Science.gov

Sample records for mass transfer transiting

  1. MASS TRANSFER TO ROTATING DISKS AND ROTATING RINGS IN LAMINAR, TRANSITION, AND FULLY DEVELOPED TURBULENT FLOW

    SciTech Connect

    Law Jr., C.G.; Pierini, P.; Newman, J.

    1980-07-01

    Experimental data and theoretical calculations are presented for the mass-transfer rate to rotating disks and rotating rings when laminar, transition, and fully developed turbulent flow exist upon different portions of the surface. Good agreement of data and the model is obtained for rotating disks and relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data measured in transition and turbulent flow. A y{sup +{sup 3}} form for the eddy diffusivity is used to fit the data. No improvement is noticed with a form involving both y{sup +{sup 3}} and y{sup +{sup 3}}.

  2. Determination of Heat and Mass Transfer Efficiency on a Bubbling Plate with Account for Scale Transition

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2015-07-01

    The efficiency of heat and mass transfer in the bubbling bed on the plate has been investigated with the use of the method of combined physical and mathematical modeling based on the representation of the physical process in the form of a combination of elementary phenomena having a hierarchy of scales that permits realizing a scale transition in designing a contact device. The mathematical modeling of the heat and mass transfer in the above bed is based on the idea that the structure of this bed is invariant with its size and the interaction of the phases in it. A parametric investigation of the interaction of various effects in the process of heat and mass transfer in the bubbling bed on the plate and their conjugation has been carried out on the basis of the variational formulation of the conservation laws. Examples of calculating the efficiencies of the heat and mass transfer processes on bubbling plates are given. The results of calculations were compared with the corresponding experimental data.

  3. Multicomponent mass transfer

    SciTech Connect

    Taylor, R.; Krishna, R.

    1993-01-01

    This is an important book on multicomponent mass transfer, meant for readers already acquainted with the theory of mass transfer and the fundamentals of transport phenomena. Part 1, entitled Molecular Diffusion, contains the following chapters: Preliminary Concepts; The Maxwell-Stefan Relations; Fick's Law; Estimation of Diffusion Coefficients; Solution of multicomponent Diffusion Problems: The Linearized Theory; and Solution of Multicomponent Diffusion Problems: Effective Diffusivity Methods. Part 2, entitled Interphase Transfer, contains the following chapters: Mass-Transfer Coefficients; Film Theory; Unsteady-State Mass-Transfer Models; Mass Transfer in Turbulent Flow; and Simultaneous Mass and Energy Transfer. Part 3, entitled Design, contains the following chapters: Multicomponent Distillation: Mass-Transfer Models; Multicomponent Distillation: Efficiency Models; Multicomponent Distillation: A Nonequilibrium Stage Model; and Condensation of Vapor Mixtures. Appendices are provided on matrix algebra, equation-solving and estimation of a thermodynamic derivative matrix. A computer diskette is provided with the book; the examples in Chapters 1--13 are solvable using this diskette and the commercial package Mathcad which the user must obtain. A separate software package, Chemsep, is needed for some of the exercises in Chapter 14.

  4. Geochemical Speciation Mass Transfer

    SciTech Connect

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineral phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.

  5. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (ESTSC)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  6. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  7. The Myths of Mass Transit.

    ERIC Educational Resources Information Center

    Burke, Catherine G.

    1982-01-01

    Criticizes eight commonly held notions about the value of mass transit systems in public transportation programs. Alternative approaches for improving the quality and quantity of urban transit systems are discussed. (AM)

  8. Gas mass transfer for stratified flows

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  9. Gas mass transfer for stratified flows

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  10. Influence of intraparticle mass transfer on the activity of a gel-form polymer bound transition metal catalyst

    SciTech Connect

    Roucis, J.B.

    1983-01-01

    A mathematical model was developed to investigate the influence of substrate intraparticle mass transport limitations on the hydrogenation rate of cyclohexene and cyclooctene at 25 to 50 C, one atm hydrogen pressure, over RhCl(PPh/sub 3/)/sub 3/ bound to polystyrene-divinylbenzene (DVB) polymer beads. Effective substrate diffusion coefficients were determined by studying the diffusion of cyclic hydrocarbons within benzene-swollen, polystyrene-DVB gel-type beads at 25 C. Diffusion coefficients were calculated assuming Fick's law diffusion, and were found to depend on the polymer volume fraction for solute concentrations less than 6.3 x 10/sup -2/M and polymer volume fractions less than 0.6. The dependence suggested that the polymer network acted as a physical obstruction to solute transport. Studies indicated that the solute-solvent interactions affecting diffusion were the same in the solvent-swollen polymer as in the pure benzene solvent. Solute concentrations less than 0.16 M were used for the reaction rate studies. Intraparticle transport limitations were determined to be negligible within the 200-400 mesh, 1, 2, and 3% DVB catalyst beads under the reaction conditions employed. Changes in the reduction rate of cyclooctene relative to cyclohexene were not caused by differences in intraparticle diffusion rates. Alterations in selectivity were related to the catalyst bead swelling ratio implying that steric effects induced by the presence of the polymer support in the vicinity of active rhodium affected intrinsic activity. The mathematical model was found to predict the rate for a mass transport influenced reaction regime, the reduction of cyclohexene at 50 C over an 18-20 mesh, 3% DVB catalyst.

  11. Suicide and Mass Urban Transit.

    ERIC Educational Resources Information Center

    Berman, Alan L., Ed.

    1991-01-01

    Presents case consultation in which consultants respond to issues of urban planning for mass transit (subway) system and how to maximize prevention of intentional injury within subway stations. Also asks what type of research study should be used and what type of data collected once system is operating. Case is discussed by Morton M. Silverman and…

  12. PHREEQC. Geochemical Speciation Mass Transfer

    SciTech Connect

    Parkhurst, D.L.

    1995-01-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineral phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.

  13. Low floor mass transit vehicle

    DOEpatents

    Emmons, J. Bruce; Blessing, Leonard J.

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  14. Calculation of mass transfer in multiphase flow

    SciTech Connect

    Wang, L.; Gopal, M.

    1998-12-31

    This paper summarizes the results of mass transfer mechanisms under disturbed liquid-gas flow in 10 cm diameter pipe using electrochemical limiting current density and potentiostatic noise technique. The solution used is potassium ferro/ferricyanide dissolve in 1.3 N sodium hydroxide system. Mass transfer coefficients in full pipe flow and slug flow are obtained. The relationship between mass transfer coefficient with full pipe flow velocities and with slug flow Froude numbers are studied. The impact of bubbles in slugs on the mass transfer coefficient is revealed, The impact of flow disturbance, including weld beads and pits, are discussed for both full pipe flow and slug flow.

  15. How We Make Mass Transfer Seem Difficult.

    ERIC Educational Resources Information Center

    Cussler, E. L.

    1984-01-01

    Indicates that teaching of mass transfer can be improved by: (1) using a single, simple definition of mass transfer coefficients; (2) altering use of analogies; and (3) repeatedly stressing differences between mathematical models used for chemical reactions and the actual chemistry of these reactions. Examples for undergraduate/graduate courses…

  16. Nuclear interlevel transfer driven by electronic transitions

    SciTech Connect

    Solem, J.C.; Rinker, G.

    1985-01-01

    We show how a gamma-ray laser might be made by optically exciting a transfer of population from a long-lived isomer to an energetically adjacent short-lived state of the same nucleus. We compare the advantages of using transitions of high multipolarity versus transitions of low multi-polarity. Preliminary numerical investigations of the mechanism show it to be somewhat favorable. 35 refs., 4 figs.

  17. 23 CFR 810.204 - Application by mass transit authority.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Application by mass transit authority. 810.204 Section... MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.204 Application by mass transit authority. A publicly-owned mass transit authority...

  18. Ozone mass transfer and kinetics experiments

    SciTech Connect

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction.

  19. Mass transfer cycles in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    King, A. R.; Frank, J.; Kolb, U.; Ritter, H.

    1995-01-01

    It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.

  20. Mass transfer effects in a gasification riser

    SciTech Connect

    Breault, Ronald W; Li, Tingwen; Nicoletti, Phillip

    2013-01-01

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.

  1. Heat Transfer in a Superelliptic Transition Duct

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  2. Mass Transfer Enhancement in Moving Biofilm Structures

    PubMed Central

    Taherzadeh, Danial; Picioreanu, Cristian; Horn, Harald

    2012-01-01

    Biofilms are layers of microbial cells growing on an interface and they can form highly complex structures adapted to a wide variety of environmental conditions. Biofilm streamers have a small immobile base attached to the support and a flexible tail elongated in the flow direction, which can vibrate in fast flows. Herein we report numerical results for the role of the periodical movement of biofilm streamers on the nutrient uptake and in general on the solute mass transfer enhancement due to flow-induced oscillations. We developed what to our knowledge is a novel two-dimensional fluid-structure interaction model coupled to unsteady solute mass transport and solved the model using the finite element method with a moving mesh. Results demonstrate that the oscillatory movement of the biofilm tail significantly increases the substrate uptake. The mass transfer coefficient is the highest in regions close to the streamer tip. The reason for substrate transfer enhancement is the increase in speed of tip movement relative to the surrounding liquid, thereby reducing the thickness of the mass transfer boundary layer. In addition, we show that the relative mass transfer enhancement in unsteady conditions compared with the rigid static structure is larger at higher flow velocities, and this relative increase favors a more flexible structure. PMID:22500748

  3. Mass transfer in composite catalytic membranes

    SciTech Connect

    Langhendries, G.; Claessens, R.; Baron, G.V.

    1996-12-31

    The partial oxidation of cyclohexane was studied in a composite polymer-zeolite catalytic membrane reactor. In a first step the equilibrium and mass transfer properties (swelling, diffusion and sorption) of dense composite membranes were examined. The swelling behavior of the crosslinked poly(dimethylsiloxane) network was determined for several solvents and related to the differences between the Hildebrand solubility parameters of solvent and polymer. Time lag experiments, which enable us to measure simultaneously diffusion and partition coefficients, were carried out on a dense poly(dimethylsiloxane) membrane. A mathematical model describing the mass transfer behavior of these catalytic membranes was derived and validated with experimental data. Mass transfer through composite catalytic membranes can be predicted using the properties of pure catalyst and polymer material, and a single tortuosity factor. 9 refs., 5 figs., 4 tabs.

  4. Mass-induced transition in fermion number

    SciTech Connect

    Aragao de Carvalho, C.; Pureza, J. M.

    1989-05-15

    We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.

  5. Combined heat and mass transfer in absorption processes

    SciTech Connect

    Grossman, G.

    1982-01-01

    The approach to theoretical analysis of the combined heat and mass transfer process taking place in absorption systems is described. The two tranfer phenomena are strongly coupled here. The purpose of the analysis is to relate, quantitatively, the heat and mass transfer coefficients to the physical properties of the working fluids and to the geometry of the system. The preferred configuration is that of a falling film of liquid on a metallic surface which serves to transfer heat from the absorbent in contact with the vapor of the absorbate. The model developed may be solved for laminar, turbulent, or transition flow regimes. The results of the solution describe the development of the thermal and concentration boundary layers and the variation of the temperatures, concentrations, and heat and mass fluxes. These quantities in their normalized, dimensionless form depend on two characteristic parameters of the system: the Lewis number Le and the dimensionless heat of absorption lambda. The length in the direction of flow is normalized with respect to the Peclet number and the film thickness. Heat and mass transfer coefficients for the system were calculated. The Sherwood number for mass transfer from the vapor-liquid interface to the bulk of the film reaches a constant value of 3.63 with fully developed boundary layers for both the adiabatic and constant temperature wall. The Nusselt number for heat transfer from the interface to the bulk reaches under the same conditions values of 3.63 and 2.67 for the adiabatic and constant temperature wall, respectively. The Nusselt number for heat tranfer from the bulk to the wall reaches 1.60.

  6. Non-conservative mass transfers in Algols

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Öztürk, O.

    2014-06-01

    We applied a revised model for non-conservative mass transfer in semi-detached binaries to 18 Algol-type binaries showing orbital period increase or decrease in their parabolic O-C diagrams. The combined effect of mass transfer and magnetic braking due to stellar wind was considered when interpreting the orbital period changes of these 18 Algols. Mass transfer was found to be the dominant mechanism for the increase in orbital period of 10 Algols (AM Aur, RX Cas, DK Peg, RV Per, WX Sgr, RZ Sct, BS Sct, W Ser, BD Vir, XZ Vul) while magnetic braking appears to be the responsible mechanism for the decrease in that of 8 Algols (FK Aql, S Cnc, RU Cnc, TU Cnc, SX Cas, TW Cas, V548 Cyg, RY Gem). The peculiar behaviour of orbital period changes in three W Ser-type binary systems (W Ser, itself a prototype, RX Cas and SX Cas) is discussed. The empirical linear relation between orbital period (P) and its rate of change (dP/dt) was also revised.

  7. Proton Transfer Reaction Ion Trap Mass Spectrometer

    SciTech Connect

    Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom T.; Alexander, M. Lizabeth

    2003-06-11

    Proton transfer reaction mass spectrometry is a relatively new field that has attracted a great deal of interest in the last few years. This technique uses H₃Oþ as a chemical ionization (CI) reagent to measure volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) to parts per trillion by volume (pptv) range. Mass spectra acquired with a proton transfer reaction mass spectrometer (PTR-MS) are simple because proton transfer chemical ionization is ‘soft’ and results in little or no fragmentation. Unfortunately, peak identification can still be difficult due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). The use of an ITMS is appealing because of its ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates are possible that will allow for detection of multiple compounds. Here we present the first results from a proton transfer reaction ion trap mass spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype instrument in order to estimate possible detection limits of a second-generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated. Modifications are suggested that will enable further reduction in detection limits to the low-ppbv to high-pptv range. Furthermore, the applicability of MS/MS in differentiating between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making differentiation possible, even when a mixture of both species is present in the same sample. However, MS/MS spectra of acetone and propanal produce fragments with the same molecular masses but with different intensity ratios

  8. Heat and mass transfer in materials processing

    NASA Astrophysics Data System (ADS)

    Tanasawa, Ichiro; Lior, Noam

    Various papers on heat and mass transfer in materials processing are presented. The topics addressed include: heat transfer in plasma spraying, structure of ultrashort pulse plasma for CVD processing, heat flow and thermal contraction during plasma spray deposition, metal melting process by laser heating, improved electron beam weld design and control with beam current profile measurements, transport phenomena in laser materials processing, perspectives on integrated modeling of transport processes in semiconductor crystal growth, numerical simulation of natural convection in crystal growth in space and on the earth, conjugate heat transfer in crystal growth, effects of convection on the solidification of binary mixtures. Also discussed are: heat transfer in in-rotating-liquid-spinning process, thermal oscillations in materials processing, modeling and simulation of manufacturing processes of advanced composite materials, reaction engineering principles of combustion synthesis of advanced materials, numerical evaluation of the physical properties of magnetic fluids suitable for heat transfer control, and measurement techniques of thermophysical properties of high temperature melts. (For individual items see A93-10827 to A93-10843)

  9. Proton Transfer Reaction Ion Trap Mass Spectrometer

    SciTech Connect

    Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom; Alexander, M. Lizabeth

    2003-07-07

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a relatively new field that has attracted a great deal of interest in the last several years. This technique uses H3O+ as a chemical ionization (CI) agent for measuring volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) - parts per trillion by volume (pptv) range. PTR-MS mass spectra are simple because the ionization method of proton transfer is “soft”, resulting in little or no fragmentation. Unfortunately, the simplicity of the mass spectra can cause problems in peak identification due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). ITMS is appealing because of the ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates can be realized for detection of multiple compounds. We present here the first results from a Proton Transfer Reaction Ion Trap Mass Spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype interface in order to estimate possible detection limits of a second generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated for the PTR-ITMS. Modifications are suggested that will enable further reduction in detection limits to the low ppbv to pptv range. Furthermore the applicability of MS/MS to differentiate between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making a differentiation possible even when a mixture of both species is present in the same sample. MS/MS spectra of acetone and propanal produce fragments with the same molecular weight but different ratios, allowing quantitative distinction only if one species

  10. 43 CFR 3106.4-3 - Mass transfers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mass transfers. 3106.4-3 Section 3106.4-3... or Otherwise § 3106.4-3 Mass transfers. (a) A mass transfer may be utilized in lieu of the provisions... large number of Federal leases to the same transferee. (b) Three originally executed copies of the...

  11. 43 CFR 3106.4-3 - Mass transfers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mass transfers. 3106.4-3 Section 3106.4-3... or Otherwise § 3106.4-3 Mass transfers. (a) A mass transfer may be utilized in lieu of the provisions... large number of Federal leases to the same transferee. (b) Three originally executed copies of the...

  12. 43 CFR 3106.4-3 - Mass transfers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mass transfers. 3106.4-3 Section 3106.4-3... or Otherwise § 3106.4-3 Mass transfers. (a) A mass transfer may be utilized in lieu of the provisions... large number of Federal leases to the same transferee. (b) Three originally executed copies of the...

  13. 43 CFR 3106.4-3 - Mass transfers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mass transfers. 3106.4-3 Section 3106.4-3... or Otherwise § 3106.4-3 Mass transfers. (a) A mass transfer may be utilized in lieu of the provisions... large number of Federal leases to the same transferee. (b) Three originally executed copies of the...

  14. Interrupted Binary Mass Transfer in Star Clusters

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan W. C.; Geller, Aaron M.; Toonen, Silvia

    2016-02-01

    Binary mass transfer (MT) is at the forefront of some of the most exciting puzzles of modern astrophysics, including SNe Ia, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this timescale to the mean time for stable MT to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing MT that are expected to be disrupted as a function of the host cluster properties. We find that for lower-mass clusters (≲ {10}4 {M}⊙ ), on the order of a few to a few tens of percent of binaries undergoing MT are expected to be interrupted by an interloping single, or more often binary, star, over the course of the cluster lifetime, whereas in more massive globular clusters we expect \\ll 1% to be interrupted. Furthermore, using numerical scattering experiments performed with the FEWBODY code, we show that the probability of interruption increases if perturbative fly-bys are considered as well, by a factor ˜2.

  15. Mass partitioning in transitional Plinian columns

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Kaminski, E.; Tait, S.

    2012-12-01

    The transitional regime of explosive volcanic eruptions is characterized by the coexistence of a stable atmospheric ash plume and an unstable ash fountain collapsing at ground level. Building a detailed understanding of the dynamics of this transitional behavior is of crucial importance for hazard assessment. Elaborate 3D numerical models are commonly used to identify the conditions separating the types of explosive volcanic flow regimes. To develop an alternative approach, we present new laboratory-scale experiments, which consist of injecting upwards a mixture of hot gas and hot particles at a fixed rate into a large chamber of atmospheric air at ambient temperature. The range of conditions imposed at the source allows us to reproduce the main forces acting on the dynamics of a volcanic plume, as inferred from our scaling analysis. The laboratory experiments presented here reproduce closely the different types of flow behavior observed during explosive eruptions, including the transitional regime. We show that the threshold condition for the triggering of the transitional regime is well described by a simple Top-Hat formalism. Furthermore, we identify a key stability parameter controlling the mass partitioning between convective material and collapsing flow that allows us to define a universal scaling relationship. In volcanic plumes, this stability number is found to be sensitive to the magmatic temperature and, to a lesser extent, to the source gas content. It does not depend on the mass discharge rate, even though this parameter strongly controls the initiation of the partial collapse regime. An exhaustive review of geological data on past explosive eruptions suggests that the stability parameter captures well the physics of partial collapse, and can be used to predict the mass of material that will flow to the ground once the eruption column has entered the partial collapse regime. Therefore, our experimentally-determined scaling law coupled with a simple Top

  16. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  17. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  18. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  19. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  20. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  1. Rethinking Transfer: Learning from CALL Teacher Education as Consequential Transition

    ERIC Educational Resources Information Center

    Chao, Chin-chi

    2015-01-01

    Behind CALL teacher education (CTE) there is an unproblematized consensus of transfer, which suggests a positivist and tool-centered view of learning gains that differs from the sociocultural focus of recent teacher education research. Drawing on Beach's (2003) conceptualization of transfer as "consequential transition," this…

  2. Behavior of the mass transfer zone in a biosorption column.

    PubMed

    Naja, Ghinwa; Volesky, Bohumil

    2006-06-15

    Modeling of the mass transfer zone behavior under variable conditions in a flow-through fixed-bed sorption column enabled the prediction of breakthrough curves for Cu2+ and Ca-preloaded Sargassum fluitans biomass. The mass transfer resistance, particle diffusion, and the axial dispersion were incorporated in the model. The dynamics of the mass transfer zone was described under variable sorption column operating conditions including different column lengths and fluid flow rates. Accurate estimation of the behavior of the mass transfer zone as it progressed through the column, reflected eventually in the breakthrough curve, assisted in its relevant interpretations. Furthermore, the proposed mathematical model of the biosorption process was capable of demonstrating the expanding and broadening of the mass transfer zone linked to the equilibrium sorption isotherm. The fundamental understanding of the mass transfer zone dynamics is particularly important for process scale-up where maintaining the process efficiency is critical. PMID:16830573

  3. Enhancement of heat and mass transfer by cavitation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  4. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    NASA Technical Reports Server (NTRS)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  5. Numerical simulation of transitional flows with heat transfer

    NASA Astrophysics Data System (ADS)

    Kožíšek, Martin; Příhoda, Jaromír; Fürst, Jiří; Straka, Petr

    2016-06-01

    The contribution deals with simulation of internal flows with the laminar/turbulent transition and heat transfer. The numerical modeling of incompressible flow on a heated flat plate was carried out partly by the k-kL-ω model of Walters and Cokljat [1] and partly by the algebraic transition model of Straka and Příhoda [2] connected with the EARSM turbulence model of Hellsten [3]. Transition models were tested by means of the skin friction and the Stanton number distribution. Used models of turbulent heat transfer were compared with the simplest model based on the constant turbulent Prandtl number. The k-kL-ω model is applied for the simulation of compressible flow through the VKI turbine blade cascade with heat transfer.

  6. 23 CFR 810.204 - Application by mass transit authority.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Application by mass transit authority. 810.204 Section 810.204 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION... rail or other nonhighway public mass transit facility may submit an application therefor to the...

  7. 23 CFR 810.204 - Application by mass transit authority.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Application by mass transit authority. 810.204 Section 810.204 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION... rail or other nonhighway public mass transit facility may submit an application therefor to the...

  8. 23 CFR 810.204 - Application by mass transit authority.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Application by mass transit authority. 810.204 Section 810.204 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION... rail or other nonhighway public mass transit facility may submit an application therefor to the...

  9. 23 CFR 810.204 - Application by mass transit authority.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Application by mass transit authority. 810.204 Section 810.204 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION... rail or other nonhighway public mass transit facility may submit an application therefor to the...

  10. Electron Transfer Dissociation Mass Spectrometry of Hemoglobin on Clinical Samples

    NASA Astrophysics Data System (ADS)

    Coelho Graça, Didia; Lescuyer, Pierre; Clerici, Lorella; Tsybin, Yury O.; Hartmer, Ralf; Meyer, Markus; Samii, Kaveh; Hochstrasser, Denis F.; Scherl, Alexander

    2012-10-01

    A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified. These results suggest that mass spectrometry analysis of entire proteins using electron transfer dissociation can be employed on clinical samples in a workflow compatible with diagnostic applications.

  11. Mass transfer from bypassed zones during gas injection

    SciTech Connect

    Burger, J.E.; Mohanty, K.K.

    1995-12-31

    Gasflooding in oil reservoirs leads to bypassing of the oil due to gravitational, viscous and/or heterogeneity effects. The bypassed oil can be recovered by the flowing solvent by pressure-driven, gravity-driven, dispersion/diffusion-driven and capillarity-driven crossflow/mass transfer. It is difficult to represent all of these mechanisms explicitly in large-scale simulations. In this work, we have studied the effect of the orientation of the bypassed region and the enrichment of the solvent on the mass transfer. Laboratory-scale mass transfer and coreflood experiments were conducted. Numerical simulation was used to identify the role of the different mechanisms. Results indicate that the mass transfer is the least for the vertical orientation, intermediate for the inverted orientation and the highest for the horizontal orientation. The mass transfer increases with enrichment for all orientations. Liquid phase diffusion controls vertical orientation mass transfer for the fluids studied. Phase behavior determines the liquid phase saturation. Capillary pumping does not contribute to the mass transfer of oil because the interfacial tension decreases towards the flowing region. Gravity-driven flow contributes the most to the mass transfer in the horizontal and the inverted orientations. The gravity-driven flow, however, is impeded by the capillarity whose magnitude decreases with solvent enrichment. Oil recovery in the horizontal gasfloods is nonmonotonic with enrichment for this fluid system in an almost homogeneous Berea core. Multiphase flow in the near-miscible floods leads to less gravity override compared to the FCM floods. In the heterogeneous core studied, the heterogeneity is very strong and the capillary forces do not prevent bypassing. The capillary forces, in fact, reduce oil recovery by diminishing mass transfer from the bypassed regions.

  12. The Role of "Creative Transfer" in Professional Transitions

    ERIC Educational Resources Information Center

    Triantafyllaki, Angeliki

    2016-01-01

    This paper discusses the concept of "knowledge transfer" in terms of expansion of prior knowledge, creativity and approaches to generating new knowledge. It explores professional transitions in which knowledge restructuring and identity reformation are pathways into greater work flexibility and adjustment. Two studies, exploring…

  13. Early warning of atmospheric regime transitions using transfer operators

    NASA Astrophysics Data System (ADS)

    Tantet, Alexis; Dijkstra, Henk

    2015-04-01

    The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  14. Noise Levels Associated With New York City's Mass Transit Systems

    PubMed Central

    Gershon, Robyn R. M.; Zeltser, Marina; Canton, Allison; Akram, Muhammad

    2009-01-01

    Objectives. We measured noise levels associated with various forms of mass transit and compared them to exposure guidelines designed to protect against noise-induced hearing loss. Methods. We used noise dosimetry to measure time-integrated noise levels in a representative sample of New York City mass transit systems (subways, buses, ferries, tramway, and commuter railways) aboard transit vehicles and at vehicle boarding platforms or terminals during June and July 2007. Results. Of the transit types evaluated, subway cars and platforms had the highest associated equivalent continuous average (Leq) and maximum noise levels. All transit types had Leq levels appreciably above 70 A-weighted decibels, the threshold at which noise-induced hearing loss is considered possible. Conclusions. Mass transit noise exposure has the potential to exceed limits recommended by the World Health Organization and the US Environmental Protection Agency and thus cause noise-induced hearing loss among riders of all forms of mass transit given sufficient exposure durations. Environmental noise–control efforts in mass transit and, in cases in which controls are infeasible, the use of personal hearing protection would benefit the ridership's hearing health. PMID:19542046

  15. Probing the Mass-Transfer Stability Limit in Close Binaries

    NASA Astrophysics Data System (ADS)

    D'Souza, M. C. R.; Motl, P. M.; Tohline, J. E.; Frank, J.

    2004-12-01

    We present results from numerical simulations that follow the nonlinear development of mass-transfer instabilities in close binary star systems. A self-consistent-field (SCF) technique is used to construct initial equilibrium models, which are synchronously rotating, semi-detached, polytropic stars on circular orbits. These models are evolved with an Eulerian, finite-difference hydrodynamics code in a fully self-consistent manner. Results are presented for binary systems having a wide range of initial conditions; emphasis is placed on systems in which the mass-transfer stream directly impacts the surface of the accreting star. Some systems are dynamically unstable and result in a merger; others approach a long-term, stable phase of mass transfer. The time-evolutionary behavior of the binary separation, mass transfer rate, spin angular momentum of the accretor, and gravitational wave strain are presented.

  16. Nonstationary Mass Transfer Near the Surface of a Cylindrical Body

    NASA Astrophysics Data System (ADS)

    Rudobashta, S. P.; Kosheleva, M. K.; Kartashov, É. M.

    2015-11-01

    The problem of nonstationary diffusion of the target component to a phase that is external relative to the surface of a cylindrical body has been formulated and solved analytically. From the found solution the dependences have been obtained for calculating the instantaneous mass transfer coefficient and the phase-contact-time mean mass transfer coefficient, on the basis of which the process of extraction of technological pollutants from fibrous materials has been analyzed.

  17. Heat and mass transfer in materials processing

    SciTech Connect

    Tanasawa, I. . Inst. of Industrial Science); Lior, N. . Dept. of Mechanical Engineering and Applied Mechanics)

    1992-01-01

    This book contains forty papers presented at the seminar. The papers are representative of the seminar's scope, and include plasma spraying, laser and electron beam processing, crystal growth, solidification, steel processing, casting and molding, and papermaking, as well as fundamental heat transfer issues and physical properties underlying all of the above. The seminar emphasized thorough discussion of the presentations and of the subfields. Brief summaries of the discussions are presented in the rapporteurs' reports.

  18. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE PAGESBeta

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less

  19. Oscillatory flow through submerged canopies: 2. Canopy mass transfer

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Koseff, Jeffrey R.; Monismith, Stephen G.; Falter, James L.

    2005-10-01

    Mass transfer rates from submerged canopies constructed from arrays of vertical cylinders were investigated for a range of different cylinder spacings under both unidirectional and oscillatory flow. Individual canopy elements made from gypsum were dissolved in fresh water to simulate the mass transfer of dissolved metabolites to and from canopies of living benthic organisms. Mass transfer rates under oscillatory flow were up to three times higher than values measured for a comparable unidirectional current. This enhancement was shown to be a strong function of the canopy element spacing. A model was developed to predict canopy mass transfer rates on the basis of the in-canopy flow speed and was generalized to incorporate either unidirectional or oscillatory flow. Agreement between the modeled and experimentally measured mass transfer rates indicate that enhanced mass transfer to/from living benthic canopies under oscillatory flow is driven primarily by the higher in-canopy water motion generated by the oscillatory flow, as detailed in the companion paper (Lowe et al., 2005).

  20. GO RIO: Achieving Universal Access to Mass Transit

    ERIC Educational Resources Information Center

    Martinez, Ted, Jr.; Castaneda-Calleros, Russell

    2009-01-01

    GO RIO is a universal access, mass-transit program that has been offered to all students who are registered full-time at Rio Hondo College. Through an agreement with five local transit agencies, full-time students can obtain a pass that provides full access seven days a week throughout the entire semester.

  1. Radiative Transfer and Absorbing Structures in the Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.

    2012-05-01

    A fully satisfactory explanation for the anomalous He II 304 Å intensity in the solar transition region has yet to be offered. As an extension of previous work, we use a full radiative transfer code to build a more consistent model of the transition region that allows the He II line to form with low filling factor and low opacity. Our results are constrained by the quiet sun center-to-limb profile of He II 304 Å obtained from the MOSES sounding rocket mission and by AIA full-disk data.

  2. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect

    Day-Lewis, Frederick David; Singha, Kamini; Johnson, Timothy C.; Haggerty, Roy; Binley, Andrew; Lane, John W.

    2014-11-25

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  3. Mass transfer between debris discs during close stellar encounters

    NASA Astrophysics Data System (ADS)

    Jílková, Lucie; Hamers, Adrian S.; Hammer, Michael; Portegies Zwart, Simon

    2016-04-01

    We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distribution in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new host star. The population of the transferred particles can be used to constrain the encounter through which it was delivered. We expect that many stars experienced transfer among their debris discs and planetary systems in their birth environment. This mechanism presents a formation channel for objects on wide orbits of arbitrary inclinations, typically having high eccentricity but possibly also close to circular (eccentricities of about 0.1). Depending on the geometry, such orbital elements can be distinct from those of the objects formed around the star.

  4. Secular dynamics in hierarchical three-body systems with mass loss and mass transfer

    SciTech Connect

    Michaely, Erez; Perets, Hagai B.

    2014-10-20

    Recent studies have shown that secular evolution of triple systems can play a major role in the evolution and interaction of their inner binaries. Very few studies explored the stellar evolution of triple systems, and in particular the mass-loss phase of the evolving stellar components. Here we study the dynamical secular evolution of hierarchical triple systems undergoing mass loss. We use the secular evolution equations and include the effects of mass loss and mass transfer, as well as general relativistic effects. We present various evolutionary channels taking place in such evolving triples, and discuss both the effects of mass loss and mass transfer in the inner binary system, as well as the effects of mass loss/transfer from an outer third companion. We discuss several distinct types/regimes of triple secular evolution, where the specific behavior of a triple system can sensitively depend on its hierarchy and the relative importance of classical and general relativistic effects. We show that the orbital changes due to mass-loss and/or mass-transfer processes can effectively transfer a triple system from one dynamical regime to another. In particular, mass loss/transfer can both induce and quench high-amplitude (Lidov-Kozai) variations in the eccentricity and inclination of the inner binaries of evolving triples. They can also change the system dynamics from an orderly periodic behavior to a chaotic one, and vice versa.

  5. Heat Transfer in Conical Corner and Short Superelliptical Transition Ducts

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local surface heat transfer measurements were experimentally mapped using a transient liquid-crystal heat-transfer technique on the surface of two circular-to-rectangular transition ducts. One has a transition cross section defined by conical corners (Duct 1) and the other by an elliptical equation with changing coefficients (Duct 2). Duct 1 has a length-to-diameter ratio of 0.75 and an exit plane aspect ratio of 1.5. Duct 2 has a length-to-diameter ratio of 1.0 and an exit plane aspect ratio of 2.9. Test results are reported for various inlet-diameter-based Reynolds numbers ranging from 0.45 106 to 2.39 106 and two freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  6. Charge transfer transitions within the octahedral uranate group

    NASA Astrophysics Data System (ADS)

    Bleijenberg, K. C.

    1980-07-01

    In this paper the excitation spectra of the luminescence of the octahedral uranate group (UO6-6) are presented for various uranium-doped compounds. The excitation bands have been assigned using the results of theoretical and experimental investigations into the spectroscopic properties of uranium hexafluoride which is isoelectronic with the octahedral uranate group. Charge transfer transitions from orbitals having mainly oxygen 2p character to orbitals having mainly uranium 5f charcter have been observed in the region 2.24-˜4 eV. Charge transfer transitions to orbitals having mainly uranium 6d character have been observed at 4.4 eV and at 5.4 eV.

  7. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  8. Monolithic supports with unique geometries and enhanced mass transfer.

    SciTech Connect

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  9. Fluid dynamics at transition regions of enhanced heat transfer channels

    NASA Astrophysics Data System (ADS)

    Case, Jennifer C.; Pohlman, Nicholas A.

    2012-11-01

    Helical wire coil inserts are used to enhance heat transfer in high heat flux cooling channels. Past research using temperature probes has sufficiently proven that wire coils increase heat transfer by factors of three to five through the disruption of the boundary layer in the channels. The coils are passive devices that are inexpensive to manufacture and easily integrate into existing heat exchangers given the limited pressure drop they produce. Most of the fluid mechanics research in flow over helical coils has focused on the dynamics and vortex structure in fully developed regions rather than the short transition region where the enhanced heat transfer is often expected. Understanding how the development of the flow occurs over the axial length of the cooling channel will determine minimum dimensions necessary for enhanced heat transfer. Results of particle-shadow velocimetry (PSV) measurements report on the flow velocities and turbulence that occurs in the transition regions at the beginning of wire coil inserts. The ability to relate parameters such as flow rate, wire diameter, coil pitch, and the total tube length will increase fundamental knowledge and will allow for more efficient heat exchanger designs. Funding provided by NIU's Undergraduate Special Opportunities in Artistry & Research grant program.

  10. Mechanisms of transition and heat transfer in a separation bubble

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.; Strelets, Michael Kh.

    2000-01-01

    The laminar boundary layer on a flat surface is made to separate by way of aspiration through an opposite boundary, causing approximately a 25% deceleration. The detached shear layer transitions to turbulence, reattaches, and evolves towards a normal turbulent boundary layer. We performed the direct numerical simulation (DNS) of this flow, and believe that a precise experimental repeat is possible. The pressure distribution and the Reynolds number based on bubble length are close to those on airfoils; numerous features are in agreement with Gaster's and other experiments and correlations. At transition a large negative surge in skin friction is seen, following weak negative values and a brief contact with zero; this could be described as a turbulent re-separation. Temperature is treated as a passive scalar, first with uniform wall temperature and then with uniform wall heat flux. The transition mechanism involves the wavering of the shear layer and then Kelvin Helmholtz vortices, which instantly become three-dimensional without pairing, but not primary Görtler vortices. The possible dependence of the DNS solution on the residual incoming disturbances, which we keep well below 0.1%, and on the presence of a ‘hard’ opposite boundary, are discussed. We argue that this flow, unlike the many transitional flows which hinge on a convective instability, is fully specified by just three parameters: the amount of aspiration, and the streamwise and the depth Reynolds numbers (heat transfer adds the Prandtl number). This makes comparisons meaningful, and relevant to separation bubbles on airfoils in low-disturbance environments. We obtained Reynolds-averaged Navier Stokes (RANS) results with simple turbulence models and spontaneous transition. The agreement on skin friction, displacement thickness, and pressure is rather good, which we attribute to the simple nature of ‘transition by contact’ due to flow reversal. In contrast, a surge of the heat-transfer coefficient

  11. Mass transfer and interfacial properties in two-phase microchannel flows

    NASA Astrophysics Data System (ADS)

    Martin, Jeffrey D.; Hudson, Steven D.

    2009-11-01

    Drop-based microfluidic devices are becoming more common, and molecular mass transfer and drop circulation are issues that often affect the performance of such devices. Moreover, interfacial properties and surfactant mass transfer rates govern emulsion behavior. Since these phenomena depend strongly on drop size, measurement methods using small drops and flow typical of applications are desired. Using mineral oil as a continuous phase, water droplets and an alcohol surfactant, we demonstrate here a microfluidic approach to measure the interrelated phenomena of dynamic interfacial tension, surfactant mass transfer and interfacial retardation that employs droplet flows in a microchannel with constrictions/expansions. Interfacial flow is influenced markedly by adsorption of surfactant: severe interfacial retardation (by a factor of 30) is observed at low surfactant concentrations and interface remobilization is observed at higher surfactant concentrations. The interfacial tension is described by Langmuir kinetics and the parameters for interfaces with mineral oil (studied here) compare closely with those previously found at air interfaces. For the conditions explored, the surfactant mass transfer is described well by a mixed kinetic-diffusion limited model, and the desorption rate coefficients are measured to be both approximately 70 s-1. The transition from a diffusion-controlled to mixed diffusion-kinetic mass transfer mechanism predicted with reducing drop size is verified. This experimental approach (i.e. adjustable geometry and drop size and height) can therefore probe interfacial dynamics in simple and complex flow.

  12. Agitating mass transfer with a warped disc's shadow

    NASA Astrophysics Data System (ADS)

    Cambier, H.

    2015-10-01

    For compact objects fed by Roche lobe overflow, accretion-generated X-rays irradiating the donor star can alter gas flow towards the Lagrange point thus varying mass transfer. The latest work specific to this topic consists of simple yet insightful two-dimensional hydrodynamics simulations stressing the role of global flow. To explore how a time-varying disc shadow affects mass transfer, I generalize the geometry, employ a robust hydrodynamics solver, and use phase space analysis near the nozzle to include coriolis lift there. Without even exposing the nozzle, a warped disc's shadow can drive mass transfer cycles by shifting the equatorial edges of the irradiation patches in turns: drawing in denser ambient gas before sweeping it into the nozzle. Other important effects remain missing in two-dimensional models, which I discuss along with prospects for more detailed yet efficient models.

  13. Heat and mass transfer over slippery, superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Haase, A. Sander; Lammertink, Rob G. H.

    2016-04-01

    The classical Graetz-Nusselt problem is extended to describe heat and mass transfer over heterogeneously slippery, superhydrophobic surfaces. The cylindrical wall consists of segments with a constant temperature/concentration and areas that are insulating/impermeable. Only in the case of mass transport do the locations of hydrodynamic slip and mass exchange coincide. This makes advection near the mass exchanging wall segments larger than near the heat exchanging regions. Also the direction of radial fluid flow is reversed for heat and mass transport, which has an influence on the location where the concentration or temperature boundary layer is compressed or extended. As a result, mass transport is more efficient than heat transfer. Also the influence of axial diffusion on the Nusselt and Sherwood numbers is investigated for various Péclet numbers Pe. When Pe < 102, which is characteristic for heat transfer over superhydrophobic surfaces, axial conduction should be taken into account. For Pe ≥ 102, which are typical numbers for mass transport in microfluidic systems, axial diffusion can be neglected.

  14. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements

    SciTech Connect

    Bell, J H; Hand, L A

    2005-04-21

    The growth rate of a crystal in a supersaturated solution is limited by both reaction kinetics and the local concentration of solute. If the local mass transfer coefficient is too low, concentration of solute at the crystal-solution interface will drop below saturation, leading to a defect in the growing crystal. Here, mass transfer coefficients are calculated for a rotating crystal growing in a supersaturated solution of potassium diphosphate (KDP) in water. Since mass transfer is difficult to measure directly, the heat transfer coefficient of a scale model crystal in water is measured using temperature-sensitive paint (TSP). To the authors' knowledge this is the first use of TSP to measure temperatures in water. The corresponding mass transfer coefficient is then calculated using the Chilton- Colburn analogy. Measurements were made for three crystal sizes at two running conditions each. Running conditions include periodic reversals of rotation direction. Heat transfer coefficients were found to vary significantly both across the crystal faces and over the course of a rotation cycle, but not from one face to another. Mean heat transfer coefficients increased with both crystal size and rotation rate. Computed mass transfer coefficients were broadly in line with expectations from the full-scale crystal growth experiments. Additional experiments show that continuous rotation of the crystal results in about a 30% lower heat transfer compared to rotation with periodic reversals. The continuous rotation case also shows a periodic variation in heat transfer coefficient of about 15%, with a period about 1/20th of the rotation rate.

  15. Mass transfer apparatus and method for separation of gases

    DOEpatents

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  16. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  17. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  18. Improving the Transition of Care in Patients Transferred Through the Ochsner Medical Center Transfer Center

    PubMed Central

    Amedee, Ronald G.; Maronge, Genevieve F.; Pinsky, William W.

    2012-01-01

    Background Patient transfers from other hospitals within the Ochsner Health System to the main campus are coordinated through a Transfer Center that was established in fall 2008. We analyzed the transfer process to assess distinct opportunities to enhance the overall transition of patient care. Methods We surveyed internal medicine residents and nocturnists to determine their satisfaction with transfers in terms of safety, efficiency, and usefulness of information provided at the time of transfer. After a kaizen event at which complementary goals for the institution and members of the study team were recognized and implemented, we resurveyed the group to evaluate improvement in the transfer process. Results The preintervention average satisfaction score was 1.18 (SD=0.46), while the postintervention score was 3.7 (SD=1.01). A t test showed a significant difference in the average scores between the preintervention and postintervention surveys (P<0.0001). Conclusions By including residents in the transfer calls (a result of the kaizen event), data were collected that facilitated fewer and higher quality handoffs that were performed in less time. In addition, the process resulted in increased awareness of the value of resident participation in institutional quality improvement projects. PMID:23267257

  19. Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes.

    PubMed

    Babauta, Jerome T; Beyenal, Haluk

    2014-02-01

    Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens biofilms. Here, we use electrochemical impedance spectroscopy to demonstrate the effect of mass transfer processes on electron transfer by G. sulfurreducens biofilms grown in situ on an electrode that was subsequently rotated. By rotating the biofilms up to 530 rpm, we could control the microscale gradients formed inside G. sulfurreducens biofilms. A 24% increase above a baseline of 82 µA could be achieved with a rotation rate of 530 rpm. By comparison, we observed a 340% increase using a soluble redox mediator (ferrocyanide) limited by mass transfer. Control of mass transfer processes was also used to quantify the change in biofilm impedance during the transition from turnover to non-turnover. We found that only one element of the biofilm impedance, the interfacial resistance, changed significantly from 900 to 4,200 Ω under turnover and non-turnover conditions, respectively. We ascribed this change to the electron transfer resistance overcome by the biofilm metabolism and estimate this value as 3,300 Ω. Additionally, under non-turnover, the biofilm impedance developed pseudocapacitive behavior indicative of bound redox mediators. Pseudocapacitance of the biofilm was estimated at 740 µF and was unresponsive to rotation of the electrode. The increase in electron transfer resistance and pseudocapacitive behavior under non-turnover could be used as indicators of acetate limitations inside G. sulfurreducens biofilms. PMID:23996084

  20. Mass Transfer Studies of Geobacter sulfurreducens Biofilms on Rotating Disk Electrodes

    PubMed Central

    Babuta, Jerome T.; Beyenal, Haluk

    2014-01-01

    Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens bio-films. Here, we use electrochemical impedance spectroscopy to demonstrate the effect of mass transfer processes on electron transfer by G.sulfurreducens biofilms grown in situ on an electrode that was subsequently rotated. By rotating the biofilms up to 530 rpm, we could control the microscale gradients formed inside G.sulfurreducens biofilms. A 24% increase above a baseline of 82 μA could be achieved with a rotation rate of 530 rpm. By comparison, we observed a 340% increase using a soluble redox mediator (ferrocyanide) limited by mass transfer. Control of mass transfer processes was also used to quantify the change in biofilm impedance during the transition from turnover to non-turnover. We found that only one element of the biofilm impedance, the interfacial resistance, changed significantly from 900 to 4,200 Ω under turnover and non-turnover conditions, respectively. We ascribed this change to the electron transfer resistance overcome by the biofilm metabolism and estimate this value as 3,300 Ω. Additionally, under non-turnover, the biofilm impedance developed pseudocapacitive behavior indicative of bound redox mediators. Pseudocapacitance of the biofilm was estimated at 740 μF and was unresponsive to rotation of the electrode. The increase in electron transfer resistance and pseudocapacitive behavior under non-turnover could be used as indicators of acetate limitations inside G.sulfurreducens biofilms. PMID:23996084

  1. Transiting Sub-stellar companions of Intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Sebastian, Daniel; Guenther, Eike W.; Heber, Ulrich; Geier, Stephan; Grziwa, Sascha

    2015-09-01

    We use the CoRoT-survey to search for transiting close-in planets of intermediate-mass stars (M* = 1.3 - 2.1 M⊙). We present recent results of our survey. RV-surveys and direct imaging campaigns showed, that intermediate-mass main-sequence stars have more massive planets then solar-like stars. Even brown dwarfs have been found. In our study we concentrated on short-period planets for which a mass-determination is possible. The detection of close-in planets of intermediate-mass stars put strong constraints on the timescales of the formation and migration. We already have identified transiting Jupiter-like planet candidates with short orbital periods and observed these candidates with high-resolution echelle-spectrographs at various Telescopes.

  2. TWIN BINARIES: STUDIES OF STABILITY, MASS TRANSFER, AND COALESCENCE

    SciTech Connect

    Lombardi, J. C.; Holtzman, W.; Gearity, K.; Dooley, K. L.; Kalogera, V.; Rasio, F. A.

    2011-08-20

    Motivated by suggestions that binaries with almost equal-mass components ('twins') play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low-mass cores (M{sub c} {approx}< 0.15M, where M is the mass of a component), a secular instability is reached during the contact phase, accompanied by a dynamical mass transfer instability at the same or at a slightly smaller orbital separation. Binaries that come inside this instability limit transfer mass gradually from one component to the other and then coalesce quickly as mass is lost through the outer Lagrangian points. For twin giant binaries with moderate to massive cores (M{sub c} {approx}> 0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. In addition to the formation of binary neutron stars, we also discuss the implications of our results for the production of planetary nebulae with double degenerate central binaries.

  3. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  4. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Authorization for use and occupancy by mass transit. 810... TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.210 Authorization for use and occupancy by mass transit. (a) Upon being...

  5. 23 CFR 810.308 - Approval of urban system nonhighway public mass transit projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Approval of urban system nonhighway public mass transit... PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.308 Approval of urban system nonhighway public mass transit...

  6. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  7. LUT observations of the mass-transferring binary AI Dra

    NASA Astrophysics Data System (ADS)

    Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping

    2016-06-01

    Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.

  8. Interphase mass transfer between fluids in subsurface formations: A review

    NASA Astrophysics Data System (ADS)

    Agaoglu, Berken; Copty, Nadim K.; Scheytt, Traugott; Hinkelmann, Reinhard

    2015-05-01

    This paper presents a review of the state-of-the-art on interphase mass transfer between immiscible fluids in porous media with focus on the factors that have significant influence on this process. In total close to 300 papers were reviewed focusing to a large extent on the literature relating to NAPL contamination of the subsurface. The large body of work available on this topic was organized according to the length scale of the conducted studies, namely the pore, meso and field scales. The interrelation of interphase mass transfer at these different scales is highlighted. To gain further insight into interphase mass transfer, published studies were discussed and evaluated in terms of the governing flow configurations defined in terms of the wettability and mobility of the different phases. Such organization of the existing literature enables the identification of the interfacial domains that would have significant impact on interphase mass transfer. Available modeling approaches at the various length scales are discussed with regard to current knowledge on the physics of this process. Future research directions are also suggested.

  9. Evaporation from flowing channels ( mass-transfer formulas).

    USGS Publications Warehouse

    Fulford, J.M.; Sturm, T.W.

    1984-01-01

    Stability-dependent and Dalton-type mass transfer formulas are determined from experimental evaporation data in ambient and heated channels and are shown to have similar performance in prediction of evaporation. The formulas developed are compared with those proposed by other investigators for lakes and flowing channels. -from ASCE Publications Information

  10. Analysis of Heat and Mass Transfer in a Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Murase, Sousuke; Akisawa, Atsushi; Kashiwagi, Takao; Okajima, Jirou; Matsuoka, Fumio

    The study aims at clarifying the local heat and mass transfer in the desiccant rotor, and at obtaining the design aspects of high efficient desiccant rotor and operation method. In the paper, theoretical analysis is performed for rotary dehumidifier. Both surface diffusion and mass transfer coefficient are considered in the model. It is examined that the results of calculation agree well with the experimental data. The local temperature, humidity and the amount of adsorbed water vapor are calculated. It is clarified that temperature and humidity of air in the rotor change clockwise between each inlet air condition on the psychrometric chart. The outlet temperature and humidity distribution of the rotor is clarified in the system showing the optimum rotor speed. Furthermore, it is clarified that local desorption rate is higher than adsorption rate. It is attributed to the increase of mass transfer coefficient and surface diffusivity of the rotor during desorption process. And, it is clarified that the influence of surface diffusion on amount of adsorbed water vapor is much larger than that of mass transfer coefficient.

  11. Dissociation and Mass Transfer Coefficients for Ammonia Volatilization Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based models are being used to predict ammonia emissions from manure sources, but their accuracy has not been fully evaluated for cattle manure. Laboratory trials were conducted to measure the dissociation and mass transfer coefficients for ammonia volatilization from media of buffered ammon...

  12. A Course in Advanced Topics in Heat and Mass Transfer.

    ERIC Educational Resources Information Center

    Shaeiwitz, Joseph A.

    1983-01-01

    A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)

  13. Multidimensional mechanistic modeling of interfacial heat and mass transfer

    SciTech Connect

    Shaver, D. R.; Antal, S. P.; Podowski, M. Z.

    2012-07-01

    A combined theoretical and computational study in modeling multidimensional, diabatic vapor/liquid flows is presented. Models have been developed governing kinematic aspects of multiphase flow as well as interfacial mass and heat transfer for flows of condensable gas (vapor) and liquids. The modeling formulation is based on the Reynolds averaged Navier-Stokes (RANS) type multi-field approach which utilizes a complete set of conservation equations for each fluid component 1. The modeled interfacial interactions include energy, mass, and momentum transfer. Emphasis in the model development work has been placed on the mechanisms governing coupled interfacial heat and mass transfer between the liquid and vapor fields (condensation and/or boiling). A method for tracking changes in bubble size is presented and tested. Locally based models of multidimensional effects have been analyzed, including distributions of fluid temperatures and volume fractions. The overall model accounts for both kinematic and thermodynamic nonequilibrium between the component fluids including superheated vapor. The model has been implemented in the NPHASE-CMFD computer code. Results from the kinematic model are compared to experimental data and good agreement is demonstrated. The heat and mass transfer model is parametrically tested to show the multidimensional effects on the rate of heat and mass transfer. These effects are explained in terms of local characteristics of the two-phase flow. The model is applied to a scenario of saturated vapor injected into a subcooled flow through a heated, porous wall. This provides a reasonable approximation to subcooled boiling. The results are found to be dependent on the partitioning of the wall heat flux between direct liquid heating and vapor generation. However, the observed dependencies are explained and the modeling is considered consistent. (authors)

  14. Mass transfer experiments on single irregular-shaped particles

    SciTech Connect

    Ramezan, M. ); Kale, S.R. ); Anderson, R.J. )

    1991-01-01

    Mass transfer from irregular-shaped naphthalene particles (100-200 {mu}m in size) was studied in an electrodynamic balance. Charged particles were suspended in an electrostatic field directly in line with a calibrated air jet. Mass and size change histories were obtained under ambient conditions, and under steady- and pulsed-flow conditions. For natural convection, the time-averaged Sherwood number was similar to that for spheres. Forced-convection Sherwood number under steady-flow conditions was strongly dependent on particle shape and particle Reynolds number, and was consistently higher than values predicted for spheres at comparable Reynolds numbers. This paper validates the technique and indicates the shape effect on mass transfer from single particles.

  15. Mass and heat transfer model of Tubular Solar Still

    SciTech Connect

    Ahsan, Amimul; Fukuhara, Teruyuki

    2010-07-15

    In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover and trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)

  16. A transition mass in the local Tully-Fisher relation

    NASA Astrophysics Data System (ADS)

    Simons, Raymond C.; Kassin, Susan A.; Weiner, Benjamin J.; Heckman, Timothy M.; Lee, Janice C.; Lotz, Jennifer M.; Peth, Michael; Tchernyshyov, Kirill

    2015-09-01

    We study the stellar mass Tully-Fisher relation (TFR; stellar mass versus rotation velocity) for a morphologically blind selection of emission line galaxies in the field at redshifts 0.1 < z < 0.375. Kinematics (σg, Vrot) are measured from emission lines in Keck/DEIMOS spectra and quantitative morphology is measured from V- and I-band Hubble images. We find a transition stellar mass in the TFR, log M*/M⊙ = 9.5. Above this mass, nearly all galaxies are rotation dominated, on average more morphologically disc-like according to quantitative morphology, and lie on a relatively tight TFR. Below this mass, the TFR has significant scatter to low rotation velocity and galaxies can either be rotation-dominated discs on the TFR or asymmetric or compact galaxies which scatter off. We refer to this transition mass as the `mass of disc formation', Mdf because above it all star-forming galaxies form discs (except for a small number of major mergers and highly star-forming systems), whereas below it a galaxy may or may not form a disc.

  17. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent rotor. A numerical simulation helps to understand the phenomena of heat and mass transfer in the rotor block. Overall transfer coefficients were estimated by performing both experiment and calculation. It was examined that the transient overall equivalent heat and mass transfer coefficient was not constant. It seems that both film fluid and diffusion resistance govern the coefficients in the block, and the influence of air flow on the time averaged coefficients is estimated by a considering the laminar forced convection from a flat plate. There is little difference of the coefficient between adsorption and desorption process. The correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  18. Radiative Heat Transfer in a Hydrous Transition Zone

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Bina, C. R.; Jacobsen, S. D.; Goncharov, A. F.

    2012-12-01

    The structure and dynamics of Earth's interior depend crucially upon heat flow and thus upon the thermal conductivity of its constituents. The bulk thermal conductivity has two components: lattice conductivity (klat) and radiative conductivity (krad) [1,2]. Whereas lattice conductivity is governed by phonon propagation, radiative conductivity arises from heat transport by emission and absorption of photons. The latter, therefore, can be indirectly measured by analyzing the visible and infrared (VIS-IR) regions of a material's optical absorption spectrum. Thermal conductivity in the mantle is controlled by temperature, pressure, the electronic structure and concentration of transition metal ions (such as iron), and the water content of the material [1,3]. The radiative component has generally been assumed to be negligible, as most ferromagnesian minerals become opaque in the VIS-IR range at high pressures due to intensification and red-shift of electronic charge-transfer bands [4, 5]. However, more recent studies have suggested that mantle minerals may, in fact, remain relatively transparent at high pressures, thereby allowing for a potentially significant contribution to thermal conductivity from the radiative component [6]. We measured optical absorbance spectra of hydrous wadsleyite and hydrous ringwoodite at simultaneous high-pressure and high-temperature conditions up to 26 GPa and 823 K in order to determine their radiative conductivities and to study the potential influence of hydration in the transition zone on thermal conductivity of the mantle. We report radiative thermal conductivities of 1.5 ± 0.2 Wm-1K-1 for hydrous wadsleyite and 1.2 ± 0.1 Wm-1K-1 for hydrous ringwoodite at transition zone conditions. The analytically derived radiative thermal conductivities of anhydrous wadsleyite and ringwoodite are 2.1 ± 0.2 Wm-1K-1 and 1.6 ± 0.2 Wm-1K-1, respectively. Our results imply that a water content of ~1 wt% H2O lowers the thermal radiative conductivity

  19. Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid

    PubMed Central

    McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.

    2010-01-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196

  20. Simplified Simulation of Mass Transfer in Double White Dwarf Systems

    NASA Astrophysics Data System (ADS)

    Vannah, Sara; Frank, Juhan

    2016-01-01

    The behavior both stable and unstable mass transfer in semi-detached double white dwarfs triggers a cornucopia of astrophysical phenomena including Type Ia supernovae and AM CVn stars. Current 3D hydrodynamic simulations of the evolution these systems following the mass transfer, binary orbital parameters, and the self-consistent gravitational field over several tens of orbital periods have produced a wealth of data. However, these simulations can take weeks to months in high-performance computing platforms to execute. To help with the interpretation of results of such large scale simulations, and to enable a quick exploration of binary parameter space, we have developed a Mathematica code that integrates forward in time a system of 5 ODEs describing the orbit-averaged evolution of the binary separation as well as the radius, mass, and spin angular momentum of both components of the binary. By adjusting a few parameters describing the mass transfer as a function of the Roche-lobe overflow and the strength of the tidal coupling between the orbit and component spins we are able to obtain approximate fits to previously run hydrodynamic simulations. This simplified simulation is able to run simulations similar to the hydrodynamic versions in a matter of seconds on a dual-core PC or Mac computer.

  1. Mixing and mass transfer considerations in highly viscous fermentations

    SciTech Connect

    Applegate, M.A.; Flatt, J.H.

    1995-12-01

    Highly viscous microbial fermentations pose difficult scale-up challenges for the industrial biochemical engineer. Incomplete bulk mixing and poor oxygen mass transfer often limit fermentor titers and productivities. Lower heat transfer coefficients coupled with higher rates of heat generation through viscous dissipation further confound operational difficulties. Practical approaches to alleviating these factors will be discussed using examples from viscoelastic gellan, welan, and xanthan gum fermentations. In addition, a summary of the effects of power input, aeration, media manipulation, and genetic modifications will be discussed.

  2. Mass transfer at gas-evolving surfaces in electrolysis

    SciTech Connect

    Dees, D.W.; Tobias, C.W.

    1983-09-01

    A novel micro-mosaic electrode was developed to resolve time-dependent, mass-transfer distribution in the close vicinity of bubble phenomena. The electrode, prepared on a silicon wafer using integrated circuit manufacturing technology, consists of a 10 by 10 matrix of coplanar, electrically isolated, square platinum segments on 100 micron centers, surrounded by a relatively large buffer segment. A computer-actuated data acquisition and control system was assembled and the software developed to monitor the current to each of the segments and control the potential of selected segments. The utility of the electrode to examine interfacial mass transport phenomena which have characteristic lengths as small as 100 microns has been clearly demonstrated. The effect of a single hydrogen bubble disengagement and of the coalescence of two bubbles, on the limiting current of the reduction of ferric to ferrous ion was measured using the micro-mosaic electrode in a horizontal: facing-up orientation. In the absence of gas evolution, large regular fluctuations in the limiting current to the segments with a period of 29 sec were observed. This periodic behavior is attributed to free convection: a cellular fluid motion moving across the electrode with a velocity of 40 microns/second. It was found that the mass-transfer enhancement due to bubble disengagement is small when compared to that due to coalescence. Increases in the mass-transfer rate of more than an order of magnitude over the free convection limiting current were observed for the coalescence phenomena. Two theoretical models were developed to account for the observed effect of a bubble disengagement on the mass transfer-rate to the surface.

  3. Mass transfer and magnetic braking in Sco X-1

    NASA Astrophysics Data System (ADS)

    Pavlovskii, K.; Ivanova, N.

    2016-02-01

    Sco X-1 is a low-mass X-ray binary (LMXB) that has one of the most precisely determined set of binary parameters such as the mass accretion rate, companions mass ratio and the orbital period. For this system, as well as for a large fraction of other well-studied LMXBs, the observationally-inferred mass accretion rate is known to strongly exceed the theoretically expected mass transfer (MT) rate. We suggest that this discrepancy can be solved by applying a modified magnetic braking prescription, which accounts for increased wind mass-loss in evolved stars compared to main sequence stars. Using our MT framework based on MESA, we explore a large range of binaries at the onset of the MT. We identify the subset of binaries for which the MT tracks cross the Sco X-1 values for the mass ratio and the orbital period. We confirm that no solution can be found for which the standard magnetic braking can provide the observed accretion rates, while wind-boosted magnetic braking can provide the observed accretion rates for many progenitor binaries that evolve to the observed orbital period and mass ratio.

  4. Numerical simulation of mass transfer in the liquid phase of the bubble layer of a thermal deaerator

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Misbakhov, R. Sh.; Lapteva, E. A.

    2015-12-01

    On the basis of one-dimensional diffusion model of the flow structure and boundary layer theory, a method for calculating the mass transfer of dissolved oxygen in the liquid phase of the bubble layer of a thermal deaerator is developed. Mass transfer with the bulk source of mass has been considered, wherein the basic parameter is mass-transfer coefficient. A model of pseudo laminar boundary layer on the bubble surface is proposed, and the possibility of calculating of mass-transfer coefficient from bubbles in the mass source of diffusion model is shown, taking into account the gas content and external turbulence. A comparison of the calculation results of mass-transfer coefficient is given from the bubbles with known experimental data. It is shown that taking into account gas content results in an increase of the mass-transfer coefficient by 2-4 times. Expressions for calculations of gas content, dynamic speed, and inverse stirring coefficient in the liquid phase of the bubble layer are presented. In the special case, transition from the diffusion model of the flow structure to cell model is made, and comparison of the calculation results on the concentration of oxygen in water at the output of DSA-300 bubbling thermal deaerator with experimental data is performed. The developed mathematical model and calculation algorithm can be used in the design, diagnosis, and modernization of thermal deaerators.

  5. Mass and Energy Transfer Between the Solar Photosphere and Corona

    NASA Astrophysics Data System (ADS)

    Peter, H.

    2015-12-01

    The problem of chromospheric and coronal heating is also a problem of mass supply to the corona. On average we see redshifts at transition region temperatures of the order of 10 km/s. If interpreted as downflows, this would quickly empty the corona, and fresh material has to be transported into the corona. Several models have been proposed to understand this mass cycle between the different atmospheric layers. However, as of yet all these proposals have serious shortcomings. On the observational side open questions remain, too. With the new IRIS mission we can observe the transition region at unprecedented spatial and spectral resolution, but the observational results are still puzzling. In particular the finding that the spatial distribution of line widths and Doppler shifts do not change with increasing resolution is against physical intuition. This shows that even with IRIS we still have significant velocity gradients along the line-of-sight, indicating that shocks might play a significant role. Likewise the temporal evolution might be a key for our understanding of the mass cycle. It might well be that the filling and draining of hot plasma occurs on significantly different time scales, which might be part of the difficulty to arrive at a conclusive observational picture. Considering the progress made for the quiet Sun, it seems clear that the processes responsible for the mass exchange are not resolved (yet). Therefore one might wonder to what extent one could use larger and resolved individual events in more active parts of the Sun to understand the details of the mass transport. In particular a common understanding of reconnection events such as Ellerman bombs in the photosphere, explosive events in the transition region and the recently discovered IRIS bombs in-between might provide the key to better understand the mass cycle throughout the atmospheric layers from the photosphere to the corona.

  6. Ultrafast spectroscopy of electron transfer dynamics in liquids; excitation transfer studies of phase transitions

    NASA Astrophysics Data System (ADS)

    Goun, Alexei A.

    tetradecyltrimethylammonium bromide (TTAB). It was found that the effective coupling is reduced compared to donor/acceptor pairs dissolved in simple liquids. In the 2nd half of thesis we have addressed the question of the dynamics of phase transitions. We have demonstrated the ability to use the fluorescent excitation-transfer technique to study the demixing of liquids specifically, kinetics of demixing water and 2,6-dimethylpyridine. These two liquids possess a low critical temperature point, which allowed us to use a temperature jump from a laser pulse to initiate the process of phase separation. It was found that Coumarin480 laser dye and HPTS (8-Hydroxypyrene-1,3,6-trisulfonic acid) fluorescent dye have significantly different solubilities in the components of the mixture. These dyes undergo excitation transfer from Coumarin480 to HPTS in the uniform state, but not in the phase-separated state. A system with a temperature jump pump and an excitation transfer probe measured the time scale of the initial step of the phase separation.

  7. Heat and Mass Transfer in a Freezing Unsaturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Jame, Yih-Wu; Norum, Donald I.

    1980-08-01

    A numerical simulation of a laboratory experiment involving coupled heat and mass transfer in a horizontal porous medium column with one end subjected to a temperature below 0°C has been carried out. The model is essentially that of Harlan (1973) and is solved numerically by the finite difference method using the Crank-Nicholson scheme. The solution yields temperature, liquid water content, and ice content profiles along the column as a function of time. Comparison of the experimental results and the simulation analysis results shows that Harlan's model, with some modification in the hydraulic conductivity of the frozen medium, can be used successfully to simulate numerically the coupled heat and mass transfer processes when ice lensing does not occur.

  8. Nonlinear analysis of capillary instability with heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Awasthi, Mukesh Kumar; Agrawal, G. S.

    2012-06-01

    The nonlinear capillary instability of the cylindrical interface between the vapor and liquid phases of a fluid is studied when there is heat and mass transfer across the interface, using viscous potential flow theory. The fluids are considered to be viscous and incompressible with different kinematic viscosities. Both asymmetric and axisymmetric disturbances are considered. The analysis is based on the method of multiple scale perturbation and the nonlinear stability is governed by first-order nonlinear partial differential equation. The stability conditions are obtained and discussed theoretically as well as numerically. Regions of stability and instability have been shown graphically indicating the effect of various parameters. It has been observed that the heat and mass transfer has stabilizing effect on the stability of the system in the nonlinear analysis for both axisymmetric as well as asymmetric disturbances.

  9. Chemical separations by bubble-assisted interphase mass-transfer.

    PubMed

    Boyd, David A; Adleman, James R; Goodwin, David G; Psaltis, Demetri

    2008-04-01

    We show that when a small amount of heat is added close to a liquid-vapor interface of a captive gas bubble in a microchannel, interphase mass-transfer through the bubble can occur in a controlled manner with only a slight change in the temperature of the fluid. We demonstrate that this method, which we refer to as bubble-assisted interphase mass-transfer (BAIM), can be applied to interphase chemical separations, e.g., simple distillation, without the need for high temperatures, vacuum, or active cooling. Although any source of localized heating could be used, we illustrate BAIM with an all-optical technique that makes use of the plasmon resonance in an array of nanoscale metal structures that are incorporated into the channel to produce localized heating of the fluid when illuminated by a stationary low-power laser. PMID:18321130

  10. Mass-transfer in close binary and their companions

    NASA Astrophysics Data System (ADS)

    Liao, Wenping; Qian, Shengbang; Zhu, Liying; Li, Linjia

    2016-07-01

    Secular and/or cyclical orbital period variations of close binaries can be derived by analyzing the (O-C) diagram. The secular variations are usually explained as mass transfer between components, while the most plausible explanation of the cyclic period changes is the light-travel time effect (LTTE) through the presence of a third body. Mass transfer and additional companions in close binary systems are important for understanding the formation and evolution of the systems. Here, UV light curves of several close binaries based on the Lunar-based Ultraviolet Telescope (LUT) observations are presented and analyzed with the Wilson-Devinney (W-D) method. Then, based on those light-curve solutions and new analysis of the orbital period variations, the multiplicity, geometrical structure and evolution state of targets are discussed.

  11. Conjugate mixed convection heat and mass transfer in brick drying

    NASA Astrophysics Data System (ADS)

    Suresh, H. N.; Aswatha Narayana, P. A.; Seetharamu, K. N.

    In this study, a numerical methodology for the solution of conjugate heat and mass transfer problem is presented. Fluid flow, heat and mass transfer over a rectangular brick due to transient laminar mixed convection has been numerically simulated. The coupled non-linear partial differential equations, for both gas phase and solid are solved using finite element procedure. Flow is assumed to be incompressible, two-dimensional, laminar. Analysis has been carried out at a Reynolds number of 200 with Pr=0.71. The effect of buoyancy on the brick drying has been investigated. Velocity vectors, streamlines in the flow field and temperature and moisture contours and temperature distribution along the solid surface are presented. It is observed that there is considerable effect of buoyancy during drying. The results indicate a non-uniform drying of the brick with the leading edge drying faster than the rest of the brick.

  12. Geoelectrical inference of mass transfer parameters using temporal moments

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.

    2008-01-01

    We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT-estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments. Copyright 2008 by the American Geophysical Union.

  13. The impact of separated flow on heat and mass transfer

    SciTech Connect

    Goldstein, R.J.; Jabbari, M.Y.

    1990-01-01

    An investigation of the effect of flow separation on heat (or mass) transfer is underway. This research, sponsored by the Department of Energy (Contract No. FG02-87ER13800), is planned to enhance our understanding of the fundamental mechanisms governing the process. This report summarizes previous accomplishments and briefly describes works done during period May 1, 1989 through April 30, 1990. Future plans and studies under preparation are also mentioned. 8 refs., 7 figs.

  14. Mass transfer ways of ultraviolet printing ink ingredients into foodstuffs.

    PubMed

    Jung, T; Simat, T J; Altkofer, W

    2010-07-01

    The case of isopropylthioxanthone (ITX) showed conclusively that the ingredients of ultraviolet printing inks may migrate into packaged foodstuffs. For multilayered materials like beverage cartons, the only way that mass transfer can occur is by the so-called set-off effect. In contrast, in the case of rigid plastics like yoghurt cups, two other methods of mass transfer, permeation and gas phase, have to be considered. In cooperation with producers of ink, plastic cups and yoghurt, a project was conducted in order to elucidate the mass transfer of ink ingredients. In addition, the influence of storage time and the age of ultraviolet lamps on the migration level was examined. The suitability of 50% ethanol as a simulant for yoghurt was also tested. ITX was chosen as a model migrant, as it is easily detectable. Furthermore, the migration of two other substances, the photo-initiator 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP) and the amine synergist ethyl-4-(dimethylamino)benzoate (EDAB), which may be used in combination with ITX, was studied. Before being filled with yoghurt or 50% ethanol, the printed cups were stored under different contact conditions, with and without contact between the inner layer and the printed surfaces, in order to distinguish between the possible mass transfer ways. All analyses were performed by means of high performance liquid chromatography with diode array and fluorescence detection (HPLC-DAD/FLD). It was shown that contamination with ITX and EDAB occurs via set-off and that the degree of migration increases with lamp age and storage time of the unfilled cups. Migration of MTMP was not detectable. The results show that besides the careful selection of the appropriate raw materials for printing ink, a close monitoring of the process also plays a major role in migration control. In addition, the results proved that 50% ethanol is a suitable simulant for yoghurt. PMID:20432097

  15. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  16. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  17. Modelling mass transfer and agitator performance in multiturbine fermentors.

    PubMed

    Bader, F G

    1987-07-01

    A methodology for mathematically analyzing agitator performance and mass transfer in large multiturbine production fermentors is presented. The application of this approach provides a method for determining axial dissolved oxygen profiles under conditions of known mass transfer rates as a function of agitation-aeration characteristics. A stagewise approach is used which divides the fermentor into a series of mixing cells. This allows for each turbine and mixing cell to be individually optimized. The model also permits the determination of the mass transfer coefficient for each turbine based upon limited dissolved oxygen data. The primary limitation of this approach rests in the limited data and correlations available for multiturbine systems. The structure of the modelling approach can serve as a basis for testing single turbine correlations and adapting them to multiturbine systems. The step-by-step details of the mathematical analysis are presented and interpreted. A series of computer simulations demonstrate the effect of typical fermentor operating variables on the axial dissolved oxygen profile. Further simulations demonstrate the effect of modifying agitator blade numbers on the dissolved oxygen profile and agitator power requirement. PMID:18576581

  18. Charge transfer vibronic transitions in uranyl tetrachloride compounds;

    SciTech Connect

    Liu, G. K.; Deifel, N. P.; Cahill, C. L.

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO{sub 2}){sup 2+} in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3{sigma} ground state into the f{sub {delta}{phi}}, orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  19. Charge transfer vibronic transitions in uranyl tetrachloride compounds

    SciTech Connect

    Liu, Guokui; Deifel, Nicholas P.; Cahill, Christopher L.; Zhurov, Vladimir V.; Pinkerton, A. Alan

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO₂)2+ in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the fδ,Φ orbitals of uranyl. The Huang–Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck–Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  20. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  1. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  2. 2D and 3D Mass Transfer Simulations in β Lyrae System

    NASA Astrophysics Data System (ADS)

    Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.

    2001-12-01

    2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.

  3. A Comparison of Stellar Mass-Transfer & Merger Simulations

    NASA Astrophysics Data System (ADS)

    Tohline, Joel E.; Motl, P.; Diehl, S.; Even, W.; Clayton, G.; Fryer, C.

    2011-01-01

    We present detailed comparisons of 3D stellar mass-transfer and merger simulations that have been carried out using two very different numerical hydrodynamic algorithms -- a finite-volume "grid" code (typically using 4M cylindrical grid cells) and a smoothed-particle hydrodynamics (SPH) code (typically using 1M particles). In all cases the initial binary models contain synchronously rotating, n = 3/2 polytropic stars of a specified mass ratio (q = Mdonor/Maccretor) that are in circular orbit with one star (the donor) marginally filling its Roche lobe. In our "base" set of 8 comparison simulations, we have followed the evolution of binaries having four different initial mass ratios (q0 = 1.3, 0.7, 0.5, 0.4) and each is evolved using two different equations of state: polytropic (P) and ideal-gas (I). In addition, some evolutions are repeated using a different numerical resolution and/or a different initial episode of "driving" to initiate mass-transfer. In the case of the binary systems with q0 = 1.3 and q0 = 0.7, the codes show a remarkable level of quantitative agreement; in the former case, the two stars merge and, in the latter case, the donor gets tidally disrupted. Binary systems with q0 = 0.5 or 0.4 enter a long phase (> 10-20 orbits) of stable mass-transfer during which the binary separation steadily increases; tidal disruption of the donor may ultimately occur if sufficiently deep contact is made between the Roche lobe and the donor during an initial episode of "driving." This work has been supported by grants AST-0708551 and DGE-0504507 from the U.S. National Science Foundation; by grants NNX07AG84G and NNX10AC72G from NASA's ATP program; and by grants of high-performance computing time on the TeraGrid, at LSU and across LONI (Louisiana Optical Network Initiative).

  4. Mathematical modeling heat and mass transfer processes in porous media

    NASA Astrophysics Data System (ADS)

    Akhmed-Zaki, Darkhan

    2013-11-01

    On late development stages of oil-fields appears a complex problem of oil-recovery reduction. One of solution approaches is injecting of surfactant together with water in the form of active impurities into the productive layer - for decreasing oil viscosity and capillary forces between ``oil-water'' phases system. In fluids flow the surfactant can be in three states: dissolved in water, dissolved in oil and adsorbed on pore channels' walls. The surfactant's invasion into the reservoir is tracked by its diffusion with reservoir liquid and mass-exchange with two phase (liquid and solid) components of porous structure. Additionally, in this case heat exchange between fluids (injected, residual) and framework of porous medium has practical importance for evaluating of temperature influences on enhancing oil recovery. Now, the problem of designing an adequate mathematical model for describing a simultaneous flowing heat and mass transfer processes in anisotropic heterogeneous porous medium -surfactant injection during at various temperature regimes has not been fully researched. In this work is presents a 2D mathematical model of surfactant injections into the oil reservoir. Description of heat- and mass transfer processes in a porous media is done through differential and kinetic equations. For designing a computational algorithm is used modify version of IMPES method. The sequential and parallel computational algorithms are developed using an adaptive curvilinear meshes which into account heterogeneous porous structures. In this case we can evaluate the boundaries of our process flows - fronts (``invasion'', ``heat'' and ``mass'' transfers), according to the pressure, temperature, and concentration gradient changes.

  5. Effects of mass transfer between Martian satellites on surface geology

    NASA Astrophysics Data System (ADS)

    Nayak, Michael; Nimmo, Francis; Udrea, Bogdan

    2016-03-01

    Impacts on planetary bodies can lead to both prompt secondary craters and projectiles that reimpact the target body or nearby companions after an extended period, producing so-called "sesquinary" craters. Here we examine sesquinary cratering on the moons of Mars. We model the impact that formed Voltaire, the largest crater on the surface of Deimos, and explore the orbital evolution of resulting high-velocity ejecta across 500 years using four-body physics and particle tracking. The bulk of mass transfer to Phobos occurs in the first 102 years after impact, while reaccretion of ejecta to Deimos is predicted to continue out to a 104 year timescale (cf. Soter, S. [1971]. Studies of the Terrestrial Planets. Cornell University). Relative orbital geometry between Phobos and Deimos plays a significant role; depending on the relative true longitude, mass transfer between the moons can change by a factor of five. Of the ejecta with a velocity range capable of reaching Phobos, 25-42% by mass reaccretes to Deimos and 12-21% impacts Phobos. Ejecta mass transferred to Mars is <10%. We find that the characteristic impact velocity of sesquinaries on Deimos is an order of magnitude smaller than those of background (heliocentric) hypervelocity impactors and will likely result in different crater morphologies. The time-averaged flux of Deimos material to Phobos can be as high as 11% of the background (heliocentric) direct-to-Phobos impactor flux. This relatively minor contribution suggests that spectrally red terrain on Phobos (Murchie, S., Erard, S. [1996]. Icarus 123, 63-86) is not caused by Deimos material. However the high-velocity ejecta mass reaccreted to Deimos from a Voltaire-sized impact is comparable to the expected background mass accumulated on Deimos between Voltaire-size events. Considering that the high-velocity ejecta contains only 0.5% of the total mass sent into orbit, sesquinary ejecta from a Voltaire-sized impact could feasibly resurface large parts of the Moon

  6. Restrained Ion Population Transfer: A Novel Ion Transfer Method for Mass Spectrometry.

    SciTech Connect

    Kaiser, Nathan K.; Skulason, Gunnar; Weisbrod, Chad R.; Wu, Si; Zhang, Kai; Prior, David C.; Buschbach, Michael A.; Anderson, Gordon A.; Bruce, James E.

    2008-06-30

    With modern Fourier transform ion cyclotron resonance (ICR) mass spectrometers, ions are created and accumulated exterior to the mass analyzer. The ion accumulation event takes place in a region of higher pressure which allows ions to be thermally cooled before being given kinetic energy and accelerated toward the ICR cell where they are to be decelerated and re-trapped. When gated trapping is used to collect ions in the ICR cell for analysis, mass discrimination can occur due to time-of-flight effects. Also, trapping ions with large axial kinetic energy can decrease the performance of the ICR instrument when compared to the analysis of thermally-cooled ions located at the trap center. Therefore, it is desirable to limit the energy imparted in the ions within the ICR cell as well as minimize time-of-flight effects. The approach presented here for ion transfer called restrained ion population transfer or RIPT provides complete axial control of an ion population throughout the entire transfer sequence from the accumulation region to the ICR cell. This is accomplished by utilization of a number of quadrupole segments arranged in series with independent control of the dc bias voltage applied to each segment of the quadrupole ion guide. This approach circumvents problems associated with time-of-flight effects and minimizes the energy imparted to the ions allowing transfer of the cooled ion packet from the ion accumulation region to the ICR cell. Initial data are presented to illustrate feasibility of restrained ion population transfer. RIPT was also modeled with SIMION 7.0 and simulation results that support our feasibility studies of the ions transfer process are presented.

  7. Influence of mass transfer on bubble plume hydrodynamics.

    PubMed

    Lima Neto, Iran E; Parente, Priscila A B

    2016-03-01

    This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes. PMID:26840001

  8. Coarsening of sand ripples in mass transfer models.

    PubMed

    Hellén, E K O; Krug, J

    2002-07-01

    Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples exchange mass with algebraic rates, Gamma(m) approximately m(gamma), and ripples of zero mass are removed from the system. For gamma<0, ripples vanish through rare fluctuations and the average ripple mass grows as (t) approximately -gamma(-1)ln(t). Temporal correlations decay as t(-1/2) or t(-2/3) depending on the symmetry of the mass transfer, and asymptotically the system is characterized by a product measure. The stationary ripple mass distribution is obtained exactly. For gamma>0, ripple evolution is linearly unstable, and the noise in the dynamics is irrelevant. For gamma=1, the problem is solved on the mean-field level, but the mean-field theory does not adequately describe the full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggregation. PMID:12241351

  9. A mass transfer model for VOC emission from silage

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan

    2012-07-01

    Silage has been shown to be an important source of emissions of volatile organic compounds (VOCs), which contribute to the formation of ground-level ozone. Measurements have shown that environmental conditions and silage properties strongly influence emission rates, making it difficult to assess the contribution of silage in VOC emission inventories. In this work, we present an analytical convection-diffusion-dispersion model for predicting emission of VOCs from silage. It was necessary to incorporate empirical relationships from wind tunnel trials for the response of mass transfer parameters to surface air velocity and silage porosity. The resulting model was able to accurately predict the effect of temperature on ethanol emission in wind tunnel trials, but it over-predicted alcohol and aldehyde emission measured using a mass balance approach from corn silage samples outdoors and within barns. Mass balance results confirmed that emission is related to gas-phase porosity, but the response to air speed was not clear, which was contrary to wind tunnel results. Mass balance results indicate that alcohol emission from loose silage on farms may approach 50% of the initial mass over six hours, while relative losses of acetaldehyde will be greater.

  10. Direct geoelectrical evidence of mass transfer at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy

    2012-10-01

    Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.

  11. Characterizing Mass Transfer at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Hall, L. H.

    2012-12-01

    Aquifer remediation efforts in the Hanford 300 Area in Washington have presented substantial challenges for the Department of Energy. Since the early 1940s, this site has been a receptacle for radiological and chemical wastes from nuclear weapons production, including high concentrations of uranium. Employing techniques to estimate and measure mass transfer in-situ will improve understanding of contaminant fate and transport at this site, and perhaps others. A field experiment was conducted with a combination of electrical resistivity tomography (ERT) and ionic tracer tests through a double-ring infiltrometer to quantify multirate mass-transfer and other transport parameters in the 300 Area. The tests included a series of injections into an infiltrating column of water. After saturating the column with fresh water at a constant head, bromide tracer solution with initial known concentration was injected for a specified amount of hours. This was followed by a continual fresh water injection during which time fluid samples were taken at varying depths along the probe to observe the tailing of the breakthrough curve during this purge. Throughout the experiment, ERT data collected along the column as well as along a transect perpendicular to the vertical sampling ports. These experiments will result in a model of the local vadose zone which will be calibrated using field data and modeled using HYDRUS 2D and its sequential inverse modeling feature. This program numerically solves the Richards equation for variably saturated water flow and advection-dispersion (AD) type equations for solute transport. It also considers dual-porosity type flow in the mobile and immobile domain. Additionally, mass transfer parameters will be modeled using a code which utilizes the AD equation and numerically solves for concentrations using Laplace Transforms. Analysis on governing processes and calibration of this code using field data will be used for additional verification on

  12. Direct geoelectrical evidence of mass transfer at the laboratory scale

    USGS Publications Warehouse

    Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy

    2012-01-01

    Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.

  13. Heat and mass transfer intensification in coaxial reactor

    NASA Astrophysics Data System (ADS)

    Ananyev, D. V.; Halitova, G. R.

    2014-04-01

    The work considers heat and mass transfer in the homophasic polymerization reactor. The reactor is a coaxial channel with internal tube in the form of a channel of confusor-diffuser type. The authors compared the degree of polymer transformation in the intensified coaxial reactor with internal tube of confusor-diffuser type and the reactor with constant rectilinear longitudinal section. It was found that in coaxial channels with internal tube of confusor-diffuser type, it is possible to reach high values of the transformation degree and to improve the quality of the obtained polymer.

  14. Increasing peritoneal contact area during dialysis improves mass transfer.

    PubMed

    Flessner, M F; Lofthouse, J; Williams, A

    2001-10-01

    Previous studies in mice demonstrated that relatively large volumes in the peritoneal cavity made contact with only 40% of the anatomic peritoneum and that this contact area (A(contact)) could be increased with use of a surfactant, dioctyl sodium sulfosuccinate (DSS). To investigate the hypothesis that mass transfer rates during peritoneal dialysis are dependent on the area of peritoneum in contact with the dialysis solution, rats were dialyzed for 2 h with a solution that contained (14)C-mannitol, with or without 0.02% DSS. The mass transfer-area coefficients (MTAC) were determined to be (mean +/- SEM, ml/min): no DSS, 0.163 +/- 0.008; with DSS, 0.247 +/- 0.006 (P < 0.002). DSS also caused an increase in total protein loss over 2 h (mean +/- SEM, mg): no DSS, 83.8 +/- 15.8; DSS, 159.5 +/- 6.3 (P < 0.001). In a separate set of animals, the ratio (R) of A(contact) to anatomic area in each plane was measured as in the previous study R(mean) (mean +/- SEM) and equaled 0.466 +/- 0.075, no DSS; 0.837 +/- 0.074, with DSS. The ratio of MTAC (1.52) and protein loss (1.90) approximate the ratio of R(mean(S)) (1.78). Because MTAC = mass transfer coefficient (MTC) x A(contact), small peritoneal transport chambers were used to determine MTC for (14)C-mannitol and fluorescein isothiocyanate-albumin. MTC(mannitol) did not change significantly with the addition of DSS. MTC(albumin) (cm/min x 10(4), mean +/- SEM) equaled 1.47 +/- 0.45 without DSS and 1.78 +/- 0.52 with DSS (P < 0.04). It was concluded that DSS increases the mass transfer rates of mannitol and protein by increasing A(contact), whereas protein transport is further augmented by an apparent increase in the barrier permeability to protein. PMID:11562413

  15. Modeling heat and mass transfer in catalytic wood gasification

    SciTech Connect

    Brown, M.D.; Robertus, R.J.; Baker, E.G.; Mudge, L.K.

    1986-03-01

    Current research in the gasification of biomass materials includes production of a methanol synthesis gas catalytically. Previous experiments have indicated early deactivation of catalysts due primarily to carbon deposition. This study presents the results of efforts to model the heat and mass transfer within a spherical catalyst pellet using orthogonal collocation. Solutions are presented which predict temperature and concentration distributions and pellet effectiveness factors. These solutions are compared to a thermodynamic equilibrium model to predict regimes of carbon deposition and subsequent deactivation. Experimental data are presented which support conclusions drawn above. 11 refs., 3 figs., 1 tab.

  16. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    NASA Astrophysics Data System (ADS)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  17. Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.

    2012-07-01

    A transition-density-fragment interaction (TDFI) combined with a transfer integral (TI) method is proposed. The TDFI method was previously developed for describing electronic Coulomb interaction, which was applied to excitation-energy transfer (EET) [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)] and exciton-coupled circular dichroism spectra [K. J. Fujimoto, J. Chem. Phys. 133, 124101 (2010)]. In the present study, the TDFI method is extended to the exchange interaction, and hence it is combined with the TI method for applying to the EET via charge-transfer (CT) states. In this scheme, the overlap correction is also taken into account. To check the TDFI-TI accuracy, several test calculations are performed to an ethylene dimer. As a result, the TDFI-TI method gives a much improved description of the electronic coupling, compared with the previous TDFI method. Based on the successful description of the electronic coupling, the decomposition analysis is also performed with the TDFI-TI method. The present analysis clearly shows a large contribution from the Coulomb interaction in most of the cases, and a significant influence of the CT states at the small separation. In addition, the exchange interaction is found to be small in this system. The present approach is useful for analyzing and understanding the mechanism of EET.

  18. Collisional processes and transfer of mass among the planetary satellites

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Dell'Oro, A.; Paolicchi, P.; Barbieri, C.

    2001-08-01

    Several pairs of planetary satellites may have been involved, during the history of the Solar System, in mutual mass transfer processes. Such processes can be triggered by catastrophic collisions of a satellite (parent body) with a third object. As a consequence, the collision fragments are injected into independent orbits that can cross the trajectory of the another satellite (target). These swarms of secondary impacts may be of some importance influencing the properties of the target body. Even the formation of the atmosphere around some giant satellites may have been triggered by the gas released after the impacts of fragments onto the target's surface. Moreover, the different albedos and the different surface density of impact craters within the same satellite system may be connected to peculiar collisional phenomena, such as those we are dealing with. A quantitative modelling of the role of mass transfer processes obviously requires an estimate of how much material the parent bodies are able to supply, and under what circumstances the process may take place. A general analysis of the various pairs throughout the major satellite systems present in the Solar System has been performed in the present paper. Our analysis uses a statistical algorithm, computing, as a function of the initial properties of the fragments (masses and ejection velocities from their parent body), the mean intrinsic probability of impact, and then the mean lifetime of a fragment before impacting the target, as well as the distribution of the relative velocity. For an order-of-magnitude estimate of the available amount of mass, some simple analytical equations have been derived to evaluate the fraction of fragments from the parent body that can reach the target. These formulae allow a preliminary discrimination of the interesting cases. The pair Hyperion-Titan and the Uranus system have been analyzed in detail.

  19. Pattern formation and mass transfer under stationary solutal Marangoni instability.

    PubMed

    Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin

    2014-04-01

    According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated. PMID:24456800

  20. Hornblendite delineates zones of mass transfer through the lower crust

    PubMed Central

    Daczko, Nathan R.; Piazolo, Sandra; Meek, Uvana; Stuart, Catherine A.; Elliott, Victoria

    2016-01-01

    Geochemical signatures throughout the layered Earth require significant mass transfer through the lower crust, yet geological pathways are under-recognized. Elongate bodies of basic to ultrabasic rocks are ubiquitous in exposures of the lower crust. Ultrabasic hornblendite bodies hosted within granulite facies gabbroic gneiss of the Pembroke Valley, Fiordland, New Zealand, are typical occurrences usually reported as igneous cumulate hornblendite. Their igneous features contrast with the metamorphic character of their host gabbroic gneiss. Both rock types have a common parent; field relationships are consistent with modification of host gabbroic gneiss into hornblendite. This precludes any interpretation involving cumulate processes in forming the hornblendite; these bodies are imposter cumulates. Instead, replacement of the host gabbroic gneiss formed hornblendite as a result of channeled high melt flux through the lower crust. High melt/rock ratios and disequilibrium between the migrating magma (granodiorite) and its host gabbroic gneiss induced dissolution (grain-scale magmatic assimilation) of gneiss and crystallization of mainly hornblende from the migrating magma. The extent of this reaction-replacement mechanism indicates that such hornblendite bodies delineate significant melt conduits. Accordingly, many of the ubiquitous basic to ultrabasic elongate bodies of the lower crust likely map the ‘missing’ mass transfer zones. PMID:27546342

  1. Hornblendite delineates zones of mass transfer through the lower crust.

    PubMed

    Daczko, Nathan R; Piazolo, Sandra; Meek, Uvana; Stuart, Catherine A; Elliott, Victoria

    2016-01-01

    Geochemical signatures throughout the layered Earth require significant mass transfer through the lower crust, yet geological pathways are under-recognized. Elongate bodies of basic to ultrabasic rocks are ubiquitous in exposures of the lower crust. Ultrabasic hornblendite bodies hosted within granulite facies gabbroic gneiss of the Pembroke Valley, Fiordland, New Zealand, are typical occurrences usually reported as igneous cumulate hornblendite. Their igneous features contrast with the metamorphic character of their host gabbroic gneiss. Both rock types have a common parent; field relationships are consistent with modification of host gabbroic gneiss into hornblendite. This precludes any interpretation involving cumulate processes in forming the hornblendite; these bodies are imposter cumulates. Instead, replacement of the host gabbroic gneiss formed hornblendite as a result of channeled high melt flux through the lower crust. High melt/rock ratios and disequilibrium between the migrating magma (granodiorite) and its host gabbroic gneiss induced dissolution (grain-scale magmatic assimilation) of gneiss and crystallization of mainly hornblende from the migrating magma. The extent of this reaction-replacement mechanism indicates that such hornblendite bodies delineate significant melt conduits. Accordingly, many of the ubiquitous basic to ultrabasic elongate bodies of the lower crust likely map the 'missing' mass transfer zones. PMID:27546342

  2. Acoustic Streaming and Heat and Mass Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Gopinath, A.

    1996-01-01

    A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.

  3. Gas Blowing: Mass Transfer in Gas and Melt

    NASA Astrophysics Data System (ADS)

    Sortland, Øyvind Sunde; Tangstad, Merete

    2014-09-01

    Metallurgical routes for solar grade silicon production are being developed as alternatives to chemical processes for their potential to achieve cost reductions, increased production volume, and reduced environmental and safety concerns. An important challenge in the development of metallurgical routes relates to the higher impurity concentrations in the silicon product, particularly for boron and other elements that are not efficiently segregated in solidification techniques. The reactive gas refining process is studied for its potential to remove boron below the solar grade silicon target concentration in a single step by blowing steam and hydrogen gas jets onto the melt surface. Boron in a silicon melt is extracted to HBO gas in parallel to active oxidation of silicon. The literature is not unified regarding the rate determining step in this process. Relevant theories and equations for gas blowing in induction furnaces are combined and used to explain mass transfer in experiments. Mass transfer in the melt and gas is investigated by comparing resistance and induction heating of the melt, and varying gas flow rate, crucible diameter, diameter of the gas lance, and the position of the gas lance above the melt surface. The rate of boron removal is found to increase with increasing gas flow rate and crucible diameter. A relatively high fraction of the reactive gas is utilized in the process, and supply of steam in the bulk gas is the only identified rate determining step.

  4. Mass transfer and transport in a geologic environment

    SciTech Connect

    Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.; Ahn, J.; Kajiwara, S.; Kim, C.L.; Kimura, H.; Lung, H.; Williams, W.J.; Zavoshy, S.J.

    1985-04-01

    This report is in a continuing series of reports that present analytic solutions for the dissolution and hydrogeologic transport of radionuclides from geologic repositories of nuclear waste. Previous reports have dealt mainly with radionuclide transport in the far-field, away from the effects of the repository. In the present report, the emphasis is on near-field processes, the transfer and transport of radionuclides in the vicinity of the waste packages. The primary tool used in these analyses is mass transfer theory from chemical engineering. The thrust of our work is to develop methods for predicting the performance of geologic repositories. The subjects treated in the present report are: radionuclide transport from a spherical-equivalent waste form through a backfill; analysis of radionuclide transport through a backfill using a non-linear sorption isotherm; radionuclide transport from a prolate spheroid-equivalent waste form with a backfill; radionuclide transport from a spherical-equivalent waste form through a backfill, where the solubility, diffusivity and retardation coefficients are temperature dependent; a coupled near-field, far-field analysis where dissolution and migration rates are temperature dependent; transport of radionuclides from a point source in a three-dimensional flow field; and a general solution for the transport of radioactive chains in geologic media. There are several important results from the numerical evaluations. First, radioactive decay, higher sorption in the rock and the backfill steepens the gradient for mass transfer, and lead to higher dissolution rates. This is contrary to what was expected by some other workers, but is shown clearly in the analytical solutions. Second, the backfill serves to provide sorption sites so that there is a delay in the arrival of radionuclides in the rock, although this effect is not so important for the steady-state transport of long-lived radionuclides.

  5. Supporting the Transition of Sophomores, Transfers, and Seniors: Opportunities for Residence Life Professionals

    ERIC Educational Resources Information Center

    Kranzow, Jeannine; Foote, Stephanie M.; Hinkle, Sara E.

    2015-01-01

    College students transitioning to their sophomore year, those transferring to a new institution, and seniors transitioning out of higher education face various challenges and struggles. The literature on the transitions associated with these student populations indicates that they need sustained support in a few key areas that include student and…

  6. Understanding Transfer Students at the University of Delaware: Transition Experiences and Recommendations for Improving Services

    ERIC Educational Resources Information Center

    Quinci, Carolyn Eaton

    2012-01-01

    Transfer students comprise about ten percent of the student population in the College of Arts and Sciences (CAS) at the University of Delaware. This research presents findings from a mixed methods study investigating the transition experiences of transfer students in the college. Demographic data were gathered on CAS transfer students admitted to…

  7. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV. PMID:25192088

  8. A rocky planet transiting a nearby low-mass star

    NASA Astrophysics Data System (ADS)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michael; Jehin, Emmanuel; Stark, Antony; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christoph; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno; Udry, Stéphane; Wunsche, Anael

    2015-12-01

    Results from Kepler indicate that M dwarfs host, on average, at least 1.4 planets between 0.5 and 1.5 Earth radii per star. Yet, the closest small planets known to transit M dwarfs have been too distant to allow Doppler measurements of their masses or spectroscopic studies of their atmospheres. Here, we announce a new planet discovered by the MEarth-South observatory, an Earth-size planet transiting an M dwarf that is only 12 pc away. The density of the planet, determined from radial velocity observations with HARPS, is consistent with an Earth-like rock/iron composition. With an equilibrium temperature of 530K (assuming a Bond albedo of 0.3), this planet is cooler than most other rocky planets with measured densities. Although too hot to be habitable, it is cool enough that it may have retained a substantial atmosphere over its lifetime. Thanks to the star's proximity and its diminutive size of only 1/5th the radius of the Sun, this new world likely provides the first opportunity for our community to spectroscopically examine the atmosphere of a terrestrial exoplanet. We estimate that JWST could secure high signal-to-noise spectra of the planet's atmosphere, both in transmission during transit and in emission at secondary eclipse.

  9. Monodisperse droplet generation for microscale mass transfer studies

    NASA Astrophysics Data System (ADS)

    Roberts, Christine; Rao, Rekha; Grillet, Anne; Jove-Colon, Carlos; Brooks, Carlton; Nemer, Martin

    2011-11-01

    Understanding interfacial mass transport on a droplet scale is essential for modeling liquid-liquid extraction processes. A thin flow-focusing microfluidic channel is evaluated for generating monodisperse liquid droplets for microscale mass transport studies. Surface treatment of the microfluidic device allows creation of both oil in water and water in oil emulsions, facilitating a large parameter study of viscosity and flow rate ratios. The unusually thin channel height promotes a flow regime where no droplets form. Through confocal microscopy, this regime is shown to be highly influenced by the contact angle of the liquids with the channel. Drop sizes are found to scale with a modified capillary number. Liquid streamlines within the droplets are inferred by high speed imagery of microparticles dispersed in the droplet phase. Finally, species mass transfer to the droplet fluid is quantitatively measured using high speed imaging. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  10. A rocky planet transiting a nearby low-mass star

    NASA Astrophysics Data System (ADS)

    Berta-Thompson, Zachory K.; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R.; Dittmann, Jason A.; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A.; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C.; Udry, Stéphane; Wünsche, Anaël

    2015-11-01

    M-dwarf stars—hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun—are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  11. A rocky planet transiting a nearby low-mass star.

    PubMed

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere. PMID:26560298

  12. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  13. Code System to Calculate Heat and Mass Transfer In Concrete

    Energy Science and Technology Software Center (ESTSC)

    1999-05-26

    Version 00 This version is designated USINTC and was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as watermore » and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.« less

  14. Mass transfer of electron acceptor aross the capillary fringe

    NASA Astrophysics Data System (ADS)

    Liu, S.; Piepenbrink, M.; Grathwohl, P.

    2005-12-01

    Transverse dispersion has been identified as a potentially limiting parameter controlling the mixing of electron donors and electron acceptors for natural attenuation of plumes originating from continuously emitting sources, however determining reactive transverse dispersion coefficients is not a simple task. The objective of this work is to elaborate the mass transfer of electron acceptor across the capillary fringe. A two-dimensional numerical reactive transport model and a fully controlled tank experiment are set up to investigate the mass transfer across the capillary and reactive fringe, where the oxygen supply is the limiting factor. The tank (77.9 times 14 times 0.8 cm) is made from acrylic-glass and filled with glass beads (0.5-0.75mm). Sodium dithionite, an easily oxidizable compound, is used as a surrogate for contaminants and is continuously injected from the inlets of the tank and reaches a steady state flow. Air circulates on the top of the glass beads. The oxygen concentrations as well as the reactive products (sulfate) are measured at the outlets of the tank with an oxygen sensor and via IC. In addition to that, resazurine, a redox indicator, is added to visualize the redox zones. These two-dimensional experimental results show quantitatively and qualitatively how the oxygen concentrations decrease at the plume fringe. Two dimensional numerical simulations with Min3P predicted oxygen distributions are compared with the experimental results. Acknowledgements: This work was funded by Helmholtz Association and Helmholtz Research Center UFZ; Project: `Virtual Institute for isotope biogeochemistry-biologically mediated processes at geochemical gradients and interfaces in soil - aquifer systems', Contract VH-VI-155.

  15. Devices with extended area structures for mass transfer processing of fluids

    DOEpatents

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  16. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  17. Flow Structure and Mass Transfer Investigation of the Turbulized Boundary Layer with Ethanol Evaporation and Diffusion Combustion

    NASA Astrophysics Data System (ADS)

    Volchkov, E. P.; Boyarshinov, B. F.; Titkov, V. I.

    2002-07-01

    Uncertainty of evaluation of each factor (separation laminar-turbulent transition combustion and turbulization) hinders mathematical simulation of the joint effect on gas dynamic and thermal characteristics of the boundary layer. The characteristics may be most reliably determined experimentally. The work objective is the experimental study of the boundary layer structure comparison of the fields of temperature velocity and its pulsation with data on heat and mass transfer.

  18. Numerical simulations of heat and mass transfer at ablating surface in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Bocharov, A. N.; Golovin, N. N.; Petrovskiy, V. P.; Teplyakov, I. O.

    2015-11-01

    The numerical technique was developed to solve heat and mass transfer problem in 3D hypersonic flow taking into account destruction of thermal protection system. Described technique was applied for calculation of heat and mass transfer in sphere-cone shaped body. The data on temperature, heat flux and mass flux were obtained.

  19. The use of transition region characteristics to improve the numerical simulation of heat transfer in bypass transitional flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.

    1993-01-01

    A method is presented for improving the numerical prediction of bypass transition heat transfer on a flat plate in a high-disturbance environment with zero or favorable pressure gradient. The method utilizes low Reynolds number k-epsilon turbulence models in combination with the characteristic parameters of the transition region. The parameters representing the characteristics of the transition region used are the intermittency, transition length and turbulent spot properties. An analysis is made of the transition length in terms of turbulent spot variables. The nondimensional spot formation rate, required for the prediction of the transition length, is shown by the analysis to be a function of the spot spreading angle, the dimensionless spot velocity ratio and the dimensionless spot area ratio. The intermittency form of the k-epsilon equations were derived from conditionally averaged equations which have been shown to be an improvement over global-time-averaged equations for the numerical calculation of the transition region. The numerical predictions are in general good agreement with the experimental data and indicate the potential use of the method in accelerating flows. Turbulence models of the k-epsilon type are known to underpredict the transition length. The present work demonstrates how incorporating transition region characteristics improves the ability of two-equation turbulence models to simulate bypass transition for flat plates with potential application to turbine vanes and blades.

  20. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    NASA Technical Reports Server (NTRS)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  1. Pressure drop and heat transfer for spirally fluted tubes including validation of the role of transition

    SciTech Connect

    Obot, N.T.; Esen, E.B.; Snell, K.H. . Fluid Mechanics, Heat and Mass Transfer Lab.); Rabas, T.J. )

    1991-01-01

    An experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for spirally fluted tubes in laminar, transitional and turbulent flow of air. It is established that, in the laminar, transitional and turbulent regimes, the friction factor for the spirally fluted tube is generally higher than that for a smooth tube. The values for the critical Reynolds number at the onset of transition to turbulent flow are lower, while the corresponding critical friction factors are higher, than those for a smooth tube. Consistent with the expected effect of transition on heat transfer, the experimentally determined Nusselt numbers are generally higher than the smooth tube values. The results indicate that there is a definite connection between transition and the heat transfer enhancement. 10 refs., 11 figs.

  2. Hypersonic heat-transfer and transition correlations for a roughened shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Stalmach, D. D.; Idar, E. S., III; Conley, D. B.; Goodrich, W. D.

    1976-01-01

    The effect of roughness on the heat transfer distributions and the transition criteria for the windward pitch plane of the shuttle orbiter at an angle of attack of 30 deg was studied using data obtained in hypersonic wind tunnels. The heat transfer distributions and the transition locations for the roughened models were compared with the corresponding data for smooth models. The data were correlated using theoretical solutions for a nonsimilar, laminar boundary layer subject to two different flow field models for the orbiter.

  3. Heat and mass transfer in multi-porous cavity

    SciTech Connect

    Saghir, M.Z.

    1998-10-01

    The study of heat and mass transfer in porous media has a large number of applications in the areas of environmental geothermal and petroleum engineering. Problems such as the disposal of waste material and groundwater contamination are only few applications of the present work. When heat and species transfer takes place within a fluid layer, the temperature and concentration gradients create a convection mode. This phenomenon is called double-diffusive convection. In this paper, two-dimensional non-linear double diffusive convection in a multiporous cavity is considered. The Darcy equation, including Brinkman term to account for the viscous effects, is used as the momentum equation. The model consists of two rectangular cavities filled with glass beads having a diameter d{sub 1} of either 5.25 mm (Case 1) or 3.25 mm (Case 2). The smaller cavity is located at the top left corner of the larger one. The larger cavity is filled initially with hot salty fluid while the smaller one contains initially cold fresh fluid. At the initial time, the obstacle between the two cavities was released and the double diffusive phenomena were studied in details. The momentum, solutal, energy and continuity equations are solved numerically using the finite element technique. This transient problem is solved for two different Darcy numbers. For each Darcy number, the influence of the solutal Rayleigh number on double diffusive convection was studied in details. The permeability in the horizontal and vertical direction was assumed identical. A comparison of the intruding force between this case and the open flow case studied by Saghir et al. showed that it is inversely proportional to the Darcy number. Finite element modeling results indicate that salinity induces stronger convection than the thermal ones.

  4. The impact of separated flow on heat and mass transfer. Final report

    SciTech Connect

    Goldstein, R.J.

    1998-08-01

    An investigation of the effect of flow separation on heat and mass transfer has been completed. This research provided enhanced understanding of fundamental mechanisms governing important heat and mass transfer flow processes. This report summarizes the work conducted under the project. This research has provided considerable new knowledge on flow and heat transfer situations of great interest in a number of energy conversion devices, including heat exchangers, gas turbines, solar energy systems and general heat transfer systems.

  5. Numerical Simulations of the Onset and Stability of Dynamical Mass Transfer in Binaries

    NASA Astrophysics Data System (ADS)

    D'Souza, Mario C. R.; Motl, Patrick M.; Tohline, Joel E.; Frank, Juhan

    2006-05-01

    Hydrodynamical simulations of semidetached, polytropic binary stars are presented in an effort to study the onset and stability of dynamical mass transfer events. Initial, synchronously rotating equilibrium models are constructed using a self-consistent field technique and then evolved with an Eulerian hydrodynamics code in a fully self-consistent manner. We describe code improvements introduced over the past few years that permit us to follow dynamical mass transfer events through more than 30 orbits. Mass transfer evolutions are presented for two different initial configurations: a dynamically unstable binary with initial mass ratio (donor/accretor) q0=1.3 that leads to a complete merger in ~10 orbits, and a double-degenerate binary with initial mass ratio q0=0.5 that, after some initial unstable growth of mass transfer, tends to separate as the mass transfer rate levels off.

  6. Direct Geoelectrical Evidence of Mass Transfer at the Lab scale

    NASA Astrophysics Data System (ADS)

    Swanson, R. D.; Singha, K.; Day-Lewis, F. D.; Keating, K.; Binley, A.; Clifford, J.; Haggerty, R.

    2011-12-01

    At many field sites, anomalous tailing behavior-- a long, slow decrease of solute concentration in time-- is observed yet cannot be explained with the advection-dispersion model. One explanation for this commonly observed behavior is the exchange of solute between mobile and immobile domains; however, direct experimental observations of this controlling process remain elusive. Circumstantial evidence for a less-mobile phase is typically inferred from tailing behavior observed in fluid samples of the mobile phase. Electrical methods provide a measure of the total solutes in both the immobile and mobile domain and therefore have been hypothesized to provide, in combination with fluid sampling, direct experimental evidence for a less-mobile and mobile model, yet experimental evidence is needed to support this claim. Here, we conduct column solute tracer tests and measure both electrical resistivity and fluid conductivity on unconsolidated, well-sorted sand in addition to fine and coarse fractions of the porous zeolite clinoptilolite. We examine nearly co-located time-lapse standard fluid conductivity and bulk apparent resistivity measurements to identify solute exchange between multiple domains at the lab scale. Our results show extensive tailing behavior in both fluid and bulk electrical conductivity measurements in the zeolite but not in sand, providing evidence for a mobile-immobile framework. Transport parameters are estimated by minimizing the root-mean-square error between the observed and simulated fluid conductivity in COMSOL Multiphysics. These best-fit parameters support our claims of mass transfer occurring in the zeolite columns and provide the first direct electrical evidence of dual-domain mass transport at the lab scale.

  7. Micro-scale mass-transfer variations during electrodeposition

    SciTech Connect

    Sutija, D.P.

    1991-08-01

    Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.

  8. Convective heat and mass transfer during the evaporation of a liquid into a gas flow

    NASA Astrophysics Data System (ADS)

    Boiarshinov, B. F.; Volchkov, E. P.; Terekhov, V. I.

    1985-10-01

    Heat and mass transfer processes associated with liquid evaporation are analyzed for adiabatic and nonadiabatic conditions. Experimental data are then presented on heat and mass transfer during the evaporation of water and ethyl alcohol from a porous surface. It is shown that heat and mass transfer under conditions of evaporation can be described by using expressions for flow past a 'dry' wall. A diagram is presented for determining the magnitudes of additional heat sources in the case of nonadiabatic evaporation. Finally, the effect of various factors, such as temperature, flow humidity, and liquid type, on heat and mass transfer during evaporation is analyzed for laminar and turbulent flows.

  9. Ultrafast Spectroscopic Signatures of Coherent Electron-Transfer Mechanisms in a Transition Metal Complex.

    PubMed

    Guo, Zhenkun; Giokas, Paul G; Cheshire, Thomas P; Williams, Olivia F; Dirkes, David J; You, Wei; Moran, Andrew M

    2016-07-28

    The prevalence of ultrafast electron-transfer processes in light-harvesting materials has motivated a deeper understanding of coherent reaction mechanisms. Kinetic models based on the traditional (equilibrium) form of Fermi's Golden Rule are commonly employed to understand photoinduced electron-transfer dynamics. These models fail in two ways when the electron-transfer process is fast compared to solvation dynamics and vibrational dephasing. First, electron-transfer dynamics may be accelerated if the photoexcited wavepacket traverses the point of degeneracy between donor and acceptor states in the solvent coordinate. Second, traditional kinetic models fail to describe electron-transfer transitions that yield products which undergo coherent nuclear motions. We address the second point in this work. Transient absorption spectroscopy and a numerical model are used to investigate coherent back-electron-transfer mechanisms in a transition metal complex composed of titanium and catechol, [Ti(cat)3](2-). The transient absorption experiments reveal coherent wavepacket motions initiated by the back-electron-transfer process. Model calculations suggest that the vibrationally coherent product states may originate in either vibrational populations or coherences of the reactant. That is, vibrational coherence may be produced even if the reactant does not undergo coherent nuclear motions. The analysis raises a question of broader significance: can a vibrational population-to-coherence transition (i.e., a nonsecular transition) accelerate electron-transfer reactions even when the rate is slower than vibrational dephasing? PMID:27362388

  10. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    PubMed

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products. PMID:21535673

  11. Biological conversion of synthesis gas. Mass transfer/kinetic studies

    SciTech Connect

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}0 {yields} CO{sub 2} + H{sub 2}. C. thiosulfatophilum is also a H{sub 2}S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25{degree} and 30{degree}C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30{degree}, 32{degree} or 34{degree}C. The rate of conversion of COs and H{sub 2}O to CO{sub 2} and H{sub 2}S may be modeled by a first order rate expression. The rate constant at 30{degree}C was found to be 0.243 h{sup {minus}1}. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: {mu} = {sub 351} + I{sub o}/{sup 0.152}I{sub o}. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

  12. Heat and mass transfer in unsaturated porous media. Final report

    SciTech Connect

    Childs, S.W.; Malstaff, G.

    1982-02-01

    A preliminary study of heat and water transport in unsaturated porous media is reported. The project provides background information regarding the feasibility of seasonal thermal energy storage in unconfined aquifers. A parametric analysis of the factors of importance, and an annotated bibliography of research findings pertinent to unconfined aquifer thermal energy storage (ATES) are presented. This analysis shows that heat and mass transfer of water vapor assume dominant importance in unsaturated porous media at elevated temperature. Although water vapor fluxes are seldom as large as saturated medium liquid water fluxes, they are important under unsaturated conditions. The major heat transport mechanism for unsaturated porous media at temperatures from 50 to 90/sup 0/C is latent heat flux. The mechanism is nonexistent under saturated conditions but may well control design of unconfined aquifer storage systems. The parametric analysis treats detailed physical phenomena which occur in the flow systems study and demonstrates the temperature and moisture dependence of the transport coefficients of importance. The question of design of an unconfined ATES site is also addressed by considering the effects of aquifer temperature, depth to water table, porous medium flow properties, and surface boundary conditions. Recommendations are made for continuation of this project in its second phase. Both scientific and engineering goals are considered and alternatives are presented.

  13. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    PubMed

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans. PMID:25569214

  14. Improved oxygen mass transfer modeling for diffused or subsurface aeration systems

    SciTech Connect

    McWhirter, J.R.; Hutter, J.C. . Dept. of Chemical Engineering)

    1988-01-01

    The mass transfer analysis of the oxygen transfer performance of diffused air or subsurface mechanical aeration systems has progressed very little over the past twenty years. The ASCE Standard Method for determination of the oxygen mass transfer performance as applied to a diffused or subsurface aeration systems is based on a greatly over-simplified mass transfer model. Although the ASCE Standard can be used to empirically evaluate point performance conditions, it is not suitable for prediction of the performance of diffused aeration systems under changing operating or environmental conditions. A new oxygen mass transfer model has been developed which is a fundamentally more rigorous description of the actual mass transfer process in diffused aeration systems. This model can be confidently used to predict aerator performance under changing operation and environmental conditions and is easily adapted to numerical solution on a computer for routing aeration system performance evaluation as well as process design. The model is presented in this book.

  15. Close binary systems before and after mass transfer. III - Spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Vansina, F.; De Greve, J. P.

    1982-10-01

    A method is presented, for the computation of absolute dimensions from spectroscopic data on binary systems, which has been adapted for use with the 7th Catalogue of Batten et al. (1978) and takes into account several results of close binary evolution, with emphasis on the phase of slow mass transfer during a case B mass transfer. Among the unevolved systems, the mass transfer case B is found to be the most abundant type of interaction. In the set of evolving systems, a subset of 18 interacting systems was found with mass ratio near unity, the first star being the mass loser as well as the brightest.

  16. On the theory of Ostwald ripening in the presence of different mass transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.

    2016-04-01

    A theoretical description of the concluding stage of Ostwald ripening based on the Slezov theory (Slezov, 1978) and recently developed approach (Alexandrov, 2015) is formulated. The present analysis focuses on the formation and relaxation of the particle size distribution function from the intermediate stage of ripening process to its final state, which is described by the universal distribution. The boundaries of the transition layer in the vicinity of a blocking point are found. The time-dependent corrections to the growth rates of crystals and the distribution functions are determined for different mass transfer mechanisms. The obtained analytical distributions are in good agreement with experimental data. All analytical results are presented in a form directly suitable for their use in applications.

  17. Development of biobased sandwich structures for mass transit application

    NASA Astrophysics Data System (ADS)

    Munusamy, Sethu Raaj

    Efforts to increase the biobased content in sandwich composites are being investigated to reduce the dependence on synthetically produced or mined, energy-intensive materials for numerous composite applications. Vegetable oil-based polyurethane foams are gaining recognition as good substitutes for synthetic counter parts while utilizing bast fiber to replace fiberglass is also gaining credence. In this study, soy oil-based polyurethane foam was evaluated as a core in a sandwich construction with facesheets of hybridized kenaf and E-glass fibers in a vinyl ester resin matrix to replace traditionally used plywood sheeting on steel frame for mass transit bus flooring systems. As a first step towards implementation, the static performance of the biobased foam was compared to 100% synthetic foam. Secondly, biobased sandwich structures were processed and their static performance was compared to plywood. The biobased sandwich composites designed and processed were shown to hold promise towards replacing plywood for bus flooring applications by displaying an increase of 130% for flexural strength and 135% for flexural modulus plus better indentation values.

  18. STATE TRANSITIONS IN LOW-MASS X-RAY BINARIES

    SciTech Connect

    Bradley, Charles K.; Frank, Juhan

    2009-10-10

    We investigate the model of disk/coronal accretion into a black hole. We show that the inner regions of an accretion disk in X-ray binaries can transform from a cool standard disk to an advection-dominated flow through the known properties of Coulomb interaction in a two-temperature plasma, viscous heating, radiative processes, and thermal conduction. A hot, diffuse corona covering the disk is powered by accretion, but it exchanges mass with the underlying cold disk. If the accretion rate in the system is low enough, we show that the corona evaporates the disk away, leaving an advective flow to continue toward the hole. In the soft/hard transition commonly seen in X-ray binaries, we show that this advective flow can recondense back onto the underlying disk if the change in the system's accretion rate is slow enough due to thermal conduction. Unabsorbed spectra are produced to test against observations as well as prediction of the location of truncation radii of the accretion disk.

  19. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    Watrous, Matthew George; Adamic, Mary Louise; Olson, John Eric; Baeck, D. L.; Fox, R. V.; Hahn, P. A.; Jenson, D. D.; Lister, T. E.

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  20. Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation.

    PubMed

    Chen, Yiming; Hou, Deyi; Lu, Chunhui; Spain, Jim C; Luo, Jian

    2016-09-01

    Most of the models for simulating vapor intrusion accept the local equilibrium assumption for multiphase concentration distributions, that is, concentrations in solid, liquid and vapor phases are in equilibrium. For simulating vapor transport with aerobic biodegradation controlled by counter-diffusion processes, the local equilibrium assumption combined with dual-Monod kinetics and biomass decay may yield near-instantaneous behavior at steady state. The present research investigates how predicted concentration profiles and fluxes change as interphase mass transfer resistances are increased for vapor intrusion with aerobic biodegradation. Our modeling results indicate that the attenuation coefficients for cases with and without mass transfer limitations can be significantly different by orders of magnitude. Rate-limited mass transfer may lead to larger overlaps of contaminant vapor and oxygen concentrations, which cannot be simulated by instantaneous reaction models with local equilibrium mass transfer. In addition, the contaminant flux with rate-limited mass transfer is much smaller than that with local equilibrium mass transfer, indicating that local equilibrium mass transfer assumption may significantly overestimate the biodegradation rate and capacity for mitigating vapor intrusion through the unsaturated zone. Our results indicate a strong research need for field tests to examine the validity of local equilibrium mass transfer, a widely accepted assumption in modeling vapor intrusion. PMID:27486832

  1. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Authorization for use and occupancy by mass transit. 810.210 Section 810.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for...

  2. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Authorization for use and occupancy by mass transit. 810.210 Section 810.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for...

  3. 23 CFR 810.308 - Approval of urban system nonhighway public mass transit projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Approval of urban system nonhighway public mass transit projects. 810.308 Section 810.308 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System...

  4. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Authorization for use and occupancy by mass transit. 810.210 Section 810.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for...

  5. 23 CFR 810.308 - Approval of urban system nonhighway public mass transit projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Approval of urban system nonhighway public mass transit projects. 810.308 Section 810.308 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System...

  6. 23 CFR 810.308 - Approval of urban system nonhighway public mass transit projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Approval of urban system nonhighway public mass transit projects. 810.308 Section 810.308 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System...

  7. 23 CFR 810.308 - Approval of urban system nonhighway public mass transit projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Approval of urban system nonhighway public mass transit projects. 810.308 Section 810.308 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System...

  8. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Authorization for use and occupancy by mass transit. 810.210 Section 810.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for...

  9. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the

  10. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    J. E. Delmore

    2010-09-01

    Funding was received from NA-22 to investigate transitioning iodine isotopic analyses to an accelerator mass spectrometry (AMS) system. The present method uses gas-phase chemistry followed by thermal ionization mass spectrometry (TIMS). It was anticipated that the AMS approach could provide comparable data, with improved background levels and superior sample throughput. An aqueous extraction method was developed for removal of iodine species from high-volume air filters. Ethanol and sodium hydroxide, plus heating and ultrasonic treatment, were used to successfully extract iodine from loaded high-volume air filters. Portions of the same filters were also processed in the traditional method and analyzed by TIMS for comparison. Aliquot parts of the aqueous extracts were analyzed by AMS at the Swiss Federal Institute of Technology. Idaho National Laboratory (INL) personnel visited several AMS laboratories in the US, Spain, and Switzerland. Experience with AMS systems from several manufacturers was gained, and relationships were developed with key personnel at the laboratories. Three batches of samples were analyzed in Switzerland, and one in Spain. Results show that the INL extraction method successfully extracted enough iodine from high-volume air filters to allow AMS analysis. Comparison of the AMS and TIMS data is very encouraging; while the TIMS showed about forty percent more atoms of 129I, the 129/127 ratios tracked each other very well between the two methods. The time required for analysis is greatly reduced for the aqueous extraction/AMS approach. For a hypothetical batch of thirty samples, the AMS methodology is about five times faster than the traditional gas-phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than for TIMS. This results from the fundamental mechanisms of ionization in the AMS system and cleanup of molecular interferences. We showed that an aqueous extraction of high

  11. The use of transit timing to detect terrestrial-mass extrasolar planets.

    PubMed

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations. PMID:15731449

  12. Modeling of the heat transfer in bypass transitional boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  13. Impact of kinetic mass transfer on free convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  14. Mass transfer in SCW extraction molecular diffusion and mass transfer coefficients of ketones and alkenes in sub- and supercritical water

    SciTech Connect

    Goemans, M.G.E.; Gloyna, E.F.

    1996-10-01

    The potential of sub- and supercritical water as extraction solvents has been demonstrated for the (reactive) extraction of coals, used car tires, organic species from residual aqueous solutions, and class selective extraction of organic pollutants with different polarities from solids. In addition, the potential of extraction of coal with supercritical aqueous solutions has been studied. However, physical transport in water at elevated temperature and pressures- and their impact on heterogenous reactions and (reactive) extraction -are not adequately understood. This situation is largely due to the limited data that is available for diffusion in high temperature, high pressure water mixture. Only the molecular diffusion of Iodine ions and hydroquinone in near-critical subcritical water and the self diffusion of coefficient of compressed supercritical water have been reported. In this paper, we present molecular diffusion coefficients of benzophenone, acetone, naphthalene, and anthracene in water at infinite dilution. Pressures ranged from 250 to 500 bar at temperatures ranging from 50{degrees}C to 500{degrees}C resulting in water densities ranging from 1000 to 150 kg/m{sup 3}. Diffusion coefficients were determined by the Taylor-Aris dispersion technique. The effects of increased diffusion on the mass transfer coefficients for emulsions and packed beds were quantified. Molecular division coefficients were 10 to 20 times faster in supercritical water than in water at ambient conditions. Experimental results were correlated with hydrodynamic and kinetic theory. This study and results to be published elsewhere show that diffusion-limited conditions are much more likely to be encountered in supercritical water than is commonly acknowledged.

  15. Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashwani; Chandramohan, V. P.

    2016-06-01

    A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.

  16. Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.

    2010-09-01

    Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.

  17. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations.

    PubMed

    Ungerman, Andrew J; Heindel, Theodore J

    2007-01-01

    This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding. PMID:17326659

  18. Proton transfer reaction-mass spectrometry applications in medical research.

    PubMed

    Herbig, Jens; Amann, Anton

    2009-06-01

    Gathering information about a subject's physiological and pathophysiological condition from the `smell' of breath is an idea that dates back to antiquity. This intriguing concept of non-invasive diagnosis has been revitalized by `exhaled breath analysis' in recent decades. A main driving force was the development of sensitive and versatile gas-chromatographic and mass-spectrometric instruments for trace gas analysis. Ironically, only non-smelling constituents of breath, such as O(2), CO(2), H(2), and NO have so far been included in routine clinical breath analysis. The `smell' of human breath, on the other hand, arises through a combination of volatile organic compounds (VOCs) of which several hundred have been identified to date. Most of these volatiles are systemic and are released in the gas-exchange between blood and air in the alveoli. The concentration of these compounds in the alveolar breath is related to the respective concentrations in blood. Measuring VOCs in exhaled breath allows for screening of disease markers, studying the uptake and effect of medication (pharmacokinetics), or monitoring physiological processes. There is a range of requirements for instruments for the analysis of a complex matrix, such as human breath. Mass-spectrometric techniques are particularly well suited for this task since they offer the possibility of detecting a large variety of interesting compounds. A further requirement is the ability to measure accurately in the concentration range of breath VOCs, i.e. between parts-per-trillion (pptv) and parts-per-million (ppmv) range. In the mid 1990's proton transfer reaction-mass spectrometry (PTR-MS) was developed as a powerful and promising tool for the analysis of VOCs in gaseous media. Soon thereafter these instruments became commercially available to a still growing user community and have now become standard equipment in many fields including environmental research, food and flavour science, as well as life sciences. Their

  19. Phase-Transfer Activation of Transition Metal Catalysts.

    PubMed

    Tuba, Robert; Xi, Zhenxing; Bazzi, Hassan S; Gladysz, John A

    2015-11-01

    With metal-based catalysts, it is quite common that a ligand (L) must first dissociate from a catalyst precursor (L'n M-L) to activate the catalyst. The resulting coordinatively unsaturated active species (L'n M) can either back react with the ligand in a k-1 step, or combine with the substrate in a k2 step. When dissociation is not rate determining and k-1 [L] is greater than or comparable to k2 [substrate], this slows the rate of reaction. By introducing a phase label onto the ligand L and providing a suitable orthogonal liquid or solid phase, dramatic rate accelerations can be achieved. This phenomenon is termed "phase-transfer activation". In this Concept, some historical antecedents are reviewed, followed by successful applications involving fluorous/organic and aqueous/organic liquid/liquid biphasic catalysis, and liquid/solid biphasic catalysis. Variants that include a chemical trap for the phase-labeled ligands are also described. PMID:26338471

  20. Physical modeling of liquid/liquid mass transfer in gas stirred ladles

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hyo; Fruehan, R. J.

    1987-06-01

    Several of the metallurgical reactions occurring in gas stirred steel ladles are controlled by liquid phase mass transfer between the metal and slag. In order to calculate the rate of these reactions, information about the two phase mass transfer parameter is necessary. The mass transfer between two immiscible liquids, oil and water simulating slag and steel, respectively, was measured in a scale model of a ladle. The mass transferred species was thymol which has an equilibrium partition ratio between oil and water similar to that for sulfur between slag and metal. The mass transfer rate was measured as a function of gas flow rate, tuyere position and size, method of injection, oil viscosity, and oil/water volume ratio. In addition, mixing times in the presence of the oil layer and mass transfer coefficient for the dissolution of solid benzoic acid rods were measured. The results show that there are three gas flow rate regimes in which the dependence of mass transfer on gas flow rate is different. At a critical gas flow rate, the oil layer breaks into droplets which are entrained into the water, resulting in an increase in the two phase interfacial area. This critical gas flow rate was found to be a function of tuyere position, oil volume, densities of two phases, and interfacial tension. Two phase mass transfer for a lance and a tuyere was found to be the same for the same stirring energy in low energy regions regardless of lance depth. Mass transfer is faster for a center tuyere as compared to an offcenter tuyere, but mixing times are smaller for the offcenter tuyere. From the results obtained, the optimum stirring conditions for metallurgical reactions are qualitatively discussed.

  1. Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates

    SciTech Connect

    Herek L. Clack

    2006-06-01

    Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer - particularly in configurations other than fixed beds - has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likely to be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limit than in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data. 41 refs., 5 figs.

  2. MASS TRANSFER VARIATIONS IN UX MONOCEROTIS: EIGHT YEARS OF AUTOMATED PHOTOMETRIC MONITORING

    SciTech Connect

    Olson, Edward C.; Henry, Gregory W.; ETZEL, PAUL B. E-mail: henry@schwab.tsuniv.edu

    2009-11-15

    We analyze eight years (1999-2007) of automated photometric observations of the active Algol binary UX Monocerotis to search for mass transfer bursts similar to those seen in U Cephei. The largest photometric anomaly is the mean gainer luminosity difference between the stream-impact hemisphere and the opposite hemisphere. We find an updated Wilson-Devinney solution for earlier six-color observations. The UX Mon donor star fills its Roche lobe and the gainer nearly fills its rotational lobe. Instead of isolated bursts of the U Cep type, we found nearly continuous brightness fluctuations likely produced by variable mass transfer. We discuss implications for mass transfer.

  3. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    SciTech Connect

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  4. Structural Transitions and Electron Transfer in Coffinite, USiO4, at High Pressure

    SciTech Connect

    Zhang, F.; Pointeau, V; ShuLLer, L; reaMan, D; Lang, M; Liu, Z; Hu, J; Panero, W; Becker, U; Ewing, R

    2009-01-01

    The compressibility, phase stability, and vibrational properties of coffinite (USiO4) were studied by in situ X-ray diffraction and infrared (IR) measurements at high pressures. An irreversible phase transition from the zircon-type to scheelite-type structure was found to occur at 14-17 GPa. Accompanying the structural transition, partial amorphization was also evident in the XRD analysis. The predicted transition pressure calculated by density functional theory is in good agreement with the experimental results. IR spectra also suggest that water is incorporated into the coffinite structure, and a pressure-induced electron transfer (U4+ -> U5+) may also occur.

  5. Late Diagenesis and Mass Transfer in Sandstone Shale Sequences

    NASA Astrophysics Data System (ADS)

    Milliken, K. L.

    2003-12-01

    , involving only compaction and dewatering of sedimentary materials. Detrital phases that survived weathering were seen as essentially inert to subsequent reaction during burial and prior to the onset of metamorphism. Metamorphism itself was viewed as isochemical and accomplished principally through solid-state reactions (see a brief summary in Ague, 1991). Notable exceptions to these views constitute the foundations of existing theory regarding the nature of late diagenesis. "Intrastratal solution" of chemically unstable detrital minerals (e.g., Pettijohn, 1941), apparent potassium metasomatism of shales (e.g., Weaver and Beck, 1971), and massive mineralogical changes during progressive burial (e.g., Coombs et al., 1959) are observations that established the directions of modern research in late diagenesis. Advances in petrographic imaging techniques (e.g., backscattered electron- and cathodoluminescence-imaging) and integration of petrographic observations with both bulk and spatially resolved chemical analyses have greatly accelerated the evolution of concepts about late diagenesis and early metamorphism.Today, basin-scale mass transfer of some materials (e.g., helium, water, and petroleum) is unquestioned (e.g., Hunt, 1996). Other materials (e.g., titanium and the REEs) are sufficiently mobile to appear within authigenic precipitates, but are likely to be "immobile" on the scale of a hand specimen. Mobilities of the major elements that make up sandstones and shales (silicon, aluminum, calcium, sodium, potassium) remain controversial. Conflicting notions about processes in rock suites across the wide range of burial conditions and alteration show that fundamental questions remain unanswered about the nature of the volumetrically significant processes within a major segment of the rock cycle. It is very likely that something is wrong, or at least inadequate, with the present concepts and/or data pertaining to the evolution of permeability, transport mechanisms, and timing

  6. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  7. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  8. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  9. Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots

    NASA Technical Reports Server (NTRS)

    Simon, Fred; Boyle, Robert

    1998-01-01

    While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.

  10. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    NASA Astrophysics Data System (ADS)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  11. Redistributive impact of the Atlanta mass transit system: a comment

    SciTech Connect

    Talley, W.K.; French, G.L.

    1981-01-01

    Dajani, Egan, and McElroy (DEM) in this joural (pp 49-60, July 1975) attempted to determine the redistributive impact (i.e., the net incidence of benefits and costs) of the new Atlanta transit system to be operated by the Metropolitan Atlanta Rapid Transit Authority (MARTA). Based upon a sample of eight origin zones, DEM conclude that there appears to be no relationship between net benefits from MARTA and income per family but a relationship between net benefits and proximity to the transit station. The purpose of this paper is to demonstrate the DEM made several methodological errors in measuring benefits and costs of MARTA and hence their conclusions are questionable. Furthermore, the DEM benefit-cost model will be presented in a graphical framework. Because of the many factors that enter into the determination of benefits and costs or urban transit, the possibility of not considering or being inconsistent in considering a relevant factor becomes highly probable. The graphical model presented in this paper was found to be extremely useful in understanding the DEM benefit-cost model and in discovering its errors. A similar model may also be found useful by future researchers in avoiding methodological errors in the measurement of benefits and costs of urban transit.

  12. The Business School in Transition: New Opportunities in Management Development, Knowledge Transfer and Knowledge Creation

    ERIC Educational Resources Information Center

    Harrington, Denis; Kearney, Arthur

    2011-01-01

    Purpose: This paper aims to consider the extent to which business school transition has created new opportunities in management development, knowledge transfer and knowledge creation. Design/methodology/approach: The paper is a critical review of knowledge exchange in a business school context with a particular focus on the "translation or…

  13. Hydrodynamics and oxygen mass transfer in a packed bed split-cylinder airlift reactor containing dilute alcoholic solutions

    NASA Astrophysics Data System (ADS)

    Keshavarz Moraveji, Mostafa; Ebrahimi Fakhari, Mona; Mohsenzadeh, Elmira; Davarnejad, Reza

    2013-01-01

    In this article, the influences of alcohols on the hydrodynamics and oxygen mass transfer characteristics in an airlift reactor equipped with packing were investigated. The hydrodynamic parameters and mass transfer coefficient in 1 % (v/v) aqueous solutions of four aliphatic alcohols were tested. It was concluded that alcohols addition increased gas holdup and gas-liquid mass transfer coefficient. The packing installation increased mass transfer coefficient, gas holdup and liquid circulation velocity, as well.

  14. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  15. A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.

    PubMed

    Geller, Aaron M; Mathieu, Robert D

    2011-10-20

    In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass. PMID:22012393

  16. Mass transfer in countercurrent packed columns: Application to supercritical CO[sub 2] extraction of terpenes

    SciTech Connect

    Simoes, P.C.; Matos, H.A.; Carmelo, P.J.; Gomes de Azevedo, E.; Nunes da Ponte, M. . Faculdade de Ciencias e Tecnologia)

    1995-02-01

    Supercritical fluid extraction (SFE) is an alternative separation method to more conventional processes such as liquid extraction and distillation. However, up to now, few works have been devoted to the investigation of the efficiency of countercurrent packed columns under supercritical conditions from a mass transfer point of view. Mass transfer in a countercurrent column, filled with structured gauze packing, was measured for the separation of a mixture of terpenes (d-limonene/1,8-cineole) by supercritical carbon dioxide, at 313 and 318 K and pressures up to 9 MPa. The extraction efficiency was determined in terms of the overall mass transfer coefficient. Operating lines for this process had an appreciable curvature due to a high miscibility of the two contacting phases. The real slope of these lines had to be estimated. Available mass transfer models for packed columns predicted efficiencies diverging to a great extent from the experimental results.

  17. A multiscale modeling study for the convective mass transfer in a subsurface aquifer

    NASA Astrophysics Data System (ADS)

    Alam, Jahrul M.

    2015-09-01

    Quantitative and realistic computer simulations of mass transfer associated with disposal in subsurface aquifers is a challenging endeavor. This article has proposed a novel and efficient multiscale modeling framework, and has examined its potential to study the penetrative mass transfer in a plume that migrates in an aquifer. Numerical simulations indicate that the migration of the injected enhances the vorticity generation, and the dissolution of has a strong effect on the natural convection mass transfer. The vorticity decays with the increase of the porosity. The time scale of the vertical migration of a plume is strongly dependent on the rate of dissolution. Comparisons confirm the near optimal performance of the proposed multiscale model. These primary results with an idealized computational model of the migration in an aquifer brings the potential of the proposed multiscale model to the field of heat and mass transfer in the geoscience.

  18. Mathematical model of quasistationary conditions of mass transfer in an electrodialysis cell

    NASA Astrophysics Data System (ADS)

    Khanmamedov, M. N.

    2000-07-01

    The author suggests a quasistationary mathematical model of the mass-transfer conditions in an electrodialysis cell in which the main operating parameters of the electrodialysis apparatus are expressed as a function of the dimensionless diluate concentration.

  19. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  20. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  1. Fluid-dynamic and mass-transfer behavior of static mixers and regular packings

    SciTech Connect

    Cavatorta, O.N.; Boehm, U.; Chiappori de del Giorgio, A.M.

    1999-05-01

    The fluid dynamics and liquid-to-wall mass transfer for spaced and stacked regular packings were studied for forced convection and fluidized beds. The behavior of these configurations in bubble columns and under natural convection conditions is also presented. Flow parameters characterizing structured packings, presented in the literature, were used in the evaluation of results. General equations to predict pressure drop and mass transfer are discussed, as well as the relationship between energy dissipation and mass transfer. In the presence of fluidized particles, single-phase flow or natural convection conditions, the mass-transfer behavior of a packing element stacked between other packs or separated from the neighboring elements by liquid layers is almost the same, but differs in bubble columns.

  2. The mechanism of thermal-gradient mass transfer in the sodium hydroxide-nickel system

    NASA Technical Reports Server (NTRS)

    May, Charles E

    1958-01-01

    "Thermal-gradient mass transfer" was investigated in the molten sodium hydroxide-nickel system. Possible mechanisms (physical, electrochemical, and chemical) are discussed in terms of experimental and theoretical evidence. Experimental details are included in appendixes.

  3. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.

    PubMed

    Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D; Schramm, Vern L

    2016-01-12

    Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with (13)C, (15)N, and nonexchangeable (2)H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185

  4. Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts

    SciTech Connect

    S. Webb; M. Itamura

    2004-03-16

    Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt.

  5. Evaluation of vapor mass transfer in various membrane distillation configurations: an experimental study

    NASA Astrophysics Data System (ADS)

    Mannella, G. A.; La Carrubba, V.; Brucato, V.

    2012-06-01

    Vapor mass transfer phenomena in four different membrane distillation (MD) configurations were examined through a self-built laboratory scale experimental apparatus: Air Gap MD, Sweeping Gas MD, Vacuum Sweeping Gas MD and Vacuum MD. Vapor fluxes were measured and compared with those predicted by various models, showing that MD performance under usual processing conditions is severely controlled by the permeate side resistance to mass transfer.

  6. Time scheduling of transit systems with transfer considerations using genetic algorithms.

    PubMed

    Deb, K; Chakroborty, P

    1998-01-01

    Scheduling of a bus transit system must be formulated as an optimization problem, if the level of service to passengers is to be maximized within the available resources. In this paper, we present a formulation of a transit system scheduling problem with the objective of minimizing the overall waiting time of transferring and nontransferring passengers while satisfying a number of resource- and service-related constraints. It is observed that the number of variables and constraints for even a simple transit system (a single bus station with three routes) is too large to tackle using classical mixed-integer optimization techniques. The paper shows that genetic algorithms (GAs) are ideal for these problems, mainly because they (i) naturally handle binary variables, thereby taking care of transfer decision variables, which constitute the majority of the decision variables in the transit scheduling problem; and (ii) allow procedure-based declarations, thereby allowing complex algorithmic approaches (involving if then-else conditions) to be handled easily. The paper also shows how easily the same GA procedure with minimal modifications can handle a number of other more pragmatic extensions to the simple transit scheduling problem: buses with limited capacity, buses that do not arrive exactly as per scheduled times, and a multiple-station transit system having common routes among bus stations. Simulation results show the success of GAs in all these problems and suggest the application of GAs in more complex scheduling problems. PMID:10021738

  7. Simultaneous heat and mass transfer from a two-dimensional, partially liquid-covered surface

    SciTech Connect

    Tao, Y.X.; Kaviany, M. )

    1991-11-01

    Simultaneous heat and mass transfer from partially liquid-covered surfaces is examined experimentally using a surface made of cylinders with the voids filled with liquid. The steady-state evaporation rate, surface temperature of the liquid and exposed solid, and location of meniscus are measured for various ambient air velocities and temperatures. Using these, the authors examine the effect of the extent to which the liquid covers the surface on the evaporation mass transfer rate resulting from the convective heat transfer from the ambient gas to this surface. The results show strong Bond and Reynolds number effects. For small Bond and Reynolds numbers, the presence of dry (exposed solid) surface does not influence the mass transfer rate. As the Bond or Reynolds number increases, a critical liquid coverage is found below which the mass transfer begins to decrease. Heat transfer from the exposed solid to the liquid is also examined using the measured surface temperature, a conduction model, and an estimate of the liquid and solid surface areas (using a static formation for the liquid meniscus). The results show that at the liquid surface an analogy between heat and mass transfer does not exist.

  8. Drop oscillation and mass transfer in alternating electric fields

    SciTech Connect

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  9. Coupled effect of flow variability and mass transfer on contaminant transport and attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Fiori, Aldo; Dagan, Gedeon

    2016-04-01

    The driving mechanism of contaminant transport in aquifers is groundwater flow, which is controlled by boundary conditions and heterogeneity of hydraulic properties. In this work we show how hydrodynamics and mass transfer can be combined in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of contaminant residence time are illustrated assuming a log-normal hydraulic conductivity distribution and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity. The derived physically-based residence time distribution for solute transport in heterogeneous aquifers is particularly useful for studying natural attenuation of contaminants. We illustrate the relative impacts of high heterogeneity and a generalised (non-Fickian) multi-rate mass transfer on natural attenuation defined as contaminant mass loss from injection to a downstream compliance boundary.

  10. Fluid flow and mass transfer over circular strands using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Shakhawath; Chen, X. B.; Bergstrom, D. J.

    2015-10-01

    Knowledge of the fluid flow and mass transfer over circular strands is fundamental to the cell culture of tissue scaffolds in bio-reactors. This paper presents a study on the simulation of fluid flow and mass transfer over the circular strands of a tissue scaffold by using the multiple relaxation time lattice Boltzmann method for the low Reynolds number regime, with Re D = 0.01 and 0.1, respectively. The mass transfer problem approximates the transport of a scalar nutrient from the bulk fluid to the strand surface, such as is encountered in the flow through tissue scaffolds placed in bio-reactors. The circular geometry of the scaffold strand is treated and implemented by means of the interpolated bounce-back boundary condition formulation. Our simulation illustrates that the flow accelerates around the strand, resulting in the maximum shear stress at the shoulder of the strand and that diffusion mass transfer plays the dominant role in the scalar transport. The local Sherwood number varies significantly over the surface of the strand, with a peak value located on the upstream surface. Increasing the Schmidt number of the scalar and decreasing the blockage ratio results in higher mass transfer rates on the surface of the stand. Overall, the simulation results provide one with the insight into the fluid flow and mass transfer over the circular strands of a tissue scaffold in a bio-reactor, which would be impractical to obtain by experiments.

  11. Orbital Evolution of Mass-transferring Eccentric Binary Systems. II. Secular Evolution

    NASA Astrophysics Data System (ADS)

    Dosopoulou, Fani; Kalogera, Vicky

    2016-07-01

    Finite eccentricities in mass-transferring eccentric binary systems can be explained by taking into account the mass loss and mass transfer processes that often occur in these systems. These processes can be treated as perturbations of the general two-body problem. The time-evolution equations for the semimajor axis and the eccentricity derived from perturbative methods are generally phase-dependent. The osculating semimajor axis and eccentricity change over the orbital timescale and are not easy to implement in binary evolution codes like MESA. However, the secular orbital element evolution equations can be simplified by averaging over the rapidly varying true anomalies. In this paper, we derive the secular time-evolution equations for the semimajor axis and the eccentricity for various mass loss/transfer processes using either the adiabatic approximation or the assumption of delta-function mass loss/transfer at periastron. We begin with the cases of isotropic and anisotropic wind mass loss. We continue with conservative and non-conservative non-isotropic mass ejection/accretion (including Roche-Lobe-Overflow) for both point-masses and extended bodies. We conclude with the case of phase-dependent mass accretion. Comparison of the derived equations with similar work in the literature is included and an explanation of the existing discrepancies is provided.

  12. Heat transfer and fluid mechanics measurements in transitional boundary layers on convex-curved surfaces

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.

    1987-01-01

    The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.

  13. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    PubMed

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results. PMID:26262969

  14. Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements

    NASA Astrophysics Data System (ADS)

    Konovalov, D. A.

    2016-05-01

    The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.

  15. Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements

    NASA Astrophysics Data System (ADS)

    Konovalov, D. A.

    2016-06-01

    The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.

  16. Investigation of coupled heat and mass transfer in heterogeneous porous media using numerical simulations

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Frippiat, C. C.; Zyvoloski, G. A.

    2007-12-01

    A significant body of knowledge exists on separates processes of thermal and mass transport in granular and fractured subsurface formations. However, the need to simulate these processes in a fully coupled way has become necessary to deal with problems associated with long-term-storage of nuclear waste, and the development of new technologies for subsurface remediation. Another emerging area for research is associated with the development of technologies for in situ extraction of underground resources. Numerical models that couple thermal and mass transport processes will play a crucial role in understanding the fundamental processes associated with these new technologies, as well as in making predictions on how complex subsurface systems are expected to behave. It is our hypothesis that heat transport will have a significant impact on distributions of solute concentration, through temperature-dependent dissolution and precipitation, and temperature-dependent rate-limited diffusive transfer of solutes in fractured or highly heterogeneous media. A number of issues related to the validity of existing numerical tools that capture these processes, and their application to field systems through up-scaling need to be investigated. With this overall goal in mind, in this preliminary study, we explore the effect of the variability of subsurface properties on heat and mass transport using simulations conducted using an existing multiphase model. The finite-element code FEHM (Finite-Element Heat and Mass transport code) used in this study was developed at Los Alamos National Laboratory. This code allows for the coupled simulation of flow, heat and mass transport, accounting for density effects and dissolution and/or precipitation reactions. Our analysis is based on two- and three-dimensional simulations using synthetic data sets. Heterogeneous facies distributions are generated according to Markov Chain transition probability models. A distributed source of constant

  17. Heat and mass transfer in porous media phase separation at temperatures below the lambda-point of He-4

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1986-01-01

    Newtonian fluid motion, coupled to heat transfer via latent heat of phase transition, is well known from numerous studies of condensation and boiling. Considerably less knowledge is available for vapor-liquid phase separation in the absence of gravity effect on the transport phenomena. The present studies are focused on heat and mass transfer associated with vapor-liquid phase separation required for long-term storage of the cryogen liquid He II in space vessels. Though space conditions are the dominant mode of interest in advanced equipment, e.g. IR telescopes, the systems may be operated in principle during terrestrial conditions. The latter are considered in the present work. It emphasizes the linear regime including an extrapolation based on variable thermophysical properties. Data taken with a phase separation approach show departures from the linear regime prediction. They agree with a transport equation proposed for the nonlinear, turbulent regime.

  18. IR, 1H NMR, mass, XRD and TGA/DTA investigations on the ciprofloxacin/iodine charge-transfer complex

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Hawary, W. F.; Moussa, Mohamed A. A.

    2011-05-01

    The charge-transfer complex (CTC) of ciprofloxacin drug (CIP) as a donor with iodine (I 2) as a sigma acceptor has been studied spectrophotometrically in CHCl 3. At maximum absorption bands, the stoichiometry of CIP:iodine system was found to be 1:1 ratio according to molar ratio method. The essential spectroscopic data like formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID) were estimated. The spectroscopic techniques such as IR, 1H NMR, mass and UV-vis spectra and elemental analyses (CHN) as well as TG-DTG and DTA investigations were used to characterize the chelating behavior of CIP/iodine charge-transfer complex. The iodine CT interaction was associated with a presence of intermolecular hydrogen bond. The X-ray investigation was carried out to investigate the iodine doping in the synthetic CT complex.

  19. Mathematical equivalence between time-dependent single-rate and multirate mass transfer models

    NASA Astrophysics Data System (ADS)

    Fernández-Garcia, D.; Sanchez-Vila, X.

    2015-05-01

    The often observed tailing of tracer breakthrough curves is caused by a multitude of mass transfer processes taking place over multiple scales. Yet, in some cases, it is convenient to fit a transport model with a single-rate mass transfer coefficient that lumps all the non-Fickian observed behavior. Since mass transfer processes take place at all characteristic times, the single-rate mass transfer coefficient derived from measurements in the laboratory or in the field vary with time ω>(t>). The literature review and tracer experiments compiled by Haggerty et al. (2004) from a number of sites worldwide suggest that the characteristic mass transfer time, which is proportional to ω>(t>)-1, scales as a power law of the advective and experiment duration. This paper studies the mathematical equivalence between the multirate mass transfer model (MRMT) and a time-dependent single-rate mass transfer model (t-SRMT). In doing this, we provide new insights into the previously observed scale-dependence of mass transfer coefficients. The memory function, g(t), which is the most salient feature of the MRMT model, determines the influence of the past values of concentrations on its present state. We found that the t-SRMT model can also be expressed by means of a memory function φ>(t,τ>). In this case, though the memory function is nonstationary, meaning that in general it cannot be written as φ>(t-τ>). Nevertheless, the full behavior of the concentrations using a single time-dependent rate ω>(t>) is approximately analogous to that of the MRMT model provided that the equality ω>(t>)=-dln⁡g>(t>)/dt holds and the field capacity is properly chosen. This relationship suggests that when the memory function is a power law, g>(t>)˜t1-k, the equivalent mass transfer coefficient scales as ω>(t>)˜t-1, nicely fitting without calibration the estimated mass transfer coefficients compiled by Haggerty et al. (2004).

  20. Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect

    Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-20

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  1. Macro- to Nanoscale Heat and Mass Transfer: The Lagging Behavior

    NASA Astrophysics Data System (ADS)

    Ghazanfarian, Jafar; Shomali, Zahra; Abbassi, Abbas

    2015-07-01

    The classical model of the Fourier's law is known as the most common constitutive relation for thermal transport in various engineering materials. Although the Fourier's law has been widely used in a variety of engineering application areas, there are many exceptional applications in which the Fourier's law is questionable. This paper gathers together such applications. Accordingly, the paper is divided into two parts. The first part reviews the papers pertaining to the fundamental theory of the phase-lagging models and the analytical and numerical solution approaches. The second part wrap ups the various applications of the phase-lagging models including the biological materials, ultra-high-speed laser heating, the problems involving moving media, micro/nanoscale heat transfer, multi-layered materials, the theory of thermoelasticity, heat transfer in the material defects, the diffusion problems we call as the non-Fick models, and some other applications. It is predicted that the interest in the field of phase-lagging heat transport has grown incredibly in recent years because they show good agreement with the experiments across a wide range of length and time scales.

  2. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  3. Numerical Simulation of Heat and Mass Transfer in an Ejection Apparatus

    NASA Astrophysics Data System (ADS)

    Kologrivov, M. M.; Buzovskii, V. P.

    2016-01-01

    The results of numerical simulation of heat and mass transfer in an ejection apparatus during condensation of vapor-gas mixture components on cold brine droplets are presented. The local parameters of working flows were determined by solving a system of differential heat transfer equations with account for the hydrodynamic pattern. Calculations were carried out on the assumption that the liquid spray is directed horizontally. The Stefan formula has been derived with reference to a spherical coordinate system. The results of calculation of heat and mass transfer rates with and without regard for steam condensation jointly with hydrocarbon vapors are compared and analyzed. Estimation of the effect exerted by the apparatus and drip pan walls on the general process of heat and mass transfer was carried out. The results of simulation made it possible to quantitatively estimate the influence of the adopted thickness of the diffusional boundary layer on the vapor-air mixture cooling effect.

  4. Gas-liquid mass transfer in filamentous slurries in airlift bioreactors

    SciTech Connect

    Chisti, M.Y.; Moo-Young, M. )

    1988-01-01

    Biotechnology production processes are often critically dependent on oxygen transfer in gas-liquid-solid multiphase systems. Some of these biofluid slurries are composed of fibrous or filamentous, mycelial, solids suspended in a water-like medium. Examples are the broths of Aspergilli, Penicillia, Neurospora and Streptomyces, all of which are of commercial importance. This paper reports of the gas-liquid mass transfer behaviour of aqueous slurries of cellulose fibre solids (1-3 wt./vol. % solids in 0.15 kmol m/sup -3/ NaCl) which simulate the filamentous fermentation broths of interest. Fundamental investigations into the relationship between the mass transfer coefficient (k/sub L/) and bubble diameter (d/sub B/) are undertaken. The observations can be usefully employed for scale-up of bioreactors for gas-liquid mass transfer as demonstrated in the paper.

  5. Stability of coaxial jets confined in a tube with heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Mohanta, Lokanath; Cheung, Fan-Bill; Bajorek, Stephen M.

    2016-02-01

    A linear temporal stability of coaxial confined jets in a vertical tube involving heat and mass transfer at the interface is presented in this paper. A potential flow analysis that includes the effect of viscosity at the interface is performed in analyzing the stability of the system. Film boiling in a vertical tube gives rise to the flow configuration explored in this work. The effects of various non-dimensional parameters on the growth rate and the neutral curve are discussed. The heat transfer at the interface has been characterized by introducing a heat flux ratio between the conduction heat flux and the evaporation heat flux. Viscous forces and the heat and mass transfer at the interface are found to stabilize the flow both in the capillary instability region and Kelvin-Helmholtz instability region. Increasing heat and mass transfer at the interface stabilizes the flow to small as well as very large wave numbers.

  6. Rotating machinery heat and mass transfer research in the People's Republic of China

    NASA Astrophysics Data System (ADS)

    Wu, C.-H.; Ko, S.-Y.; Liu, D.; Shen, J.; Xu, J.-Z.

    A survey of research on rotating machinery heat and mass transfer in the People's Republic of China has been made. Since the later part of 1950's, considerable research and development work has been conducted in this field in China in order to improve the performance and prolong the life of rotating machinery. The emphasis of gas turbine heat transfer has been made in this survey. The water cooling of generator and the heat transfer of rotary piston engine are also included. Researches on the measuring technique of rotating machinery such as the temperature measurement, heat flux gauge, turbulence measurement, optical measurement and flow field visualization are discussed. The following topics of gas turbine heat and mass transfer are included: numerical analysis of air cooling of turbine blades, internal cooling passage heat transfer, impingment cooling, film cooling, transpiration cooling of turbine blades, cooling of blade root tenon, cooling of rotor disc, film cooling of flame tube and cooling of afterburner.

  7. Mass savings domain of plasma propulsion for LEO to GEO transfer

    SciTech Connect

    Choueiri, E.Y.; Kelly, A.J.; Jahn, R.G. )

    1993-01-20

    A parametric model is used to study the mass savings of plasma propulsion over advanced chemical propulsion for lower earth orbit (LEO) to geosynchronous orbit (GEO) transfer. Such savings are characterized by stringent requirements of massive payloads (O(10) metric tons) and high power levels (O(100) kW). Mass savings on the order of the payload mass are possible but at the expense of longer transfer times (8--20 months). Typical of the savings domain is the case of a self-field magnetoplasmadynamic (MPD) thruster running quasi-steadily, at an [ital I][sub [ital s

  8. A Convergence Study of Mass Transfer in a Simulated Double White Binary

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Tohline, J. E.; Frank, J.

    2011-01-01

    We present evolutions of a model double white dwarf binary with a low initial mass ratio (q = 0.4). We vary both the initial depth of contact (and hence the initial mass transfer rate) as well as the numerical resolution in our Eulerian hydrodynamics code. At the highest resolution of about 47 million grid cells we find that the binary has an initially growing mass transfer rate that then declines as the binary separates through the 50 orbital periods of the simulation. The lower resolution run (evolved with about 3 million cells) of the same binary also shows evidence for stable mass transfer though the mass transfer rate is significantly higher - emphasizing the importance of numerical resolution in these simulations. In this presentation we quantify the convergence of mass transfer between donor and accretor and measure the exchange of angular momentum through orbit-averaged equations. This work has been supported in part by NASA Astrophysics Theory Program grant number NNX10AC72G. The computations were performed on Teragrid and LONI facilities.

  9. Charge-transfer transitions in triarylamine mixed-valence systems: the effect of temperature

    NASA Astrophysics Data System (ADS)

    Coropceanu, V.; Lambert, C.; Nöll, G.; Brédas, J. L.

    2003-05-01

    The temperature dependence of inter-valence charger-transfer transitions has been investigated for three triarylamine-based mixed-valence systems: (bis-{4-[ N, N-di(4-methoxyphenyl)amino]-phenyl}butadiyne, 1+), (4,4 '-bis[ N, N-di(4-methoxyphenyl)amino] biphenyl, 2+), and ( N, N, N', N'-tetraphenyl-1,4-phenylenediamine, 3+). Although the band shape of 1+- 3+ changes with temperature, neither the position of the transition maximum nor the integral intensity are significantly affected by temperature. The shape of the absorption bands is analyzed in the framework of a dynamic vibronic model.

  10. Heat and mass transfer of submerged helium injection in liquid oxygen vessel

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Cho, Namkyung; Baek, Seungwhan; Jeong, Sangkwon

    2014-11-01

    The submerged helium injection process results in the heat and mass transfer between the helium bubble and the cryogenic liquid. The objective of this paper is to analyze the dynamics of the heat and mass transfer process. It is observed that during the helium injection process the dynamics of mass transfer is dominant and the transient heat transfer is negligible. The helium bubble shape and rising patterns are observed with a visualization device that helps to discern the dominant process between heat transfer and mass transfer. The clustering patterns such as coalescence of helium bubbles are observed with the visualization device. The visualization results indicate that, it is very difficult to determine the representative size of bubbles due to the irregular shape of the helium bubbles. The shape and size of the helium bubbles are important parameters for evaluating the overall mass transfer coefficient (kGA) which is the essential parameter for calculating the evaporation rate of the bulk liquid into the helium bubbles. In this paper, the simplified lumped model is considered to fairly approximate the evaporation rate of the cryogenic liquid into the bubbles and the cooling rate of helium injection. The empirical correlation for the average concentration (C‾A) of evaporated cryogenic liquid into the helium bubbles is presented and the overall mass transfer coefficients (kGA) are calculated as the result of the lumped model. The proposed model and empirical correlations are compared with the experimental results, and the comparison result shows good agreement with differences that are less than ±0.4 K.