-01

    Two dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOF-MS) is a promising technique to overcome limits of complex metabolome analysis using one dimensional GC-TOF-MS. Especially at the stage of data export and data mining, however, convenient procedures to cope with the complexity of GCxGC-TOF-MS data are still in development. Here, we present a high sample throughput protocol exploiting first and second retention index for spectral library search and subsequent construction of a high dimensional data matrix useful for statistical analysis. The method was applied to the analysis of (13)C-labelling experiments in the unicellular green alga Chlamydomonas reinhardtii. We developed a rapid sampling and extraction procedure for Chlamydomonas reinhardtii laboratory strain (CC503), a cell wall deficient mutant. By testing all published quenching protocols we observed dramatic metabolite leakage rates for certain metabolites. To circumvent metabolite leakage, samples were directly quenched and analyzed without separation of the medium. The growth medium was adapted to this rapid sampling protocol to avoid interference with GCxGC-TOF-MS analysis. To analyse batches of samples a new software tool, MetMax, was implemented which extracts the isotopomer matrix from stable isotope labelling experiments together with the first and second retention index (RI1 and RI2). To exploit RI1 and RI2 for metabolite identification we used the Golm metabolome database (GMD [1] with RI1/RI2-reference spectra and new search algorithms. Using those techniques we analysed the dynamics of (13)CO(2) and (13)C-acetate uptake in Chlamydomonas reinhardtii cells in two different steady states namely photoautotroph and mixotroph growth conditions. PMID:19206143

  9. MALDI-TOF MS in Prenatal Genomics

    PubMed Central

    Zhong, Xiao Yan; Holzgreve, Wolfgang

    2009-01-01

    Summary Prenatal diagnosis aims either to provide the reassurance to the couples at risk of having an affected child by timely appropriate therapy or to give the parents a chance to decide the fate of the unborn babies with health problems. Invasive prenatal diagnosis (IPD) is accurate, however, carrying a risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) has been developed based on the existing of fetal genetic materials in maternal circulation; however, a minority fetal DNA in majority maternal background DNA hinders the detections of fetal traits. Different protocols and assays, such as homogenous MassEXTEND (hME), single allele base extension reaction (SABER), precise measuring copy number variation of each allele, and quantitative methylation and expression analysis using the high-throughput sensitive matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), allow NIPD for single gene disorders, fetal blood group genotyping and fetal aneuploidies as well as the development of fetal gender-independent biomarkers in maternal circulation for management of pathological pregnancies. In this review, we summarise the use of MALDI-TOF MS in prenatal genomics. PMID:21049077

  10. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification

    PubMed Central

    Guo, Ling; Ye, Liyan; Zhao, Qiang; Ma, Yanning; Yang, Jiyong

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. This study aimed to evaluate the accuracy of MALDI-TOF MS in clinical microbiology diagnosis by comparing it with commonly-used VITEK 2 or gene sequencing. Methods The performances of MALDI-TOF MS and VITEK 2 were compared retrospectively for identifying routine isolates. Discrepancies were analyzed by gene sequencing analysis of the 16S genes. Results For 1,025 isolates, classified as 55 species of 25 genera, 1,021 (99.60%) isolates were accurately identified at the genus level, and 957 (93.37%) isolates at the species level by using MALDI-TOF MS. A total of 949 (92.59%) isolates were completely matched by both methods. Both methods found 76 unmatched isolates among which one strain had no definite identification by MALDI-TOF MS and VITEK 2 respectively. However, MALDI-TOF MS made no errors at the genus level while VITEK 2 made 6 (0.58%) errors at the genus level. At the species level, the identification error rates for MALDI-TOF MS and VITEK 2 were 5.56% and 6.24%, respectively. Conclusions With a lower identification error rate, MALDI-TOF MS has better performance than VITEK 2 in identifying bacteria found routinely in the clinical laboratory. It is a quick and cost-effective technique, and has the potential to replace conventional phenotype methods in identifying common bacterial isolates in clinical microbiology laboratories. PMID:24822115

  11. Performance of mass spectrometric identification of bacteria and yeasts routinely isolated in a clinical microbiology laboratory using MALDI-TOF MS

    PubMed Central

    Wang, Weiping; Xi, Haiyan; Huang, Mei; Wang, Jie; Fan, Ming; Chen, Yong; Shao, Haifeng

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to identifying bacterial and yeast strains. The aim of this study was to evaluate the clinical performance of the VITEK® MS system in the identification of bacteria and yeast strains routinely isolated from clinical samples. Methods We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria and yeasts regardless of phylum or source of isolation. Discordant results were resolved with 16S rDNA or internal transcribed spacer (ITS) gene sequencing. Colonies (a single deposit on a MALDI disposable target without any prior extraction step) were analyzed using the VITEK® MS system. Peptide spectra acquired by the system were compared with the VITEK® MS IVD database Version 2.0, and the identification scores were recorded. Results Of the 1,181 isolates (1,061 bacterial isolates and 120 yeast isolates) analyzed, 99.5% were correctly identified by MALDI-TOF mass spectrometry; 95.7% identified to the species level, 3.6% identified to the genus level, and 0.3% identified within a range of species belonging to different genera. Conversely, 0.1% of isolates were misidentified and 0.4% were unidentified, partly because the species were not included in the database. Re-testing using a second deposit provided a successful identification for 0.5% of isolates unidentified with the first deposit. Our results show that the VITEK® MS system has exceptional performance in identifying bacteria and yeast by comparing acquired peptide spectra to those contained in its database. Conclusions MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive method for bacterial and yeast identification. Our results demonstrate that the VITEK® MS system is a fast and reliable technique, and has the potential to replace conventional phenotypic identification for most bacterial and yeast strains routinely isolated in clinical microbiology laboratories. PMID:24822114

  12. Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS.

    PubMed

    Rodriguez, Alena M; Dutertre, Sebastien; Lewis, Richard J; Marí, Frank

    2015-08-01

    The venom of cone snails is composed of highly modified peptides (conopeptides) that target a variety of ion channels and receptors. The venom of these marine gastropods represents a largely untapped resource of bioactive compounds of potential pharmaceutical value. Here, we use a combination of bioanalytical techniques to uncover the extent of venom expression variability in Conus purpurascens, a fish-hunting cone snail species. The injected venom of nine specimens of C. purpurascens was separated by reversed-phase high-performance liquid chromatography (RP-HPLC), and fractions were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) in parallel with liquid chromatography-electrospray ionization (LC-ESI)-TripleTOF-MS to compare standard analytical protocols used in preparative bioassay-guided fractionations with a deeper peptidomic analysis. Here, we show that C. purpurascens exhibits pronounced intraspecific venom variability. RP-HPLC fractionation followed by MALDI-TOF-MS analysis of the injected venom of these nine specimens identified 463 distinct masses, with none common to all specimens. Using LC-ESI-TripleTOF-MS, the injected venom of these nine specimens yielded a total of 5517 unique masses. We also compare the injected venom of two specimens with their corresponding dissected venom. We found 2566 and 1990 unique masses for the dissected venom compared to 941 and 1959 masses in their corresponding injected venom. Of these, 742 and 1004 masses overlapped between the dissected and injected venom, respectively. The results indicate that larger conopeptide libraries can be assessed by studying multiple individuals of a given cone snail species. This expanded library of conopeptides enhances the opportunities for discovery of molecular modulators with direct relevance to human therapeutics. Graphical Abstract The venom of cone snails are extraordinarily complex mixtures of highly modified peptides. Venom analysis requires separation through RP-HPLC followed by MALDI-TOF mass spectrometry or direct analysis using LC-ESI-TripleTOF-MS. Using these techniques, venom intraspecific variability and comparison between injected and dissected were assessed. PMID:26048056

  13. Advances of MALDI-TOF MS in the analysis of traditional Chinese medicines.

    PubMed

    Lu, Minghua; Cai, Zongwei

    2013-01-01

    Traditional Chinese medicines (TCMs) are attracting more and more attention because of their long historical clinical experience and reliable therapeutic efficacy for preventing and/or treating various human diseases. Many techniques and methods were developed for the analysis of TCMs to support new drug discovery and quality control. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), a soft ionization mass spectrometric technique, has been widely used in the analysis of a wide variety of large molecular compounds including proteins, peptides, and polymers since it was introduced in the late 1980s. In the present chapter, advances of MALDI-TOF MS in TCMs analysis have been reviewed. The review covers MALDI-TOF MS applications in the identification of new bioactive ingredients, analysis of alkaloids, determination of small molecular compounds with new matrices, proteomics analysis associated with TCMs, direct analysis of plant tissue, and other applications in TCMs. PMID:23097033

  14. Comparative SELDI-TOF-MS profiling of low-molecular-mass proteins from Lignosus rhinocerus (Cooke) Ryvarden grown under stirred and static conditions of liquid fermentation.

    PubMed

    Lau, Beng Fye; Aminudin, Norhaniza; Abdullah, Noorlidah

    2011-10-01

    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP. PMID:21801760

  15. Utility of the MALDI-TOF MS method to identify nontuberculous mycobacteria.

    PubMed

    Kodana, Masahiro; Tarumoto, Norihito; Kawamura, Tohru; Saito, Taeko; Ohno, Hideaki; Maesaki, Shigefumi; Ikebuchi, Kenji

    2016-01-01

    In comparison to the conventional real-time polymerase chain reaction method (PCR method) or the DNA-DNA hybridization method (DDH method), the utility of NTM identification by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method has seldom been reported. In this study, 75 clinical NTM isolates from our hospital between April 2013 and July 2014 were identified and analyzed using PCR, DDH, and MALDI-TOF MS methods, and the results for the MALDI-TOF MS method were compared with the others. Identification at the species level was in agreement for 71 (94.5%) of the 75 isolates. For further details, identification was possible for 23 (95.8%) of 24 Mycobacterium avium, 11 (100%) of 11 Mycobacterium intracellulare, and 1 (50%) of 2 isolates mixed with M. avium and M. intracellulare. Mycobacterium ksansasii, Mycobacterium abscessus, Mycobacterium fortuitum, Mycobacterium gordonae, and Mycobacterium chelonae identified by DDH method were same result by MALDI-TOF MS. Additionally, Mycobacterium mucogenicum, which could not be identified by the DDH method, was identified by the MALDI-TOF MS method. However, two isolates identified as Mycobacterium terrae by DDH method could not be identified by the MALDI-TOF MS method and were determined to be Mycobacterium arupense by 16S ribosomal RNA (rRNA) sequence analysis. The present findings show that, for rare bacterial species, identification is sometimes not possible, but, in most cases, the results of identification by the MALDI-TOF MS method have a high concordance rate with the results of the PCR and DDH methods. PMID:26603481

  16. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria

    PubMed Central

    Pavlovic, Melanie; Huber, Ingrid; Konrad, Regina; Busch, Ulrich

    2013-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-associated bacteria is also of crucial importance for food processing and product quality. This review is concerned with the applicability of MALDI-TOF MS for routine identification of foodborne bacteria taking the specific requirements of food microbiological laboratories and the food industry into account. The current state of knowledge including recent findings and new approaches are discussed. PMID:24358065

  17. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. PMID:25011591

  18. Evaluation of ice-tea quality by DART-TOF/MS.

    PubMed

    Rajchl, Aleš; Prchalová, Jana; Kružík, Vojtěch; Ševčík, Rudolf; Čížková, Helena

    2015-11-01

    DART (Direct Analysis in Real Time) coupled with Time-of-Flight Mass Spectrometry (TOF/MS) has been used for analyses of ice-teas. The article focuses on quality and authenticity of ice-teas as one of the most important tea-based products on the market. Twenty-one samples of ice-teas (black and green) were analysed. Selected compounds of ice-teas were determined: theobromine, caffeine, total phenolic compounds, total soluble solids, total amino acid concentration, preservatives and saccharides were determined. Fingerprints of DART-TOF/MS spectra were used for comprehensive assessment of the ice-tea samples. The DART-TOF/MS method was used for monitoring the following compounds: citric acid, caffeine, saccharides, artificial sweeteners (saccharin, acesulphame K), and preservatives (sorbic and benzoic acid), phosphoric acid and phenolic compounds. The measured data were subjected to a principal components analysis. The HPLC and DART-TOF/MS methods were compared in terms of determination of selected compounds (caffeine, benzoic acid, sorbic acid and saccharides) in the ice-teas. The DART-TOF/MS technique seems to be a suitable method for fast screening, testing quality and authenticity of tea-based products. PMID:26505766

  19. Tropical Greenhouse Measurements of Volatile Organic Compounds Using Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectromety (PTR-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Veres, P.; Auld, J.; Williams, J.

    2012-04-01

    In this presentation, we will summarize the results of measurements made in an approximately 1300 m3 tropical greenhouse at the Johannes Gutenberg University botanical garden in Mainz Germany conducted over a one month period. The greenhouse is home to a large variety of plant species from hot and humid regions of the world. The greenhouse is also host to several crops such as Cocoa and Cola Nut as well as ornamental plants. A particular focus of the species maintained are those which are considered ant plants, or plants which have an intimate relationship with ants in tropical habitats. Volatile organic compounds (VOCs) were measured using a Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) using H3O+, NO+, and O2+ ion chemistry. Measurements will be presented both for primary emissions observed in the closed greenhouse atmosphere as well as the oxidation products observed after the introduction of ambient ozone. The high resolving power (5000 m/Δm) of the time-of-flight instrument allows for the separation of isobaric species. In particular, both isoprene (68.1170 amu) and furan (68.0740 amu) were observed and separated as primary emissions during this study. The significance of this will be discussed in terms of both atmospheric implications as well as with respect to previous measurements of isoprene obtained using quadrupole PTR-MS where isobaric separation of these compounds is not possible. Additionally observed species (e.g. Methanol, Acetaldehyde, MVK and MEK) will be discussed in detail with respect to their behavior as a function of light, temperature and relative humidity. The overall instrument performance of the PTR-TOF-MS technique using the H3O+, NO+, and O2+ primary ions for the measurement of VOCs will be evaluated.

  20. GC/TOF-MS as a new method for halocarbon observation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Obersteiner, Florian; Boenisch, Harald; Hoker, Jesica; Engel, Andreas

    2015-04-01

    The need for halocarbon measurements in the atmosphere arose with the anthropogenic emission of CFCs beginning in the 1950s and the discovery of their ozone depleting potential in the 1980s. CFCs were replaced by HCFCs and are nowadays replaced by HFCs, with new compounds continuously being developed and introduced to the atmosphere. While not being harmful to the ozone layer, HFCs are still greenhouse gases and many tend to be hazardous to human health at high concentration. They can also serve as tracers to study atmospheric transport at low concentration, making high precision measurement interesting to atmospheric studies. Gas chromatography coupled with time-of-flight mass spectrometry (GC/TOF-MS) is still a new method in the field of atmospheric halocarbon measurement compared to the well-established GC/QP(quadrupole)-MS. The QP-MS is indeed a very stable and easy-to-operate instrument but also limited by mass resolution and either mass range or sensitivity. We will present the general applicability of GC/TOF-MS to regular halocarbon observation by a time series of halocarbon measurements from the Taunus Observatory (Kleiner Feldberg, Germany) and the implementation of a second, high-resolution (max. R=4000) TOF-MS system. Both GC/TOF-MS systems are characterized with respect to reproducibility, non-linearity and limits of detection (LOD). Furthermore, the advantages of a higher mass resolution are demonstrated with respect to LOD, substance identification and substance quantification.

  1. Top-down proteomic identification of protein biomarkers of food-borne pathogens using MALDI-TOF-TOF-MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes a step-by-step protocol and discussion of top-down proteomic identification of protein biomarkers of food-borne pathogens using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF-MS/MS) and web-based software developed in the Pro...

  2. MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus.

    PubMed

    Zhu, Bingqing; Xiao, Di; Zhang, Huifang; Zhang, Yongchan; Gao, Yuan; Xu, Li; Lv, Jing; Wang, Yingtong; Zhang, Jianzhong; Shao, Zhujun

    2013-01-01

    Nontypable Haemophilus influenzae (NTHi) and Haemophilus haemolyticus exhibit different pathogenicities, but to date, there remains no definitive and reliable strategy for differentiating these strains. In this study, we evaluated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a potential method for differentiating NTHi and H. haemolyticus. The phylogenetic analysis of concatenated 16S rRNA and recombinase A (recA) gene sequences, outer membrane protein P6 gene sequencing and single-gene PCR were used as reference methods. The original reference database (ORD, provided with the Biotyper software) and new reference database (NRD, extended with Chinese strains) were compared for the evaluation of MALDI-TOF MS. Through a search of the ORD, 76.9% of the NTHi (40/52) and none of the H. haemolyticus (0/20) strains were identified at the species level. However, all NTHi and H. haemolyticus strains used for identification were accurately recognized at the species level when searching the NRD. From the dendrogram clustering of the main spectra projections, the Chinese and foreign H. influenzae reference strains were categorized into two distinct groups, and H. influenzae and H. haemolyticus were also separated into two categories. Compared to the existing methods, MALDI-TOF MS has the advantage of integrating high throughput, accuracy and speed. In conclusion, MALDI-TOF MS is an excellent method for differentiating NTHi and H. haemolyticus. This method can be recommended for use in appropriately equipped laboratories. PMID:23457514

  3. Rapid identification of oral Actinomyces species cultivated from subgingival biofilm by MALDI-TOF-MS

    PubMed Central

    Stingu, Catalina S.; Borgmann, Toralf; Rodloff, Arne C.; Vielkind, Paul; Jentsch, Holger; Schellenberger, Wolfgang; Eschrich, Klaus

    2015-01-01

    Background Actinomyces are a common part of the residential flora of the human intestinal tract, genitourinary system and skin. Isolation and identification of Actinomyces by conventional methods is often difficult and time consuming. In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has become a rapid and simple method to identify bacteria. Objective The present study evaluated a new in-house algorithm using MALDI-TOF-MS for rapid identification of different species of oral Actinomyces cultivated from subgingival biofilm. Design Eleven reference strains and 674 clinical strains were used in this study. All the strains were preliminarily identified using biochemical methods and then subjected to MALDI-TOF-MS analysis using both similarity-based analysis and classification methods (support vector machine [SVM]). The genotype of the reference strains and of 232 clinical strains was identified by sequence analysis of the 16S ribosomal RNA (rRNA). Results The sequence analysis of the 16S rRNA gene of all references strains confirmed their previous identification. The MALDI-TOF-MS spectra obtained from the reference strains and the other clinical strains undoubtedly identified as Actinomyces by 16S rRNA sequencing were used to create the mass spectra reference database. Already a visual inspection of the mass spectra of different species reveals both similarities and differences. However, the differences between them are not large enough to allow a reliable differentiation by similarity analysis. Therefore, classification methods were applied as an alternative approach for differentiation and identification of Actinomyces at the species level. A cross-validation of the reference database representing 14 Actinomyces species yielded correct results for all species which were represented by more than two strains in the database. Conclusions Our results suggest that a combination of MALDI-TOF-MS with powerful classification algorithms, such as SVMs, provide a useful tool for the differentiation and identification of oral Actinomyces. PMID:25597306

  4. Performance of Two Resin-Containing Blood Culture Media in Detection of Bloodstream Infections and in Direct Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) Broth Assays for Isolate Identification: Clinical Comparison of the BacT/Alert Plus and Bactec Plus Systems

    PubMed Central

    Fiori, Barbara; D'Inzeo, Tiziana; Di Florio, Viviana; De Maio, Flavio; De Angelis, Giulia; Giaquinto, Alessia; Campana, Lara; Tanzarella, Eloisa; Tumbarello, Mario; Antonelli, Massimo; Spanu, Teresa

    2014-01-01

    We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ≤5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization–time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine detection of BSIs in the population we studied, although further studies are needed to evaluate their performance in other settings. PMID:25031441

  5. Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems.

    PubMed

    Fiori, Barbara; D'Inzeo, Tiziana; Di Florio, Viviana; De Maio, Flavio; De Angelis, Giulia; Giaquinto, Alessia; Campana, Lara; Tanzarella, Eloisa; Tumbarello, Mario; Antonelli, Massimo; Sanguinetti, Maurizio; Spanu, Teresa

    2014-10-01

    We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥ 16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ≤ 5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization-time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine detection of BSIs in the population we studied, although further studies are needed to evaluate their performance in other settings. PMID:25031441

  6. Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS

    PubMed Central

    2011-01-01

    Background The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays. Results In this study, the accurate identification of Brucella species using MALDI-TOF-MS was achieved by constructing a Brucella reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from Brucella species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for Brucella species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and B. suis biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for Brucella, even minimal genomic differences between these serovars translate to specific proteomic differences. Conclusions MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library. PMID:22192890

  7. [Rapid Identification of Infectious Microorganisms in Clinical Samples by MALDI-TOF MS Analysis].

    PubMed

    Nakanishi, Toyofumi

    2015-04-01

    Matrix-laser desorption ionization time-of flight/mass spectrometry (MALDI-TOF MS) is a powerful tool for the detection of target molecules in body fluids. Recently, the MALDI-TOF MS technique was applied for the rapid detection of protein profiles in cultured strains, and has rapid, simple, and universal advantages over the conventional technique. MALDI mass patterns were compared with the unique ribosomal 16S protein profiles of standard microorganism strains in a commercial database. Although this present MS technique has already been adopted as a routine method for the identification of general bacteria in the clinical laboratory field, there are still many problems to overcome regarding current challenges, necessitating the identification of more valuable species of microorganism. As the first step, we have begun the standardization of sample preparation to identify species causing infectious diseases by MALDI-TOF MS. In this special issue, we summarize the challenges in the modified preparation of clinical samples, such as blood, urine, and sputum, in our laboratory to rapidly diagnose severe infectious disease, and describe the current trends in clinical microbiology. PMID:26536780

  8. Structural Characterization of Ginsenosides from Flower Buds of Panax ginseng by RRLC-Q-TOF MS.

    PubMed

    Wu, Wei; Lu, Ziyan; Teng, Yaran; Guo, Yingying; Liu, Shuying

    2016-02-01

    Ginseng flower bud as a part of Panax ginseng has received much attention as a valuable functional food with medicinal potential. A few studies focused on systematic and comprehensive studies on its major ingredients. This study aims to rapidly characterize ginsenosides in ginseng flower buds and provide scientific basis for developing functional food, exploiting pharmaceutical effects and making full use of ginseng resources. A rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method was developed for rapid qualitative and quantitative analysis of ginsenosides in ginseng flower buds. The compounds were identified by comparing retention time of the reference standards, accurate mass measurement and the fragment ions obtained from RRLC-Q-TOF-MS/MS analyses. A total of 14 kinds of ginsenosides were identified and 5 kinds of malonyl-ginsenosides were first tentatively identified in ginseng flower buds. Ten kinds of main ginsenosides were quantitatively analyzed. The developed RRLC-Q-TOF-MS method was demonstrated as an effective analytical means for rapid characterization of the ginsenosides in flower buds of P. ginseng. The research result is valuable for quality control, assessment of authenticity and stability evaluation of ginseng flower buds. PMID:26270079

  9. Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS.

    PubMed

    Šalplachta, Jiří; Kubesová, Anna; Horký, Jaroslav; Matoušková, Hana; Tesařová, Marie; Horká, Marie

    2015-10-01

    Dickeya and Pectobacterium species represent an important group of broad-host-range phytopathogens responsible for blackleg and soft rot diseases on numerous plants including many economically important plants. Although these species are commonly detected using cultural, serological, and molecular methods, these methods are sometimes insufficient to classify the bacteria correctly. On that account, this study was undertaken to investigate the feasibility of three individual analytical techniques, capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), for reliable classification of Dickeya and Pectobacterium species. Forty-three strains, representing different Dickeya and Pectobacterium species, namely Dickeya dianthicola, Dickeya dadantii, Dickeya dieffenbachiae, Dickeya chrysanthemi, Dickeya zeae, Dickeya paradisiaca, Dickeya solani, Pectobacterium carotovorum, and Pectobacterium atrosepticum, were selected for this purpose. Furthermore, the selected bacteria included one strain which could not be classified using traditional microbiological methods. Characterization of the bacteria was based on different pI values (CIEF), migration velocities (CZE), or specific mass fingerprints (MALDI-TOF MS) of intact cells. All the examined strains, including the undetermined bacterium, were characterized and classified correctly into respective species. MALDI-TOF MS provided the most reliable results in this respect. PMID:26229029

  10. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS

    PubMed Central

    Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe

    2016-01-01

    Background Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Methodology/Principal Findings Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M’sila where P. (Phlebotomus) papatasi was the only sand fly species detected. Conclusion The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases. PMID:26771833

  11. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS.

    PubMed

    Mirande, C; Canard, I; Buffet Croix Blanche, S; Charrier, J-P; van Belkum, A; Welker, M; Chatellier, S

    2015-11-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been introduced as an identification procedure for bacteria and fungi. The MALDI-TOF MS-based analysis of resistance to β-lactam antibiotics has been applied to detect hydrolysis of carbapenems by different bacterial strains. However, the detection of enzymatic carbapenem degradation by MALDI-TOF MS lacks well-standardized protocols and several methods and models of interpretation using different calculations of ratio-of-peak intensities have been described in the literature. Here, we used faropenem and ertapenem hydrolysis as model compounds. In an attempt to propose a universal protocol, the hydrolysis was regularly monitored during 24 h using well-characterized bacterial strains producing different types of carbapenemases (KPC, IMP, NDM, VIM, and OXA-48). Variable responses and different timing for detectable hydrolysis, depending on the enzyme produced, were observed. KPC degrades its template antibiotics very quickly (15 min for some KPC producers) compared to other types of enzymes (more than 90 min for other enzymes). Prior bacterial lysis was shown to be of no interest in the modulation or optimization of the hydrolytic kinetics. The adequate detection of carbapenem hydrolysis would, therefore, require several MALDI-TOF MS readouts for the timely detection of rapid hydrolysis without missing slow hydrolysis. This enzymatic constraint limits the implementation of a standard protocol in routine microbiology laboratories. PMID:26337432

  12. MALDI-TOF MS-based identification of black yeasts of the genus Exophiala.

    PubMed

    Özhak-Baysan, Betil; Öğünç, Dilara; Döğen, Aylin; Ilkit, Macit; de Hoog, G Sybren

    2015-05-01

    In this study, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. The analysis included a total of 110 Exophiala isolates, including 15 CBS strains representing 4 species, Exophiala dermatitidis (61), E. phaeomuriformis (36), E. crusticola (9), and E. heteromorpha (4), that had been previously identified based on internal transcribed spacer (ITS) regions. We also compared the relative efficacies of Sabouraud glucose agar (SGA) and Columbia agar (CA) for use in MALDI-TOF MS. Remarkably, we obtained a log-score value ≥2.0 by using either SGA or CA for all 15 CBS strains, indicating species-level identification. The remaining 95 Exophiala strains were identified to the genus or species levels, with identification rates of 96.8% and 90.5%, using SGA or CA, respectively. Most of the E. dermatitidis (100% and 92.9%), E. phaeomuriformis (80.6% and 83.9%), E. crusticola (50% and 100%), and E. heteromorpha (100% and 100%) isolates were correctly identified using SGA or CA, respectively. Furthermore, 58.9% and 26.3% of the strains had log-score values of ≥2.0 by using SGA and CA, respectively. Our results indicate that MALDI-TOF MS is a rapid and reliable technique with high rates of correct taxonomic identification. PMID:25851261

  13. Assessment of MALDI-TOF MS as Alternative Tool for Streptococcus suis Identification.

    PubMed

    Pérez-Sancho, Marta; Vela, Ana Isabel; García-Seco, Teresa; Gottschalk, Marcelo; Domínguez, Lucas; Fernández-Garayzábal, José Francisco

    2015-01-01

    The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying Streptococcus suis isolates obtained from pigs, wild animals, and humans was evaluated using a PCR-based identification assay as the gold standard. In addition, MALDI-TOF MS was compared with the commercial multi-tests Rapid ID 32 STREP system. From the 129 S. suis isolates included in the study and identified by the molecular method, only 31 isolates (24.03%) had score values ≥2.300 and 79 isolates (61.24%) gave score values between 2.299 and 2.000. After updating the currently available S. suis MALDI Biotyper database with the spectra of three additional clinical isolates of serotypes 2, 7, and 9, most isolates had statistically significant higher score values (mean score: 2.65) than those obtained using the original database (mean score: 2.182). Considering the results of the present study, we suggest using a less restrictive threshold score of ≥2.000 for reliable species identification of S. suis. According to this cut-off value, a total of 125 S. suis isolates (96.9%) were correctly identified using the updated database. These data indicate an excellent performance of MALDI-TOF MS for the identification of S. suis. PMID:26347858

  14. Assessment of MALDI-TOF MS as Alternative Tool for Streptococcus suis Identification

    PubMed Central

    Pérez-Sancho, Marta; Vela, Ana Isabel; García-Seco, Teresa; Gottschalk, Marcelo; Domínguez, Lucas; Fernández-Garayzábal, José Francisco

    2015-01-01

    The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying Streptococcus suis isolates obtained from pigs, wild animals, and humans was evaluated using a PCR-based identification assay as the gold standard. In addition, MALDI-TOF MS was compared with the commercial multi-tests Rapid ID 32 STREP system. From the 129 S. suis isolates included in the study and identified by the molecular method, only 31 isolates (24.03%) had score values ≥2.300 and 79 isolates (61.24%) gave score values between 2.299 and 2.000. After updating the currently available S. suis MALDI Biotyper database with the spectra of three additional clinical isolates of serotypes 2, 7, and 9, most isolates had statistically significant higher score values (mean score: 2.65) than those obtained using the original database (mean score: 2.182). Considering the results of the present study, we suggest using a less restrictive threshold score of ≥2.000 for reliable species identification of S. suis. According to this cut-off value, a total of 125 S. suis isolates (96.9%) were correctly identified using the updated database. These data indicate an excellent performance of MALDI-TOF MS for the identification of S. suis. PMID:26347858

  15. Top-down proteomic identification of bacterial protein biomarkers and toxins using MALDI-TOF-TOF-MS/MS and post-source decay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry(MALDI-TOF-TOF-MS)has provided new capabilities for the rapid identification of digested and non-digested proteins. The tandem (MS/MS) capability of TOF-TOF instruments allows precursor ion selection/isolation...

  16. Nosocomial infection due to Enterococcus cecorum identified by MALDI-TOF MS and Vitek 2 from a blood culture of a septic patient

    PubMed Central

    Warnke, Philipp; Köller, Thomas; Stoll, Paul; Podbielski, Andreas

    2015-01-01

    We report the case of a nosocomial infection due to Enterococcus cecorum isolated from a blood culture of a 75-year-old septic male patient. Matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS) and Vitek 2 succeeded in identification of the isolate. PMID:26185687

  17. ATR-FTIR Spectroscopy Highlights the Problem of Distinguishing Between Exophiala dermatitidis and E. phaeomuriformis Using MALDI-TOF MS.

    PubMed

    Ergin, Çağrı; Gök, Yaşar; Bayğu, Yasemin; Gümral, Ramazan; Özhak-Baysan, Betil; Döğen, Aylin; Öğünç, Dilara; Ilkit, Macit; Seyedmousavi, Seyedmojtaba

    2016-02-01

    The present study compared two chemical-based methods, namely, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to understand the misidentification of Exophiala dermatitidis and Exophiala phaeomuriformis. The study utilized 44 E. dermatitidis and 26 E. phaeomuriformis strains, which were partially treated with strong acids and bases for further evaluation. MALDI-TOF MS and ATR-FTIR spectroscopy data of the two Exophiala species were compared. Data groupings were observed for the chromic acid- and nitric acid-treated species when the black yeast sources were categorized as creosoted-oak sleepers, concrete sleepers, or dishwasher isolates. The MALDI-TOF MS data for the metalloenzyme-containing regions were consistent with the ATR-FTIR spectroscopy data. These results indicated that environmental isolates might contain metals not found in human isolates and might interfere with chemical-based identification methods. Therefore, MALDI-TOF MS reference libraries should be created for clinical strains and should exclude petroleum-associated environmental isolates. PMID:26373644

  18. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry.

    PubMed

    Sharma, Ram Jee; Gupta, Ramesh C; Bansal, Arvind Kumar; Singh, Inder Pal

    2015-06-01

    Eugenia jambolana, commonly known as 'jamun' or Indian blackberry, is an important source of bioactive compounds. All parts of the plant like stem bark, leaves, flower, fruit pulp and seeds are traditionally used for many diseases. Metabolite profiling in medicinally important plants is critical to resolve the problems associated with standardization and quality control. Metabolite profiling of the fruit pulp of Jamun was performed by NMR, HPLC, MS, GC-MS and MALDI-TOF mass spectrometry. These hyphenated techniques helped in the identification of 68 chemically-diverse metabolites of the fruit pulp. These include anthocyanins, anthocyanidins, sugars, phenolics and volatile compounds. Five extracts of fruit pulp were prepared i.e. hexane, chloroform, ethylacetate, butanol and aqueous methanolic. Twenty-five metabolites identified and quantified in the n-butanol and aqueous-methanolic extracts of ripe jamun fruit by qNMR. LC-PDA-MS and MALDI-TOF spectrometry helped in deciphering thirty-nine metabolites out of which thirteen were quantified. PMID:26197529

  19. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    PubMed

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS. PMID:23255029

  20. [Study on chemical constituents in stems of Nelumbo nucifera by UPLC-ESI/Q-TOF-MS/MS].

    PubMed

    Shan, Feng; Yuan, Yuan; Kang, Li-ping; Huang, Lu-qi

    2015-08-01

    This paper employed UPLC-Electrospray Ionization /Quadrupole-Time of Flight-Mass /Mass Spectrometry( UPLC-ESI/Q-TOF-MS/MS) to analyze the chemical constituents in the stems of Nelumbo nucifera. The stems of N. nucifera were extracted with 75% methanol, and we applied an Agilent Zorbax SB-Aq column (2.1 mm x 100 mm, 1.8 μm) to UPLC analysis with water methanol-water( containing 0.05% formic acid) in gradient as mobile phase. The eluates were then detected by ESI-Q-TOF-MS/MS. Results indicated that 22 benzylisoquinoline alkaloids were indendified. Among them, one alkaloid may be a new compound and a component was found in the Lotus for the first time. We fully identify the composition of the Lotus stems for the first time, Which could provides theoretical foundation for further study and utilization of the medicinal resources. PMID:26790299

  1. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS.

    PubMed

    Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan

    2010-05-01

    A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples. PMID:20521547

  2. Validation of LC–TOF-MS Screening for Drugs, Metabolites, and Collateral Compounds in Forensic Toxicology Specimens

    PubMed Central

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P.; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T.; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic “Spice/K2” cannabinoids and cathinone “bath salt” designer drugs. The extract was applied to LC–TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC–TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149

  3. Validation of LC-TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens.

    PubMed

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic "Spice/K2" cannabinoids and cathinone "bath salt" designer drugs. The extract was applied to LC-TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC-TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149

  4. Coincidence experiments in desorption mass spectrometry

    NASA Astrophysics Data System (ADS)

    Diehnelt, C. W.; English, R. D.; Van Stipdonk, M. J.; Schweikert, E. A.

    2002-06-01

    The detection of coincidental signals can enhance the amount of information available in desorption time-of-flight mass spectrometry (TOF-MS) by identifying physical, chemical and/or spatial correlations between secondary ions. Detection of coincidental emissions requires that the target surface be bombarded with individual primary ions (keV or MeV), each resolved in time and space. This paper will discuss the application of coincidence counting to TOF-MS to: extract the secondary ion mass spectrum and secondary ion yields from an organic target produced by a single primary ion type when multiple primary ions simultaneously impact the sample; examine the metastable dissociation pathways and decay fractions of organic secondary ions using an ion-neutral correlation method; and study the chemical microhomogeneity (on the sub-μm scale) of a surface composed of two chemically distinct species.

  5. Determination of Curcuminoids in Curcuma longa Linn. by UPLC/Q-TOF-MS: An Application in Turmeric Cultivation.

    PubMed

    Ashraf, Kamran; Mujeeb, Mohd; Ahmad, Altaf; Ahmad, Niyaz; Amir, Mohd

    2015-09-01

    Cucuma longa Linn. (Fam-Zingiberaceae) is a valued medicinal plant contains curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) as major bioactive constituents. Previously reported analytical methods for analysis of curcuminoids were found to suffer from low resolution, lower sensitivity and longer analytical times. In this study, a rapid, sensitive, selective high-throughput ultra high performance liquid chromatography-tandem mass spectrometry (UPLC/Q-TOF-MS) method was developed and validated for the quantification of curcuminoids with an aim to reduce analysis time and enhance efficiency. UPLC/Q-TOF-MS analysis showed large variation (1.408-5.027% w/w) of curcuminoids among different samples with respect to their occurrence of metabolite and their concentration. The results showed that Erode (south province) contains highest quantity of curcuminoids and concluded to be the superior varieties. The results obtained here could be valuable for devising strategies for cultivating this medicinal plant. PMID:25838167

  6. Immunoaffinity sample purification and MALDI-TOF MS analysis of alpha-Solanine and alpha-chaconine in serum.

    PubMed

    Driedger, D R; Sporns, P

    2001-02-01

    A sample purification technique was developed for the detection of potato glycoalkaloids (GAs) in blood serum by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). GAs were extracted from spiked serum (5 mL) using a C(18) solid-phase extraction cartridge. The GAs were then selectively captured on antibody-coated agarose beads. The agarose beads were washed with water and the GAs eluted with 25 microL of methanol. MALDI-TOF MS was used to detect the GAs in the methanol eluent. Immunoaffinity sample purification of the GAs effectively reduced the signal suppression observed during the analysis of unpurified samples. alpha-Chaconine and alpha-solanine were detected in serum spiked with 1 ng/mL of each GA. PMID:11261989

  7. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    NASA Astrophysics Data System (ADS)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  8. Spontaneous-Desorption Ionizer for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Schultz, J. Albert

    2006-01-01

    A time-of-flight mass spectrometer (TOF-MS) like the one mentioned in the immediately preceding article has been retrofitted with an ionizer based on a surface spontaneous-desorption process. This ionizer includes an electron multiplier in the form of a microchannel plate (MCP). Relative to an ionizer based on a hot-filament electron source, this ionizer offers advantages of less power consumption and greater mechanical ruggedness. The current density and stability characteristics of the electron emission of this ionizer are similar to those of a filament-based ionizer. In tests of various versions of this ionizer in the TOF-MS, electron currents up to 100 nA were registered. Currents of microamperes or more - great enough to satisfy requirements in most TOFMS applications - could be obtained by use of MCPs different from those used in the tests, albeit at the cost of greater bulk. One drawback of this ionizer is that the gain of the MCP decreases as a function of the charge extracted thus far; the total charge that can be extracted over the operational lifetime is about 1 coulomb. An MCP in the ion-detector portion of the TOF-MS is subject to the same limitation.

  9. Detection of Murine Toxoplasmosis Using Magnetic Bead-Based Serum Peptide Profiling by MALDI-TOF MS

    PubMed Central

    Li, Jiping; Jin, Hongtao; Li, Lixia; Shang, Limin; Zhao, Yongkun; Wei, Feng; Liu, Yanjing; Qian, Jun

    2012-01-01

    Abstract Establishment of a rapid, highly specific, and accurate method for diagnosis of Toxoplasma gondii infection is essential to control and prevent zoonotic toxoplasmosis. In this study, a novel diagnostic strategy using magnetic bead-based serum peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was developed. The serum peptides (samples I, II, and III) from T. gondii RH strain-infected mice at days 3, 6, and 9 post-infection (p.i.), and healthy mice were enriched by the optimized magnetic bead-based hydrophobic interaction (MB-HIC8). The mass spectrograms were acquired by MALDI-TOF MS, and analyzed by ClinProTools bioinformatics software from Bruker Daltonics. The diagnostic models from T. gondii RH-infected serum peptide profiling of samples I, II, and III were produced by genetic algorithms, and verified by cross-validation. The sample II model could correctly recognize T. gondii RH strain infection in mice at days 3, 6, and 9 p.i. with a sensitivity of 91.1% and a specificity of 96.7%., and also detect T. gondii ME49 strain-infected serum samples at days 3, 6, 9, and 12 p.i. with a sensitivity of 91.7%. The results of the present study suggest that serum peptide profiling by MALDI-TOF MS is a novel potential tool for the clinical diagnosis of acute T. gondii infection. PMID:22448678

  10. Development and evaluation of MALDI-TOF MS-based serotyping for Streptococcus pneumoniae.

    PubMed

    Nakano, S; Matsumura, Y; Ito, Y; Fujisawa, T; Chang, B; Suga, S; Kato, K; Yunoki, T; Hotta, G; Noguchi, T; Yamamoto, M; Nagao, M; Takakura, S; Ohnishi, M; Ihara, T; Ichiyama, S

    2015-11-01

    Surveillance of Streptococcus pneumoniae serotypes is important for the successful implementation of vaccination strategies to prevent the spread of invasive pneumococcal diseases. The standard method of serotyping of pneumococcal isolates is the phenotypic Neufeld test, which is cost- and labor-intensive. Recently, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been implemented as a rapid, simple and inexpensive method for identifying species. We evaluated the performance of MALDI-TOF MS for serotyping ten major serotypes of S. pneumoniae in Japan (serotypes 3, 6B, 15A, 15C, 19A, 19F, 23A, 24F, 35B and 38) using the Biotyper and ClinProTools. After optimizing the settings, we validated their serotyping performance for serotypes 3, 15A and 19A using a separate set of isolates that were not used in the creation of the classification algorithms. A total of 574 isolates of S. pneumoniae collected from Japanese nationwide surveillance studies were included. Of these, 407 isolates belonged to the ten major serotypes. Biotyper and ClinProTools correctly identified 77.9% and 84.0%, respectively, of the ten major serotype isolates. The validation analysis included a total of 113 isolates of the serotypes 3, 15A and 19A isolates. Biotyper and ClinProTools correctly identified 85.0% and 69.9% of the validation cohort isolates, respectively. MALDI-TOF MS has the potential to discriminate the ten major S. pneumoniae serotypes prevalent in Japan. PMID:26282790

  11. Identification of the 'Streptococcus anginosus group' by matrix-assisted laser desorption ionization--time-of-flight mass spectrometry.

    PubMed

    Woods, Katherine; Beighton, David; Klein, John L

    2014-09-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the 'Streptococcus anginosus group' (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide 'gold standard' identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius. PMID:24917618

  12. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Bacterial and Yeast Identification.

    PubMed

    Westblade, Lars F; Garner, Omai B; MacDonald, Karen; Bradford, Constance; Pincus, David H; Mochon, A Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A; Burnham, Carey-Ann D; Ginocchio, Christine C

    2015-07-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification. PMID:25926486

  13. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Bacterial and Yeast Identification

    PubMed Central

    Westblade, Lars F.; Garner, Omai B.; MacDonald, Karen; Bradford, Constance; Pincus, David H.; Mochon, A. Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A.; Burnham, Carey-Ann D.

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification. PMID:25926486

  14. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis

    PubMed Central

    Kusano, Miyako; Iizuka, Yumiko; Kobayashi, Makoto; Fukushima, Atsushi; Saito, Kazuki

    2013-01-01

    Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions. PMID:24957989

  15. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis.

    PubMed

    Kusano, Miyako; Iizuka, Yumiko; Kobayashi, Makoto; Fukushima, Atsushi; Saito, Kazuki

    2013-01-01

    Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions. PMID:24957989

  16. GC-MS and MALDI-TOF MS profiling of sucrose esters from Nicotiana tabacum and N. rustica.

    PubMed

    Haliński, Łukasz P; Stepnowski, Piotr

    2013-01-01

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been applied for the first time to the analysis of the sucrose esters from the surface of Nicotiana L. leaves. The profiles obtained for the model plant N. tabacum were similar to those from the gas chromatography-flame ionization detector (GC-FID) analysis. The most reproducible results were obtained using a dihydroxybenzoic acid (DHB) matrix. The main advantage of this method is that crude plant extracts can be analysed without sample clean-up. GC-MS analysis of Aztec tobacco (N. rustica) extracts revealed the presence of three types of sucrose esters. All identified compounds had three C4-C8 acyl chains substituting the glucose moiety, while the fructose part of the molecule was substituted with 0, 1, or 2 acetyl groups. MALDI-TOF MS analysis of the sucrose ester fraction revealed the presence of compounds not eluting from a GC column. Combining the data from both GC-MS and MALDI-TOF MS experiments, we obtained a full sucrose ester profile, which is based on the molecular weight of the compounds and on the number of acyl chains in the molecule. PMID:23923618

  17. Efficient Analysis of Non-Polar Environmental Contaminants by MALDI-TOF MS with Graphene as Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Dong, Xiaoli; Cheng, Jinsheng; Li, Jinghong; Wang, Yinsheng

    2011-07-01

    In this Application Note, we describe, for the first time, the rapid analysis of hydrophobic compounds present in environmental contaminants, which includes polycyclic aromatic hydrocarbons (PAHs) and estrogen, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of graphene as matrix. MALDI-TOF MS with conventional matrix has limitations in analyzing low-polarity compounds owing to their difficulty in ionization. We demonstrate that compared with conventional matrix, graphene displays higher desorption/ionization efficiencies for PAHs, and no fragment ions are observed. The method also holds potential in quantitative analysis. In addition, the ionization signal increases with the increasing number of benzene rings in the PAHs, suggesting that graphene binds to PAHs via π-π stacking interactions. Furthermore, graphene as adsorbent for solid-phase extraction of coronene from river water sample displays good performance with a detection limit of 10-7 M. This work provides a novel and convenient method for analyzing low-polarity environmental contaminants by MALDI-TOF MS.

  18. Top-down proteomic identification of furin-cleaved alpha-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method has been developed to identify the alpha-subunit of shiga toxin 2 (alpha-Stx2) from Escherichia coli O157:H7 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomics using web-based software develo...

  19. Induction and identification of disulfide-intact and disulfide-reduced beta-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS and top-down proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disulfide-intact and disulfide-reduced beta-subunit of Shiga toxin 2 (beta-Stx2) from Escherichia coli O157:H7 (strain EDL933) has been identified by matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic an...

  20. Novel possibilities in the study of the salivary proteomic profile using SELDI-TOF/MS technology

    PubMed Central

    ARDITO, FATIMA; PERRONE, DONATELLA; COCCHI, ROBERTO; LO RUSSO, LUCIO; DE LILLO, ALFREDO; GIANNATEMPO, GIOVANNI; LO MUZIO, LORENZO

    2016-01-01

    There is currently an increasing interest in exploring human saliva to identify salivary diagnostic and prognostic biomarkers, since the collection of saliva is rapid, non-invasive and stress-free. Diagnostic tests on saliva are common and cost-effective, particularly for patients who need to monitor their hormone levels or the effectiveness of undergoing therapies. Furthermore, salivary diagnostics is ideal for surveillance studies and in situations where fast results and inexpensive technologies are required. The most important constituents of saliva are proteins, the expression levels of which may be modified due to variations of the cellular conditions. Therefore, the different profile of proteins detected in saliva, including their absence, presence or altered levels, is a potential biomarker of certain physiological and/or pathological conditions. A promising novel approach to study saliva is the global analysis of salivary proteins using proteomic techniques. In the present study, surface-enhanced laser desorption/ionization-time-of-flight/mass spectrometry (SELDI-TOF/MS), one of the most recent proteomic tools for the identification of novel biomarkers, is reviewed. In addition, the possible use of this technique in salivary proteomic studies is discussed, since SELDI technology combines the precision of matrix-assisted laser desorption/ionization-TOF/MS proteomic analysis and the high-throughput nature of protein array analysis. PMID:26998108

  1. Metabolic profile of phillyrin in rats obtained by UPLC-Q-TOF-MS.

    PubMed

    Wang, Hairong; Zhang, Xiaoxu; Jia, Peipei; Zhang, Yanfen; Tang, Siwen; Wang, Hongtao; Li, Song; Yu, Xinluan; Li, Yingfei; Zhang, Lantong

    2016-06-01

    Forsythia suspensa Vahl (Oleaceae) is an important original plant in traditional Chinese medicine. The air-dried fruits of Forsythia suspensa have long been used to relieve respiratory symptoms. Phillyrin is one of the main chemical constituent of Forsythia suspensa. A clear understanding of the metabolism of phillyrin is very important in rational clinical use and pharmacological research. In this study, the metabolism of phillyrin in rat was investigated for the first time using an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method. Bile, urine and feces were collected from rats after single-dose (10 mg/kg) orally administered phillyrin. Liquid-liquid extraction and ultrasonic extraction were used to prepare samples. UPLC-Q-TOF-MS analysis of the phillyrin samples showed that phillyrin was converted to a major metabolite, M26, which underwent deglucosidation, further dehydration and desaturation. A total of 34 metabolites were detected including 30 phase I and four phase II metabolites. The conjugation types and structure skeletons of the metabolites were preliminarily determined. Moreover, 28 new metabolites were reported for the first time. The main biotransformation route of phillyrin was identified as hydrolysis, oxidation and sulfation. These findings enhance our understanding of the metabolism and the real active structures of phillyrin. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26425840

  2. Does the Capsule Interfere with Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Cryptococcus neoformans and Cryptococcus gattii?

    PubMed

    Thomaz, Danilo Y; Grenfell, Rafaella C; Vidal, Monica S M; Giudice, Mauro C; Del Negro, Gilda M B; Juliano, Luiz; Benard, Gil; de Almeida Júnior, João N

    2016-02-01

    We described the impact of the capsule size for Cryptococcus neoformans and Cryptococcus gattii identification at the species level by Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). After experimental capsule size modulation, we observed that reducing the capsule size resulted in improved identification by Bruker MALDI-TOF MS across all of the reference strains analyzed. PMID:26659203

  3. Phenotypic detection of carbapenemase-producing Enterobacteriaceae by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Carba NP test.

    PubMed

    Knox, James; Jadhav, Snehal; Sevior, Danielle; Agyekum, Alex; Whipp, Margaret; Waring, Lynette; Iredell, Jonathan; Palombo, Enzo

    2014-11-01

    We compared the diagnostic accuracy of the Carba NP test with that of a straightforward matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method for detecting carbapenemase-producing Enterobacteriaceae (CPE). Using PCR as the reference method, both tests demonstrated a sensitivity of 87% and a specificity of 100%. MALDI-TOF MS offers a potential alternative for the rapid detection of CPE in the clinical laboratory setting. PMID:25187633

  4. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Differentiation of the Dimorphic Fungal Species Paracoccidioides brasiliensis and Paracoccidioides lutzii

    PubMed Central

    Del Negro, Gilda M. B.; Grenfell, Rafaella C.; Vidal, Monica S. M.; Thomaz, Danilo Y.; de Figueiredo, Dulce S. Y.; Bagagli, Eduardo; Juliano, Luiz; Benard, Gil

    2015-01-01

    Isolates of Paracoccidioides brasiliensis and Paracoccidioides lutzii, previously characterized by molecular techniques, were identified for the first time by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). All isolates were correctly identified, with log score values of >2.0. Thus, MALDI-TOF MS is a new tool for differentiating species of the genus Paracoccidioides. PMID:25631803

  5. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to differentiate between Candida albicans and Candida dubliniensis.

    PubMed

    Roberts, Amity L; Alelew, Aqilah; Iwen, Peter C

    2016-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) analysis in conjunction with the direct formic acid (FA) sample processing method was evaluated for the ability to differentiate the closely related species of Candida albicans and Candida dubliniensis. The results showed that MALDI-TOF-MS, using the direct FA method, was reliable to differentiate between these species. PMID:26971641

  6. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species. PMID:25765149

  7. Detection of Ricin Intoxication in Mice Using Serum Peptide Profiling by MALDI-TOF/MS

    PubMed Central

    Zhao, Siyan; Liu, Wen-Sen; Wang, Meng; Li, Jiping; Sun, Yucheng; Li, Nan; Hou, Feng; Wan, Jia-Yu; Li, Zhongyi; Qian, Jun; Liu, Linna

    2012-01-01

    Ricin toxin has been regarded as one of the most potent poisons in the plant kingdom, and there is no effective therapeutic countermeasure or licensed vaccine against it. Consequently, early detection of ricin intoxication is necessary. In this study, we took mice as test subjects, and used the technique of Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and ClinProt microparticle beads to set up an effective detection model with an accuracy of almost 100%. Eighty-two peaks in the mass range 100010,000 m/z were detected by ClinProTools software, and five different peaks with m/z of 4982.49, 1333.25, 1537.86, 4285.05 and 2738.88 had the greatest contribution to the accuracy and sensitivity of this model. They may therefore provide biomarkers for ricin intoxication. PMID:23202975

  8. Detection of ricin intoxication in mice using serum peptide profiling by MALDI-TOF/MS.

    PubMed

    Zhao, Siyan; Liu, Wen-Sen; Wang, Meng; Li, Jiping; Sun, Yucheng; Li, Nan; Hou, Feng; Wan, Jia-Yu; Li, Zhongyi; Qian, Jun; Liu, Linna

    2012-01-01

    Ricin toxin has been regarded as one of the most potent poisons in the plant kingdom, and there is no effective therapeutic countermeasure or licensed vaccine against it. Consequently, early detection of ricin intoxication is necessary. In this study, we took mice as test subjects, and used the technique of Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and ClinProt microparticle beads to set up an effective detection model with an accuracy of almost 100%. Eighty-two peaks in the mass range 1000-10,000 m/z were detected by ClinProTools software, and five different peaks with m/z of 4982.49, 1333.25, 1537.86, 4285.05 and 2738.88 had the greatest contribution to the accuracy and sensitivity of this model. They may therefore provide biomarkers for ricin intoxication. PMID:23202975

  9. High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and photochemical sources

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Saxena, Pallavi

    2015-10-01

    This study is based on the high mass and time-resolved measurements of seven VOCs using a PTR-TOF-MS instrument at an urban site of India during winter 2013. Daily levels of OVOCs and aromatics were in the ranges of 3.5-37 ppbv and 0.85-23 ppbv, respectively with OVOCs accounted for up to 80% of total measured VOCs. The impact of long-range transport from the polluted Indo-Gangetic Plain and clean Thar desert was observed during the episodes of high and low VOCs, respectively. VOCs exhibited strong diurnal variations with peaks during morning and evening hours and lowest in the afternoon. Relatively elevated aromatics during evening hours coincided with the lowest-OVOCs indicating influence of fresh vehicular emissions. Emission ratios of isoprene and OVOCs with respect to benzene followed the diurnal cycles of temperature and solar flux indicating role of biogenic and photochemical processes, respectively. Correlation study of VOCs with benzene suggests major contribution from anthropogenic and also from biogenic and secondary sources to some extent. The higher emission ratios of ∆methanol/∆acetonitrile correspond to the episodes of long-range transport from biomass burning sources located in the Indo-Gangetic Plain (IGP). In addition to the pattern of emission, the diurnal and day-to-day variations of VOCs were influenced by the local meteorological conditions and depth of planetary boundary layer (PBL).

  10. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  11. MALDI-TOF Mass Spectrometry of Naturally-Occurring Mixtures of Mono- and Di-rhamnolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed for high-throughput screening of naturally-occurring mixtures of rhamnolipids from Pseudomonas spp. Mono- and di-rhamnolipids are readily distinguished by characteristic molecular adduct i...

  12. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular

  13. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories ▿

    PubMed Central

    van Veen, S. Q.; Claas, E. C. J.; Kuijper, Ed J.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory. PMID:20053859

  14. Detector response in time-of-flight mass spectrometry at high pulse repetition frequencies

    NASA Technical Reports Server (NTRS)

    Gulcicek, Erol E.; Boyle, James G.

    1993-01-01

    Dead time effects in chevron configured dual microchannel plates (MCPs) are investigated. Response times are determined experimentally for one chevron-configured dual MCP-type detector and two discrete dynode-type electron multipliers with 16 and 23 resistively divided stages. All of these detectors are found to be suitable for time-of-flight mass spectrometry (TOF MS), yielding 3-6-ns (FWHM) response times triggered on a single ion pulse. It is concluded that, unless there are viable solutions to overcome dead time disadvantages for continuous dynode detectors, suitable discrete dynode detectors for TOF MS appear to have a significant advantage for high repetition rate operation.

  15. A case report of Mycoplasma hominis brain abscess identified by MALDI-TOF mass spectrometry.

    PubMed

    Pailhoriès, H; Rabier, V; Eveillard, M; Mahaza, C; Joly-Guillou, M-L; Chennebault, J-M; Kempf, M; Lemarié, C

    2014-12-01

    We report the case of a 43-year-old man with a Mycoplasma hominis brain abscess occurring after a cranial trauma, which was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The presence of colonies on classic blood agar plates and the use of MALDI-TOF MS, a valuable diagnostic tool that identified M. hominis due to its presence in the VITEK MS database, allowed the rapid diagnosis of this infection. PMID:25449252

  16. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. PMID:26319185

  17. [Purification and identification of a novel ACE inhibitory peptide derived from the mud snail Bellamya purificata by RP-HPLC/MALDI-TOF MS].

    PubMed

    Xia, Shuhua; Wang, Zhang

    2007-01-01

    Bellamya purificata is one of mud snails in fresh water found in China. The purification and identification of an angiotensin I-converting enzyme (ACE) inhibitory peptide extracted from Bellamya purificata hydrolysate are described. The peptide was purified twice with semi-preparative reversed-phase high performance liquid chromatography (RP-HPLC) to obtain an active fraction with an inhibitory concentration 50% (IC50) of 43.5 micromol/L. The primary structure of the purified peptide was identified by the high performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) and the martix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) combining with the amino acid composition analysis. Finally, it was identified as a tetrapeptide and sequenced as Lys-Glu-Ile-Trp (KEIW), which has the common characters of ACE inhibitory peptide extracted from selfish muscle. The structure identification results from the two methods were also compared in this study. The results from ESI-MS included a lot of information, such as the total ion current chromatogram and ultraviolet scan spectrum. However, the exact structure could only be from the MALDI-TOF MS analysis, in which the exact MS/MS spectrum could be obtained. Furthermore, the m/z measurement precision of MALDI-TOF MS was 0.0001 and much better than that of 0.1 of ESI-MS. PMID:17432577

  18. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  19. Fingerprint analysis and multi-component determination of Zibu Piyin recipe by HPLC with DAD and Q-TOF/MS method.

    PubMed

    Xiang, Hong; Xu, Huiying; Zhan, Libin; Zhang, Lin

    2016-05-01

    Zibu Piyin recipe (ZBPYR), a traditional Chinese medicine formula, is used for curing dementia caused by diabetes. For quality control of ZBPYR, fingerprint analysis and qualitative analysis using high-performance liquid chromatography (HPLC) with a diode-array detector, and confirmation using HPLC coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) were undertaken. HPLC fingerprint consisting of 34 common peaks was developed among 10 batches of ZBPYR, in which 7 common peaks were identified in comparison with the authentic standards and detected simultaneously. Furthermore, these seven compounds were verified by HPLC-Q-TOF-MS methods. The method can be applied to the quality control of ZBPYR. PMID:26418623

  20. Characterization of mustard seeds and paste by DART ionization with time-of-flight mass spectrometry.

    PubMed

    Prchalová, Jana; Kovařík, František; Ševčík, Rudolf; Čížková, Helena; Rajchl, Aleš

    2014-09-01

    Direct analysis in real time (DART) is a novel technique with great potential for rapid screening analysis. The DART ionization method coupled with high-resolution time-of-flight mass spectrometry (TOF-MS) has been used for characterization of mustard seeds and table mustard. The possibility to use DART to analyse glucosinolates was confirmed on determination of sinalbin (4-hydroxybenzyl glucosinolate). The DART-TOF-MS method was optimized and validated. A set of samples of mustard seeds and mustard products was analyzed. High-performance liquid chromatography and DART-TOF-MS were used to determine glucosinolates in mustard seeds and compared. The correlation equation between these methods was DART = 0.797*HPLC + 6.987, R(2)  = 0.972. The DART technique seems to be a suitable method for evaluation of the quality of mustard seeds and mustard products. PMID:25230177

  1. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.

    PubMed

    Lynch, Patrick T; Troy, Tyler P; Ahmed, Musahid; Tranter, Robert S

    2015-02-17

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T5 < 1700 K, 3 < P5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques. PMID:25594229

  2. Analysis of hydraulic fracturing additives by LC/Q-TOF-MS.

    PubMed

    Ferrer, Imma; Thurman, E Michael

    2015-08-01

    The chemical additives used in fracturing fluids can be used as tracers of water contamination caused by hydraulic fracturing operations. For this purpose, a complete chemical characterization is necessary using advanced analytical techniques. Liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC/Q-TOF-MS) was used to identify chemical additives present in flowback and produced waters. Accurate mass measurements of main ions and fragments were used to characterize the major components of fracking fluids. Sodium adducts turned out to be the main molecular adduct ions detected for some additives due to oxygen-rich structures. Among the classes of chemical components analyzed by mass spectrometry include gels (guar gum), biocides (glutaraldehyde and alkyl dimethyl benzyl ammonium chloride), and surfactants (cocamidopropyl dimethylamines, cocamidopropyl hydroxysultaines, and cocamidopropyl derivatives). The capabilities of accurate mass and MS-MS fragmentation are explored for the unequivocal identification of these compounds. A special emphasis is given to the mass spectrometry elucidation approaches used to identify a major class of hydraulic fracturing compounds, surfactants. PMID:26044738

  3. Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS.

    PubMed

    Gottardo, Rossella; Chiarini, Anna; Dal Prà, Ilaria; Seri, Catia; Rimondo, Claudia; Serpelloni, Giovanni; Armato, Ubaldo; Tagliaro, Franco

    2012-01-01

    Since 2004, a number of herbal blends containing different synthetic compounds mimicking the pharmacological activity of cannabinoids and displaying a high toxicological potential have appeared in the market. Their availability is mainly based on the so-called "e-commerce", being sold as legal alternatives to cannabis and cannabis derivatives. Although highly selective, sensitive, accurate, and quantitative methods based on GC-MS and LC-MS are available, they lack simplicity, rapidity, versatility and throughput, which are required for product monitoring. In this context, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) offers a simple and rapid operation with high throughput. Thus, the aim of the present work was to develop a MALDI-TOF MS method for the rapid qualitative direct analysis of herbal blend preparations for synthetic cannabinoids to be used as front screening of confiscated clandestine preparations. The sample preparation was limited to herbal blend leaves finely grinding in a mortar and loading onto the MALDI plate followed by addition of 2 µl of the matrix/surfactant mixture [α-cyano-4-hydroxy-cinnamic acid/cetyltrimethylammonium bromide (CTAB)]. After drying, the sample plate was introduced into the ion source for analysis. MALDI-TOF conditions were as follows: mass spectra were analyzed in the range m/z 150-550 by averaging the data from 50 laser shots and using an accelerating voltage of 20 kV. The described method was successfully applied to the screening of 31 commercial herbal blends, previously analyzed by GC-MS. Among the samples analyzed, 21 contained synthetic cannabinoids (namely JWH-018, JWH-073, JWH-081, JWH-250, JWH-210, JWH-019, and AM-694). All the results were in agreement with GC-MS, which was used as the reference technique. PMID:22282100

  4. MALDI-TOF MS for the identification of veterinary non-C. neoformans-C. gattii Cryptococcus spp. isolates from Italy.

    PubMed

    Danesi, Patrizia; Drigo, Ilenia; Iatta, Roberta; Firacative, Carolina; Capelli, Gioia; Cafarchia, Claudia; Meyer, Wieland

    2014-08-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers an effective alternative to phenotypic and molecular methods for the rapid identification of microorganisms. Our aim in this study was to create an in-house library for a set of strains of nine uncommonly reported human and animal cryptococcal species, including Cryptococcus adeliensis, C. albidosimilis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus, C. victoriae and C. uniguttulatus, and to use this library to make timely and correct identifications using MALDI-TOF MS for use in routine laboratory diagnostics. Protein extracts obtained via the formic acid extraction method of 62 veterinary non-C. neoformans-C. gattii cryptococcal isolates were studied. The obtained mass spectra correctly grouped all 62 studied isolates according to species identification previously obtained by internal transcribe spacer sequence analysis. The in-house database was than exported and successfully uploaded to the Microflex LT (Maldi Biotyper; Bruker Daltonics) instrument at a different diagnostic laboratory in Italy. Scores >2.7 obtained from isolates reanalyzed in the latter laboratory supported the high reproducibility of the method. The possibility of creating and transferring an in-house library adds to the usefulness MALDI-TOF MS an important tool for the rapid and inexpensive identification of pathogenic and saprophytic fungi as required for differential diagnosis of human and animal mycoses. PMID:24951721

  5. Non-invasive prenatal detection of achondroplasia in size-fractionated cell-free DNA by MALDI-TOF MS assay.

    PubMed

    Li, Ying; Page-Christiaens, Godelieve C M L; Gille, Johan J P; Holzgreve, Wolfgang; Hahn, Sinuhe

    2007-01-01

    Achondroplasia is the most common form of short-limbed dwarfism in humans and is caused by mutations in the FGFR3 gene. Currently, prenatal diagnosis of this disorder relies on invasive procedures. Recent studies have shown that fetal single gene point mutations could be detected in cell-free DNA (cf-DNA) from maternal plasma by either the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) assay with single allele base extension reaction (SABER) approach or the size fractionation of cf-DNA in maternal plasma. Here, we combined the two approaches to non-invasively examine the fetal G1138A mutation in maternal plasma. cf-DNA was extracted from maternal plasma samples obtained from two pregnant women at risk for achondroplasia. The fetal G1138A mutation was determined by the analysis of size-fractionated cf-DNA in maternal plasma using MALDI-TOF MS with SABER approach and homogenous MassEXTEND (hME) assay, respectively. The fetal G1138A mutation was detectable in the two achondroplasia-affected pregnancies by the analysis of cf-DNA in maternal plasma using MALDI-TOF MS. However, the size-fractionation approach led to a more precise detection of the fetal mutation in both analyses. This analysis would be suitable for non-invasive prenatal diagnosis of diseases caused by fetal single gene point mutations. PMID:17154237

  6. Detection of Leishmania donovani infection using magnetic beads-based serum peptide profiling by MALDI-TOF MS in mice model.

    PubMed

    Li, Lixia; Li, Jiping; Jin, Hongtao; Shang, Limin; Li, Bo; Wei, Feng; Liu, Quan

    2012-03-01

    Leishmaniasis is an important parasitic disease, and definite diagnosis using a specific and sensitive method is the first step to cure the disease. Here, we present a novel diagnostic strategy based on serum peptide profiling by magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The serum peptides from the Leishmani donovani-infected and healthy mice were enriched by the optimized magnetic beads. The mass spectrograms were acquired by MALDI-TOF MS and analyzed by the ClinProTools bioinformatics software from Bruker Daltonics. The diagnostic model of serum peptide profiling produced by the ClinProTools software could correctly detect L. donovani infection in mice from the third day post-infection, with the accuracy of 94.1%, sensitivity of 92.4%, and specificity of 97.1%, respectively. The results of the present study suggested that the serum peptide profiling by MALDI-TOF MS is a novel potential tool for the clinical diagnosis of leishmaniasis. PMID:21850454

  7. MALDI TOF MS profiling of bacteria at the strain level: a review.

    PubMed

    Sandrin, Todd R; Goldstein, Jason E; Schumaker, Stephanie

    2013-01-01

    Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached. PMID:22996584

  8. Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Buschbach, Michael A.; Prior, David C.; Tang, Keqi; Smith, Richard D.

    2007-03-15

    Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g. from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms in regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than ~1% with continuous ion sources (e.g. ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a ~10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.

  9. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF

    NASA Astrophysics Data System (ADS)

    Jesch, Christian; Dickel, Timo; Plaß, Wolfgang R.; Short, Devin; Ayet San Andres, Samuel; Dilling, Jens; Geissel, Hans; Greiner, Florian; Lang, Johannes; Leach, Kyle G.; Lippert, Wayne; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    At TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) will extend TITAN's capabilities and facilitate mass measurements and in-trap decay spectroscopy of exotic nuclei that so far have not been possible due to strong isobaric contamination. This MR-TOF-MS will also enable mass measurements of very short-lived nuclides (half-life > 1 ms) that are produced in very low quantities (a few detected ions overall). In order to allow the installation of an MR-TOF-MS in the restricted space on the platform, on which the TITAN facility is located, novel mass spectrometric methods have been developed. Transport, cooling and distribution of the ions inside the device is done using a buffer gas-filled RFQ-based ion beam switchyard. Mass selection is achieved using a dynamic retrapping technique after time-of-flight analysis in an electrostatic isochronous reflector system. Only due to the combination of these novel methods the realization of an MR-TOF-MS based isobar separator at TITAN has become possible. The device has been built, commissioned off-line and is currently under installation at TITAN.

  10. [Identification of chemical components of mahuang decoction by GC-MS and UPLC-Q-TOF-MS].

    PubMed

    Li, Rui; Zeng, Cen; Wang, Ping; Meng, Xian-Li; Zeng, Yong

    2014-02-01

    Since the polyjuice potion ingredient is complex, we need to develop an analysis method with well separation and high stability to perform qualitative analysis. After dividing chemical components of Mahuang Decoction into fat-soluble and water-soluble constituents by gradient extraction, GC-MS was used to analyze the chemical components of the ethyl acetate extraction. The results showed that forty compounds had been identified by NIST MS search 2.0 standard mass spectrometry Library and literatures. Next, UPLC-Q-TOF-MS was applied to idendify the chemical components of the water extraction. The results showed that thirty-nine compounds had been identified by MZmine-2.9.1, Isotope Pattern, fragmentation regularity of mass spectrometry and literatures. This experiment will provide evidences for elucidation of the effective substance in Mahuang decoction and can be used as a simple, shortcut method for analysis and identification for the polyjuice potion. PMID:25204151

  11. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis.

    PubMed

    Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry

    2013-07-01

    The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M + Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+●) / [M + H](+) parents. [M + Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+●) / [M + H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. PMID:23832943

  12. High Throughput Detection of Tetracycline Residues in Milk Using Graphene or Graphene Oxide as MALDI-TOF MS Matrix

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    In this work, a new pre-analysis method for tetracyclines (TCs) detection from the milk samples was established. As a good accomplishment for the existing accurate quantification strategies for TCs detection, the new pre-analysis method was demonstrated to be simple, sensitive, fast, cost effective, and high throughput, which would do a great favor to the routine quality pre-analysis of TCs from milk samples. Graphene or graphene oxide was utilized, for the first time, as a duel-platform to enrich and detect the TCs by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). All together, four TCs were chosen as models: tetracycline, oxytetracycline, demeclocycline, and chlortetracycline. Due to the excellent electronic, thermal, and mechanical properties, graphene and graphene oxide were successfully applied as matrices for MALDI-TOF MS with free background inference in low mass range. Meanwhile, graphene or graphene oxide has a large surface area and strong interaction force with the analytes. By taking the advantage of these features, TCs were effectively enriched with the limit of detection (LOD) as low as 2 nM.

  13. An evaluation of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Staphylococcus pseudintermedius isolates from canine infections.

    PubMed

    Silva, Marcella Braga; Ferreira, Fabienne Antunes; Garcia, Luize Neli Nunes; Silva-Carvalho, Maria Cícera; Botelho, Larissa Alvarenga Batista; Figueiredo, Agnes Marie Sá; Vieira-da-Motta, Olney

    2015-03-01

    It has been proposed, based on taxonomic and molecular studies, that all canine isolates belonging to Staphylococcus intermedius group (SIG) should be renamed Staphylococcus pseudintermedius. However, isolates of SIG and other coagulase-positive staphylococci share many phenotypic characteristics, which could lead to misidentification. The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying S. pseudintermedius isolates obtained from canine infections was evaluated, using a polymerase chain reaction (PCR)-based identification as the gold standard. In addition, MALDI-TOF MS was compared with conventional biochemical tests. A central problem was the incorrect identification of S. pseudintermedius isolates as S. intermedius by either MALDI-TOF MS or biochemical identification. From the 49 S. pseudintermedius isolates identified by the molecular method, only 21 could be assigned to this species by the biochemical approach and only 12 by MALDI-TOF MS. The 6 S. aureus isolates were correctly identified by all 3 techniques. However, using biochemical tests, 9 S. pseudintermedius were mistakenly classified as S. aureus, indicating a reduced specificity relative to the MALDI-TOF MS system. Analysis with the MALDI-TOF MS platform allowed rapid and accurate identification of the 49 isolates to the S. intermedius group but the approach was very limited in identifying S. pseudintermedius isolates, as only 12 of 49 isolates were correctly identified, a sensitivity of 0.24 (95% confidence interval: 0.13-0.39). PMID:25680922

  14. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes.

    PubMed

    Buckwalter, S P; Olson, S L; Connelly, B J; Lucas, B C; Rodning, A A; Walchak, R C; Deml, S M; Wohlfiel, S L; Wengenack, N L

    2016-02-01

    The value of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed. PMID:26637381

  15. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics. PMID:27109889

  16. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proven to be a powerful tool for taxonomic resolution of microorganisms. In this proof-of-concept study, we assessed the effectiveness of this technique to track the current gene sequence-based phylogenet...

  17. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis.

    PubMed

    Baillie, S; Ireland, K; Warwick, S; Wareham, D; Wilks, M

    2013-01-01

    Despite extensive research into the diagnosis and management of cystic fibrosis (CF) over the past decades, sufferers still have a median life expectancy of less than 37 years. Respiratory tract infections have a significant role in increasing the morbidity and mortality of patients with CF via a progressive decline in lung function. Rapid identification of organisms recovered from CF sputum is necessary for effective management of respiratory tract infections; however, standard techniques of identification are slow, technically demanding and expensive. The aim of this study is to asses the suitability of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) in identifying bacteria isolated from the respiratory tract of patients with CF, and is assessed by testing the accuracy of MALDI-TOF MS in identifying samples from a reference collection of rare CF strains in conjunction with comparing MALDI-TOF MS and standard techniques in identifying clinical isolates from sputum samples of CF patients. MALDI-TOF MS accurately identified 100% of isolates from the reference collection of rare CF pathogens (EuroCare CF collection). The isolate identification given by MALDI-TOF MS agreed with that given by standard techniques for 479/481 (99.6%) clinical isolates obtained from respiratory samples provided by patients with CE In two (0.4%) of 481 samples there was a discrepancy in identification between MALDI-TOF MS and standard techniques. One organism was identified as Pseudomonas aeruginosa by MALDI-TOF but could only be identified by the laboratory's standard methods as of the Pseudomonas genus. The second organism was identified as P. beteli by MALDI-TOF MS and Stenotrophomonas maltophilia by standard methods. This study shows that MALDI-TOF MS is superior to standard techniques in providing cheap, rapid and accurate identification of CF sputum isolates. PMID:24400425

  18. [Qualitative and quantitative analysis of major constituents in Tetrastigma hemsleyanum by HPLC-Q-TOF-MS and UPLC-QqQ-MS].

    PubMed

    Xu, Wen; Fu, Zhi-qin; Lin, Jing; Huang, Xue-cheng; Chen, Dan; Yu, Hong-min; Huang, Ze-hao; Fan, Shi-ming

    2014-11-01

    A qualitative analytical method of liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) was developed for identification of multi-constituents and an analytical method was developed for simultaneously determining 4 major compounds (rutin, isoquercitrin, kaempferol-3-0-rutinoside, and astragalin) in Tetrastigma hemsleyanum Diels et Gilg. The HPLC-Q-TOF-MS assay was performed on a Welch Ultimate XB-C18 column (4.6 mm x 150 mm, 5 microm) with the mobile phase consisting of acetonitrile (A) and water containing 0.1% Formic acid (B) in gradient mode at a flow rate of 0.8 mL x min(-1). The column temperature was at 30 degrees C, and negative ion mode was used for TOF-MS. The UPLC-QqQ-MS assay was performed on a Waters CORTECS C18 (2.1 mm x 100 mm, 1.6 microm) with the mobile phase consisting of acetonitrile (A) and water containing 0.1% formic acid (B) in gradient mode at a flow rate of 0.25 mL x min(-1). The column temperature was at 45 degrees C, and MRM mode was used for QqQ-MS. Based on the retention time and MS spectra, 24 compounds were identified or tentatively characterized by comparing with reference substances or literatures. For quantitative the linear range of 4 detected compounds were good (r > 0.9966), and the overall recoveries ranged from 98.27% to 101.58%, with the RSD ranging from 3.15% to 5.88%. The results indicated that new approach conbined HPLC-Q-TOF-MS and UPLC-QqQ-MS was applicable in qualitative and quantitative quality control of Tetrastigma hemsleyanum. PMID:25850269

  19. Comparison of MALDI-TOF MS, Housekeeping Gene Sequencing, and 16S rRNA Gene Sequencing for Identification of Aeromonas Clinical Isolates

    PubMed Central

    Shin, Hee Bong; Yoon, Jihoon; Lee, Yangsoon; Kim, Myung Sook

    2015-01-01

    Purpose The genus Aeromonas is a pathogen that is well known to cause severe clinical illnesses, ranging from gastroenteritis to sepsis. Accurate identification of A. hydrophila, A. caviae, and A. veronii is important for the care of patients. However, species identification remains difficult using conventional methods. The aim of this study was to compare the accuracy of different methods of identifying Aeromonas at the species level: a biochemical method, matrix-assisted laser desorption ionization mass spectrometry-time of flight (MALDI-TOF MS), 16S rRNA sequencing, and housekeeping gene sequencing (gyrB, rpoB). Materials and Methods We analyzed 65 Aeromonas isolates recovered from patients at a university hospital in Korea between 1996 and 2012. The isolates were recovered from frozen states and tested using the following four methods: a conventional biochemical method, 16S rRNA sequencing, housekeeping gene sequencing with phylogenetic analysis, and MALDI-TOF MS. Results The conventional biochemical method and 16S rRNA sequencing identified Aeromonas at the genus level very accurately, although species level identification was unsatisfactory. MALDI-TOF MS system correctly identified 60 (92.3%) isolates at the species level and an additional four (6.2%) at the genus level. Overall, housekeeping gene sequencing with phylogenetic analysis was found to be the most accurate in identifying Aeromonas at the species level. Conclusion The most accurate method of identification of Aeromonas to species level is by housekeeping gene sequencing, although high cost and technical difficulty hinder its usage in clinical settings. An easy-to-use identification method is needed for clinical laboratories, for which MALDI-TOF MS could be a strong candidate. PMID:25684008

  20. MALDI-TOF MS performance compared to direct examination, culture, and 16S rDNA PCR for the rapid diagnosis of bone and joint infections.

    PubMed

    Lallemand, E; Coiffier, G; Arvieux, C; Brillet, E; Guggenbuhl, P; Jolivet-Gougeon, A

    2016-05-01

    The rapid identification of bacterial species involved in bone and joint infections (BJI) is an important element to optimize the diagnosis and care of patients. The aim of this study was to evaluate the usefulness of matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) for the rapid diagnosis of bone infections, directly on synovial fluid (SF) or on crushed osteoarticular samples (CS). From January to October 2013, we prospectively analyzed 111 osteoarticular samples (bone and joint samples, BJS) from 78 patients in care at the University Hospital of Rennes, France. The diagnosis procedure leading to the sample collection was linked to a suspicion of infection, inflammatory disease, arthritis, or for any bone or joint abnormalities. Standard bacteriological diagnosis and molecular biology analysis [16S rRNA polymerase chain reaction (PCR) and sequencing] were conducted. In addition, analysis by MALDI-TOF MS was performed directly on the osteoarticular samples, as soon as the amount allowed. Culture, which remains the gold standard for the diagnosis of BJI, has the highest sensitivity (85.9 %) and remains necessary to test antimicrobial susceptibility. The 16S rDNA PCR results were positive in the group with positive BJI (28.6 %) and negative in the group without infection. Direct examination remains insensitive (31.7 %) but more effective than MALDI-TOF MS directly on the sample (6.3 %). The specificity was 100 % in all cases, except for culture (74.5 %). Bacterial culture remains the gold standard, especially enrichment in blood bottles. Direct analysis of bone samples with MALDI-TOF MS is not useful, possibly due to the low inoculum of BJS. PMID:26942744

  1. Discrepancy in MALDI-TOF MS identification of uncommon Gram-negative bacteria from lower respiratory secretions in patients with cystic fibrosis

    PubMed Central

    AbdulWahab, Atqah; Taj-Aldeen, Saad J; Ibrahim, Emad Bashir; Talaq, Eman; Abu-Madi, Marawan; Fotedar, Rashmi

    2015-01-01

    Introduction Early identification of microbial organisms from respiratory secretions of patients with cystic fibrosis (CF) is important to guide therapeutic decisions. The objective was to compare the accuracy of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) relative to the conventional phenotypic method in identifying common bacterial isolates, including nonfermenting Gram-negative bacteria, in a cohort of patients with CF. Methods A total of 123 isolates from 50 patients with CF representing 14 bacterial species from respiratory specimens were identified using MALDI-TOF MS in parallel with conventional phenotypic methods. Discrepancies were confirmed by 16S ribosomal RNA (rRNA) gene sequencing in five Gram-negative isolates. Results The MALDI-TOF MS managed to identify 122/123 (99.2%) bacterial isolates to the genus level and 118/123 (95.9%) were identified to the species level. The MALDI-TOF MS results were 100% consistent to the species level with conventional phenotypic identification for isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, Streptococcus pyogenes, Achromobacter xylosoxidans, Stenotrophomonas maltophilia, and other uncommon organisms such as Chryseobacterium gleum and Enterobacter cloacae. The 5/123 (4.6%) isolates misidentified were all Gram-negative bacteria. The isolation of E. cloacae and Haemophilus paraphrohaemolyticus may extend the potentially pathogenic list of organisms isolated from patients with CF. Conclusion Although the technique provides an early identification and antimicrobial therapy approach in patients with CF, limitation in the diagnosis of uncommon Gram-negative bacteria may exist. PMID:25995646

  2. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products.

    PubMed

    S Haglund, Peter; Löfstrand, Karin; Siek, Kevin; Asplund, Lillemor

    2013-01-01

    Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied. PMID:24349937

  3. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products

    PubMed Central

    S. Haglund, Peter; Lfstrand, Karin; Siek, Kevin; Asplund, Lillemor

    2013-01-01

    Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCGC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GCGC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied. PMID:24349937

  4. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P.

    2004-08-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Over 10000 individual organic components were isolated from around 10µg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  5. MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas

    PubMed Central

    Emami, Kaveh; Nelson, Andrew; Hack, Ethan; Zhang, Jinwei; Green, David H.; Caldwell, Gary S.; Mesbahi, Ehsan

    2016-01-01

    The genus Pseudoalteromonas constitutes an ecologically significant group of marine Gammaproteobacteria with potential biotechnological value as producers of bioactive compounds and of enzymes. Understanding their roles in the environment and bioprospecting for novel products depend on efficient ways of identifying environmental isolates. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) biotyping has promise as a rapid and reliable method of identifying and distinguishing between different types of bacteria, but has had relatively limited application to marine bacteria and has not been applied systematically to Pseudoalteromonas. Therefore, we constructed a MALDI-TOF MS database of 31 known Pseudoalteromonas species, to which new isolates can be compared by MALDI-TOF biotyping. The ability of MALDI-TOF MS to distinguish between species was scrutinized by comparison with 16S rRNA gene sequencing. The patterns of similarity given by the two approaches were broadly but not completely consistent. In general, the resolution of MALDI-TOF MS was greater than that of 16S rRNA gene sequencing. The database was tested with 13 environmental Pseudoalteromonas isolates from UK waters. All of the test strains could be identified to genus level by MALDI-TOF MS biotyping, but most could not be definitely identified to species level. We conclude that several of these isolates, and possibly most, represent new species. Thus, further taxonomic investigation of Pseudoalteromonas is needed before MALDI-TOF MS biotyping can be used reliably for species identification. It is, however, a powerful tool for characterizing and distinguishing among environmental isolates and can make an important contribution to taxonomic studies. PMID:26903983

  6. MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas.

    PubMed

    Emami, Kaveh; Nelson, Andrew; Hack, Ethan; Zhang, Jinwei; Green, David H; Caldwell, Gary S; Mesbahi, Ehsan

    2016-01-01

    The genus Pseudoalteromonas constitutes an ecologically significant group of marine Gammaproteobacteria with potential biotechnological value as producers of bioactive compounds and of enzymes. Understanding their roles in the environment and bioprospecting for novel products depend on efficient ways of identifying environmental isolates. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) biotyping has promise as a rapid and reliable method of identifying and distinguishing between different types of bacteria, but has had relatively limited application to marine bacteria and has not been applied systematically to Pseudoalteromonas. Therefore, we constructed a MALDI-TOF MS database of 31 known Pseudoalteromonas species, to which new isolates can be compared by MALDI-TOF biotyping. The ability of MALDI-TOF MS to distinguish between species was scrutinized by comparison with 16S rRNA gene sequencing. The patterns of similarity given by the two approaches were broadly but not completely consistent. In general, the resolution of MALDI-TOF MS was greater than that of 16S rRNA gene sequencing. The database was tested with 13 environmental Pseudoalteromonas isolates from UK waters. All of the test strains could be identified to genus level by MALDI-TOF MS biotyping, but most could not be definitely identified to species level. We conclude that several of these isolates, and possibly most, represent new species. Thus, further taxonomic investigation of Pseudoalteromonas is needed before MALDI-TOF MS biotyping can be used reliably for species identification. It is, however, a powerful tool for characterizing and distinguishing among environmental isolates and can make an important contribution to taxonomic studies. PMID:26903983

  7. Evaluation of Fructooligosaccharides and Inulins as Potentially Health Benefiting Food Ingredients by HPAEC-PED and MALDI-TOF MS

    PubMed Central

    Borromei, Chiara; Careri, Maria; Cavazza, Antonella; Corradini, Claudio; Elviri, Lisa; Mangia, Alessandro; Merusi, Cristiana

    2009-01-01

    This paper describes the complementarity of high-performance anion exchange chromatography coupled with pulsed electrochemical detection (HPAEC-PED) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) to evaluate commercial available fructans (fructooligosaccharides (FOS) and inulins), having different degrees of polymerization (DP) which are usually employed by food industry as functional ingredients either for their prebiotic properties or as a fat replacer, giving a fat-like mouth feel and texture. The developed HPAEC-PED methods are able to analyze FOS (fructans with DP 310) and inulins (DP ranging from 3 to 80) with a good resolution and relatively short retention times to evaluate structural differences between fructooligosaccharide and inulins and the possible presence of inulooligosaccharides as well as of branching. To characterize FOS and inulin at different degrees of polymerization and to assure correct molecular assignment, MALDI-TOF MS analysis was also investigated. The 2,5-dihydroxy benzoic acid (2,5-DHB) was found to be the best matrix for FOS analysis as Actilight and Raftilose P95 products, while 3-aminoquinoline (3-AQ) seems to be the best matrix for inulin with higher DP. The applicability of the optimized methods to the identification and determination of FOS contained in a symbiotic milk as well as a type of inulin added as functional ingredient to a cooked ham is demonstrated. PMID:20140077

  8. Peptidomic analysis of Chinese shrimp ( Fenneropenaeus chinensis) hemolymph by magnetic bead-based MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Wang, Baojie; Liu, Mei; Jiang, Keyong; Zhang, Guofan; Wang, Lei

    2013-03-01

    Peptides in shrimp hemolymph play an important role in the innate immune response. Analysis of hemolymph will help to detect and identify potential novel biomarkers of microbial infection. We used magnetic bead-based purification (ClinProt system) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to characterize shrimp hemolymph peptides. Shrimp serum and plasma were used as the source of samples for comparative analysis, and it was found that serum was more suitable for shrimp hemolymph peptidomic analysis. To screen potential specific biomarkers in serum of immune-challenged shrimps, we applied magnetic bead-based MALDI-TOF MS to serum samples from 10 immune-challenged and 10 healthy shrimps. The spectra were analyzed using FlexAnalysis 3.0 and ClinProTools 2.1 software. Thirteen peptide peaks significantly different between the two groups were selected as candidate biomarkers of lipopolysaccharide (LPS)-infection. The diagnostic model established by genetic algorithm using five of these peaks was able to discriminate LPS-challenged shrimps from healthy control shrimps with a sensitivity of 90% and a specificity of 100%. Our approach in MALDITOF MS-based peptidomics is a powerful tool for screening bioactive peptides or biomarkers derived from hemolymph, and will help to enable a better understanding of the innate immune response of shrimps.

  9. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    PubMed

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. PMID:26300239

  10. Dynamics of hepatitis B virus quasispecies heterogeneity in association with nucleos(t)ide analogue treatment determined by MALDI-TOF MS.

    PubMed

    Rybicka, M; Stalke, P; Bielawski, K P

    2015-03-01

    Minor drug-resistant variants may preexist in every subject infected with hepatitis B virus (HBV). However, understanding the dynamic of genotypic evolution within the HBV population requires accurately following allele frequencies through time. We used MALDI-TOF MS (matrix-assisted laser desorption-ionization time-of-flight mass spectrometry) for localization and quantitative allele frequency detection to investigate preexisting HBV quasispecies and the genotypic evolution of drug-resistant variants during nucleos(t)ide analogue therapy. We found a significant difference between the genotypic evolution of drug-resistant variants depending on response to treatment. PMID:25658547

  11. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    EPA Science Inventory

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  12. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit

    PubMed Central

    West, Brett J.; Jensen, C. Jarakae

    2013-01-01

    Cornus mas L. is indigenous to Europe and parts of Asia. Although Cornus is widely considered to be an iridoid rich genera, only two iridoids have been previously found in this plant. The lack of information on taxonomically and biologically active iridoids prompted us to develop and optimize an analytical method for characterization of additional phytochemicals in C. mas fruit. An ultra performance liquid chromatography (UPLC) coupled with photodiode array spectrophotometry (PDA) and electrospray time-of-flight mass spectrometry (ESI-TOF-MS) was employed and mass parameters were optimized. Identification was made by elucidating the mass spectral data and further confirmed by comparing retention times and UV spectra of target peaks with those of reference compounds. Primary DNA damage and antigenotoxicity tests in E. coli PQ37 were used to screen the iridoids for biological activity. As a result, ten phytochemicals were identified, including iridoids loganic acid, loganin, sweroside, and cornuside. Nine of these were reported for the first time from C. mas fruit. The iridoids did not induce SOS repair of DNA, indicating a lack of genotoxic activity in E. coli PQ37. However, loganin, sweroside, and cornuside did reduce the amount of DNA damage caused by 4-nitroquinoline 1-oxide, suggesting potential antigenotoxic activity. PMID:24228188

  13. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS.

    PubMed

    Ziegler, Dominik; Pothier, Joël F; Ardley, Julie; Fossou, Romain Kouakou; Pflüger, Valentin; de Meyer, Sofie; Vogel, Guido; Tonolla, Mauro; Howieson, John; Reeve, Wayne; Perret, Xavier

    2015-07-01

    Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS. PMID:25776061

  14. Rapid detection of six common Chinese G6PD mutations by MALDI-TOF MS.

    PubMed

    Zhao, Fang; Ou, Xue-Ling; Xu, Chuan-Chao; Cai, Gui-Qing; Wu, Xin-Yao; Huang, Yan-Mei; Zhu, Wei-Feng; Jiang, Qiong-Cheng

    2004-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked hereditary enzymopathy. We describe here the techniques based on matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and multiprimer extension (multi-PEX) to detect the most common Chinese G6PD mutations, which are the single-point mutations G-->T at nt 1376, G-->A at nt 1388, A-->G at nt 95, G-->T at nt 392, C-->T at nt 1024, and C-->T at nt 1311. Fifteen samples were genotyped using this method coupled with direct sequencing, after identification of G6PD mutations by ARMS. In this study, we identified a mutation G-->T at nt 1376, which had been G-->A at nt 1388 using ARMS, while the result of sequencing corresponds with ours. This indicates the reliability of this method. Furthermore, since it can scan six common Chinese G6PD mutations simultaneously in one mass spectrum, this approach could be used to fast diagnose these G6PD mutations accurately in large-scale analysis. PMID:15003824

  15. Fragmentation patterns study of iridoid glycosides in Fructus Gardeniae by HPLC-Q/TOF-MS/MS.

    PubMed

    Fu, Zhiwen; Xue, Rui; Li, Zhixiong; Chen, Mingcang; Sun, Zhaolin; Hu, Yiyang; Huang, Chenggang

    2014-12-01

    Iridoid glycosides (IGs), the major constituents in Fructus Gardeniae, have demonstrated various pharmacological activities, but there is no systematic chemical profile of IGs in Fructus Gardeniae in the published literature until now. Therefore, it is imperative that a rapid and sensitive high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-Q/TOF-MS/MS) method is established for comprehensive characterization of IGs in Fructus Gardeniae. Firstly, the fragmentation patterns of six known IGs were investigated and proposed and further concluded the diagnostic fragment ions and characteristic fragmentation pathways. Then, based on the summarized fragmentation patterns and the known compounds in the literatures, the other IGs in Fructus Gardeniae were identified successively. As a result, a total of 20 IGs were identified, of which three pairs of epimers were structurally characterized and differentiated. More importantly, one compound, the isoshanzhiside methyl ester, was tentatively identified as a new compound. The results of this study demonstrate the superiority of HPLC-MS with a high-resolution mass spectrometer for the rapid and sensitive structural elucidation of the multiple groups of constituents in Fructus Gardeniae. PMID:24782425

  16. Chemical profiling of Wu-tou decoction by UPLC-Q-TOF-MS.

    PubMed

    Qi, Yao; Li, Shizhe; Pi, Zifeng; Song, Fengrui; Lin, Na; Liu, Shu; Liu, Zhiqiang

    2014-01-01

    Wu-tou decoction (WTD), a traditional Chinese medicine (TCM) formula, is composed of Aconiti Radix Cocta, Ephedrae Herba, Paeoniae Radix Alba, Astragali Radix and Glycyrrhiza Radix Preparata, and it has been used for more than a thousand years to treat rheumatic arthritis, rheumatoid arthritis and pain of joints, while the active constitutions of WTD are unclear. In this research, an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method in both positive and negative ion mode was established to investigate the major constitutions in WTD. A Waters ACQUITY UPLC BEH C18 column was used to separate the aqueous extract of WTD. Acetonitrile and 0.1% aqueous formic acid (v/v) were used as the mobile phase. 74 components including alkaloids, monoterpene glycosides, triterpene saponins, flavones and flavone glycosides were identified or tentatively characterized in WTD based on the accurate mass within 15 ppm error and tandem MS behavior. All the constitutions were also detected in the corresponding individual herbs. These results will provide a basis for further study in vivo of WTD and the information of potential new drug structure for treating rheumatic arthritis and rheumatoid arthritis. PMID:24274266

  17. Quantification of proteins on gold nanoparticles by combining MALDI-TOF MS and proteolysis

    NASA Astrophysics Data System (ADS)

    Ju, Soomi; Yeo, Woon-Seok

    2012-04-01

    Protein-coated nanoparticles have been used in many studies, including those related to drug delivery, disease diagnosis, therapeutics, and bioassays. The number and density of proteins on the particles’ surface are important parameters that need to be calculable in most applications. While quantification methods for two-dimensional surface-bound proteins are commonly found, only a few methods for the quantification of proteins on three-dimensional surfaces such as nanoparticles have been reported. In this paper, we report on a new method of quantifying proteins on nanoparticles using matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). In this method, the nanoparticle-bound proteins are digested by trypsin and the resulting peptide fragments are analyzed by MALDI-TOF MS after the addition of an isotope-labeled internal standard (IS) which has the same sequence as a reference peptide of the surface-bound protein. Comparing the mass intensities between the reference peptide and the IS allows the absolute quantification of proteins on nanoparticles, because they have the same molecular milieu. As a model system, gold nanoparticles were examined using bovine serum albumin (BSA) as a coating protein. We believe that our strategy will be a useful tool that can provide researchers with quantitative information about the proteins on surfaces of three-dimensional materials.

  18. Proteomic Profiling of Hepatitis B Virus-related Hepatocellular Carcinoma in China: a SELDI-TOF-MS Study

    PubMed Central

    Zhang, Jianzhong; Li, Dong; Zheng, Yanhua; Cui, Yan; Feng, Kai; Zhou, Jinlian; Wu, Jihua

    2008-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality, but its underlying molecular mechanisms remain not well understood. High-throughput, proteomic techniques targeting unique biological molecules may provide novel insights into HCC pathogenesis and prognosis. In this study, we systemically investigated tissue biomarkers of HCC by using surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technique. Proteomic spectra were generated from fresh tissues (26 HCC and 18 control cirrhotic liver) and analyzed by using Biomarker Wizard System. A total of 16 differential proteomic peaks were detected between HCC and cirrhotic liver tissues, and 11 between moderately and highly differentiated HCCs. The expression pattern of one proteomic peak was validated by immunohistochemistry. These molecules are potential candidate biomarkers for early diagnosis of and targeted therapy for HCC. PMID:18787613

  19. Comparative Analysis of Volatile Composition in Chinese Truffles via GC × GC/HR-TOF/MS and Electronic Nose.

    PubMed

    Zhang, Ning; Chen, Haitao; Sun, Baoguo; Mao, Xueying; Zhang, Yuyu; Zhou, Ying

    2016-01-01

    To compare the volatile compounds of Chinese black truffle and white truffle from Yunnan province, this study presents the application of a direct solvent extraction/solvent-assisted flavor evaporation (DSE-SAFE) coupled with a comprehensive two-dimensional gas chromatography (GC × GC) high resolution time-of-flight mass spectrometry (HR-TOF/MS) and an electronic nose. Both of the analytical methods could distinguish the aroma profile of the two samples. In terms of the overall profile of truffle samples in this research, more kinds of acids were detected via the method of DSE-SAFE. Besides, compounds identified in black truffle (BT), but not in white truffle (WT), or vice versa, and those detected in both samples at different levels were considered to play an important role in differentiating the two samples. According to the analysis of electronic nose, the two samples could be separated, as well. PMID:27058524

  20. The signal-to-noise ratio as a measure of HA oligomer concentration: a MALDI-TOF MS study.

    PubMed

    Busse, Katja; Averbeck, Marco; Anderegg, Ulf; Arnold, Klaus; Simon, Jan C; Schiller, Jürgen

    2006-06-12

    MALDI-TOF MS (matrix-assisted laser desorption and ionization time-of-flight mass spectrometry) was used to determine ng amounts of defined hyaluronan (HA) oligomers obtained by enzymatic digestion of high molecular weight HA with testicular hyaluronate lyase. The signal-to-noise (S/N) ratio of the positive and negative ion spectra represents a reliable concentration measure: Amounts of HA down to about 40 fmol could be determined and there is a linear correlation between the S/N ratio and the HA amount between about 0.8 pmol and 40 fmol. However, the detection limits depend considerably on the size of the HA oligomer with larger oligomers being less sensitively detectable. The advantages and drawbacks of the S/N ratio as concentration measure are discussed. PMID:16584713

  1. HPLC-Q-TOF-MS identification of antioxidant and antihypertensive peptides recovered from cherry (Prunus cerasus L.) subproducts.

    PubMed

    Garca, Mara Concepcin; Endermann, Jochan; Gonzlez-Garca, Estefana; Marina, Mara Luisa

    2015-02-11

    The processing of fruits, such as cherries, is characterized by generating a lot of waste material such as fruit stones, skins, etc. To contribute to environmental sustainability, it is necessary to recover these residues. Cherry stones contain seeds with a significant amount of proteins that are underused and undervalued. The aim of this work was to extract cherry seed proteins, to evaluate the presence of bioactive peptides, and to identify them by mass spectrometry. The digestion of cherry seed proteins was optimized, and three different enzymes were employed: Alcalase, Thermolysin, and Flavourzyme. Peptide extracts obtained by the digestion of the cherry seed protein isolate with Alcalase and Thermolysin yielded the highest antioxidant and antihypertensive capacities. Ultrafiltration of hydrolysates allowed obtaining fractions with high antioxidant and antihypertensive capabilities. HPLC-Q-TOF-MS together with bioinformatics tools enabled one to identify peptides in these fractions. PMID:25599260

  2. Comparative Analysis of Volatile Composition in Chinese Truffles via GC × GC/HR-TOF/MS and Electronic Nose

    PubMed Central

    Zhang, Ning; Chen, Haitao; Sun, Baoguo; Mao, Xueying; Zhang, Yuyu; Zhou, Ying

    2016-01-01

    To compare the volatile compounds of Chinese black truffle and white truffle from Yunnan province, this study presents the application of a direct solvent extraction/solvent-assisted flavor evaporation (DSE-SAFE) coupled with a comprehensive two-dimensional gas chromatography (GC × GC) high resolution time-of-flight mass spectrometry (HR-TOF/MS) and an electronic nose. Both of the analytical methods could distinguish the aroma profile of the two samples. In terms of the overall profile of truffle samples in this research, more kinds of acids were detected via the method of DSE-SAFE. Besides, compounds identified in black truffle (BT), but not in white truffle (WT), or vice versa, and those detected in both samples at different levels were considered to play an important role in differentiating the two samples. According to the analysis of electronic nose, the two samples could be separated, as well. PMID:27058524

  3. Identification of Arcanobacterium pluranimalium by matrix-assisted laser desorption ionization-time of flight mass spectrometry and, as novel target, by sequencing pluranimaliumlysin encoding gene pla.

    PubMed

    Balbutskaya, A; Sammra, O; Nagib, S; Hijazin, M; Alber, J; Lämmler, C; Foster, G; Erhard, M; Wragg, P N; Abdulmawjood, A; Prenger-Berninghoff, E

    2014-01-31

    In the present study 13 Arcanobacterium pluranimalium strains isolated from various animal origin could successfully be identified phenotypically by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and genotypically by sequencing 16S rDNA and the pluranimaliumlysin encoding gene pla. The detection of mass spectra by MALDI-TOF MS and the novel genotypic approach using gene pla might help to identify A. pluranimalium in future and might elucidate the role this species plays in infections of animals. PMID:24345409

  4. Rapid determination of 5-hydroxymethylfurfural by DART ionization with time-of-flight mass spectrometry.

    PubMed

    Rajchl, Aleš; Drgová, Ladislava; Grégrová, Adéla; Cížková, Helena; Sevčík, Rudolf; Voldřich, Michal

    2013-05-01

    DART (direct analysis in real time), a novel technique with wide potential for rapid screening analysis, coupled with high-resolution time-of-flight mass spectrometry (TOF-MS) has been used for quantitative analysis of 5-hydroxymethylfurfural (5-HMF), a typical temperature marker of food. The DART/TOF-MS method was optimised and validated. Quantification of 5-HMF was achieved by use of a stable isotope-labelled 5-HMF standard prepared from glucose. Formation of 5-HMF from saccharides, a potential source of overestimation of results, was evaluated. Forty-four real samples (honey and caramelised condensed sweetened milk) and 50 model samples of heated honey were analysed. The possibility of using DART for analysis of heated samples of honey was confirmed. HPLC and DART/TOF-MS methods for determination of 5-HMF were compared. The correlation equation between these methods was DART = 1.0287HPLC + 0.21340, R(2) = 0.9557. The DART/TOF-MS method has been proved to enable efficient and rapid determination of 5-HMF in a variety of food matrices, for example honey and caramel. PMID:23503749

  5. Metabolic analysis of osteoarthritis subchondral bone based on UPLC/Q-TOF-MS.

    PubMed

    Yang, Gang; Zhang, Hua; Chen, Tingmei; Zhu, Weiwen; Ding, Shijia; Xu, Kaiming; Xu, Zhongwei; Guo, Yanlei; Zhang, Jian

    2016-06-01

    Osteoarthritis (OA), one of the most widespread musculoskeletal joint diseases among the aged, is characterized by the progressive loss of articular cartilage and continuous changes in subchondral bone. The exact pathogenesis of osteoarthritis is not completely clear. In this work, ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) in combination with multivariate statistical analysis was applied to analyze the metabolic profiling of subchondral bone from 42 primary osteoarthritis patients. This paper described a modified two-step method for extracting the metabolites of subchondral bone from primary osteoarthritis patients. Finally, 68 metabolites were identified to be significantly changed in the sclerotic subchondral bone compared with the non-sclerotic subchondral bone. Taurine and hypotaurine metabolism and beta-alanine metabolism were probably relevant to the sclerosis of subchondral bone. Taurine, L-carnitine, and glycerophospholipids played a vital regulation role in the pathological process of sclerotic subchondral bone. In the sclerotic process, beta-alanine and L-carnitine might be related to the increase of energy consumption. In addition, our findings suggested that the intra-cellular environment of sclerotic subchondral bone might be more acidotic and hypoxic compared with the non-sclerotic subchondral bone. In conclusion, this study provided a new insight into the pathogenesis of subchondral bone sclerosis. Our results indicated that metabolomics could serve as a promising approach for elucidating the pathogenesis of subchondral bone sclerosis in primary osteoarthritis. Graphical Abstract Metabolic analysis of osteoarthritis subchondral bone. PMID:27074781

  6. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology.

    PubMed

    Patel, Robin

    2013-08-01

    Despite widespread application of nucleic acid diagnostics, cultures remain integral in modern laboratories. Because cultures detect a large number of organism types, it is unlikely that they will disappear from clinical practice in the near future. Their downside is slow turn-around time, impacted by time to growth and identification of that growth. The latter is expedited using a new proteomic technology, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). PMID:23595835

  7. Rapid Identification of Protein Biomarkers of E. coli O157:H7 by MALDI-TOF-TOF Mass Spectrometry and Top-Down Proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified six protein biomarkers from two strains of E. coli O157:H7 and one non-pathogenic E. coli strain by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight tandem mass spectrometry (TOF/TOF-MS/MS) and top-down proteomics. Mature, intact proteins were ext...

  8. Evaluation of automated direct sample introduction with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for the screening analysis of dioxins of fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An automated direct sample introduction technique coupled to comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (DSI-GC×GC/TOF-MS) was applied for the development of a relatively fast and easy analytical screening method for 17 polychlorinated dibenzo-p-dioxins/dibenzo...

  9. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories. PMID:23637301

  10. Identification of Rare Pathogenic Bacteria in a Clinical Microbiology Laboratory: Impact of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard

    2013-01-01

    During the past 5 years, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories. PMID:23637301

  11. Potential Pitfalls in MALDI-TOF MS Analysis of Abiotically Synthesized RNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Burcar, Bradley T.; Cassidy, Lauren M.; Moriarty, Elizabeth M.; Joshi, Prakash C.; Coari, Kristin M.; McGown, Linda B.

    2013-06-01

    Demonstration of the abiotic polymerization of ribonucleotides under conditions consistent with conditions that may have existed on the prebiotic Earth is an important goal in "RNA world" research. Recent reports of abiotic RNA polymerization with and without catalysis rely on techniques such as HPLC, gel electrophoresis, and MALDI-TOF MS to analyze the reaction products. It is essential to understand the limitations of these techniques in order to accurately interpret the results of these analyses. In particular, techniques that rely on mass for peak identification may not be able to distinguish between a single, linear RNA oligomer and stable aggregates of smaller linear and/or cyclic RNA molecules. In the case of MALDI-TOF MS, additional complications may arise from formation of salt adducts and MALDI matrix complexes. This is especially true for abiotic RNA polymerization reactions because the concentration of longer RNA chains can be quite low and RNA, as a polyelectrolyte, is highly susceptible to adduct formation and aggregation. Here we focus on MALDI-TOF MS analysis of abiotic polymerization products of imidazole-activated AMP in the presence and absence of montmorillonite clay as a catalyst. A low molecular weight oligonucleotide standard designed for use in MALDI-TOF MS and a 3'-5' polyadenosine monophosphate reference standard were also run for comparison and calibration. Clay-catalyzed reaction products of activated GMP and UMP were also examined. The results illustrate the ambiguities associated with assignment of m/z values in MALDI mass spectra and the need for accurate calibration of mass spectra and careful sample preparation to minimize the formation of adducts and other complications arising from the MALDI process.

  12. Potential pitfalls in MALDI-TOF MS analysis of abiotically synthesized RNA oligonucleotides.

    PubMed

    Burcar, Bradley T; Cassidy, Lauren M; Moriarty, Elizabeth M; Joshi, Prakash C; Coari, Kristin M; McGown, Linda B

    2013-06-01

    Demonstration of the abiotic polymerization of ribonucleotides under conditions consistent with conditions that may have existed on the prebiotic Earth is an important goal in "RNA world" research. Recent reports of abiotic RNA polymerization with and without catalysis rely on techniques such as HPLC, gel electrophoresis, and MALDI-TOF MS to analyze the reaction products. It is essential to understand the limitations of these techniques in order to accurately interpret the results of these analyses. In particular, techniques that rely on mass for peak identification may not be able to distinguish between a single, linear RNA oligomer and stable aggregates of smaller linear and/or cyclic RNA molecules. In the case of MALDI-TOF MS, additional complications may arise from formation of salt adducts and MALDI matrix complexes. This is especially true for abiotic RNA polymerization reactions because the concentration of longer RNA chains can be quite low and RNA, as a polyelectrolyte, is highly susceptible to adduct formation and aggregation. Here we focus on MALDI-TOF MS analysis of abiotic polymerization products of imidazole-activated AMP in the presence and absence of montmorillonite clay as a catalyst. A low molecular weight oligonucleotide standard designed for use in MALDI-TOF MS and a 3'-5' polyadenosine monophosphate reference standard were also run for comparison and calibration. Clay-catalyzed reaction products of activated GMP and UMP were also examined. The results illustrate the ambiguities associated with assignment of m/z values in MALDI mass spectra and the need for accurate calibration of mass spectra and careful sample preparation to minimize the formation of adducts and other complications arising from the MALDI process. PMID:23793938

  13. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification.

    PubMed

    Neville, Stephen A; Lecordier, Annabelle; Ziochos, Helen; Chater, Mathew J; Gosbell, Iain B; Maley, Michael W; van Hal, Sebastiaan J

    2011-08-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated prospectively in a diagnostic laboratory. Nine hundred twenty-seven organisms were tested in triplicate; 2,351/2,781 (85%) species and 2,681/2,781 (96%) genus identifications were correct. Known issues such as the misidentification of alpha-hemolytic streptococci as Streptococcus pneumoniae were easily corrected. Identifications cost AUD$0.45 per isolate and were available in minutes. MALDI-TOF MS is rapid, accurate, and inexpensive. PMID:21632894

  14. Utility of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry following Introduction for Routine Laboratory Bacterial Identification ▿

    PubMed Central

    Neville, Stephen A.; LeCordier, Annabelle; Ziochos, Helen; Chater, Mathew J.; Gosbell, Iain B.; Maley, Michael W.; van Hal, Sebastiaan J.

    2011-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated prospectively in a diagnostic laboratory. Nine hundred twenty-seven organisms were tested in triplicate; 2,351/2,781 (85%) species and 2,681/2,781 (96%) genus identifications were correct. Known issues such as the misidentification of alpha-hemolytic streptococci as Streptococcus pneumoniae were easily corrected. Identifications cost AUD$0.45 per isolate and were available in minutes. MALDI-TOF MS is rapid, accurate, and inexpensive. PMID:21632894

  15. The Construction and Evaluation of Reference Spectra for the Identification of Human Pathogenic Microorganisms by MALDI-TOF MS

    PubMed Central

    Xiao, Di; Ye, Changyun; Zhang, Huifang; Kan, Biao; Lu, Jingxing; Xu, Jianguo; Jiang, Xiugao; Zhao, Fei; You, Yuanhai; Yan, Xiaomei; Wang, Duochun; Hu, Yuan; Zhang, Maojun; Zhang, Jianzhong

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique for the rapid and high-throughput identification of microorganisms. There remains a dearth of studies in which a large number of pathogenic microorganisms from a particular country or region are utilized for systematic analyses. In this study, peptide mass reference spectra (PMRS) were constructed and evaluated from numerous human pathogens (a total of 1019 strains from 94 species), including enteric (46 species), respiratory (21 species), zoonotic (17 species), and nosocomial pathogens (10 species), using a MALDI-TOF MS Biotyper system (MBS). The PMRS for 380 strains of 52 species were new contributions to the original reference database (ORD). Compared with the ORD, the new reference database (NRD) allowed for 28.2% (from 71.5% to 99.7%) and 42.3% (from 51.3% to 93.6%) improvements in identification at the genus and species levels, respectively. Misidentification rates were 91.7% and 57.1% lower with the NRD than with the ORD for genus and species identification, respectively. Eight genera and 25 species were misidentified. For genera and species that are challenging to accurately identify, identification results must be manually determined and adjusted in accordance with the database parameters. Through augmentation, the MBS demonstrated a high identification accuracy and specificity for human pathogenic microorganisms. This study sought to provide theoretical guidance for using PMRS databases in various fields, such as clinical diagnosis and treatment, disease control, quality assurance, and food safety inspection. PMID:25181391

  16. The construction and evaluation of reference spectra for the identification of human pathogenic microorganisms by MALDI-TOF MS.

    PubMed

    Xiao, Di; Ye, Changyun; Zhang, Huifang; Kan, Biao; Lu, Jingxing; Xu, Jianguo; Jiang, Xiugao; Zhao, Fei; You, Yuanhai; Yan, Xiaomei; Wang, Duochun; Hu, Yuan; Zhang, Maojun; Zhang, Jianzhong

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique for the rapid and high-throughput identification of microorganisms. There remains a dearth of studies in which a large number of pathogenic microorganisms from a particular country or region are utilized for systematic analyses. In this study, peptide mass reference spectra (PMRS) were constructed and evaluated from numerous human pathogens (a total of 1019 strains from 94 species), including enteric (46 species), respiratory (21 species), zoonotic (17 species), and nosocomial pathogens (10 species), using a MALDI-TOF MS Biotyper system (MBS). The PMRS for 380 strains of 52 species were new contributions to the original reference database (ORD). Compared with the ORD, the new reference database (NRD) allowed for 28.2% (from 71.5% to 99.7%) and 42.3% (from 51.3% to 93.6%) improvements in identification at the genus and species levels, respectively. Misidentification rates were 91.7% and 57.1% lower with the NRD than with the ORD for genus and species identification, respectively. Eight genera and 25 species were misidentified. For genera and species that are challenging to accurately identify, identification results must be manually determined and adjusted in accordance with the database parameters. Through augmentation, the MBS demonstrated a high identification accuracy and specificity for human pathogenic microorganisms. This study sought to provide theoretical guidance for using PMRS databases in various fields, such as clinical diagnosis and treatment, disease control, quality assurance, and food safety inspection. PMID:25181391

  17. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    PubMed

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. PMID:26040746

  18. Ion Mobility SpectrometryMass Spectrometry Performance Using Electrodynamic Ion Funnels and Elevated Drift Gas Pressures

    SciTech Connect

    Baker, Erin Shammel; Clowers, Brian H.; Li, Fumin; Tang, Keqi; Tolmachev, Aleksey V.; Prior, David C.; Belov, Mikhail E.; Smith, Richard D.

    2007-06-28

    The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared to a previous design. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear (exit) ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, allowing the instrument to have an effective drift region of 98 cm. Two differentially pumped quadrupole regions were used to couple the IMS and TOF MS to focus and minimize the ion transient time between the stages. The resolution of the instrument was evaluated at pressures ranging from 4 to12 Torr and ion mobility drift voltages of 16 V/cm (4 Torr) to 43 V/cm (12 Torr). An increase in resolution from 55 to 80 was observed from 4 to 12 Torr nitrogen drift gas with no loss in sensitivity. Given the increased usage of ion funnels prior to ion mobility separations, additional attention was directed towards the influence of drift gas on the observed ion populations trapped and transmitted using an electrodynamic ion funnel. The choice of drift gas was shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.

  19. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  20. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    PubMed

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. PMID:26452822

  1. Top-down proteomic identification of furin-cleaved α-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS.

    PubMed

    Fagerquist, Clifton K; Sultan, Omar

    2010-01-01

    A method has been developed to identify the α-subunit of Shiga toxin 2 (α-Stx2) from Escherichia coli O157:H7 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomics using web-based software developed in-house. Expression of Stx2 was induced by culturing E. coli O157:H7 on solid agar supplemented with an antibiotic that elicits the bacterial SOS-response. Bacterial cell lysates were incubated in the presence of furin, a human enzyme, that cleaves α-Stx2 into A1 (~28 kDa) and A2 (~5 kDa) protein fragments. A subsequent disulfide reduction step unlinked A1 from A2. MALDI-TOF-MS of the furin-digested/disulfide-reduced sample showed a peak at mass-to-charge (m/z) 5286 that corresponded to the A2 fragment. No peak was observed that corresponded to the A1 fragment although its presence was confirmed by bottom-up proteomics. The peak at m/z 5286 was definitively identified by MALDI-TOF-TOF-MS/MS and top-down proteomics as the A2 fragment of α-Stx2. PMID:21331368

  2. Comparison between drug screening by immunoassay and ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry in post-mortem urine.

    PubMed

    Sundström, Mira; Pelander, Anna; Ojanperä, Ilkka

    2015-05-01

    Immunoassay is currently the most common approach for urine drug screening. However, the continuous emergence of new psychoactive substances (NPS) and their low urinary concentrations have challenged the scope and sensitivity of immunoassays. Consequently, specialized toxicology laboratories rely more and more on mass spectrometry (MS) based techniques. Ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOF-MS) is an especially attractive technique for comprehensive drug screening. The objective was to compare the performances of immunoassay and UHPLC-HR-TOF-MS in terms of scope, flexibility, sensitivity, and reliability of substance identification. A total of 279 post-mortem urine samples were analyzed using a method representative of each technique. The immunoassay method was an Emit II Plus enzyme immunoassay for the following drug groups: amphetamines, benzodiazepines, buprenorphine, cannabis, and opiates. The UHPLC-HR-TOF-MS method was a recently published method covering hundreds of drugs: conventional drugs of abuse, abused prescription drugs, and NPS of various classes. UHPLC-HR-TOF-MS produced a lower number of false positive (FP) results for the drug groups covered by immunoassay. Many of the false negative (FN, n = 40) and FP (n = 22) immunoassay results were obviously due to the higher cut-off concentrations and interfering matrix, respectively. Moreover, the wider scope of UHPLC-HR-TOF-MS allowed detection of NPS and prescription drugs. UHPLC-HR-TOF-MS gave FP results related to a few particular substances. The future option of adjusting all compound-specific reporting parameters individually would allow the method's sensitivity and specificity to be fully exploited. PMID:24953563

  3. Direct coupling of high-performance thin-layer chromatography with UV spectroscopy and IR-MALDI orthogonal TOF MS for the analysis of cyanobacterial toxins.

    PubMed

    Meisen, Iris; Distler, Ute; Müthing, Johannes; Berkenkamp, Stefan; Dreisewerd, Klaus; Mathys, Werner; Karch, Helge; Mormann, Michael

    2009-05-15

    Cyanobacteria are pathogenic prokaryotes and known for producing a high variety of cyclic hepatotoxic peptides in fresh and brackish water. Prominent members of these toxins are microcystin LR (MC LR) and nodularin (Nod), which are under suspicion to cause cancer. Various analytical methods have been reported for the detection of these cyclopeptides, and these are mainly based on liquid chromatography combined with mass spectrometric techniques. Here, we introduce a new approach based on the direct coupling of high-performance thin-layer chromatography (HPTLC) with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-MALDI-o-TOF MS) using the liquid matrix glycerol. The analysis of the cyclopeptides involves the application of three complementary methods: (i) HPTLC separation of MC LR and Nod, (ii) their detection and quantification by UV spectroscopy at lambda = 232 nm, and (iii) direct identification of separated analytes on the HPTLC plate by IR-MALDI-o-TOF MS. Calibration curves exhibited a linear relationship of amount of analyte applied for HPTLC and UV absorption (R(2) > 0.99). The limits of detection were 5 ng for UV spectroscopy and 3 ng for mass spectrometric analysis of individual peptides. This novel protocol greatly improves the sensitive determination of toxins from pathogenic cyanobacteria in complex water samples. It was successfully applied to the detection and quantification of MC LR and Nod in a spiked, processed environmental water sample. PMID:19364091

  4. High Throughput Enzyme Inhibitor Screening by Functionalized Magnetic Carbonaceous Microspheres and Graphene Oxide-Based MALDI-TOF-MS

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Yan; Liu, Junyan; Deng, Chunhui; Zhang, Xiangmin

    2011-12-01

    In this work, a high throughput methodology for screening enzyme inhibitors has been demonstrated by combining enzyme immobilized magnetic carbonaceous microspheres and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with grapheme oxide as matrix. First, model enzyme acetylcholinesterase (AChE) was immobilized onto the 3-glycidoxypropyltrimethoxysilane (GLYMO)-modified magnetic carbonaceous (MC) microspheres, displaying a high enzyme activity and stability, and also facilitating the separation of enzyme from substrate and product. The efficiency of immobilized AChE was monitored by biochemical assay, which was carried out by mixing enzyme-immobilized MC microspheres with model substrate acetylcholine (ACh), and subsequent quantitative determination of substrate ACh and product choline using graphene oxide-based MALDI-TOF-MS with no background inference. The limit of detection (LOD) for ACh was 0.25 fmol/μL, and excellent linearity (R2 = 0.9998) was maintained over the range of 0.5 and 250 fmol/μL. Choline was quantified over the range of 0.05 and 15 pmol/μL, also with excellent linearity (R2 = 0.9994) and low LOD (0.15 fmol/μL). Good accuracy and precision were obtained for all concentrations within the range of the standard curves. All together, eight compounds (four known AChE inhibitors and four control chemical compounds with no AChE inhibit effect) were tested with our promoted methodology, and the obtained results demonstrated that our high throughput screening methodology could be a great help to the routine enzyme inhibitor screening.

  5. Exploring serological classification tree model of active pulmonary tuberculosis by magnetic beads pretreatment and MALDI-TOF MS analysis.

    PubMed

    Deng, C; Lin, M; Hu, C; Li, Y; Gao, Y; Cheng, X; Zhang, F; Dong, M; Li, Y

    2011-10-01

    Pulmonary tuberculosis (TB) is an infectious disease disturbing status of public health, and accurate diagnosis of TB would effectively help control the disturbance. Our study tried to establish a classification tree model that distinguished active TB from non-TB individuals. We used matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) combined with weak cationic exchange (WCX) magnetic beads to analyse 178 serum samples containing 75 patients with active TB and 103 non-TB individuals (43 patients with common pulmonary diseases and 60 healthy controls). Samples were randomly divided into a training set and a test set. Statistical softwares were applied to construct this model. An amount of 48 differential expressed peaks (P < 0.05) were identified by the training set, and our model was set up by three of them, m/z 7626, 8561 and 8608. This model can discriminate patients with active TB from patients with non-TB with a sensitivity of 98.3% and a specificity of 84.4%. The test set was used to verify the performance, which demonstrated good sensitivity and specificity: 85.7% and 83.3%, respectively. Differential expressed peaks between smear-positive and smear-negative active TB also have been analysed. It came out that m/z 8561 and 8608 not only acted as vital factors in the pathogenesis of active TB but also played an important role in regulating different active TB status. In conclusion, MALDI-TOF MS combined with WCX magnetic beads was a powerful technology for constructing classification tree model, and the model we built could serve as a potential diagnostic tool for active TB. PMID:21668462

  6. Product ion distributions for the reactions of NO+ with some physiologically significant aldehydes obtained using a SRI-TOF-MS instrument

    PubMed Central

    Mochalski, Paweł; Unterkofler, Karl; Španěl, Patrik; Smith, David; Amann, Anton

    2014-01-01

    Product ion distributions for the reactions of NO+ with 22 aldehydes involved in human physiology have been determined under the prevailing conditions of a selective reagent ionization time of flight mass spectrometry (SRI-TOF-MS) at an E/N in the flow/drift tube reactor of 130 Td. The chosen aldehydes were fourteen alkanals (the C2–C11 n-alkanals, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, and 2-ethyl hexanal), six alkenals (2-propenal, 2-methyl 2-propenal, 2-butenal, 3-methyl 2-butenal, 2-methyl 2-butenal, and 2-undecenal), benzaldehyde, and furfural. The product ion fragmentations patterns were determined for both dry air and humid air (3.5% absolute humidity) used as the matrix buffer/carrier gas in the drift tube of the SRI-TOF-MS instrument. Hydride ion transfer was seen to be a common ionization mechanism in all these aldehydes, thus generating (M−H)+ ions. Small fractions of the adduct ion, NO+M, were also seen for some of the unsaturated alkenals, in particular 2-undecenal, and heterocyclic furfural for which the major reactive channel was non-dissociative charge transfer generating the M+ parent ion. Almost all of the reactions resulted in partial fragmentation of the aldehyde molecules generating hydrocarbon ions; specifically, the alkanal reactions resulted in multiple product ions, whereas, the alkenals reactions produced only two or three product ions, dissociation of the nascent excited product ion occurring preferentially at the 2-position. The findings of this study are of particular importance for data interpretation in studies of aldehydes reactions employing SRI-TOF-MS in the NO+ mode. PMID:25844049

  7. UPLC/Q-TOF MS-Based Metabolomics and qRT-PCR in Enzyme Gene Screening with Key Role in Triterpenoid Saponin Biosynthesis of Polygala tenuifolia

    PubMed Central

    Li, Zhenyu; Xu, Xiaoshuang; Peng, Bing; Qin, Xuemei; Du, Guanhua

    2014-01-01

    Background The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear. Methodology/Findings In this study, ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS)-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1) were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS), squalene monooxygenase (SQE), and beta-amyrin synthase (β-AS) were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis. Conclusions/Significance This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia. PMID:25148032

  8. Detection of biomarkers of pathogenic Naegleria fowleri through mass spectrometry and proteomics.

    PubMed

    Moura, Hercules; Izquierdo, Fernando; Woolfitt, Adrian R; Wagner, Glauber; Pinto, Tatiana; del Aguila, Carmen; Barr, John R

    2015-01-01

    Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix-assisted laser-desorption-ionization-time-of-flight mass spectrometry MALDI-TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF-TOF instrument. MALDI-TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI-TOF MS fingerprinting is a rapid, reproducible, high-throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents. PMID:25231600

  9. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis.

    PubMed

    Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K; Virdi, Jugsharan S

    2015-01-01

    Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi. PMID:26300860

  10. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis

    PubMed Central

    Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K.; Virdi, Jugsharan S.

    2015-01-01

    Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi. PMID:26300860

  11. Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS.

    PubMed

    Shoji, Toshihiko; Masumoto, Saeko; Moriichi, Nina; Kanda, Tomomasa; Ohtake, Yasuyuki

    2006-01-13

    Our previously reported method for the fractionation of apple procyanidins was modified successfully to achieve the separation of (epi)catechins and procyanidins (ranging from dimers to octamers) according to the degree of polymerization. Normal-phase chromatography was employed, using a hexane-methanol-ethyl acetate mixture as the mobile phase. Each fraction was characterized using high-performance liquid-chromatography electrospray-ionization mass spectrometry (HPLC-ESI/MS) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS). This method will be useful for the evaluation of the physiological functions of proanthocyanidins and for the elucidation of their individual structures. PMID:16313915

  12. Identification of fungal microorganisms by MALDI-TOF mass spectrometry.

    PubMed

    Chalupová, Jana; Raus, Martin; Sedlářová, Michaela; Sebela, Marek

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000-20000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions. PMID:24211254

  13. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    PubMed

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. PMID:22431458

  14. Separation and identification of mouse liver membrane proteins using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS

    NASA Astrophysics Data System (ADS)

    Thanh Tran, The; Phan, Van Chi

    2010-03-01

    In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5 Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations.

  15. Effects of berberine and pomegranate seed oil on plasma phospholipid metabolites associated with risks of type 2 diabetes mellitus by U-HPLC/Q-TOF-MS.

    PubMed

    Wu, Xia; Li, Yan; Wang, Qiu; Li, Weimin; Feng, Yifan

    2015-12-15

    A rapid and reliable ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry (U-HPLC/Q-TOF-MS) has been firstly used to analyze the changes of plasma phospholipids, in type 2 diabetes mellitus (T2DM) mice after administration of berberine and pomegranate seed oil (PSO). The separation of plasma phospholipids was carried out on an Acquity U-HPLC BEH C18 column (2.1mm×50mm, 1.7μm, Waters) by linear gradient elution using a mobile phase consisting of 10mM ammonium formate in water and acetonitrile: isopropanol (1:1, v/v) mixed solution added by 0.25% water and 10mM ammonium formate. The method demonstrated a good precision and reproducibility. Linear regression analysis showed a good linearity. And potential biomarkers were discovered based on their mass spectra and chemometrics methods. The results demonstrated that the proposed U-HPLC/Q-TOF-MS method was successfully applied to analyze the dynamic changes of phospholipids components in plasma of T2DM mice after drug treatment and could provide a useful data base for meriting further study in humans and investigating pharmacological actions of drugs. PMID:26590882

  16. Micro-scale strategy to detect spermine and spermidine by MALDI-TOF MS in foods and identification of apoptosis-related proteins by nano-flow UPLC-MS/MS after treatment with spermine and spermidine.

    PubMed

    Su, Huai-Hsin; Chuang, Lea-Yea; Tseng, Wei-Lung; Lu, Chi-Yu

    2015-01-26

    Spermine and spermidine are multiple-nitrogen compounds found in many foods. Both compounds are essential for cell growth and human health. This study established a simple and fast method of detecting spermine and spermidine in food samples by matrix-assisted laser desorption/ionization combined with time-of-flight mass spectrometry (MALDI-TOF MS). After a simple sample preparation procedure, spermine and spermidine were directly detected by MALDI-TOF MS with no additional purification procedure. The calibration curves for spermine and spermidine ranged from 0.1 to 10 μg/mL. In intra- and inter-batch assays of three different concentrations of spermine and spermidine, all relative standard deviations and relative errors were below 18.9%. These experimental results confirmed the practicability and effectiveness of the proposed MALDI-TOF MS method for fast determination of spermine and spermidine in food samples. Furthermore, since spermine and spermidine have important roles in apoptosis, up-regulation and down-regulation of spermine and spermidine during apoptosis were analyzed. After treating NRK-52E cells with spermine and spermidine, the cells were lysed, and cell proteins were collected, and digested. Apoptosis-related proteins were then identified by tandem MS. PMID:25541472

  17. A metabolomic protocol for plant systematics by matrix-assisted laser-desorption/ionization time-of flight mass spectrometry.

    PubMed

    Ernst, Madeleine; Silva, Denise B; Silva, Ricardo; Monge, Marcelo; Semir, João; Vêncio, Ricardo Z N; Lopes, Norberto P

    2015-02-15

    Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research. PMID:25622605

  18. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.

    PubMed

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Spanu, Teresa; Fiori, Barbara; Posteraro, Brunella; Sanguinetti, Maurizio

    2014-09-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection. PMID:25212071

  19. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-06-01

    Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS. PMID:17356819

  20. The application of MALDI-TOF MS for dermatophyte identification.

    PubMed

    Dąbrowska, Iwona; Dworecka-Kaszak, Bożena

    2014-01-01

    Dermatophytes are keratinolytic fungi responsible for a wide variety of diseases of the skin, nails and hair of mammals. Their identification is often complicated, labor-intensive and time consuming due to the high degree of intra-species morphological similarity, and also requires scientific knowledge and practice. The aim of this study was to demonstrate that MALDI-TOF MS technique may be a faster and more sophisticated method useful for the identification of dermatophytes and mycoses in general. PMID:25281811

  1. The Effect of Culture Conditions on Microorganism Identification by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B.; Wunschel, Sharon C.; Wunschel, David S.; Petersen, Catherine E.; Wahl, Karen L.

    2005-01-01

    Abstract Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to identify bacteria based upon protein signatures. This research shows that while some different proteins are produced by vegetative bacteria when they are cultured in different growth media, positive identification with MALDI-TOF MS is still possible with the protocol established at Pacific Northwest National Laboratory (PNNL)(11). A core set of small proteins remain constant under at least four different culture media conditions including minimal medium -M9, rich media - tryptic soy broth (TSB) or Luria-Bertani (LB) broth and blood agar plates such that analysis of the intact cells by matrix-assisted laser desorption/ionization mass spectrometry allows for consistent identification.

  2. Novel mass spectrometry-based tool for genotypic identification of mycobacteria.

    PubMed

    Lefmann, Michael; Honisch, Christiane; Böcker, Sebastian; Storm, Niels; von Wintzingerode, Friedrich; Schlötelburg, Cord; Moter, Annette; van den Boom, Dirk; Göbel, Ulf B

    2004-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after base-specific cleavage of PCR amplified and in vitro-transcribed 16S rRNA gene (rDNA) was used for the identification of mycobacteria. Full-length 16S rDNA reference sequences of 12 type strains of Mycobacterium spp. frequently isolated from clinical specimens were determined by PCR, cloning, and sequencing. For MALDI-TOF MS-based comparative sequence analysis, mycobacterial 16S rDNA signature sequences ( approximately 500 bp) of the 12 type strains and 24 clinical isolates were PCR amplified using RNA promoter-tagged forward primers. T7 RNA polymerase-mediated transcription of forward strands in the presence of 5-methyl ribo-CTP maximized mass differences of fragments generated by base-specific cleavage. In vitro transcripts were subsequently treated with RNase T1, resulting in G-specific cleavage. Sample analysis by MALDI-TOF MS showed a specific mass signal pattern for each of the 12 type strains, allowing unambiguous identification. All 24 clinical isolates were identified unequivocally by comparing their detected mass signal pattern to the reference sequence-derived in silico pattern of the type strains and to the in silico mass patterns of published 16S rDNA sequences. A 16S rDNA microheterogeneity of the Mycobacterium xenopi type strain (DSM 43995) was detected by MALDI-TOF MS and later confirmed by Sanger dideoxy sequencing. In conclusion, analysis of 16S rDNA amplicons by MS after base-specific cleavage of RNA transcripts allowed fast and reliable identification of the Mycobacterium tuberculosis complex and ubiquitous mycobacteria (mycobacteria other than tuberculosis). The technology delivers an open platform for high-throughput microbial identification on the basis of any specific genotypic marker region. PMID:14715774

  3. Mass spectrometry in diagnostic oncoproteomics.

    PubMed

    Roboz, John

    2005-01-01

    Diagnostic oncoproteomics is the application of proteomic techniques for the diagnosis of malignancies. A new mass spectrometric technology involves surface enhanced laser desorption ionization combined with time-of flight mass analysis (SELDI-TOF-MS), using special protein chips. After the description of the relevant principles of the technique, including approaches to proteomic pattern diagnostics, applications are reviewed for the diagnosis of ovarian, breast, prostate, bladder, pancreatic, and head and neck cancers, and also several other malignancies. Finally, problems and prospects of the approach are discussed. PMID:16193645

  4. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.

    PubMed

    Tourio, Sonia; Fuguet, Elisabet; Juregui, Olga; Saura-Calixto, Fulgencio; Cascante, Marta; Torres, Josep Llus

    2008-11-01

    Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns. PMID:18853405

  5. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods

    PubMed Central

    Cox, C. R.; Jensen, K. R.; Saichek, N. R.; Voorhees, K. J.

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid approach for clinical bacterial identification. However, current protein-based commercial bacterial ID methods fall short when differentiating closely related species/strains. To address this shortcoming, we employed CeO2-catalyzed fragmentation of lipids to produce fatty acids using the energy inherent to the MALDI laser as a novel alternative to protein profiling. Fatty acid profiles collected from Enterobacteriaceae, Acinetobacter, and Listeria using CeO2-catalyzed metal oxide laser ionization (MOLI MS), processed by principal component analysis, and validated by leave–one-out cross-validation (CV), showed 100% correct classification at the species level and 98% at the strain level. In comparison, protein profile data from the same bacteria yielded 32%, 54% and 67% mean species-level accuracy using two MALDI-TOF MS platforms, respectively. In addition, several pathogens were misidentified by protein profiling as non-pathogens and vice versa. These results suggest novel CeO2-catalyzed lipid fragmentation readily produced (i) taxonomically tractable fatty acid profiles by MOLI MS, (ii) highly accurate bacterial classification and (iii) consistent strain-level ID for bacteria that were routinely misidentified by protein-based methods. PMID:26190224

  6. Evaluation of different extraction approaches for the determination of phenolic compounds and their metabolites in plasma by nanoLC-ESI-TOF-MS.

    PubMed

    Quirantes-Piné, R; Verardo, V; Arráez-Román, D; Fernández-Arroyo, S; Micol, V; Caboni, M F; Segura-Carretero, A; Fernández-Gutiérrez, A

    2012-12-01

    Sample preparation is an important step for the determination of phenolic compounds in biological samples. Different extraction methods have been tested to determine phenolic compounds and their metabolites in plasma by nano-liquid chromatography coupled to electrospray ionisation-time-of-flight mass spectrometry (nanoLC-ESI-TOF-MS). The sample treatment optimisation was performed using commercial foetal bovine serum spiked with representative phenolic standards, namely naringenin, luteolin, verbascoside, apigenin, rutin, syringic acid and catechin. Different protein-precipitation conditions were evaluated as well as enzymatic digestion with trypsin and solid-phase extraction using different phases such as C-18, ABN and ENV+, working at different pH values. The optimum extraction procedure consisted of a previous protein-precipitation step using HCl 200 mmol/L in methanol for 2.5 h at 50 °C followed by a solid-phase extraction using C-18 cartridges at pH 2.5. This procedure was finally applied to the plasma of rats overfed with a phenolic-rich Lippia citriodora extract. These samples were analysed by nanoLC-ESI-TOF-MS, enabling the identification of five compounds previously found in the administered L. citriodora extract and one metabolite. PMID:23064706

  7. Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems.

    PubMed

    Xiao, Di; Zhao, Fei; Lv, Min; Zhang, Huifang; Zhang, Yongchan; Huang, Hui; Su, Peng; Zhang, Zhen; Zhang, Jianzhong

    2012-08-01

    The rapid and reliable identification of pathogens is crucial for confirming infections concomitant with community-acquired pneumonia (CAP), guiding antimicrobial therapy, and epidemiologic surveillance. In this study, 2 matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems coupled to the Biotyper or SARAMIS database were used to identify strains isolated from the throat swab samples of 70 CAP patients. The analysis of 16S rRNA gene sequencing was used as the reference method. A total of 212 suspicious colonies representing 12 genera and 30 species were identified. Of these, 99.1% (total 210/212 and 202/212 in Biotyper and 193/212 in SARAMIS) were successfully identified with 93.4% (total 198 /212 and 190/212 in Biotyper and 149/212 in SARAMIS) identified at the species level. The integrity and comprehensiveness of the databases are the main reason for the significant differences in the identification of isolates between the Biotyper and SARAMIS systems. As a rapid, economical, and high-throughput method, MALDI-TOF MS is an effective alternative identification method that can aid in the diagnosis and surveillance of CAP. PMID:22633336

  8. HPLC/Q-TOF-MS-Based Identification of Absorbed Constituents and Their Metabolites in Rat Serum and Urine after Oral Administration of Cistanche deserticola Extract.

    PubMed

    Li, Wen-Lan; Sun, Xiang-Ming; Song, Hui; Ding, Jing-Xin; Bai, Jing; Chen, Qiang

    2015-09-01

    As a famous health food in China, Cistanche deserticola (C. deserticola) suggested an estrogenic activity according to our previous study. However, no one clarifies its active material basis to date. To find more potentially active constituents and elucidate metabolic pathways of metabolites, a method to simultaneously analyze multiple absorbed constituents and metabolites from C. deserticola in rat serum and urine was established using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Based on HPLC/Q-TOF-MS method, a total of 24 components, involving 9 prototype constituents and 15 metabolites in rat serum and urine samples, were tentatively identified based on retention time, ultraviolet spectrum, MS data, compound fragmentation laws, published literatures, and reference substances. Most of the compounds existed in the form of metabolites. The proposed metabolic pathways of main metabolites were discussed, including methylation, demethylation, hydrolysis, hydroxylation, acetoxylation, glucuronidation, dehydrogenation, sulfation, esterification, and so on. Phenylethanoid glycosides were extensively metabolized and mutually transformed in vivo. This investigation provided valuable information for further study of the active ingredients and action mechanism of C. deserticola. PMID:26243042

  9. Rapid Screening and Structural Characterization of Antioxidants from the Extract of Selaginella doederleinii Hieron with DPPH-UPLC-Q-TOF/MS Method

    PubMed Central

    Wang, Gang; Yao, Shun; Zhang, Xiu-Xiu; Song, Hang

    2015-01-01

    2,2-Diphenyl-1-picrylhydrazyl-ultra-high performance liquid chromatography-Q-time-of-flight mass spectrometry (DPPH-UPLC-Q-TOF/MS), as a rapid and efficient means, now was used for the first time to screen antioxidants from Selaginella doederleinii. The nine biflavone compounds were screened as potential antioxidants. The biflavones were structurally identified and divided into the three types, that is, amentoflavone-type, robustaflavone-type, and hinokiflavone-type biflavonoids. Among the compounds bilobetin (3) and putraflavone (8) were found from Selaginella doederleinii for the first time and others including amentoflavone (1), robustaflavone (2), 4′-methoxy robustaflavone (4), podocarpusflavone A (5), hinokiflavone (6), ginkgetin (7), and heveaflavone (9) were identified previously in the plant. Moreover, nine biflavones possessed a good antioxidant activity via their DPPH free radical scavenging. It demonstrates that DPPH-UPLC-Q-TOF/MS exhibits strong capacity in separation and identification for small molecule. The method is suitable for rapid screening of antioxidants without the need for complicated systems and additional instruments. PMID:25792983

  10. Development of aptamer-conjugated magnetic graphene/gold nanoparticle hybrid nanocomposites for specific enrichment and rapid analysis of thrombin by MALDI-TOF MS.

    PubMed

    Xiong, Ya; Deng, Chunhui; Zhang, Xiangmin

    2014-11-01

    Simple, rapid and sensitive analysis of thrombin (a tumor biomarker) in complex samples is quite clinical relevant and essential for the development of disease diagnosis and pharmacotherapy. Herein, we developed a novel method based on aptamer-conjugated magnetic graphene/gold nanoparticles nanocomposites (MagG@Au) for specific enrichment and rapid analysis of thrombin in biological samples using MALDI-TOF-MS. At first, gold nanoparticles were compactly deposited on PDDA functionalized magnetic graphene through electrostatic interaction. Afterwards, aptamer was easily conjugated to gold nanoparticles via Au-S bond formation. The as-made aptamer-conjugated nanocomposites took advantage of the magnetism of magnetic graphene, the high affinity and specificity of aptamer, facilitating a high-efficient separation and enrichment of thrombin. More importantly, due to the large surface area of the hybrid substrate, the average coverage density of aptamer achieved 0.34 nmol/mg, which enhanced the thrombin binding capacity and the recovery of thrombin in real samples. In turn, the enriched thrombin attributed to the sensitive output of MALDI-TOF mass spectrometry signal, 0.085 ng μL(-1) (2.36 nM) thrombin could be detected. This proposed method has a relatively wide linear relation ranging from 0.1 ng μL(-1) to 10 ng μL(-1), and satisfactory specificity. The proposed high-throughput method based on MALDI-TOF MS is expected to the application in the disease biomarker detection and clinical diagnosis. PMID:25127596

  11. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots.

    PubMed

    Kukula-Koch, Wirginia; Mroczek, Tomasz

    2015-03-01

    A rapid hydrostatic counter-current chromatography-thin-layer chromatography-electrospray-ionization time-of-flight mass spectrometry (CCC-TLC-ESI-TOF-MS) technique was established for use in seeking potent anti-Alzheimer's drugs among the acethylcholinesterase inhibitors in Argemone mexicana L. underground parts, with no need to isolate components in pure form. The dichloromethane extract from the roots of Mexican prickly poppy that was most rich in secondary metabolites was subjected to hydrostatic-CCC-based fractionation in descending mode, using a biphasic system composed of petroleum ether-ethyl acetate-methanol-water at the ratio of 1.5:3:2.1:2 (v/v). The obtained fractions were analyzed in a TLC-based AChE-inhibition "Fast Blue B" test. All active components in the fractions, including berberine, protopine, chelerithrine, sanguinarine, coptisine, palmatine, magnoflorine, and galanthamine, were identified in a direct TLC-HPLC-ESI-TOF-MS assay with high accuracy. This is the first time galanthamine has been reported in the extract of Mexican prickly poppy and the first time it has been identified in any member of the Papaveraceae family, in the significant quantity of 0.77%. PMID:25618762

  12. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    PubMed Central

    Wu, An-Guo; Kam-Wai Wong, Vincent; Zeng, Wu; Liu, Liang; Yuen-Kwan Law, Betty

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future. PMID:26598009

  13. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods.

    PubMed

    Cox, C R; Jensen, K R; Saichek, N R; Voorhees, K J

    2015-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid approach for clinical bacterial identification. However, current protein-based commercial bacterial ID methods fall short when differentiating closely related species/strains. To address this shortcoming, we employed CeO2-catalyzed fragmentation of lipids to produce fatty acids using the energy inherent to the MALDI laser as a novel alternative to protein profiling. Fatty acid profiles collected from Enterobacteriaceae, Acinetobacter, and Listeria using CeO2-catalyzed metal oxide laser ionization (MOLI MS), processed by principal component analysis, and validated by leave-one-out cross-validation (CV), showed 100% correct classification at the species level and 98% at the strain level. In comparison, protein profile data from the same bacteria yielded 32%, 54% and 67% mean species-level accuracy using two MALDI-TOF MS platforms, respectively. In addition, several pathogens were misidentified by protein profiling as non-pathogens and vice versa. These results suggest novel CeO2-catalyzed lipid fragmentation readily produced (i) taxonomically tractable fatty acid profiles by MOLI MS, (ii) highly accurate bacterial classification and (iii) consistent strain-level ID for bacteria that were routinely misidentified by protein-based methods. PMID:26190224

  14. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.

    PubMed

    Wang, Jin; Cao, Xianshuang; Jiang, Hao; Qi, Yadong; Chin, Kit L; Yue, Yongde

    2014-01-01

    Hibiscus sabdariffa has gained attention for its antioxidant activity. There are many accessions of H. sabdariffa in the world. However, information on the quantification of antioxidant compounds in different accessions is rather limited. In this paper, a liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) method for simultaneous determination of five antioxidant compounds (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, and isoquercitrin) in H. sabdariffa leaves was developed. The method was validated for linearity, sensitivity, precision, repeatability and accuracy. The validated method has been successfully applied for determination of the five analytes in eight accessions of H. sabdariffa. The eight accessions of H. sabdariffa were evaluated for their antioxidant activities by DPPH free radical scavenging assay. The investigated accessions of H. sabdariffa were rich in rutin and exhibited strong antioxidant activity. The two accessions showing the highest antioxidant activities were from Cuba (No. 2) and Taiwan (No. 5). The results indicated that H. sabdariffa leaves could be considered as a potential antioxidant source for the food industry. The developed LC-Q-TOF-MS method is helpful for quality control of H. sabdariffa. PMID:25525823

  15. Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow's milk.

    PubMed

    Calvano, Cosima Damiana; Monopoli, Antonio; Loizzo, Pasqua; Faccia, Michele; Zambonin, Carlo

    2013-02-27

    Milk and cheese are expensive foodstuffs, and their consumption is spread among the population because of their high nutritional value; for this reason they are often subjected to adulterations. Among the common illegal practices, the addition of powdered derivatives seems very difficult to detect because the adulterant materials have almost the same chemical composition of liquid milk. However, the high temperatures (180-200 °C) used for milk powder production could imply the occurrence of some protein modifications (e.g., glycation, lactosylation, oxidation, deamidation, dehydration). The modified proteins or peptides could then be used as markers for the presence of powdered milk. In this work, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to analyze tryptic digests relevant to samples of raw liquid (without heat treatment), commercial liquid, and powdered cow's milk. Samples were subjected to two-dimensional gel electrophoresis (2-DE); differences among liquid and powder milk were detected at this stage and eventually confirmed by MALDI analysis of the in gel digested proteins. Some diagnostic peptides of powdered milk, attributed to modified whey proteins and/or caseins, were identified. Then, a faster procedure was optimized, consisting of the separation of caseins from milk whey and the subsequent in-solution digestion of the two fractions, with the advantage of obtaining almost the same information in a limited amount of time. Finally, analyses were carried out with the fast procedure on liquid milk samples adulterated with powdered milk at different percentages, and diagnostic peptides were detected down to 1% of adulteration level. PMID:22931122

  16. Rapid Detection of K1 Hypervirulent Klebsiella pneumoniae by MALDI-TOF MS.

    PubMed

    Huang, Yonglu; Li, Jiaping; Gu, Danxia; Fang, Ying; Chan, Edward W; Chen, Sheng; Zhang, Rong

    2015-01-01

    Hypervirulent strains of Klebsiella pneumoniae (hvKP) are genetic variants of K. pneumoniae which can cause life-threatening community-acquired infection in healthy individuals. Currently, methods for efficient differentiation between classic K. pneumoniae (cKP) and hvKP strains are not available, often causing delay in diagnosis and treatment of hvKP infections. To address this issue, we devised a Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) approach for rapid identification of K1 hvKP strains. Four standard algorithms, genetic algorithm (GA), support vector machine (SVM), supervised neural network (SNN), and quick classifier (QC), were tested for their power to differentiate between K1 and non-K1 strains, among which SVM was the most reliable algorithm. Analysis of the receiver operating characteristic curves of the interest peaks generated by the SVM model was found to confer highly accurate detection sensitivity and specificity, consistently producing distinguishable profiles for K1 hvKP and non-K1 strains. Of the 43 K. pneumoniae modeling strains tested by this approach, all were correctly identified as K1 hvKP and non-K1 capsule type. Of the 20 non-K1 and 17 K1 hvKP validation isolates, the accuracy of K1 hvKP and non-K1 identification was 94.1 and 90.0%, respectively, according to the SVM model. In summary, the MALDI-TOF MS approach can be applied alongside the conventional genotyping techniques to provide rapid and accurate diagnosis, and hence prompt treatment of infections caused by hvKP. PMID:26733976

  17. Rapid Detection of K1 Hypervirulent Klebsiella pneumoniae by MALDI-TOF MS

    PubMed Central

    Huang, Yonglu; Li, Jiaping; Gu, Danxia; Fang, Ying; Chan, Edward W.; Chen, Sheng; Zhang, Rong

    2015-01-01

    Hypervirulent strains of Klebsiella pneumoniae (hvKP) are genetic variants of K. pneumoniae which can cause life-threatening community-acquired infection in healthy individuals. Currently, methods for efficient differentiation between classic K. pneumoniae (cKP) and hvKP strains are not available, often causing delay in diagnosis and treatment of hvKP infections. To address this issue, we devised a Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) approach for rapid identification of K1 hvKP strains. Four standard algorithms, genetic algorithm (GA), support vector machine (SVM), supervised neural network (SNN), and quick classifier (QC), were tested for their power to differentiate between K1 and non-K1 strains, among which SVM was the most reliable algorithm. Analysis of the receiver operating characteristic curves of the interest peaks generated by the SVM model was found to confer highly accurate detection sensitivity and specificity, consistently producing distinguishable profiles for K1 hvKP and non-K1 strains. Of the 43 K. pneumoniae modeling strains tested by this approach, all were correctly identified as K1 hvKP and non-K1 capsule type. Of the 20 non-K1 and 17 K1 hvKP validation isolates, the accuracy of K1 hvKP and non-K1 identification was 94.1 and 90.0%, respectively, according to the SVM model. In summary, the MALDI-TOF MS approach can be applied alongside the conventional genotyping techniques to provide rapid and accurate diagnosis, and hence prompt treatment of infections caused by hvKP. PMID:26733976

  18. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José; Bou, Germán

    2016-03-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min. PMID:26677247

  19. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization-Tandem Time of Flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...

  20. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxin 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-light mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...

  1. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Clinical and Environmental Isolates of Burkholderia pseudomallei

    PubMed Central

    Wang, He; Chen, Ya-Lei; Teng, Shih-Hua; Xu, Zhi-Peng; Xu, Ying-Chun; Hsueh, Po-Ren

    2016-01-01

    Burkholderia pseudomallei is not represented in the current version of Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system. A total of 66 isolates of B. pseudomallei, including 30 clinical isolates collected from National Taiwan University Hospital (NTUH, n = 27) and Peking Union Medical College Hospital (PUMCH, n = 3), and 36 isolates of genetically confirmed strains, including 13 from clinical samples and 23 from environmental samples, collected from southern Taiwan were included in this study. All these isolates were identified by partial 16S rDNA gene sequencing analysis and the Bruker Biotyper MALDI-TOF MS system. Among the 30 isolates initially identified as B. pseudomallei by conventional identification methods, one was identified as B. cepacia complex (NTUH) and three were identified as B. putida (PUMCH) by partial 16S rDNA gene sequencing analysis and Bruker Biotyper MALDI-TOF MS system. The Bruker Biotyper MALDI-TOF MS system misidentified 62 genetically confirmed B. pseudomallei isolates as B. thailandensis or Burkholderia species (score values, 1.803–2.063) when the currently available database (DB 5627) was used. However, using a newly created MALDI-TOF MS database (including B. pseudomallei NTUH-3 strain), all isolates were correctly identified as B. pseudomallei (score values >2.000, 100%). An additional 60 isolates of genetically confirmed B. cepacia complex and B. putida were also evaluated by the Bruker Biotyper MALDI-TOF MS system using the newly created database and none of these isolates were identified as B. pseudomallei. MALDI-TOF MS is a versatile and robust tool for the rapid identification of B. pseudomallei using the enhanced database. PMID:27092108

  2. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  3. Identification and Subtyping of Clinically Relevant Human and Ruminant Mycoplasmas by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Renaudin, H.; Cauvin, E.; Del Prá Netto Machado, L.; Tricot, A.; Benoit, F.; Treilles, M.; Bébéar, C.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) recently emerged as a technology for the identification of bacteria. In this study, we aimed to evaluate its applicability to human and ruminant mycoplasmal identification, which can be demanding and time-consuming when using phenotypic or molecular methods. In addition, MALDI-TOF MS was tested as a subtyping tool for certain species. A total of 29 main spectra (MSP) from 10 human and 13 ruminant mycoplasma (sub)species were included in a mycoplasma MSP database to complete the Bruker MALDI Biotyper database. After broth culture and protein extraction, MALDI-TOF MS was applied for the identification of 119 human and 143 ruminant clinical isolates that were previously identified by antigenic or molecular methods and for subcultures of 73 ruminant clinical specimens that potentially contained several mycoplasma species. MALDI-TOF MS resulted in accurate (sub)species-level identification with a score of ≥1.700 for 96% (251/262) of the isolates. The phylogenetically closest (sub)species were unequivocally distinguished. Although mixtures of the strains were reliably detected up to a certain cellular ratio, only the predominant species was identified from the cultures of polymicrobial clinical specimens. For typing purposes, MALDI-TOF MS proved to cluster Mycoplasma bovis and Mycoplasma agalactiae isolates by their year of isolation and genome profiles, respectively, and Mycoplasma pneumoniae isolates by their adhesin P1 type. In conclusion, MALDI-TOF MS is a rapid, reliable, and cost-effective method for the routine identification of high-density growing mycoplasmal species and shows promising prospects for its capacity for strain typing. PMID:23903545

  4. The use of matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis

    PubMed Central

    Karatuna, Onur; Çelebi, Bekir; Can, Simge; Akyar, Işın; Kiliç, Selçuk

    2016-01-01

    Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institution of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica according to region of difference 1 (RD1) subspecies-specific PCR results. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories. PMID:26773181

  5. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Íñigo, Melania; Coello, Andreu; Fernández-Rivas, Gema; Rivaya, Belén; Hidalgo, Jessica; Quesada, María Dolores; Ausina, Vicente

    2016-04-01

    Early diagnosis of urinary tract infections (UTIs) is essential to avoid inadequate or unnecessary empirical antibiotic therapy. Microbiological confirmation takes 24 to 48 h. The use of screening methods, such as cytometry and automated microscopic analysis of urine sediment, allows the rapid prediction of negative samples. In addition, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a widely established technique in clinical microbiology laboratories used to identify microorganisms. We evaluated the ability of MALDI-TOF MS to identify microorganisms from direct urine samples and the predictive value of automated analyzers for the identification of microorganisms in urine by MALDI-TOF MS. A total of 451 urine samples from patients with suspected UTIs were first analyzed using the Sysmex UF-1000iflow cytometer, an automatic sediment analyzer with microscopy (SediMax), culture, and then processed by MALDI-TOF MS with a simple triple-centrifuged procedure to obtain a pellet that was washed and centrifuged and finally applied directly to the MALDI-TOF MS plate. The organisms in 336 samples were correctly identified, mainly those with Gram-negative bacteria (86.10%). No microorganisms were misidentified, and noCandidaspp. were correctly identified. Regarding the data from autoanalyzers, the best bacteriuria cutoffs were 1,000 and 200 U/μl for UF-1000iand SediMax, respectively. It was concluded that the combination of a urine screening method and MALDI-TOF MS provided a reliable identification from urine samples, especially in those containing Gram-negative bacteria. PMID:26818668

  6. Analysis of the Constituents in Rat Serum after Oral Administration of Fufang Zhenzhu Tiaozhi Capsule by UPLC-Q-TOF-MS/MS.

    PubMed

    Zhong, Xunlong; Guo, Jiao; Wang, Laiyou; Luo, Duosheng; Bei, Weijian; Chen, Yuanyuan; Yan, Kangqi; Peng, Junhui

    2012-02-01

    A rapid and sensitive UPLC/Q-TOF-MS method has been established for analysis of the constituents in rat serum after oral administration of Fufang Zhenzhu Tiaozhi (FTZ) capsule, an effective compound prescription for treating hyperlipidemia in the clinic. The UPLC/MS information of samples was obtained first in FTZ preparation and FTZ-treated rat serum. Mass spectra were acquired in both negative and positive ion modes. Thirty-six constituents in rat serum after oral administration of FTZ were detected, including the alkaloids, ginsenosides, pentacyclic triterpenes, and their metabolites. These chemicals were identified based on the retention time and mass spectrometry data with those of authentic standards or comparison of the literatures reports. Twenty-seven prototype components originated from FTZ and nine were the metabolites of the FTZ constituents. These results shed light on the potential active constituents of the complex traditional Chinese medicinal formulas. PMID:22307991

  7. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    PubMed Central

    Emami, Kaveh; Askari, Vahid; Ullrich, Matthias; Mohinudeen, Khwajah; Anil, Arga Chandrashekar; Khandeparker, Lidita; Burgess, J. Grant; Mesbahi, Ehsan

    2012-01-01

    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time. PMID:22685576

  8. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry.

    PubMed

    Jadhav, Snehal; Gulati, Vandana; Fox, Edward M; Karpe, Avinash; Beale, David J; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2015-06-01

    Listeria monocytogenes is an important foodborne pathogen responsible for the sometimes fatal disease listeriosis. Public health concerns and stringent regulations associated with the presence of this pathogen in food and food processing environments underline the need for rapid and reliable detection and subtyping techniques. In the current study, the application of matrix assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) as a single identification and source-tracking tool for a collection of L. monocytogenes isolates, obtained predominantly from dairy sources within Australia, was explored. The isolates were cultured on different growth media and analysed using MALDI-TOF MS at two incubation times (24 and 48 h). Whilst reliable genus-level identification was achieved from most media, identification at the species level was found to be dependent on culture conditions. Successful speciation was highest for isolates cultured on the chromogenic Agar Listeria Ottaviani Agosti agar (ALOA, 91% of isolates) and non-selective horse blood agar (HBA, 89%) for 24h. Chemometric statistical analysis of the MALDI-TOF MS data enabled source-tracking of L. monocytogenes isolates obtained from four different dairy sources. Strain-level discrimination was also observed to be influenced by culture conditions. In addition, t-test/analysis of variance (ANOVA) was used to identify potential biomarker peaks that differentiated the isolates according to their source of isolation. Source-tracking using MALDI-TOF MS was compared and correlated with the gold standard pulsed-field gel electrophoresis (PFGE) technique. The discriminatory index and the congruence between both techniques were compared using the Simpsons Diversity Index and adjusted Rand and Wallace coefficients. Overall, MALDI-TOF MS based source-tracking (using data obtained by culturing the isolates on HBA) and PFGE demonstrated good congruence with a Wallace coefficient of 0.71 and comparable discriminatory indices of 0.89 and 0.86, respectively. MALDI-TOF MS thus represents a rapid and cost-effective source-tracking technique for L. monocytogenes. PMID:25747262

  9. Rapid identification of haloarchaea and methanoarchaea using the matrix assisted laser desorption/ionization time-of-flight mass spectrometry

    PubMed Central

    Shih, Chao-Jen; Chen, Sheng-Chung; Weng, Chieh-Yin; Lai, Mei-Chin; Yang, Yu-Liang

    2015-01-01

    The aim of this study was to classify certain environmental haloarchaea and methanoarchaea using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to expand the archaeal mass spectral database. A total of 69 archaea were collected including type strains and samples isolated locally from different environments. For extraction of the haloarchaeal total cell peptides/proteins, a simple method of acetonitrile extraction was developed. Cluster analysis conducted with the MALDI-TOF MS data overcame the high divergence in intragenomic 16S rRNA sequences in haloarchaea and clearly distinguished Methanohalophilus mahii from M. portucalensis. Putative biomarkers that can distinguish several particular archaeal genera were also assigned. In conclusion, this study expands the mass spectral database of peptide/protein fingerprints from bacteria and fungi to the archaea domain and provides a rapid identification platform for environmental archaeal samples. PMID:26541644

  10. MALDI-TOF Mass Spectrometry: A Powerful Tool for Clinical Microbiology at Hpital Principal de Dakar, Senegal (West Africa).

    PubMed

    Lo, Cheikh I; Fall, Bcaye; Sambe-Ba, Bissoume; Diawara, Silman; Gueye, Mamadou W; Mediannikov, Oleg; Sokhna, Cheikh; Faye, Ngor; Diem, Yaya; Wade, Boubacar; Raoult, Didier; Fenollar, Florence

    2015-01-01

    Our team in Europe has developed the routine clinical laboratory identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To evaluate the utility of MALDI-TOF MS in tropical Africa in collaboration with local teams, we installed an apparatus in the Hpital Principal de Dakar (Senegal), performed routine identification of isolates, and confirmed or completed their identification in France. In the case of discordance or a lack of identification, molecular biology was performed. Overall, 153/191 (80.1%) and 174/191 (91.1%) isolates yielded an accurate and concordant identification for the species and genus, respectively, with the 2 different MALDI-TOF MSs in Dakar and Marseille. The 10 most common bacteria, representing 94.2% of all bacteria routinely identified in the laboratory in Dakar (Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus haemolyticus, Enterobacter cloacae, Enterococcus faecalis, and Staphylococcus epidermidis) were accurately identified with the MALDI-TOF MS in Dakar. The most frequent misidentification in Dakar was at the species level for Achromobacter xylosoxidans, which was inaccurately identified as Achromobacter denitrificans, and the bacteria absent from the database, such as Exiguobacterium aurientacum or Kytococcus schroeteri, could not be identified. A few difficulties were observed with MALDI-TOF MS for Bacillus sp. or oral streptococci. 16S rRNA sequencing identified a novel bacterium, "Necropsobacter massiliensis." The robust identification of microorganisms by MALDI-TOF MS in Dakar and Marseille demonstrates that MALDI-TOF MS can be used as a first-line tool in clinical microbiology laboratories in tropical countries. PMID:26716681

  11. Matrix-Assisted Laser Desorption IonizationTime of Flight Mass Spectrometry for Rapid Identification of Tick Vectors

    PubMed Central

    Yssouf, Amina; Flaudrops, Christophe; Drali, Rezak; Kernif, Tahar; Socolovschi, Cristina; Berenger, Jean-Michel; Raoult, Didier

    2013-01-01

    A method for rapid species identification of ticks may help clinicians predict the disease outcomes of patients with tick bites and may inform the decision as to whether to administer postexposure prophylactic antibiotic treatment. We aimed to establish a matrix-assisted laser desorption ionizationtime of flight mass spectrometry (MALDI-TOF MS) spectrum database based on the analysis of the legs of six tick vectors: Amblyomma variegatum, Rhipicephalus sanguineus, Hyalomma marginatum rufipes, Ixodes ricinus, Dermacentor marginatus, and Dermacentor reticulatus. A blind test was performed on a trial set of ticks to identify specimens of each species. Subsequently, we used MALDI-TOF MS to identify ticks obtained from the wild or removed from patients. The latter tick samples were also identified by 12S ribosomal DNA (rDNA) sequencing and were tested for bacterial infections. Ticks obtained from the wild or removed from patients (R. sanguineus, I. ricinus, and D. marginatus) were accurately identified using MALDI-TOF MS, with the exception of those ticks for which no spectra were available in the database. Furthermore, one damaged specimen was correctly identified as I. ricinus, a vector of Lyme disease, using MALDI-TOF MS only. Six of the 14 ticks removed from patients were found to be infected by pathogens that included Rickettsia, Anaplasma, and Borrelia spp. MALDI-TOF MS appears to be an effective tool for the rapid identification of tick vectors that requires no previous expertise in tick identification. The benefits for clinicians include the more targeted surveillance of patients for symptoms of potentially transmitted diseases and the ability to make more informed decisions as to whether to administer postexposure prophylactic treatment. PMID:23224087

  12. Metabolomic analysis of serum from obese adults with hyperlipemia by UHPLC-Q-TOF MS/MS.

    PubMed

    Wang, Yang; Liu, Desheng; Li, Yue; Guo, Lei; Cui, Yinghua; Zhang, Xin; Li, Enyou

    2016-01-01

    The prevalence of obesity has dramatically increased and poses a major threat to human health. Obesity often accompanies hyperlipemia, which is strongly related to the occurrence and development of obesity-related chronic diseases. Differences in metabolomic profiling of serum between obese (with hyperlipemia) and normal-weight men (n = 30 in each group) were investigated using ultrahigh-pressure liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF MS/MS) and partial least-squares-discriminant analysis (PLS-DA). Obese men showed higher levels of weight, body mass index, fat mass, systolic blood pressure, fasting plasma glucose, triglyeride, total cholesterol, insulin, HOMA-IR and high-sensitivity CRP. Obese and normal-weight groups were clearly discriminated from each other on a PLS-DA score plot and nine major metabolites contributing to the discrimination were assigned, including increased 2-octenoylcarnitine, eicosadienoic acid, 12-hydroperoxyeicosatetraenoic acid, 4-hydroxyestrone sulfate, lysoPE[18:1(11Z)/0:0], thromboxane B2 and pyridinoline and decreased vitamin D3 glucosiduronate and 9,10-DHOME. These metabolites were associated with lipid metabolism and obesity-related diseases, and reflected the metabolic differences between normal and obese men, which may be important for future clinical diagnosis, treatment and assessment of the therapeutic effect on obesity-related chronic disease. PMID:26043712

  13. N-(1-Naphthyl) Ethylenediamine Dinitrate: A New Matrix for Negative Ion MALDI-TOF MS Analysis of Small Molecules

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu

    2012-09-01

    An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules ( m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range ( m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.

  14. Mass spectrometry for direct identification of biosignatures and microorganisms in Earth analogs of Mars

    NASA Astrophysics Data System (ADS)

    Garcia-Descalzo, Laura; García-López, Eva; Maria Moreno, Ana; Alcazar, Alberto; Baquero, Fernando; Cid, Cristina

    2012-11-01

    Rover missions to Mars require portable instruments that use minimal power, require no sample preparation, and provide suitably diagnostic information to an Earth-based exploration team. In exploration of analog environments of Mars it is important to screen rapidly for the presence of biosignatures and microorganisms and especially to identify them accurately. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has enormously contributed to the understanding of protein chemistry and cell biology. Without this technique proteomics would most likely not be the important discipline it is today. In this study, besides 'true' proteomics, MALDI-TOF-MS was applied for the analysis of microorganisms for their taxonomic characterization from its beginning. An approach was developed for direct analysis of whole bacterial cells without a preceding fractionation or separation by chromatography or electrophoresis on samples of bacteria from an Antarctic glacier. Supported by comprehensive databases, MALDI-TOF-MS-based identification could be widely accepted within only a few years for bacterial differentiation in Mars analogs and could be a technique of election for Mars exploration.

  15. The simultaneous determination of hydrophobicity and dissociation constant by liquid chromatography-mass spectrometry.

    PubMed

    Wiczling, P; Struck-Lewicka, W; Kubik, L; Siluk, D; Markuszewski, M J; Kaliszan, R

    2014-06-01

    Convenient methods for testing drug candidates' lipophilicity and acidity are highly requested in modern pharmaceutical research and drug development strategies. Reversed-phase high-performance liquid chromatography (RP HPLC) might be particularly useful for the determination of both dissociation constant and the (pH-dependent) partition coefficient related parameters, applicable in high-throughput analysis of multi-component mixtures. The general theory of combined pH/organic modifier gradient has recently provided equations relating gradient retention time and pH of the mobile phase. The purpose of this work was to facilitate the identification of analytes in this technique by its transfer to RP HPLC coupled with time-of-flight mass spectrometry with electrospray ionization source (ESI-TOF-MS). The accuracy of the proposed methodology was assessed by analyzing a set of known drugs. The ammonium formate, ammonium acetate or ammonium bicarbonate buffers were used to control pH during chromatographic analysis. In result, the pKa and hydrophobicity parameters were determined and the accuracy of the estimated values was assessed by comparing them with literature data. The gradient RP HPLC coupled with ESI-TOF-MS methods allowed for the rapid determination of dissociation constant and hydrophobicity and was shown to be especially applicable for complex mixtures. The use of ESI-TOF-MS detection allowed to achieve the medium-throughput screening rate (100 compounds/day) and provided a simple approach to assess pharmacokinetically important physicochemical properties of drugs. PMID:24598171

  16. The ongoing revolution of MALDI-TOF mass spectrometry for microbiology reaches tropical Africa.

    PubMed

    Fall, Bécaye; Lo, Cheikh Ibrahima; Samb-Ba, Bissoume; Perrot, Nadine; Diawara, Silman; Gueye, Mamadou Wague; Sow, Kowry; Aubadie-Ladrix, Maxence; Mediannikov, Oleg; Sokhna, Cheikh; Diemé, Yaya; Chatellier, Sonia; Wade, Boubacar; Raoult, Didier; Fenollar, Florence

    2015-03-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) represents a revolution in routine pathogen identification in clinical microbiology laboratories. A MALDI-TOF MS was introduced to tropical Africa in the clinical microbiology laboratory of the Hôpital Principal de Dakar (Senegal) and used for routine pathogen identification. Using MS, 2,429 bacteria and fungi isolated from patients were directly assayed, leading to the identification of 2,082 bacteria (85.7%) and 206 fungi (8.5%) at the species level, 109 bacteria (4.5%) at the genus level, and 16 bacteria (0.75%) at the family level. Sixteen isolates remained unidentified (0.75%). Escherichia coli was the most prevalent species (25.8%) followed by Klebsiella pneumoniae (14.8%), Streptococcus agalactiae (6.2%), Acinetobacter baumannii (6.1%), Pseudomonas aeruginosa (5.9%), and Staphylococcus aureus (5.9%). MALDI-TOF MS has also enabled the detection of rare bacteria and fungi. MALDI-TOF MS is a powerful tool for the identification of bacterial and fungal species involved in infectious diseases in tropical Africa. PMID:25601995

  17. Rapid laboratory diagnosis for respiratory infectious diseases by using MALDI-TOF mass spectrometry

    PubMed Central

    Fu, Jianfeng

    2014-01-01

    It is still challenging to prevent and treat respiratory infectious diseases. One critical step in the successful treatment of respiratory infections is rapid diagnosis by identifying the causative microorganisms in a timely fashion. However, traditional methods for identification of causative agents could not satisfy the need for rapid and accurate testing due to the limitations of technology-used. In recent years, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) has been validated and used for rapid identification of microorganism and for potential discovery of diseases associated biomarkers. We reviewed recent advances of MALDI-TOF-MS as the laboratory diagnostic tool for the rapid laboratory diagnosis of microorganisms associated with respiratory infectious diseases, with the focus on rapid identification of pathogenic bacteria and molecular markers discovery using MALDI-TOF-MS. With the advanced technologies such as MALDI-TOF, early and targeted therapies based on rapid identification of pathogens and could lead to quick and effective treatment of respiratory infections and better patient management. PMID:24822111

  18. Rapid laboratory diagnosis for respiratory infectious diseases by using MALDI-TOF mass spectrometry.

    PubMed

    Wang, Yun F Wayne; Fu, Jianfeng

    2014-05-01

    It is still challenging to prevent and treat respiratory infectious diseases. One critical step in the successful treatment of respiratory infections is rapid diagnosis by identifying the causative microorganisms in a timely fashion. However, traditional methods for identification of causative agents could not satisfy the need for rapid and accurate testing due to the limitations of technology-used. In recent years, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) has been validated and used for rapid identification of microorganism and for potential discovery of diseases associated biomarkers. We reviewed recent advances of MALDI-TOF-MS as the laboratory diagnostic tool for the rapid laboratory diagnosis of microorganisms associated with respiratory infectious diseases, with the focus on rapid identification of pathogenic bacteria and molecular markers discovery using MALDI-TOF-MS. With the advanced technologies such as MALDI-TOF, early and targeted therapies based on rapid identification of pathogens and could lead to quick and effective treatment of respiratory infections and better patient management. PMID:24822111

  19. The Ongoing Revolution of MALDI-TOF Mass Spectrometry for Microbiology Reaches Tropical Africa

    PubMed Central

    Fall, Bécaye; Lo, Cheikh Ibrahima; Samb-Ba, Bissoume; Perrot, Nadine; Diawara, Silman; Gueye, Mamadou Wague; Sow, Kowry; Aubadie-Ladrix, Maxence; Mediannikov, Oleg; Sokhna, Cheikh; Diemé, Yaya; Chatellier, Sonia; Wade, Boubacar; Raoult, Didier; Fenollar, Florence

    2015-01-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) represents a revolution in routine pathogen identification in clinical microbiology laboratories. A MALDI-TOF MS was introduced to tropical Africa in the clinical microbiology laboratory of the Hôpital Principal de Dakar (Senegal) and used for routine pathogen identification. Using MS, 2,429 bacteria and fungi isolated from patients were directly assayed, leading to the identification of 2,082 bacteria (85.7%) and 206 fungi (8.5%) at the species level, 109 bacteria (4.5%) at the genus level, and 16 bacteria (0.75%) at the family level. Sixteen isolates remained unidentified (0.75%). Escherichia coli was the most prevalent species (25.8%) followed by Klebsiella pneumoniae (14.8%), Streptococcus agalactiae (6.2%), Acinetobacter baumannii (6.1%), Pseudomonas aeruginosa (5.9%), and Staphylococcus aureus (5.9%). MALDI-TOF MS has also enabled the detection of rare bacteria and fungi. MALDI-TOF MS is a powerful tool for the identification of bacterial and fungal species involved in infectious diseases in tropical Africa. PMID:25601995

  20. [Bacterial identification based on protein mass spectrometry: A new insight at the microbiology of the 21st century].

    PubMed

    García, Patricia; Allende, Fidel; Legarraga, Paulette; Huilcaman, Marcos; Solari, Sandra

    2012-06-01

    Bacterial identification is important for the proper treatment of infected patients hospitalized with serious infections especially in critical care units. Identification by conventional methods used in microbiology laboratories takes at least 16 hours since a culture is positive. The introduction of mass spectrometry, specifically MALDI-TOF MS (matrix-assisted laser desorption/ ionization time-of-flight mass spectrometer) in the microbiology laboratory could mean a radical change in the identification accuracy, turn around time (6 minutes per bacteria) and cost (about 5 times cheaper than conventional identification). Since its introduction in clinical microbiology laboratories in 2008, many reports about its usefulness in identifying microorganisms from colonies, as well as directly from positive blood cultures and urine samples have been published. This review describes MALDI-TOF MS methodology, its identification performance for bacteria (aerobic and anaerobic), mycobacterium and yeasts, its future applications in microbiology and its main disadvantages. PMID:23096465

  1. Bacteriocin Detection from Whole Bacteria by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Hindré, Thomas; Didelot, Sandrine; Le Pennec, Jean-Paul; Haras, Dominique; Dufour, Alain; Vallée-Réhel, Karine

    2003-01-01

    Class I bacteriocins (lantibiotics) and class II bacteriocins are antimicrobial peptides secreted by gram-positive bacteria. Using two lantibiotics, lacticin 481 and nisin, and the class II bacteriocin coagulin, we showed that bacteriocins can be detected without any purification from whole producer bacteria grown on plates by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). When we compared the results of MALDI-TOF-MS performed with samples of whole cells and with samples of crude supernatants of liquid cultures, the former samples led to more efficient bacteriocin detection and required less handling. Nisin and lacticin 481 were both detected from a mixture of their producer strains, but such a mixture can yield additional signals. We used this method to determine the masses of two lacticin 481 variants, which confirmed at the peptide level the effect of mutations in the corresponding structural gene. PMID:12571028

  2. RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis

    PubMed Central

    Hartmer, Ralf; Storm, Niels; Boecker, Sebastian; Rodi, Charles P.; Hillenkamp, Franz; Jurinke, Christian; van den Boom, Dirk

    2003-01-01

    Here we devise a new method for high-throughput comparative sequence analysis. The developed protocol comprises a homogeneous in vitro transcription/RNase cleavage system with the accuracy and data acquisition speed of matrix-assisted laser desorption/ionization coupled with time-of-flight mass spectrometry (MALDI-TOF MS). In summary, the target region is PCR amplified using primers tagged with promoter sequences of T7 or SP6 RNA polymerase. Using RNase T1, the in vitro transcripts are base-specifically cleaved at every G-position. This reaction results in a characteristic pattern of fragment masses that is indicative of the original target sequence. To enable high-throughput analysis, samples are processed with automated liquid handling devices and nanoliter amounts are dispensed onto SpectroCHIP arrays for reliable and homogeneous MALDI preparation. This system enables rapid automated comparative sequence analysis for PCR products up to 1 kb in length. We demonstrate the feasibility of the devised method for analysis of single nucleotide polymorphisms (SNPs) and pathogen identification. PMID:12711692

  3. A Sensitive and Effective Proteomic Approach to Identify She-Donkey’s and Goat’s Milk Adulterations by MALDI-TOF MS Fingerprinting

    PubMed Central

    Di Girolamo, Francesco; Masotti, Andrea; Salvatori, Guglielmo; Scapaticci, Margherita; Muraca, Maurizio; Putignani, Lorenza

    2014-01-01

    She-donkey’s milk (DM) and goat’s milk (GM) are commonly used in newborn and infant feeding because they are less allergenic than other milk types. It is, therefore, mandatory to avoid adulteration and contamination by other milk allergens, developing fast and efficient analytical methods to assess the authenticity of these precious nutrients. In this experimental work, a sensitive and robust matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling was designed to assess the genuineness of DM and GM milks. This workflow allows the identification of DM and GM adulteration at levels of 0.5%, thus, representing a sensitive tool for milk adulteration analysis, if compared with other laborious and time-consuming analytical procedures. PMID:25110863

  4. A sensitive and effective proteomic approach to identify she-donkey's and goat's milk adulterations by MALDI-TOF MS fingerprinting.

    PubMed

    Di Girolamo, Francesco; Masotti, Andrea; Salvatori, Guglielmo; Scapaticci, Margherita; Muraca, Maurizio; Putignani, Lorenza

    2014-01-01

    She-donkey's milk (DM) and goat's milk (GM) are commonly used in newborn and infant feeding because they are less allergenic than other milk types. It is, therefore, mandatory to avoid adulteration and contamination by other milk allergens, developing fast and efficient analytical methods to assess the authenticity of these precious nutrients. In this experimental work, a sensitive and robust matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling was designed to assess the genuineness of DM and GM milks. This workflow allows the identification of DM and GM adulteration at levels of 0.5%, thus, representing a sensitive tool for milk adulteration analysis, if compared with other laborious and time-consuming analytical procedures. PMID:25110863

  5. Comprehensive identification of 125 multifarious constituents in Shuang-huang-lian powder injection by HPLC-DAD-ESI-IT-TOF-MS.

    PubMed

    Sun, Hongyang; Liu, Meixian; Lin, Zongtao; Jiang, Haixiu; Niu, Yanyan; Wang, Hong; Chen, Shizhong

    2015-11-10

    A high-performance liquid chromatography-diode array detector-electrospray ionization-ion trap-time of flight-mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS) method was established for excellent separation and structural identification of constituents in Shuang-huang-lian powder injection (SHLPI). The typical ultraviolet absorptions, accurate empirical molecular formula and reasonable fragmentation mechanisms of these ingredients were used for their structural elucidation. In consequence, 125 constituents (33 phenolic acids, 29 flavonoids, 32 phenylethanoid glycosides, 15 iridoid glycosides, 8 lignans, 3 amino acids and 2 purines nucleosides, 2 quinoid glycosides and 1 alkylbenzene glycoside) were either unequivocally identified or tentatively characterized by comparing authentic standards or published data. The result showed that this study could provide valuable information for the quality control and further investigation of SHLPI formula. PMID:26177215

  6. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  7. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    NASA Astrophysics Data System (ADS)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  8. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry.

    PubMed

    Paauw, Armand; Jonker, Debby; Roeselers, Guus; Heng, Jonathan M E; Mars-Groenendijk, Roos H; Trip, Hein; Molhoek, E Margo; Jansen, Hugo-Jan; van der Plas, Jan; de Jong, Ad L; Majchrzykiewicz-Koehorst, Joanna A; Speksnijder, Arjen G C L

    2015-01-01

    E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli. PMID:25912807

  9. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  10. Development of soft extraction method for structural characterization of boreal forest soil proteins with MALDI-TOF/MS

    NASA Astrophysics Data System (ADS)

    Kanerva, Sanna; Ketola, Raimo A.; Kitunen, Veikko; Smolander, Aino; Kotiaho, Tapio

    2010-05-01

    Nitrogen (N) is usually the nutrient restricting productivity in boreal forests. Forest soils contain a great amount of nitrogen, but only a small part of it is in mineral form. Most part of soil N is bound in the structures of different organic compounds such as proteins, peptides, amino acids and more stabilized, refractory compounds. Due to the fact that soil organic N has a very important role in soil nutrient cycling and in plant nutrition, there is a need for more detailed knowledge of its chemistry in soil. Conventional methods to extract and analyze soil organic N are usually very destructive for structures of higher molecular weight organic compounds, such as proteins. The aim of this study was to characterize proteins extracted from boreal forest soil by "soft" extraction methods in order to maintain their molecular structure. The organic layer (F) from birch forest floor containing 78% of organic matter was sieved, freeze dried, pulverized, and extracted with a citrate or phosphate buffer (pH 6 or 8). Sequential extraction with the citrate or phosphate buffer and an SDS buffer (pH 6.8), slightly modified from the method of Chen et al. (2009, Proteomics 9: 4970-4973), was also done. Proteins were purified from the soil extract by extraction with buffered phenol and precipitated with methanol + 0.1M ammonium acetate at -20°C. Characterization of proteins was performed with matrix assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/MS) and the concentration of total proteins was measured using Bradford's method. Bovine serum albumin (BSA) was used as a positive control in the extractions and as a standard protein in Bradford's method. Our results showed that sequential extraction increased the amount of extracted proteins compared to the extractions without the SDS-buffer; however, it must be noted that the use of SDS-buffer very probably increased denaturization of proteins. Purification of proteins from crude soil extracts by phenol extraction was essential prior to measurement of total proteins; there seemed to be a lot of compounds in crude soil extracts that interfere with the analysis of total proteins, causing overestimation in protein concentration. pH of the buffer solution did not seem to be very crucial for the extractability of soil natural proteins, but at the higher pH, the amount of interfering compounds increased. However, the recovery of BSA added was clearly higher at the higher pH. When the protein precipitates were analyzed with MALDI-TOF/MS, a large curve, most likely formed from wide peaks of several compounds, indicate that most of the compounds in the precipitate were <15 kDa or ~20-50 kDa in molecular weight. It seems that in order to identify individual proteins from mass spectra, a separation of compounds with varying molecular weight is needed before the MALDI-TOF/MS analysis. Due to the fact that a relatively high amount of BSA added was not recovered by the extractions and that the intensity of the signals observed in mass spectra was low, it is questionable whether it is possible to extract soil natural proteins effectively from soils containing a high amount of organic matter without destructing the structures of proteins.

  11. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  12. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Maltby, D.; Russell, D.H.; Holland, P.T.

    1988-06-15

    This review series has served as a timely means to provide critical discussion of the advances and directions, strengths and weaknesses, and the state of maturity and promise of both new and established strategies and methods in a unifying single source. Widely disparate discoveries, inventions, and purposeful developments are required to enable mass spectrometric based strategies to take hold and make inroads into new types of issues at the molecular level of biological, medical, and chemical sciences. These are interdisciplinary endeavors. Of necessity, they have been selective both in the topics covered and in the contributions included but have endeavored to be sufficiently general so that both the new reader and the expert might readily find further literature and necessary detail. They have attempted to provide a thematic context for each topic. They note that this review series has a cumulative continuity about it, and the previous few Overview sections are still timely.

  13. Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry.

    PubMed

    Muhamadali, Howbeer; Weaver, Danielle; Subaihi, Abdu; AlMasoud, Najla; Trivedi, Drupad K; Ellis, David I; Linton, Dennis; Goodacre, Royston

    2016-01-01

    Campylobacter species are one of the main causes of food poisoning worldwide. Despite the availability of established culturing and molecular techniques, due to the fastidious nature of these microorganisms, simultaneous detection and species differentiation still remains challenging. This study focused on the differentiation of eleven Campylobacter strains from six species, using Fourier transform infrared (FT-IR) and Raman spectroscopies, together with matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), as physicochemical approaches for generating biochemical fingerprints. Cluster analysis of data from each of the three analytical approaches provided clear differentiation of each Campylobacter species, which was generally in agreement with a phylogenetic tree based on 16S rRNA gene sequences. Notably, although C. fetus subspecies fetus and venerealis are phylogenetically very closely related, using FT-IR and MALDI-TOF-MS data these subspecies were readily differentiated based on differences in the lipid (2920 and 2851 cm(-1)) and fingerprint regions (1500-500 cm(-1)) of the FT-IR spectra, and the 500-2000 m/z region of the MALDI-TOF-MS data. A finding that was further investigated with targeted lipidomics using liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that such metabolomics approaches combined with molecular biology techniques may provide critical information and knowledge related to the risk factors, virulence, and understanding of the distribution and transmission routes associated with different strains of foodborne Campylobacter spp. PMID:26523729

  14. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae

    NASA Astrophysics Data System (ADS)

    Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2014-12-01

    Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951 cm-1 were specific to the Xoo strains, while one peak at 1572 cm-1 was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars.

  15. [Rapid identification of six chemical constituents in Guizhi Fuling capsule by DART-Q-TOF-MS].

    PubMed

    Wei, Zhang; Xue, Wang; Yan-jing-ping; Li, Yan-jing; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2014-11-01

    In order to establish a rapid method for identifying six constituents in Guizhi Fuling capsule, Q-TOF with DART ion source was used to perform the direct analysis of compounds in Guizhi Fuling capsule. The DART sampler delivery rate was 0.2 mm s(-1). The temperature of helium gas of DART was 450 degrees C. The capillary voltage was kept at 1 000 V. The temperature of the drying gas of Agilent 6538 Q-TOF MS was set at 350 degrees C. The flow rate of the drying gas of MS was set at 3.5 L x min(-1). The MS scan range was m/z 50-1 000. Based on accurate mass measurements and the elemental compositions of the product ions and fragmentation patterns of reference conpounds, six components, amygdalin, paeonol, paeoniflorin, cinnamic acids, gallic acid, benzoic acid were identified rapidly. The method can rapidly identify six chemical constituents in three batch of Guizhi Fuling capsule. The DART-Q-TOF-MS method is simple, rapid and specific and it can be used for rapid identification and characterization of compounds in traditional Chinese medicines. PMID:25775778

  16. Danforth Center: Proteomics & Mass Spectrometry Core Facility

    PubMed Central

    Zhang, B.; Liu, Z.; Wang, H.; Mandzukic, J.; Hicks, L.M.; Alvarez, S.

    2010-01-01

    CF-17 The Proteomics and Mass Spectrometry Facility at the Donald Danforth Plant Science Center (http://www.danforthcenter.org/pmsf/) is equipped with state-of-the-art technologies for the detailed study of a wide range of biomolecules. The facility provides both full- and self-service capabilities to both internal and external clients at competitive rates. The facility offers fast, high quality specialized analytical services including: protein extractions, liquid chromatographic separations; high resolution 1D/2D gel electrophoresis; gel image analysis and protein expression analysis; high-throughput protein spot excision; in-solution and in-gel protein digestion; high-throughput protein identification; accurate protein molecular weight analysis; protein covalent/non-covalent complex analysis; biomolecule interactions (surface plasmon resonance); small molecule separation/structure determination; protein post-translational modification analysis. Major instrumentation includes: LTQ Orbitrap Velos LC-MS/MS system (Thermo Scientific), QSTAR XL Q-TOF MS/MS system, 4000QTRAP LC-MS/MS system, Voyager-DE STR MALDI-TOF MS (Applied Biosystems), two 6520 Q-TOF LC-MS/MS systems, 5975C GC-MS (Agilent), TriVersa NanoMate (Advion), 1200 HPLC, HPLC Chip Cube (Agilent), nanoflow HPLCs (LC Packings/Eksigent), System Gold HPLC (Beckman Coulter), Shimadzu HPLC system (Shimadzu), Ultra Performance LC (UPLC) (Waters Inc.), Biacore2000 (Biacore Inc.), 3100 OFFGEL fractionators (Agilent), 1D and high resolution 2D gel electrophoresis systems (BioRad and Amersham Biosciences), Typhoon 9410 (Amersham Biosciences), GelPix (Genetix Inc.), and MultiProbe II (Perkin-Elmer Inc.). Protein intact mass, identification and characterization are a few of the many applications that the facility performs. For proteomics applications, the two Q-TOFs, the LTQ Orbitrap Velos and MALDI-TOF instruments are well-suited for analyzing both small peptides and large proteins. The LTQ Orbitrap Velos can be set up with the TriVersa to automate direct infusion of samples to perform exact mass measurements for molecular formula determination or facilitate targeted analysis of modifications. On-line with nano-LC separations, the LTQ Orbitrap Velos and the 6520 Q-TOF are used for LC-based quantitative proteomics. The 4000QTRAP system serves as a powerful instrument for metabolomic profiling.

  17. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics.

    PubMed

    Farag, Mohamed A; El-Ahmady, Sherweit H; Elian, Fatma S; Wessjohann, Ludger A

    2013-11-01

    The demand to develop efficient and reliable analytical methods for the quality control of herbal medicines and nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of active principles. Here, we describe an ultra-high performance liquid chromatography method (UHPLC) coupled with quadrupole high resolution time of flight mass spectrometry (qTOF-MS) analysis for the comprehensive measurement of metabolites from three Cynara scolymus (artichoke) cultivars: American Green Globe, French Hyrious, and Egyptian Baladi. Under optimized conditions, 50 metabolites were simultaneously quantified and identified including: eight caffeic acid derivatives, six saponins, 12 flavonoids and 10 fatty acids. Principal component analysis (PCA) was used to define both similarities and differences among the three artichoke leaf cultivars. In addition, batches from seven commercially available artichoke market products were analysed and showed variable quality, particularly in caffeic acid derivatives, flavonoid and fatty acid contents. PCA analysis was able to discriminate between various preparations, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UHPLC-MS based metabolite fingerprinting to reveal secondary metabolite compositional differences in artichoke leaf extracts. PMID:23902683

  18. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors

    PubMed Central

    Gonzalez-Gil, Graciela; Thomas, Ludivine; Emwas, Abdul-Hamid; Lens, Piet N. L.; Saikaly, Pascal E.

    2015-01-01

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the 1H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates. PMID:26391984

  19. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors.

    PubMed

    Gonzalez-Gil, Graciela; Thomas, Ludivine; Emwas, Abdul-Hamid; Lens, Piet N L; Saikaly, Pascal E

    2015-01-01

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the (1)H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates. PMID:26391984

  20. Metabolome classification of commercial Hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics.

    PubMed

    Farag, Mohamed A; Wessjohann, Ludger A

    2012-03-01

    The growing interest in the efficacy of phytomedicines and herbal supplements but also the increase in legal requirements for safety and reliable contents of active principles drive the development of analytical methods for the quality control of complex, multicomponent mixtures as found in plant extracts of value for the pharmaceutical industry. Here, we describe an ultra-performance liquid chromatography method (UPLC) coupled with quadrupole time of flight mass spectrometry (qTOF-MS) measurements for the large scale analysis of H. perforatum plant material and its commercial preparations. Under optimized conditions, we were able to simultaneously quantify and identify 21 metabolites including 4 hyperforins, 3 catechins, 3 naphthodianthrones, 5 flavonoids, 3 fatty acids, and a phenolic acid. Principal component analysis (PCA) was used to ensure good analytical rigorousness and define both similarities and differences among Hypericum samples. A selection of batches from 9 commercially available H. perforatum products available on the German and Egyptian markets showed variable quality, particularly in hyperforins and fatty acid content. PCA analysis was able to discriminate between various preparations according to their global composition, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UPLC-MS-based metabolic fingerprinting to reveal secondary metabolite compositional differences in Hypericum extract. PMID:22271082

  1. Identification and characterization of a new IgE-binding protein in mackerel ( Scomber japonicus) by MALDI-TOF-MS

    NASA Astrophysics Data System (ADS)

    Wang, Bangping; Li, Zhenxing; Zheng, Lina; Liu, Yixuan; Lin, Hong

    2011-03-01

    As fish is one source of the `big eight' food allergens, the prevalence of fish allergy has increased over the past few years. In order to better understand fish allergy, it is necessary to identify fish allergens. Based on the sera from fish-allergenic patients, a 28 kDa protein from local mackerel ( Scomber japonicus), which has not been reported as a fish allergen, was found to be reactive with most of the patients' sera. The 28 kDa protein was analyzed by MALDI-TOF-MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry). Mascot search in NCBI database (Date: 08/07/2010) showed that the top protein matched, i.e. triosephosphate isomerase (TPI) from Xiphophorus maculatus and Poecilia reticulata, had a mowse (molecular weight search) score of 98. In addition, TPI from Epinephelus coioides also matched this mackerel protein with a mowse score of 96. Because TPI is considered as an allergen in other non-fish organisms, such as lychee, wheat, latex, archaeopotamobius ( Archaeopotamobius sibiriensis) and crangon ( Crangon crangon), we consider that it may also be an allergen in mackerel.

  2. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics.

    PubMed

    Rudnicka, Joanna; Kowalkowski, Tomasz; Ligor, Tomasz; Buszewski, Bogus?aw

    2011-11-15

    A method for qualitative and quantitative the determination of concentrations volatile organic compounds (VOCs) in human breath samples using solid phase microextraction (SPME) and gas chromatography-time of flight-mass spectrometry (GC-TOF/MS) has been carried out. They are employed for the preconcentration, separation and analysis of biological samples. The technique to rapid determination compounds present in human air, at the level of parts per billion (ppb) is applied. This method was optimized and evaluated. It showed linear correlations ranging from 0.83 to 234.05 ppb, limit of detection in the range of 0.31 to 0.75 ppb and precision, expressed as the RSD, was less then 10.00%. The unique combination of statistical methods allowed reduce the number of compounds to significant ones only and indicate the potential way to find the biomarkers of the lung cancer. Presented an analytical and statistical methods for detection composition of exhaled air could be applied as a potential non-intrusive tool for screening of lung cancer. PMID:21982505

  3. Metabolome analysis of Ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS.

    PubMed

    Okada, Taketo; Nakamura, Yukiko; Kanaya, Shigehiko; Takano, Akihito; Malla, Kuber Jung; Nakane, Takahisa; Kitayama, Masahiko; Sekita, Setsuko

    2009-10-01

    Metabolome analysis of four varieties of Ephedra plants, which contain different amounts of ephedrine alkaloids, was demonstrated in this study. The metabolites were comprehensively analyzed by using ultra performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and the ephedrine alkaloids were also profiled. Subsequently, multivariate analyses of principal component analysis (PCA) and batch-learning self-organizing mapping (BL-SOM) analysis were applied to the raw data of the total ion chromatogram (TIC). PCA was performed to visualize the fingerprints characteristic for each Ephedra variant and the independent metabolome clusters were formed. The metabolite fingerprints were also visualized by BL-SOM analysis and were displayed as a lattice of colored individual cells which was characteristic for each Ephedra variant. BL-SOM analysis was also used for identification of chemical marker peaks because the information assigned to a cell represented either increases or decreases in peak intensities. Using this analysis, ephedrine alkaloids were successfully selected from the TICs as chemical markers for each Ephedra variant and this result suggested that BL-SOM analysis was an effective method for the selection of marker metabolites. We report our study here as a practical case of metabolomic study on medicinal resources. PMID:19382059

  4. Identification of pathogens from blood culture bottles in spiked and clinical samples using matrix-assisted laser desorption ionization time-of-flight mass-spectrometry analysis

    PubMed Central

    2014-01-01

    Background Blood stream infections significantly contribute to mortality. An early most appropriate antimicrobial therapy is crucial for a favourable outcome of the patient. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) may speed up the diagnostic of causative micro organisms. Findings MALDI-TOF MS using the SARAMIS database was applied to 37 spiked blood culture samples. Identification rates of spiked samples were as follows: The species level was determined in 16 of 21 (76.2%) Gram negative bacteria and in 11 of 13 (84.6%) Gram positive bacteria. Genus level only was determined in additional 2 Gram negative and for the 2 Gram positive strains. Yeast species could not be identified. MALDI-TOF MS was also compared to cultured-based results in standard routine diagnostic. Identification rates of patient samples were as follows: The species level was determined in 41 of 47 (87.2%) Gram negative bacteria and in 63 of 123 (51.2%) Gram positive bacteria. Genus level only was determined in additional 2 Gram negative bacteria. Once again no yeasts were identified. A prolonged incubation of BC bottles for 16 hours after primary positive alert did not influence the concentration of bacteria and identification rates. Conclusions The SARAMIS database used in our experiments mainly confirms previous findings that were obtained with the MALDI-TOF MS BRUKER system by others. PMID:24972877

  5. MALDI-TOF mass spectrometry-based identification of group A Streptococcus isolated from areas of the 2011 scarlet fever outbreak in china.

    PubMed

    Xiao, Di; You, Yuanhai; Bi, Zhenwang; Wang, Haibin; Zhang, Yongchan; Hu, Bin; Song, Yanyan; Zhang, Huifang; Kou, Zengqiang; Yan, Xiaomei; Zhang, Menghan; Jin, Lianmei; Jiang, Xihong; Su, Peng; Bi, Zhenqiang; Luo, Fengji; Zhang, Jianzhong

    2013-03-01

    There was a dramatic increase in scarlet fever cases in China from March to July 2011. Group A Streptococcus (GAS) is the only pathogen known to cause scarlet fever. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) coupled to Biotyper system was used for GAS identification in 2011. A local reference database (LRD) was constructed, evaluated and used to identify GAS isolates. The 75 GAS strains used to evaluate the LRD were all identified correctly. Of the 157 suspected β-hemolytic strains isolated from 298 throat swab samples, 127 (100%) and 120 (94.5%) of the isolates were identified as GAS by the MALDI-TOF MS system and the conventional bacitracin sensitivity test method, respectively. All 202 (100%) isolates were identified at the species level by searching the LRD, while 182 (90.1%) were identified by searching the original reference database (ORD). There were statistically significant differences with a high degree of credibility at species level (χ(2)=6.052, P<0.05 between the LRD and ORD). The test turnaround time was shortened 36-48h, and the cost of each sample is one-tenth of the cost of conventional methods. Establishing a domestic database is the most effective way to improve the identification efficiency using a MALDI-TOF MS system. MALDI-TOF MS is a viable alternative to conventional methods and may aid in the diagnosis and surveillance of GAS. PMID:23305889

  6. Beyond identification: emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory.

    PubMed

    DeMarco, Mari L; Ford, Bradley A

    2013-09-01

    The routine use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized microorganism identification in the clinical microbiology laboratory. Building from these now common microorganism identification strategies, this review explores future clinical applications of MALDI-TOF MS. This includes practical approaches for laboratorians interested in implementing direct identification processing methods for MALDI-TOF detection of microbes in bloodstream infection (BSI) and urinary tract infection (UTI), as well as, post-analytical approaches for classifying MALDI-TOF spectral data to detect characteristics other and species-level identification (e.g. strain-level classification, typing, and resistance mechanisms). PMID:23931841

  7. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-01-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  8. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  9. Potato glycoalkaloids in soil-optimising liquid chromatography-time-of-flight mass spectrometry for quantitative studies.

    PubMed

    Jensen, Pia H; Juhler, René K; Nielsen, Nikoline J; Hansen, Thomas H; Strobel, Bjarne W; Jacobsen, Ole S; Nielsen, John; Hansen, Hans Christian B

    2008-02-22

    Potato glycoalkaloids are produced in high amounts in potato fields during the growth season and losses to soil potentially impact shallow groundwater and via tiles to fresh water ecosystems. A quantitative liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) method for determination and quantification of potato glycoalkaloids and their metabolites in aqueous soil extracts was developed. The LC-ESI-TOF-MS method had linearities up to 2000microg/L for alpha-solanine and alpha-chaconine and up to 760microg/L for solanidine. No matrix effect was observed, and the detection limits found were in the range 2.2-4.7microg/L. The method enabled quantification of the potato glycoalkaloids in environmental samples. PMID:18221744

  10. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry.

    PubMed

    Du, Bing; Wu, Liming; Xue, Xiaofeng; Chen, Lanzhen; Li, Yi; Zhao, Jing; Cao, Wei

    2015-07-29

    Honey adulteration with sugar syrups is a widespread problem. Several types of syrups have been used in honey adulteration, and there is no available method that can simultaneously detect all of these adulterants. In this study, we generated a small-scale database containing the specific chromatographic and mass spectrometry information on sugar syrup markers and developed a simple, rapid, and effective ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) method for the detection of adulterated honey. Corn syrup, high-fructose corn syrup, inverted syrup, and rice syrup were used as honey adulterants; polysaccharides, difructose anhydrides, and 2-acetylfuran-3-glucopyranoside were used as detection markers. The presence of 10% sugar syrup in honey could be easily detected in <30 min using the developed method. The results revealed that UHPLC/Q-TOF-MS was simple and rapid. PMID:26151590

  11. Identification of European mosquito species by MALDI-TOF MS.

    PubMed

    Yssouf, Amina; Parola, Philippe; Lindström, Anders; Lilja, Tobias; L'Ambert, Grégorie; Bondesson, Ulf; Berenger, Jean-Michel; Raoult, Didier; Almeras, Lionel

    2014-06-01

    MALDI-TOF MS profiling has proved to be efficient for arthropod identification at the species level. However, prior to entomological monitoring, the reference spectra database should cover relevant species. Here, 74 specimens were field-collected from 11 mosquito species captured in two distinct European areas and used either to increment our database or for blind tests. Misidentification was not noted, underlining the power of this approach. Nevertheless, three out of the 26 specimens used for the blind test did not reach the significant identification threshold value set, attributed to lower spectral quality. In the future, the quality control spectra parameters need to be defined to avoid not achieving significant threshold identification. PMID:24737398

  12. A method for the detection of antibiotic resistance markers in clinical strains of Escherichia coli using MALDI mass spectrometry.

    PubMed

    Hart, Philippa J; Wey, Emmanuel; McHugh, Timothy D; Balakrishnan, Indran; Belgacem, Omar

    2015-04-01

    Matrix-assisted laser-desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass spectrometry based approaches for bacterial identification and classification. The relatively simple sample preparation requirements and the speed of analysis which can usually be completed within a few minutes have resulted in the adoption and assimilation of MALDI-TOF MS into the routine diagnostic workflow of Clinical microbiology laboratories worldwide. This study describes the facilitation of bacterial discrimination based on antibiotic resistance markers through the implementation of MALDI-TOF MS. The periplasmic compartment of whole bacterial cells contains several proteins which confer antibiotic resistance in the Enterobacteriaceae. In order to reduce the complexity of the sample to be analysed via MALDI-TOF MS, the periplasm was extracted and subjected to in solution tryptic digestion followed by nano-LC separation. This method, established that peptide sequence biomarkers from several classes of antibiotic resistance proteins could be predicted using protein/peptide database tools such as Mascot. Biomarkers for a CTX-M-1 group extended spectrum β-lactamase, CMY-2 an Amp-C β-lactamase, VIM a metallo-β-lactamase, TEM a β-lactamase and KanR an aminoglycoside modifying enzyme were detected. This allowed for discrimination at a species level and at an almost identical strain level where the only difference between strains was the carriage of a modified antibiotic resistance carrying plasmid. This method also was able to detect some of these biomarkers in clinical strains where multiple resistance mechanisms were present. PMID:25633625

  13. Simple analytical strategy for MALDI-TOF-MS and nanoUPLC-MS/MS: quantitating curcumin in food condiments and dietary supplements and screening of acrylamide-induced ROS protein indicators reduced by curcumin.

    PubMed

    Huang, Yu-Shu; Hsieh, Tusty-Jiuan; Lu, Chi-Yu

    2015-05-01

    Curcumin is the major active ingredient of turmeric and is widely used as a preservative, flavouring and colouring agent. Curcumin is a potent substance with several functions, including antioxidant, antitumor, anti-inflammatory, antimicrobial, antiparasitic, antimutagenic, chemopreventive and chemotherapeutic activities. Matrix-assisted laser desorption/ionisation coupled with time-of-flight mass spectrometry (MALDI-TOF-MS) has been used to analyse various molecules (including natural antioxidants). This study established an expeditious method that couples MALDI-TOF-MS with a simple dilution method to quantify curcumin in food condiments and dietary supplements. The linear range of curcumin detection ranged from 1 to 100 μg/mL. In further experiments, liver cells were treated with curcumin after exposure to acrylamide. Nano ultra performance liquid chromatographic system (nanoUPLC) coupled with tandem mass spectrometry (MS/MS) was used to evaluate the potential proteins and protein modifications induced by acrylamide. The results indicate that curcumin reduces the effects of reactive oxygen species induced by acrylamide. PMID:25529721

  14. Identification of Neisseria gonorrhoeae by the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System Is Improved by a Database Extension.

    PubMed

    Schweitzer, Valentijn A; van Dam, Alje P; Hananta, I Putu Yuda; Schuurman, Rob; Kusters, Johannes G; Rentenaar, Rob J

    2016-04-01

    Identification ofNeisseria gonorrhoeaeby the Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system may be affected by "B consistency categorization." A supplementary database of 17N. gonorrhoeaemain spectra was constructed. Twelve of 64N. gonorrhoeaeidentifications were categorized with B consistency, which disappeared using the supplementary database. Database extension did not result in misidentification ofNeisseria meningitidis. PMID:26763972

  15. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours.

    PubMed

    Burckhardt, Irene; Zimmermann, Stefan

    2011-09-01

    In recent years, the percentage of carbapenem-resistant bacteria has increased at an alarming pace and become a major threat for patient survival. Carbapenemase-induced carbapenem resistance can be confirmed through the detection of carbapenem degradation using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). This method works for strains carrying NDM-1, VIM-1, VIM-2, KPC-2, and different IMP enzymes. PMID:21795515

  16. Determination of phospholipids in milk using a new phosphodiester stationary phase by liquid chromatography-matrix assisted desorption ionization mass spectrometry.

    PubMed

    Walczak, Justyna; Pomastowski, Paweł; Bocian, Szymon; Buszewski, Bogusław

    2016-02-01

    A methodology employing high performance liquid chromatography coupled with matrix-assisted laser desorption and ionization time-of-flight mass spectrometry has been utilized to determine the quality of phospholipid classes. Home-made phosphoester chemically bonded stationary phase containing diol, phosphate and octadecyl groups (Diol-P-C18) has been employed in the separation of polar lipids from milk. Each phospholipid fraction was collected manually and identified by MALDI-TOF MS. PMID:26777091

  17. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms.

    PubMed

    Ahmad, Faheem; Babalola, Olubukola O; Tak, Hamid I

    2012-09-01

    Plant diseases caused by plant pathogens substantially reduce crop production every year, resulting in massive economic losses throughout the world. Accurate detection and identification of plant pathogens is fundamental to plant pathogen diagnostics and, thus, plant disease management. Diagnostics and disease-management strategies require techniques to enable simultaneous detection and quantification of a wide range of pathogenic and non-pathogenic microorganisms. Over the past decade, rapid development of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for characterization of microorganisms has enabled substantially improved detection and identification of microorganisms. In the biological sciences, MALDI-TOF MS is used to analyze specific peptides or proteins directly desorbed from intact bacteria, fungal spores, nematodes, and other microorganisms. The ability to record biomarker ions, in a broad m/z range, which are unique to and representative of individual microorganisms, forms the basis of taxonomic identification of microorganisms by MALDI-TOF MS. Recent advances in mass spectrometry have initiated new research, i.e. analysis of more complex microbial communities. Such studies are just beginning but have great potential for elucidation not only of the interactions between microorganisms and their host plants but also those among different microbial taxa living in association with plants. There has been a recent effort by the mass spectrometry community to make data from large scale mass spectrometry experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MALDI-TOF MS as a universal technique for detection of plant pathogens and non-pathogens. The effects of experimental conditions are sufficiently understood, reproducible spectra can be obtained from computational database search, and microorganisms can be rapidly characterized by genus, species, or strain. PMID:22644150

  18. Discrimination of Escherichia coli O157, O26 and O111 from Other Serovars by MALDI-TOF MS Based on the S10-GERMS Method

    PubMed Central

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Suzuki, Mayumi; Fukunaga, Tomohiro; Tamura, Hiroto

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC), causes a potentially life-threatening infection in humans worldwide. Serovar O157:H7, and to a lesser extent serovars O26 and O111, are the most commonly reported EHEC serovars responsible for a large number of outbreaks. We have established a rapid discrimination method for E. coli serovars O157, O26 and O111 from other E. coli serovars, based on the pattern matching of mass spectrometry (MS) differences and the presence/absence of biomarker proteins detected in matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS). Three biomarkers, ribosomal proteins S15 and L25, and acid stress chaperone HdeB, with MS m/z peaks at 10138.6/10166.6, 10676.4/10694.4 and 9066.2, respectively, were identified as effective biomarkers for O157 discrimination. To distinguish serovars O26 and O111 from the others, DNA-binding protein H-NS, with an MS peak at m/z 15409.4/15425.4 was identified. Sequence analysis of the O157 biomarkers revealed that amino acid changes: Q80R in S15, M50I in L25 and one mutation within the start codon ATG to ATA in the encoded HdeB protein, contributed to the specific peak pattern in O157. We demonstrated semi-automated pattern matching using these biomarkers and successfully discriminated total 57 O157 strains, 20 O26 strains and 6 O111 strains with 100% reliability by conventional MALDI-TOF MS analysis, regardless of the sample conditions. Our simple strategy, based on the S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum (S10-GERMS) method, therefore allows for the rapid and reliable detection of this pathogen and may prove to be an invaluable tool both clinically and in the food industry. PMID:25411793

  19. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  20. Rapid Genotyping of Single Nucleotide Polymorphisms Influencing Warfarin Drug Response by Surface-Enhanced Laser Desorption and Ionization Time-of-Flight (SELDI-TOF) Mass Spectrometry

    PubMed Central

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M.

    2010-01-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy. PMID:20075209

  1. MALDI-TOF MS of Trichoderma: A model system for the identification of microfungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This investigation aimed to assess whether MALDI-TOF MS analysis of proteomics could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of proteomics would reveal ap...

  2. Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility

    NASA Astrophysics Data System (ADS)

    Phillips, Nancy J.; John, Constance M.; Jarvis, Gary A.

    2016-04-01

    Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.

  3. Combination of UHPLC/Q-TOF-MS, NMR spectroscopy, and ECD calculation for screening and identification of reactive metabolites of gentiopicroside in humans.

    PubMed

    Han, Han; Xiong, Ai-Zhen; He, Chun-Yong; Liu, Qing; Yang, Li; Wang, Zheng-Tao

    2014-02-01

    The metabolic investigation of natural products is a great challenge because of unpredictable metabolic pathways, little knowledge on metabolic effects, and lack of recommended analytical methodology. Herein, a combined strategy based on ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), nuclear magnetic resonance (NMR) spectroscopy, and electronic circular dichroism (ECD) calculation was developed and employed for the human metabolism study of gentiopicroside (GPS), a naturally hepato-protective iridoid glycoside. The whole metabolic study consisted of three major procedures. First, an improved UHPLC/Q-TOF-MS method was used to separate and detect a total of 15 GPS metabolites that were obtained from urine samples (0 to 72 h) of 12 healthy male participants after a single 50-mg oral dose of GPS. Second, a developed "MS-NMR-MS" method was applied to accurately identify molecular structures of the observed metabolites. Finally, given that the associated stereochemistry may be a crucial factor of the metabolic activation, the absolute configuration of the reactive metabolites was revealed through chemical calculations. Based on the combined use, a pair of diastereoisomers (G05 and G06) were experimentally addressed as the bioreactive metabolites of GPS, and the stereochemical determination was completed. Whereas several novel metabolic transformations, occurring via oxidation, N-heterocyclization and glucuronidation after deglycosylation, were also observed. The results indicated that GPS has to undergo in vivo metabolism-based activation to generate reactive molecules capable of processing its hepato-protective activity. PMID:24408300

  4. [Development of UPLC-Q-TOF-MS/MS combined with reference herb approach to rapidly screen commercial sulfur-fumigated ginseng].

    PubMed

    Zhou, Shan-Shan; Xu, Jin-Di; Shen, Hong; Liu, Huan-Huan; Li, Song-Lin

    2014-08-01

    An ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) combined with reference herb method was developed to rapidly screen commercial sulfur-fumigated ginseng. Sufur-fumigated ginseng reference herb was prepared using genuine ginseng by conventional procedure. Then the reference sulfur-fumigated ginseng sample was analyzed by UPLC-Q-TOF-MS/MS to identify characteristic marker components. 25-hydroxyl-Re sulfate with higher abundance was se- lected as marker compound from 8 characteristic components identified in sulfur-fumigated ginseng reference herb. The fragmentation of 25-hydroxyl-Re sulfate was extensively investigated, fragment ion m/z 879.44 with higher intensity was chosen as the characteristic ion of sulfur-fumigated ginseng. The response of ion m/z 879. 44 was improved by optimizing the MS conditions so that this ion could be used as the characteristic marker ion for screening purpose in ion extracting screening mode. The established approach was successfully applied to inspect 21 commercial ginseng samples collected from different cities in China It was found that the chemical profiles of 9 samples were similar to that of sulfur-fumigated ginseng reference herb, and the characteristic ion m/z 879. 44 of 25-hydroxyl-Re sulfate was also detected in these samples, suggesting that there were nearly 43% ginseng samples analyzed being sulfur-fumigated. This findng agreed well with the results of sulfur dioxide residues of these 21 commercial ginseng samples determined with the method documented in Chinese Pharmacopeia Compared with the method documented in Chinese Pharmacopeia, the proposed approach is more rapid and specific for screening sulfur-fumigated ginseng. SFDA of China should strengthen the enforcement to prohibit ginseng being sulfur-fumigated, so that ginseng and it preparations could be effectively and safely benefit to the health of human beings. PMID:25423813

  5. [Development of UPLC-Q-TOF-MS/MS combined with reference herb approach to rapidly screen commercial sulfur-fumigated ginseng].

    PubMed

    Zhou, Shan-Shan; Xu, Jin-Di; Shen, Hong; Liu, Huan-Huan; Li, Song-Lin

    2014-08-01

    An ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) combined with reference herb method was developed to rapidly screen commercial sulfur-fumigated ginseng. Sufur-fumigated ginseng reference herb was prepared using genuine ginseng by conventional procedure. Then the reference sulfur-fumigated ginseng sample was analyzed by UPLC-Q-TOF-MS/MS to identify characteristic marker components. 25-hydroxyl-Re sulfate with higher abundance was se- lected as marker compound from 8 characteristic components identified in sulfur-fumigated ginseng reference herb. The fragmentation of 25-hydroxyl-Re sulfate was extensively investigated, fragment ion m/z 879.44 with higher intensity was chosen as the characteristic ion of sulfur-fumigated ginseng. The response of ion m/z 879. 44 was improved by optimizing the MS conditions so that this ion could be used as the characteristic marker ion for screening purpose in ion extracting screening mode. The established approach was successfully applied to inspect 21 commercial ginseng samples collected from different cities in China It was found that the chemical profiles of 9 samples were similar to that of sulfur-fumigated ginseng reference herb, and the characteristic ion m/z 879. 44 of 25-hydroxyl-Re sulfate was also detected in these samples, suggesting that there were nearly 43% ginseng samples analyzed being sulfur-fumigated. This findng agreed well with the results of sulfur dioxide residues of these 21 commercial ginseng samples determined with the method documented in Chinese Pharmacopeia Compared with the method documented in Chinese Pharmacopeia, the proposed approach is more rapid and specific for screening sulfur-fumigated ginseng. SFDA of China should strengthen the enforcement to prohibit ginseng being sulfur-fumigated, so that ginseng and it preparations could be effectively and safely benefit to the health of human beings. PMID:25507535

  6. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC.

    PubMed

    Yang, Huan; Li, Xu; Li, Xue; Yu, Huimin; Shen, Zhongyao

    2015-03-01

    A three-stage linear gradient strategy using reverse-phase high-performance liquid chromatography (HPLC) was optimized for rapid, high-quality, and simultaneous purification of the lipopeptide isoforms of iturin, fengycin, and surfactin, which may differ in composition by only a single amino acid and/or the fatty acid residue. Matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) was applied to detect the lipopeptides harvested from each reversed-phase HPLC peak. Amino acid analysis based on phenyl isothiocyanate derivatization was further used for confirmation of the amino acid species and molar ratio in a certain HPLC fraction. By this MALDI-TOF-MS/MS coupled with amino acid analysis, it was revealed that iturin at m/z 1,043 consists of a circular Asn-Tyr-Asn-Gln-Pro-Asn-Ser peptide and C14 ?-OH fatty acid. Surfactin homologs from Bacillus subtilis THY-7 at m/z 1,030, 1,044, 1,058, and 1,072 possess a circular Glu-Leu-Leu-Val-Asp-Leu-Leu peptide and the ?-OH fatty acid with a different length (C13-C16). Fengycin species at m/z 1,463 and 1,477 are homologs possessing the circular peptide Glu-Orn-Tyr-Thr-Glu-Ala-Pro-Gln-Tyr-Ile linked to a C16 or C17 ?-OH fatty acid, whereas fengycin at m/z 1,505 contains a Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Tyr-Ile sequence with a Val instead of Ala at position 6. The method developed in this work provided an efficient approach for characterization of diverse lipopeptide isoforms from the iturin, fengycin, and surfactin families. PMID:25662934

  7. Elemental, Isotopic, and Organic Analysis on Mars with Laser TOF-MS

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Cornish, T. J.

    2000-01-01

    The in-depth landed exploration of Mars will require increasingly sophisticated robotic analytical tools for both in situ composition science [1] and reconnaissance for sample return [2]. Beyond dust, rock surfaces, and topsoil, samples must be accessed within rocks and ice, well below surface soil, and possibly in elevated deposit layers. A range of spatial scales will be studied, and for the most information-rich microscopic analyses, samples must be acquired, prepared, and positioned with high precision. In some cases samples must also be brought into a vacuum chamber. After expending such resources, it will be important to apply techniques that provide a wide range of information about the samples. Microscopy, mineralogy, and molecular/organic, elemental, and isotopic analyses are all needed, at a minimum, to begin to address the in situ goals at Mars. These techniques must work as an efficient suite to provide layers of data, each layer helping to determine if further analysis on a given sample is desired. In the spirit of broad-band and efficient data collection, we are developing miniature laser time-of-flight mass spectrometers (TOF-MS) for elemental, isotopic, and molecular/organic microanalysis of unprepared solid samples. Laser TOF-MS uses a pulsed laser to volatilize and ionize material from a small region on the sample. The laser energy and focus can be adjusted for atomic and molecular content, sampling area, and depth. Ions travel through the instrument and are detected at a sequence of times proportional to the square root of their mass-to- charge ratios. Thus, each laser pulse produces a complete mass spectrum (in less than 50 microseconds). These instruments can now be significantly miniaturized (potentially to the size of a soda can) without a loss in performance. This effort is reviewed here with an emphasis on applications to Mars exploration.

  8. MALDI-TOF MS as a Tool To Detect a Nosocomial Outbreak of Extended-Spectrum-β-Lactamase- and ArmA Methyltransferase-Producing Enterobacter cloacae Clinical Isolates in Algeria.

    PubMed

    Khennouchi, Nour Chems el Houda; Loucif, Lotfi; Boutefnouchet, Nafissa; Allag, Hamoudi; Rolain, Jean-Marc

    2015-10-01

    Enterobacter cloacae is among the most important pathogens responsible for nosocomial infections and outbreaks. In this study, 77 Enterobacter isolates were collected: 27 isolates from Algerian hospitals (in Constantine, Annaba, and Skikda) and 50 isolates from Marseille, France. All strains were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility testing was performed by the disk diffusion method. PCR was used to detect extended-spectrum-beta-lactamase (ESBL)-encoding, fluoroquinolone resistance-encoding, and aminoglycoside-modifying enzyme (AME) genes. Epidemiological typing was performed using MALDI-TOF MS with data mining approaches, along with multilocus sequence typing (MLST). Sixty-eight isolates (27 from Algeria, 41 from Marseille) were identified by MALDI-TOF MS as E. cloacae. Resistance to antibiotics in the Algerian isolates was significantly higher than that in the strains from Marseille, especially for beta-lactams and aminoglycosides. Eighteen of the 27 Algerian isolates and 11 of the 41 Marseille isolates possessed at least one ESBL-encoding gene: blaCTX-M and/or blaTEM. AME genes were detected in 20 of the 27 Algerian isolates and 8 of the 41 Marseille isolates [ant(2″)-Ia, aac(6')-Ib-cr, aadA1, aadA2, and armA]. Conjugation experiments showed that armA was carried on a transferable plasmid. MALDI-TOF typing showed three separate clusters according to the geographical distribution and species level. An MLST-based phylogenetic tree showed a clade of 14 E. cloacae isolates from a urology unit clustering together in the MALDI-TOF dendrogram, suggesting the occurrence of an outbreak in this unit. In conclusion, the ability of MALDI-TOF to biotype strains was confirmed, and surveillance measures should be implemented, especially for Algerian patients hospitalized in France. PMID:26239991

  9. MALDI-TOF MS as a Tool To Detect a Nosocomial Outbreak of Extended-Spectrum-β-Lactamase- and ArmA Methyltransferase-Producing Enterobacter cloacae Clinical Isolates in Algeria

    PubMed Central

    Khennouchi, Nour Chems el Houda; Loucif, Lotfi; Boutefnouchet, Nafissa; Allag, Hamoudi

    2015-01-01

    Enterobacter cloacae is among the most important pathogens responsible for nosocomial infections and outbreaks. In this study, 77 Enterobacter isolates were collected: 27 isolates from Algerian hospitals (in Constantine, Annaba, and Skikda) and 50 isolates from Marseille, France. All strains were identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility testing was performed by the disk diffusion method. PCR was used to detect extended-spectrum-beta-lactamase (ESBL)-encoding, fluoroquinolone resistance-encoding, and aminoglycoside-modifying enzyme (AME) genes. Epidemiological typing was performed using MALDI-TOF MS with data mining approaches, along with multilocus sequence typing (MLST). Sixty-eight isolates (27 from Algeria, 41 from Marseille) were identified by MALDI-TOF MS as E. cloacae. Resistance to antibiotics in the Algerian isolates was significantly higher than that in the strains from Marseille, especially for beta-lactams and aminoglycosides. Eighteen of the 27 Algerian isolates and 11 of the 41 Marseille isolates possessed at least one ESBL-encoding gene: blaCTX-M and/or blaTEM. AME genes were detected in 20 of the 27 Algerian isolates and 8 of the 41 Marseille isolates [ant(2″)-Ia, aac(6′)-Ib-cr, aadA1, aadA2, and armA]. Conjugation experiments showed that armA was carried on a transferable plasmid. MALDI-TOF typing showed three separate clusters according to the geographical distribution and species level. An MLST-based phylogenetic tree showed a clade of 14 E. cloacae isolates from a urology unit clustering together in the MALDI-TOF dendrogram, suggesting the occurrence of an outbreak in this unit. In conclusion, the ability of MALDI-TOF to biotype strains was confirmed, and surveillance measures should be implemented, especially for Algerian patients hospitalized in France. PMID:26239991

  10. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H.

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. PMID:25994167

  11. Rapid Identification of Staphylococci Isolated in Clinical Microbiology Laboratories by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry?

    PubMed Central

    Carbonnelle, Etienne; Beretti, Jean-Luc; Cottyn, Stphanie; Quesne, Gilles; Berche, Patrick; Nassif, Xavier; Ferroni, Agns

    2007-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) of intact bacteria yields a reproducible spectrum depending upon growth conditions, strain, or species. Using whole viable bacteria we describe here the application of MALDI-TOF-MS to the identification of coagulase-negative staphylococci (CoNS). Our aim was, once a bacterium has been recognized as Micrococcaceae, to identify peaks in the spectrum that can be used to identify the species or subspecies. MALDI-TOF-MS was performed using bacteria obtained from one isolated colony. One reference strain for each of the 23 clinically relevant species or subspecies of Micrococcaceae was selected. For each reference strain, the MALDI-TOF-MS profile of 10 colonies obtained from 10 different passages was analyzed. For each strain, only peaks that were conserved in the spectra of all 10 isolated colonies and with a relative intensity above 0.1 were retained, thus leading to a set of 3 to 14 selected peaks per strain. The MALDI-TOF-MS profile of 196 tested strains was then compared with that of the set of selected peaks of each of the 23 reference strains. In all cases the best hit was with the set of peaks of the reference strain belonging to the same species as that of the tested strain, thus demonstrating that the 23 sets of selected peaks can be used as a database for the rapid species identification of CoNS. Similar results were obtained using four different growth conditions. Extending this strategy to other groups of relevant pathogenic bacteria will allow rapid bacterial identification. PMID:17507519

  12. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Molds of the Fusarium Genus

    PubMed Central

    Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2014-01-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. PMID:25411180

  13. The use of Gram stain and matrix-assisted laser desorption ionization time-of-flight mass spectrometry on positive blood culture: synergy between new and old technology.

    PubMed

    Fuglsang-Damgaard, David; Nielsen, Camilla Houlberg; Mandrup, Elisabeth; Fuursted, Kurt

    2011-10-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is promising as an alternative to more costly and cumbersome methods for direct identifications in blood cultures. We wanted to evaluate a simplified pre-treatment method for using MALDI-TOF-MS directly on positive blood cultures using BacT/Alert blood culture system, and to test an algorithm combining the result of the initial microscopy with the result suggested by MALDI-TOF-MS. Using the recommended cut-off score of 1.7 the best results were obtained among Gram-negative rods with correct identifications in 91% of Enterobacteriaceae, 83% in aerobic/non-fermentative Gram-negative rods, whereas results were more modest among Gram-positive cocci with correct identifications in 52% of Staphylococci, 54% in Enterococci and only 20% in Streptococci. Combining the results of Gram stain with the top reports by MALDI-TOF-MS, increased the sensitivity from 91% to 93% in the score range from 1.5 to 1.7 and from 48% to 85% in the score range from 1.3 to 1.5. Thus, using this strategy and accepting a cut-off at 1.3 instead of the suggested 1.7, overall sensitivity could be increased from 88.1% to 96.3%. MALDI-TOF-MS is an efficient method for direct routine identification of bacterial isolates in blood culture, especially when combined with the result of the Gram stain. PMID:21917005

  14. MALDI-TOF Mass Spectrometry: A Powerful Tool for Clinical Microbiology at Hôpital Principal de Dakar, Senegal (West Africa)

    PubMed Central

    Lo, Cheikh I.; Fall, Bécaye; Sambe-Ba, Bissoume; Diawara, Silman; Gueye, Mamadou W.; Mediannikov, Oleg; Sokhna, Cheikh; Faye, Ngor; Diemé, Yaya; Wade, Boubacar; Raoult, Didier; Fenollar, Florence

    2015-01-01

    Our team in Europe has developed the routine clinical laboratory identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To evaluate the utility of MALDI-TOF MS in tropical Africa in collaboration with local teams, we installed an apparatus in the Hôpital Principal de Dakar (Senegal), performed routine identification of isolates, and confirmed or completed their identification in France. In the case of discordance or a lack of identification, molecular biology was performed. Overall, 153/191 (80.1%) and 174/191 (91.1%) isolates yielded an accurate and concordant identification for the species and genus, respectively, with the 2 different MALDI-TOF MSs in Dakar and Marseille. The 10 most common bacteria, representing 94.2% of all bacteria routinely identified in the laboratory in Dakar (Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus haemolyticus, Enterobacter cloacae, Enterococcus faecalis, and Staphylococcus epidermidis) were accurately identified with the MALDI-TOF MS in Dakar. The most frequent misidentification in Dakar was at the species level for Achromobacter xylosoxidans, which was inaccurately identified as Achromobacter denitrificans, and the bacteria absent from the database, such as Exiguobacterium aurientacum or Kytococcus schroeteri, could not be identified. A few difficulties were observed with MALDI-TOF MS for Bacillus sp. or oral streptococci. 16S rRNA sequencing identified a novel bacterium, “Necropsobacter massiliensis.” The robust identification of microorganisms by MALDI-TOF MS in Dakar and Marseille demonstrates that MALDI-TOF MS can be used as a first-line tool in clinical microbiology laboratories in tropical countries. PMID:26716681

  15. Cardiolipin fingerprinting of leukocytes by MALDI-TOF/MS as a screening tool for Barth syndrome.

    PubMed

    Angelini, Roberto; Lobasso, Simona; Gorgoglione, Ruggiero; Bowron, Ann; Steward, Colin G; Corcelli, Angela

    2015-09-01

    Barth syndrome (BTHS), an X-linked disease associated with cardioskeletal myopathy, neutropenia, and organic aciduria, is characterized by abnormalities of card-iolipin (CL) species in mitochondria. Diagnosis of the disease is often compromised by lack of rapid and widely available diagnostic laboratory tests. The present study describes a new method for BTHS screening based on MALDI-TOF/MS analysis of leukocyte lipids. This generates a "CL fingerprint" and allows quick and simple assay of the relative levels of CL and monolysocardiolipin species in leukocyte total lipid profiles. To validate the method, we used vector algebra to analyze the difference in lipid composition between controls (24 healthy donors) and patients (8 boys affected by BTHS) in the high-mass phospholipid range. The method of lipid analysis described represents an important additional tool for the diagnosis of BTHS and potentially enables therapeutic monitoring of drug targets, which have been shown to ameliorate abnormal CL profiles in cells. PMID:26144817

  16. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry. PMID:24929682

  17. Analysis of new synthetic drugs by ion mobility time-of-flight mass spectrometry.

    PubMed

    Sysoev, Alexey A; Poteshin, Sergey S; Chernyshev, Denis M; Karpov, Alexander V; Tuzkov, Yuriy B; Kyzmin, Vyacheslav V; Sysoev, Alexander A

    2014-01-01

    Characteristic ion mobility mass spectrometry data, reduced mobility, and limits of detection (signal-to-noise ratio = 3) were determined for six synthetic drugs and cocaine by ion mobility time-of-flight mass spectrometry (IM-TOF-MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). The studied synthetic illicit drugs recently appeared on the recreational drug market as designer drugs and were methylone, 4-MEC (4'-methylethcathinone), 3,4-MDPV (3,4-methylenedioxypyrovalerone), JWH-210 [4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone], JWH-250 [2-(2-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone], and JWH-203 [1-pentyl-3-(2'-chlorophenylacetyl) indole]. Absolute reduced mobilities in nitrogen were 1.35, 1.28, 1.41, 1.30, 1.18, 0.98, 1.09, and 1.07 cm2V(-1)s(-1), for methylone [M-H]+, methylone [M+H]+, 4-MEC [M-H]+, 4-MEC [M+H]+, 3,4-MDPV [M+H]+, JWH-210 [M+H]+, JWH-250 [M+H]+, and JWH-203 [M+H]+, respectively. Selected illicit drugs are easily identified by IM-TOF-MS during a 100s analysis. Relative Limits of detection ranged from 4 to 400 nM are demonstrated for these compounds. Such relative limits of detection correspond to 14 pg to 2 ng absolute limits of detection. Better detection limits are obtained in APCI mode for all the illicit drugs except cocaine. ESI mode was found to be preferable for the IM-TOF-MS detection of cocaine at trace levels. A single sample analysis is completed in an order of magnitude less time than that for conventional liquid chromatography/mass spectrometry approach. The application allows one to consider IM-TOF-MS as a good candidate for a method to determine quickly the recently surfaced designer drugs marketed on the internet as "bath salts," "spice," and "herbal blends". PMID:24895779

  18. Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen-deuterium exchange and mass spectrometry.

    PubMed

    Zhang, Qiuting; Tu, Zongcai; Wang, Hui; Huang, Xiaoqin; Sha, Xiaomei; Xiao, Hui

    2014-11-01

    The structural changes of bovine serum albumin (BSA) under high-intensity ultrasonication were investigated by fluorescence spectroscopy and mass spectrometry. Evidence for the ultrasonication-induced conformational changes of BSA was provided by the intensity changes and maximum-wavelength shift in fluorescence spectrometry. Matrix-assisted laser desorption-ionization time-of-flight mass spectroscopy (MALDI-TOF MS) revealed the increased intensity of the peak at the charge state +5 and a newly emerged peak at charge state +6, indicating that the protein became unfolded after ultrasonication. Prevalent unfolding of BSA after ultrasonication was revealed by hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS). Increased intensity and duration of ultrasonication further promoted the unfolding of the protein. The unfolding induced by ultrasonication goes through an intermediate state similar to that induced by a low concentration of denaturant. PMID:25224638

  19. Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection.

    PubMed

    Lange, Christoph; Schubert, Sören; Jung, Jette; Kostrzewa, Markus; Sparbier, Katrin

    2014-12-01

    Antibiotic resistance in Gram-negative microorganisms is an increasing health care problem. The rapid detection of such resistance is crucial for starting an early specific therapy and to enable initiation of the required hygiene measures. With continued emphasis on reducing the cost of laboratory testing, only economical/low-cost approaches have a chance of being implemented. During recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed to be a standard method in microbiology laboratories for the rapid and cost-efficient identification of microorganisms. Extending the usage of MALDI-TOF MS in the clinical microbiology laboratory to the area of resistance testing is an attractive option. Quantitative MALDI-TOF MS using an internal standard facilitates the measurement of the quantity of peptides and small proteins within a spectrum. These quantities correlate to the number of microorganisms and therefore to the growth of a microorganism. The comparison of growth in the presence or absence of an antibiotic allows for analysis of the susceptibility behavior of a strain. Here, we describe a novel method and its application in the analysis of 108 Klebsiella sp. isolates. After 1 h of incubation at a meropenem concentration of 8 μg/ml, a sensitivity of 97.3% and a specificity of 93.5% were achieved (compared to Etest results). PMID:25232164

  20. Comparison of PCR/Electron spray Ionization-Time-of-Flight-Mass Spectrometry versus Traditional Clinical Microbiology for active surveillance of organisms contaminating high-use surfaces in a burn intensive care unit, an orthopedic ward and healthcare workers

    PubMed Central

    2012-01-01

    Background Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools. Methods Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital. High-use environmental surfaces were assessed in 9 burn ICU and 10 orthopedic patient rooms. Clinical cultures during the study period were reviewed for pathogen comparison with investigational molecular diagnostic methods. Results From 158 samples, 142 organisms were identified by TCM and 718 by PCR/ESI-TOF-MS. The molecular diagnostic method detected more organisms (4.5 ± 2.1 vs. 0.9 ± 0.8, p < 0.01) from 99% vs. 67% of samples (p < 0.01). TCM detected S. aureus in 13 samples vs. 21 by PCR/ESI-TOF-MS. Gram-negative organisms were less commonly identified than gram-positive by both methods; especially by TCM. Among all detected bacterial species, similar percentages were typical nosocomial pathogens (18-19%) for TCM vs. PCR/ESI-TOF-MS. PCR/ESI-TOF-MS also detected mecA in 112 samples, vanA in 13, and KPC-3 in 2. MecA was associated (p < 0.01) with codetection of coagulase negative staphylococci but not S. aureus. No vanA was codetected with enterococci; one KPC-3 was detected without Klebsiella spp. Conclusions In this pilot study, PCR/ESI-TOF-MS detected more organisms, especially gram-negatives, compared to TCM, but the current assay format is limited by the number of antibiotic resistance determinants it covers. Further large-scale assessments of PCR/ESI-TOF-MS for hospital surveillance are warranted. PMID:23050585

  1. Initializing a digital chromatography data archive for tropospheric air samples on Taunus Observatory Frankfurt by GC-TOF-MS

    NASA Astrophysics Data System (ADS)

    Hoker, Jesica; Obersteiner, Florian; Bönisch, Harald; Engel, Andreas

    2014-05-01

    The inception of a digital air archive for halogenated hydrocarbons will be presented. This archive is based on weekly samples taken at the Taunus Observatory on "Kleiner Feldberg" near Frankfurt/ Main, i.e. a very central position in Germany. The station is characterized by a mixture of clean air, moderately polluted air and occasional influence from the nearby city of Frankfurt. Regular meteorological and air quality data are available from the German Weather service (DWD) and the regional air quality monitoring (Hessiche Landesanstalt für Umwelt und Geologie, HLUG). Two air samples are collected in parallel in 2 l stainless steel flasks using a metal bellows pump. The air samples are analysed in the laboratory by gas chromatography coupled with Time of Flight Mass Spectrometry (GC TOF MS) and Quadrupole Mass Spectrometry (GC QUAD MS) for halogenated trace gases. Analysis is carried out no later than a month after sampling. Our current target species which will be measured by both mass spectrometers contain a wide range of halogenated trace gases, with calibration scales linked to both global monitoring networks, i.e. NOAA and AGAGE. A Time of Flight Mass Spectrometer has the advantage to measure a full mass range with a high sensitivity. Other measuring networks use Quadrupole mass spectrometers which need to be tuned to selected masses in order to achieve sufficient sensitivity. The full mass scan information available in the TOF data in combination with the high sensitivity of the instrument opens the possibility for retrospective analysis of the data in the future, as information on all substances which can be trapped and desorbed using our sampling technique are recorded, even though they may not be retrieved at the time of measurements. This will open the opportunity to have a look on historical developments even of yet undiscovered halogenated trace gases or those, which have not been subject to one's research focus until a certain time point but have become interesting later. The full resolution mass spectrometric data will be stored together with all meteorological and other information necessary for later reprocessing. This will constitute a digital air archive, which can also be made available to other research groups for reanalysis.

  2. "DUST BUSTER" - A Single Photon Ionization TOF MS for Cometary Dusts

    NASA Technical Reports Server (NTRS)

    Chen, C.-Y.; Calaway, W. F.; Lee, Typhoon; Moore, J. F.; Pellin, M. J.; Veryovkin, I. V.

    2003-01-01

    It is hard to predict the properties and composition of dust that will be returned by STARDUST from WED- 2. The most interesting but challenging case would be grains, pg to fg in weight, each carrying its own isotopic signature characteristic of its source zones in a variety of stars. How do we extract the maximum amount of science from such grains? Clearly, the best that can be accomplished is to measure every atom in each grain.Academia Sinica and Argonne National Laboratory (ANL) have entered into a collaboration to develop a SPI TOF MS instrument for analysis of stardust grains. A new instrument will be built at Academia Sinica based on the new TOF mass spectrometer design developed, built and operating at ANL. The instrument is intended for SPI TOF MS analysis of elements from Ca to Cu plus Li after first using SIMS to measure H, C, N, 0, Si, and S. There are still technical challenges facing the technique. We will need to improve submicrometer sample handling, avoid the effects of space charge, and increase the Mamie range of the detector. The most difficult obstacle to overcome may be the fact that the flux density of present high repetition rate, WV lasers is below the level needed to ensure full ionization (saturation) in the source region, which must be several mm in size to achieve the high useful yield needed for analysis of small stardust grains. A potential breakthrough effort is to exploit the novel free electron laser being pioneered at ANL. In principle, this FEL can reach ionization saturation and is tunable up to photon energies of 25 eV, which is higher than the ionization potential of any element.

  3. Comparison of MALDI-TOF MS and AFLP for strain typing of ESBL-producing Escherichia coli.

    PubMed

    Veenemans, J; Welker, M; van Belkum, A; Saccomani, M C; Girard, V; Pettersson, A; Verhulst, C; Kluytmans-Vandenbergh, M; Kluytmans, J

    2016-05-01

    Typing of bacterial isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) potentially provides an efficient on-site method to monitor the spread of antibiotic-resistant bacteria and rapidly detect outbreaks. We compared MALDI-MS typing results to those of amplified fragment length polymorphism (AFLP) in a collection of 52 ESBL-producing Escherichia coli, isolated in a Dutch nursing home with an on-going outbreak of ST131 E. coli. Specific MALDI types were defined based on spectral data from four replicate colony samples of isolates grown on Columbia agar using multivariate statistical procedures. Type-specific superspectra were computed for four E .coli MALDI-types and tested for the potential of rapid and automated typing. The effect of different incubation conditions on typing performance was tested by analysing five isolates incubated for 24 h and 48 h on five different media. Types defined based on MALDI spectra were largely in agreement with the AFLP results, although some MALDI types comprised of more than one AFLP type. In particular, isolates belonging to ST131 showed distinct mass patterns. The proportion of isolates correctly assigned was substantially lower for isolates incubated on Sabouraud-dextrose and Drigalski agars for 24 h, and for those incubated for 48 h (all media). Our results show that the identification of type-specific peaks potentially allows direct typing of isolates belonging to specific clonal lineages. Both incubation time and media affected type assignment, suggesting that there is a need for a careful standardization of incubation time and culturing conditions when developing MALDI-typing schemes for E. coli. PMID:26922068

  4. MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers.

    PubMed

    Panda, Ashutosh; Ghosh, Anup K; Mirdha, Bijay R; Xess, Immaculata; Paul, Saikat; Samantaray, Jyotish C; Srinivasan, Alagiri; Khalil, Shehla; Rastogi, Neha; Dabas, Yubhisha

    2015-02-01

    This study aimed to evaluate the identification of clinical fungal isolates (yeast and molds) by protein profiling using Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS). A total of 125 clinical fungal culture isolates (yeast and filamentous fungi) were collected. The test set included 88 yeast isolates (Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida parapsilosis, Candida rugosa, Candida tropicalis and Cryptococcus neoformans) and 37 isolates of molds (Alternaria spp., Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Cunninghamella spp., Histoplasma capsulatum, Microsporum gypseum, Microsporum nanum, Rhizomucor spp. and Trichophyton spp.). The correlation between MALDI TOF MS and conventional identification for all these 125 fungal isolates included in the study was 87.2% at the species level and 90.4% at the genus level. MALDI TOF MS results revealed that the correlation in yeast (n=88) identification was 100% both at the genus and species levels whereas, the correlation in mold (n=37) identification was more heterogeneous i.e. 10.81% isolates had correct identification up to the genus level, 56.7% isolates had correct identification both at the genus and species levels, whereas 32.42% isolates were deemed Not Reliable Identification (NRI). But, with the modification in sample preparation protocol for molds, there was a significant improvement in identification. 86.4% isolates had correct identification till the genus and species levels whereas, only 2.7% isolates had Not Reliable Identification. In conclusion, this study demonstrates that MALDI-TOF MS could be a possible alternative to conventional techniques both for the identification and differentiation of clinical fungal isolates. However, the main limitation of this technique is that MS identification could be more precise only if the reference spectrum of the fungal species is available in the database. PMID:25541362

  5. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates.

    PubMed

    Lasch, Peter; Fleige, Carola; Stämmler, Maren; Layer, Franziska; Nübel, Ulrich; Witte, Wolfgang; Werner, Guido

    2014-05-01

    MALDI-TOF mass spectrometry (MALDI-TOF MS) is increasingly used as a reliable technique for species identification of bacterial pathogens. In this study we investigated the question of whether MALDI-TOF MS can be used for accurate sub-differentiation of strains and isolates of two important nosocomial pathogens Enterococcus faecium and Staphylococcus aureus. For this purpose, a selection of 112 pre-characterized E. faecium isolates (clonal complexes CC2, CC5, CC9, CC17, CC22, CC25, CC26, CC92 altogether 52 multilocus sequence types) and 59 diverse S. aureus isolates (mostly methicillin resistant; CC5, CC8, CC22, CC30, CC45, CC398) were studied using a combination of MALDI-TOF MS and advanced methods of spectral data analysis. The strategy of MS data evaluation included manual peak inspection on the basis of pseudo gel views, unsupervised hierarchical cluster analysis and supervised artificial neural network (ANN) analysis. We were capable of differentiating patterns of hospital-associated E. faecium isolates (CC17) from other strains of E. faecium with 87% accuracy, but failed to identify lineage-specific biomarker peaks. For S. aureus pattern analyses we were able to confirm a number of signals described in previous studies, but often failed to identify biomarkers that would allow a consistent and reliable identification of phylogenetic lineages, clonal complexes or sequence types. Hence, the discriminatory power of MALDI-TOF MS was found to be insufficient for reliably sub-differentiating E. faecium and S. aureus isolates to the level of distinct clones or clonal complexes, such as assessed by MLST. Further, a comparison between peak patterns of susceptible and resistant isolates did not identify statistically relevant marker peaks linked to glycopeptide resistance determinants (vanA, vanB) in E. faecium, or the methicillin resistance determinant (mecA) in S. aureus. PMID:24614010

  6. A novel dereplication strategy for the identification of two new trace compounds in the extract of Gastrodia elata using UHPLC/Q-TOF-MS/MS.

    PubMed

    Li, Zhifeng; Wang, Yawei; Ouyang, Hui; Lu, Yu; Qiu, Yan; Feng, Yulin; Jiang, Hongliang; Zhou, Xin; Yang, Shilin

    2015-04-15

    An ultra performance liquid chromatography (UHPLC) coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was used in the structural determination of natural compounds in Gastrodia elata. A total of 64 compounds were identified or tentatively characterized. The strategy used for characterization was comparing their retention time and fragmentation behaviors with those of the reference standards, or investigating their accurate mass measurements and characteristic fragmentation patterns followed by low-energy collision dissociation tandem mass spectrometry (CID-MS/MS). Phenolic conjugates mainly underwent consecutive losses of gastrodin residues and combined losses of H2O and CO2 from their citric acid units under negative MS/MS conditions. According to these rules, we have successfully characterized fifteen potential novel compounds. To confirm the reliability of this strategy, two targeted unknown trace parishins were obtained from G. elata by LC/MS-guided isolation. Based on the analysis of data from NMR spectroscopy and other techniques, the two unknown parishins were identified as 2-[4-O-(β-d-glucopyranosyl)benzyl]-3-methyl-citrate (parishin J) and 1,2-di-[4-O-(β-d-glucopyranosyl)benzyl]-3-methyl-citrate (parishin K), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our knowledge on parishins in Gastrodia species, and the proposed strategy was proven efficient and reliable in the discovery of new minor compounds from herbal extracts. PMID:25746751

  7. Chemometrics in mass spectrometry

    NASA Astrophysics Data System (ADS)

    Varmuza, Kurt

    1992-09-01

    New developments and applications of chemometric methods in mass spectrometry published since 1988 are summarized with emphasis on computer-assisted methods for the interpretation of mass spectral data and on analytical applications.

  8. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  9. Rapid, Sensitive, and Specific Escherichia coli H Antigen Typing by Matrix-Assisted Laser Desorption Ionization–Time of Flight-Based Peptide Mass Fingerprinting

    PubMed Central

    Chui, Huixia; Chan, Michael; Hernandez, Drexler; Chong, Patrick; McCorrister, Stuart; Robinson, Alyssia; Walker, Matthew; Peterson, Lorea A. M.; Ratnam, Sam; Haldane, David J. M.; Bekal, Sadjia; Wylie, John; Chui, Linda; Westmacott, Garrett; Xu, Bianli; Drebot, Mike; Nadon, Celine; Knox, J. David

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has gained popularity in recent years for rapid bacterial identification, mostly at the genus or species level. In this study, a rapid method to identify the Escherichia coli flagellar antigen (H antigen) at the subspecies level was developed using a MALDI-TOF MS platform with high specificity and sensitivity. Flagella were trapped on a filter membrane, and on-filter trypsin digestion was performed. The tryptic digests of each flagellin then were collected and analyzed by MALDI-TOF MS through peptide mass fingerprinting. Sixty-one reference strains containing all 53 H types and 85 clinical strains were tested and compared to serotyping designations. Whole-genome sequencing was used to resolve conflicting results between the two methods. It was found that DHB (2,5-dihydroxybenzoic acid) worked better than CHCA (α-cyano-4-hydroxycinnamic acid) as the matrix for MALDI-TOF MS, with higher confidence during protein identification. After method optimization, reference strains representing all 53 E. coli H types were identified correctly by MALDI-TOF MS. A custom E. coli flagellar/H antigen database was crucial for clearly identifying the E. coli H antigens. Of 85 clinical isolates tested by MALDI-TOF MS-H, 75 identified MS-H types (88.2%) matched results obtained from traditional serotyping. Among 10 isolates where the results of MALDI-TOF MS-H and serotyping did not agree, 60% of H types characterized by whole-genome sequencing agreed with those identified by MALDI-TOF MS-H, compared to only 20% by serotyping. This MALDI-TOF MS-H platform can be used for rapid and cost-effective E. coli H antigen identification, especially during E. coli outbreaks. PMID:26019207

  10. A transient tobacco expression system coupled to MALDI-TOF-MS allows validation of the impact of differential targeting on structure and activity of a recombinant therapeutic glycoprotein produced in plants.

    PubMed

    Mokrzycki-Issartel, Nathalie; Bouchon, Bernadette; Farrer, Sibille; Berland, Patricia; Laparra, Hélène; Madelmont, Jean Claude; Theisen, Manfred

    2003-09-25

    Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants. PMID:14527682

  11. Selective identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of different types of gluten in foods made with cereal mixtures.

    PubMed

    Camafeita, E; Solís, J; Alfonso, P; López, J A; Sorell, L; Méndez, E

    1998-10-01

    The gluten toxic fractions responsible for the mucosal damage in coeliac disease (CD), so-called gliadins, hordeins, secalins and avenins from a large number (30-40) of wheat, barley, rye and oats cultivars respectively, have been mass analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Gliadin, secalin and avenin characteristic mass profiles are nearly identical amongst distinct cultivars from the corresponding cereal, while hordeins profiles show more variability depending on the particular barley cultivar. On the basis of these four distinguishable characteristic mass patterns spreading within the 20,000-40,000 Da range, MALDI-TOF-MS has permitted the direct and simultaneous visualization of gliadins, hordeins, secalins and avenins in foods elaborated with cereal mixtures of wheat, barley, rye and oats. This capacity has been demonstrated by mass analyzing foods made with these four cereals in varying ratios. Thus MALDI-TOF-MS can be preliminarily established as a unique system with the ability to discriminate the specific type of gluten toxic fractions present in food samples. PMID:9818408

  12. Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chilli products by capillary liquid chromatography-electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry.

    PubMed

    Calbiani, F; Careri, M; Elviri, L; Mangia, A; Zagnoni, I

    2004-11-26

    The potential of capillary liquid chromatography (microLC)-quadrupole/time-of-flight mass spectrometry (Q-TOF MS) for the confirmation of Sudan I, II, III and IV azo-dyes as contaminants in hot-chilli food products was demonstrated. Using the microLC-electrospray ionization (ESI)-Q-TOF MS technique, accurate mass measurements of Sudan dyes were performed both on standard solutions and on matrices. Precision of exact mass measurements was calculated taking into account the ion statistics according to the number of ion sampled in the measurement. Accurate mass measurements by MS/MS experiments were performed to elucidate azo-dye fragmentation patterns. Selectivity of the microLC-Q-TOF MS method was assessed by evaluating matrix suppression effects by pre-column injection of blank hot chilli tomato sauce matrices. The results were compared with those obtained on a LC-triple quadrupole-MS system. Confirmation of Sudan I present in hot chill tomato sauce samples was obtained by accurate mass measurements. In real samples trueness of exact mass measurements was estimated to be 1.6 and 4.4 ppm when calculated for hot chilli tomato sauce and hot chilli tomato with cheese sauce samples, respectively; precision was calculated around 9.5 ppm. PMID:15595660

  13. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS

    PubMed Central

    2012-01-01

    Background Lymph node status is not part of the staging system for cervical cancer, but provides important information for prognosis and treatment. We investigated whether lymph node status can be predicted with proteomic profiling. Material & methods Serum samples of 60 cervical cancer patients (FIGO I/II) were obtained before primary treatment. Samples were run through a HPLC depletion column, eliminating the 14 most abundant proteins ubiquitously present in serum. Unbound fractions were concentrated with spin filters. Fractions were spotted onto CM10 and IMAC30 surfaces and analyzed with surface-enhanced laser desorption time of flight (SELDI-TOF) mass spectrometry (MS). Unsupervised peak detection and peak clustering was performed using MASDA software. Leave-one-out (LOO) validation for weighted Least Squares Support Vector Machines (LSSVM) was used for prediction of lymph node involvement. Other outcomes were histological type, lymphvascular space involvement (LVSI) and recurrent disease. Results LSSVM models were able to determine LN status with a LOO area under the receiver operating characteristics curve (AUC) of 0.95, based on peaks with m/z values 2,698.9, 3,953.2, and 15,254.8. Furthermore, we were able to predict LVSI (AUC 0.81), to predict recurrence (AUC 0.92), and to differentiate between squamous carcinomas and adenocarcinomas (AUC 0.88), between squamous and adenosquamous carcinomas (AUC 0.85), and between adenocarcinomas and adenosquamous carcinomas (AUC 0.94). Conclusions Potential markers related with lymph node involvement were detected, and protein/peptide profiling support differentiation between various subtypes of cervical cancer. However, identification of the potential biomarkers was hampered by the technical limitations of SELDI-TOF MS. PMID:22694804

  14. Microbial identification and automated antibiotic susceptibility testing directly from positive blood cultures using MALDI-TOF MS and VITEK 2.

    PubMed

    Wattal, C; Oberoi, J K

    2016-01-01

    The study addresses the utility of Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight mass spectrometry (MALDI-TOF MS) using VITEK MS and the VITEK 2 antimicrobial susceptibility testing (AST) system for direct identification (ID) and timely AST from positive blood culture bottles using a lysis-filtration method (LFM). Between July and December 2014, a total of 140 non-duplicate mono-microbial blood cultures were processed. An aliquot of positive blood culture broth was incubated with lysis buffer before the bacteria were filtered and washed. Micro-organisms recovered from the filter were first identified using VITEK MS and its suspension was used for direct AST by VITEK 2 once the ID was known. Direct ID and AST results were compared with classical methods using solid growth. Out of the 140 bottles tested, VITEK MS resulted in 70.7% correct identification to the genus and/ or species level. For the 103 bottles where identification was possible, there was agreement in 97 samples (94.17%) with classical culture. Compared to the routine method, the direct AST resulted in category agreement in 860 (96.5%) of 891 bacteria-antimicrobial agent combinations tested. The results of direct ID and AST were available 16.1hours before those of the standard approach on average. The combined use of VITEK MS and VITEK 2 directly on samples from positive blood culture bottles using a LFM technique can result in rapid and reliable ID and AST results in blood stream infections to result in early institution of targeted treatment. The combination of LFM and AST using VITEK 2 was found to expedite AST more reliably. PMID:26597941

  15. Comprehensive quantitative analysis of Shuang-Huang-Lian oral liquid using UHPLC-Q-TOF-MS and HPLC-ELSD.

    PubMed

    Zhang, Tian-Bo; Yue, Rui-Qi; Xu, Jun; Ho, Hing-Man; Ma, Dik-Lung; Leung, Chung-Hang; Chau, Siu-Leung; Zhao, Zhong-Zhen; Chen, Hu-Biao; Han, Quan-Bin

    2015-01-01

    Shuang-Huang-Lian oral liquid (SHL) is a well-known Chinese patent drug containing three herbal medicines: Radix Scutellariae, Flos Lonicerae Japonicae and Fructus Forsythiae. It is usually used to treat acute upper respiratory tract infection caused by virus or bacteria. Although the licensing of botanical drug Veregen approved by FDA has indicated the importance of quantitative analysis in quality control of herbal medicines, quantitative evaluation of a Chinese patent drug like SHL remains a challenge due to the complex chemical profile. In this study, 15 small molecular components of SHL (four flavonoids, six quinic acid derivatives, three saponins and two phenylethanoid glycosides) were simultaneously determined using ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The contents of the three major saccharides, namely fructose, glucose and sucrose were quantified using high performance liquid chromatography-evaporative light scattering detector on an amino column (HPLC-ELSD). The macromolecules were quantified by precipitating in 80% ethanol, drying the precipitate, and then weighing. The established methods were validated in terms of linearity, sensitivity, precision, accuracy and stability and then successfully applied to analyze 12 batches of commercial products of SHL produced by four different manufacturers. The results indicated that 57.52-78.11% (w/w) of SHL could be quantitatively determined (non-saccharide small molecules: 1.77-3.75%, monosaccharides: 0.93-20.93%, macromolecules: 2.63-5.76% and sucrose: 49.20-65.94%). This study may provide a useful way to comprehensively evaluate the quality of SHL. PMID:25222137

  16. Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS.

    PubMed

    Cho, Kyoungwon; Kim, Yuran; Wi, Soo Jin; Seo, Jong Bok; Kwon, Joseph; Chung, Joo Hee; Park, Ky Young; Nam, Myung Hee

    2012-11-01

    A biphasic reactive oxygen species (ROS) production has previously been observed in tobacco at 1 and 48 h after inoculation with the hemibiotrophic compatible pathogen, Phytophthora parasitica var. nicotianae (Ppn). To characterize the response of tobacco to biphasically produced ROS concerning the propagation of Ppn, ultraperformance liquid chromatography-quadrupole-time of flight/ mass spectrometry (UPLC-Q-TOF/MS) based metabolic profiling combined with multivariate statistical analysis was performed. Among the nonredundant 355 mass ions in ESI+ mode and 345 mass ions in ESI- mode that were selected as significantly changed by Ppn inoculation (|p(corr)| > 0.6 on S-plot of orthogonal partial least-squares discriminant analysis (OPLS-DA), fold-change > 2, and p < 0.05 in the independent two-sample t test), 76 mass ions were identified on the basis of their accurate mass ions and MS/MS spectra. Phenolic amino acids, phenylpropanoids, hydroxycinnamic acid amides, linoleic acid, linolenic acid, lysophospholipids, glycoglycerolipids, and trioxidized phospholipids were identified as having changed after Ppn inoculation. On the basis of their quantitative changes, the metabolic responses occurring at each phase of ROS production after Ppn inoculation were investigated in this study. PMID:23072474

  17. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide.

    PubMed

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-08-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides π-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis. PMID:25990923

  18. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-08-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides π-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis.

  19. Analysis of illicit dietary supplements sold in the Italian market: identification of a sildenafil thioderivative as adulterant using UPLC-TOF/MS and GC/MS.

    PubMed

    Damiano, Fabio; Silva, Claudia; Gregori, Adolfo; Vacondio, Federica; Mor, Marco; Menozzi, Mattia; Di Giorgio, Domenico

    2014-05-01

    Identification of pharmaceutical active ingredients sildenafil and tadalafil and the characterization of a dimethylated thio-derivative of sildenafil, called thioaildenafil or thiodimethylsildenafil, in illicit dietary supplements were described. A multi-residual ultra-performance liquid chromatography-time of flight mass spectrometry (UPLC-TOF/MS) method was developed to screen for the presence of the phosphodiesterase-5 (PDE-5) inhibitors sildenafil, tadalafil, and vardenafil and their analogues thioaildenafil and thiohomosildenafil in powders and pharmaceutical dosage forms. The study was developed in connection with an operation supervised by the Italian Medicines Agency (A.I.F.A.), aimed to monitor dietary supplements in the Italian market. In two of the eleven specimens under investigation, high-resolution mass spectrometry (HR-MS) allowed the identification of the PDE-5 inhibitors sildenafil and tadalafil, while another specimen proved to contain a unapproved dimethylated thioderivative of sildenafil, thioaildenafil or thiodimethylsildenafil, identified for the first time in Italy as adulterant in food supplements. PMID:24796952

  20. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    PubMed

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect. PMID:25820813

  1. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism.

    PubMed

    Prakash, A; Sharma, C; Singh, A; Kumar Singh, P; Kumar, A; Hagen, F; Govender, N P; Colombo, A L; Meis, J F; Chowdhary, A

    2016-03-01

    Candida auris is a multidrug-resistant nosocomial bloodstream pathogen that has been reported from Asian countries and South Africa. Herein, we studied the population structure and genetic relatedness among 104 global C. auris isolates from India, South Africa and Brazil using multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RPB1, RPB2 and internal transcribed spacer (ITS) and D1/D2 regions of the ribosomal DNA were sequenced for MLST. Further, genetic variation and proteomic assessment was carried out using AFLP and MALDI-TOF MS, respectively. Both MLST and AFLP typing clearly demarcated two major clusters comprising Indian and Brazilian isolates. However, the South African isolates were randomly distributed, suggesting different genotypes. MALDI-TOF MS spectral profiling also revealed evidence of geographical clustering but did not correlate fully with the genotyping methods. Notably, overall the population structure of C. auris showed evidence of geographical clustering by all the three techniques analysed. Antifungal susceptibility testing by the CLSI microbroth dilution method revealed that fluconazole had limited activity against 87% of isolates (MIC90, 64 mg/L). Also, MIC90 of AMB was 4 mg/L. Candida auris is emerging as an important yeast pathogen globally and requires reproducible laboratory methods for identification and typing. Evaluation of MALDI-TOF MS as a typing method for this yeast is warranted. PMID:26548511

  2. Extraction of oxytocin and arginine-vasopressin from serum and plasma for radioimmunoassay and surface-enhanced laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Cool, David R; DeBrosse, David

    2003-07-25

    Oxytocin and arginine-vasopressin (AVP) are secreted into the blood in low concentrations. To analyze these peptides, we investigated two common extraction procedures, acetone-ether precipitation and C(18)-SepPak columns. Recovery from both procedures approached 70-80% of the spiked amount, though the SepPak columns were more efficient. C(18)-SepPak columns were used to sequentially separate oxytocin from AVP by eluting oxytocin first with 98% acetone followed by elution of AVP with 80% acetonitrile. Surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) was used to analyze oxytocin and AVP extracted with C(18)-SepPak columns from an autistic patient's plasma sample. We conclude that C(18)-SepPaks provide more consistent and efficient peptide extraction from serum or plasma that augments both quantitative and qualitative analysis by radioimmunoassay and SELDI-TOF MS. PMID:12860046

  3. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Rapid Identification of Beta-Hemolytic Streptococci▿

    PubMed Central

    Cherkaoui, Abdessalam; Emonet, Stéphane; Fernandez, José; Schorderet, Didier; Schrenzel, Jacques

    2011-01-01

    This study was undertaken to evaluate matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of beta-hemolytic streptococci. We compared Bruker Biotyper 2.0 with Vitek2 coupled to the agglutination test. MALDI-TOF MS analysis of 386 beta-hemolytic streptococcal isolates yielded high-confidence identification to the species level for all 386 isolates. The Vitek2 gave high-confidence identification to the species level for 88% of Streptococcus agalactiae isolates (n = 269/306), 92% of Streptococcus pyogenes isolates (n = 48/52), and 39% of isolates of Streptococcus dysgalactiae serogroups C and G (n = 11/28). PMID:21697322

  4. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    PubMed

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens. PMID:25466282

  5. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of Beta-hemolytic streptococci.

    PubMed

    Cherkaoui, Abdessalam; Emonet, Stéphane; Fernandez, José; Schorderet, Didier; Schrenzel, Jacques

    2011-08-01

    This study was undertaken to evaluate matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of beta-hemolytic streptococci. We compared Bruker Biotyper 2.0 with Vitek2 coupled to the agglutination test. MALDI-TOF MS analysis of 386 beta-hemolytic streptococcal isolates yielded high-confidence identification to the species level for all 386 isolates. The Vitek2 gave high-confidence identification to the species level for 88% of Streptococcus agalactiae isolates (n = 269/306), 92% of Streptococcus pyogenes isolates (n = 48/52), and 39% of isolates of Streptococcus dysgalactiae serogroups C and G (n = 11/28). PMID:21697322

  6. Rapid identification of Gram-negative organisms from blood culture bottles using a modified extraction method and MALDI-TOF mass spectrometry.

    PubMed

    Gray, Timothy J; Thomas, Lee; Olma, Tom; Iredell, Jonathan R; Chen, Sharon C-A

    2013-10-01

    The application of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS) directly to blood culture broth has potential to identify bloodstream infection earlier and facilitate timely management. We prospectively tested a novel, rapid, and inexpensive in-house spin-lysis protocol with formic acid extraction and compared MALDI-TOF MS identification of Gram-negative bacteria with traditional phenotypic methods (Phoenix™) directly from 318 BACTEC™ (Becton Dickinson, Franklin Lakes, USA) blood cultures. The MS score was ≥1.7 in 268 (91.8%) monomicrobial broths, with concordance to genus and species level of 100% and 97.0%, respectively. MALDI-TOF MS still has limited capacity to detect all species in polymicrobial broths. PMID:23891220

  7. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Blood Isolates of Vibrio Species

    PubMed Central

    Cheng, Wern-Cherng; Jan, I-Shiow; Chen, Jong-Min; Teng, Shih-Hua; Teng, Lee-Jene; Sheng, Wang-Huei; Ko, Wen-Chien

    2015-01-01

    Among 56 blood isolates of Vibrio species identified by sequencing analysis of 16S rRNA and rpoB genes, the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system correctly identified all isolates of Vibrio vulnificus (n = 20), V. parahaemolyticus (n = 2), and V. fluvialis (n = 1) but none of the isolates of serogroup non-O1/O139 (non-serogroup O1, non-O139) V. cholerae (n = 33) to the species level. All of these serogroup non-O1/O139 V. cholerae isolates were correctly identified using the newly created MALDI-TOF MS database. PMID:25740773

  8. Polyphasic Approach Including MALDI-TOF MS/MS Analysis for Identification and Characterisation of Fusarium verticillioides in Brazilian Corn Kernels.

    PubMed

    Chang, Susane; Porto Carneiro-Leão, Mariele; Ferreira de Oliveira, Benny; Souza-Motta, Cristina; Lima, Nelson; Santos, Cledir; Tinti de Oliveira, Neiva

    2016-01-01

    Fusarium verticillioides is considered one of the most important global sources of fumonisins contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)₅ and (GACA)₄. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol). PMID:26927172

  9. Polyphasic Approach Including MALDI-TOF MS/MS Analysis for Identification and Characterisation of Fusarium verticillioides in Brazilian Corn Kernels

    PubMed Central

    Chang, Susane; Porto Carneiro-Leão, Mariele; Ferreira de Oliveira, Benny; Souza-Motta, Cristina; Lima, Nelson; Santos, Cledir; Tinti de Oliveira, Neiva

    2016-01-01

    Fusarium verticillioides is considered one of the most important global sources of fumonisins contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol). PMID:26927172

  10. Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk.

    PubMed

    Soukoulis, Christos; Aprea, Eugenio; Biasioli, Franco; Cappellin, Luca; Schuhfried, Erna; Märk, Tilmann D; Gasperi, Flavia

    2010-07-30

    We apply, for first time, the recently developed proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) apparatus as a rapid method for the monitoring of lactic acid fermentation (LAF) of milk. PTR-TOF-MS has been proposed as a very fast, highly sensitive and versatile technique but there have been no reports of its application to dynamic biochemical processes with relevance to the food industry. LAF is a biochemical-physicochemical dynamic process particularly relevant for the dairy industry as it is an important step in the production of many dairy products. Further, LAF is important in the utilization of the by-products of the cheese industry, such as whey wastewaters. We show that PTR-TOF-MS is a powerful method for the monitoring of major volatile organic chemicals (VOCs) formed or depleted during LAF, including acetaldehyde, diacetyl, acetoin and 2-propanone, and it also provides information about the evolution of minor VOCs such as acetic acid, 2,3-pentanedione, ethanol, and off-flavor related VOCs such as dimethyl sulfide and furfural. This can be very important considering that the conventional measurement of pH decrease during LAF is often ineffective due to the reduced response of pH electrodes resulting from the formation of protein sediments. Solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS) data on the inoculated milk base and final fermented product are also presented to supporting peak identification. We demonstrate that PTR-TOF-MS can be used as a rapid, efficient and non-invasive method for the monitoring of LAF from headspace, supplying important data about the quality of the final product and that it may be used to monitor the efficacy of manufacturing practices. PMID:20552689

  11. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  12. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for monitoring the digestion of phosphatidylcholine by pancreatic phospholipase A(2).

    PubMed

    Petković, Marijana; Müller, Julia; Müller, Matthias; Schiller, Jürgen; Arnold, Klaus; Arnhold, Jürgen

    2002-09-01

    Different methods were established for monitoring the phospholipase A(2)(PLA(2)) activity but all of them are rather cumbersome and time consuming. In this paper we have investigated the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the determination of the PLA(2) activity. Phosphatidylcholine (PC) was digested with pancreatic PLA(2) under different conditions, i.e., various Ca(2+), PC, and PLA(2) concentrations. The digestion products were analyzed by MALDI-TOF MS and the concentration of lysophosphatidylcholine (LPC)-generated upon PLA(2) digestion-was determined by the application of an internal standard (known concentration) and by a comparison of their signal-to-noise ratios. The results clearly demonstrate that the LPC concentration determined from the MALDI-TOF mass spectra correlates directly with the activity of the applied enzyme. Additionally, LPC concentration increased with an increase in Ca(2+), as well as in the PC concentration. A single MALDI-TOF mass spectrum provides immediate information on the digestion products as well as on the residual substrate without requirements for any previous derivatization. MALDI-TOF MS can be easily and simply applied for monitoring the PLA(2) activity and we assume that this method might also be useful for other types of phospholipases. PMID:12234464

  13. Nitrocellulose film substrate minimizes fragmentation in matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of triacylglycerols.

    PubMed

    Picariello, Gianluca; Romano, Raffaele; Addeo, Francesco

    2010-07-01

    The potential of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the analysis of intact triacylglycerols (TAGs) is generally limited by the extensive in-source prompt fragmentation. The sequential deposition of matrix and TAGs over the stainless steel target precoated with a thin layer of nitrocellulose (NC) drastically reduced fragmentation in the MALDI-TOF MS profiling of oils and fats. The NC MALDI-TOF MS profiles of native and thermally stressed virgin olive oil and butter are reported as case studies, along with test analyses of a standard mixture of mono-, di-, and triacylglycerols. Mass spectra were almost completely devoid of both fragment and matrix ion signals, thus disclosing relevant information, especially in the low molecular mass range. The detection of several partial acylglycerols of low abundance and minor TAGs that are barely observed with other techniques also provided evidence for an increased dynamic range of NC MALDI-TOF MS that was due to the minimization of suppressive effects. The NC film substrate also improved the shot-to-shot and sample-to-sample reproducibility of the ion production through the exhibition of a more homogeneous matrix/analyte cocrystallization, thus enabling MALDI-based measurements to a consistent quantification of TAGs. PMID:20533836

  14. Comparison of the Accuracy of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry with That of Other Commercial Identification Systems for Identifying Staphylococcus saprophyticus in Urine

    PubMed Central

    Lee, Tai-Fen; Lee, Hao; Chen, Chung-Ming; Du, Shin-Hei; Cheng, Ya-Chih; Hsu, Chen-Ching; Chung, Meng-Yu; Teng, Shih-Hua; Teng, Lee-Jene

    2013-01-01

    Among 30 urinary isolates of Staphylococcus saprophyticus identified by sequencing methods, the rate of accurate identification was 100% for Bruker Biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), 86.7% for the Phoenix PID and Vitek 2 GP systems, 93.3% for the MicroScan GP33 system, and 46.7% for the BBL CHROMagar Orientation system. PMID:23390286

  15. Comparison of the accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry with that of other commercial identification systems for identifying Staphylococcus saprophyticus in urine.

    PubMed

    Lee, Tai-Fen; Lee, Hao; Chen, Chung-Ming; Du, Shin-Hei; Cheng, Ya-Chih; Hsu, Chen-Ching; Chung, Meng-Yu; Teng, Shih-Hua; Teng, Lee-Jene; Hsueh, Po-Ren

    2013-05-01

    Among 30 urinary isolates of Staphylococcus saprophyticus identified by sequencing methods, the rate of accurate identification was 100% for Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), 86.7% for the Phoenix PID and Vitek 2 GP systems, 93.3% for the MicroScan GP33 system, and 46.7% for the BBL CHROMagar Orientation system. PMID:23390286

  16. Misidentification of Saprochaete clavata as Magnusiomyces capitatus in Clinical Isolates: Utility of Internal Transcribed Spacer Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Importance of Reliable Databases

    PubMed Central

    Desnos-Ollivier, Marie; Blanc, Catherine; Garcia-Hermoso, Dea; Hoinard, Damien; Alanio, Alexandre

    2014-01-01

    Saprochaete clavata and Magnusiomyces capitatus are human pathogens that are frequently mistaken for each other due to their similar phenotypes and erroneous or limited databases. Based on internal transcribed spacer (ITS) sequences, we propose species-specific carbon assimilation patterns and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) fingerprints that enable the identification of S. clavata, M. capitatus, and Galactomyces candidus to the species level. PMID:24696028

  17. Rapid Identification of Bacteria Directly from Positive Blood Cultures by Use of a Serum Separator Tube, Smudge Plate Preparation, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Chen, Yan; Porter, Vanessa; Mubareka, Samira; Kotowich, Leona

    2015-01-01

    We analyzed the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) of smudge plate growth for bacterial identification from 400 blood cultures. Ninety-seven percent of Gram-negative bacilli and 85% of Gram-positive organisms were correctly identified within 4 h; only eight isolates (2.0%) were misidentified. This method provided rapid and accurate microbial identification from positive blood cultures. PMID:26202115

  18. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  19. Clinical and Microbiological Features of a Cystic Fibrosis Patient Chronically Colonized with Pandoraea sputorum Identified by Combining 16S rRNA Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fernández-Olmos, A.; Morosini, M. I.; Lamas, A.; García-Castillo, M.; García-García, L.; Máiz, L.

    2012-01-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  20. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  1. MALDI-TOF mass spectrometry as a tool for the discrimination of high-risk Escherichia coli clones from phylogenetic groups B2 (ST131) and D (ST69, ST405, ST393).

    PubMed

    Novais, Â; Sousa, C; de Dios Caballero, J; Fernandez-Olmos, A; Lopes, J; Ramos, H; Coque, T M; Cantón, R; Peixe, L

    2014-08-01

    Reliable, quick and low-cost methods are needed for the early detection of multidrug-resistant and highly virulent high-risk B2 and D Escherichia coli clones or clonal complexes (HiRCC). Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) seems to have a good discriminatory potential at different subspecies levels, but it was never evaluated for the discrimination of E. coli clones. We assessed the potential of MALDI-TOF MS coupled to multivariate data analysis to discriminate representative E. coli B2 and D HiRCC. Seventy-three E. coli isolates from B2 (including ST131 and B2 non-ST131 clones) and D (ST69, ST393, ST405) with variable pulsed-field gel electrophoresis (PFGE) patterns, origins and dates (1980-2010) were tested. MS spectra were acquired from independent extracts obtained from different plate cultures in two different Microflex LT MALDI-TOF devices (Bruker) after a standard extraction procedure. MALDI-TOF MS fingerprinting analysis revealed a good discriminatory ability between the four HiRCC analysed (ST131, ST69, ST405, ST393) and between B2 ST131 and other B2 non-ST131 isolates. Clusters defined by MALDI-TOF MS were consistent with the clonal complexes assigned by multilocus sequence typing (MLST), although differences were detected regarding the composition of clusters obtained by the comparison of PFGE profiles. We demonstrate, for the first time, that characteristic mass fingerprints of different E. coli HiRCC are sufficiently discriminatory and robust to enable their differentiation by MALDI-TOF MS, which might represent a promising tool for the optimisation of infection control, individual patient management and large-scale epidemiological studies of public health relevance. The good correlation between phenotypic and genotypic features further corroborates phylogenetic relationships delineated by MLST. PMID:24599708

  2. Environmental Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, Albert T.

    2013-06-01

    Environmental mass spectrometry is an important branch of science because it provides many of the data that underlie policy decisions that can directly influence the health of people and ecosystems. Environmental mass spectrometry is currently undergoing rapid development. Among the most relevant directions are a significant broadening of the lists of formally targeted compounds; a parallel interest in nontarget chemicals; an increase in the reliability of analyses involving accurate mass measurements, tandem mass spectrometry, and isotopically labeled standards; and a shift toward faster high-throughput analysis, with minimal sample preparation, involving various approaches, including ambient ionization techniques and miniature instruments. A real revolution in analytical chemistry could be triggered with the appearance of robust, simple, and sensitive portable mass spectrometers that can utilize ambient ionization techniques. If the cost of such instruments is reduced to a reasonable level, mass spectrometers could become valuable household devices.

  3. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products

    NASA Astrophysics Data System (ADS)

    Es-Safi, Nour-Eddine; Essassi, El Mokhtar; Massoui, Mohamed; Banoub, Joseph

    Mass spectrometry is an important tool for the identification and structural elucidation of natural and synthesized compounds. Its high sensitivity and the possibility of coupling liquid chromatography with mass spectrometry detection make it a technique of choice for the investigation of complex mixtures like raw natural extracts. The mass spectrometer is a universal detector that can achieve very high sensitivity and provide information on the molecular mass. More detailed information can be subsequently obtained by resorting to collision-induced dissociation tandem mass spectrometry (CID-MS/MS). In this review, the application of mass spectrometric techniques for the identification of natural and synthetic compounds is presented. The gas-phase fragmentation patterns of a series of four natural flavonoid glycosides, three synthesized benzodiazepines and two synthesized quinoxalinone derivatives were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry techniques. Exact accurate masses were measured using a modorate resolution quadrupole orthogonal time-of-flight QqTOF-MS/MS hybrid mass spectrometer instrument. Confirmation of the molecular masses and the chemical structures of the studied compounds were achieved by exploring the gas-phase breakdown routes of the ionized molecules. This was rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole hexapole-quadrupole (QhQ) tandem mass spectrometer.

  4. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    PubMed Central

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  5. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry.

    PubMed

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0-10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  6. Microorganism Identification Based On MALDI-TOF-MS Fingerprints

    NASA Astrophysics Data System (ADS)

    Elssner, Thomas; Kostrzewa, Markus; Maier, Thomas; Kruppa, Gary

    Advances in MALDI-TOF mass spectrometry have enabled the ­development of a rapid, accurate and specific method for the identification of bacteria directly from colonies picked from culture plates, which we have named the MALDI Biotyper. The picked colonies are placed on a target plate, a drop of matrix solution is added, and a pattern of protein molecular weights and intensities, "the protein fingerprint" of the bacteria, is produced by the MALDI-TOF mass spectrometer. The obtained protein mass fingerprint representing a molecular signature of the microorganism is then matched against a database containing a library of previously measured protein mass fingerprints, and scores for the match to every library entry are produced. An ID is obtained if a score is returned over a pre-set threshold. The sensitivity of the techniques is such that only approximately 104 bacterial cells are needed, meaning that an overnight culture is sufficient, and the results are obtained in minutes after culture. The improvement in time to result over biochemical methods, and the capability to perform a non-targeted identification of bacteria and spores, potentially makes this method suitable for use in the detect-to-treat timeframe in a bioterrorism event. In the case of white-powder samples, the infectious spore is present in sufficient quantity in the powder so that the MALDI Biotyper result can be obtained directly from the white powder, without the need for culture. While spores produce very different patterns from the vegetative colonies of the corresponding bacteria, this problem is overcome by simply including protein fingerprints of the spores in the library. Results on spores can be returned within minutes, making the method suitable for use in the "detect-to-protect" timeframe.

  7. OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139 and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay

    PubMed Central

    2014-01-01

    Background Cholera is an acute diarrheal disease caused by Vibrio cholerae. Outbreaks are caused by a genetically homogenous group of strains from serogroup O1 or O139 that are able to produce the cholera toxin. Rapid detection and identification of these epidemic strains is essential for an effective response to cholera outbreaks. Results The use of ferulic acid as a matrix in a new MALDI-TOF MS assay increased the measurable mass range of existing MALDI-TOF MS protocols for bacterial identification. The assay enabled rapid discrimination between epidemic V. cholerae O1/O139 strains and other less pathogenic V. cholerae strains. OmpU, an outer membrane protein whose amino acid sequence is highly conserved among epidemic strains of V. cholerae, appeared as a discriminatory marker in the novel MALDI-TOF MS assay. Conclusions The extended mass range of MALDI-TOF MS measurements obtained by using ferulic acid improved the screening for biomarkers in complex protein mixtures. Differences in the mass of abundant homologous proteins due to variation in amino acid sequences can rapidly be examined in multiple samples. Here, a rapid MALDI-TOF MS assay was developed that could discriminate between epidemic O1/O139 strains and other less pathogenic V. cholerae strains based on differences in mass of the OmpU protein. It appeared that the amino acid sequence of OmpU from epidemic V. cholerae O1/O139 strains is unique and highly conserved. PMID:24943244

  8. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory

    PubMed Central

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A.; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C.J.; Nassif, Xavier; Armengaud, Jean

    2014-01-01

    Whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640–12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. PMID:23916798

  9. Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey.

    PubMed

    Rodríguez-Cabo, Tamara; Moniruzzaman, Mohammed; Rodríguez, Isaac; Ramil, María; Cela, Rafael; Gan, Siew Hua

    2015-08-01

    Time-of-flight accurate mass spectrometry (TOF-MS), following a previous chromatographic (gas or liquid chromatography) separation step, is applied to the identification and structural elucidation of quinoline-like alkaloids in honey. Both electron ionization (EI) MS and positive electrospray (ESI+) MS spectra afforded the molecular ions (M(.+) and M+H(+), respectively) of target compounds with mass errors below 5 mDa. Scan EI-MS and product ion scan ESI-MS/MS spectra permitted confirmation of the existence of a quinoline ring in the structures of the candidate compounds. Also, the observed fragmentation patterns were useful to discriminate between quinoline derivatives having the same empirical formula but different functionalities, such as aldoximes and amides. In the particular case of phenylquinolines, ESI-MS/MS spectra provided valuable clues regarding the position of the phenyl moiety attached to the quinoline ring. The aforementioned spectral information, combined with retention times matching, led to the identification of quinoline and five quinoline derivatives, substituted at carbon number 4, in honey samples. An isomer of phenyquinoline was also noticed; however, its exact structure could not be established. Liquid-liquid microextraction and gas chromatography (GC) TOF-MS were applied to the screening of the aforementioned compounds in a total of 62 honeys. Species displaying higher occurrence frequencies were 4-quinolinecarbonitrile, 4-quinolinecarboxaldehyde, 4-quinolinealdoxime, and the phenylquinoline isomer. The Pearson test revealed strong correlations among the first three compounds. PMID:26041455

  10. Identification of Haemophilus influenzae Type b Isolates by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Månsson, Viktor; Resman, Fredrik; Kostrzewa, Markus; Nilson, Bo; Riesbeck, Kristian

    2015-07-01

    Haemophilus influenzae type b (Hib) is, in contrast to non-type b H. influenzae, associated with severe invasive disease, such as meningitis and epiglottitis, in small children. To date, accurate H. influenzae capsule typing requires PCR, a time-consuming and cumbersome method. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) provides rapid bacterial diagnostics and is increasingly used in clinical microbiology laboratories. Here, MALDI-TOF MS was evaluated as a novel approach to separate Hib from other H. influenzae. PCR-verified Hib and non-Hib reference isolates were selected based on genetic and spectral characteristics. Mass spectra of reference isolates were acquired and used to generate different classification algorithms for Hib/non-Hib differentiation using both ClinProTools and the MALDI Biotyper software. A test series of mass spectra from 33 Hib and 77 non-Hib isolates, all characterized by PCR, was used to evaluate the algorithms. Several algorithms yielded good results, but the two best were a ClinProTools model based on 22 separating peaks and subtyping main spectra (MSPs) using MALDI Biotyper. The ClinProTools model had a sensitivity of 100% and a specificity of 99%, and the results were 98% reproducible using a different MALDI-TOF MS instrument. The Biotyper subtyping MSPs had a sensitivity of 97%, a specificity of 100%, and 93% reproducibility. Our results suggest that it is possible to use MALDI-TOF MS to differentiate Hib from other H. influenzae. This is a promising method for rapidly identifying Hib in unvaccinated populations and for the screening and surveillance of Hib carriage in vaccinated populations. PMID:25926500

  11. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive technique which provides chemical information in both the mass spectra and chemical images. PMID:24447453

  12. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  13. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their

  14. Multicenter Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Study for Identification of Clinically Relevant Nocardia spp.

    PubMed

    Blosser, Sara J; Drake, Steven K; Andrasko, Jennifer L; Henderson, Christina M; Kamboj, Kamal; Antonara, Stella; Mijares, Lilia; Conville, Patricia; Frank, Karen M; Harrington, Susan M; Balada-Llasat, Joan-Miquel; Zelazny, Adrian M

    2016-05-01

    This multicenter study analyzed Nocardia spp., including extraction, spectral acquisition, Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, and score interpretation, using three Nocardia libraries, the Bruker, National Institutes of Health (NIH), and The Ohio State University (OSU) libraries, and compared the results obtained by each center. A standardized study protocol, 150 Nocardia isolates, and NIH and OSU Nocardia MALDI-TOF MS libraries were distributed to three centers. Following standardized culture, extraction, and MALDI-TOF MS analysis, isolates were identified using score cutoffs of ≥2.0 for species/species complex-level identification and ≥1.8 for genus-level identification. Isolates yielding a score of <2.0 underwent a single repeat extraction and analysis. The overall score range for all centers was 1.3 to 2.7 (average, 2.2 ± 0.3), with common species generally producing higher average scores than less common ones. Score categorization and isolate identification demonstrated 86% agreement between centers; 118 of 150 isolates were correctly identified to the species/species complex level by all centers. Nine strains (6.0%) were not identified by any center, and six (4.0%) of these were uncommon species with limited library representation. A categorical score discrepancy among centers occurred for 21 isolates (14.0%). There was an overall benefit of 21.2% from repeat extraction of low-scoring isolates and a center-dependent benefit for duplicate spotting (range, 2 to 8.7%). Finally, supplementation of the Bruker Nocardia MALDI-TOF MS library with both the OSU and NIH libraries increased the genus-level and species-level identification by 18.2% and 36.9%, respectively. Overall, this study demonstrates the ability of diverse clinical microbiology laboratories to utilize MALDI-TOF MS for the rapid identification of clinically relevant Nocardia spp. and to implement MALDI-TOF MS libraries developed by single laboratories across institutions. PMID:26912758

  15. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  16. Capture and identification of the volatile components in crude and processed herbal medicines through on-line purge and trap technique coupled with GC × GC-TOF MS.

    PubMed

    Cao, Gang; Xu, Zhiwei; Wu, Xin; Li, Qingli; Chen, Xiaocheng

    2014-01-01

    This work aimed to investigate the volatile components in crude and processed herbal medicines (HMs). Using Atractylodis Macrocephalae Rhizoma (AMR) as a model HM, the volatile components were captured through on-line purge and trap technique and identified by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) system. A total of 224 and 171 volatile compounds were identified in crude and processed AMR samples, respectively. After frying with honey-bran, 52 compounds which were found in crude AMR samples disappeared in processed AMR samples, and 15 compounds were newly generated in processed AMR. The established method can be applied in different research areas such as HM and food processing. PMID:24960332

  17. Aerodynamic mass spectrometry interfacing of microdevices without electrospray tips.

    PubMed

    Grym, Jakub; Otevrel, Marek; Foret, Frantisek

    2006-10-01

    A new concept for electrospray coupling of microfluidic devices with mass spectrometry was developed. The sampling orifice of the time-of-flight mass spectrometer was modified with an external adapter assisting in formation and transport of the electrosprayed plume from the multichannel polycarbonate microdevice. The compact disk sized microdevice was designed with radial channels extending to the circumference of the disk. The electrospray exit ports were formed by the channel openings on the surface of the disk rim. No additional tips at the channel exits were used. Electrospray was initiated directly from the channel openings by applying high voltage between sample wells and the entrance of the external adapter. The formation of the spatially unstable droplet at the electrospray openings was eliminated by air suction provided by a pump connected to the external adapter. Compared with the air intake through the original mass spectrometer sampling orifice, more than an order of magnitude higher flow rate was achieved for efficient transport of the electrospray plume into the mass spectrometer. Additional experiments with electric potentials applied between the entrance sections of the external adapter and the mass spectrometer indicated that the air flow was the dominant transport mechanism. Basic properties of the system were tested using mathematical modeling and characterized using ESI/TOF-MS measurements of peptide and protein samples. PMID:17102844

  18. Identification of Gram-Positive Cocci by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Comparison of Different Preparation Methods and Implementation of a Practical Algorithm for Routine Diagnostics

    PubMed Central

    Schulthess, Bettina; Brodner, Katharina; Bloemberg, Guido V.; Zbinden, Reinhard; Böttger, Erik C.

    2013-01-01

    This study compared three sample preparation methods (direct transfer, the direct transfer-formic acid method with on-target formic acid treatment, and ethanol-formic acid extraction) for the identification of Gram-positive cocci with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). A total of 156 Gram-positive cocci representing the clinically most important genera, Aerococcus, Enterococcus, Staphylococcus, and Streptococcus, as well as more rare genera, such as Gemella and Granulicatella, were analyzed using a Bruker MALDI Biotyper. The rate of correct genus-level identifications was approximately 99% for all three sample preparation methods. The species identification rate was significantly higher for the direct transfer-formic acid method and ethanol-formic acid extraction (both 77.6%) than for direct transfer (64.1%). Using direct transfer-formic acid compared to direct transfer, the total time to result was increased by 22.6%, 16.4%, and 8.5% analyzing 12, 48, and 96 samples per run, respectively. In a subsequent prospective study, 1,619 clinical isolates of Gram-positive cocci were analyzed under routine conditions by MALDI-TOF MS, using the direct transfer-formic acid preparation, and by conventional biochemical methods. For 95.6% of the isolates, a congruence between conventional and MALDI-TOF MS identification was observed. Two major limitations were found using MALDI-TOF MS: the differentiation of members of the Streptococcus mitis group and the identification of Streptococcus dysgalactiae. The Bruker MALDI Biotyper system using the direct transfer-formic acid sample preparation method was shown to be a highly reliable tool for the identification of Gram-positive cocci. We here suggest a practical algorithm for the clinical laboratory combining MALDI-TOF MS with phenotypic and molecular methods. PMID:23554198

  19. Implementation of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Routine Clinical Laboratories Improves Identification of Coagulase-Negative Staphylococci and Reveals the Pathogenic Role of Staphylococcus lugdunensis

    PubMed Central

    Riegel, Philippe; Lavigne, Thierry; Lefebvre, Nicolas; Grandpré, Nicolas; Hansmann, Yves; Jaulhac, Benoit; Prévost, Gilles; Schramm, Frédéric

    2015-01-01

    The use of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for staphylococcal identification is now considered routine in laboratories compared with the conventional phenotypical methods previously used. We verified its microbiological relevance for identifying the main species of coagulase-negative staphylococci (CoNS) by randomly selecting 50 isolates. From 1 January 2007 to 31 August 2008, 12,479 staphylococci were isolated with phenotypic methods, of which 4,594 were identified as Staphylococcus aureus and 7,885 were coagulase negative staphylococci. Using MALDI-TOF MS from 1 January 2011 to 31 August 2012, 14,913 staphylococci were identified, with 5,066 as S. aureus and 9,847 as CoNS. MALDI-TOF MS allowed the identification of approximately 85% of the CoNS strains, whereas only 14% of the CoNS strains were identified to the species level with phenotypic methods because they were often considered contaminants. Furthermore, the use of MALDI-TOF MS revealed the occurrence of recently characterized Staphylococcus species, such as S. pettenkoferi, S. condimenti, and S. piscifermentans. Microbiological relevance analysis further revealed that some species displayed a high rate of microbiological significance, i.e., 40% of the S. lugdunensis strains included in the analysis were associated with infection risk. This retrospective microbiological study confirms the role of MALDI-TOF MS in clinical settings for the identification of staphylococci with clinical consequences. The species distribution reveals the occurrence of the recently identified species S. pettenkoferi and putative virulent species, including S. lugdunensis. PMID:25878345

  20. Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry for identifying respiratory bacterial pathogens: a fast and efficient method.

    PubMed

    López-Fabal, Ma Fátima; Gómez-Garcés, José Luís; López-Hontangas, José Luís; Sanz, Nuria; Muñoz, Carmen; Regodón, Marta

    2015-10-01

    Mass spectrometry has become a reference resource for identifying microorganisms in clinical microbiology services. One hundred and fifty one clinical isolates were selected from respiratory specimens routinely identified as Streptococcus pneumoniae (43), Haemophilus influenzae (64) and Moraxella catarrhalis (44). These identifications were compared with other phenotypical methods and mass spectrometry (MALDI-TOF-MS Vitek). Result discrepancies were assessed by 16S rRNA sequencing. Thirty-eight of the 43 strains of S. pneumoniae (86%) were identified as such using phenotypical methods and spectrometry. In 5 cases, MALDI-TOF identified 4 of them as Streptococcus pseudopneumoniae and 1 as S. mitis/oralis. Forty-eight of the 64 strains were identified as H. influenzae (75%) using biochemical identification systems and automated identification systems, whereas MALDI-TOF-MS Vitek identified 51 strains (79%) as such. Conventional methods and spectrometry identified all the 40 strains tested (100%) as M. catarrhalis. All strains with discrepant results were sequenced, and in all cases, the identification obtained by spectrometry was confirmed. The results obtained in this study show that mass spectrometry provides identification of these bacteria faster and in a more reliable way than those based on conventional phenotypical methods. PMID:26437754

  1. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 μg kg(-1) was obtained for DCD with a linear working range from 100 to 10000 μg kg(-1) and a satisfactory correlation coefficient (R(2)) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control. PMID:25930094

  2. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 μg kg-1 was obtained for DCD with a linear working range from 100 to 10000 μg kg-1 and a satisfactory correlation coefficient (R2) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control.

  3. Mass Spectrometry-Based Metabolite Profiling in the Mouse Liver following Exposure to Ultraviolet B Radiation

    PubMed Central

    Park, Hye Min; Shon, Jong Cheol; Lee, Mee Youn; Liu, Kwang-Hyeon; Kim, Jeong Kee; Lee, Sang Jun; Lee, Choong Hwan

    2014-01-01

    Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light. PMID:25275468

  4. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry.

    PubMed

    Matysiak, Jan; Schmelzer, Christian E H; Neubert, Reinhard H H; Kokot, Zenon J

    2011-01-25

    The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time. PMID:20850943

  5. Biofunctionalization of nanoparticle assisted mass spectrometry as biosensors for rapid detection of plant associated bacteria.

    PubMed

    Ahmad, Faheem; Siddiqui, Mansoor A; Babalola, Olubukola O; Wu, Hui-Fen

    2012-05-15

    This study is based on the application of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) as biosensor to detect the plant associated bacteria (PAB) isolates from rhizospheric soil and root. The rapid bacterial detection via on particle ionization/enrichment technique using IgG functionalized Pt NPs (IgG-Pt NPs) assisted MALDI-TOF MS was successfully used to explore two PAB isolates, namely, Bacillus thuringiensis and B. subtilis from rhizospheric soil and roots of carrot plant. When these bacteria are used as bioformulations in agricultural as well as biotechnological applications, the plant growth promotion of economic crops was observed especially when the crops grow in less fertilize soil regions. This study proved that even at low concentrations, bacteria can also be directly detected without morphological, molecular and biochemical test. The current applied technique is simple, rapid and highly sensitive. Besides, it could be widely used for the detection of beneficially important PAB isolates in environmental samples. PMID:22436686

  6. UPLC-ESI-TOF MS-Based Metabolite Profiling of the Antioxidative Food Supplement Garcinia buchananii.

    PubMed

    Stark, Timo D; Lösch, Sofie; Wakamatsu, Junichiro; Balemba, Onesmo B; Frank, Oliver; Hofmann, Thomas

    2015-08-19

    Comparative antioxidative analyses of aqueous ethanolic extracts from leaf, root, and stem of Garcinia buchananii revealed high activity of all three organs. To investigate the metabolite composition of the different parts of G. buchananii, an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectra (MS(e)) was performed. Unsupervised statistics (PCA) highlighted clear differences in the metabolomes of the three organs. OPLS-DA revealed (2R,3S,2″R,3″R)-GB-1, (2R,3S)-morelloflavone, and (2R,3S)-volkensiflavone as the most decisive marker compounds discriminating leaf from root and stem extract. Leaves represent the best source to isolate GB-1, morelloflavone, and volkensiflavone. Root extract is the best organ to isolate xanthones and stem bark extract the best source to isolate (2R,3S,2″R,3″R)-manniflavanone; the identified polyisoprenylated benzophenones are characteristic compounds for the leaf organ. Morelloflavone, volkensiflavone, and garcicowin C were isolated for the first time from G. buchananii, identified via MS, NMR, and CD spectroscopy, and showed in H2O2 scavenging, H/L-TEAC, and H/L-ORAC assays moderate to strong in vitro antioxidative activities. PMID:26226176

  7. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry To Resolve Complex Clinical Cases of Patients with Recurrent Bacteremias

    PubMed Central

    Nori, Priya; Ostrowsky, Belinda; Dorokhova, Olena; Gialanella, Philip; Moy, Morgan; Muggia, Victoria; Grossberg, Robert; Kornblum, John; Lin, Ying

    2013-01-01

    Matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) is a rapid and accurate method of identifying microorganisms. Throughout Europe, it is already in routine use but has not yet been widely implemented in the United States, pending FDA approval. Here, we describe two medically complex patients at a large tertiary-care academic medical center with recurring bacteremias caused by distinct but related species. Bacterial identifications were initially obtained using the Vitek-2 system with the GPI card for Enterococcus and the API system for staphylococci. Initial results misled clinicians as to the source and proper management of these patients. Retrospective investigation with MALDI-TOF MS clarified the diagnosis by identifying a single microorganism as the pathogen in each case. To our knowledge, this is one of the first reports in the United States demonstrating the use of MALDI-TOF MS to facilitate the clinical diagnosis in patients with recurrent bacteremias of unclear source. PMID:23536408

  8. Comparison of the Bruker MALDI-TOF Mass Spectrometry System and Conventional Phenotypic Methods for Identification of Gram-Positive Rods

    PubMed Central

    Barberis, Claudia; Almuzara, Marisa; Join-Lambert, Olivier; Ramírez, María Soledad; Famiglietti, Angela; Vay, Carlos

    2014-01-01

    In recent years, MALDI-TOF Mass Spectrometry (MS) method has emerged as a promising and a reliable tool for bacteria identification. In this study we compared Bruker MALDI-TOF MS and conventional phenotypic methods to identify a collection of 333 Gram-positive clinical isolates comprising 22 genera and 60 species. 16S rRNA sequencing was the reference molecular technique, and rpoB gene sequecing was used as a secondary gene target when 16Sr RNA did not allow species identification of Corynebacterium spp. We also investigate if score cut-offs values of ≥1,5 and ≥1,7 were accurate for genus and species-level identification using the Bruker system. Identification at species level was obtained for 92,49% of Gram-positive rods by MALDI-TOF MS compared to 85,89% by phenotypic method. Our data validates the score ≥1,5 for genus level and ≥1,7 for species-level identification in a large and diverse collection of Gram-positive rods. The present study has proved the accuracy of MALDI-TOF MS as an identification method in Gram-positive rods compared to currently used methods in routine laboratories. PMID:25184254

  9. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Saleeb, Paul G; Drake, Steven K; Murray, Patrick R; Zelazny, Adrian M

    2011-05-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced into the clinical microbiology laboratory as a rapid and accurate method to identify bacteria and yeasts. In this paper we describe our work on the use of MALDI-TOF MS for the identification of mycobacterial isolates. We developed a protocol for protein extraction from mycobacteria and utilized it to construct a database containing 42 clinically relevant type and reference strains of mycobacteria. The database was used to identify 104 clinical isolates of mycobacteria. All members of the Mycobacterium tuberculosis complex were identified accurately at the complex level but could not be separated at the species level. All other organisms were identified at the species level, with the exception of one strain of M. kansasii (accurately identified but with a low spectral score) and three pairs of closely related strains: M. abscessus and M. massiliense, M. mucogenicum and M. phocaicum, and M. chimaera and M. intracellulare. These pairs of organisms can currently be identified only by multilocus gene sequence analysis. We conclude that MALDI-TOF MS analysis can be incorporated into the work flow of the microbiology laboratory for rapid and accurate identification of most strains of mycobacteria isolated from solid growth media. PMID:21411597

  10. Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Alshawa, Kinda; Beretti, Jean-Luc; Lacroix, Claire; Feuilhade, Martine; Dauphin, Brunhilde; Quesne, Gilles; Hassouni, Noura; Nassif, Xavier; Bougnoux, Marie-Elisabeth

    2012-07-01

    Dermatophytes are keratinolytic fungi responsible for a wide variety of diseases of glabrous skin, nails, and hair. Their identification, currently based on morphological criteria, is hindered by intraspecies morphological variability and the atypical morphology of some clinical isolates. The aim of this study was to evaluate matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a routine tool for identifying dermatophyte and Neoscytalidium species, both of which cause dermatomycoses. We first developed a spectral database of 12 different species of common and unusual dermatophytes and two molds responsible for dermatomycoses (Neoscytalidium dimidiatum and N. dimidiatum var. hyalinum). We then prospectively tested the performance of the database on 381 clinical dermatophyte and Neoscytalidium isolates. Correct identification of the species was obtained for 331/360 dermatophytes (91.9%) and 18/21 Neoscytalidium isolates (85.7%). The results of MALDI-TOF MS and standard identification disagreed for only 2 isolates. These results suggest that MALDI-TOF MS could be a useful tool for routine and fast identification of dermatophytes and Neoscytalidium spp. in clinical mycology laboratories. PMID:22535981

  11. Classification Algorithm for Subspecies Identification within the Mycobacterium abscessus Species, Based on Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Fangous, Marie-Sarah; Mougari, Faiza; Gouriou, Stéphanie; Calvez, Elodie; Raskine, Laurent; Cambau, Emmanuelle; Payan, Christopher

    2014-01-01

    Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs. PMID:25009048

  12. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to resolve complex clinical cases of patients with recurrent bacteremias.

    PubMed

    Nori, Priya; Ostrowsky, Belinda; Dorokhova, Olena; Gialanella, Philip; Moy, Morgan; Muggia, Victoria; Grossberg, Robert; Kornblum, John; Lin, Ying; Levi, Michael H

    2013-06-01

    Matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) is a rapid and accurate method of identifying microorganisms. Throughout Europe, it is already in routine use but has not yet been widely implemented in the United States, pending FDA approval. Here, we describe two medically complex patients at a large tertiary-care academic medical center with recurring bacteremias caused by distinct but related species. Bacterial identifications were initially obtained using the Vitek-2 system with the GPI card for Enterococcus and the API system for staphylococci. Initial results misled clinicians as to the source and proper management of these patients. Retrospective investigation with MALDI-TOF MS clarified the diagnosis by identifying a single microorganism as the pathogen in each case. To our knowledge, this is one of the first reports in the United States demonstrating the use of MALDI-TOF MS to facilitate the clinical diagnosis in patients with recurrent bacteremias of unclear source. PMID:23536408

  13. Performances and Reliability of Bruker Microflex LT and VITEK MS MALDI-TOF Mass Spectrometry Systems for the Identification of Clinical Microorganisms

    PubMed Central

    Yaman, Gorkem; Ciftci, Ugur; Laleli, Yahya Rauf

    2015-01-01

    In clinical microbiology laboratories, routine microbial identification is mostly performed using culture based methodologies requiring 24 to 72 hours from culturing to identification. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technology has been established as a cost effective, reliable, and faster alternative identification platform. In this study, we evaluated the reliability of the two available MALDI-TOF MS systems for their routine clinical level identification accuracy and efficiency in a clinical microbiology laboratory setting. A total of 1,341 routine phenotypically identified clinical bacterial and fungal isolates were selected and simultaneously analyzed using VITEK MS (bioMérieux, France) and Microflex LT (Bruker Diagnostics, Germany) MALDI-TOF MS systems. For any isolate that could not be identified with either of the systems and for any discordant result, 16S rDNA gene or ITS1/ITS2 sequencing was used. VITEK MS and Microflex LT correctly identified 1,303 (97.17%) and 1,298 (96.79%) isolates to the species level, respectively. In 114 (8.50%) isolates initial phenotypic identification was inaccurate. Both systems showed a similar identification efficiency and workflow robustness, and they were twice as more accurate compared to routine phenotypic identification in our sample pool. MALDITOF systems with their accuracy and robustness offer a good identification platform for routine clinical microbiology laboratories. PMID:26793718

  14. Comparing Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Phenotypic and Molecular Methods for Identification of Species within the Streptococcus anginosus Group

    PubMed Central

    Arinto-Garcia, Raquel; Pinho, Marcos Daniel; Carriço, João André; Melo-Cristino, José

    2015-01-01

    The heterogeneity of members of the Streptococcus anginosus group (SAG) has traditionally hampered their correct identification. Recently, the group was subdivided into 6 taxa whose prevalence among human infections is poorly described. We evaluated the accuracy of the Rapid ID32 Strep test, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and a PCR multiplex method to identify 212 SAG isolates recovered from human infections to the species and subspecies level by using multilocus sequence analysis (MLSA) as the gold standard. We also determined the antimicrobial susceptibilities of the isolates. Representatives of all SAG taxa were found among our collection. MALDI-TOF MS and the Rapid ID32 Strep test correctly identified 92% and 68% of the isolates to the species level, respectively, but showed poor performance at the subspecies level, and the latter was responsible for major identification errors. The multiplex PCR method results were in complete agreement with the MLSA identifications but failed to distinguish the subspecies Streptococcus constellatus subsp. pharyngis and S. constellatus subsp. viborgensis. A total of 145 MLSA sequence types were present in our collection, indicating that within each taxon a number of different lineages are capable of causing infection. Significant antibiotic resistance was observed only to tetracycline, erythromycin, and clindamycin and was present in most taxa. MALDI-TOF MS is a reliable method for routine SAG species identification, while the need for identification to the subspecies level is not clearly established. PMID:26354817

  15. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  16. Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests.

    PubMed

    Calvano, Cosima Damiana; De Ceglie, Cristina; Monopoli, Antonio; Zambonin, Carlo Giorgio

    2012-09-01

    In dairy field, one of the most common frauds is the adulteration of higher value types of milk (sheep's and goat's) with milk of lower value (cow's milk). This illegal practice has an economic advantage for milk producers and poses a threat for consumers' health because of the presence of hidden allergens as, for example, cow milk proteins, in particular, α(s1)-casein and β-lactoglobulin. The urgent need of sensitive techniques to detect this kind of fraud brought to the development of chromatographic, immunoenzymatic, electrophoretic and mass spectrometric assays. In the current work, we present a fast, reproducible and sensitive method based on the direct matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS analysis of milk tryptic digests for the detection of milk adulteration by evaluating specie-specific markers in the peptide profiles. Several pure raw and commercial milk samples and binary mixtures containing cows' and goats', cows' and sheep's and goats' and sheep's milk (concentrations of each milk varied from 0% to 100%) were prepared, and tryptic digests were analyzed by MALDI-TOF MS. The use of the new MALDI matrix α-cyano-4-chlorocinnamic acid allowed to detect cow and goat milk peptide markers up to 5% level of adulteration. Finally, from preliminary data, it seems that the strategy could be successfully applied also to detect similar adulterations in cheese samples. PMID:22972782

  17. Research on the change of chemical composition in productive process of Re Du Ning injection by HPLC/Q-TOF MS.

    PubMed

    Zhang, Shan; Li, Yan-Jing; Zhang, Chun-Xiao; Huang, Wen-Zhe; Ding, Gang; Wang, Zhen-Zhong; Bi, Yu-An; Xiao, Wei

    2016-02-01

    A high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF MS) was developed for the analysis of chemical composition change in the production process of Re Du Ning injection, a Chinese medicine preparation with a combination of Lonicera japonica Thunb., Gardenia jasminoides Ellis and Artemisia annua L. A total of 90 compounds from raw materials-intermediates-Re Du Ning injection were detected; among them, 55 compounds were identified or tentatively characterized, and the characteristic ions of different types of compounds were described. Based on these studies, the different types of compounds in the various process routes were analyzed. A total of 28 compounds, including seven iridoid glycosides and six monoterpenes from G. jasminoides Ellis, five iridoid glycosides, nine phenolic acids and one unknown compound from L. japonica Thunb., were transferred to Re Du Ning injection, and two unknown compounds were generated in the production process of Re Du Ning injection. The results indicated that the Chinese Medicine Pharmaceutical process control is very important. This method could provide some reference for other Chinese medicine preparations. PMID:26058547

  18. Identification of potential novel bioaccumulative and persistent chemicals in sediments from Ontario (Canada) using scripting approaches with GC×GC-TOF MS analysis.

    PubMed

    Pena-Abaurrea, Miren; Jobst, Karl J; Ruffolo, Ralph; Shen, Li; McCrindle, Robert; Helm, Paul A; Reiner, Eric J

    2014-08-19

    This work describes a single and fast approach using a filtering script as a means of prioritizing sample processing of data acquired by GC×GC-TOF MS for the identification of potentially novel persistent and bioaccumulative halogenated chemicals. The proposed script is based on the recognition of a generic halogenated isotope cluster pattern that allows for the simultaneous detection of chlorinated, brominated, or mixed halogen-substituted compounds in a single classification. Once developed, the script was applied to the identification of organohalogens in stream sediments collected across the southern region of Ontario (Canada). Classified peaks were first compared with available analytical standards and reference libraries to confirm the known chemicals. Unknown potential persistent organic pollutants (POPs) were evaluated for occurrence within the samples and high resolution mass spectrometry was used in order to identify some of the most prevalent compounds in the samples and resulting in the identification of three decachlorinated dechlorane analogs (C18H14Cl10), two undecachlorinated dechlorane species (C18H13Cl11), and a novel mixed chloro/bromo-carbazole (C12H5NCl2Br2) in a number of sediments analyzed. Relative peak abundances of these unknown halogenated compounds were in the same order of magnitude or slightly higher than levels observed for conventional POPs detected in the samples. PMID:24999818

  19. Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS

    PubMed Central

    Borrás-Linares, Isabel; Herranz-López, María; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Bermejo, Marival; Gutiérrez, Alberto Fernández; Micol, Vicente; Segura-Carretero, Antonio

    2015-01-01

    Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols. PMID:26262611

  20. Observations on the Inactivation Efficacy of a MALDI-TOF MS Chemical Extraction Method on Bacillus anthracis Vegetative Cells and Spores

    PubMed Central

    Weller, Simon A.; Stokes, Margaret G. M.; Lukaszewski, Roman A.

    2015-01-01

    A chemical (ethanol; formic acid; acetonitrile) protein extraction method for the preparation of bacterial samples for matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) identification was evaluated for its ability to inactivate bacterial species. Initial viability tests (with and without double filtration of the extract through 0.2 μM filters), indicated that the method could inactivate Escherichia coli MRE 162 and Klebsiella pneumoniae ATCC 35657, with or without filtration, but that filtration was required to exclude viable, avirulent, Bacillus anthracis UM23CL2 from extracts. Multiple, high stringency, viability experiments were then carried out on entire filtered extracts prepared from virulent B. anthracis Vollum vegetative cells and spores ranging in concentration from 106-108cfu per extract. B. anthracis was recovered in 3/18 vegetative cell extracts and 10/18 spore extracts. From vegetative cell extracts B. anthracis was only recovered from extracts that had undergone prolonged Luria (L)-broth (7 day) and L-agar plate (a further 7 days) incubations. We hypothesise that the recovery of B. anthracis in vegetative cell extracts is due to the escape of individual sub-lethally injured cells. We discuss our results in view of working practises in clinical laboratories and in the context of recent inadvertent releases of viable B. anthracis. PMID:26633884

  1. Metabolic profiling study on potential toxicity and immunotoxicity-biomarker discovery in rats treated with cyclophosphamide using HPLC-ESI-IT-TOF-MS.

    PubMed

    Li, Jing; Lin, Wensi; Lin, Weiwei; Xu, Peng; Zhang, Jianmei; Yang, Haisong; Ling, Xiaomei

    2015-05-01

    Despite the recent advances in understanding toxicity mechanism of cyclophosphamide (CTX), the development of biomarkers is still essential. CTX-induced immunotoxicity in rats by a metabonomics approach was investigated using high-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (HPLC-ESI-IT-TOF-MS). The rats were orally administered CTX (30 mg/kg/day) for five consecutive days, and on the fifth day samples of urine, thymus and spleen were collected and analyzed. A significant difference in metabolic profiling was observed between the CTX-treated group and the control group by partial least squares-discriminant analysis (PLS-DA), which indicated that metabolic disturbances of immunotoxicity in CTX-treated rats had occurred. One potential biomarker in spleen, three in urine and three in thymus were identified. It is suggested that the CTX-toxicity mechanism may involve the modulation of tryptophan metabolism, phospholipid metabolism and energy metabolism. This research can help to elucidate the CTX-influenced pathways at a low dose and can further help to indicate the patients' pathological status at earlier stages of toxicological progression after drug administration. PMID:25322901

  2. UPLC Q-TOF/MS-Based Metabolic Profiling of Urine Reveals the Novel Antipyretic Mechanisms of Qingkailing Injection in a Rat Model of Yeast-Induced Pyrexia

    PubMed Central

    Gao, Xiaoyan; Guo, Mingxing; Peng, Long; Zhao, Baosheng; Su, Jiankun; Liu, Haiyu; Zhang, Li; Bai, Xu; Qiao, Yanjiang

    2013-01-01

    Fever is one of the most common clinical symptoms of many diseases. Qingkailing (QKL) injection is widely used in China as a clinical emergency medicine due to its good antipyretic effects. It is a herbal formula which is composed by eight kinds of traditional Chinese medicines (TCM). As a kind of typical multiple constituents and multiple actions of TCM, it is very difficult to elaborate the antipyretic mechanism by conventional pharmacological method. Metabonomics technique provides beneficial tool for this challenge. In this study, an ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) metabonomics method was developed to explore the changing process of biochemical substances in rats of yeast-induced pyrexia. Partial least squares discriminate analysis (PLS-DA) was used to distinguish the normal control group, the pyrexia model group, and the pyrexia model group treated by QKL injection. The potential biomarkers related to pyrexia were confirmed and identified. MetPA was used to find the possible metabolic pathways. The results indicated that the antipyretic effect of QKL injection on yeast-induced pyrexia rats was performed by repairing the perturbed metabolism of amino acids. PMID:23840267

  3. Application of nanoLC-ESI-TOF-MS for the metabolomic analysis of phenolic compounds from extra-virgin olive oil in treated colon-cancer cells.

    PubMed

    Fernández-Arroyo, S; Gómez-Martínez, A; Rocamora-Reverte, L; Quirantes-Piné, R; Segura-Carretero, A; Fernández-Gutiérrez, A; Ferragut, J A

    2012-04-01

    Crude phenolic extracts (PE) have been obtained from naturally bearing Spanish extra-virgin olive oil (EVOO) showing different polyphenol families such as secoiridoids, phenolic alcohols, lignans, and flavones. EVOO-derived complex phenols (especially from the Arbequina variety olive) have been shown to suppress cell growth of SW480 and HT29 human colon adenocarcinoma cell lines. Inhibition of proliferation by EVOO-PE Arbequina variety extract was accompanied by apoptosis in both colon-cancer-cell lines and a limited G₂M cell-cycle arrest in the case of SW480 cells. The metabolized compounds from EVOO-PE in culture medium and cytoplasm of both cell lines were analyzed using nano-liquid chromatography (nanoLC) coupled with electrospray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS). The results showed many phenolic compounds and their metabolites both in the culture medium as well as in the cytoplasm. The main compounds identified from EVOO-PE were hydroxylated luteolin and decarboxymethyl oleuropein aglycone. PMID:22365054

  4. Isolation and identification of antiplasmodial N-alkylamides from Spilanthes acmella flowers using centrifugal partition chromatography and ESI-IT-TOF-MS.

    PubMed

    Mbeunkui, Flaubert; Grace, Mary H; Lategan, Carmen; Smith, Peter J; Raskin, Ilya; Lila, Mary Ann

    2011-07-01

    The development of new antiplasmodial drugs is of primary importance due to the growing problem of multi-drug resistance of malaria parasites. Spilanthes acmella, a plant traditionally used for the treatment of toothache, was targeted as a lead for its potential antiplasmodial activity. A systematic approach for investigating a suitable centrifugal partition chromatography (CPC) solvent system for N-alkylamides separation was reported. The partition behavior of three N-alkylamides has been studied using several biphasic solvent mixtures in search of an adequate CPC solvent system for this class of compounds. Major N-alkylamides in S. acmella were isolated from a methanolic crude extract of flowers by CPC with the solvent system heptanes-ethyl acetate-methanol-water (3:2:3:2, v/v/v/v). Four N-alkylamides were purified and the structures were illustrated by electrospray ionization-ion trap-time of flight-mass spectrometry (ESI-IT-TOF-MS), ¹H nuclear magnetic resonance (¹H NMR) and ¹³C nuclear magnetic resonance (¹³C NMR). The CPC fractions, which contained natural mixtures of phytochemicals, demonstrated significantly higher antiplasmodial activity compared to corresponding purified N-alkylamides, thus suggesting that interactions between these N-alkylamides may potentiate antiplasmodial bioactivity. PMID:21641879

  5. Low temperature followed by matrix solid-phase dispersion-sonication procedure for the determination of multiclass pesticides in palm oil using LC-TOF-MS.

    PubMed

    Sobhanzadeh, Elham; Abu Bakar, Nor Kartini; Bin Abas, Mhd Radzi; Nemati, Keivan

    2011-02-28

    A simple and effective multiresidue method based on precipitation at low temperature followed by matrix solid-phase dispersion-sonication was developed and validated to determine dimethoate, malathion, carbaryl, simazine, terbuthylazine, atrazine and diuron in palm oil using liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Liquid-liquid extraction (LLE) followed by low temperature method were optimized by studying the effect of type and volume of organic solvent (acetonitrile, acetonitrile:n-hexane (3:2 v/v) and acetone) and time of freezing to obtain high recovery yield and low co-extract fat residue in the final extract. The optimal conditions for matrix solid-phase dispersion (MSPD) were obtained using 5 g of palm oil, 2 g of primary secondary amine (PSA) as dispersing sorbent, 1 g of graphitized carbon black (GCB) as clean-up sorbent and 15 mL of acetonitrile as eluting solvent under conditions of 15 min ultrasonication at room temperature. Method validation was performed in order to study sensitivity, linearity, precision, and accuracy. Average recoveries at three concentration levels (25, 50 and 100 μg kg(-1)) were found in the range of 72.6-91.3% with relative standard deviations between 5.3% and 14.2%. Detection and quantification limits ranged from 1.5 to 5 μg kg(-1) and from 2.5 to 9 μg kg(-1), respectively. PMID:21177032

  6. A combined XAFS, ESI TOF-MS and LIBD study on the formation of polynuclear Zr(IV), Th(IV) and Pu(IV) species

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Walther, C.; Brendebach, B.; Büchner, S.; Fuss, M.; Denecke, M. A.; Geckeis, H.

    2009-11-01

    The long term radiotoxicity of spent nuclear fuel disposed of in deep underground repositories after discharge from nuclear power reactors is determined by actinide elements, mainly plutonium. Water intrusion into the repository might cause container corrosion and leaching of the waste matrices, leading to the release of Pu and other actinides into the geological environment. Performance assessment for a future nuclear waste repository requires detailed knowledge on actinide aqueous chemistry in the aquifer surrounding the disposal site. Tetravalent actinides exhibit a strong tendency towards hydrolysis and subsequent polymerization and/or colloid formation. These species provide a potential pathway for migration of actinides away from the repository. Therefore, it is of fundamental interest to study their generation and properties in-situ. To this end, X-ray Absorption Fine Structure Spectroscopy (XAFS) at the INE-Beamline for actinide research at ANKA, Electrospray Mass-Spectrometry (ESI TOF-MS) and Laser Induced Breakdown Detection (LIBD) are combined at FZK-INE in a comprehensive attempt to characterize Zr(IV) (An(IV) analogue), Th(IV) and Pu(IV) polymerization and colloid formation.

  7. Discovery of safety biomarkers for realgar in rat urine using UFLC-IT-TOF/MS and 1H NMR based metabolomics.

    PubMed

    Huang, Yin; Tian, Yuan; Li, Geng; Li, Yuanyuan; Yin, Xinjuan; Peng, Can; Xu, Fengguo; Zhang, Zunjian

    2013-05-01

    As an arsenical, realgar (As4S4) is known as a poison and paradoxically as a therapeutic agent. However, a complete understanding of the precise biochemical alterations accompanying the toxicity and therapy effects of realgar is lacking. Using a combined ultrafast liquid chromatography (UFLC) coupled with ion trap time-of-flight mass spectrometry (IT-TOF/MS) and (1)H NMR spectroscopy based metabolomics approach, we were able to delineate significantly altered metabolites in the urine samples of realgar-treated rats. The platform stability of the liquid chromatography LC/MS and NMR techniques was systematically investigated, and the data processing method was carefully optimized. Our results indicate significant perturbations in amino acid metabolism, citric acid cycle, choline metabolism, and porphyrin metabolism. Thirty-six metabolites were proposed as potential safety biomarkers related to disturbances caused by realgar, and glycine and serine are expected to serve as the central contacts in the metabolic pathways related to realgar-induced disturbance. The LC/MS and NMR based metabolomics approach established provided a systematic and holistic view of the biochemical effects of realgar on rats, and might be employed to investigate other drugs or xenobiotics in the future. PMID:23479124

  8. [UPLC/Q-TOF MS and NMR plant metabolomics approach in studying the effect of growth year on the quality of Polygala tenuifolia].

    PubMed

    Xue, Ying; Li, Xiao-wei; Li, Zhen-yu; Zeng, Zu-ping; Zhang, Fu-sheng; Li, Ai-ping; Qin, Xue-mei; Peng, Bing

    2015-03-01

    Growth year is one of the important factors for the quality of Polygala tenufolia. In this study, primary metabolites and secondary metabolites were compared in 1, 2 and 3 years old P. tenufolia cultivated in Shaanxi Heyang. The samples were subjected to ultra-high performance liquid chromatography (UPLC)-quadrupole time-of-flight mass spectrometry (Q-TOF MS) and nuclear magnetic resonance (NMR) analysis, and the obtained data were analyzed using principal component analysis (PCA) and other statistical analysis methods. In addition, content and correlation of different metabolites were also calculated. The results showed no significance between main component contents in 2 year-old and 3 year-old P. Tenufolia, but 1 year-old was statistically different. The contents of primary metabolites, such as fructose, sucrose, and choline increased as time goes on, while glycine and raffinose decreased. The contents of secondary metabolites, such as onjisaponin Fg, polygalasaponin XXVIII, polygalasaponin XXXII increased, while polygalaxanthone III and parts of oligosaccharide multi-ester including tenuifoliose A, tenuifoliose C, tenuifoliose C2 and tenuifoliose H decreased with the extension of the growth years. Growth years has important impact on the quality of P. tenuifolia and the existing growing years of commodity P. tenuifolia have its scientific evidence. This study supplied a new method for the quality evaluation of Chinese medicinal materials. PMID:26118115

  9. Screening and identification of three typical phenylethanoid glycosides metabolites from Cistanches Herba by human intestinal bacteria using UPLC/Q-TOF-MS.

    PubMed

    Li, Yang; Zhou, Guisheng; Peng, Ying; Tu, Pengfei; Li, Xiaobo

    2016-01-25

    Acteoside, isoacteoside, and 2'-acetylacteoside are three representative phenylethanoid glycosides (PhGs), which are widely distributed in many plants and also known as the active components of Cistanches Herba. However, the extremely low oral bioavailability of acteoside in rats implies that these structural similar components may go through multiple sequential routes of hydrolysis in gastrointestinal tract before they are absorbed into blood. Therefore, the metabolites of these three components and other PhGs from gastrointestinal tract such as echinacoside, are supposed to be the bioactive elements. In this study, we established an approach combining ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) with MS(E) technology and MetaboLynx™ software for the rapid metabolic profiling of acteoside, isoacteoside, and 2'-acetylacteoside by human intestinal bacteria. As a result, 11 metabolites of acteoside, 7 metabolites of isoacteoside, and 11 metabolites of 2'-acetylacteoside were identified respectively. 8 metabolic pathways including deglycosylation, de-rhamnose, de-hydroxytyrosol, de-caffeoyl, deacetylation, reduction, acetylation, and sulfate conjugation were proposed to involve in the generation of these metabolites. Furthermore, we found that the degraded metabolites hydroxytyrosol (HT) and 3-hydroxyphenylpropionic (3-HPP) were transformed from acteoside, isoacteoside, and 2'-acetylacteoside by human intestinal bacteria and demonstrated similar bioactivities to their precursors. These findings are significant for our understanding of the metabolism of PhGs and the proposed metabolic pathways of bioactive components might be crucial for further pharmacokinetic evaluations of Cistanches Herba. PMID:26551535

  10. Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS.

    PubMed

    Borrás-Linares, Isabel; Herranz-López, María; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Bermejo, Marival; Fernández Gutiérrez, Alberto; Micol, Vicente; Segura-Carretero, Antonio

    2015-01-01

    Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols. PMID:26262611

  11. Data fusion between high resolution (1)H-NMR and mass spectrometry: a synergetic approach to honey botanical origin characterization.

    PubMed

    Spiteri, Marc; Dubin, Elodie; Cotton, Jérôme; Poirel, Marion; Corman, Bruno; Jamin, Eric; Lees, Michèle; Rutledge, Douglas

    2016-06-01

    A data fusion approach was applied to a commercial honey data set analysed by (1)H-nuclear magnetic resonance (NMR) 400 MHz and liquid chromatography-high resolution mass spectrometry (LC-HRMS). The latter was performed using two types of mass spectrometers: an Orbitrap-MS and a time of flight (TOF)-MS. Fifty-six honey samples from four monofloral origins (acacia, orange blossom, lavender and eucalyptus) and multifloral sources from various geographical origins were analysed using the three instruments. The discriminating power of the results was examined by PCA first considering each technique separately, and then combining NMR and LC-HRMS together with or without variable selection. It was shown that the discriminating potential is increased through the data fusion, allowing for a better separation of eucalyptus, orange blossom and lavender. The NMR-Orbitrap-MS and NMR-TOF-MS mid-level fusion models with variable selection were preferred as a good discrimination was obtained with no misclassification observed for the latter. This study opens the path to new comprehensive food profiling approaches combining more than one technique in order to benefit from the advantages of several technologies. Graphical Abstract Data fusion between high resolution 1H-NMR and mass spectrometry. PMID:27086012

  12. Measurement of lysine-specific demethylase-1 activity in the nuclear extracts by flow-injection based time-of-flight mass spectrometry.

    PubMed

    Sakane, Chiharu; Ohta, Hiromichi; Shidoji, Yoshihiro

    2015-03-01

    Lysine-specific demethylase 1 (LSD1/KDM1A), a histone-modifying enzyme, is upregulated in many cancers, especially in neuroblastoma, breast cancer and hepatoma. We have established a simple method to measure LSD1 activity using a synthetic N-terminal 21-mer peptide of histone H3, which is dimethylated at Lys-4 (H3K4me2). After the enzyme reaction, a substrate of H3K4me2 and two demethylated products, H3K4me1 and H3K4me0, were quantitatively determined by flow injection time-of-flight mass spectrometry (FI-TOF/MS). By using recombinant human LSD1, a nonlinear fitting simulation of the data obtained by FI-TOF/MS produced typical consecutive-reaction kinetics. Apparent K m and k cat values of hLSD1 for the first and second demethylation reactions were found to be in the range of reported values. Tranylcypromine was shown to inhibit LSD1 activity with an IC50 of 6.9 µM for the first demethylation reaction and 5.8 µM for the second demethylation reaction. The FI-TOF/MS assay revealed that the endogenous LSD1 activity was higher in the nuclear extracts of SH-SY5Y cells than in HeLa or PC-3 cells, and this is in accordance with the immunoblotting data using an anti-LSD1 antibody. A simple, straightforward FI-TOF/MS assay is described to efficiently measure LSD1 activity in the nuclear extracts of cultured cells. PMID:25759518

  13. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and PCR-based rapid diagnosis of Staphylococcus aureus bacteraemia.

    PubMed

    Clerc, O; Prod'hom, G; Senn, L; Jaton, K; Zanetti, G; Calandra, T; Greub, G

    2014-04-01

    Effective empirical treatment is of paramount importance to improve the outcome of patients with Staphylococcus aureus bacteraemia. We aimed to evaluate a PCR-based rapid diagnosis of methicillin resistance (GeneXpert MRSA) after early detection of S. aureus bacteraemia using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Patients with a first episode of S. aureus bacteraemia identified using MALDI-TOF MS were randomized in a prospective interventional open study between October 2010 and August 2012. In the control group, antibiotic susceptibility testing was performed after MALDI-TOF MS identification on blood culture pellets. In the intervention group, a GeneXpert MRSA was performed after S. aureus identification. The primary outcome was the performance of GeneXpert MRSA directly on blood cultures. We then assessed the impact of early diagnosis of methicillin resistance on the empirical treatment. In all, 197 episodes of S. aureus bacteraemia were included in the study, of which 106 were included in the intervention group. Median time from MALDI-TOF MS identification to GeneXpert MRSA result was 97 min (range 25-250). Detection of methicillin resistance using GeneXpert MRSA had a sensitivity of 99% and a specificity of 100%. There was less unnecessary coverage of MRSA in the intervention group (17.1% versus 29.2%, p 0.09). GeneXpert MRSA was highly reliable in diagnosing methicillin resistance when performed directly on positive blood cultures. This could help to avoid unnecessary prescriptions of anti-MRSA agents and promote the introduction of earlier adequate coverage in unsuspected cases. PMID:23991748

  14. Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management.

    PubMed

    Martiny, D; Debaugnies, F; Gateff, D; Gérard, M; Aoun, M; Martin, C; Konopnicki, D; Loizidou, A; Georgala, A; Hainaut, M; Chantrenne, M; Dediste, A; Vandenberg, O; Van Praet, S

    2013-12-01

    For septic patients, delaying the initiation of antimicrobial therapy or choosing an inappropriate antibiotic can considerably worsen their prognosis. This study evaluated the impact of rapid microbial identification (RMI) from positive blood cultures on the management of patients with suspected sepsis. During a 6-month period, RMI by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed for all new episodes of bacteraemia. For each patient, the infectious disease specialist was contacted and questioned about his therapeutic decisions made based on the Gram staining and the RMI. This information was collected to evaluate the number of RMIs that led to a therapeutic change or to a modification of the patient's general management (e.g. fast removal of infected catheters). During the study period, 277 new episodes of bacteraemia were recorded. In 71.12% of the cases, MALDI-TOF MS resulted in a successful RMI (197/277). For adult and paediatric patients, 13.38% (21/157) and 2.50% (1/40) of the RMIs, respectively, resulted in modification of the treatment regimen, according to the survey. In many other cases, the MALDI-TOF MS was a helpful tool for infectious disease specialists because it confirmed suspected cases of contamination, especially in the paediatric population (15/40 RMIs, 37.50%), or suggested complementary diagnostic testing. This study emphasizes the benefits of RMI from positive blood cultures. Although the use of this technique represents an extra cost for the laboratory, RMI using MALDI-TOF MS has been implemented in our daily practice. PMID:23890423

  15. Evidence for an essential role of intradimer interaction in catalytic function of carnosine dipeptidase II using electrospray-ionization mass spectrometry.

    PubMed

    Okumura, Nobuaki; Tamura, Jun; Takao, Toshifumi

    2016-02-01

    Carnosine dipeptidase II (CN2/CNDP2) is an M20 family metallopeptidase that hydrolyses various dipeptides including β-alanyl-l-histidine (carnosine). Crystallographic analysis showed that CN2 monomer is composed of one catalytic and one dimerization domains, and likely to form homodimer. In this crystal, H228 residue of the dimerization domain interacts with the substrate analogue bestatin on the active site of the dimer counterpart, indicating that H228 is involved in enzymatic reaction. In the present study, the role of intradimer interaction of CN2 in its catalytic activity was investigated using electrospray-ionization time-of-flight mass spectrometry (ESI-TOF MS). First, a dimer interface mutant I319K was prepared and shown to be present as a folded monomer in solution as examined by using ESI-TOF MS. Since the mutant was inactive, it was suggested that dimer formation is essential to its enzymatic activity. Next, we prepared H228A and D132A mutant proteins with different N-terminal extended sequences, which enabled us to monitor dimer exchange reaction by ESI-TOF MS. The D132A mutant is a metal ligand mutant and also inactive. But the activity was partially recovered time-dependently when H228A and D132A mutant proteins were incubated together. In parallel, H228A/D132A heterodimer was formed as detected by ESI-TOF MS, indicating that interaction of a catalytic center with H228 residue of the other subunit is essential to the enzymatic reaction. These results provide evidence showing that intradimer interaction of H228 with the reaction center of the dimer counterpart is essential to the enzymatic activity of CN2. PMID:26549037

  16. Direct Bacterial Identification in Positive Blood Cultures by Use of Two Commercial Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Systems

    PubMed Central

    Chen, Jonathan H. K.; Ho, Pak-Leung; Kwan, Grace S. W.; She, Kevin K. K.; Siu, Gilman K. H.; Cheng, Vincent C. C.; Yuen, Kwok-Yung

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service. PMID:23515548

  17. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    PubMed

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients with prosthetic joints, providing species-level identification that may inform culture interpretation of pathogens versus contaminants. PMID:25533615

  18. A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory

    PubMed Central

    Lévesque, Simon; Dufresne, Philippe J.; Soualhine, Hafid; Domingo, Marc-Christian; Bekal, Sadjia; Lefebvre, Brigitte; Tremblay, Cécile

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid, highly accurate, and cost-effective method for routine identification of a wide range of microorganisms. We carried out a side by side comparative evaluation of the performance of Bruker Biotyper versus VITEK MS for identification of a large and diverse collection of microorganisms. Most difficult and/or unusual microorganisms, as well as commonly encountered microorganisms were selected, including Gram-positive and negative bacteria, mycobacteria, actinomycetes, yeasts and filamentous fungi. Six hundred forty two strains representing 159 genera and 441 species from clinical specimens previously identified at the Laboratoire de santé publique du Québec (LSPQ) by reference methods were retrospectively chosen for the study. They included 254 Gram-positive bacteria, 167 Gram-negative bacteria, 109 mycobacteria and aerobic actinomycetes and 112 yeasts and moulds. MALDI-TOF MS analyses were performed on both systems according to the manufacturer’s instructions. Of the 642 strains tested, the name of the genus and / or species of 572 strains were referenced in the Bruker database while 406 were present in the VITEK MS IVD database. The Biotyper correctly identified 494 (86.4%) of the strains, while the VITEK MS correctly identified 362 (92.3%) of the strains (excluding 14 mycobacteria that were not tested). Of the 70 strains not present in the Bruker database at the species level, the Biotyper correctly identified 10 (14.3%) to the genus level and 2 (2.9%) to the complex/group level. For 52 (74.2%) strains, we obtained no identification, and an incorrect identification was given for 6 (8.6%) strains. Of the 178 strains not present in the VITEK MS IVD database at the species level (excluding 71 untested mycobacteria and actinomycetes), the VITEK MS correctly identified 12 (6.8%) of the strains each to the genus and to the complex/group level. For 97 (54.5%) strains, no identification was given and for 69 (38.7%) strains, an incorrect identification was obtained. Our study demonstrates that both systems gave a high level (above 85%) of correct identification for a wide range of microorganisms. However, VITEK MS gave more misidentification when the microorganism analysed was not present in the database, compared to Bruker Biotyper. This should be taken into account when this technology is used alone for microorganism identification in a public health laboratory, where isolates received are often difficult to identify and/or unusual microorganisms. PMID:26658918

  19. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  20. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  1. Conceptual Study on New Isotope Analysis Technique with Resonance Ionization Mass Spectrometry Using Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    SciTech Connect

    Watanabe, K.; Uritani, A.; Higuchi, Y.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have proposed the novel isotope analysis technique with Resonance Ionization Mass Spectrometry using Inductively Coupled Plasma as an atomic source (ICP-RIMS). Each component of ICP-RIMS is conceptually designed. We conclude that the orthogonal acceleration time-of-flight mass spectrometer (oa-TOF-MS) driven by a high-repetition-rate pulsed laser would be suitable system for ICP-RIMS. We, additionally, suggest that the first vacuum stage of the vacuum interface, which is between the sampling and skimmer cones, is desired to maintain as low pressure as possible in order to suppress the Doppler broadening and to skim the supersonic jet effectively.

  2. Conceptual Study on New Isotope Analysis Technique with Resonance Ionization Mass Spectrometry Using Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Higuchi, Y.; Tomita, H.; Kawarabayashi, J.; Uritani, A.; Iguchi, T.

    2009-03-01

    We have proposed the novel isotope analysis technique with Resonance Ionization Mass Spectrometry using Inductively Coupled Plasma as an atomic source (ICP-RIMS). Each component of ICP-RIMS is conceptually designed. We conclude that the orthogonal acceleration time-of-flight mass spectrometer (oa-TOF-MS) driven by a high-repetition-rate pulsed laser would be suitable system for ICP-RIMS. We, additionally, suggest that the first vacuum stage of the vacuum interface, which is between the sampling and skimmer cones, is desired to maintain as low pressure as possible in order to suppress the Doppler broadening and to skim the supersonic jet effectively.

  3. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray).

    PubMed

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Altomare, Diego; Creek, Kim; Wunschel, David; Pajares-Merino, Sara; Martnez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar; Samadpour, Mansour

    2014-02-01

    This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation. PMID:24184563

  4. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; Tawalbeh, R.; Glenar, D.; Elsila, J. E.; Callahan, M.

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  5. Genomic and proteomic identification of a DNA-binding protein used in the "fingerprinting" of campylobacter species and strains by MALDI-TOF-MS protein biomarker analysis.

    PubMed

    Fagerquist, Clifton K; Miller, William G; Harden, Leslie A; Bates, Anna H; Vensel, William H; Wang, Guilin; Mandrell, Robert E

    2005-08-01

    We have identified a prominent approximately 10-kDa protein biomarker observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectra (MALDI-TOF-MS) of cell lysates of five thermophilic species of Campylobacter: jejuni, coli, lari, upsaliensis, and helveticus. The biomarker was unambiguously identified by genomic and proteomic sequencing as a DNA-binding protein HU. We report the amino acid sequence of HU as determined by sequencing the hup gene of four species (12 strains): C. jejuni (2), C. coli (4), C. upsaliensis (4) and C. lari(2). Confirmation of the amino acid sequence was obtained by nanoflow high-performance liquid chromatography-tandem mass spectrometry of the tryptic peptides of the extracted/digested HU protein. Protein identification was also confirmed by comparison of the molecular weight (MW) predicted from the hup gene and the MW of HU as measured by high-resolution mass spectrometry. We found the HU protein to be particularly useful as a biomarker in that it strongly ionizes by MALDI and its MW varies between species and among strains within a species. Intra- and interspecies variation of the HU MW is due to changes in the amino acid sequence of the HU protein and not due to co- or posttranslational modifications. The strong ionization efficiency of HU by MALDI is likely due, in part, to four lysine residues clustered at the carboxyl end of the protein. We also report identification of the HU protein biomarker for a C. helveticus strain, whose hup gene was not sequenced, but whose HU amino acid sequence was partially conserved in C. upsaliensis strains. We have also tentatively assigned a approximately 10.5-kDa protein biomarker of a C. concisus strain as an HU protein. PMID:16053303

  6. Mass Spectrometry and Glycomics

    PubMed Central

    2010-01-01

    Abstract Glycosylation defines the adhesive properties of animal cell surfaces and the surrounding extracellular environments. Because cells respond to stimuli by altering glycan expression, glycan structures vary according to spatial location in tissue and temporal factors. These dynamic structural expression patterns, combined with the essential roles glycans play in physiology, drive the need for analytical methods for glycoconjugates. In addition, recombinant glycoprotein drug products represent a multibillion dollar market. Effective analytical methods are needed to speed the identification of new targets and the development of industrial glycoprotein products, both new and biosimilar. Mass spectrometry is an enabling technology in glycomics. This review summarizes mass spectrometry of glycoconjugate glycans. The intent is to summarize appropriate methods for glycans given their chemical properties as distinct from those of proteins, lipids, and small molecule metabolites. Special attention is given to the uses of mass spectral profiling for glycomics with respect to the N-linked, O-linked, ganglioside, and glycosaminoglycan compound classes. Next, the uses of tandem mass spectrometry of glycans are summarized. The review finishes with an update on mass spectral glycoproteomics. PMID:20443730

  7. MASS SPECTROMETRY OF RNA

    PubMed Central

    Meng, Zhaojing; Limbach, Patrick A.

    2008-01-01

    Ribonucleic acids (RNAs) are continuing to attract increased attention as they are found to play pivotal roles in biological system. Just as genomics and proteomics have been enabled by the development of effective analytical techniques and instrumentation, the large-scale analysis of non-protein coding (nc)RNAs will benefit as new analytical methodologies are developed which are appropriate to RNA analysis. Mass spectrometry offers a number of advantageous for RNA analysis arising from its ability to provide mass and sequence information starting with limited amounts of sample. This Briefings will highlight recent developments in the field that enable the characterization of RNA modification status, RNA tertiary structures, and ncRNA expression levels. These developments will also be placed in perspective of how mass spectrometry of RNAs can help elucidate the link between the genome and proteome. PMID:16769684

  8. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    NASA Astrophysics Data System (ADS)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  9. Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies.

    PubMed

    Abbady, A Q; Al-Daoude, A; Al-Mariri, A; Zarkawi, M; Muyldermans, S

    2012-05-15

    The deployment of today's antibodies that are able to distinguish Brucella from the closely similar pathogens, such as Yersinia, is still considered a great challenge since both pathogens share identical LPS (lipopolysaccharide) O-ring epitopes. In addition, because of the great impact of Brucella on health and economy in many countries including Syria, much effort is going to the development of next generation vaccines, mainly on the identification of new immunogenic proteins of this pathogen. In this context, Brucella-specific nanobodies (Nbs), camel genetic engineered heavy-chain antibody fragments, could be of great value. Previously, a large Nb library was constructed from a camel immunized with heat-killed Brucella. Phage display panning of this 'immune' library with Brucella total lysate resulted in a remarkable fast enrichment for a Nb referred to as NbBruc02. In the present work, we investigated the main characteristics of this Nb that can efficiently distinguish under well-defined conditions the Brucella from other bacteria including Yersinia. NbBruc02 showed a strong and specific interaction with its antigen within the crude lysate as tested by a surface plasmon resonance (SPR) biosensor and it was also able to pull down its cognate antigen from such lysate by immuno-capturing. Using matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), NbBruc02 specific antigen was identified as chaperonin GroEL, also known as heat shock protein of 60 kDa (HSP-60), which represents a Brucella immunodominant antigen responsible of maintaining proteins folding during stress conditions. Interestingly, the antigen recognition by NbBruc02 was found to be affected by the state of GroEL folding. Thus, the Nb technology applied in the field of infectious diseases, e.g. brucellosis, yields two outcomes: (1) it generates specific binders that can be used for diagnosis, and perhaps treatment, and (2) it identifies the immunogenic candidate antigens for developing vaccines. PMID:22472910

  10. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics

    PubMed Central

    2013-01-01

    Background Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method. Results Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature. Conclusions Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides. PMID:24373546

  11. The Use of MALDI-TOF Mass Spectrometry, Ribotyping and Phenotypic Tests to Identify Lactic Acid Bacteria from Fermented Cereal Foods in Abidjan (Côte d’Ivoire)

    PubMed Central

    Soro-Yao, Amenan A; Schumann, Peter; Thonart, Philippe; Djè, Koffi M; Pukall, Rüdiger

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) protein analysis, automated ribotyping, and phenotypic tests (e.g., cell morphology, gas production from glucose, growth and acid production on homofermemtative-heterofermentative differential (HHD) agar medium, sugar fermentation patterns) were used to identify 23 lactic acid bacteria (LAB) isolated from fermented cereal foods available in Abidjan, Côte d’Ivoire. Pediococcus acidilactici (56.5%), Lactobacillus fermentum (30.4%), L. salivarius (4.3%), P. pentosaceus (4.3%) and L. plantarum subsp. plantarum (4.3%) were the species and subspecies identified. Protein based identification was confirmed by automated ribotyping for selected isolates and was similar to that provided by the phenotypic characterization. MALDI-TOF MS protein analysis provided a high level of discrimination among the isolates and could be used for the rapid screening of LAB starter cultures. PMID:25279017

  12. Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting.

    PubMed

    Saraiva, Sérgio A; Cabral, Elaine C; Eberlin, Marcos N; Catharino, Rodrigo R

    2009-05-27

    Amazonian oils and fats display unique triacylglycerol (TAG) profiles and, because of their economic importance as renewable raw materials and use by the cosmetic and food industries, are often subject to adulteration and forgery. Representative samples of these oils (andiroba, Brazil nut, buriti, and passion fruit) and fats (cupuaçu, murumuru, and ucuúba) were characterized without pre-separation or derivatization via dry (solvent-free) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Characteristic profiles of TAG were obtained for each oil and fat. Dry MALDI-TOF MS provides typification and direct and detailed information, via TAG profiles, of their variable combinations of fatty acids. A database from spectra could be developed and may be used for their fast and reliable typification, application screening, and quality control. PMID:19358529

  13. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  14. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  15. Utilization of Whole-Cell MALDI-TOF Mass Spectrometry to Differentiate Burkholderia pseudomallei Wild-Type and Constructed Mutants

    PubMed Central

    Jaresitthikunchai, Janthima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2015-01-01

    Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria. PMID:26656930

  16. Comparative study of laser induced breakdown spectroscopy and mass spectrometry for the analysis of cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Kokkinaki, O.; Mihesan, C.; Velegrakis, M.; Anglos, D.

    2013-07-01

    Analysis by laser-induced breakdown spectroscopy (LIBS) is compared, on the basis of a hybrid experimental set-up, with laser ablation time-of-flight mass spectrometry (LA-TOF-MS) for the characterization of materials relevant to cultural heritage. The present study focuses on the analysis of selected paint materials such as lithopone, a white inorganic pigment, and two synthetic organic paint formulations, lemon yellow and phthalocyanine blue. Optical emission spectra, obtained by LIBS, lead to rapid, straightforward identification of the elemental content of the paint samples while mass spectra yield, additionally to elemental analysis, complementary isotopic analysis and, more importantly, enable detection of molecules and molecular fragments, permitting a more complete structural and compositional characterization of composite materials. Mass spectra were recorded either simultaneously with the optical emission ones, or sequentially. The latter was preferred for materials having significantly lower fluence threshold for desorption/ionization relative to plasma formation resulting to optimum mass resolution and minimal surface damage. In all, the results of this study demonstrate the advantages of instrumentally complementing LIBS with TOF-MS in relation to applications in cultural heritage materials analysis, with exciting prospects when laser ablation sampling can be carried out under ambient atmosphere.

  17. Characterization and simultaneous determination of immunosuppressive decalins in red yeast rice by ultra-high-performance liquid chromatography hyphenated with mass spectrometry.

    PubMed

    Zhu, Lin; Han, Quan-Bin; Ho, Alan; Hsiao, Wen-Luan; Jiang, Zhi-Hong

    2013-08-16

    Decalins are secondary metabolites of red yeast rice with immunosuppressive effects on human T cell proliferation. In this study, ultra-high-performance liquid chromatography hyphenated with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed for elucidation of the mass fragmentation patterns of decalins by collision-induced dissociation tandem mass spectrometry (CID-MS/MS). Based on the MS/MS fragmentation patterns of the authentic decalin standards as well as high mass accuracy, a new decalin in the crude extract of red yeast rice was further putatively identified. Moreover, a quantitative analysis method of five immunosuppressive decalins by ultra-high-performance liquid chromatography hyphenated with triple quadrupole tandem mass spectrometry (UHPLC-QQQ-MS) under multiple reaction monitoring (MRM) mode was developed and validated. This method exhibits limits of detection from 0.44 to 1.96mg/kg, and precision variations were less than 3.2%, and the recovery was in the range of 82 and 105% with RSD less than 5.4%. This method was successfully applied in the quantitative analysis of decalins in different types of red yeast rice. The results showed that decalins only exist in functional red yeast rice but not in the common one. The study demonstrated that UHPLC-Q-TOF-MS and UHPLC-QQQ-MS methods described in this paper are powerful and reliable tools for the quality control of red yeast rice. PMID:23849587

  18. Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides.

    PubMed

    Zhang, Yahong; Yu, Xijuan; Wang, Xiaoyan; Shan, Wei; Yang, Pengyuan; Tang, Yi

    2004-12-21

    Metal-ion-immobilized zeolite nanoparticles have been applied for the first time to isolate phosphopeptides from tryptic beta-casein digest; the phosphopeptides enriched on the modified zeolite nanoparticles could be effectively identified by MALDI-TOF-MS/MS. PMID:15599454

  19. Ellagitannin Composition of Blackberry As Determined by HPLC-ESI-MS and MALDI-TOF-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apache blackberries (Rubus sp.) were evaluated by HPLC-MS and MALDI-TOF-MS to identify ellagitannins present in the flesh, torus (receptacle tissue), and seeds. Most ellagitannins were only present or detectable in seed tissues. Ellagitannins identified by HPLC-MS in the seeds included pedunculagi...

  20. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative methods of isobar separation. These techniques are discussed in the latter part of the review. PMID:22031277

  1. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  2. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  3. Matrix-Assisted Laser Desorption Ionization - Time of Flight Mass Spectrometry: An Emerging Tool for the Rapid Identification of Mosquito Vectors

    PubMed Central

    Yssouf, Amina; Socolovschi, Cristina; Flaudrops, Christophe; Ndiath, Mamadou Ousmane; Sougoufara, Seynabou; Dehecq, Jean-Sebastien; Lacour, Guillaume; Berenger, Jean-Michel; Sokhna, Cheikh Sadibou; Raoult, Didier; Parola, Philippe

    2013-01-01

    Background The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification. Methods To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested. Results Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species. Conclusions We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys. PMID:23977292

  4. Dihydrobenzoic acid modified nanoparticle as a MALDI-TOF MS matrix for soft ionization and structure determination of small molecules with diverse structures.

    PubMed

    Tseng, Mei-Chun; Obena, Rofeamor; Lu, Ying-Wei; Lin, Po-Chiao; Lin, Ping-Yu; Yen, Yung-Sheng; Lin, Jiann-Tsuen; Huang, Li-De; Lu, Kuang-Lieh; Lai, Long-Li; Lin, Chun-Cheng; Chen, Yu-Ju

    2010-11-01

    Efficient structural characterization is important for quality control when developing novel materials. In this study, we demonstrated the soft ionization capability of the hybrid of immobilized silica and 2,5-dihydrobenzoic acid (DHB) on iron oxide magnetic nanoparticles in MALDI-TOF MS with a clean background. The ratio between SiO(2) and DHB was examined and was found to affect the surface immobilization of DHB on the nanoparticle, critically controlling the ionization efficiency and interference background. Compared with commercial DHB, the functionalized nanoparticle-assisted MALDI-TOF MS provided superior soft ionization with production of strong molecular ions within 5 ppm mass accuracy on a variety of new types of synthetic materials used for solar cells, light emitting devices, dendrimers, and glycolipids, including analytes with either thermally labile structures or poor protonation tendencies. In addition, the enhancements of the molecular ion signal also provided high-quality product-ion spectra allowing structural characterization and unambiguous small molecule identification. Using this technique, the structural differences among the isomers were distinguished through their characteristic fragment ions and comprehensive fragmentation patterns. With the advantages of long-term stability and simple sample preparation by deposition on a regular sample plate, the use of DHB-functionalized nanoparticles combined with high-resolution MALDI-TOF MS provides a generic platform for rapid and unambiguous structure determination of small molecules. PMID:20739189

  5. Structural characterization of synthetic poly(ester amide) from sebacic acid and 4-amino-1-butanol by matrix-assisted laser desorption ionization time-of-flight/time-of-flight tandem mass spectrometry.

    PubMed

    Rizzarelli, Paola; Puglisi, Concetto

    2008-01-01

    Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) was employed to analyze a poly(ester amide) sample (PEA-Bu) from the melt condensation of sebacic acid and 4-amino-1-butanol. In particular, we investigated the fragmentation pathways, the ester/amide bond sequences and the structure of species derived from side reactions during the synthesis. MALDI-TOF/TOF-MS/MS analysis was performed on cyclic species and linear oligomers terminated by dicarboxyl groups, carboxyl and hydroxyl groups and diamino alcohol groups. The sodium adducts of these oligomers were selected as precursor ions. Different end groups do not influence the fragmentation of sodiated poly(ester amide) oligomers and similar series of product ions were observed in the MALDI-TOF/TOF-MS/MS spectra. According to the structures of the most abundant product ions identified, the main cleavages proceed through a beta-hydrogen-transfer rearrangement, leading to the selective scission of the --O--CH2-- bonds. Abundant product ions originating from --CH2--CH2-- (beta-gamma) bond cleavage in the sebacate moiety were also detected. Their formation should be promoted by the presence of an alpha,beta-unsaturated ester or amide end group. MALDI-TOF/TOF-MS/MS provided structural information concerning the ester/amide sequences in the polymer chains. In the MALDI-TOF/TOF-MS/MS spectra acquired, using argon as the collision gas, of cyclic species and linear oligomers terminated by diamino alcohol groups, product ions in the low-mass range, undetected in the mass spectra acquired using air as the collision gas, proved to be diagnostic and made it possible to establish the presence of random sequences of ester and amide bonds in the poly(ester amide) sample. Furthermore, MALDI-TOF/TOF-MS/MS provided useful information to clarify the structures of precursor ions derived from side reactions during the synthesis. PMID:18278818

  6. Detection of Pancreatic Cancer Biomarkers Using Mass Spectrometry

    PubMed Central

    Kim, Kiyoun; Ahn, Soohyun; Lim, Johan; Yoo, Byong Chul; Hwang, Jin-Hyeok; Jang, Woncheol

    2014-01-01

    BACKGROUND Pancreatic cancer is the fourth leading cause of cancer-related deaths. Therefore, in order to improve survival rates, the development of biomarkers for early diagnosis is crucial. Recently, diabetes has been associated with an increased risk of pancreatic cancer. The aims of this study were to search for novel serum biomarkers that could be used for early diagnosis of pancreatic cancer and to identify whether diabetes was a risk factor for this disease. METHODS Blood samples were collected from 25 patients with diabetes (control) and 93 patients with pancreatic cancer (including 53 patients with diabetes), and analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS). We performed preprocessing, and various classification methods with imputation were used to replace the missing values. To validate the selection of biomarkers identified in pancreatic cancer patients, we measured biomarker intensity in pancreatic cancer patients with diabetes following surgical resection and compared our results with those from control (diabetes-only) patients. RESULTS By using various classification methods, we identified the commonly splitting protein peaks as m/z 1,465, 1,206, and 1,020. In the follow-up study, in which we assessed biomarkers in pancreatic cancer patients with diabetes after surgical resection, we found that the intensities of m/z at 1,465, 1,206, and 1,020 became comparable with those of diabetes-only patients. PMID:25673969

  7. MALDI Mass Spectrometry Imaging of Neuronal Cell Cultures

    PubMed Central

    Zimmerman, Tyler A.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI) provides the ability to detect and identify a broad range of analytes and their spatial distributions from a variety of sample types, including tissue sections. Here we describe an approach for probing neuropeptides from sparse cell cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI—at single cell spatial resolution—in both MS and tandem MS modes. Cultures of Aplysia californica neurons are grown on an array of glass beads embedded in a stretchable layer of Parafilm M. As the membrane is stretched, the beads/neurons are separated physically and the separated beads/neurons analyzed via MALDI TOF MS. Compared with direct MS imaging of samples, the stretching procedure enhances analyte extraction and incorporation into the MALDI matrix, with negligible analyte spread between separated beads. MALDI tandem MSI using the stretched imaging approach yields localization maps of both parent and fragment ions from Aplysia pedal peptide, thereby confirming peptide identification. This methodology represents a flexible platform for MSI investigation of a variety of cell cultures, including functioning neuronal networks. PMID:21472517

  8. TOFwave: reproducibility in biomarker discovery from time-of-flight mass spectrometry data.

    PubMed

    Chierici, Marco; Albanese, Davide; Franceschi, Pietro; Furlanello, Cesare

    2012-11-01

    Many are the sources of variability that can affect reproducibility of disease biomarkers from time-of-flight (TOF) Mass Spectrometry (MS) data. Here we present TOFwave, a complete software pipeline for TOF-MS biomarker identification, that limits the impact of parameter tuning along the whole chain of preprocessing and model selection modules. Peak profiles are obtained by a preprocessing based on Continuous Wavelet Transform (CWT), coupled with a machine learning protocol aimed at avoiding selection bias effects. Only two parameters (minimum peak width and a signal to noise cutoff) have to be explicitly set. The TOFwave pipeline is built on top of the mlpy Python package. Examples on Matrix-Assisted Laser Desorption and Ionization (MALDI) TOF datasets are presented. Software prototype, datasets and details to replicate results in this paper can be found at http://mlpy.sf.net/tofwave/. PMID:22875362

  9. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B. ); Wahl, Jon H. ); Kingsley, Mark T. ); Wahl, Karen L. )

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  10. Verification of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Diagnostic Identification of High-Consequence Bacterial Pathogens.

    PubMed

    Tracz, Dobryan M; Antonation, Kym S; Corbett, Cindi R

    2016-03-01

    We examined the utility of a single matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry method for the identification of security-sensitive biological agents (risk group 3 bacterial pathogens). The goal was 2-fold: to verify a method for inclusion into our scope of accreditation, and to assess the biological safety of extractions. We developed our sample flow to include a tube-based chemical extraction, followed by filtration, before processing on MALDI-TOF MS instruments in a containment level 2 laboratory. PMID:26677252

  11. Rapid identification of positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry using prewarmed agar plates.

    PubMed

    Bhatti, M M; Boonlayangoor, S; Beavis, K G; Tesic, V

    2014-12-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation. PMID:25232166

  12. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nocardia Species▿

    PubMed Central

    Verroken, A.; Janssens, M.; Berhin, C.; Bogaerts, P.; Huang, T.-D.; Wauters, G.; Glupczynski, Y.

    2010-01-01

    The identification of Nocardia species, usually based on biochemical tests together with phenotypic in vitro susceptibility and resistance patterns, is a difficult and lengthy process owing to the slow growth and limited reactivity of these bacteria. In this study, a panel of 153 clinical and reference strains of Nocardia spp., altogether representing 19 different species, were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). As reference methods for species identification, full-length 16S rRNA gene sequencing and phenotypical biochemical and enzymatic tests were used. In a first step, a complementary homemade reference database was established by the analysis of 110 Nocardia isolates (pretreated with 30 min of boiling and extraction) in the MALDI BioTyper software according to the manufacturer's recommendations for microflex measurement (Bruker Daltonik GmbH, Leipzig, Germany), generating a dendrogram with species-specific cluster patterns. In a second step, the MALDI BioTyper database and the generated database were challenged with 43 blind-coded clinical isolates of Nocardia spp. Following addition of the homemade database in the BioTyper software, MALDI-TOF MS provided reliable identification to the species level for five species of which more than a single isolate was analyzed. Correct identification was achieved for 38 of the 43 isolates (88%), including 34 strains identified to the species level and 4 strains identified to the genus level according to the manufacturer's log score specifications. These data suggest that MALDI-TOF MS has potential for use as a rapid (<1 h) and reliable method for the identification of Nocardia species without any substantial costs for consumables. PMID:20861335

  13. Automated categorization of methicillin-resistant Staphylococcus aureus clinical isolates into different clonal complexes by MALDI-TOF mass spectrometry.

    PubMed

    Camoez, M; Sierra, J M; Dominguez, M A; Ferrer-Navarro, M; Vila, J; Roca, I

    2016-02-01

    Early identification of methicillin-resistant Staphylococcus aureus (MRSA) dominant clones involved in infection and initiation of adequate infection control measures are essential to limit MRSA spread and understand MRSA population dynamics. In this study we evaluated the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) for the automated discrimination of the major MRSA lineages (clonal complexes, CC) identified in our hospital during a 20-year period (1990-2009). A collection of 82 well-characterized MRSA isolates belonging to the four main CCs (CC5, CC8, CC22 and CC398) was split into a reference set (n = 36) and a validation set (n = 46) to generate pattern recognition models using the ClinProTools software for the identification of MALDI-TOF/MS biomarker peaks. The supervised neural network (SNN) model showed the best performance compared with two other models, with sensitivity and specificity values of 100% and 99.11%, respectively. Eleven peaks (m/z range: 3278-6592) with the highest separation power were identified and used to differentiate all four CCs. Validation of the SNN model using ClinProTools resulted in a positive predictive value (PPV) of 99.6%. The specific contribution of each peak to the model was used to generate subtyping reference signatures for automated subtyping using the BioTyper software, which successfully classified MRSA isolates into their corresponding CCs with a PPV of 98.9%. In conclusion, we find this novel automated MALDI-TOF/MS approach to be a promising, powerful and reliable tool for S. aureus typing. PMID:26482268

  14. Identification of Weissella species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    PubMed Central

    Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren

    2015-01-01

    Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species. PMID:26594208

  15. Identification of amiodarone metabolites in human bile by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Deng, Pan; You, Tiangeng; Chen, Xiaoyan; Yuan, Tao; Huang, Haihua; Zhong, Dafang

    2011-06-01

    Amiodarone is recognized as an effective drug in the treatment of arrhythmias. Previous experiments demonstrated that mono-N-desethylamiodarone (MDEA) was the major circulating metabolite in humans. In addition, dealkylation, hydroxylation, and deamination were minor metabolic pathways. The purpose of this study was to identify the metabolites of amiodarone in the bile obtained from patients with T-tube drainage after oral drug administration. Amiodarone metabolism in vitro was also investigated using human liver microsomes (HLMs) and S9 fraction. Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) revealed 33 metabolites in human bile, including 22 phase I and 11 phase II metabolites. The major metabolites were MDEA (M7) and ω-carboxylate amiodarone (M12). Metabolite M12 was isolated from human bile, and the chemical structure was confirmed using UPLC-Q/TOF MS and ¹H NMR. Moreover, the authentic standards of two hydroxylated metabolites, 2-hydroxylamiodarone and 3'-hydroxylamiodarone, were obtained through microbial transformation. Several novel metabolic pathways of amiodarone in human were proposed, including ω-carboxylation, deiodination, and glucuronidation. The in vitro study demonstrated that incubation of HLMs with amiodarone did not give rise to any carboxyl metabolites. In contrast, M12 and its metabolites were detected in human liver S9 incubation samples, and the production of these metabolites were inhibited almost completely by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, suggesting the involvement of alcohol dehydrogenase in the ω-carboxylation of amiodarone. Overall, UPLC-Q/TOF MS analysis leads to the discovery of several novel amiodarone metabolites in human bile and underscores the importance of bile as an excretion pathway. PMID:21398391

  16. Metabolite Profile of Salidroside in Rats by Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and High-Performance Liquid Chromatography Coupled with Quadrupole-Linear Ion Trap Mass Spectrometry.

    PubMed

    Hu, Zhiwei; Wang, Ziming; Liu, Yong; Wu, Yan; Han, Xuejiao; Zheng, Jian; Yan, Xiufeng; Wang, Yang

    2015-10-21

    In the present work, the salidroside metabolite profile in rat urine was investigated, and subsequently the metabolic pathways of salidroside were proposed. After administrations of salidroside at an oral dose of 100 or 500 mg/kg, rat urine samples were collected and pretreated with methanol to precipitate the proteins. The pretreated samples were analyzed by an Acquity ultraperformance liquid chromatography (UPLC) coupled with an HSS T3 column and detected by quadrupole time-of-flight mass spectrometry (Q-TOF-MS) or high-performance liquid chromatography coupled with hybrid triple-quadrupole linear ion trap mass spectrometry (HPLC/Q-trap-MS). A total of eight metabolites were detected and identified on the basis of the characteristics of their protonated ions in the urine samples. The results elucidated that salidroside was metabolized via glucuronidation, sulfation, deglycosylation, hydroxylation, methylation, and dehydroxylation pathways in vivo. PMID:26461036

  17. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Hua; Zhao, Jian-Wei; Yan, Wen-Qi; Le, X. Y.; Lin, Wen-Jian; Song, C. Y.; Tanihata, Isao; Terashima, S.; Wang, T. F.; Zhang, S. S.; Zhu, L. H.

    2016-02-01

    The time-of-flight (TOF) mass spectrometry (MS), a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10-4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  18. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    TOXLINE Toxicology Bibliographic Information

    Kailasa SK; Kiran K; Wu HF

    2008-12-15

    Zinc sulfide (ZnS) semiconductor nanoparticles (NPs) capped with a variety of functional groups including bare ZnS NPs, 3-mercaptopropanoic acid (ZnS-3-MPA), sodium citrate (ZnS-citrate), cysteamine (ZnS-Cys), and 2-mercaptoethane sulfonate (ZnS-2-MES) have been investigated as the matrix and affinity probes for analysis of alpha-, beta-, and gamma-cyclodextrins (CDs), ubiquitin, and insulin in biological samples by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS). Various parameters that would influence the ionization efficiency and sensitivity of these ZnS NPs in SALDI-TOF-MS were examined including the effect of capping agents, sample pH, ion abundance, and concentration of ZnS NPs. Among these ZnS NPs, our results have demonstrated that ZnS-3-MPA exhibited the highest efficiency toward CDs, ubiquitin, and insulin for high-sensitivity detection in SALDI-TOF-MS. The detection limits were 20-55 nM for CDs, 91 nM for ubiquitin, and 85 nM for insulin. The applicability of the present method is demonstrated by detection of ubiquitin-like proteins in oyster mushroom and also in the analysis of analytes in biological samples such as human urine and plasma. To our best knowledge, this is the first time semiconductor NPs were used as the matrix and affinity probes for high-sensitivity detection of organic and biomolecules in SALDI-TOF-MS. This approach exhibits the advantages of being simple, rapid, efficient, and straightforward for direct analysis of organic and biological samples in SALDI-TOF-MS without the need for time-consuming separation processes, tedious washing steps, or further laborious purification. In addition, it also can provide a sensitive and reliable quantitative assay for small- and large-molecule analysis with the detectable mass up to 8500 Da. We believe that this novel ZnS nanoprobe is simple, efficient, lower cost (compared with Au, Ag, and Pt NPs), fast, and with the potential for high-throughput analysis in SALDI-TOF-MS.

  19. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kailasa, Suresh Kumar; Kiran, Kamatam; Wu, Hui-Fen

    2008-12-15

    Zinc sulfide (ZnS) semiconductor nanoparticles (NPs) capped with a variety of functional groups including bare ZnS NPs, 3-mercaptopropanoic acid (ZnS-3-MPA), sodium citrate (ZnS-citrate), cysteamine (ZnS-Cys), and 2-mercaptoethane sulfonate (ZnS-2-MES) have been investigated as the matrix and affinity probes for analysis of alpha-, beta-, and gamma-cyclodextrins (CDs), ubiquitin, and insulin in biological samples by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS). Various parameters that would influence the ionization efficiency and sensitivity of these ZnS NPs in SALDI-TOF-MS were examined including the effect of capping agents, sample pH, ion abundance, and concentration of ZnS NPs. Among these ZnS NPs, our results have demonstrated that ZnS-3-MPA exhibited the highest efficiency toward CDs, ubiquitin, and insulin for high-sensitivity detection in SALDI-TOF-MS. The detection limits were 20-55 nM for CDs, 91 nM for ubiquitin, and 85 nM for insulin. The applicability of the present method is demonstrated by detection of ubiquitin-like proteins in oyster mushroom and also in the analysis of analytes in biological samples such as human urine and plasma. To our best knowledge, this is the first time semiconductor NPs were used as the matrix and affinity probes for high-sensitivity detection of organic and biomolecules in SALDI-TOF-MS. This approach exhibits the advantages of being simple, rapid, efficient, and straightforward for direct analysis of organic and biological samples in SALDI-TOF-MS without the need for time-consuming separation processes, tedious washing steps, or further laborious purification. In addition, it also can provide a sensitive and reliable quantitative assay for small- and large-molecule analysis with the detectable mass up to 8500 Da. We believe that this novel ZnS nanoprobe is simple, efficient, lower cost (compared with Au, Ag, and Pt NPs), fast, and with the potential for high-throughput analysis in SALDI-TOF-MS. PMID:18991387

  20. Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway.

    PubMed

    Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-01-01

    Characterization of nonfluorescent chlorophyll catabolites (NCCs) and dioxobilane-type nonfluorescent chlorophyll catabolite (DNCC) in peel extracts of ripened lemon fruits (Citrus limon L.) was performed by HPLC/ESI-high resolution-qTOF-MS method. Compounds were identified in samples on the basis of measured accurate mass, isotopic pattern, and characteristic fragmentation profile with an implemented software postprocessing routine. Three NCC structures already identified in other vegetal tissues were present in the lemon fruit peels (Cl-NCC1; Cl-NCC2; Cl-NCC4) while a new structure not defined so far was characterized (Cl-NCC3). This catabolite exhibits an exceptional arrangement of the peripheral substituents, allowing concluding that the preferences for the NCC modifications could be a species-related matter. PMID:25741450

  1. Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway

    PubMed Central

    Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-01-01

    Characterization of nonfluorescent chlorophyll catabolites (NCCs) and dioxobilane-type nonfluorescent chlorophyll catabolite (DNCC) in peel extracts of ripened lemon fruits (Citrus limon L.) was performed by HPLC/ESI-high resolution-qTOF-MS method. Compounds were identified in samples on the basis of measured accurate mass, isotopic pattern, and characteristic fragmentation profile with an implemented software postprocessing routine. Three NCC structures already identified in other vegetal tissues were present in the lemon fruit peels (Cl-NCC1; Cl-NCC2; Cl-NCC4) while a new structure not defined so far was characterized (Cl-NCC3). This catabolite exhibits an exceptional arrangement of the peripheral substituents, allowing concluding that the preferences for the NCC modifications could be a species-related matter. PMID:25741450

  2. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  3. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  4. Screening of gluten avenins in foods by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Camafeita, E; Méndez, E

    1998-10-01

    The first procedure capable of analysing gluten avenins in gluten-free food samples aimed at the diet control of coeliac patients is described. The method is based on the direct observation of the characteristic avenin mass pattern, around 20-30 kDa, as revealed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS). The mass range where avenin signals appear is free from mass peaks arising from wheat gliadin, barley hordein and rye secalin protein components, which are also toxic to coeliac patients. Therefore, avenins can easily be screened in complex formula food samples elaborated with mixtures of wheat, barley, rye and oats. In addition, a procedure to quantify avenins in food samples is described on the basis of avenin mass area measurement with a detection limit of 0.4 mg of avenins per 100 g of food. PMID:9821333

  5. Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry.

    PubMed

    Rowell, Frederick; Seviour, John; Lim, Angelina Yimei; Elumbaring-Salazar, Cheryl Grace; Loke, Jason; Ma, Jan

    2012-09-10

    The ability of two mass spectrometric methods, surface-assisted laser desorption/ionization-time of flight-mass spectrometry (SALDI-TOF-MS) and direct analysis in real time (DART-MS), to detect the presence of seven common explosives (six nitro-organic- and one peroxide-type) in spiked latent fingermarks has been examined. It was found that each explosive could be detected with nanogram sensitivity for marks resulting from direct finger contact with a glass probe by DART-MS or onto stainless steel target plates using SALDI-TOF-MS for marks pre-dusted with one type of commercial black magnetic powder. These explosives also could be detected in latent marks lifted from six common surfaces (paper, plastic bag, metal drinks can, wood laminate, adhesive tape and white ceramic tile) whereas no explosive could be detected in equivalent pre-dusted marks on the surface of a commercial lifting tape by the DART-MS method due to high background interference from the tape material. The presence of TNT and Tetryl could be detected in pre-dusted latent fingermarks on a commercial lifting tape for up to 29 days sealed and stored under ambient conditions. PMID:22551694

  6. Bioaffinity Mass Spectrometry Screening.

    PubMed

    Yang, Ben; Feng, Yun Jiang; Vu, Hoan; McCormick, Brendan; Rowley, Jessica; Pedro, Liliana; Crowther, Gregory J; Van Voorhis, Wesley C; Forster, Paul I; Quinn, Ronald J

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay. PMID:26773071

  7. Comparison of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Molecular Biology Techniques for Identification of Culicoides (Diptera: Ceratopogonidae) Biting Midges in Senegal

    PubMed Central

    Sambou, Masse; Aubadie-Ladrix, Maxence; Fenollar, Florence; Fall, Becaye; Bassene, Hubert; Almeras, Lionel; Sambe-Ba, Bissoume; Perrot, Nadine; Chatellier, Sonia; Faye, Ngor; Parola, Philippe; Wade, Boubacar; Raoult, Didier

    2014-01-01

    Biting midges of the genus Culicoides are implicated as vectors for a wide variety of pathogens. The morphological identification of these arthropods may be difficult because of a lack of detailed investigation of taxonomy for this species in Africa. However, matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) profiling is efficient for arthropod identification at the species level. This study established a spectrum database of Culicoides spp. from Senegal using MALDI-TOF. Identification of Culicoides insects to the species level before mass spectrometry was performed on the basis of morphological characters. MALDI-TOF MS reference spectra were determined for 437 field-caught Culicoides of 10 species. The protein profiles of all tested Culicoides revealed several peaks with mass ranges of 2 to 20 kDa. In a validation study, 72 Culicoides specimens in the target species were correctly identified at the species level with a similarity of 95 to 99.9%. Four Culicoides protein profiles were misidentified. Nevertheless, six SuperSpectra (C. imicola, C. enderleini, C. oxystoma, C. kingi, C. magnus, and C. fulvithorax) were created. Abdomens of midges were used to amplify and sequence a portion of the mitochondrial cytochrome oxidase I gene (COI). The results obtained using the MALDI-TOF MS method were consistent with the morphological identification and similar to the genetic identification. Protein profiling using MALDI-TOF is an efficient approach for the identification of Culicoides spp., and it is economically advantageous for approaches that require detailed and quantitative information of vector species that are collected in field. The database of African Culicoides MS spectra created is the first database in Africa. The COI sequences of five Culicoides species that were previously noncharacterized using molecular methods were deposited in GenBank. PMID:25411169

  8. Identification of in vivo and in vitro metabolites of 4,5-dimethoxycanthin-6-one by HPLC-Q-TOF-MS/MS.

    PubMed

    Miao, Xiaolei; Wang, Junjun; Chen, Liang; Peng, Zhihong; Chen, Yong

    2016-05-01

    4,5-Dimthexycanthin-6-one and 5-hydroxy-4-methoxycanthin-6-one are the main active ingredients of Picrasma quassioides, which is a widely used herbal medicine for the treatment of gastroenteritis, snakebite, infection and hypertension in China. In the present study, the in vitro metabolites of 4,5-dimethoxycanthin-6-one in rat, mouse, dog and human liver microsomes, as well as the in vivo metabolites in rat plasma and urine following a single oral dose of 4,5-dimethoxycanthin-6-one, were identified by high-performance liquid chromatography combined with triple TOF mass spectrometry (HPLC-TOF/MS/MS). The metabolites were elucidated based on an accurate mass measurement, the MS/MS fragmentation patterns, the retention times of the parent drug and its metabolites, and the relevant drug biotransformation rules. After incubation in liver mcrosomes for 50min, 4,5-dimethoxycanthin-6-one produced 8 phase I metabolites including 2 mono-demethylated metabolites (M1, M2), 3 mono-hydroxylated metabolites (M3-M5), and 3 mono-demethylated and mono-hydroxylated metabolites (M6-M8) in rat and mouse liver microsomes, 7 phase I metabolites (without M7) in dog and human liver microsomes. After a single oral administration of 4,5-dimethoxycanthin-6-one to rats, there were 3 phase I metabolites (M1, M2 and M5) detected in rat plasma and 5 phase I metabolites (M1-M5) in rat urine. Phase II metabolites were not detected in rat plasma and urine. Among these metabolites, mono-demethylated metabolites (M1 and M2) were the major metabolites of 4,5-dimethoxycanthin-6-one, mono-hydroxylated metabolites (M3-M5) were the minor metabolites of 4,5-dimethoxycanthin-6-one. PMID:27030894

  9. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  10. Evaluation of the MALDI-TOF MS profiling for identification of newly described Aeromonas spp.

    PubMed

    Vávrová, Andrea; Balážová, Tereza; Sedláček, Ivo; Tvrzová, Ludmila; Šedo, Ondrej

    2015-09-01

    The genus Aeromonas comprises primarily aquatic bacteria and also serious human and animal pathogens with the occurrence in clinical material, drinking water, and food. Aeromonads are typical for their complex taxonomy and nomenclature and for limited possibilities of identification to the species level. According to studies describing the use of MALDI-TOF MS in diagnostics of aeromonads, this modern chemotaxonomical approach reveals quite high percentage of correctly identified isolates. We analyzed 64 Aeromonas reference strains from the set of 27 species. After extending the range of analyzed Aeromonas species by newly described ones, we proved that MALDI-TOF MS procedure accompanied by Biotyper tool is not a reliable diagnostic technique for aeromonads. We obtained quite high percentage of false-positive, incorrect, and uncertain results. The identification of newly described species is accompanied with misidentifications that were observed also in the case of pathogenic aeromonads. PMID:25520239

  11. Mass Spectrometric Analysis of Lipopeptide from Bacillus Strains Isolated from Diverse Geographical Locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been applied to characterize lipopeptide biomarkers from 54 different strains of Bacillis from most taxa within the B. subtilis - B. licheniformis clade, isolated from 7 different geographic locations on ...

  12. Triple bioaffinity mass spectrometry concept for thyroid transporter ligands.

    PubMed

    Aqai, Payam; Fryganas, Christos; Mizuguchi, Mineyuki; Haasnoot, Willem; Nielen, Michel W F

    2012-08-01

    For the analysis of thyroid transporter ligands, a triple bioaffinity mass spectrometry (BioMS) concept was developed, with the aim at three different analytical objectives: rapid screening of any ligand, confirmation of known ligands in accordance with legislative requirements, and identification of emerging yet unknown ligands. These three purposes share the same biorecognition element, recombinant thyroid transport protein transthyretin (rTTR), and dedicated modes of liquid chromatography-mass spectrometry (LC-MS). For screening, a rapid and radiolabel-free competitive inhibition MS binding assay was developed with fast ultrahigh performance-liquid chromatography-electrospray ionization-triple-quadrupole-MS (UPLC-QqQ-MS) as the readout system. It uses the nonradioactive stable isotopic thyroid hormone (13)C(6)-L-thyroxine as the label of which the binding to rTTR is inhibited by any ligand such as thyroid drugs and thyroid endocrine disrupting chemicals (EDCs). To this end, rTTR is either used in solution or immobilized on paramagnetic microbeads. The concentration-dependent inhibition of the label by the natural thyroid hormone l-thyroxine (T4), as a model analyte, is demonstrated in water at part-per-trillion and in urine at part-per-billion level. For confirmation of identity of known ligands, rTTR was used for bioaffinity purification for confirmation of naturally present free T4 in urine. As a demonstrator for identification of unknown ligands, the same rTTR was used again but in combination with nano-UPLC-quadrupole time-of-flight-MS (nLC-Q-TOF-MS) and urine samples spiked with the model "unknown" EDCs triclosan and tetrabromobisphenol-A. This study highlights the potential of BioMS using one affinity system, both for rapid screening and for confirmation and identification of known and unknown emerging thyroid EDCs. PMID:22741556

  13. Real-Time Analysis of Water by Membrane Introduction/Laser Ionization Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Oser, H.; Irwin, A.; Mullen, C.; Coggiola, M. J.

    2005-12-01

    Two photon resonance enhanced multiphoton ionization (REMPI) has been shown to be an unique ionization method for mass spectrometry with high sensitivity and selectivity. This method has been used for about thirty years for fundamental studies in molecular spectroscopy and dynamics, but recently has been examined and developed as a tool for fast, rapid on-line monitoring of complex gas mixtures. The list of reported successful applications includes on-line monitoring of combustion processes, monitoring of automotive exhaust and the formation chemistry of Polychlorinated Dioxins/Furans in waste incineration. At SRI International we are studying the REMPI method for analytical purposes for the determination of trace amounts of hazardous air pollutants, toxics in vehicle exhausts, breath analysis, cancer drugs, and explosives. Since REMPI is a gas phase method, REMPI applications have been limited and applied to gas phase systems or in conjunction with a combination of laser desorption and subsequent laser ionization. We describe here for the first time a combination of MIMS and REMPI with time-of flight mass spectrometry (ToF MS), which allows the direct analysis of water samples. The application of ToF MS offers some advantages like high transmission, robustness, and the ability to record a mass spectrum per each laser shot The objective of this research was the detection of trace amounts of aromatic contaminants particularly BETX in aqueous solutions without interference or clogging of the inlet due to the vastly greater amount of water. To our knowledge, this combination of membrane introduction, laser photoionization and ToF MS has not been examined previously. A significant feature of MIMS is the simultaneous introduction of all analytes into the mass spectrometer. This results in a rapid analytical method, suitable for on-line applications. However, the application of conventional ionization methods presumably electron impact, making the analysis of complex mixtures more difficult. In most MIMS applications, the mass spectrometer has been a standard quadrupole instrument; ion traps and time-of-flight (TOF) devices have also been used. Almost all these studies utilized electron impact ionization. The laser photoionization method, which generally can be adjusted not to photofragment the compounds, allows identification from the parent ion masses only. It offers the advantages both of sensitive, rapid analysis without prior separation or preparation process, and of parent ion mass identification without deconvolution of multiple mass peaks.

  14. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  15. Application of gas chromatography-mass spectrometry metabolite profiling techniques to the analysis of heathland plant diets of sheep.

    PubMed

    Parveen, Ifat; Moorby, Jon M; Fraser, Mariecia D; Allison, Gordon G; Kopka, Joachim

    2007-02-21

    Little is known about how plant biochemistry influences the grazing behavior of animals consuming heterogeneous plant communities. The biochemical profiles of grassland species are mostly restricted to major nutritional characteristics, although recent developments in analytical techniques and data analysis have made possible the detailed analysis of minor components that may influence animal feeding preferences, performance, and health. In the present study, gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF/MS) was used to profile the abundances of metabolites in nine specific heathland plant groups and in three mixed forage diets containing 10, 20, or 30% heather (Calluna vulgaris) and also in plasma and feces from sheep offered one of the three diets. Statistical and chemometric approaches, that is, principal component analysis (PCA) and hierarchical cluster analysis (HCA), were used to discriminate between these diets and between individual animals maintained on these diets. It is shown that GC-TOF/MS analysis of sheep plasma allowed distinction between the very similar diets by PCA and HCA, and, moreover, the plant metabolites responsible for the differences observed have been identified. Furthermore, metabolite markers of herbage mixtures and individual plant groups have been identified, and markers have been detected in sheep plasma and feces. PMID:17249687

  16. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry: a tool to predict pork quality.

    PubMed

    Marcos, B; Gou, P; Gurdia, M D; Horts, M; Colleo, M; Mach, N; Te Pas, M F W; Keuning, E; Kruijt, L; Tibau, J; Gispert, M; Arnau, J

    2013-11-01

    Expression of water soluble proteins of fresh pork Longissimus thoracis from 4 pure breed pigs (Duroc, Large White, Landrace, and Pitrain) was studied to identify candidate protein markers for meat quality. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) was used to obtain the soluble protein profiles of Longissimus thoracis muscles. The pure breeds showed differences among the studied meat quality traits (pHu, drip loss, androstenone, marbling, intramuscular fat, texture, and moisture), but no significant differences were detected in sensory analysis. Associations between protein peaks obtained with SELDI-TOF-MS and meat quality traits, mainly water holding capacity, texture and skatole were observed. Of these peaks, a total of 10 peaks from CM10 array and 6 peaks from Q10 array were candidate soluble protein markers for pork loin quality. The developed models explained a limited proportion of the variability, however they point out interesting relationships between protein expression and meat quality. PMID:23182671

  17. Endogenous Plasma Peptide Detection and Identification in the Rat by a Combination of Fractionation Methods and Mass Spectrometry

    PubMed Central

    Bertile, Fabrice; Robert, Flavie; Delval-Dubois, Véronique; Sanglier, Sarah; Schaeffer, Christine; Van Dorsselaer, Alain

    2007-01-01

    Mass spectrometry-based analyses are essential tools in the field of biomarker research. However, detection and characterization of plasma low abundance and/or low molecular weight peptides is challenged by the presence of highly abundant proteins, salts and lipids. Numerous strategies have already been tested to reduce the complexity of plasma samples. The aim of this study was to enrich the low molecular weight fraction of rat plasma. To this end, we developed and compared simple protocols based on membrane filtration, solid phase extraction, and a combination of both. As assessed by UV absorbance, an albumin depletion >99% was obtained. The multistep fractionation strategy (including reverse phase HPLC) allowed detection, in a reproducible manner (CV < 30%–35%), of more than 450 peaks below 3000 Da by MALDI-TOF/MS. A MALDI-TOF/MS-determined LOD as low as 1 fmol/μL was obtained, thus allowing nanoLC-Chip/MS/MS identification of spiked peptides representing ~10−6% of total proteins, by weight. Signal peptide recovery ranged between 5%–100% according to the spiked peptide considered. Tens of peptide sequence tags from endogenous plasma peptides were also obtained and high confidence identifications of low abundance fibrinopeptide A and B are reported here to show the efficiency of the protocol. It is concluded that the fractionation protocol presented would be of particular interest for future differential (high throughput) analyses of the plasma low molecular weight fraction. PMID:19662220

  18. Optimization of the preanalytical steps of matrix-assisted laser desorption ionization-time of flight mass spectrometry identification provides a flexible and efficient tool for identification of clinical yeast isolates in medical laboratories.

    PubMed

    Goyer, Marianne; Lucchi, Geraldine; Ducoroy, Patrick; Vagner, Odile; Bonnin, Alain; Dalle, Frederic

    2012-09-01

    We report here that modifications of the preanalytical steps of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification of yeasts, with regard to the original protocol provided by the manufacturers, appear to be efficient for the reliable routine identification of clinical yeast isolates in medical laboratories. Indeed, when one colony was sampled instead of five and the protein extraction protocol was modified, the performance of MALDI-TOF MS was superior to that of the API ID 32C method (discrepancies were confirmed by using molecular identification), allowing the correct identification of 94% of the 335 clinical isolates prospectively tested. We then demonstrated that the time for which the primary cultures were preincubated on CHROMagar did not impact the identification of yeasts by MALDI-TOF MS, since 95.1 and 96.2% of the 183 clinical yeast isolates prospectively tested were correctly identified after 48 and 72 h of preincubation, respectively. PMID:22718939

  19. An integrated strategy of ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and virtual screening for the identification of α-glucosidase inhibitors in acarviostatin-containing complex.

    PubMed

    Wanga, Liqiang; Cui, Qingxin; Hou, Yuanyuan; Bai, Fang; Sun, Jixue; Cao, Xiaofang; Liu, Pi; Jiang, Min; Bai, Gang

    2013-12-01

    We propose a strategy that integrates ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) and virtual docking to identify inhibitors of multiple human -glucosidases. UPLC yielded AIB656, an acarviostatin-containing complex, which was analyzed by Q-TOF-MS to acquire structural information and was tested for inhibition of N-terminal (MGAM-N), C-terminal (MGAM-C) catalytic domain of maltase-glucoamylase, and human pancreatic -amylase (HPA).A systematic computational study was performed to evaluate the inhibition activity for 51 identified acarviostatins with various sizes, including trace or difficult-to-prepare ingredients. We evaluated the selectivities of three -glucosidases to acarviostatins and revealed the strong inhibition of MGAM-Nby acarviostatin I0-1. The high accuracy of the dual-screening was validated using enzyme inhibition assays, and docking was suggested as a possible mechanism for the strong inhibition of MGAM-N by acarviostatin I0-1 and of MGAM-C by acarbose (acarviostatin I01). No compound in AIB656 was suitable for inhibiting all three -glucosidases. Compared with conventional chromatographic separation and inhibitory activity detection, integrating UPLC/Q-TOF-MS identification and virtual validation was more convenient and more reliable. This strategy clearly demonstrates that MS data-based fingerprinting is a meaningful tool not only in identifying constituents in complex matrix but also in directly screening for powerful trace ingredients in natural products. PMID:24377104

  20. Genetic, phenotypic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based identification of anaerobic bacteria and determination of their antimicrobial susceptibility at a University Hospital in Japan.

    PubMed

    Yunoki, Tomoyuki; Matsumura, Yasufumi; Nakano, Satoshi; Kato, Karin; Hotta, Go; Noguchi, Taro; Yamamoto, Masaki; Nagao, Miki; Takakura, Shunji; Ichiyama, Satoshi

    2016-05-01

    The accuracies of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the phenotypic method using VITEK 2 were compared to the accuracy of 16S rRNA sequence analysis for the identification of 170 clinically isolated anaerobes. The antimicrobial susceptibility of the isolates was also evaluated. Genetic analysis identified 21 Gram-positive species in 14 genera and 29 Gram-negative species in 11 genera. The most frequently isolated genera were Prevotella spp. (n = 46), Bacteroides spp. (n = 25) and Clostridium spp. (n = 25). MALDI-TOF MS correctly identified more isolates compared with VITEK 2 at the species (80 vs. 58%, respectively; p < 0.01) and genus (85 vs. 71%, respectively; p < 0.01) levels. More than 90% of the isolates of the three major genera identified (Prevotella, Bacteroides, and Clostridium species other than Clostridium difficile) were susceptible to beta-lactam/beta-lactamase inhibitor combinations, carbapenems, metronidazole and chloramphenicol. MALDI-TOF MS provided better identification results than VITEK2. Commonly used anti-anaerobic agents indicated that the isolates of the three most frequently identified anaerobic genera exhibited good antimicrobial susceptibility. PMID:26898667

  1. Application of MALDI-TOF mass spectrometry in screening and diagnostic research.

    PubMed

    Pusch, W; Kostrzewa, M

    2005-01-01

    During the last years, mass spectrometry has revolutionised protein biochemistry and has advanced to a superior tool for the identification and detailed analysis of peptides and proteins. The high throughput allowed by some mass spectrometry platforms has enabled the important step from analysis of individual proteins to proteomics. Recently, an additional field of mass spectrometry applications has emerged - namely screening and diagnostic research. In contrast to protein identification, screening applications have to detect analyte molecules of defined molecular weights which can be calculated beforehand, for example by means of chemical structures. Here, the accuracy and sensitivity of mass spectrometry has to be combined with the requirements of high-throughput analyses, in particular speed and automation. These criteria are especially fulfilled by state of the art matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) instruments. The first high throughput screening (HTS) application proved to be genotyping of single nucleotide polymorphisms. The same principle was later applied for several quality control issues, for example for oligonucleotides, peptide or compound libraries. This development has culminated in the screening and profiling of complex biomarker patterns in clinical proteomics to detect a molecular fingerprint for specific diseases in biological samples. Thus, mass spectrometry based methods are expected to enable a very early diagnosis of diseases with minimally invasive methods of investigation. This type of high end screening application has the potential to revolutionise the early diagnosis of many diseases. Here, we give an overview of the application of mass spectrometry in the fields of screening and diagnostic research. PMID:16101460

  2. In vitro biotransformation of red ginseng extract by human intestinal microflora: metabolites identification and metabolic profile elucidation using LC-Q-TOF/MS.

    PubMed

    Wang, Huai-You; Hua, Hai-Ying; Liu, Xing-Yan; Liu, Ji-Hua; Yu, Bo-Yang

    2014-09-01

    Ginseng is an important and widely used herbal medicine in Asia and has gained popularity in the western countries. Ginseng products are usually administered orally, after which their complicated components are brought into contact with intestinal microflora in the alimentary tract and metabolized. The metabolic investigation of ginseng in intestinal tract is necessary for elucidating its pharmacological activities. However, most of the reports about the metabolism of ginseng with intestinal microflora are focused on single ginseng saponin with the whole action of ginseng extract ignored. In the present paper, in vitro biotransformation of red ginseng extract by human intestinal microflora was conducted, and a rapid liquid chromatography with time-of-flight mass spectrometry (LC-Q-TOF/MS) method was used for rapid identification of the metabolites and metabolic profile of ginseng saponins. A total of 37 ginseng saponins in red ginseng extract were characterized, 17 of which were assessed to be metabolized by human intestinal microflora. Also, 30 metabolites, mostly deglycosylated, were detected and identified in the biotransformed red ginseng extract, including 4 original ingredients of red ginseng, 6 ginsenoside lactate esters, and 2 glycosylated metabolites. The metabolic profile of ginseng saponins biotransformed by human intestinal microflora was elucidated based on the metabolite information. The results indicated that deglycosylation was the major metabolic pathway of saponins in red ginseng. The esterification and glycosylation reaction also occurred during the biotransformation. Our study indicated that there was some differences in the biotransformation of single ginseng saponin and red ginseng extract. It must be noted that the ginsenoside lactate esters were firstly found in the metabolites of ginsenosides. PMID:24973593

  3. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    PubMed Central

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-01-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound. PMID:22207568

  4. Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MS(n).

    PubMed

    Xu, Feng; Li, Dian-Peng; Huang, Zhen-Cong; Lu, Feng-Lai; Wang, Lei; Huang, Yong-Lin; Wang, Ru-Feng; Liu, Guang-Xue; Shang, Ming-Ying; Cai, Shao-Qing

    2015-11-10

    Mogroside V, a cucurbitane-type saponin, is not only the major bioactive constituent of traditional Chinese medicine Siraitiae Fructus, but also a widely used sweetener. To clarify its biotransformation process and identify its effective forms in vivo, we studied its metabolism in a human intestinal bacteria incubation system, a rat hepatic 9000g supernatant (S9) incubation system, and rats. Meanwhile, the distribution of mogroside V and its metabolites was also reported firstly. Seventy-seven new metabolites, including 52 oxidation products formed by mono- to tetra- hydroxylation/dehydrogenation, were identified with the aid of HPLC in tandem with ESI ion trap (IT) TOF multistage mass spectrometry (HPLC-ESI-IT-TOF-MS(n)). Specifically, 14 metabolites were identified in human intestinal bacteria incubation system, 4 in hepatic S9 incubation system, 58 in faeces, 29 in urine, 14 in plasma, 34 in heart, 33 in liver, 39 in spleen, 39 in lungs, 42 in kidneys, 45 in stomach, and 51 in small intestine. The metabolic pathways of mogroside V were proposed and the identified metabolic reactions were deglycosylation, hydroxylation, dehydrogenation, isomerization, glucosylation, and methylation. Mogroside V and its metabolites were distributed unevenly in the organs of treated rats. Seven bioactive metabolites of mogroside V were identified, among which mogroside IIE was abundant in heart, liver, spleen and lung, suggesting that it may contribute to the bioactivities of mogroside V. Mogroside V was mainly excreted in urine, whereas its metabolites were mainly excreted in faeces. To our knowledge, this is the first report that a plant constituent can be biotransformed into more than 65 metabolites in vivo. These findings will improve understanding of the in vivo metabolism, distribution, and effective forms of mogroside V and congeneric molecules. PMID:26280925

  5. Characterization of forced degradation products of ketorolac tromethamine using LC/ESI/Q/TOF/MS/MS and in silico toxicity prediction.

    PubMed

    Kalariya, Pradipbhai