Science.gov

Sample records for masses trilinear couplings

  1. Trilinear gauge couplings at DELPHI

    SciTech Connect

    McCubbin, Martin

    1997-06-15

    Preliminary measurements of trilinear gauge couplings are presented using data taken by DELPHI at 161 GeV and 172 GeV. Values for the couplings WWV (V=Z,{gamma}) are determined from a study of the reaction e{sup +}e{sup -}{yields}W{sup +}W{sup -} using differential distributions from the WW final state in which one W decays hadronically and the other leptonically, and total cross-section data from all WW final states. Limits are also derived on neutral ZV{gamma} couplings from an analysis of the reaction e{sup +}e{sup -}{yields}{gamma}+invisible particles.

  2. Trilinear gauge boson couplings in the MSSM

    NASA Astrophysics Data System (ADS)

    Argyres, E. N.; Lahanas, A. B.; Papadopoulos, C. G.; Spanos, V. C.

    1996-02-01

    We study the C and P even WWγ and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies s  q 2 ⩽ 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the neutralinos and charginos are sensitive to the input value for the soft gaugino mass M {1}/{2}, being more pronounced for values M {1}/{2} < 100 GeV. In this case and in the unphysical region, 0 < s < 2M W, their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2M W < s < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall-off behaviour, in accord with unitarity requirements, getting smaller, in most cases, by almost an order of magnitude already at energies s ≈ 0.5 TeV.

  3. Measurements of trilinear gauge boson couplings

    SciTech Connect

    Abbott, B.

    1997-10-01

    Direct measurements of the trilinear gauge boson couplings by the D0 collaboration at Fermilab are reported. Limits on the anomalous couplings were obtained at a 95% CL from four diboson production processes: W{gamma} production with the W boson decaying to e{nu} or {mu}{nu}, WW production with both of the W bosons decaying to e{nu} or {mu}{nu}, WW/WZ production with one W boson decaying to e{nu} and the other W or Z boson decaying to two jets, and Z{gamma} production with the Z boson decaying to ee, {mu}{mu}, or {nu}{nu}. Limits were also obtained from a combined fit to W{gamma}, WW {yields} dileptons and WW/WZ {yields} e{nu}jj data samples.

  4. Trilinear gauge boson couplings in the gauge—Higgs unification

    NASA Astrophysics Data System (ADS)

    Adachi, Yuki; Maru, Nobuhito

    2016-07-01

    We examine trilinear gauge boson couplings (TGCs) in the context of the SU(3)_W⊗ U(1)' gauge-Higgs unification scenario. The TGCs play important roles in probes of the physics beyond the standard model, since they are highly restricted by the experiments. We discuss the mass spectrum of the neutral gauge boson with brane-localized mass terms carefully and find that the TGCs and ρ parameter may deviate from standard model predictions. Finally, we put a constraint on these observables and discuss the possible parameter space.

  5. Trilinear neutral gauge boson couplings in effective theories

    NASA Astrophysics Data System (ADS)

    Larios, F.; Pérez, M. A.; Tavares-Velasco, G.; Toscano, J. J.

    2001-06-01

    We list all the lowest dimension effective operators inducing off-shell trilinear neutral gauge boson couplings ZZγ, Zγγ, and ZZZ within the effective Lagrangian approach, both in the linear and nonlinear realizations of SU(2)L × U(1)Y gauge symmetry. In the linear scenario we find that these couplings can be generated only by dimension-8 operators necessarily including the Higgs boson field, whereas in the nonlinear case they are induced by dimension-6 operators. We consider the impact of these couplings on some precision measurements such as the magnetic and electric dipole moments of fermions, as well as the Z boson rare decay Z-->νν¯γ. If the underlying new physics is of a decoupling nature, it is not expected that trilinear neutral gauge boson couplings may affect considerably any of these observables. On the contrary, it is just in the nonlinear scenario where these couplings have the more promising prospects of being perceptible through high precision experiments.

  6. The order O({α}_t{α}_s) corrections to the trilinear Higgs self-couplings in the complex NMSSM

    NASA Astrophysics Data System (ADS)

    Mühlleitner, Margarete; Nhung, Dao Thi; Ziesche, Hanna

    2015-12-01

    A consistent interpretation of the Higgs data requires the same precision in the Higgs boson masses and in the trilinear Higgs self-couplings, which are related through their common origin from the Higgs potential. In this work we provide the two-loop corrections at O({α}_t{α}_s) in the approximation of vanishing external momenta to the trilinear Higgs self-couplings in the CP-violating Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM). In the top/stop sector two different renormalization schemes have been implemented, the OS and the overline{DR} scheme. The two-loop corrections to the self-couplings are of the order of 10% in the investigated scenarios. The theoretical error, estimated both from the variation of the renormalization scale and from the change of the top/stop sector renormalization scheme, has been shown to be reduced due to the inclusion of the two-loop corrections.

  7. CP Violation in Trilinear Neutral Gauge Boson Couplings Via the Anomalous tcZ Coupling

    NASA Astrophysics Data System (ADS)

    Moyotl, A.; Tavares-Velasco, G.

    2008-07-01

    Trilinear Neutral Gauge Boson Couplings (TNGBCs), namely ZZZ, ZZγ, and Zγγ may be highly sensitive to any new physics effects as their amplitude is extremely suppressed in any renormalizable theory such as the standard model (SM), where these class of couplings arise up to the one-loop level. Even more, in the SM, CP-odd TNGBCs are more suppressed than CP-even ones as the former are absent at the one loop level. This opens up the window to examine CP-violating effects on TNGBCs induced by new sources of CP-violation. Along these lines, we analyze the possible CP-violation on TNGBCS induced by the most general renormalizable tcZ coupling.

  8. The measurement of tri-linear gauge boson couplings at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Couture, Gilles; Gintner, Mikuláš; Godfrey, Stephen

    1995-11-01

    We describe a detailed study of the process e+e-→lvlqq¯ and the measurement of tri-linear gauge boson couplings (TGV's) at LEP200 and at a 500 GeV and 1 TeV NLC. We included all tree level Feynman diagrams contributing to the four-fermion final states including gauge boson widths and non-resonance contributions. We employed a maximum likelihood analysis of a five dimensional differential cross section of angular distributions. This approach appears to offer an optimal strategy for measurement of TGV's. LEP200 will improve existing measurements of TGV's but not enough to see loop contributions of new physics. Measurements at the NLC will be roughly 2 orders of magnitude more precise which would probe the effects of new physics at the loop level.

  9. Trilinearity deviation ratio: a new metric for chemometric analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data.

    PubMed

    Pinkerton, David K; Parsons, Brendon A; Anderson, Todd J; Synovec, Robert E

    2015-04-29

    Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) is a well-established instrumental platform for complex samples. However, chemometric data analysis is often required to fully extract useful information from the data. We demonstrate that retention time shifting from one modulation to the next, Δ(2)tR, is not sufficient alone to quantitatively describe the trilinearity of a single GC×GC-TOFMS run for the purpose of predicting the performance of the chemometric method parallel factor analysis (PARAFAC). We hypothesize that analyte peak width on second dimension separations, (2)Wb, also impacts trilinearity, along with Δ(2)tR. The term trilinearity deviation ratio, TDR, which is Δ(2)tR normalized by (2)Wb, is introduced as a quantitative metric to assess accuracy for PARAFAC of a GC×GC-TOFMS data cube. We explore how modulation ratio, MR, modulation period, PM, temperature programming rate, Tramp, sampling phase (in-phase and out-of-phase), and signal-to-noise ratio, S/N, all play a role in PARAFAC performance in the context of TDR. Use of a PM in the 1-2 s range provides an optimized peak capacity for the first dimension separation (500-600) for a 30 min run, with an adequate peak capacity for the second dimension separation (12-15), concurrent with an optimized two-dimensional peak capacity (6000-7500), combined with sufficiently low TDR values (0-0.05) to facilitate low quantitative errors with PARAFAC (0-0.5%). In contrast, use of a PM in the 5s or greater range provides a higher peak capacity on the second dimension (30-35), concurrent with a lower peak capacity on the first dimension (100-150) for a 30 min run, and a slightly reduced two-dimensional peak capacity (3000-4500), and furthermore, the data are not sufficiently trilinear for the more retained second dimension peaks in order to directly use PARAFAC with confidence. PMID:25847163

  10. Measuring the trilinear neutral Higgs boson couplings in the minimal supersymmetric standard model at e+e‑ colliders in the light of the discovery of a Higgs boson

    NASA Astrophysics Data System (ADS)

    Khosa, Charanjit K.; Pandita, P. N.

    2016-06-01

    We consider the measurement of the trilinear couplings of the neutral Higgs bosons in the minimal supersymmetric standard model (MSSM) at a high energy e+e‑ linear collider in the light of the discovery of a Higgs boson at the CERN Large Hadron Collider (LHC). We identify the state observed at the LHC with the lightest Higgs boson (h0) of the MSSM, and impose the constraints following from this identification, as well as other experimental constraints on the MSSM parameter space. In order to measure trilinear neutral Higgs couplings, we consider different processes where the heavier Higgs boson (H0) of the MSSM is produced in electron-positron collisions, which subsequently decays into a pair of lighter Higgs boson. We identify the regions of the MSSM parameter space where it may be possible to measure the trilinear couplings of the Higgs boson at a future electron-positron collider. A measurement of the trilinear Higgs couplings is a crucial step in the construction of the Higgs potential, and hence in establishing the phenomena of spontaneous symmetry breaking in gauge theories.

  11. WW production cross section measurement and limits on anomalous trilinear gauge couplings at sqrt(s) = 1.96-TeV

    SciTech Connect

    Cooke, Michael P.; /Rice U.

    2008-04-01

    The cross section for WW production is measured and limits on anomalous WW{gamma} and WWZ trilinear gauge couplings are set using WW {yields} ee/e{mu}/{mu}{mu} events collected by the Run II D0 detector at the Fermilab Tevatron Collider corresponding to 1 fb{sup -1} of integrated luminosity at {radical}s = 1.96 TeV. Across the three final states, 108 candidate events are observed with 40.8 {+-} 3.8 total background expected, consistent with {sigma}(p{bar p} {yields} WW) = 11.6 {+-} 1.8(stat) {+-} 0.7(syst) {+-} 0.7(lumi) pb. Using a set of SU(2){sub L} {direct_product} U(1){sub Y} conserving constraints, the one-dimensional 95% C.L. limits on trilinear gauge couplings are -0.63 < {Delta}{kappa}{sub {gamma}} < 0.99, -0.15 < {lambda}{sub {gamma}} < 0.19, and -0.14 < {Delta}g{sub 1}{sup Z} < 0.34.

  12. [Simultaneous resolution and determination of tyrosine, tryptophan and phenylalanine by alternating penalty trilinear decomposition algorithm coupled with 3D emission-excitation matrix fluorometry].

    PubMed

    Xiao, Jin; Ren, Feng-lian; Song, Ge; Liao, Lü; Yu, Wen-feng; Zeng, Tao

    2007-10-01

    A new method using alternating penalty trilinear decomposition algorithm coupled with excitation-emission matrix fluorometry has been developed for simultaneous resolution and determination of tyrosine, phenylalanine and tryptophan. Their correlation coefficients were 0.9987, 0.9995 and 0.9993 respectively. The contents of tyrosine, phenylalanine and tryptophan in Hibiscus syriacus L. leaves were also be determined by this method after being extracted by ultrasonic. The coefficients of variation and the recoveries of the three amino acids were 0.84%, 0.36%, 1.59% and 101.0%-92.7%, 106.5%-93.0%, 103.0%-95.0% respectively. All these show that this is a simple, fast and cridible method. PMID:18306802

  13. Limits on Anomalous Trilinear Gauge Couplings in $Z\\gamma$ Events from $p\\bar{p}$ Collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-03-01

    Using Z{gamma} candidate events collected by the CDF detector at the Tevatron Collider, we search for potential anomalous (non-standard-model) couplings between the Z boson and the photon. At the hard scatter energies typical of the Tevatron, standard model Z{gamma} couplings are too weak to be detected by current experiments; hence any evidence of couplings indicates new physics. Measurements are performed using data corresponding to an integrated luminosity of 4.9 fb{sup -1} in the Z {yields} {nu}{bar {nu}} decay channel and 5.1 fb{sup -1} in the Z {yields} l{sup +}l{sup -} (l = {mu}, e) decay channels. The combination of these measurements provides the most stringent limits to date on Z{gamma} trilinear gauge couplings. Using an energy scale of {Lambda} = 1.5 TeV to allow for a direct comparison with previous measurements, we find limits on the CP-conserving parameters that describe Z{gamma} couplings to be |h{sub 3}{sup {gamma},Z}| < 0.017 and |h{sub 4}{sup {gamma},Z}| < 0.0006. These results are consistent with standard model predictions.

  14. Measurement of the Zγ → ν ν ‾ γ production cross section in pp collisions at √{ s} = 8 TeV and limits on anomalous ZZγ and Zγγ trilinear gauge boson couplings

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Neveu, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.

    2016-09-01

    An inclusive measurement of the Zγ → ν ν ‾ γ production cross section in pp collisions at √{ s} = 8TeV is presented, using data corresponding to an integrated luminosity of 19.6 fb-1 collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145GeV and absolute pseudorapidity in the range | η | < 1.44. The measured Zγ → ν ν ‾ γ production cross section, 52.7 ± 2.1 (stat) ± 6.4 (syst) ± 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0-2.2+2.4 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous ZZγ and Zγγ trilinear gauge boson couplings.

  15. Metastability bounds on flavor-violating trilinear soft terms in the MSSM

    SciTech Connect

    Park, Jae-hyeon

    2011-03-01

    The vacuum stability bounds on flavor-violating trilinear soft terms are revisited from the viewpoint that one should not ban a standard-model-like false vacuum as long as it is long-lived on a cosmological time scale. The vacuum transition rate is evaluated numerically by searching for the bounce configuration. Like stability, a metastability bound does not decouple even if sfermion masses grow. Apart from being more generous than stability, the new bounds are largely independent of Yukawa couplings except for the stop trilinears. With vacuum longevity imposed on otherwise arbitrary LR insertions, it is found that a super flavor factory has the potential to probe sparticle masses up to a few TeV through B and {tau} physics whereas the MEG experiment might cover a far wider range. In the stop sector, metastability is more restrictive than any existing experimental constraint such as from electroweak precision data. Also discussed are dependency on other parameters and reliability under radiative corrections.

  16. An Excel macro for generating trilinear plots.

    PubMed

    Shikaze, Steven G; Crowe, Allan S

    2007-01-01

    This computer note describes a method for creating trilinear plots in Microsoft Excel. Macros have been created in MS Excel's internal language: Visual Basic for Applications (VBA). A simple form has been set up to allow the user to input data from an Excel worksheet. The VBA macro is used to convert the triangular data (which consist of three columns of percentage data) into X-Y data. The macro then generates the axes, labels, and grid for the trilinear plot. The X-Y data are plotted as scatter data in Excel. By providing this macro in Excel, users can create trilinear plots in a quick, inexpensive manner. PMID:17257347

  17. Trilinear hamiltonian with trapped ions and its applications

    NASA Astrophysics Data System (ADS)

    Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry

    2016-05-01

    The model of three harmonic oscillators coupled by the trilinear Hamiltonian of the form a† bc + ab†c† can describe wide range of physical processes. We experimentally realize such interaction between three modes of motion in the system of 3 trapped Yb ions. We discuss several application of this coupling, including implementation of the quantum absorption refrigerator, simulation of the interaction between light and atoms described by a Tavis-Cummings model, simulation of the non-degenerate parametric down conversion process in the fully quantum regime and studies of a simple model of Hawking radiation.

  18. Solving signal instability to maintain the second-order advantage in the resolution and determination of multi-analytes in complex systems by modeling liquid chromatography-mass spectrometry data using alternating trilinear decomposition method assisted with piecewise direct standardization.

    PubMed

    Gu, Hui-Wen; Wu, Hai-Long; Yin, Xiao-Li; Li, Shan-Shan; Liu, Ya-Juan; Xia, Hui; Xie, Li-Xia; Yu, Ru-Qin; Yang, Peng-Yuan; Lu, Hao-Jie

    2015-08-14

    The application of calibration transfer methods has been successful in combination with near-infrared spectroscopy or other tools for prediction of chemical composition. One of the developed methods that can provide accurate performances is the piecewise direct standardization (PDS) method, which in this paper is firstly applied to transfer from one day to another the second-order calibration model based on alternating trilinear decomposition (ATLD) method built for the interference-free resolution and determination of multi-analytes in complex systems by liquid chromatography-mass spectrometry (LC-MS) in full scan mode. This is an example of LC-MS analysis in which interferences have been found, making necessary the use of second-order calibration because of its capacity for modeling this phenomenon, which implies analytes of interest can be resolved and quantified even in the presence of overlapped peaks and unknown interferences. Once the second-order calibration model based on ATLD method was built, the calibration transfer was conducted to compensate for the signal instability of LC-MS instrument over time. This allows one to reduce the volume of the heavy works for complete recalibration which is necessary for later accurate determinations. The root-mean-square error of prediction (RMSEP) and average recovery were used to evaluate the performances of the proposed strategy. Results showed that the number of calibration samples used on the real LC-MS data was reduced by using the PDS method from 11 to 3 while producing comparable RMSEP values and recovery values that were statistically the same (F-test, 95% confidence level) to those obtained with 11 calibration samples. This methodology is in accordance with the highly recommended green analytical chemistry principles, since it can reduce the experimental efforts and cost with regard to the use of a new calibration model built in modified conditions. PMID:26141270

  19. Laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Durrant, S.F.

    1996-07-01

    Laser ablation for solid sample introduction to inductively coupled plasma mass spectrometry for bulk and spatially-resolved elemental analysis is briefly reviewed. {copyright} {ital 1996 American Institute of Physics.}

  20. Environmental dependence of masses and coupling constants

    SciTech Connect

    Olive, Keith A.; Pospelov, Maxim

    2008-02-15

    We construct a class of scalar field models coupled to matter that lead to the dependence of masses and coupling constants on the ambient matter density. Such models predict a deviation of couplings measured on the Earth from values determined in low-density astrophysical environments, but do not necessarily require the evolution of coupling constants with the redshift in the recent cosmological past. Additional laboratory and astrophysical tests of {delta}{alpha} and {delta}(m{sub p}/m{sub e}) as functions of the ambient matter density are warranted.

  1. Four mass coupled oscillator guitar model.

    PubMed

    Popp, John E

    2012-01-01

    Coupled oscillator models have been used for the low frequency response (50 to 250 Hz) of a guitar. These 2 and 3 mass models correctly predict measured resonance frequency relationships under various laboratory boundary conditions, but did not always represent the true state of a guitar in the players' hands. The model presented has improved these models in three ways, (1) a fourth oscillator includes the guitar body, (2) plate stiffnesses and other fundamental parameters were measured directly and effective areas and masses used to calculate the responses, including resonances and phases, directly, and (3) one of the three resultant resonances varies with neck and side mass and can also be modeled as a bar mode of the neck and body. The calculated and measured resonances and phases agree reasonably well. PMID:22280705

  2. Measurement of the W Gamma --> mu nu gamma Cross-Section, Limits on Anomalous Trilinear Vector Boson Couplings, and the Radiation Amplitude Zero in p anti-p Collisions at s**(1/2) = 1.96 TeV

    SciTech Connect

    Askew, Andrew Warren

    2004-11-01

    This thesis details the measurement of the p{bar p} {yields} W{gamma} + X {yields} {mu}{nu}{gamma} + X cross section at {radical}s = 1.96 TeV using the D0 detector at Fermilab, in 134.5 pb{sup -1} of integrated luminosity. From the photon E{sub T} spectrum limits on anomalous couplings of the photon to the W are obtained. At 95% confidence level, limits of -1.05 < {Delta}{kappa} < 1.04 for {lambda} = 0 and -0.28 < {lambda} < 0.27 for {Delta}{kappa} = 0 are obtained on the anomalous coupling parameters. The charge signed rapidity difference from the data is displayed, and its significance discussed.

  3. Spectroscopy of masses and couplings during inflation

    SciTech Connect

    Emami, Razieh

    2014-04-01

    In this work, we extend the idea of Quasi Single Field inflation [1] to the case of multiple isocurvaton fields with masses of order of Hubble, which are coupled kinetically to the inflaton field and have some interactions among themselves. We consider the effects of these massive modes in both the size and the shape of the bispectrum. We show that the shape of the bispectrum in the squeezed limit is dominated by the lightest field and is the same as in Quasi Single Field inflation. This is a generic feature of multiple isocurvaton fields and is independent of the details of the interactions among the massive fields. When the isocurvaton fields have similar masses, we can potentially distinguish two different shapes in the squeezed limit so that the shape of the bispectrum can act as a particle detector. However, in the presence of hierarchy among the massive fields, the dominant effect is due to the lightest field.

  4. Higgs self-coupling in γγ collisions

    NASA Astrophysics Data System (ADS)

    Belusevic, R.; Jikia, G.

    2004-10-01

    To establish the Higgs mechanism experimentally, one has to determine the Higgs self-interaction potential responsible for the electroweak symmetry breaking. This requires a measurement of the trilinear and quadrilinear self-couplings of the Higgs particle, as predicted by the standard model. We propose that the trilinear Higgs self-coupling be measured in the process γγ→HH just above the kinematic threshold of 2MH, where MH is the Higgs mass. Our calculation shows that the statistical sensitivity of the cross section σγγ→HH to the Higgs self-coupling is maximal near the 2MH threshold for MH between 115 and 150GeV, and is larger than the statistical sensitivities of σe+e-→ZHH and σe+e-→νν¯HH to this coupling for 2Ee≤700 GeV.

  5. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Hutchinson, Robert W.; McLachlin, Katherine M.; Riquelme, Paloma; Haarer, Jan; Broichhausen, Christiane; Ritter, Uwe; Geissler, Edward K.; Hutchinson, James A.

    2015-01-01

    ABSTRACT New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users. PMID:27500232

  6. Probing trilinear gauge boson interactions via single electroweak gauge boson production at the CERN LHC

    SciTech Connect

    Eboli, O.J.P.; Gonzalez-Garcia, M.C.

    2004-10-01

    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous trilinear vector-boson interactions W{sup +}W{sup -}{gamma} and W{sup +}W{sup -}Z through the single production of electroweak gauge bosons via the weak boson fusion processes qq{yields}qqW({yields}l{sup {+-}}{nu}) and qq{yields}qqZ({yields}l{sup +}l{sup -}) with l=e or {mu}. After a careful study of the standard model backgrounds, we show that the single production of electroweak bosons at the LHC can provide stringent tests on deviations of these vertices from the standard model prediction. In particular, we show that single gauge-boson production exhibits a sensitivity to the couplings {delta}{kappa}{sub Z,{gamma}} similar to that attainable from the analysis of electroweak boson pair production.

  7. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    SciTech Connect

    He, Yong

    2015-03-23

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is an approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.

  8. Self-excited coupled-microcantilevers for mass sensing

    NASA Astrophysics Data System (ADS)

    Endo, Daichi; Yabuno, Hiroshi; Higashino, Keiichi; Yamamoto, Yasuyuki; Matsumoto, Sohei

    2015-06-01

    This paper reports ultrasensitive mass detection based on the relative change in the amplitude ratio of the first mode oscillation using self-excited coupled microcantilevers. The method proposed and demonstrated using the macrocantilevers in the previous study can measure eigenstate shifts caused by objects with high accuracy without being affected by the viscous damping effect of measurement environments. In this study, moving towards the use of this method for small mass measurements, we established the self-excited coupled microcantilevers and we have achieved in measurements of very small mass (about 1 ng) with 1% order of error.

  9. Ultrasensitive mass sensing using mode localization in coupled microcantilevers

    SciTech Connect

    Spletzer, Matthew; Raman, Arvind; Wu, Alexander Q.; Xu Xianfan; Reifenberger, Ron

    2006-06-19

    We use Anderson or vibration localization in coupled microcantilevers as an extremely sensitive method to detect the added mass of a target analyte. We focus on the resonance frequencies and eigenstates of two nearly identical coupled gold-foil microcantilevers. Theoretical and experimental results indicate that the relative changes in the eigenstates due to the added mass can be orders of magnitude greater than the relative changes in resonance frequencies. Moreover this sensing paradigm possesses intrinsic common mode rejection characteristics thus providing an alternate way to achieve ultrasensitive mass detection under ambient conditions.

  10. Higgs self-coupling measurements at a 100 TeV hadron collider

    SciTech Connect

    Barr, Alan J.; Dolan, Matthew J.; Englert, Christoph; Ferreira de Lima, Enoque Danilo; Spannowsky, Michael

    2015-02-03

    An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. We focus on the bb¯γγ final state, including possible enhancements in sensitivity by exploiting dihiggs recoils against a hard jet. In conclusion, we find that it should be possible to measure the trilinear self-coupling with 40% accuracy given 3/ab and 12% with 30/ab of data.

  11. Mass-imbalanced Fermi gases with spin-orbit coupling

    SciTech Connect

    Iskin, M.; Subasi, A. L.

    2011-10-15

    We use the mean-field theory to analyze the ground-state phase diagrams of spin-orbit-coupled mass-imbalanced Fermi gases throughout the BCS-BEC evolution, including both the population-balanced and -imbalanced systems. Our calculations show that the competition between the mass and population imbalance and the Rashba-type spin-orbit coupling gives rise to very rich phase diagrams, involving normal, superfluid, and phase-separated regions. In addition, we find quantum phase transitions between the topologically trivial gapped superfluid and the nontrivial gapless superfluid phases, opening the way for the experimental observation of exotic phenomena with cold atom systems.

  12. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  13. Ion deposition by inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, K.; Houk, R.S.

    1996-03-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of {sup 165}Ho{sup +} at 5{times}10{sup 12} ions s{sup {minus}1}. The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. {copyright} {ital 1996 American Vacuum Society}

  14. Large mass hierarchies from strongly-coupled dynamics

    NASA Astrophysics Data System (ADS)

    Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio

    2016-06-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

  15. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  16. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  17. High-frequency search for mass-coupled mesoscopic forces

    NASA Astrophysics Data System (ADS)

    Yan, Haiyang; Otto, Hans; Weisman, Evan; Khatiwada, Rakshya; Long, Josh

    2014-03-01

    The possible existence of unobserved interactions of nature with ranges of mesoscopic scale (microns to millimeters) and very weak couplings to matter has attracted a great deal of scientific attention. We report on an experimental search for exotic mass-coupled in this range. Our technique uses a planar, double-torsional tungsten oscillator as a test mass, a similar oscillator as a source mass, and a stiff conducting shield in between them to suppress backgrounds. This method affords operation at the limit of instrumental thermal noise, which we have we have recently demonstrated with a measurement of the noise kinetic energy of a detector prototype in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonant frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The apparatus is calibrated by means of a known electrostatic force and input from a finite-element model of the selected mode. The measured kinetic energy is in agreement with the expected value of 1/2 kT.

  18. Inductively Coupled Plasma Zoom-Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-03-01

    A zoom-time-of-flight mass spectrometer has been coupled to an inductively coupled plasma (ICP) ionization source. Zoom-time-of-flight mass spectrometry (zoom-TOFMS) combines two complementary types of velocity-based mass separation. Specifically, zoom-TOFMS alternates between conventional, constant-energy acceleration (CEA) TOFMS and energy-focused, constant-momentum acceleration (CMA) (zoom) TOFMS. The CMA mode provides a mass-resolution enhancement of 1.5-1.7× over CEA-TOFMS in the current, 35-cm ICP-zoom-TOFMS instrument geometry. The maximum resolving power (full-width at half-maximum) for the ICP-zoom-TOFMS instrument is 1200 for CEA-TOFMS and 1900 for CMA-TOFMS. The CMA mode yields detection limits of between 0.02 and 0.8 ppt, depending upon the repetition rate and integration time—compared with single ppt detection limits for CEA-TOFMS. Isotope-ratio precision is shot-noise limited at approximately 0.2% relative-standard deviation (RSD) for both CEA- and CMA-TOFMS at a 10 kHz repetition rate and an integration time of 3-5 min. When the repetition rate is increased to 43.5 kHz for CMA, the shot-noise limited, zoom-mode isotope-ratio precision is improved to 0.09% RSD for the same integration time.

  19. Mass eigenstates in bimetric theory with matter coupling

    SciTech Connect

    Schmidt-May, Angnis

    2015-01-01

    In this paper we study the ghost-free bimetric action extended by a recently proposed coupling to matter through a composite metric. The equations of motion for this theory are derived using a method which avoids varying the square-root matrix that appears in the matter coupling. We make an ansatz for which the metrics are proportional to each other and find that it can solve the equations provided that one parameter in the action is fixed. In this case, the proportional metrics as well as the effective metric that couples to matter solve Einstein's equations of general relativity including a matter source. Around these backgrounds we derive the quadratic action for perturbations and diagonalize it into generalized mass eigenstates. It turns out that matter only interacts with the massless spin-2 mode whose equation of motion has exactly the form of the linearized Einstein equations, while the field with Fierz-Pauli mass term is completely decoupled. Hence, bimetric theory, with one parameter fixed such that proportional solutions exist, is degenerate with general relativity up to linear order around these backgrounds.

  20. Running coupling and fermion mass in strong coupling QED3+1

    NASA Astrophysics Data System (ADS)

    Sauli, Vladimír

    2004-06-01

    A simple toy model is used in order to exhibit the technique of extracting the non-perturbative information about Green's functions in Minkowski space. The effective charge and the dynamical electron mass are calculated in strong coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron and photon propagators. The minimal Ball-Chiu vertex was used for simplicity and we impose the Landau gauge fixing on QED action. The solutions obtained separately in Euclidean and Minkowski space were compared. The latter one was extracted with the help of spectral technique.

  1. A neural mass model of phase-amplitude coupling.

    PubMed

    Chehelcheraghi, Mojtaba; Nakatani, Chie; Steur, Erik; van Leeuwen, Cees

    2016-06-01

    Brain activity shows phase-amplitude coupling between its slow and fast oscillatory components. We study phase-amplitude coupling as recorded at individual sites, using a modified version of the well-known Wendling neural mass model. To the population of fast inhibitory interneurons of this model, we added external modulatory input and dynamic self-feedback. These two modifications together are sufficient to let the inhibitory population serve as a limit-cycle oscillator, with frequency characteristics comparable to the beta and gamma bands. The frequency and power of these oscillations can be tuned through the time constant of the dynamic and modulatory input. Alpha band activity is generated, as is usual in such models, as a result of interactions of pyramidal neurons and a population of slow inhibitory interneurons. The slow inhibitory population activity directly influences the fast oscillations via the synaptic gain between slow and fast inhibitory populations. As a result, the amplitude envelope of the fast oscillation is coupled to the phase of the slow activity; this result is consistent with the notion that phase-amplitude coupling is effectuated by interactions between inhibitory interneurons. PMID:27241189

  2. Measurement of the W mass with the DELPHI detector at LEP.

    NASA Astrophysics Data System (ADS)

    Parkes, Chris

    1997-04-01

    In 1996 LEP ran at centre of mass energies of 161 and 172 GeV. An integrated luminosity of approx. 10 pb-1 was collected by the DELPHI experiment at each energy. These data are used to measure the cross-section for the doubly resonant WW process at these energies. At 161 GeV this cross-section may be interpreted, within the Standard Model, as a measurement of the W mass. The method of direct reconstruction is used to obtain a W mass using the 172 GeV data. Results on trilinear gauge couplings are also given.

  3. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  4. The Successive Projections Algorithm for interval selection in trilinear partial least-squares with residual bilinearization.

    PubMed

    Gomes, Adriano de Araújo; Alcaraz, Mirta Raquel; Goicoechea, Hector C; Araújo, Mario Cesar U

    2014-02-01

    In this work the Successive Projection Algorithm is presented for intervals selection in N-PLS for three-way data modeling. The proposed algorithm combines noise-reduction properties of PLS with the possibility of discarding uninformative variables in SPA. In addition, second-order advantage can be achieved by the residual bilinearization (RBL) procedure when an unexpected constituent is present in a test sample. For this purpose, SPA was modified in order to select intervals for use in trilinear PLS. The ability of the proposed algorithm, namely iSPA-N-PLS, was evaluated on one simulated and two experimental data sets, comparing the results to those obtained by N-PLS. In the simulated system, two analytes were quantitated in two test sets, with and without unexpected constituent. In the first experimental system, the determination of the four fluorophores (l-phenylalanine; l-3,4-dihydroxyphenylalanine; 1,4-dihydroxybenzene and l-tryptophan) was conducted with excitation-emission data matrices. In the second experimental system, quantitation of ofloxacin was performed in water samples containing two other uncalibrated quinolones (ciprofloxacin and danofloxacin) by high performance liquid chromatography with UV-vis diode array detector. For comparison purpose, a GA algorithm coupled with N-PLS/RBL was also used in this work. In most of the studied cases iSPA-N-PLS proved to be a promising tool for selection of variables in second-order calibration, generating models with smaller RMSEP, when compared to both the global model using all of the sensors in two dimensions and GA-NPLS/RBL. PMID:24456589

  5. Cold Mass Issues in the MICE Coupling Magnet

    SciTech Connect

    Green, Michael A.

    2011-01-19

    I have identified two potential issues in the design of the attachments to the MICE coupling magnet cold mass. One of these attachment issues may extend into the cold mass. Both issues came to light during the analysis of what happened to the spectrometer solenoids. We must not make the same mistakes that were made on the spectrometer solenoids. The two questions that result from the identified issues are; 1) Are the superconducting low temperature superconducting leads between the coupling coil and the lower end of the high temperature superconducting (LTS) leads robust enough not quench and burn out? In the spectrometer solenoid one part of the LTS lead was not robust enough to prevent quenching and a burn out of the LTS lead and ; 2) Will there be problems with the quench protection resistors and diodes when the magnet quenches as a result of an HTS lead burning out or a disconnect of the magnet from its power supply? The second question is very important because the coupling coil has a large stored energy and inductance. As result, when current flows through the diodes and the resistors, both can be over heated. We observed resistor overheating in spectrometer magnet 2. This heating probably happened when the HTS lead the LTS lead burned out during the tests of magnet 2A and 2B respectively. (See MICE Note 324.) The answer to the first question is simple and straightforward. This is the issue that is primarily dealt with in MICE Note 324. If the resistance across the coil sub-divisions is high enough, the whole magnet will turn normal through quench-back. Making the resistance across a coil sub-division high enough is not simple.

  6. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation

    SciTech Connect

    Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

    2001-07-01

    The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

  7. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Min; Perry, Richard H.

    2015-08-01

    On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique.

  8. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry.

    PubMed

    Liu, Yao-Min; Perry, Richard H

    2015-10-01

    On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique. PMID:26311335

  9. Matrix effects in inductively coupled plasma mass spectrometry

    SciTech Connect

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  10. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGESBeta

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  11. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  12. Accelerator mass spectrometry with a coupled tandem-linac system

    SciTech Connect

    Kutschera, W.

    1984-01-01

    A coupled system provides higher energies, which allows one to extend AMS to hitherto untouched mass regions. Another important argument is that the complexity, although bothersome for the operation, increases the selectivity of detecting a particular isotope. The higher-energy argument holds for any heavy-ion accelerator which is capable of delivering higher energy than a tandem. The present use of tandem-linac combinations for AMS, rather than cyclotrons, linacs or combinations of these machines, has mainly to do with the fact that this technique was almost exclusively developed around tandem accelerators. Therefore the tandem-linac combination is a natural extension to higher energies. The use of negative ions has some particular advantages in suppressing background from unwanted elements that do not form stable negative ions (e.g., N, Mg, Ar). On the other hand, this limits the detection of isotopes to elements which do form negative ions. For particular problems it may therefore be advantageous to use a positive-ion machine. What really matters most for choosing one or the other machine is to what extent the entire accelerator system can be operated in a truly quantiative way from the ion source to the detection system. 20 references, 4 figures.

  13. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Watling, R. John; Herbert, Hugh K.; Delev, Dianne; Abell, Ian D.

    1994-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the characterization of the trace element composition "fingerprint" of selected gold samples from Western Australia and South Africa. By comparison of the elemental associations it is possible to relate gold to a specific mineralizing event, mine or bullion sample. This methodology facilitates identification of the provenance of stolen gold or gold used in salting activities. In this latter case, it is common for gold from a number of sources to be used in the salting process. Consequently, gold in the prospect being salted will not come from a single source and identification of multiple sources for this gold will establish that salting has occurred. Preliminary results also indicate that specific elemental associations could be used to identify the country of origin of gold. The technique has already been applied in 17 cases involving gold theft in Western Australia, where it is estimated that up to 2% of gold production is "relocated" each year as a result of criminal activities.

  14. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    PubMed

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments. PMID:22944582

  15. Quantum simulations with a trilinear Hamiltonian in trapped-ion system

    NASA Astrophysics Data System (ADS)

    Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry

    2016-05-01

    A non-degenerate parametric oscillator, described by a trilinear Hamiltonian, is one of the most fundamental models in quantum optics. We experimentally realize this kind of interaction in fully quantum regime with three motional modes of three trapped ytterbium ions. This interaction is induced by the intrinsic anharmonicity of Coulomb potential and manifests itself by more than 100 cycles of coherent energy exchange at single quantum level between different motional modes. By exploiting this interaction, we simulate the process of non-degenerate parametric down conversion in a regime of depleted pump, demonstrate deviation from the thermal statistic for the `signal' and `idler' modes and discuss its relation with a simple model of Hawking radiation. We also present experimental results on simulation of Jaynes-Cummings model using this trilinear Hamiltonian.

  16. Imaging mass spectrometry in biological tissues by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Becker, J S; Becker, J Su; Zoriy, M V; Dobrowolska, J; Matucsh, A

    2007-01-01

    Of all the inorganic mass spectrometric techniques, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) plays a key role as a powerful and sensitive microanalytical technique enabling multi- element trace analysis and isotope ratio measurements at trace and ultratrace level. LA-ICP-MS was used to produce images of detailed regionally-specific element distribution in 20 microm thin sections of different parts of the human brain. The quantitative determination of copper, zinc, lead and uranium distribution in thin slices of human brain samples was performed using matrix-matched laboratory standards via external calibration procedures. Imaging mass spectrometry provides new information on the spatially inhomogeneous element distribution in thin sections of human tissues, for example, of different brain regions (the insular region) or brain tumor tissues. The detection limits obtained for Cu, Zn, Pb and U were in the ng g(-1) range. Possible strategies of LA-ICP-MS in brain research and life sciences include the elemental imaging of thin slices of brain tissue or applications in proteome analysis by combination with matrix-assisted laser desorption/ionization MS to study phospho- and metal- containing proteins will be discussed. PMID:17885277

  17. A propulsion-mass tensor coupling in relativistic rocket motion

    NASA Astrophysics Data System (ADS)

    Brito, Hector Hugo

    1998-01-01

    Following earlier speculations about antigravity machines and works on the relativistic dynamics of constant and variable rest mass point particles, a mass tensor is found in connection with the closed system consisting of the rocket driven spaceship and its propellant mass, provided a ``solidification'' point other than the system center of mass is considered. Therefore, the mass tensor form depends on whether the system is open or closed, and upon where the ``solidification'' point is located. An alternative propulsion principle is subsequently derived from the tensor mass approach. The new principle, the covariant equivalent of Newton's Third Law for the physical interpretation of the relativistic rocket motion, reads: A spaceship undergoes a propulsion effect when the whole system mass 4-ellipsoid warps.

  18. Estimating impacts of land use on groundwater quality using trilinear analysis.

    PubMed

    Ouyang, Ying; Zhang, Jia En; Cui, Lihua

    2014-09-01

    Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NO(x)), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NO(x) had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO4(3-)) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F(-), Cl(-), and SO4(2-)), F(-) accounted for <1% of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality. PMID:24802588

  19. Capillary LC Coupled with High-Mass Measurement Accuracy Mass Spectrometry for Metabolic Profiling

    SciTech Connect

    Ding, Jie; Sorensen, Christina M.; Zhang, Qibin; Jiang, Hongliang; Jaitly, Navdeep; Livesay, Eric A.; Shen, Yufeng; Smith, Richard D.; Metz, Thomas O.

    2007-08-15

    We have developed an efficient and robust high-pressure capillary LC-MS method for the identification of large numbers of metabolites in biological samples using both positive and negative ESI modes. Initial efforts focused on optimizing the separations conditions for metabolite extracts using various LC stationary phases in conjunction with multiple mobile phase systems, as applied to the separation of 45 metabolite standards. The optimal mobile and stationary phases of those tested were determined experimentally (in terms of peak shapes, theoretical plates, retention of small, polar compounds, etc.), and both linear and exponential gradients were applied in the study of metabolite extracts from the cyanobacterium Cyanothece sp. ATCC 51142. Finally, an automated dual-capillary LC system was constructed and evaluated for the effectiveness and reproducibility of the chromatographic separations using the above samples. When coupled with a commercial LTQ-Orbitrap MS, ~900 features were reproducibly detected from Cyanothece sp. ATCC 51142 metabolite extracts. In addition, 12 compounds were tentatively identified, based on accurate mass, isotopic distribution, and MS/MS information.

  20. RESEARCH NOTE FROM COLLABORATION: Dimensionless coupling of bulk scalars at the LHC

    NASA Astrophysics Data System (ADS)

    Beauchemin, P.-H.; Azuelos, G.; Burgess, C. P.

    2004-10-01

    We identify the lowest-dimension interaction which is possible between standard model brane fields and bulk scalars in six dimensions. The lowest-dimension interaction is unique and involves a trilinear coupling between the standard model Higgs boson and the bulk scalar. Because this interaction has a dimensionless coupling, it depends only logarithmically on ultraviolet mass scales and heavy physics need not decouple from it. We compute its influence on Higgs physics at ATLAS and identify how large a coupling can be detected at the LHC. Besides providing a potentially interesting signal in Higgs-boson searches, such couplings provide a major observational constraint on 6D large-extra-dimensional models with scalars in the bulk.

  1. Determination of plutonium in urine: evaluation of electrothermal vaporization inductively coupled plasma mass spectroscopy

    SciTech Connect

    Pietrzak, R.; Kaplan, E.

    1996-11-01

    Mass spectroscopy has the distinct advantage of detecting atoms rather than radioactive decay products for nuclides of low specific activity. Electrothermal vaporization (ETV) is an efficient means of introducing small volumes of prepared samples into an inductively coupled mass spectrometer to achieve the lowest absolute detection limits. The operational characteristics and capabilities of electrothermal vaporization inductively coupled mass spectrometer mass spectroscopy were evaluated. We describe its application as a detection method for determining Pu in urine, in conjunction with a preliminary separation technique to avoid matrix suppression of the signal.

  2. Relativistic mean-field models with scaled hadron masses and couplings: Hyperons and maximum neutron star mass

    NASA Astrophysics Data System (ADS)

    Maslov, K. A.; Kolomeitsev, E. E.; Voskresensky, D. N.

    2016-06-01

    An equation of state of cold nuclear matter with an arbitrary isotopic composition is studied within a relativistic mean-field approach with hadron masses and coupling constants depending self-consistently on the scalar mean-field. All hadron masses decrease universally with the scalar field growth, whereas meson-nucleon coupling constants can vary differently. More specifically we focus on two modifications of the KVOR model studied previously. One extension of the model (KVORcut) demonstrates that the equation of state stiffens if the increase of the scalar-field magnitude with the density is bounded from above at some value for baryon densities above the saturation nuclear density. This can be realized if the nucleon vector-meson coupling constant changes rapidly as a function of the scalar field slightly above the desired value. The other version of the model (MKVOR) utilizes a smaller value of the nucleon effective mass at the nuclear saturation density and a saturation of the scalar field in the isospin asymmetric matter induced by a strong variation of the nucleon isovector-meson coupling constant as function of the scalar field. A possibility of hyperonization of the matter in neutron star interiors is incorporated. Our equations of state fulfill majority of known empirical constraints including the pressure-density constraint from heavy-ion collisions, direct Urca constraint, gravitational-baryon mass constraint for the pulsar J0737-3039B, and the constraint on the maximum mass of the neutron stars.

  3. Aspect of Fermion Mass Hierarchy within Flavor Democracy for Yukawa Couplings

    NASA Astrophysics Data System (ADS)

    Higuchi, Katsuichi; Yamamoto, Katsuji

    We discuss the fermion mass hierarchy by including vector-like fermions which are accommodated in E6 GUTs within flavor democracy for Yukawa couplings. In this framework, all Yukawa couplings for the standard Higgs doublet have the same strength, and all Yukawa couplings for the singlet Higgs have the same strength (New ansatz). In addition, singlet Higgs and right-handed neutrinos exist. Under this condition, the mass hierarchy mt ≫ mb ˜ mτ as well as mt ≫ mc, mu can be naturally explained.

  4. Leptogenesis in a neutrino mass model coupled with inflaton

    NASA Astrophysics Data System (ADS)

    Suematsu, Daijiro

    2016-09-01

    We propose a scenario for the generation of baryon number asymmetry based on the inflaton decay in a radiative neutrino mass model extended with singlet scalars. In this scenario, lepton number asymmetry is produced through the decay of non-thermal right-handed neutrinos caused from the inflaton decay. Since the amount of non-thermal right-handed neutrinos could be much larger than the thermal ones, the scenario could work without any resonance effect for rather low reheating temperature. Sufficient baryon number asymmetry can be generated for much lighter right-handed neutrinos compared with the Davidson-Ibarra bound.

  5. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  6. Coupling of Ultrafast LC with Mass Spectrometry by DESI

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Liu, Yong; Helmy, Roy; Chen, Hao

    2014-10-01

    Recently we reported a desorption electrospray ionization (DESI) interface to combine liquid chromatography (LC) with mass spectrometry (MS) using a new LC eluent splitting strategy through a tiny orifice on LC capillary tube [ J. Am. Soc. Mass Spectrom. 25, 286 (2014)]. The interface introduces negligible dead volume and back pressure, thereby allowing "near real-time" MS detection, fast LC elution, and online MS-directed purification. This study further evaluates the LC/DESI-MS performance with focus of using ultra-fast LC. Using a monolithic C18 column, metabolites in urine can be separated within 1.6 min and can be online collected for subsequent structure elucidation (e.g., by NMR, UV, IR) in a recovery yield up to 99%. Using a spray solvent with alkaline pH, negative ions could be directly generated for acidic analytes (e.g., ibuprofen) in acidic LC eluent by DESI, offering a novel protocol to realize "wrong-way around" ionization for LC/MS analysis. In addition, DESI-MS is found to be compatible with ultra-performance liquid chromatography (UPLC) for the first time.

  7. Vectorlike W± -boson coupling at TeV and third family fermion masses

    NASA Astrophysics Data System (ADS)

    Xue, She-Sheng

    2016-04-01

    In the third fermion family and gauge symmetry of the Standard Model, we study the quark-quark, lepton-lepton and quark-lepton four-fermion operators in an effective theory at high energies. These operators have nontrivial contributions to the Schwinger-Dyson equations for fermion self-energy functions and the W±-boson coupling vertex. As a result, the top-quark mass is generated via the spontaneous symmetry breaking of ⟨t ¯t ⟩-condensate and the W±-boson coupling becomes approximately vectorlike at TeV scale. The bottom-quark, tau-lepton and tau-neutrino masses are generated via the explicit symmetry breaking of W±-contributions and quark-lepton interactions. Their masses and Yukawa couplings are functions of the top-quark mass and Yukawa coupling. We qualitatively show the hierarchy of fermion masses and Yukawa couplings of the third fermion family. We also discuss the possible collider signatures due to the vectorlike (parity-restoration) feature of W±-boson coupling at high energies.

  8. Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model

    NASA Astrophysics Data System (ADS)

    Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt

    2016-05-01

    We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e., the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the perturbed conformal field theory description of the model valid at short distances to the large distance bootstrap description based on the model's integrability. In particular, we find a differential equation for the relation by constructing conserved tensor currents, which satisfy a generalization of the Θ sum rule Ward identity. The mass-coupling relation is written in terms of hypergeometric functions.

  9. Microfluidics-to-Mass Spectrometry: A review of coupling methods and applications

    PubMed Central

    Wang, Xue; Yi, Lian; Mukhitov, Nikita; Schrell, Adrian M.; Dhumpa, Raghuram; Roper, Michael G.

    2014-01-01

    Microfluidic devices offer great advantages in integrating sample processes, minimizing sample and reagent volumes, and increasing analysis speed, while mass spectrometry detection provides high information content, is sensitive, and can be used in quantitative analyses. The coupling of microfluidic devices to mass spectrometers is becoming more common with the strengths of both systems being combined to analyze precious and complex samples. This review summarizes select achievements published between 2010 – July 2014 in novel coupling between microfluidic devices and mass spectrometers. The review is subdivided by the types of ionization sources employed, and the different microfluidic systems used. PMID:25458901

  10. Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model.

    PubMed

    Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt

    2016-05-01

    We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e., the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the perturbed conformal field theory description of the model valid at short distances to the large distance bootstrap description based on the model's integrability. In particular, we find a differential equation for the relation by constructing conserved tensor currents, which satisfy a generalization of the Θ sum rule Ward identity. The mass-coupling relation is written in terms of hypergeometric functions. PMID:27203313

  11. Electrochemical generation of selegiline metabolites coupled to mass spectrometry.

    PubMed

    Mielczarek, Przemyslaw; Smoluch, Marek; Kotlinska, Jolanta H; Labuz, Krzysztof; Gotszalk, Teodor; Babij, Michal; Suder, Piotr; Silberring, Jerzy

    2015-04-10

    The metabolic pathways of selegiline (a drug used for the treatment of early-stage Parkinson's disease) were analyzed by electrochemical oxidation with application of the flow electrochemical cell consisting of three electrodes (ROXY™, Antec, the Netherlands). Two types of working electrodes were applied: glassy carbon (GC) and boron-doped diamond (BDD). The potential applied at working electrode and composition of the solvent were optimized for the best conditions for oxidation and identification processes. All products were directly analyzed on-line by mass spectrometry. For further characterization of electrochemical oxidation products, the novel approach involving reversed phase chromatography linked to mass spectrometry with dielectric barrier discharge ionization (DBDI-MS) was used. In this manuscript, we report a novel technique for simulation of drug metabolism by electrochemical system (EC) connected to liquid chromatography (LC) and dielectric barrier discharge ionization (DBDI) mass spectrometry (MS) for direct on-line detection of electrochemical oxidation products. Here, we linked LC/DBDI-MS system with an electrochemical flow cell in order to study metabolic pathways via identification of drug metabolites generated electrochemically. The DBDI source has never been used before for identification of psychoactive metabolites generated in an electrochemical flow cell. Our knowledge on the biological background of xenobiotics metabolism and its influence on human body is constantly increasing, but still many mechanisms are not explained. Nowadays, metabolism of pharmaceuticals is mainly studied using liver cells prepared from animals or humans. Cytochrome P450, present in microsomes, is primarily responsible for oxidative metabolism of xenobiotics. It was also shown, that breakdown of popular medicines may be successfully simulated by electrochemistry under appropriate conditions. The presented experiments allow for comparison of these two entirely

  12. On the mass-coupling relation of multi-scale quantum integrable models

    NASA Astrophysics Data System (ADS)

    Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt

    2016-06-01

    We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.

  13. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution

    NASA Astrophysics Data System (ADS)

    Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry

    2016-06-01

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal `bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ~0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity.

  14. Mode-shape-based mass detection scheme using mechanically diverse, indirectly coupled microresonator arrays

    NASA Astrophysics Data System (ADS)

    Glean, Aldo A.; Judge, John A.; Vignola, Joseph F.; Ryan, Teresa J.

    2015-02-01

    We explore vibration localization in arrays of microresonators used for ultrasensitive mass detection and describe an algorithm for identifying the location and amount of added mass using measurements of a vibration mode of the system. For a set of sensing elements coupled through a common shuttle mass, the inter-element coupling is shown to be proportional to the ratio of the element masses to the shuttle mass and to vary with the frequency mistuning between any two sensing elements. When any two elements have sufficiently similar frequencies, mass adsorption on one element can result in measurable changes to multiple modes of the system. We describe the effects on system frequencies and mode shapes due to added mass, in terms of mass ratio and frequency spacing. In cases in which modes are not fully localized, frequency-shift-based mass detection methods may give ambiguous results. The mode-shape-based detection algorithm presented uses a single measured mode shape and corresponding natural frequency to identify the location and amount of added mass. Mass detection in the presence of measurement noise is numerically simulated using a ten element sensor array. The accuracy of the detection scheme is shown to depend on the amplitude with which each element vibrates in the chosen mode.

  15. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution.

    PubMed

    Kender, Sev; McClymont, Erin L; Elmore, Aurora C; Emanuele, Dario; Leng, Melanie J; Elderfield, Henry

    2016-01-01

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal 'bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity. PMID:27311937

  16. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution

    PubMed Central

    Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry

    2016-01-01

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal ‘bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity. PMID:27311937

  17. Design and Analyisi of a Self-centered Cold Mass Support for the MICE Coupling Magnet

    SciTech Connect

    Wang, Li; Pan, Heng; Wu, Hong; Li, S. Y.; Guo, Xing Long; Zheng, Shi Xian; Green, Michael A.

    2011-05-04

    The Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils in seven modules, which are magnetically hooked together since there is no iron to shield the coils and the return flux. The RF coupling coil (RFCC) module consists of a superconducting coupling solenoid mounted around four conventional conducting 201.25 MHz closed RF cavities. The coupling coil will produce up to a 2.2 T magnetic field on the centerline to keep the beam within the RF cavities. The peak magnetic force on the coupling magnet from other magnets in MICE is up to 500 kN in longitudinal direction, which will be transferred to the base of the RF coupling coil (RFCC) module through a cold mass support system. A self-centered double-band cold mass support system with intermediate thermal interruption is applied to the coupling magnet, and the design is introduced in detail in this paper. The thermal and structural analysis on the cold mass support assembly has been carried out using ANSYS. The present design of the cold mass support can satisfy with the stringent requirements for the magnet center and axis azimuthal angle at 4.2 K and fully charged.

  18. Dynamical mass generation in strongly coupled quantum electrodynamics with weak magnetic fields

    SciTech Connect

    Ayala, Alejandro; Raya, Alfredo; Rojas, Eduardo; Bashir, Adnan

    2006-05-15

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of weak magnetic fields using Schwinger-Dyson equations. Contrary to the case where the magnetic field is strong, in the weak field limit the coupling should exceed certain critical value in order for the generation of masses to take place, just as in the case where no magnetic field is present. The weak field limit is defined as eB<mass in the absence of the field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB){sup 2}.

  19. Coupled Gravity and Elevation Measurement of Ice Sheet Mass Change

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Baumgartner, F.

    2005-01-01

    During June 2003, we measured surface gravity at six locations about a glaciological measurement site located on the South-central Greenland Ice. We operated a GPS unit for 90 minutes at each site -the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. Two gravimeters were used simultaneously at each site. Measurements were repeated at each site with at time lapse of at least 50 minutes. We measured snow physical properties in two shallow pits The same measurement sites were occupied in 1981 and all were part of a hexagonal network of geodetic and glaciological measurements established by The Ohio State University in 1980. Additional gravity observations were acquired at three of the sites in 1993 and 1995. Gravity data were collected in conjunction with Doppler satellite measurements of position and elevation in 1981 and global positioning system measurements subsequently. The use of satellite navigation techniques permitted reoccupation of the same sites in each year to within a few 10 s of meters or better. After detrending the gravity data, making adjustments for tides and removing the residual effects of local spatial gradients in gravity, we observe an average secular decrease in gravity of about 0.01 milligal/year, but with tenths of milligal variations about the mean trend. The trend is consistent with a nearly linear increase in surface elevation of between 7 to 10 c d y r (depending on location) as measured by repeated airborne laser altimeter, surface Doppler satellite and GPS elevation measurements. Differences between the residual gravity anomalies after free air correction may be attributable to local mass changes. This project is a collaboration between the Byrd Polar Research Center of the Ohio State University and the Arctic

  20. SU-F-BRD-03: Determination of Plan Robustness for Systematic Setup Errors Using Trilinear Interpolation

    SciTech Connect

    Fix, MK; Volken, W; Frei, D; Terribilini, D; Dal Pra, A; Schmuecking, M; Manser, P

    2014-06-15

    Purpose: Treatment plan evaluations in radiotherapy are currently ignoring the dosimetric impact of setup uncertainties. The determination of the robustness for systematic errors is rather computational intensive. This work investigates interpolation schemes to quantify the robustness of treatment plans for systematic errors in terms of efficiency and accuracy. Methods: The impact of systematic errors on dose distributions for patient treatment plans is determined by using the Swiss Monte Carlo Plan (SMCP). Errors in all translational directions are considered, ranging from −3 to +3 mm in mm steps. For each systematic error a full MC dose calculation is performed leading to 343 dose calculations, used as benchmarks. The interpolation uses only a subset of the 343 calculations, namely 9, 15 or 27, and determines all dose distributions by trilinear interpolation. This procedure is applied for a prostate and a head and neck case using Volumetric Modulated Arc Therapy with 2 arcs. The relative differences of the dose volume histograms (DVHs) of the target and the organs at risks are compared. Finally, the interpolation schemes are used to compare robustness of 4- versus 2-arcs in the head and neck treatment plan. Results: Relative local differences of the DVHs increase for decreasing number of dose calculations used in the interpolation. The mean deviations are <1%, 3.5% and 6.5% for a subset of 27, 15 and 9 used dose calculations, respectively. Thereby the dose computation times are reduced by factors of 13, 25 and 43, respectively. The comparison of the 4- versus 2-arcs plan shows a decrease in robustness; however, this is outweighed by the dosimetric improvements. Conclusion: The results of this study suggest that the use of trilinear interpolation to determine the robustness of treatment plans can remarkably reduce the number of dose calculations. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.

  1. Evaluation of Inductively Couple Plasma-time-of-Flight Mass Spectrometry for Laser Ablation Analyses

    SciTech Connect

    S.J. Bajic; D.B. Aeschliman; D.P. Baldwin; R.S. Houk

    2003-09-30

    The purpose of this trip to LECO Corporation was to test the non-matrix matched calibration method and the principal component analysis (PCA) method on a laser ablation-inductively coupled plasma-time of flight mass spectrometry (LA-ICP-TOFMS) system. An LA-ICP-TOFMS system allows for multielement single-shot analysis as well as spatial analysis on small samples, because the TOFMS acquires an entire mass spectrum for all ions extracted simultaneously from the ICP. The TOFMS system differs from the double-focusing mass spectrometer, on which the above methods were developed, by having lower sensitivity and lower mass resolution.

  2. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  3. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    PubMed

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online. PMID:23305831

  4. Tribological behavior of a friction couple functioning with selective mass transfer

    NASA Astrophysics Data System (ADS)

    Ilie, Filip

    2016-06-01

    Experimental researches on different lubricated friction couples, have confirmed that it is useful to investigate thermodynamic processes which are unstable in lubricant and on the friction couples surfaces in the first stage of the friction process. This presupposes that, in operating conditions, physical-chemical processes which are favourable to friction, such as: polymerization, formation of colloids, formation of other active substances at the contact surfaces and of other compounds with low resistance to shear take place. Friction in such conditions takes place with selective mass transfer, and it is used there where the friction of the mixed and adherence layers is not safe enough, or the durability of the friction couples is not assured. The selective mass transfer allows the transfer of some elements of the materials in contact from one surface to the other, covering them with a thin, superficial layer, with superior properties at minimal friction and wear. The aim of this paper is to analyse the physical-chemical factors and the proper processes for achieving the selective mass transfer for the couple steel/bronze, which in optimal conditions, forms a thin layer of copper on the contact surfaces areas. Also, it presents some studies and researches concerning the tribological behaviour of the surfaces of a friction couple with linear contact (roll/roll) which operates with selective mass transfer, tested on Amsler tribometer.

  5. Non-Abelian vortices at weak and strong coupling in mass deformed ABJM theory

    NASA Astrophysics Data System (ADS)

    Auzzi, Roberto; Kumar, S. Prem

    2009-10-01

    We find half-BPS vortex solitons, at both weak and strong coupling, in the Script N = 6 supersymmetric mass deformation of ABJM theory with U(N) × U(N) gauge symmetry and Chern-Simons level k. The strong coupling gravity dual is obtained by performing a Bbb Zk quotient of the Script N = 8 supersymmetric eleven dimensional supergravity background of Lin, Lunin and Maldacena corresponding to the mass deformed M2-brane theory. At weak coupling, the BPS vortices preserving six supersymmetries are found in the Higgs vacuum of the theory where the gauge symmetry is broken to U(1) × U(1). The classical vortex solitons break a colour-flavour locked global symmetry resulting in non-Abelian internal orientational moduli and a CP1 moduli space of solutions. At strong coupling and large k, upon reduction to type IIA strings, the vortex moduli space and its action are computed by a probe D0-brane in the dual geometry. The mass of the D0-brane matches the classical vortex mass. However, the gravity picture exhibits a six dimensional moduli space of solutions, a section of which can be identified as the CP1 we find classically, along with a Dirac monopole connection of strength k. It is likely that the extra four dimensions in the moduli space are an artifact of the strong coupling limit and of the supergravity approximation.

  6. Self-excited coupled cantilevers for mass sensing in viscous measurement environments

    NASA Astrophysics Data System (ADS)

    Yabuno, Hiroshi; Seo, Yasuhiro; Kuroda, Masaharu

    2013-08-01

    The eigenstate shift in two nearly identical and weakly coupled cantilevers provides a means to realize much higher-sensitivity mass detection compared with the eigenfrequency shift approach. We propose using self-excited oscillations for eigenstate detection without using frequency response or resonance curve normally used in conventional methods. Mass sensing thus becomes possible even in high-viscosity environments, where the peak of the frequency response curve is ambiguous or does not exist. The feedback control method is theoretically clarified to produce self-excited oscillation and the validity of the proposed method is investigated experimentally using macroscale coupled cantilevers.

  7. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Du, Xu; Wang, Xin; Ikehara, Tsuyoshi; Maeda, Ryutaro

    2016-01-01

    Two geometrically different cantilevers, with primary frequencies of 182.506 kHz (u-shaped cantilever for sensing) and 372.503 kHz (rectangular cantilever for detecting), were coupled by two symmetrical coupling overhangs for oscillation-based mass sensing verification with phase-locking. Based on a lumped element model, a theoretical expression, containing a nonlinear spring constant and a term corresponding to the effect of the coupling spring, was proposed to consider the factors influencing the entrainment range, which is defined as a plateau with a frequency ratio (resonant frequency of rectangular cantilever to that of u-shaped cantilever) of 2.000 in present study. A picogram order mass sensing by applying a polystyrene microsphere as a small mass perturbation onto the tip of the u-shaped cantilever was demonstrated. By varying driving voltages, two entrainment regions with and without microsphere were experimentally measured and comparatively shown. At a driving voltage of 1 Vpp, when the u-shaped cantilever was excited at its shifted frequency of 180.29 kHz, the frequency response of the coupled rectangular cantilever had a peak at double the shifted frequency of 360.58 kHz of the u-shaped cantilever. The frequency shift for picogram mass sensing was thus doubled from 2560 Hz to 5133 Hz due to phase-locking. A mass of 3.732 picogram was derived based on the doubled frequency shift corresponding to a calculated mass of 3.771 picogram from measured diameter and reported density. Both experimental demonstration and theoretical discussions from the viewpoint of entrainment range elicits the possibility of increasing the mass sensitivity via phase-locking in the coupled silicon micro-cantilevers.

  8. MASSES OF SUBGIANT STARS FROM ASTEROSEISMOLOGY USING THE COUPLING STRENGTHS OF MIXED MODES

    SciTech Connect

    Benomar, O.; Bedding, T. R.; Stello, D.; White, T. R.; Deheuvels, S.; Christensen-Dalsgaard, J.

    2012-02-15

    For a few decades now, asteroseismology, the study of stellar oscillations, has enabled us to probe the interiors of stars with great precision. It allows stringent tests of stellar models and can provide accurate radii, masses, and ages for individual stars. Of particular interest are the mixed modes that occur in subgiant solar-like stars since they can place very strong constraints on stellar ages. Here, we measure the characteristics of the mixed modes, particularly the coupling strength, using a grid of stellar models for stars with masses between 0.9 and 1.5 M{sub Sun }. We show that the coupling strength of the l = 1 mixed modes is predominantly a function of stellar mass and appears to be independent of metallicity. This should allow an accurate mass evaluation, further increasing the usefulness of mixed modes in subgiants as asteroseismic tools.

  9. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  10. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  11. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  12. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.

    PubMed

    Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K

    2006-11-01

    An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895

  13. Use of Generalized Mass in the Interpretation of Dynamic Response of BENDING-TORSION Coupled Beams

    NASA Astrophysics Data System (ADS)

    ESLIMY-ISFAHANY, S. H. R.; BANERJEE, J. R.

    2000-11-01

    The interpretation of mode shapes and dynamic response of bending-torsion coupled beams is assessed by using the concept of generalized mass. In the first part of this investigation, the free vibratory motion of bending-torsion coupled beams is studied in detail. The conventional method of interpreting the normal modes of vibration consisting of bending displacements and torsional rotations is shown to be inadequate and replaced by an alternative method which is focussed on the constituent parts of the generalized mass arising from bending and torsional displacements. Basically, the generalized mass in a particular mode is identified and examined in terms of bending, torsion and bending-torsion coupling effects. It is demonstrated that the contribution of individual components in the expression of the generalized mass of a normal mode is a much better indicator in characterizing a coupled mode. It is also shown that the usually adopted criteria of plotting bending displacement and torsional rotations to describe a coupled mode can be deceptive and misleading. In the second part of the investigation, attention is focussed on the dynamic response characteristics of bending-torsion coupled beams when subjected to random bending or torsional loads. A normal mode approach is used to establish the total response. The input random excitation is assumed to be stationary and ergodic so that with the linearity assumption, the output spectrum of the response is obtained by using the frequency response function. The contribution of each normal mode to the overall response is isolated. Particular emphasis is placed on bending-induced torsional response and torsion-induced bending response. A number of case studies involving different types of bending-torsion coupled beams with Cantilever end conditions are presented. The limitations of existing methods of modal interpretation are highlighted, and an insight into the mode selection for response analysis is provided.

  14. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  15. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  16. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  17. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  18. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  19. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  20. Comparison of thermal ionization mass spectrometry and Multiple Collector Inductively Coupled Plasma Mass Spectrometry for cesium isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Granet, M.; Caussignac, C.; Ducarme, E.; Nonell, A.; Tran, B.; Chartier, F.

    2009-11-01

    In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic ( 133Cs) whereas cesium in spent fuels has 4 isotopes ( 133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios ( 133Cs/ 137Cs and 135Cs/ 137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/ 137Cs and 135Cs/ 137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/ 238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% ( k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.

  1. Current medical research with the application of coupled techniques with mass spectrometry

    PubMed Central

    Kałużna-Czaplińska, Joanna

    2011-01-01

    Summary The most effective methods of analysis of organic compounds in biological fluids are coupled chromatographic techniques. Capillary gas chromatography/mass spectrometry (GC-MS) allows the most efficient separation, identification and quantification of volatile metabolites in biological fluids. Liquid chromatography-mass spectrometry (LC-MS) is especially suitable for the analysis of non-volatile and/or thermally unstable compounds. A major drawback of liquid chromatography-mass spectrometry is that no standard spectral libraries such as NIST and Wiley for GC-MS are available to facilitate the identification of unknown compounds. Moreover, the identification of potential new compounds, especially new biomarkers in LC-MS, is much more challenging than in GC-MS. Capillary electrophoresis coupled with mass spectrometry (CE-MS) has been widely used to characterize metabolomes. Capillary electrophoresis is a powerful technique for the separation of charged metabolites, offering high analyte resolution. The advantages of CE-MS are applicability for hydrophilic metabolites, robust separation efficiency and short duration of analysis. This review provides an overview of current chromatographic methods – gas chromatography – mass spectrometry, liquid chromatography – mass spectrometry and capillary electrophoresis-mass spectrometry – and their applications in current medical research. The focus is on the description of metabonomics research, strategies for biomarkers identification, medical diagnoses of diseases and research of drugs. PMID:21525822

  2. Microfluidic Chip Coupled with Thermal Desorption Atmospheric Pressure Ionization Mass Spectrometry

    PubMed Central

    Chang, Chia-Hsien; Chen, Tsung-Yi; Chen, Yu-Chie

    2014-01-01

    Microfluidic chips have been used as platforms for a diversity of research purposes such as for separation and micro-reaction. One of the suitable detectors for microfluidic chip is mass spectrometry. Because microfluidic chips are generally operated in an open air condition, mass spectrometry coupled with atmospheric pressure ion sources can suit the requirement with minimum compromise. In this study, we develop a new interface to couple a microfluidic chip with mass spectrometry. A capillary tip coated with a layer of graphite, capable of absorbing energy of near-infrared (NIR) light is used to interface microfluidic chip with mass spectrometry. An NIR laser diode (λ=808 nm) is used to irradiate the capillary tip for assisting the generation of spray from the eluent of the microfluidic chip. An electrospray is provided to fuse with the spray generated from the microfluidic chip for post-ionization. Transesterification is used as the example to demonstrate the feasibility of using this interface to couple microfluidic chip with mass spectrometry. PMID:26839753

  3. Higgs mass and unified gauge coupling in the NMSSM with vector matter

    NASA Astrophysics Data System (ADS)

    Barbieri, Riccardo; Buttazzo, Dario; Hall, Lawrence J.; Marzocca, David

    2016-07-01

    We consider the NMSSM extended to include one vector-like family of quarks and leptons. If (some of) these vector-like matter particles, as the Higgs doublets, have Yukawa couplings to the singlet S that exceed unity at about the same scale Λ ≲ 103 TeV, this gives the order 40% enhancement of the tree level Higgs boson mass required in the MSSM to reach 125 GeV. It is conceivable that the Yukawa couplings to the singlet S, although naively blowing up close to Λ, will not spoil gauge coupling unification. In such a case the unified coupling α X could be interestingly led to a value not far from unity, thus providing a possible explanation for the number of generations. The characteristic signal is an enhanced resonant production of neutral spin zero particles at LHC, that could even explain the putative diphoton resonance hinted by the recent LHC data at 750 GeV.

  4. Coupled Fluids-Radiation Analysis of a High-Mass Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Allen, Gary; Tang, Chun; Brown, Jim

    2011-01-01

    The NEQAIR line-by-line radiation code has been incorporated into the DPLR Navier-Stokes flow solver such that the NEQAIR subroutines are now callable functions of DPLR. The coupled DPLR-NEQAIR code was applied to compute the convective and radiative heating rates over high-mass Mars entry vehicles. Two vehicle geometries were considered - a 15 m diameter 70-degree sphere cone configuration and a slender, mid-L/D vehicle with a diameter of 5 m called an Ellipsled. The entry masses ranged from 100 to 165 metric tons. Solutions were generated for entry velocities ranging from 6.5 to 9.1 km/s. The coupled fluids-radiation solutions were performed at the peak heating location along trajectories generated by the Traj trajectory analysis code. The impact of fluids-radiation coupling is a function of the level of radiative heating and the freestream density and velocity. For the high-mass Mars vehicles examined in this study, coupling effects were greatest for entry velocities above 8.5 km/s where the surface radiative heating was reduced by up 17%. Generally speaking, the Ellipsled geometry experiences a lower peak radiative heating rate but a higher peak turbulent convective heating rate than the MSL-based vehicle.

  5. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  6. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere-glacier mass balance model

    NASA Astrophysics Data System (ADS)

    Aas, Kjetil S.; Dunse, Thorben; Collier, Emily; Schuler, Thomas V.; Berntsen, Terje K.; Kohler, Jack; Luks, Bartłomiej

    2016-05-01

    In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere-glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of -257 mm w.e. yr-1, corresponding to a mean annual mass loss of about 8.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological, and satellite measurements. Model temperature biases of 0.19 and -1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 100 mm w.e. yr-1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 47 and 67 mm w.e. yr-1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of modeled surface height changes from 2003 to 2008, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1000 mm w.e. yr-1), a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using 9 km grid spacing reveal considerable differences on regional and local scales. In addition, 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.

  7. New Applications of Inductively Coupled Plasma-Mass Spectrometry in the Nuclear Industry

    SciTech Connect

    Rob Henry; Dagmar Koller; Phil Marriott

    1998-12-31

    Inductively coupled plasma mass spectrometry (ICP-MS) complements the traditional methods of quantitation of radioactive isotopes. Because of the favorable ionization potential of most actinides and their daughter products, the argon plasma provides a rich, stable source of ions, which are introduced through a plasma-mass spectrometer interface into the mass spectrometer for isotopic separation. Samples are normally introduced in solution, although direct solids analysis has also been achieved using laser ablation of the sample into the argon plasma. Since 1983, improvements in ICP-MS sensitivity have resulted in correspondingly lower mass detection capability. This development has in turn expanded the number of isotopes accessible to measurement at the levels required in the nuclear industry.

  8. Modeling of diagenesis in relation to coupled mass and heat transport

    SciTech Connect

    Ondrak, R.

    1996-12-31

    Pore fluid flow is an important factor influencing the diagenetic evolution of rocks, as has been shown by various diagenetic studies, especially in connection with fluid inclusion measurements. A 3D- computer model is presented, which allows to simulate coupled mass and heat transport in porous rocks. The model is used to study the interaction of heat and mass transport with respect to the temporal and spatial evolution of sandstones. Mineral dissolution or precipitation change the mineralogical composition of rocks, and modify the physical properties at the same time. Altering the permeability of the rock affects the fluid flow system in the rock which determines the mass transport of the entire system. In addition to mass transport, fluid flow transports thermal energy, which may modify the temperature evolution of the rock. The model will be used to examine the effect of convective heat and mass transport on temperature and diagenetic evolution of clastic rocks. Although the model cannot claim to simulate nature, it can be used to study the effect of different mechanisms, and their interaction within the coupled system. For practical applications, the model may be used to determine possible flow rates, which are necessary to explain the observed diagenetic and thermal history of sandstones.

  9. Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy; Hamilton, Jason; Verbeck, Guido F.

    2014-12-01

    Electrospray mass spectrometry is now a widely used technique for observing cell content of various biological tissues. However, electrospray techniques (liquid chromatography and direct infusion) often involve lysing a group of cells and extracting the biomolecules of interest, rather than a sensitive, individual cell method to observe local chemistry. Presented here is an approach of combining a nanomanipulator workstation with nanospray mass spectrometry, which allows for extraction of a single cell, followed by rapid mass analysis that can provide a detailed metabolic profile. Triacylglycerol content was profiled with this tool coupled to mass spectrometry to investigate heterogeneity between healthy and tumorous tissues as well as lipid droplet containing adipocytes in vitro as proof of concept. This selective approach provides cellular resolution and complements existing bioanalytical techniques with minimal invasion to samples. In addition, the coupling of nanomanipulation and mass spectrometry holds the potential to be used in a great number of applications for individual organelles, diseased tissues, and in vitro cell cultures for observing heterogeneity even amongst cells and organelles of the same tissue.

  10. On-line coupling of capillary gel electrophoresis with electrospray mass spectrometry for oligonucleotide analysis.

    PubMed

    Freudemann, T; von Brocke, A; Bayer, E

    2001-06-01

    Homooligodeoxyribonucleotides differing one nucleotide in length from 12- to 15-mer and from 17- to 20-mer were separated by size with capillary gel electrophoresis (CGE) using an entangled polymer solution in coated capillaries. The resolved components were analyzed by on-line coupling of CGE with electrospray mass spectrometry (ES-MS), denoted as CGE/ES-MS, in the full-scan negative ion detection mode. Baseline separation was achieved for the 12-15-mer oligonucleotide mixtures. Both synthetic phosphodiester oligonucleotide mixtures as well as their phosphorothioate analogues, serving as model compounds for antisense oligonucleotides, could be analyzed by on-line CGE/ES-MS coupling. Terminally phosphorylated and nonphosphorylated synthetic failure sequences could be electrophoretically separated and mass spectrometically characterized as well. This methodology might be a useful tool for synthesis control of phosphodiester oligonucleotides as well as for analysis of phosphorothioate analogues as they are used in antisense drug development. PMID:11403304

  11. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wehe, Christoph A.; Thyssen, Georgina M.; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation.

  12. A DISTINCTIVE DISK-JET COUPLING IN THE LOWEST-MASS SEYFERT, NGC 4395

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Reynolds, Mark T.; Gueltekin, Kayhan; Gallo, Elena; Maitra, Dipankar

    2013-09-10

    Simultaneous observations of X-rays and radio luminosities have been well studied in accreting stellar-mass black holes. These observations are performed in order to understand how mass accretion rates and jetted outflows are linked in these individual systems. Such contemporaneous studies in supermassive black holes (SMBH) are harder to perform, as viscous times scale linearly with mass. However, as NGC 4395 is the lowest known mass Seyfert galaxy, we have used it to examine the simultaneous X-ray (Swift) and radio (Very Large Array) correlation in a SMBH in a reasonably timed observing campaign. We find that the intrinsic X-ray variability is stronger than the radio variability, and that the fluxes are only weakly or tentatively coupled, similar to prior results obtained in NGC 4051. If the corona and the base of the jet are one and the same, this may suggest that the corona in radio-quiet active galactic nucleus filters disk variations, only transferring the strongest and/or most sustained variations into the jet. Further, when both NGC 4395 and NGC 4051 are placed on the stellar-mass L{sub X} -L{sub R} plane, they appear to reside on the steeper L{sub X} -L{sub R} track. This suggests that SMBHs also follow two distinct tracks just as stellar-mass black holes do, and supports the idea that the same physical disk-jet mechanisms are at play across the mass scale.

  13. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Wehe, Christoph A; Thyssen, Georgina M; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation. PMID:25947196

  14. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  15. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  16. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    SciTech Connect

    Alves, L.C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled ({minus}80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  17. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils.

    PubMed

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer. PMID:27155588

  18. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  19. How might a statistical cloud scheme be coupled to a mass-flux convection scheme?

    SciTech Connect

    Klein, Stephen A.; Pincus, Robert; Hannay, Cecile; Xu, Kuan-man

    2004-09-27

    The coupling of statistical cloud schemes with mass-flux convection schemes is addressed. Source terms representing the impact of convection are derived within the framework of prognostic equations for the width and asymmetry of the probability distribution function of total water mixing ratio. The accuracy of these source terms is quantified by examining output from a cloud resolving model simulation of deep convection. Practical suggestions for inclusion of these source terms in large-scale models are offered.

  20. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils

    NASA Astrophysics Data System (ADS)

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer.

  1. Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry.

    PubMed

    Bednařík, Antonín; Tomalová, Iva; Kanický, Viktor; Preisler, Jan

    2014-10-17

    Here we present a novel coupling of thin-layer chromatography (TLC) to diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). DLTV is a new technique of aerosol generation which uses a diode laser to induce pyrolysis of a substrate. In this case the cellulose stationary phase on aluminum-backed TLC sheets overprinted with black ink to absorb laser light. The experimental arrangement relies on economic instrumentation: an 808-nm 1.2-W continuous-wave infrared diode laser attached to a syringe pump serving as the movable stage. Using a glass tubular cell, the entire length of a TLC separation channel is scanned. The 8-cm long lanes were scanned in ∼35 s. The TLC - DLTV ICP MS coupling is demonstrated on the separation of four cobalamins (hydroxo-; adenosyl-; cyano-; and methylcobalamin) with limits of detection ∼2 pg and repeatability ∼15% for each individual species. PMID:25193171

  2. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  3. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  4. Exchange coupling between silicon donors: The crucial role of the central cell and mass anisotropy

    NASA Astrophysics Data System (ADS)

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; Lyon, S. A.

    2014-06-01

    Donors in silicon are now demonstrated as one of the leading candidates for implementing qubits and quantum information processing. Single qubit operations, measurements, and long coherence times are firmly established, but progress on controlling two qubit interactions has been slower. One reason for this is that the interdonor exchange coupling has been predicted to oscillate with separation, making it hard to estimate in device designs. We present a multivalley effective mass theory of a donor pair in silicon, including both a central cell potential and the effective mass anisotropy intrinsic in the Si conduction band. We are able to accurately describe the single donor properties of valley-orbit coupling and the spatial extent of donor wave functions, highlighting the importance of fitting measured values of hyperfine coupling and the orbital energy of the 1s levels. Ours is a simple framework that can be applied flexibly to a range of experimental scenarios, but it is nonetheless able to provide fast and reliable predictions. We use it to estimate the exchange coupling between two donor electrons and we find a smoothing of its expected oscillations, and predict a monotonic dependence on separation if two donors are spaced precisely along the [100] direction.

  5. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively. PMID:14719901

  6. Mass transport in low permeability rocks under the influence of coupled thermomechanical and hydrochemical effects - an overview

    SciTech Connect

    Tsang, C.F.

    1984-10-01

    The present paper gives a general overview of mass transport in low permeability rocks under the coupled thermomechanical and hydrochemical effects associated with a nuclear waste repository. A classification of coupled processes is given. Then an ess is presented. example of a coupled process is presented. Discussions of coupled processes based on a recent LBL Panel meeting are summarized. 5 references, 3 figures, 4 tables.

  7. Strong coupling and bounds on the spin-2 mass in massive gravity.

    PubMed

    Burrage, Clare; Kaloper, Nemanja; Padilla, Antonio

    2013-07-12

    The de Rham-Gabadadze-Tolley theory of a single massive spin-2 field has a cutoff much below its Planck scale because the extra modes from the massive spin-2 multiplet involve higher derivative self-interactions, controlled by a scale convoluted from its mass. Generically, these correct the propagator by environmental effects. The resulting effective cutoff depends on the environmental parameters and the spin-2 "graviton" mass. Requiring the theory to be perturbative down to O(1) mm, we derive bounds on the mass, corresponding to ≳O(1) meV for the generic case, assuming the coupling to be given by the standard Newton's constant, and somewhat weaker bounds in cases with fine-tuning. Thus, the theory of a single massive spin-2 can really only be viewed as a theory describing the full nonlinear propagation of a massive spin-2 field on a fixed background and not as an approximation to general relativity. PMID:23889386

  8. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  9. Neutrino masses in lepton number violating mSUGRA

    SciTech Connect

    Kom, Steve C. H.

    2008-11-23

    In SUSY models which violate R-parity, there exist trilinear lepton number violating (LNV) operators which can lead to neutrino masses. If these operators are defined at the unification scale, the renormalization group flow becomes important and generally leads to one neutrino mass much heavier than the others. We study, in a minimal supergravity (mSUGRA) set-up with two trilinear LNV operators and three charged lepton mixing angles, numerically how these parameters may be arranged to be compatible with neutrino oscillation data, and discuss some phenomenological observations.

  10. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples. PMID:26005902

  11. Mechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope.

    PubMed

    Yang, Bo; Wang, Xingjun; Deng, Yunpeng; Hu, Di

    2016-01-01

    This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The structure principle and the quadrature error suppression means of the DDMG are described in detail. ANSYS software is used to simulate the micro-gyroscope structure to verify the mechanical coupling error suppression effect. Compared with the former structure, simulation results demonstrate that the rotational displacements of the sense frame in the improved structure are substantially suppressed in the drive mode. The improved DDMG structure chip is fabricated by the deep dry silicon on glass (DDSOG) process. The feedback control circuits with quadrature control loops are designed to suppress the residual mechanical coupling error. Finally, the system performance of the DDMG prototype is tested. Compared with the former DDMG, the quadrature error in the improved dual-mass micro-gyroscope is decreased 9.66-fold, and the offset error is decreased 6.36-fold. Compared with the open loop sense, the feedback control circuits with quadrature control loop decrease the bias drift by 20.59-fold and the scale factor non-linearity by 2.81-fold in the ±400°/s range. PMID:27070616

  12. Mechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope

    PubMed Central

    Yang, Bo; Wang, Xingjun; Deng, Yunpeng; Hu, Di

    2016-01-01

    This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The structure principle and the quadrature error suppression means of the DDMG are described in detail. ANSYS software is used to simulate the micro-gyroscope structure to verify the mechanical coupling error suppression effect. Compared with the former structure, simulation results demonstrate that the rotational displacements of the sense frame in the improved structure are substantially suppressed in the drive mode. The improved DDMG structure chip is fabricated by the deep dry silicon on glass (DDSOG) process. The feedback control circuits with quadrature control loops are designed to suppress the residual mechanical coupling error. Finally, the system performance of the DDMG prototype is tested. Compared with the former DDMG, the quadrature error in the improved dual-mass micro-gyroscope is decreased 9.66-fold, and the offset error is decreased 6.36-fold. Compared with the open loop sense, the feedback control circuits with quadrature control loop decrease the bias drift by 20.59-fold and the scale factor non-linearity by 2.81-fold in the ±400°/s range. PMID:27070616

  13. Coupled simulations of fluvial erosion and mass wasting for cohesive river banks

    NASA Astrophysics Data System (ADS)

    Darby, Stephen E.; Rinaldi, Massimo; Dapporto, Stefano

    2007-09-01

    The erosion of sediment from riverbanks affects a range of physical and ecological issues. Bank retreat often involves combinations of fluvial erosion and mass wasting, and in recent years, bank retreat models have been developed that combine hydraulic erosion and limit equilibrium stability models. In related work, finite element seepage analyses have also been used to account for the influence of pore water pressure in controlling the onset of mass wasting. This paper builds on these previous studies by developing a simulation modeling approach in which the hydraulic erosion, finite element seepage, and limit equilibrium stability models are, for the first time, fully coupled. Application of the model is demonstrated by undertaking simulations of a single flow event at a single study site for scenarios where (1) there is no fluvial erosion and the bank geometry profile remains constant throughout, (2) there is no fluvial erosion but the bank profile is deformed by simulated mass wasting, and (3) the bank profile is allowed to freely deform in response to both simulated fluvial erosion and mass wasting. The results are limited in scope to the specific conditions encountered at the study site, but they nevertheless demonstrate the significant role that fluvial erosion plays in steepening the bank profile or creating overhangs, thereby triggering mass wasting. However, feedbacks between the various processes also lead to unexpected outcomes. Specifically, fluvial erosion also affects bank stability indirectly, as deformation of the bank profile alters the hydraulic gradients driving infiltration into the bank, thereby modulating the evolution of the pore water pressure field. Consequently, the frequency, magnitude, and mode of bank erosion events in the fully coupled scenario differ from the two scenarios in which not all the relevant bank process interactions are included.

  14. Determination of Oxidized Phosphatidylcholines by Hydrophilic Interaction Liquid Chromatography Coupled to Fourier Transform Mass Spectrometry

    PubMed Central

    Sala, Pia; Pötz, Sandra; Brunner, Martina; Trötzmüller, Martin; Fauland, Alexander; Triebl, Alexander; Hartler, Jürgen; Lankmayr, Ernst; Köfeler, Harald C.

    2015-01-01

    A novel liquid chromatography-mass spectrometry (LC-MS) approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI) coupled to hydrophilic interaction liquid chromatography (HILIC) was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID) fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL) prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates. PMID:25874761

  15. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whitty-Léveillé, Laurence; Drouin, Elisabeth; Constantin, Marc; Bazin, Claude; Larivière, Dominic

    2016-04-01

    This article reports on the development of a new method for the accurate and precise determination of the amount of scandium, Sc, in silicon-containing minerals, based on the use of tandem quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). The tandem quadrupole instrument enables new mass filtering configurations, which can reduce polyatomic interferences during the determination of Sc in mineral matrices. He and O2 were used and compared as collision and reaction gases for the removal of interferences at m/z 45 and 61. Using helium gas was ineffective to overcome all of the spectral interferences observed at m/z 45 and particularly for Si-based interferences. However, conversion of Sc+ ions into ScO+ ions (after bombardment with O2 in the octopole reaction system coupled with the use of the instrument in MS/MS mass-shift mode) provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L- 1, to accurately detect Sc. The accuracy of the proposed methodology was assessed by analyzing five different reference materials (BX-N, OKA-2, NIM-L, SY-3 and GH).

  16. Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory

    SciTech Connect

    Cvetic, Mirjam; Richter, Robert; Weigand, Timo

    2007-10-15

    We perform a detailed conformal field theory analysis of D2-brane instanton effects in four-dimensional type IIA string vacua with intersecting D6-branes. In particular, we explicitly compute instanton induced fermion two-point couplings which play the role of perturbatively forbidden Majorana mass terms for right-handed neutrinos or MSSM {mu} terms. These results can readily be extended to higher-dimensional operators. In concrete realizations of such nonperturbative effects, the Euclidean D2-brane has to wrap a rigid, supersymmetric cycle with strong constraints on the zero-mode structure. Their implications for type IIA compactifications on the T{sup 6}/(Z{sub 2}xZ{sub 2}) orientifold with discrete torsion are analyzed. We also construct a local supersymmetric GUT-like model allowing for a class of Euclidean D2-branes whose fermionic zero modes meet all the constraints for generating Majorana masses in the phenomenologically allowed regime. Together with perturbatively realized Dirac masses, these nonperturbative couplings give rise to the seesaw mechanism.

  17. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    NASA Astrophysics Data System (ADS)

    Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-01

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilized linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.

  18. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    SciTech Connect

    Janecky, D.R.

    1988-09-21

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs.

  19. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates. PMID:26842733

  20. Epileptogenic zone localization and seizure control in coupled neural mass models.

    PubMed

    Ma, Zhen; Zhou, Weidong; Zhang, Yanli; Geng, Shujuan

    2015-12-01

    Exact localization of the epileptogenic zone (EZ) is the first priority for ensuring epilepsy treatments and reducing side effects. The results of traditional visual methods for localizing the origin of seizures are far from satisfactory in some cases. Signal processing methods could extract substantial information that may complement visual inspection of EEG signals. In this study, EZ localization is changed into a driver identification problem, and a nonlinear interdependence measure, the weighted rank interdependence, is proposed and used as a driver indicator because it can detect coupling information, especially directionality, from EEG signals. A proportional integral derivative (PID) controller is then explored, using simulations, to establish its suitability for seizure control. The seizure control we propose rests on identifying the EZ using nonlinear interdependence measures of directed functional connectivity. Two directionally coupled neural mass models are employed for simulation investigation. Two parameters can adjust the sensitivity and completeness of the weighted rank interdependence for different applications, and their effect is discussed in the context of neural mass models. Simulation results demonstrate that use of the weighted rank interdependence for EZ identification can be applied to different EZ types, and the approach achieves an overall identification rate of 98.84 % for several EZ types. Simulations also indicate that PID control can effectively regulate synchronization between neural masses. PMID:26585963

  1. Chaotic dynamics of Yang-Mills field as source of particle couplings and masses

    SciTech Connect

    Goldfain, E.

    1995-04-01

    Dynamics of classical uniform Yang-Mills fields is explored from the viewpoint of universal route to chaos in nonlinear systems. The author shows how the path to nonintegrable behavior of the field is equivalent to the period doubling bifurcation of the logistic map. Universal scalings of the growth parameter yield the full set of Standard Model couplings. Hamiltonian formulation in action-angle variables leads to the physics of phase transitions in classical lattice models. The ground state phase diagram of the system with {open_quotes}antiferromagnetic{close_quotes} interaction is known to exhibit a devil`s staircase form. Linking the staircase attributes to the asymptotic freedom of the gauge coupling yields an universal mass equation. Critical exponent is found to depend on the number of field flavors. Further solving the model for various stability plateaus renders the spectrum of particle masses in the low energy framework. Agreement between theory and experimental results is confirmed for the photon/graviton pair, weak bosons, leptons and quarks. The approach offers an intriguing explanation of the dymanical origin of the physical mass and on the internal hierarchy of particle families.

  2. Interface for Online Coupling of Surface Plasmon Resonance to Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Zhang, Yiding; Li, Xianjiang; Nie, Honggang; Yang, Li; Li, Ze; Bai, Yu; Niu, Li; Song, Daqian; Liu, Huwei

    2015-07-01

    The online coupling of surface plasmon resonance (SPR) with mass spectrometry (MS) has been highly desired for the complementary information provided by each of the two techniques. In this work, a novel interface for direct and online coupling of SPR to direct analysis in real time (DART) MS was developed. A spray tip connected with the outlet of the SPR flow solution was conducted as the sampling part of the DART-MS, with which the online coupling interface of SPR-MS was realized. Four model samples, acetaminophen, metronidazole, quinine, and hippuric acid, dissolved in three kinds of common buffers were used in the SPR-DART-MS experiments for performance evaluation of the interface and the optimization of DART conditions. The results showed consistent signal changes and high tolerance of nonvolatile salts of this SPR-MS system, demonstrating the feasibility of the interface for online coupling of SPR with MS and the potential application in the characterization of interaction under physiological conditions. PMID:26067340

  3. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  4. Indirect hydrogen analysis by gas chromatography coupled to mass spectrometry (GC-MS).

    PubMed

    Varlet, V; Smith, F; Augsburger, M

    2013-08-01

    Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. PMID:23893637

  5. Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Sela, H.; Karpas, Z.; Zoriy, M.; Pickhardt, C.; Becker, J. S.

    2007-03-01

    An analytical method for determining essential elements (Zn, Fe and Cu) and toxic elements (Cr, Pb and U) on single hair strands by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-SFMS) using a double focusing sector field mass spectrometer was developed. Results obtained directly using LA-ICP-SFMS of hair were compared with those measured by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) of solutions of digested hair samples and the analytical methods were found to agree well. Different quantification strategies for trace element determination in hair samples such as external calibration, standard addition and isotope dilution were compared and demonstrated for uranium. For uranium determination in powdered hair by LA-ICP-MS solution-based calibration was applied by coupling the laser ablation chamber to an ultrasonic nebulizer. The significance of single hair analysis by LA-ICP-SFMS was demonstrated by a case study of a person who changed living environment. Differences in the uranium content observed along the single hair strand correlated with the changes in the level of uranium in drinking water. The uranium concentration in a single hair decreased from 212 to 18 ng g-1 with a change in the uranium concentration in drinking water from 2000 to 30 ng l-1. In addition, measurements of uranium isotope ratios showed a natural isotopic composition throughout the whole period in the drinking water, as well as in the hair samples. This paper demonstrates the potential use of laser ablation ICP-MS to provide measurements on a single hair strand and its potential to become a very powerful tool in hair analysis for biological monitoring.

  6. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  7. Chemical recoveries of technetium-99 for various procedures using inductively coupled plasma-mass spectrometry

    SciTech Connect

    Ihsanullah; East, B.W.

    1993-12-31

    The procedure for the determination of {sup 99}Tc inductively coupled plasma-mass spectrometry (ICP-MS) was based on the modification of a variety of available separation techniques. Standard Ru and Rh solutions were used for checking decontaminations and instrument response respectively. Technetium-99 and {sup 95m}Tc tracers were applied as yield monitors using ICP-MS and gamma-ray spectrometry respectively. Percent recoveries are reported for a variety of radiochemical separation procedures for water (58-83%), seaweed (10-76%), and for soil matrices (19-79%).

  8. Anomalous coupling, top-mass and parton-shower effects in W + W - production

    NASA Astrophysics Data System (ADS)

    Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.

    2016-05-01

    We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.

  9. Determination of trace metals in marine biological reference materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Beauchemin, D.; McLaren, J.W.; Willie, S.N.; Berman, S.S.

    1988-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of two marine biological reference materials (dogfish liver tissue (DOLT-1) and dogfish muscle tissue (DORM-1)). The materials were put into solution by digestion in a nitric acid/hydrogen peroxide mixture. Thirteen elements (Na, Mg, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb) were then determined. Accurate results were obtained by standard additions or isotope dilution techniques for all of these elements in DORM-1 and for all but Cr in DOLT-1.

  10. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  11. Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry.

    PubMed

    Varga, Zsolt; Surányi, Gergely

    2007-09-01

    The paper describes analytical methods developed for the production date determination of uranium-based nuclear materials by the measurement of 230Th/234U isotope ratio. An improved sample preparation method for the destructive analysis involving extraction chromatographic separation with TEVA resin was applied prior to the measurement by isotope dilution inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The results obtained were compared with the direct, quasi-non-destructive measurement using laser ablation ICP-SFMS technique for age determination. The advantages and limitations of both methods are discussed. PMID:17765059

  12. Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity

    NASA Astrophysics Data System (ADS)

    Grote, Jan-Philipp; Zeradjanin, Aleksandar R.; Cherevko, Serhiy; Mayrhofer, Karl J. J.

    2014-10-01

    In this work the online coupling of a miniaturized electrochemical scanning flow cell (SFC) to a mass spectrometer is introduced. The system is designed for the determination of reaction products in dependence of the applied potential and/or current regime as well as fast and automated change of the sample. The reaction products evaporate through a hydrophobic PTFE membrane into a small vacuum probe, which is positioned only 50-100 μm away from the electrode surface. The probe is implemented into the SFC and directly connected to the mass spectrometer. This unique configuration enables fast parameter screening for complex electrochemical reactions, including investigation of operation conditions, composition of electrolyte, and material composition. The technical developments of the system are validated by initial measurements of hydrogen evolution during water electrolysis and electrochemical reduction of CO2 to various products, showcasing the high potential for systematic combinatorial screening by this approach.

  13. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry.

    PubMed

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0-10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  14. Characterisation of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry.

    PubMed

    Ragonese, Carla; Tedone, Laura; Beccaria, Marco; Torre, Germana; Cichello, Filomena; Cacciola, Francesco; Dugo, Paola; Mondello, Luigi

    2014-02-15

    In this work the characterisation of the lipid fraction of several species of marine macro algae gathered along the eastern coast of Sicily is reported. Two species of green marine algae (Chloropyceae), two species of red marine algae (Rhodophyceae) and four species of brown marine algae (Pheophyceae) were evaluated in terms of fatty acids, triacylglycerols, pigments and phospholipids profile. Advanced analytical techniques were employed to fully characterise the lipid profile of these Mediterranean seaweeds, such as GC-MS coupled to a novel mass spectra database supported by the simultaneous use of linear retention index (LRI) for the identification of fatty acid profile; LC-MS was employed for the identification of triacylglycerols (TAGs), carotenoids and phospholipids; the determination of accurate mass was carried out on carotenoids and phospholipids. Quantitative data are reported on fatty acids and triacylglycerols as relative percentage of total fraction. PMID:24128566

  15. Characterization of dihydrostreptomycin-related substances by liquid chromatography coupled to ion trap mass spectrometry.

    PubMed

    Pendela, Murali; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2009-06-01

    Dihydrostreptomycin sulphate (DHS) is a water-soluble, broad-spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion-pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non-volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion-pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. PMID:19449319

  16. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  17. Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry

    SciTech Connect

    Jiang, S.J.; Houk, R.S.; Stevens, M.A.

    1988-06-01

    Positioning the sampling orifice relatively far from the load coil combined with use of low forward power and high aerosol gas flow rate causes the background mass spectrum to become dominated by NO/sup +/. Nearly all the Ar/sup +/ and ArH/sup +/ ions are suppressed under these conditions, which frees m/z 39 and 41 for potassium isotope ratio measurements. The precision is 0.3-0.9% relative standard deviation for potassium concentrations in the range 1-50 mg L/sup -1/. The determined ratios are approx. 9% higher than the accepted value and also vary with the concentration of sodium concomitant, so calibrations and chemical separations are desirable. These observations should permit use of inductively coupled plasma mass spectrometry for rapid isotope ratio determinations of potassium from biological organisms or water sources.

  18. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    NASA Astrophysics Data System (ADS)

    Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  19. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    PubMed Central

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  20. Screening for low molecular weight compounds in fish meal solubles by hydrophilic interaction liquid chromatography coupled to mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple analytical method using hydrophilic interaction liquid chromatography coupled with mass spectrometry was developed to screen for low molecular weight compounds in enzyme treated and untreated Alaskan pollock (Theragra chalcogramma) stickwater (SW) generated from processing fish meal with po...

  1. Investigation of coupled heat and mass transfer in heterogeneous porous media using numerical simulations

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Frippiat, C. C.; Zyvoloski, G. A.

    2007-12-01

    A significant body of knowledge exists on separates processes of thermal and mass transport in granular and fractured subsurface formations. However, the need to simulate these processes in a fully coupled way has become necessary to deal with problems associated with long-term-storage of nuclear waste, and the development of new technologies for subsurface remediation. Another emerging area for research is associated with the development of technologies for in situ extraction of underground resources. Numerical models that couple thermal and mass transport processes will play a crucial role in understanding the fundamental processes associated with these new technologies, as well as in making predictions on how complex subsurface systems are expected to behave. It is our hypothesis that heat transport will have a significant impact on distributions of solute concentration, through temperature-dependent dissolution and precipitation, and temperature-dependent rate-limited diffusive transfer of solutes in fractured or highly heterogeneous media. A number of issues related to the validity of existing numerical tools that capture these processes, and their application to field systems through up-scaling need to be investigated. With this overall goal in mind, in this preliminary study, we explore the effect of the variability of subsurface properties on heat and mass transport using simulations conducted using an existing multiphase model. The finite-element code FEHM (Finite-Element Heat and Mass transport code) used in this study was developed at Los Alamos National Laboratory. This code allows for the coupled simulation of flow, heat and mass transport, accounting for density effects and dissolution and/or precipitation reactions. Our analysis is based on two- and three-dimensional simulations using synthetic data sets. Heterogeneous facies distributions are generated according to Markov Chain transition probability models. A distributed source of constant

  2. GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection

    PubMed Central

    Chopard, Tony; Lacour, Vivien; Leblois, Therese

    2014-01-01

    This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation. PMID:25474375

  3. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  4. Effects of Large Wing-Tip Masses on Oscillatory Stability of Wing Bending Coupled with Airplane Pitch

    NASA Technical Reports Server (NTRS)

    Higdon, Donald T.

    1959-01-01

    An examination of oscillatory stability for a straight-winged airplane with large concentrated wing-tip masses was made using wing-bending and airplane-pitching degrees of freedom and considering only quasi-steady aerodynamic forces. It was found that instability caused by coupling of airplane pitching and wing bending occurred for large ratios of effective wing-tip mass to total airplane mass and for coupled wing-bending frequencies near or below the uncoupled pitching frequency. Boundaries for this instability are given in terms of two quantities: (1) the ratio of effective tip mass to airplane mass, which can be estimated, and (2) the ratio of the coupled bending frequency to the uncoupled pitch frequency, which can be measured in flight. These boundaries are presented for various values of several airplane parameters.

  5. Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition

    PubMed Central

    Lambert, Jean-Philippe; Ivosev, Gordana; Couzens, Amber L.; Larsen, Brett; Taipale, Mikko; Lin, Zhen-Yuan; Zhong, Quan; Lindquist, Susan; Vidal, Marc; Aebersold, Ruedi; Pawson, Tony; Bonner, Ron; Tate, Stephen; Gingras, Anne-Claude

    2013-01-01

    Characterizing changes in protein-protein interactions associated with sequence variants (e.g. disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies where cost and time are major considerations. To this end, we have coupled AP to data-independent mass spectrometric acquisition (SWATH), and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes, and propose a scalable pipeline for systems biology studies. PMID:24162924

  6. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  7. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer

    PubMed Central

    Chen, Lee Chuin; Rahman, Md. Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  8. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  9. Holomorphic Yukawa couplings in heterotic string theory

    NASA Astrophysics Data System (ADS)

    Blesneag, Stefan; Buchbinder, Evgeny I.; Candelas, Philip; Lukas, Andre

    2016-01-01

    We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in ref. [32].

  10. Inverse model of fully coupled fluid flow and stress in fractured rock masses

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Rutqvist, J.

    2008-12-01

    In order to reflect the real behavior of the seepage field and deformation field during the environment change and construction process£¬the basic equations and FEM methods for fully coupled analysis of fluid flow and stress are developed£¬based on the assumptions of small deformation and incompressible water flow in complicated fractured rock masses. Both the equivalent continuum media model and the discrete media model are adopted. And the modified initial flow method is used to deal with the free surface of unconfined seepage. Due to the difficulty in determining the parameters of water flow field, stress field and their coupling relations, an inverse model is presented for the fully coupled problem in which both the data of water head and displacement are taken into consideration. Objective function is defined based on sensitivity analysis of parameters, and the relative values of water head, displacement on parameters are adopted in the establishment of objective function. A hybrid genetic algorithm is proposed as optimization method. The probability of crossover and mutation is determined according to chromosome fitness and a concept of self- adaptive probability is given. In addition, simplex method is also applied to increase the ability of local search, the operation of accelerated cycle is used in order to decrease optimization time.

  11. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686

  12. Recent developments in inductively coupled plasma source magnetic sector multiple collector mass spectrometry

    SciTech Connect

    Halliday, A.N.; Lee, Der-Chuen; Christensen, J.C.; Jones, C.E.; Hall, C.M.; Yi, Wen; Teagle, D.; Walder, A.J.; Freedman, P.A.

    1994-11-01

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer and presents results of new experiments aimed at further evaluating the instrument`s capability. It is shown using standard solutions that trace element ratios such as Rb/Sr can be measured precisely without isotope dilution by comparison with reference solutions of known composition. Similarly, using a new wide flight tube, Pb isotopic compositions and U/Pb ratios can be accurately measured simultaneously without isotope dilution. The effects of deliberately inducing changes in the running conditions (RF power) are shown to be significant for measuring trace element ratios but not for mass bias and interference corrected isotopic compositions. Finally, it is demonstrated that precise and accurate isotopic compositions of elements as refractory as W can be determined relatively easily by solution nebulization and even by direct laser ablation of complex silicates. Isobaric interferences in such experiments are negligible. These experiments serve to highlight the remarkable potential that this new field offers for hitherto difficult isotopic measurements in nuclear, earth, environmental and medical sciences. Isotopic measurements can be made that are reproducible at high precision through a range of running conditions, even in the presence of isobaric interferences. The ability to correct for mass discrimination accurately using a second element of similar mass, the very high sensitivity for elements that are otherwise difficult to ionize, the demonstrated capability for laser ablation work and the ability to measure through a wide mass range simultaneously give this instrument major advantages over other more traditional techniques of isotopic measurement.

  13. Quantitative analysis of antibiotics in aquifer sediments by liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Tong, Lei; Liu, Hui; Xie, Cong; Li, Minjing

    2016-06-24

    A highly effective analytical method for multi-residue determination of antibiotics in aquifer sediments was first established in this study. Microwave-assisted solvent extraction (MASE) and solid-phase extraction were used for sample pre-concentration and purification, ultra-high performance liquid chromatography coupled to hybrid quadrupole-high resolution Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) was applied for detection. For high resolution mass spectrometry (HRMS), the target compounds were tentatively identified by retention time and accurate mass which was measured with precursor ions in Target-SIM scan, and then confirmed by the monitoring of daughter ion fragments which were generated in dd-MS(2) scan. The results provided good mass accuracy with mass deviations below 2ppm (except norfloxacin with -2.3ppm) for quantitative analysis of the compounds by HRMS. Reasonable recoveries of all analytes were obtained more than 60% (except doxytetracycline) in fortification samples at concentrations higher than 10μgkg(-1). Relative standard deviations of repeatability and inter-day precision were below 21% and 11%. Limits of detection (LOD) ranged from 0.1 to 3.8μgkg(-1), whereas limits of quantification (LOQ) were established between 0.3-9.0μgkg(-1). The method was applied to analyze real aquifer sediment samples in different aquifer depth of 4.0, 7.5, 13.0 and 18.0m. Chlorotetracycline and ofloxacin were observed at relative high concentrations of 53 and 19μgkg(-1) respectively in 18.0m deepness. The exposure to low doses of these compounds in subsurface environment increases concerns on long-term ecological security of underground system. PMID:27215464

  14. Coupling Charge Reduction Mass Spectrometry to Liquid Chromatography for Complex Mixture Analysis.

    PubMed

    Stutzman, John R; Crowe, Matthew C; Alexander, James N; Bell, Bruce M; Dunkle, Melissa N

    2016-04-01

    Electrospray ionization (ESI) of solution mixtures often generates complex mass spectra, even following liquid chromatography (LC), due to analyte multiple charging. Multiple charge state distributions can lead to isobaric interferences, mass spectral congestion, and ambiguous ion identification. As a consequence, data interpretation increases in complexity. Several charge reduction mass spectrometry (MS) approaches have been previously developed to reduce the average charge state of gaseous ions; however, all of these techniques have been restricted to direct infusion MS. In this study, synthetic polyols and surfactants separated by liquid chromatography and ionized by positive mode ESI have been subjected to polonium-210 α-particle radiation to reduce the average charge state to singly charged cations prior to mass analysis. LC/MS analysis of 5000 molecular weight poly(ethylene glycol) (PEG5000) generated an average charge state of 5.88+; whereupon, liquid chromatography/electrospray ionization/charge reduction/mass spectrometry (LC/CR/MS) analysis of PEG 5000 generated an average charge state of 1.00+. The PEG5000 results demonstrated a decrease in spectral complexity and enabled facile interpretation. Other complex solution mixtures representing specific MS challenges (i.e., competitive ionization and isobaric ion overlap) were explored and analyzed with LC/CR/MS to demonstrate the benefits of coupling LC to CR/MS. For example, polyol information related to initiator, identity/relative amount of monomer, and estimated molecular weight was characterized in random and triblock ethylene oxide/propylene oxide polyols using LC/CR/MS. LC/CR/MS is a new analytical technique for the analysis of complex mixtures. PMID:26971559

  15. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.

    PubMed

    Hu, Xianqiao; Dong, Yuanyuan; He, Qiaohong; Chen, Hengwu; Zhu, Zhiwei

    2015-05-15

    A highly integrated polystyrene (PS) microfluidic chip coupled to electrospray ionization mass spectrometry for on-chip protein digestion and online analysis was developed. The immobilized enzymatic microreactor for on-chip protein digestion was integrated onto microchip via the novel method of region-selective UV-modification combined with glutaraldehyde-based immobilization. The micro film electric contact for applying high voltage was prepared on chips by using UV-directed electroless plating technique. A micro-tip was machined at the end of main channel, serving as the interface between microchip and mass spectrometric detector. On-chip digestion and online detection of protein was carried out by coupling the microchip with mass spectrometry (MS). The influences of methanol flow rate in side channel on the stability of spray and intensity of signals were investigated systematically. Also the influence of sample flow rate on the performance of immobilized enzymatic reactor were investigated. Stable spray was obtained at the spray voltage of 2.8-3.0kV and the methanol flow rate of 500-700nLmin(-1) with the relative standard deviation (RSD) of total ion current (TIC) less than 10%. The influence of sample flow rate on the performance of immobilized enzymatic reactor was also studied. The sequence coverage of protein identification decreased with the increase of flow rate of the sample solution. A sequence coverage of 96% was obtained with immobilized enzymatic reactor at the sample flow rate of 100nLmin(-1) with the reaction time of 8.4min. It could detect cytochrome c as low as 10μgmL(-1) with the developed system. No obvious decrease in protein digestion efficiency was observed after the chip continuously performed for 4h and stored for 15d. PMID:25864010

  16. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  17. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    NASA Astrophysics Data System (ADS)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  18. Representative sampling using single-pulse laser ablation withinductively coupled plasma mass spectroscopy

    SciTech Connect

    Liu, Haichen; Mao, Xianglei; Russo, Richard E.

    2001-04-02

    Single pulse laser ablation sampling with inductively coupled plasma mass spectrometry (ICP-MS) was assessed for accurate chemical analysis. Elemental fractionation (e.g. Pb/U), the quantity of ablated mass (crater volume), ICP-MS intensity and the particle contribution (spike signal) during single pulse ablation of NIST 610 glass were investigated. Pb/U fractionation significantly changed between the first and second laser pulse and showed strong irradiance dependence. The Pb/U ratio obtained by the first pulse was usually higher than that of the second pulse, with the average value close to the representative level. Segregation during laser ablation is proposed to explain the composition change between the first and second pulse. Crater volume measurements showed that the second pulse produced significantly more ablated mass. A roll-off of the crater depth occurred at {approx}750 GW/cm{sup 2}. The absolute ICP-MS intensity from the second pulse showed no correlation with crater depth. Particle induced spikes on the transit signal showed irradiance and elemental species dependence.

  19. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations. PMID:26978934

  20. Dynamical mass generation in QED with magnetic fields: Arbitrary field strength and coupling constant

    SciTech Connect

    Rojas, Eduardo; Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo

    2008-05-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics, in the presence of magnetics fields of arbitrary strength, by solving the Schwinger-Dyson equation for the fermion self-energy in the rainbow approximation. We employ the Ritus eigenfunction formalism which provides a neat solution to the technical problem of summing over all Landau levels. It is well known that magnetic fields catalyze the generation of fermion mass m for arbitrarily small values of electromagnetic coupling {alpha}. For intense fields it is also well known that m{proportional_to}{radical}(eB). Our approach allows us to span all regimes of parameters {alpha} and eB. We find that m{proportional_to}{radical}(eB) provided {alpha} is small. However, when {alpha} increases beyond the critical value {alpha}{sub c} which marks the onslaught of dynamical fermion masses in vacuum, we find m{proportional_to}{lambda}, the cutoff required to regularize the ultraviolet divergences. Our method permits us to verify the results available in literature for the limiting cases of eB and {alpha}. We also point out the relevance of our work for possible physical applications.

  1. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NASA Astrophysics Data System (ADS)

    Castelijns, H. J.; Huinink, H. P.; Pel, L.; Zitha, P. L. J.

    2006-07-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons without chemical reaction, which allows for various applications in multiphase systems. In this study, TMOS was mixed with n-hexadecane and placed together with water in small cylinders. Upon contact of the mixture with the water, TMOS transfers completely to the aqueous phase where it forms a gel through a heterogeneous reaction. Nuclear magnetic resonance imaging and relaxation time measurements were employed to monitor the mass transfer of TMOS from the oleic to the aqueous phase. The longitudinal relaxation time (T1) was calibrated and used to determine the concentration of TMOS in n-hexadecane during the transfer. The mass transfer rate was obtained at various temperatures (25-45°C) and for several initial concentrations of TMOS. In the aqueous phase a sharp decrease in the transversal relaxation time (T2) is observed which is attributed to the gel reaction, in particular the formation of methanol in the initial stage. The minimum in T2 indicates the gelation point, and was found to be strongly dependent on temperature and concentration.

  2. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization.

    PubMed

    Van Berkel, Gary J; Ford, Michael J; Deibel, Michael A

    2005-03-01

    Desorption electrospray ionization (DESI) was demonstrated as a means to couple thin-layer chromatography (TLC) with mass spectrometry. The experimental setup and its optimization are described. Development lanes were scanned by moving the TLC plate under computer control while directing the stationary DESI emitter charged droplet plume at the TLC plate surface. Mass spectral data were recorded in either selected reaction monitoring mode or in full scan ion trap mode using a hybrid triple quadrupole linear ion trap mass spectrometer. Fundamentals and practical applications of the technique were demonstrated in positive ion mode using selected reaction monitoring detection of rhodamine dyes separated on hydrophobic reversed-phase C8 plates and reversed-phase C2 plates, in negative ion full scan mode using a selection of FD&C dyes separated on a wettable reversed-phase C18 plate, and in positive ion full scan mode using a mixture of aspirin, acetaminophen, and caffeine from an over-the-counter pain medication separated on a normal-phase silica gel plate. PMID:15732898

  3. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2005-01-01

    Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.

  4. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil. PMID:26904837

  5. Rapid and simultaneous determination of five vinca alkaloids in Catharanthus roseus and human serum using trilinear component modeling of liquid chromatography-diode array detection data.

    PubMed

    Liu, Zhi; Wu, Hai-Long; Li, Yong; Gu, Hui-Wen; Yin, Xiao-Li; Xie, Li-Xia; Yu, Ru-Qin

    2016-07-15

    A novel chemometrics-assisted high performance liquid chromatography method coupled with diode array detector (HPLC-DAD) was proposed for the simultaneous determination of vincristine (VCR), vinblastine (VLB), vindoline (VDL), catharanthine (CAT) and yohimbine (YHB) in Catharanthus roseus (C. roseus) and human serum samples. With the second-order advantage of the alternating trilinear decomposition (ATLD) method, the resolution and rapid determination of five components of interest in complex matrices were performed, even in the present of heavy overlaps and unknown interferences. Therefore, multi-step purification was omitted and five components could be fast eluted out within 7.5min under simple isocratic elution condition (acetonitrile/0.2% formic acid water, 37:63, v/v). Statistical parameters, such as the linear correlation coefficient (R(2)), root-mean-square error of prediction (RMSEP), limit of detection (LOD) and limit of quantitation (LOQ) had been calculated to investigate the accuracy and reliability of the method. The average recoveries of five vinca alkaloids ranged from 97.1% to 101.9% and 98.8% to 103.0% in C. roseus and human serum samples, respectively. The five vinca alkaloids were adequately determined with limits of detection (LODs) of 29.5-49.3ngmL(-1) in C. roseus and 12.4-27.2ngmL(-1) in human serum samples, respectively. The obtained results demonstrated that the analytical strategy provided a feasible alternative for synchronously monitoring the quality of raw herb and the concentration of blood drugs. PMID:26321366

  6. Association between Body Mass Index and Depressive Symptoms of African American Married Couples: Mediating and Moderating Roles of Couples' Behavioral Closeness

    ERIC Educational Resources Information Center

    Wickrama, Thulitha; Bryant, Chalandra M.

    2012-01-01

    This study examined (a) associations between body mass index (BMI) and depressive symptoms in African American husbands and wives, (b) transactional associations between husbands and wives in this relationship, and (c) mediating and moderating role of couples' behavioral closeness in this association. Data came from a sample of 450 African…

  7. Breast mass segmentation in digital mammography based on pulse coupled neural network and level set method

    NASA Astrophysics Data System (ADS)

    Xie, Weiying; Ma, Yide; Li, Yunsong

    2015-05-01

    A novel approach to mammographic image segmentation, termed as PCNN-based level set algorithm, is presented in this paper. Just as its name implies, a method based on pulse coupled neural network (PCNN) in conjunction with the variational level set method for medical image segmentation. To date, little work has been done on detecting the initial zero level set contours based on PCNN algorithm for latterly level set evolution. When all the pixels of the input image are fired by PCNN, the small pixel value will be a much more refined segmentation. In mammographic image, the breast tumor presents big pixel value. Additionally, the mammographic image with predominantly dark region, so that we firstly obtain the negative of mammographic image with predominantly dark region except the breast tumor before all the pixels of an input image are fired by PCNN. Therefore, in here, PCNN algorithm is employed to achieve mammary-specific, initial mass contour detection. After that, the initial contours are all extracted. We define the extracted contours as the initial zero level set contours for automatic mass segmentation by variational level set in mammographic image analysis. What's more, a new proposed algorithm improves external energy of variational level set method in terms of mammographic images in low contrast. In accordance with the gray scale of mass region in mammographic image is higher than the region surrounded, so the Laplace operator is used to modify external energy, which could make the bright spot becoming much brighter than the surrounded pixels in the image. A preliminary evaluation of the proposed method performs on a known public database namely MIAS, rather than synthetic images. The experimental results demonstrate that our proposed approach can potentially obtain better masses detection results in terms of sensitivity and specificity. Ultimately, this algorithm could lead to increase both sensitivity and specificity of the physicians' interpretation of

  8. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.; Date, A.R.

    1987-04-01

    The isotopic composition of nanogram quantities of osmium was measured by using an inductively coupled plasma source mass spectrometer. Sensitivity was enhanced a factor of approx.100 by the use of an osmium tetraoxide vapor generator rather than nebulization of solution. For samples less than or equal to5 ng, the ratios /sup 190/Os//sup 192/Os, /sup 189/Os//sup 192/Os, and /sup 188/Os//sup 192/Os were determined to better than +/- 0.5% (1sigma/sub m/) precision. For the minor isotopes, the ratios /sup 187/Os//sup 192/Os and /sup 186/Os//sup 192/Os were determined to +/-1%, and /sup 184/Os//sup 192/Os (4 x 10/sup -4/) was determined to approx.10%. Isotope ratios for common osmium are reported.

  9. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  10. Phytochemical analysis of Hibiscus caesius using high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Ain, Quratul; Naveed, Muhammad Na; Mumtaz, Abdul Samad; Farman, Muhammad; Ahmed, Iftikhar; Khalid, Nauman

    2015-09-01

    Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius. PMID:26408882

  11. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, H.E.; Garbarino, J.R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  12. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  13. Determination of mercury in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liaw, Ming-Jyh; Jiang, Shiuh-Jen; Li, Yi-Ching

    1997-06-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to the determination of mercury in several fish samples. The effects of instrument operating conditions and slurry preparation on the ion signals are reported. Palladium was used as modifier to delay the vaporization of mercury in this study. As the vaporization behavior of mercury in fish slurry and aqueous solution is quite different, the standard addition method was used for the determination of mercury in reference materials. The detection limit of mercury estimated from the standard addition curve was in the range 0.002-0.004 μg g -1 for different samples. This method has been applied to the determination of mercury in dogfish muscle reference material (DORM-1 and DORM-2) and dogfish liver reference material (DOLT-1). Accuracy was better than 4% and precision was better than 7% with the USS-ETV-ICP-MS method.

  14. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  15. Multielement analysis of deep-sea sediments by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xia, Ning; Wu, Zhaohui; Guo, Dongfa; Yao, De

    2008-05-01

    Marine sediments were dissolved by HNO3-HF-HClO4 in a sealed container at low pressure; HF was evaporated in an open container and salts were dissolved in HCl by heating, then transferred to 2% HNO3 solution. A total of 45 elements, including Li, Be, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th and U, were measured by inductively coupled plasma mass spectrometry (ICP-MS). Conditions and sample experiments showed that this procedure defines a good experimental method which has the advantages of clear interference, easy operation and reliable results. The concentrations of the 45 elements could be used for resource exploration, environmental assessment and academic research.

  16. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veverková, Lenka; Hradilová, Šárka; Milde, David; Panáček, Aleš; Skopalová, Jana; Kvítek, Libor; Petrželová, Kamila; Zbořil, Radek

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2- and AgCl32 - for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results.

  17. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  18. Detection of Amadori compounds by capillary electrophoresis coupled to tandem mass spectrometry.

    PubMed

    Hau, Jörg; Devaud, Stéphanie; Blank, Imre

    2004-07-01

    Capillary electrophoresis coupled to mass spectrometry (CE-MS) is reported for the first time as an alternative and powerful analytical method for the characterization and monitoring of N-substituted 1-amino-1-deoxyketoses (Amadori compounds). It allows rapid separation and identification of Amadori compounds, while benefiting from the well-known advantages of MS, such as specificity and sensitivity. Amadori compounds of several amino acids, such as glycine, valine, isoleucine, methionine, proline, and phenylalanine, as well as a cysteine-derived compound, were separated and/or discriminated using CE-MS/MS under standard conditions. The technique may also be useful to study the stability and degradation kinetics of other labile charged Maillard intermediates that play an important role in food and medical science. PMID:15237408

  19. Combinatorial Library Screening Coupled to Mass Spectrometry to Identify Valuable Cyclic Peptides.

    PubMed

    Camperi, Silvia A; Giudicessi, Silvana L; Martínez-Ceron, María C; Gurevich-Messina, Juan M; Saavedra, Soledad L; Acosta, Gerardo; Cascone, Osvaldo; Erra-Balsells, Rosa; Albericio, Fernando

    2016-01-01

    Combinatorial library screening coupled to mass spectrometry (MS) analysis is a practical approach to identify useful peptides. Cyclic peptides can have high biological activity, selectivity, and affinity for target proteins, and high stability against proteolytic degradation. Here we describe two strategies to prepare combinatorial libraries suitable for MS analysis to accelerate the discovery of cyclic peptide structures. Both approaches use ChemMatrix resin and the linker 4-hydroxymethylbenzoic acid. One strategy involves the synthesis of a one-bead-two-peptides library in which each bead contains both the cyclic peptide and its linear counterpart to facilitate MS analysis. The other protocol is based on the synthesis of a cyclic depsipeptide library in which a glycolamidic ester group is incorporated by adding glycolic acid. After library screening, the ring is opened and the peptide is released simultaneously for subsequent MS analysis. © 2016 by John Wiley & Sons, Inc. PMID:27258690

  20. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    PubMed

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health. PMID:27074712

  1. Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry.

    PubMed

    Dedecker, Maarten; Van Leene, Jelle; De Jaeger, Geert

    2015-04-01

    Rather than functioning independently, proteins tend to work in concert with each other and with other macromolecules to form macromolecular complexes. Affinity purification coupled to mass spectrometry (AP-MS) can lead to a better understanding of the cellular functions of these complexes. With the development of easy purification protocols and ultra-sensitive MS, AP-MS is currently widely used for screening co-complex membership in plants. Studying complexes in their developmental context through the isolation of specific organs and tissues has now become feasible. Besides, the tagged protein can be employed for probing other interactions like protein-DNA and protein-RNA interactions. With the tools at hand, protein-centred interaction studies will greatly improve our knowledge of how plant cells wire their functional components in relation to their function. PMID:25603557

  2. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect

    Saetveit, Nathan Joe

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  3. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  4. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    PubMed

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency. PMID:21709502

  5. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE PAGESBeta

    Parkison, Adam J.; Nelson, Andrew Thomas

    2016-01-11

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  6. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Terol, A; Ardini, F; Basso, A; Grotti, M

    2015-02-01

    The coupling of high temperature liquid chromatography (HTLC) and inductively coupled plasma mass spectrometry (ICPMS) for the determination of selenium metabolites in urine samples is reported for the first time. In order to achieve "ICPMS-friendly" chromatographic conditions, the retention on a graphite stationary phase of the major selenium urinary metabolites using only plain water with 2% methanol as the mobile phase was investigated. Under the optimal conditions (T=80°C, Ql=1.2 mL min(-1)), methyl 2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (selenosugar 1), methyl 2-acetamido-2-deoxy-1-seleno-β-d-glucosopyranoside (selenosugar 2) and trimethylselenonium ion were efficiently separated in less than 7 min, without any interferences due to other common selenium species (selenite, selenate, selenocystine and selenomethionine) or detectable effect of the urine matrix. The limits of detection were 0.3-0.5 ng Se mL(-1), and the precision of the analytical procedure was better than 3% (RSD%, n=5). The HTLC-ICPMS method was applied to the analysis of urine samples from two volunteers before and after ingestion of Brazil nuts or selenium supplements. The developed procedure proved to be adequate for the analytical task, providing results consistent with previous studies. PMID:25582485

  7. Coupled motion of rigid bodies about their center of mass. [Shuttle/payload system

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.; Donaldson, J. D.

    1979-01-01

    Nontrivial analytical solutions for the coupled motion of two rigid bodies about their center of mass are obtained on the assumptions that the rigid bodies are coupled by a massless rigid boom and that no external forces are acting on the system. Both relative rotational and translational motions of the two bodies are considered. General equations of motion are derived by regarding the two bodies as consisting of two distinct systems of particles and by applying the principle of conservation of angular momentum. It is shown that a basic nontrivial solution can be obtained for the translational problem if an assumption is made concerning the relative orientation of one principal axis of inertia of each body and that fundamental nontrivial solutions are readily obtained for the rotational problem if an additional assumption is made with respect to the symmetry of one body. Certain stability criteria are found for some of these motions by defining regions of constraint for the relative translational and rotational elements.

  8. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    NASA Astrophysics Data System (ADS)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  9. THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS

    SciTech Connect

    Manchester IV, W. B.; Van der Holst, B.; Toth, G.; Gombosi, T. I.

    2012-09-01

    We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index ({gamma} = 5/3), and includes Alfven wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfven wave pressure necessary to produce the observed bimodal solar wind speed. The Alfven waves are dissipated as they propagate from the Sun and heat protons on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO/EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.

  10. Investigating accretion disk - radio jet coupling across the stellar mass scale

    NASA Astrophysics Data System (ADS)

    Miller-Jones, James C. A.; Sivakoff, Gregory R.; Altamirano, Diego; Körding, Elmar G.; Krimm, Hans A.; Maitra, Dipankar; Remillard, Ron A.; Russell, David M.; Tudose, Valeriu; Dhawan, Vivek; Fender, Rob P.; Heinz, Sebastian; Markoff, Sera; Migliari, Simone; Rupen, Michael P.; Sarazin, Craig L.

    2011-02-01

    Relationships between the X-ray and radio behavior of black hole X-ray binaries during outbursts have established a fundamental coupling between the accretion disks and radio jets in these systems. I begin by reviewing the prevailing paradigm for this disk-jet coupling, also highlighting what we know about similarities and differences with neutron star and white dwarf binaries. Until recently, this paradigm had not been directly tested with dedicated high-angular resolution radio imaging over entire outbursts. Moreover, such high-resolution monitoring campaigns had not previously targetted outbursts in which the compact object was either a neutron star or a white dwarf. To address this issue, we have embarked on the Jet Acceleration and Collimation Probe Of Transient X-Ray Binaries (JACPOT XRB) project, which aims to use high angular resolution observations to compare disk-jet coupling across the stellar mass scale, with the goal of probing the importance of the depth of the gravitational potential well, the stellar surface and the stellar magnetic field, on jet formation. Our team has recently concluded its first monitoring series, including (E)VLA, VLBA, X-ray, optical, and near-infrared observations of entire outbursts of the black hole candidate H 1743-322, the neutron star system Aquila X-1, and the white dwarf system SS Cyg. Here I present preliminary results from this work, largely confirming the current paradigm, but highlighting some intriguing new behavior, and suggesting a possible difference in the jet formation process between neutron star and black hole systems.

  11. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that

  12. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  13. Highly sensitive immunoassay based on immunogold-silver amplification and inductively coupled plasma mass spectrometric detection.

    PubMed

    Liu, Rui; Liu, Xing; Tang, Yurong; Wu, Li; Hou, Xiandeng; Lv, Yi

    2011-03-15

    In this work, we demonstrated a highly sensitive inductively coupled plasma mass spectrometric (ICPMS) method for the determination of human carcinoembryonic antigen (CEA), which combined the inherent high sensitivity of elemental mass spectrometric measurement with the signal amplification of catalytic silver deposition on immunogold tags. The silver amplification procedure was easy to handle and required cheap reagents, and the sensitivity was greatly enhanced to 60-fold after a 15 min silver amplification procedure. The experimental conditions, including detection of gold and silver by ICPMS, immunoassay parameters, silver amplification parameters, analytical performance, and clinical serum samples analysis, were investigated. The ICPMS Ag signal intensity depends linearly on the logarithm of the concentration of human CEA over the range of 0.07-1000 ng mL(-1) with a limit of detection (LOD, 3σ) of 0.03 ng mL(-1) (i.e., 0.15 pM). The LOD of the proposed method is around 2 orders of magnitude lower than that by the widely used enzyme-linked immunosorbent assay (ELISA) and 1 order of magnitude lower than that by clinical routine chemiluminescence immunoassay (CLIA) or time-resolved fluoroimmunoassay (TRFIA) and conventional ICPMS immunoassay. The present strategy was applied to the determination of human CEA in clinical human serum samples, and the results were in good agreement with those obtained by chemiluminescence immunoassay. PMID:21348438

  14. Toward a Human Blood Serum Proteome: Analysis by Multidimensional Separation Coupled with Mass Spectrometry

    SciTech Connect

    Adkins, Joshua N.); Varnum, Susan M.); Auberry, Kenneth J.); Moore, Ronald J.); Angell, Nicolas; Smith, Richard D.); Springer, David L.); Pounds, Joel G.)

    2002-12-01

    Blood serum is a complex bodily fluid that contains proteins ranging in concentration over at least nine orders of magnitude. Using a combination of powerful mass spectrometry technologies with improvements in sample preparation, we have performed a proteomic analysis with sub-mL quantities of serum, and increased the measurable concentration range for proteins in blood serum beyond previous reports. We have detected 490 proteins in serum by online reversed-phase microcapillary liquid chromatography coupled with ion trap mass spectrometry. To perform this analysis, immunoglobulins were removed from serum using protein A/G, and the remaining proteins were digested with trypsin. Resulting peptides were separated by strong-cation exchange chromatography into distinct fractions prior to analysis. This separation resulted in an increase in the number of proteins detected in an individual serum sample by 3 to 5 fold. With this increase in the number of proteins identified we have detected some lower abundance serum proteins (ng/mL range) including human growth hormone, interleukin-12, and prostate-specific antigen. We also used SEQUEST to compare different protein databases with and without filtering. This comparison is plotted to allow for a quick visual assessment of different databases, as a subjective measure of quality. With this study, we have performed the most extensive analysis of serum proteins to date and laid the foundation for future refinements in the identification of novel protein biomarkers of disease.

  15. Investigation of palladium and platinum levels in food by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Frazzoli, Chiara; Cammarone, Roberta; Caroli, Sergio

    2007-05-01

    Over the last two decades, there has been increased concern regarding the impact of some noble metals, such as Pd and Pt, on human health. These elements pollute the environment due to their widespread use as catalytic converters and in medical applications. The risk they pose to human health and the environment is still controversial; however, literature data point to diet as an important source of uptake by the human body. Within this context, the total Pd and Pt content of several Italian food commodities has been investigated. A total of 90 samples, including flour products, vegetables and foodstuffs of animal origin (meat, milk and eggs), were collected and freeze-dried. Samples were analyzed by sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) after chopping or crushing followed by freeze-drying and microwave (MW)-assisted acid digestion in a Class-100 clean-room. A mathematical approach was adopted to correct the mass signals for still unresolved interference (mDeltam = 300, 10 000). The lowest and highest concentrations of Pt, i.e. 17 and 93 ng kg(-1) (dry weight, dw), were found in vegetables and flour products, respectively. The lowest Pd level (2830 ng kg(-1) dw) was found in eggs and the highest (47 800 ng kg(-1) dw) in vegetables. PMID:17487666

  16. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    PubMed

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research. PMID:26946007

  17. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment. PMID:18798196

  18. Origin of Self-preservation Effect for Hydrate Decomposition: Coupling of Mass and Heat Transfer Resistances.

    PubMed

    Bai, Dongsheng; Zhang, Diwei; Zhang, Xianren; Chen, Guangjin

    2015-01-01

    Gas hydrates could show an unexpected high stability at conditions out of thermodynamic equilibrium, which is called the self-preservation effect. The mechanism of the effect for methane hydrates is here investigated via molecular dynamics simulations, in which an NVT/E method is introduced to represent different levels of heat transfer resistance. Our simulations suggest a coupling between the mass transfer resistance and heat transfer resistance as the driving mechanism for self-preservation effect. We found that the hydrate is initially melted from the interface, and then a solid-like water layer with temperature-dependent structures is formed next to the hydrate interface that exhibits fractal feature, followed by an increase of mass transfer resistance for the diffusion of methane from hydrate region. Furthermore, our results indicate that heat transfer resistance is a more fundamental factor, since it facilitates the formation of the solid-like layer and hence inhibits the further dissociation of the hydrates. The self-preservation effect is found to be enhanced with the increase of pressure and particularly the decrease of temperature. Kinetic equations based on heat balance calculations is also developed to describe the self-preservation effect, which reproduces our simulation results well and provides an association between microscopic and macroscopic properties. PMID:26423519

  19. Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry.

    PubMed

    Davidek, Tomas; Kraehenbuehl, Karin; Devaud, Stéphanie; Robert, Fabien; Blank, Imre

    2005-01-01

    High-performance cation exchange chromatography coupled to tandem mass spectrometry or electrochemical detection was found to be an efficient tool for analyzing Amadori compounds derived from hexose and pentose sugars. The method allows rapid separation and identification of Amadori compounds, while benefiting from the well-known advantages of mass spectrometry, such as specificity and sensitivity. Glucose- and xylose-derived Amadori compounds of several amino acids, such as glycine, alanine, valine, leucine/isoleucine, methionine, proline, phenylalanine, and glutamic acid, were separated or discriminated using this new method. The method is suitable for the analysis of both model reaction mixtures and food products. Fructosylglutamate was found to be the major Amadori compound in dried tomatoes (approximately 1.5 g/100 g) and fructosylproline in dried apricots (approximately 0.2 g/100 g). Reaction of xylose and glycine at 90 degrees C (pH 6) for 2 h showed rapid formation of xylulosylglycine (approximately 12 mol %, 15 min) followed by slow decrease over time. Analysis of pentose-derived Amadori compounds is shown for the first time, which represents a major breakthrough in studying occurrence, formation, and decomposition of these labile Maillard intermediates. PMID:15623289

  20. Direct solid sampling of fire assay beads by spark ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Van Hoven, R. L.; Nam, Sang-Ho; Montaser, Akbar; Doughten, M. W.; Dorrzapf, A. F.

    1995-06-01

    A spark-based, solid-sampling cell is described for inductively coupled plasma mass spectrometry (ICP-MS). The cell is devised for the direct sampling of gold and silver beads produced by the classical lead fire assay procedure. The sampler produces a solid aerosol composed of submicron-sized vapor condensates and small (< 2 μm) spherules. In contrast to solution nebulization, the mass spectrum for spark-ICP-MS is relatively free of interfering metal oxide, polyatomic, and multiply-charged ions. The measurement precision is 3% RSD for Pt, Pd, and Rh preconcentrated into fire assay beads, but is 6% RSD for Ir due to its heterogeneous distribution in a silver bead. Detection limits determined for Pt, Pd, Rh, and Ir in fire assay beads range from 0.6 μg/g (Pt) to 1.2 μg/g (Pd). Calibration curves for these elements are linear up to the highest concentration in the bead studied (2000 μg/g). The quantitative potential of the method is evaluated using the South African Reference Material (SARM-7) geologic standard.

  1. Characterization of natural water resources in Israel by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Halicz, L.; Becker, J. S.; Pickhardt, C.; Gavrieli, I.; Burg, A.; Nishri, A.; Platzner, I. T.

    2006-03-01

    Analytical procedures are applied for the determination of plutonium, uranium and strontium concentration, their isotope ratios and the analysis of rare earth elements (REE) at trace and ultratrace level in natural Israeli water resources with relatively high matrix content (Na = 20-150 mg L-1, Mg = 20-50 mg L-1 and Ca = 40-100 mg L-1) by inductively coupled plasma mass spectrometry (ICP-MS). To avoid matrix and clogging effects on the cones during mass spectrometric measurements and to analyze Pu and REE at extremely low concentration levels, separation procedures from matrices were applied. An extremely low Pu contamination of the Sea of Galilee was observed due to global nuclear fallout after the nuclear weapons test in the 1960s. The detection limit, for example, for 239Pu was found to be <10-19 g mL-1. For uranium a natural variation of the 234U/238U isotope ratios by a factor of up to 2 in comparison to the IUPAC table value was detected using ICP-MS. This paper discusses the application of double-focusing sector field ICP-MS with single and multiple ion collection as well as quadrupole-based ICP-MS (ICP-QMS) for the quantitative determination of REE, plutonium, uranium and strontium and their isotope ratios after analyte/matrix separation at trace and ultratrace levels in natural water.

  2. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    SciTech Connect

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  3. Thin layer chromatography coupled with electrospray ionization mass spectrometry for direct analysis of raw samples.

    PubMed

    Hu, Bin; Xin, Gui-zhong; So, Pui-Kin; Yao, Zhong-Ping

    2015-10-01

    Conventional mass spectrometric analysis of raw samples commonly requires sample pretreatment and chromatographic separation using high performance liquid chromatography or gas chromatography, which could be time-consuming and laborious. In this study, thin layer chromatography (TLC) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for direct analysis of raw samples. The sorbent material of the TLC plate was found to be able to retain the interfering compounds and allow interested analytes to be extracted, ionized and detected by ESI-MS with much reduced matrix interference. Our results showed that this method could be effectively applied in direct analysis of samples containing common interfering compounds, e.g., salts and detergents, and rapid detection and quantitation of target analytes in raw samples. Offline and online separation and detection of different components in mixture samples, e.g., plant extracts, using TLC-ESI-MS were also demonstrated. Overall, this study revealed that TLC-ESI-MS could be a simple, rapid and efficient method for analysis of raw samples. PMID:26362806

  4. Origin of Self-preservation Effect for Hydrate Decomposition: Coupling of Mass and Heat Transfer Resistances

    PubMed Central

    Bai, Dongsheng; Zhang, Diwei; Zhang, Xianren; Chen, Guangjin

    2015-01-01

    Gas hydrates could show an unexpected high stability at conditions out of thermodynamic equilibrium, which is called the self-preservation effect. The mechanism of the effect for methane hydrates is here investigated via molecular dynamics simulations, in which an NVT/E method is introduced to represent different levels of heat transfer resistance. Our simulations suggest a coupling between the mass transfer resistance and heat transfer resistance as the driving mechanism for self-preservation effect. We found that the hydrate is initially melted from the interface, and then a solid-like water layer with temperature-dependent structures is formed next to the hydrate interface that exhibits fractal feature, followed by an increase of mass transfer resistance for the diffusion of methane from hydrate region. Furthermore, our results indicate that heat transfer resistance is a more fundamental factor, since it facilitates the formation of the solid-like layer and hence inhibits the further dissociation of the hydrates. The self-preservation effect is found to be enhanced with the increase of pressure and particularly the decrease of temperature. Kinetic equations based on heat balance calculations is also developed to describe the self-preservation effect, which reproduces our simulation results well and provides an association between microscopic and macroscopic properties. PMID:26423519

  5. A new sheathless electrospray interface for coupling of capillary electrophoresis to ion-trap mass spectrometry.

    PubMed

    Bendahl, Lars; Hansen, Steen Honoré; Olsen, Jørgen

    2002-01-01

    A simple laboratory-made sheathless electrospray interface for coupling of capillary electrophoresis to ion-trap mass spectrometry (CE/MS) was developed. The interface was machined in-house and it was designed to be freely interchangeable with the commercially available ionization sources for the mass spectrometer. Sharpened fused-silica capillaries were coated with nickel by a simple electrodeless plating procedure and were used as all-in-one columns/emitters. The electrodeless plating produced a 2-5- micro m thick smooth nickel layer that lasted for more than 8 h of continuous electrospraying. The performance of the CE/MS interface was examined by using four cationic imipramine derivatives as test substances. Relative detection limits were calculated on the basis of the extracted ion electrophorograms and were in the range 6-130 nmol/L, corresponding to absolute detection limits in the range of 20-400 amol. The system was applied for analysis of impurities in an impure imipramine N-oxide preparation, and two of the impurities could be identified on the basis of online-MS(MS) spectra recorded in scan-dependent mode. PMID:12478579

  6. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Susan Elizabeth Lorge

    2007-12-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 10{sup 7}-10{sup 10}atoms/cm{sup 2} range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true representation of the

  7. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  8. The potential of inductively coupled plasma-mass spectrometric detection for capillary electrophoretic analysis of pesticides.

    PubMed

    Wuilloud, Rodolfo G; Shah, Monika; Kannamkumarath, Sasi S; Altamirano, Jorgelina C

    2005-04-01

    In this work, the potential of inductively coupled plasma-mass spectrometry (ICP-MS) coupled to capillary electrophoresis (CE) to determine organophosphorus pesticides (OPPs) is demonstrated. Element specific detection of (31)P with ICP-MS is performed for the detection of OPPs. Three common OPPs, including glyphosate, glufosinate, and aminomethylphosphonic acid (AMPA), were analyzed by CE-ICP-MS to demonstrate its applicability for the analysis of OPPs. The advantages of using ICP-MS with respect to other common detectors, such as flame photometric detection (FPD), for CE analysis of OPPs are shown. Additionally, different CE separation conditions were studied to achieve complete baseline separation of the pesticide compounds in short migration times. Two CE buffer systems were evaluated for the separation of OPPs using ICP-MS detection. A buffer solution containing 40 mmol.L(-1) ammonium acetate at pH 9.0 and an applied voltage of +20 kV were finally selected leading to a separation time of 10.0 min. Both migration time and area relative standard deviations (%RSD) were evaluated and their respective values were in the intervals of 1.1-3.3% and 2.7-5.3%. Detection limits obtained with the CE-ICP-MS system were in the range of 0.11-0.19 mg.L(-1) (as compound) yielding an enhancement of 130- to 230-fold with respect to FPD. The proposed methodology was finally applied for the determination of the OPPs mentioned above in natural river water samples. PMID:15765486

  9. Control of coupling mass balance error in a process-based numerical model of surface-subsurface flow interaction

    NASA Astrophysics Data System (ADS)

    Fiorentini, Marcello; Orlandini, Stefano; Paniconi, Claudio

    2015-07-01

    A process-based numerical model of integrated surface-subsurface flow is analyzed in order to identify, track, and reduce the mass balance errors affiliated with the model's coupling scheme. The sources of coupling error include a surface-subsurface grid interface that requires node-to-cell and cell-to-node interpolation of exchange fluxes and ponding heads, and a sequential iterative time matching procedure that includes a time lag in these same exchange terms. Based on numerical experiments carried out for two synthetic test cases and for a complex drainage basin in northern Italy, it is shown that the coupling mass balance error increases during the flood recession limb when the rate of change in the fluxes exchanged between the surface and subsurface is highest. A dimensionless index that quantifies the degree of coupling and a saturated area index are introduced to monitor the sensitivity of the model to coupling error. Error reduction is achieved through improvements to the heuristic procedure used to control and adapt the time step interval and to the interpolation algorithm used to pass exchange variables from nodes to cells. The analysis presented illustrates the trade-offs between a flexible description of surface and subsurface flow processes and the numerical errors inherent in sequential iterative coupling with staggered nodal points at the land surface interface, and it reveals mitigation strategies that are applicable to all integrated models sharing this coupling and discretization approach.

  10. Characterization of a Second-generation Focal-plane Camera Coupled to an Inductively Coupled Plasma Mattauch-Herzog Geometry Mass Spectrograph

    SciTech Connect

    Schilling, G D.; Andrade, Francisco J.; Barnes, James H.; Sperline, Roger P.; Denton, M BONNER.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2006-07-01

    A second-generation Faraday-strip array detector has been coupled to an inductively coupled plasma Mattauch- Herzog geometry mass spectrograph, thereby offering simultaneous acquisition of a range of mass-to-charge ratios. The second-generation device incorporates narrower, more closely spaced collectors than the earlier system. Furthermore, the new camera can acquire signal on all collectors at a frequency greater than 2 kHz and has the ability to independently adjust the gain level of each collector. Each collector can also be reset independently. With these improvements, limits of detection in the hundreds of picograms per liter for metals in solution have been obtained. Some additional features, such as a broader linear dynamic range (over 7 orders of magnitude), greater resolving power (up to 600), and improved isotope ratio accuracy were attained. In addition, isotope ratio precision as low as 0.018% RSD was achieved.

  11. Coupling of a gas chromatograph to a simultaneous-detection inductively coupled plasma mass spectrograph for speciation of organohalide and organometallic compounds

    SciTech Connect

    Barnes, James H.; Schilling, G; Sperline, Roger; Denton, M Bonner B.; Young, Erick T.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2004-06-01

    A gas chromatograph (GC) has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph (ICP-MHMS) equipped with a novel detector array. In its current state of development the detector array, termed the focal plan camera (FPC), permits the simultaneous monitoring of up to 15 m/z values. A heated line was used to transfer the capillary-column effluent from the GC to the ICP torch, though due to instrument operating conditions, the transfer line was terminated 50 mm ahead of the ICP torch. Minimal tailing was observed, with the most severe effect seen for high-boiling analytes. With the coupling, absolute limits of detection are in the tens to hundreds of femtogram regime for organometallic species and in the single pictogram regime for halogenated hydrocarbons.

  12. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  13. Multi-Collector Inductively Coupled Plasma Mass Spectrometer – Operational Performance Report

    SciTech Connect

    Matthew Watrous; Anthony Appelhans; Robert Hague; John Olson; Tracy Houghton

    2013-06-01

    The INL made an assessment of the commercially available inductively coupled plasma mass spectrometers (ICPMS) for actinide analysis; emphasizing low detection limits for plutonium. INL scientists subsequently determined if plutonium was present on a swipe, at a 10 million atom decision level. This report describes the evaluation of ICPMS instruments and the operational testing of a new process for the dissolution, separation and analysis via ICPMS of swipes for plutonium and uranium. The swipe dissolution, plutonium and uranium isolation, separation and purification are wet chemistry methods following established procedures. The ICPMS is a commercially available multi-collector magnetic sector mass spectrometer that utilizes five ion counting detectors operating simultaneously. The instrument includes a sample introduction system allowing for sample volumes of < 1 mL to be reproducibly injected into the instrument with minimal waste of the sample solution, while maximizing the useable signal. The performance of the instrument was measured using SRM 996 (244Pu spike) at concentrations of 12 parts per quadrillion (ppq, fg/mL) and with SRM 4350B Columbia River Sediment samples spiked onto swipes at the 10 million atom level. The measured limit of detection (LOD, defined as 3s) for 239Pu is 310,000 atoms based upon the instrument blank data. The limit of quantification (LOQ defined as 10 s) for 239Pu is 105,000 atoms. The measured limit of detection for 239Pu from the SRM 4350B spiked onto a swipe was 2.7 million atoms with the limit of quantification being 9.0 million atoms.

  14. Environmental forensics in groundwater coupling passive sampling and high resolution mass spectrometry for screening.

    PubMed

    Soulier, Coralie; Coureau, Charlotte; Togola, Anne

    2016-09-01

    One of the difficulties encountered when monitoring groundwater quality is low and fluctuating concentration levels and complex mixtures of micropollutants, including emerging substances or transformation products. Combining passive sampling techniques with analysis by high resolution mass spectrometry (HRMS) should improve environmental metrology. Passive samplers accumulate compounds during exposure, which improves the detection of organic compounds and integrates pollution fluctuations. The Polar Organic Chemical Integrative Sampler (POCIS) were used in this study to sequester polar to semi-polar compounds. The methodology described here improves our knowledge of environmental pollution by highlighting and identifying pertinent compounds to be monitored in groundwater. The advantage of combining these two approaches is demonstrated on two different sites impacted by agricultural and/or urban pollution sources where groundwater was sampled for several months. Grab and passive sampling were done and analyzed by liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer (LC-QTOF). Various data processing approaches were used (target, suspect and non-target screening). Target screening was based on research from compounds listed in a homemade database and suspect screening used a database compiled using literature data. The non-target screening was done using statistical tools such as principal components analysis (PCA) with direct connections between original chromatograms and ion intensity. Trend plots were used to highlight relevant compounds for their identification. The advantage of using POCIS to improve screening of polar organic compounds was demonstrated. Compounds undetected in water samples were detected with these tools. The subsequent data processing identified sentinel molecules, molecular clusters as compounds never revealed in these sampling sites, and molecular fingerprints. Samples were compared and multidimensional

  15. Inductively coupled plasma-mass spectrometry: An emerging method for analysis of long-lived radionuclides

    SciTech Connect

    Ross, R.R.; Noyce, J.R.; Lardy, M.M.

    1993-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a relatively new technique that can analyze for most of the elements in the periodic table at parts per billion (ng/mL) to parts per trillion (pg/mL). Already in use several years for trace analysis of stable isotopes, ICP-MS is becoming a powerful, complementary method to the counting of decay radiations for the analysis of radionuclides. Most radionuclides with half-lives longer than approximately 1x10{sup 3} years can be quantitatively detected on ICP-MS instruments that have an electrothermal vaporization unit for the injection of sample aliquants. Radionuclides with half-lives greater than approximately 1x10{sup 4} years can be measured routinely with greater sensitivity and more quickly by ICP-MS than by radiation counting. Examples from the literature of applying ICP-MS to radionuclides are the bioassay of uranium in urine, measurement of {sup 237}Np in soil and silt, and analysis for {sup 99}Tc in sea water, seaweed, and marine sediment. This paper discusses the instrumentation, advantages and limitations, and present and potential applications of ICP-MS for radionuclide measurements.

  16. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Moreta, Cristina; Tena, María-Teresa

    2015-10-01

    A simple and sensitive analytical method for the determination of several plastic additives in multilayer packaging based on solid-liquid extraction (SLE) and ultra-high performance liquid chromatography (UHPLC) coupled to variable wavelength (VWD) and time of flight mass spectrometry (TOF-MS) detectors is presented. The proposed method allows the simultaneous determination of fourteen additives belonging to different families such as antioxidants, slip agents and light stabilizers, as well as two oxidation products in only 9min. The developed method was validated in terms of linearity, matrix effect error, detection and quantification limits, repeatability and intermediate precision. The instrumental method showed satisfactory repeatability and intermediate precision at concentrations closed to LOQ with RSDs less than 7 and 20%, respectively, and LODs until 5000 times more sensitive than other GC-FID and HPLC-VWD methods previously reported. Also, focused ultrasound solid-liquid extraction (FUSLE) was optimized and evaluated to extract plastic additives from packaging. Extraction results obtained by FUSLE and SLE were compared to those obtained by pressurized liquid extraction (PLE). All extraction methods showed excellent extraction efficiency for slip agents, however quantitative recovery of all analytes was achieved only by SLE with just 5ml of hexane for 10h. Finally, the selected method was applied to the analysis of packaging samples where erucamide, Irgafos 168, oxidized Irgafos 168, Irganox 1076 and Irganox 1010 were detected and quantified. PMID:26319625

  17. Toward Sensitive and Accurate Analysis of Antibody Biotherapeutics by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    An, Bo; Zhang, Ming

    2014-01-01

    Remarkable methodological advances in the past decade have expanded the application of liquid chromatography coupled with mass spectrometry (LC/MS) analysis of biotherapeutics. Currently, LC/MS represents a promising alternative or supplement to the traditional ligand binding assay (LBA) in the pharmacokinetic, pharmacodynamic, and toxicokinetic studies of protein drugs, owing to the rapid and cost-effective method development, high specificity and reproducibility, low sample consumption, the capacity of analyzing multiple targets in one analysis, and the fact that a validated method can be readily adapted across various matrices and species. While promising, technical challenges associated with sensitivity, sample preparation, method development, and quantitative accuracy need to be addressed to enable full utilization of LC/MS. This article introduces the rationale and technical challenges of LC/MS techniques in biotherapeutics analysis and summarizes recently developed strategies to alleviate these challenges. Applications of LC/MS techniques on quantification and characterization of antibody biotherapeutics are also discussed. We speculate that despite the highly attractive features of LC/MS, it will not fully replace traditional assays such as LBA in the foreseeable future; instead, the forthcoming trend is likely the conjunction of biochemical techniques with versatile LC/MS approaches to achieve accurate, sensitive, and unbiased characterization of biotherapeutics in highly complex pharmaceutical/biologic matrices. Such combinations will constitute powerful tools to tackle the challenges posed by the rapidly growing needs for biotherapeutics development. PMID:25185260

  18. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, J. S.; Dietrich, R. C.; Matusch, A.; Pozebon, D.; Dressler, V. L.

    2008-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C +, 33S + and 34S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.

  19. Determination of sulfonamides in beeswax by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Mitrowska, Kamila; Antczak, Maja

    2015-12-01

    The manuscript presents the development of a new method for the quantification of 16 sulfonamides in beeswax. Different sample preparation techniques were tested and modified to maximise the recovery of the target analytes and minimise the amount of coeluted impurities under conditions that provide reproducible results. The proposed method consisted of melting and dilution of beeswax in a mixture of n-hexane and isopropanol followed by extraction with 2% acetic acid. The extract was cleaned up by solid-phase extraction using strong cation exchange phase. Determination of the sulfonamides was achieved by liquid chromatography coupled to tandem mass spectrometry with the use of a pentafluorophenyl analytical column and applying a gradient elution with acetonitrile and 0.01% acetic acid as mobile phases. The limits of detection and limits of quantification ranged from 1 to 2μg/kg and from 2 to 5μg/kg, respectively. The recoveries varied between 65.2% and 117.8% while coefficient of variation of the method was less than 24.2% under intermediate precision conditions. Finally, the method was applied to the analysis of real samples of beeswax from beekeepers and commercial foundations manufacturers. PMID:26554312

  20. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model

    PubMed Central

    Bridge, L. J.; Franklin, K. A.; Homer, M. E.

    2013-01-01

    Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity. PMID:23720538

  1. Suppression of seizures based on the multi-coupled neural mass model

    NASA Astrophysics Data System (ADS)

    Cao, Yuzhen; Ren, Kaili; Su, Fei; Deng, Bin; Wei, Xile; Wang, Jiang

    2015-10-01

    Epilepsy is one of the most common serious neurological disorders, which affects approximately 1% of population in the world. In order to effectively control the seizures, we propose a novel control methodology, which combines the feedback linearization control (FLC) with the underlying mechanism of epilepsy, to achieve the suppression of seizures. The three coupled neural mass model is constructed to study the property of the electroencephalographs (EEGs). Meanwhile, with the model we research on the propagation of epileptiform waves and the synchronization of populations, which are taken as the foundation of our control method. Results show that the proposed approach not only yields excellent performances in clamping the pathological spiking patterns to the reference signals derived under the normal state but also achieves the normalization of the pathological parameter, where the parameters are estimated from EEGs with Unscented Kalman Filter. The specific contribution of this paper is to treat the epilepsy from its pathogenesis with the FLC, which provides critical theoretical basis for the clinical treatment of neurological disorders.

  2. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  3. Determination of metals in marine species by microwave digestion and inductively coupled plasma mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal

    2007-10-01

    A microwave digestion method suitable for determination of multiple elements in marine species was developed, with the use of cold vapor atomic spectrometry for the detection of Hg, and inductively coupled plasma mass spectrometry for all of the other elements. An optimized reagent mixture composed of 2 ml of HNO 3, 2 ml of H 2O 2 and 0.3 ml of HF used in microwave digestion of about 0.15 g (dry weight) of sample was found to give the best overall recoveries of metals in two standard reference materials. In the oyster tissue standard reference material (SRM 1566b), recoveries of Na, Al, K, V, Co, Zn, Se, Sr, Ag, Cd, Ni, and Pb were between 90% and 110%; Mg, Mn, Fe, Cu, As, and Ba recoveries were between 85% and 90%; Hg recovery was 81%; and Ca recovery was 64%. In a dogfish certified reference material (DORM-2), the recoveries of Al, Cr, Mn, Se, and Hg were between 90% and 110%; Ni, Cu, Zn, and As recoveries were about 85%; and Fe recovery was 112%. Method detection limits of the elements were established. Metal concentrations in flounder, scup, and blue crab samples collected from coastal locations around Long Island and in the Hudson River estuary were determined.

  4. Inductively coupled plasma mass spectrometry applied to isotopic analysis of iron in human fecal matter

    SciTech Connect

    Ting, B.T.G.; Janghorbani, M.

    1986-06-01

    Inductively coupled plasma mass spectrometry combined with stable isotope dilution is applied to accurate isotopic analysis of human fecal matter for /sup 54/Fe and /sup 58/Fe. Argon plasma generated interferences are of minor concern. The interference from /sup 54/Cr can be corrected instrumentally, whereas /sup 58/Ni must be removed chemically. The ratio of the stable isotopes of interest can be measured routinely with a relative standard deviation of about 1%. The overall accuracy of the method for quantitative isotopic analyses is evaluated in Standard Reference Material (SRM) 1577a (Bovine Liver), fecal homogenate subsamples, and synthetic solutions of iron. For SRM 1577a, the respective comparisons are (..mu..g/g) 192.2 +/- 2.2 (present method) vs. 194 +/- 20 (certified value). For the fecal matrix, the present method yields (..mu..g/mL) 15.14 +/- 0.36 vs. 15.82 +/- 0.48 based on atomic absorption spectrophotometry. For an iron solution (250 ppm), replicate analyses yield the value of 245.4 +/- 1.5 ppm.

  5. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baker, S. A.; Miller-Ihli, N. J.

    2000-12-01

    The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.

  6. Determination of long-lived actinides in soil leachates by inductively coupled plasma: Mass spectrometry

    SciTech Connect

    Crain, J.S.; Smith, L.L.; Yaeger, J.S.; Alvarado, J.A.

    1994-06-01

    Inductively coupled plasma -- mass spectrometry (ICP-MS) was used to concurrently determine multiple long-lived (t{sub 1/2} > 10{sup 4} y) actinide isotopes in soil samples. Ultrasonic nebulization was found to maximize instrument sensitivity. Instrument detection limits for actinides in solution ranged from 50 mBq L{sup {minus}1} ({sup 239}Pu) to 2 {mu}Bq L{sup {minus}1} ({sup 235}U) Hydride adducts of {sup 232}Th and {sup 238}U interfered with the determinations of {sup 233}U and {sup 239} Pu; thus, extraction chromatography was, used to eliminate the sample matrix, concentrate the analytes, and separate uranium from the other actinides. Alpha spectrometric determinations of {sup 230}Th, {sup 239}Pu, and the {sup 234}U/{sup 238}U activity ratio in soil leachates compared well with ICP-MS determinations; however, there were some small systematic differences (ca. 10%) between ICP-MS and a-spectrometric determinations of {sup 234}U and {sup 238}U activities.

  7. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability. PMID:26073168

  8. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Jill Wisnewski Ferguson

    2006-08-09

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO{sup +}), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  9. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    SciTech Connect

    Ebert, Christopher Hysjulien

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  10. Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry.

    PubMed

    Fong, Bonnie Mei Wah; Siu, Tak Shing; Lee, Joseph Sai Kit; Tam, Sidney

    2007-06-01

    The conventional method for the determination of mercury in clinical samples is cold vapor atomic absorption spectrometry. Sample digestion or pretreatment require large sample volume and long sample preparation time. The inductively coupled plasma mass spectrometry (ICP-MS) method developed in this study requires only 100 microL of sample with practically no preparation, except for dilution with diluent. Significant savings in sample volumes, reagents, technician time, and analysis time are realized. Among different types of diluents, the one containing acid, tert-butanol, and potassium dichromate gave the best results to remove the mercury memory effect. The interassay precisions for whole blood and urine were < 5% and < 8%, respectively, and the intra-assay precisions were < 3% and < 7%, respectively. The lower limits of detection were 0.13, 0.17, and 0.26 microg/L for aqueous standard, urine, and whole blood, respectively. The developed ICP-MS method correlated well with the atomic absorption method and can offer an alternative to the atomic absorption method for mercury analysis with less sample volume requirement as well as shorter analysis time. PMID:17579973

  11. Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry.

    PubMed

    de Carvalho, Rui M; dos Santos, Jéssica A; Silva, Jessee A S; do Prado, Thiago G; da Fonseca, Adriel Ferreira; Chaves, Eduardo S; Frescura, Vera L A

    2015-08-01

    The concentration of metals in Brazilian soil under no-tillage (NT) and an area under native vegetation (NV) was determined by inductively coupled plasma mass spectrometry. The applied method was based on microwave-assisted acid digestion using HNO3, HCl, H2O2, and HF. The accuracy of the method was evaluated by analyzing two certified reference materials (BCR-142 and RS-3). The relative standard deviation for all target elements was below 8% indicating an adequate precision and the limit of detection ranged from 0.03 μg g(-1) (Cd) to 24.0 μg g(-1) (Fe). The concentrations of Al, As, Ba, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Sr, and Zn in the different layers (0-10, 10-20, 20-40, and 40-60 cm) were determined in two types of soils, located in Paraná State in Brazil. The soil layers analysis revealed a different behavior of metals concentrations in soil samples under NT and NV. The obtained results showed a clear impact of anthropogenic action with respect to specific metals due to many years of uncontrolled application rates of limestone and phosphate fertilizers. PMID:26220781

  12. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    PubMed

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard. PMID:11451248

  13. Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    PubMed

    Huang, Yang; Zhang, Tingting; Zhou, Haibo; Feng, Ying; Fan, Chunlin; Chen, Weijia; Crommen, Jacques; Jiang, Zhengjin

    2016-03-20

    Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components. PMID:26773536

  14. Inductively coupled plasma mass spectrometry determination of metals in honeybee venom.

    PubMed

    Kokot, Zenon J; Matysiak, Jan

    2008-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) technique was used to analyze the contamination of selected 20 metals in 32 samples of honeybee venom and to demonstrate differences in the content of these elements. Among the analyzed metal microelements (Al, Co, Cu, Zn, Mn, Mo, B, V, Sr and Ni), macro-elements (Ca, Mg, K and Na) and toxic metals (As, Ba, Pb, Cd, Sb and Cr) were identified. The presented results showed that the metal levels in honeybee venom are much lower than the tolerable upper intake levels for the elements. Also the toxic metal contamination is much lower than the permissible levels for drugs established by the United States Pharmacopeia and the European Pharmacopeia. As opposed to the pharmacopeial tests for metals, a multi-element ICP-MS method has been developed. In order to confirm data obtained, the following steps and parameters were taken into account for the validation of the method: calibration verification, recovery, accuracy, precision, detection limit (LOD), quantitation limit (LOQ), spectral and matrix interference and comparison between ICP-MS and GFAAS (graphite furnace atomic absorption spectrometry) for Mn. All steps of validation proved the accuracy of the results. This is most likely the first study in which the metal content in honeybee venom was evaluated by ICP-MS. PMID:18617350

  15. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  16. Acid retardation method in analysis of strongly acidic solutions by inductively coupled plasma mass-spectrometry.

    PubMed

    Seregina, I F; Perevoznik, O A; Bolshov, M A

    2016-10-01

    Acid retardation on the sorbents as a technique for reduction of the acidity of the solutions prior to their analysis by inductively coupled plasma mass spectrometry was proposed and investigated. The proposed scheme provides substantial separation of the analytes and nitric acid, which allows direct introduction of the eluates in plasma without dilution. Two sorbents were examined - AV-17 anion-exchange resin and the Stirosorb 584 sorbent. Sorption and desorption of 38 elements on these sorbents were investigated. The efficiencies of the REEs' sorption on the anion-exchange and neutral sorbents were compared. The higher efficiency of the REEs and HNO3 separation was revealed for the neutral Stirosorb 584 sorbent. It was also found that most elements come out quantitatively of the column filled with the AV-17 resin after pumping 2-4mL of the solution. Wherein, the concentration of nitric acid decreased by 20 times. The anomalous behaviour of Ag, Pb, Th and U on the AV-17 resin was found. These analytes were eluted only after pumping 4 column volumes of deionized water. Na, K, Fe, Al and Li in concentrations within (50-1000mgL(-1)) range did not affect the recovery of REEs. The potential of ARM technique was demonstrate by the analysis of puriss. HNO3 and silverware. ARM enables to avoid dilution of highly acidic solutions prior to their introduction in ICP-MS. PMID:27474322

  17. Suppression of seizures based on the multi-coupled neural mass model.

    PubMed

    Cao, Yuzhen; Ren, Kaili; Su, Fei; Deng, Bin; Wei, Xile; Wang, Jiang

    2015-10-01

    Epilepsy is one of the most common serious neurological disorders, which affects approximately 1% of population in the world. In order to effectively control the seizures, we propose a novel control methodology, which combines the feedback linearization control (FLC) with the underlying mechanism of epilepsy, to achieve the suppression of seizures. The three coupled neural mass model is constructed to study the property of the electroencephalographs (EEGs). Meanwhile, with the model we research on the propagation of epileptiform waves and the synchronization of populations, which are taken as the foundation of our control method. Results show that the proposed approach not only yields excellent performances in clamping the pathological spiking patterns to the reference signals derived under the normal state but also achieves the normalization of the pathological parameter, where the parameters are estimated from EEGs with Unscented Kalman Filter. The specific contribution of this paper is to treat the epilepsy from its pathogenesis with the FLC, which provides critical theoretical basis for the clinical treatment of neurological disorders. PMID:26520086

  18. Determination of rare earth elements in environmental materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Panday, V.K.; Hoppstock, K.; Becker, J.S.; Dietze, H.J.

    1996-09-01

    Despite the fact that rare earth elements (REE) have found increasing use in modern technology only few data are available on their concentrations in biological and environmental samples. Inductively coupled plasma mass spectrometry (ICP-MS) has been employed to study the concentration of rare earth elements (REE) in various environmental materials (e.g., pine needles, mussel tissue, apple leaves) available from National Institute of Standards and Technology (NIST), the Bureau of European Communities (BCR), and the German Environmental Specimens Bank. After the decomposition of the environmental samples with HNO{sub 3}, the REE (present mostly in the ng/g-range) were separated from the matrix and simultaneously preconcentrated using liquid-liquid extraction with bis(2-ethyl hexyl)-ortho-phosphoric acid (HDEHP) in toluene as a selective reagent at pH = 2 and subsequent back extraction of the elements into the aqueous by 6M HNO{sub 3}. Recoveries of better 90% were obtained for almost all REE. A Perkin Elmer/Sciex ELAN 5000 ICP-MS and HR-ICP-MS ELEMENT from Finnigan MAT were used for quantitative analysis (by external calibration and ID-ICP-MS) of REE. The results of determination of REE concentrations agree well with the data available on some of these materials. Further supplement information on the contents of various REE in these materials.

  19. Studying Arsenite-Humic Acid Complexation Using Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2012-01-01

    Arsenic (As) can form complexes with dissolved organic matter (DOM), which affects the fate of arsenic in waste sites and natural environments. It remains a challenge to analyze DOM-bound As, in particular by using a direct chromatographic separation method. Size exclusion chromatography (SEC) hyphenated with UV spectrophotometer and inductively coupled plasma mass spectrometry (ICP-MS) was developed to characterize the complexation of arsenite (AsIII) with DOM. This SEC-UV-ICP-MS method is able to differentiate AsIII-DOM complexes from free As species and has the advantage of direct determination of both free and DOM-bound AsIII through mild separation. The suitability of this method for studying AsIII-DOM complexation was demonstrated by its application, in combination with the Scatchard plot and nonlinear regression of ligand binding model, for characterizing AsIII complexation with humic acid (HA) in the absence or presence of natural sand. The results suggest that, consistent with polyelectrolytic nature of HA, the AsIII-HA complexation should be accounted for by multiple classes of binding sites. By loosely classifying the binding sites into strong (S1) and weak (S2) sites, the apparent stability constants (Ks) of the resulting As-DOM complexes were calculated as log Ks1 = 6.5–7.1 while log Ks2 = 4.7–5.0. PMID:22664255

  20. Rapid screening and characterisation of antioxidants of Cosmos caudatus using liquid chromatography coupled with mass spectrometry.

    PubMed

    Shui, Guanghou; Leong, Lai Peng; Wong, Shih Peng

    2005-11-15

    Ulam raja (Cosmos caudatus) is used traditionally for improving blood circulation. In this study, it was found that ulam raja had extremely high antioxidant capacity of about 2,400 mg l-ascorbic acid equivalent antioxidant capacity (AEAC) per 100 g of fresh sample. Antioxidant peaks in extract of ulam raja were firstly characterized using free radical spiking test through high performance liquid chromatography coupled with mass spectrometry (MS). Upon reaction with 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, intensities of antioxidant peaks will be significantly reduced. HPLC/MS(n) was further applied to elucidate the chemical structures of antioxidant peaks characterized in the spiking test. More than twenty antioxidants were identified in ulam raja, and their chemical structures were proposed. The major antioxidants in ulam raja were attributed to a number of proanthocyanidins that existed as dimers through hexamers, quercetin glycosides, chlorogenic, neo-chlorogenic, crypto-chlorogenic acid and (+)-catching. High content of antioxidants antioxidants contained in ulam raja could be partly responsible for its ability to reduce oxidative stress. PMID:16087413

  1. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin. PMID:25893550

  2. Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation.

    PubMed

    Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao; Ye, Meiying

    2016-08-26

    We reported sensitivity enhancement using multichannel parallel separation for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS) in this study. By using 2-20 array lanes for parallel separation, the sensitivity of the MCE-ICP-MS system was proportionally improved by 2-20 folds. No significantly adverse effect of parallel separation on column efficiency and resolution was observed. Rapid separation of Hg(2+) and methylmercuric (MeHg) ion within 36s under an electric field of 800Vcm(-1) was achieved in the 2-cm twenty-channels with a background electrolyte of 5mmolL(-1) borate buffer (pH 9.2). Detection limits of Hg(2+) and MeHg by the proposed system were decreased to 6.8-7.1ngL(-1). Good agreement between determined values and certified values of a certified reference fish was obtained with recoveries ranged between 94-98%. All results prove its advantages including high sensitivity, high efficiency and low operation cost, which are beneficial to routine analysis of metal speciation in environmental, biological and food fields. PMID:27488720

  3. A numerical procedure for the analysis of the hydromechanical coupling in fractured rock masses

    NASA Astrophysics Data System (ADS)

    Duarte Azevedo, I. C.; Vaz, L. E.; Vargas, E. A.

    1998-11-01

    This work presents a finite element implementation to treat the Hydromechanical Coupling (HM) in fractured rock masses under the framework of the so-called equivalent continuum' approach. The multilaminar concept, introduced by Zienkiewicz and Pande, is used to simulate the mechanical behaviour of both the intact rock and the families of fractures. In that concept, the non-linearities in the constitutive relations are dealt by means of fictitious viscoplasticity. In the present implementation, the mechanical behaviour of the fractures is modelled by means of Barton-Bandis model. The shear stress/shear displacement/dilatancy relationship is modelled as viscoplastic and the normal stress/normal displacement as non-linear viscoelastic. Flow along fractures is considered to occur as a sequence of permanent states. The permeability tensor of the equivalent continuum is determined from the hydraulic apertures, in accordance of Barton et al. From the numerical point of view, the basic aim of the work is the implementation of an efficient scheme to solve the above described problem. This is done by designing a self-adaptive time step control, transparent to the user, which determines the highest possible time step while assuming the conditions of precision, stability and convergence. The paper presents the numerical details of such scheme together with validation/comparative examples and the results obtained on the analysis of the fractured rock foundation of a hypothetical dam.

  4. Optimization of operating parameters for inductively coupled plasma mass spectrometry: A computational study

    NASA Astrophysics Data System (ADS)

    Aghaei, Maryam; Lindner, Helmut; Bogaerts, Annemie

    2012-10-01

    An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.

  5. Thin layer chromatography coupled to paper spray ionization mass spectrometry for cocaine and its adulterants analysis.

    PubMed

    De Carvalho, Thays C; Tosato, Flavia; Souza, Lindamara M; Santos, Heloa; Merlo, Bianca B; Ortiz, Rafael S; Rodrigues, Rayza R T; Filgueiras, Paulo R; França, Hildegardo S; Augusti, Rodinei; Romão, Wanderson; Vaz, Boniek G

    2016-05-01

    Thin layer chromatography (TLC) is a simple and inexpensive type of chromatography that is extensively used in forensic laboratories for drugs of abuse analysis. In this work, TLC is optimized to analyze cocaine and its adulterants (caffeine, benzocaine, lidocaine and phenacetin) in which the sensitivity (visual determination of LOD from 0.5 to 14mgmL(-1)) and the selectivity (from the study of three different eluents: CHCl3:CH3OH:HCOOHglacial (75:20:5v%), (C2H5)2O:CHCl3 (50:50v%) and CH3OH:NH4OH (100:1.5v%)) were evaluated. Aiming to improve these figures of merit, the TLC spots were identified and quantified (linearity with R(2)>0.98) by the paper spray ionization mass spectrometry (PS-MS), reaching now lower LOD values (>1.0μgmL(-1)). The method developed in this work open up perspective of enhancing the reliability of traditional and routine TLC analysis employed in the criminal expertise units. Higher sensitivity, selectivity and rapidity can be provided in forensic reports, besides the possibility of quantitative analysis. Due to the great simplicity, the PS(+)-MS technique can also be coupled directly to other separation techniques such as the paper chromatography and can still be used in analyses of LSD blotter, documents and synthetic drugs. PMID:26970868

  6. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease

    PubMed Central

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-01-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content. PMID:25704483

  7. Discriminating between Z'-boson effects and effects of anomalous gauge couplings in the double production of W ± bosons at a linear collider

    NASA Astrophysics Data System (ADS)

    Andreev, Vasili V.; Pankov, A. A.

    2013-06-01

    The potential of the International Linear electron-positron Collider (ILC) for seeking, in the annihilation production of W ±-boson pairs, signals induced by new neutral gauge bosons predicted by models belonging to various classes and featuring an extended gauge sector is studied. Limits that will be obtained at ILC for the parameters and masses of Z' bosons are compared with present-day and future data from the Large Hadron Collider (LHC). The possibility of discriminating between the effects of Z-Z' mixing and signals induced by anomalous gauge couplings (AGC) is demonstrated within theoretically motivated trilinear gauge models involving several free anomalous parameters. It is found that the sensitivity of ILC to the effects of Z-Z' mixing in the process e + e - → W + W - and its ability to discriminate between these two new-physics scenarios, Z' and AGC, become substantially higher upon employing polarized initial ( e + e -) and final ( W ±) states.

  8. Magnetoresistance and cyclotron mass in extremely-coupled double quantum wells under in-plane magnetic fields

    SciTech Connect

    Blount, M.A.; Simmons, J.A.; Lyo, S.K.; Harff, N.E.; Weckwerth, M.V.

    1997-12-01

    The authors experimentally investigate the transport properties of an extremely-coupled AlGaAs/GaAs double quantum well, subject to in-plane magnetic fields (B{sub {parallel}}). The coupling of the double quantum well is sufficiently strong that the symmetric-antisymmetric energy gap ({Delta}{sub SAS}) is larger than the Fermi energy (E{sub F}). Thus for all B{sub {parallel}} only the lower energy branch of the dispersion curve is occupied. In contrast to systems with weaker coupling such that {Delta}{sub SAS} < E{sub F} the authors find: (1) only a single feature, a maximum, in the in-plane magnetoresistance, (2) a monotonic increase with B{sub {parallel}} in the cyclotron mass up to 2.2 times the bulk GaAs mass, and (3) an increasing Fermi surface orbit area with B{sub {parallel}}, in good agreement with theoretical predictions.

  9. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  10. Quality assessment of traditional Chinese medicine herb couple by high-performance liquid chromatography and mass spectrometry combined with chemometrics.

    PubMed

    Cheng, Tao-Fang; Jia, Yu-Ran; Zuo, Zheng; Dong, Xin; Zhou, Ping; Li, Ping; Li, Fei

    2016-04-01

    This study was designed to develop a simple, specific and reliable method to overall analyze the chemical constituents in clematidis radix et rhizome/notopterygii rhizome et radix herb couple using high-performance liquid chromatography coupled with tandem mass spectrometry and multiple chemometric analysis. First, the separation and qualitative analysis of herb couple was achieved on an Agilent Zorbax Eclipse Plus C18 column (250 mm × 4.6 mm, 5 μm), and 69 compounds were unambiguously or tentatively identified. Moreover, in quantitative analysis, eight ingredients including six coumarins and two triterpenoid sapogenins were quantified by high-performance liquid chromatography coupled with tandem mass spectrometry. In terms of good linearity (r(2) ≥ 0.9995) with a relatively wide concentration range, recovery (85.40-102.50%) and repeatability (0.99-4.45%), the validation results suggested the proposed method was reliable, and successfully used to analyze ten batches of herb couple samples. Then, hierarchical cluster analysis and principal component analysis were used to classify samples and search significant ingredients. The results showed that ten batches of herb couple samples were classified into three groups, and six compounds were found for its better quality control. PMID:26834048

  11. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  12. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry - Critical review

    NASA Astrophysics Data System (ADS)

    Bings, N. H.; Orlandini von Niessen, J. O.; Schaper, J. N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally suited

  13. The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis.

    PubMed

    Rummel, Julia L; McKenna, Amy M; Marshall, Alan G; Eyler, John R; Powell, David H

    2010-03-01

    Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time-of-flight (TOF) mass spectrometers. In the current work, a custom-built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT-ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT-ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2-benzanthracene and 9,10-diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT-ICR MS provides complex sample analysis that is rapid, highly selective and information-rich, but limited to relatively low-mass analytes. PMID:20187081

  14. Computation with Inverse States in a Finite Field FP: The Muon Neutrino Mass, the Unified Strong-Electroweak Coupling Constant, and the Higgs Mass

    SciTech Connect

    DAI,YANG; BORISOV,ALEXEY B.; BOYER,KEITH; RHODES,CHARLES K.

    2000-08-11

    The construction of inverse states in a finite field F{sub P{sub {alpha}}} enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P{sub {alpha}} and g{sub {alpha}}) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of {approximately}27.68 meV, (2) a value of the unified strong-electroweak coupling constant {alpha}* = (34.26){sup {minus}1} that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10{sup 18}GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P{sub {alpha}}, which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness ({Omega} = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype.

  15. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    SciTech Connect

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  16. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  17. Lead geochronology of zircon by LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS)

    NASA Astrophysics Data System (ADS)

    Feng, Rui; Machado, Nuno; Ludden, John

    1993-07-01

    LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS) provides a sensitive, fast, and simple means to determine 207Pb /206Pb ages in single zircon grains. A Nd:YAG laser is used to irradiate the zircon surface and leaves a cylindrical pit of 30-60 μm, from which the vaporised materials are transported by argon gas to a Fisons-VG PQII+ ICPMS for analysis. No zircon abrasion, cleaning nor chemical separation procedures are required. The accuracy and the limitation of the method were evaluated by analyzing twenty-one zircon samples ranging in age from 2.7 Ga to 1.0 Ga, which have also been dated by the conventional U-Pb thermal ionization mass spectrometry technique (TIMS). The LP-ICPMS 207Pb /206Pb ages for zircons with grain size > 60 μm and 207Pb concentration > 3 ppm are within 1% of the TIMS ages. Smaller zircons (≤60 μm) and those with 207Pb concentration < 2 ppm yield inaccurate ages. Operating the LP-ICPMS at conditions that give a compromise between the ideal spatial resolution and instrument sensitivity, the limits of detection were found to be 0.2 ppm for 206Pb, 207Pb, and 208Pb. The precision of the 207Pb /206Pb ratio is generally 0.5-6% (1σ) from each sampling pit and is strongly dependent on the lead concentration. However, the precision for the average of the mean ratios from different pits in one grain or several grains of the same population are generally <1.5% (1σ). The results presented here demonstrate that the LP-ICPMS can be used to determine 207Pb /206Pb ages of zircons and that reliable ages can be obtained from high quality, limpid zircons with a simple Pb-loss history. Uses of the technique include screening of zircon populations from different rocks in areas of poorly known age relationships and provenance studies of detrital zircons from ancient and modern sedimentary sequences. Other applications include the study of growth zones and of inherited components in complex zircon populations. In comparison with the SHRIMP

  18. Temperature-programmed high-performance liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Hopfgartner, Gérard; Fay, Laurent

    2008-09-15

    The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the

  19. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Determining Solubility and Diffusivity by Using a Flow Cell Coupled to a Mass Spectrometer.

    PubMed

    Khodayari, Mehdi; Reinsberg, Philip; Abd-El-Latif, Abd-El-Aziz A; Merdon, Christian; Fuhrmann, Juergen; Baltruschat, Helmut

    2016-06-01

    One of the main challenges in metal-air batteries is the selection of a suitable electrolyte that is characterized by high oxygen solubility, low viscosity, a liquid state and low vapor pressure across a wide temperature range, and stability across a wide potential window. Herein, a new method based on a thin layer flow through cell coupled to a mass spectrometer through a porous Teflon membrane is described that allows the determination of the solubility of volatile species and their diffusion coefficients in aqueous and nonaqueous solutions. The method makes use of the fact that at low flow rates the rate of species entering the vacuum system, and thus the ion current, is proportional to the concentration times the flow rate (c⋅u) and independent of the diffusion coefficient. The limit at high flow rates is proportional to D2/3·c·u1/3 . Oxygen concentrations and diffusion coefficients in aqueous electrolytes that contain Li(+) and K(+) and organic solvents that contain Li(+) , K(+) , and Mg(2+) , such as propylene carbonate, dimethyl sulfoxide tetraglyme, and N-methyl-2-pyrrolidone, have been determined by using different flow rates in the range of 0.1 to 80 μL s(-1) . This method appears to be quite reliable, as can be seen by a comparison of the results obtained herein with available literature data. The solubility and diffusion coefficient values of O2 decrease as the concentration of salt in the electrolyte was increased due to a "salting out" effect. PMID:27017297

  1. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    NASA Astrophysics Data System (ADS)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  2. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    NASA Astrophysics Data System (ADS)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- < SO42 - < NO3- for anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  3. Multi-element analysis of compost by laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Jiménez, María S; Gómez, María T; Castillo, Juan R

    2007-05-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to multi-element determination in compost samples. Since compost is a heterogeneous mixture of organic and inorganic materials, the influence of sample heterogeneity on the accuracy and precision of analysis was investigated. Several parameters related to the following were studied: laser (energy, laser-beam diameter, preablation. rastering speed, carrier-gas flow rate), sample preparation (use of compacted pellets, grinding time, particle size, sample amount, length of hydraulic press treatment, position of line scan), and the ICP-MS system (quantitative versus semiquantitative analysis, matrix-matched standards and liquid standards calibration). The main causes of imprecision in sample preparation were determined to be particle size and grinding time. The effect of sample heterogeneity on precision was also evaluated by using different test samples (pellets). For Ni, Zn and Pb, the greatest contribution to the total relative standard deviation (R.S.D.) was related to analyte determination. For Mn and Cu, sample heterogeneity and analyte determination contributed equally to the total R.S.D., whereas for Cr, Co, Cd and Hg sample heterogeneity accounted for most of the total R.S.D. A comparison of semiquantitative and quantitative analysis modes showed that better precision and very good agreement with certified reference material was obtained with the latter, but semiquantitative analysis could be a practical alternative. Although accuracy of results was improved with matrix-matched standards calibration the use of standard addition calibration with aqueous standards could be another possibility. PMID:19071737

  4. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry.

    PubMed

    Boyarchuk, Ekaterina; Robin, Philippe; Fritsch, Lauriane; Joliot, Véronique; Ait-Si-Ali, Slimane

    2016-01-01

    Skeletal muscle terminal differentiation starts with the commitment of pluripotent mesodermal precursor cells to myoblasts. These cells have still the ability to proliferate or they can differentiate and fuse into multinucleated myotubes, which maturate further to form myofibers. Skeletal muscle terminal differentiation is orchestrated by the coordinated action of various transcription factors, in particular the members of the Muscle Regulatory Factors or MRFs (MyoD, Myogenin, Myf5, and MRF4), also called the myogenic bHLH transcription factors family. These factors cooperate with chromatin-remodeling complexes within elaborate transcriptional regulatory network to achieve skeletal myogenesis. In this, MyoD is considered the master myogenic transcription factor in triggering muscle terminal differentiation. This notion is strengthened by the ability of MyoD to convert non-muscle cells into skeletal muscle cells. Here we describe an approach used to identify MyoD protein partners in an exhaustive manner in order to elucidate the different factors involved in skeletal muscle terminal differentiation. The long-term aim is to understand the epigenetic mechanisms involved in the regulation of skeletal muscle genes, i.e., MyoD targets. MyoD partners are identified by using Tandem Affinity Purification (TAP-Tag) from a heterologous system coupled to mass spectrometry (MS) characterization, followed by validation of the role of relevant partners during skeletal muscle terminal differentiation. Aberrant forms of myogenic factors, or their aberrant regulation, are associated with a number of muscle disorders: congenital myasthenia, myotonic dystrophy, rhabdomyosarcoma and defects in muscle regeneration. As such, myogenic factors provide a pool of potential therapeutic targets in muscle disorders, both with regard to mechanisms that cause disease itself and regenerative mechanisms that can improve disease treatment. Thus, the detailed understanding of the intermolecular

  5. Acquisition of a High-resolution Inductively Coupled Plasma Mass Spectrometer for Cosmochemical and Geochemical Research

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    The primary goal of our research in this program is to develop new techniques for the analysis of volatile trace elements in very small samples using inductively coupled plasma mass spectrometry (ICP-MS) in preparation for samples returned by the Stardust mission. The instrument that will serve as the basis of our experiments is the ELEMENT2 high-resolution ICP-MS. We have spent the past year designing the laboratory to house this instrument as well as space to store and prepare samples returned by the Stardust mission. Unfortunately, the location that we had initially selected for the instrument turned out to be insufficient for our needs. This was determined almost eight months into the first year of our funding cycle, after extensive work including the production of engineering drawings. However, during this time the Lunar and Planetary Laboratory was selected to lead Phoenix, the first Mars Scout mission. As a result of this award LPL purchased a new, 50,000 square foot building. We have acquired 1400 square feet of laboratory space in this new facility. Four-hundred square feet will be used for a class-100 clean room. This area is designated for storage and preparation of extraterrestrial materials. The additional 1000 square feet will house the ELEMENT2 ICP-MS and peripheral devices. This is an enormous amount of space for this instrument, but it provides plenty of room for expansion in the future. The ICP-MS and the clean room facilities have been purchased. The instrument has been delivered. The startup time for this instrument is relatively short and we expect to be collecting our first data by mid-summer.

  6. Determination of Pu in urine at ultratrace level by sector field inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, M. V.; Pickhardt, C.; Ostapczuk, P.; Hille, R.; Becker, J. S.

    2004-04-01

    A new analytical procedure has been developed for the determination of Pu in urine at the low ag ml-1 concentration level by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS). One liter of urine doped with 4 pg 242Pu was analyzed after co-precipitation with Ca3(PO4)2 followed by extraction chromatography on TEVA resin in order to enrich the Pu and remove uranium and matrix elements. Figures of merit of ICP-SFMS for the determination of Pu were studied using two nebulizers, PFA-100 and direct injection high-efficiency nebulizer (DIHEN), for solution introduction with uptake rates of 0.58 and 0.06 ml min-1, respectively. The sensitivity for Pu in ICP-SFMS was determined to be 2000 and 1380 MHz ppm-1 for the PFA-100 and DIHEN nebulizers, respectively. Due to the low solution uptake rate of DIHEN the absolute sensitivity was about seven times better and yielded 1380 counts fg-1 in comparison to 207 counts fg-1 measured with the PFA-100 nebulizer. Recovery using 242Pu tracer was about 70%. The limits of detection for 239Pu in 1 l of urine, based on an enrichment factor of 100 for PFA-100 nebulizer and 1000 for DIHEN, were 9×10-18 and 1.02×10-18 g ml-1, respectively. Measurements of 240Pu/239Pu isotopic ratio in synthetically prepared urine standard solution yielded a precision of 1.8 and 1.9% and accuracy of 1.5 and 1.8% for the PFA-100 and DIHEN nebulizers, respectively.

  7. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements. PMID:18970147

  8. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone.

    PubMed

    Bellis, David J; Hetter, Katherine M; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J

    2006-01-01

    Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for (208)Pb/(43)Ca in the concentration range <1 to 30 μg g(-1). The limit of detection was estimated as 0.2 μg g(-1). The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g(-1) with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  9. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula

    2012-01-01

    Summary Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for 208Pb/43Ca in the concentration range <1 to 30 μg g−1. The limit of detection was estimated as 0.2 μg g−1. The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g−1 with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  10. Generalization of Ryan's theorem: Probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals

    SciTech Connect

    Li Chao; Lovelace, Geoffrey

    2008-03-15

    Extreme-mass-ratio inspirals (EMRIs) and intermediate-mass-ratio inspirals (IMRIs) - binaries in which a stellar-mass object spirals into a massive black hole or other massive, compact body - are important sources of gravitational waves for LISA and LIGO, respectively. Thorne has speculated that the waves from EMRIs and IMRIs encode, in principle, all the details of (i) the central body's spacetime geometry (metric), (ii) the tidal coupling (energy and angular momentum exchange) between the central body and orbiting object, and (iii) the evolving orbital elements. Fintan Ryan has given a first partial proof that this speculation is correct: Restricting himself to nearly circular, nearly equatorial orbits and ignoring tidal coupling, Ryan proved that the central body's metric is encoded in the waves. In this paper we generalize Ryan's theorem. Retaining Ryan's restriction to nearly circular and nearly equatorial orbits, and dropping the assumption of no tidal coupling, we prove that Thorne's conjecture is nearly fully correct: the waves encode not only the central body's metric but also the evolving orbital elements and (in a sense slightly different from Thorne's conjecture) the evolving tidal coupling.

  11. Order-selective multiple-quantum excitation in magic-angle spinning NMR: creating triple-quantum coherences with a trilinear Hamiltonian

    NASA Astrophysics Data System (ADS)

    Edén, Mattias

    2002-12-01

    Order-selective multiple-quantum excitation in magic-angle spinning nuclear magnetic resonance is explored using a class of symmetry-based pulse sequences, denoted S Mχ. Simple rules are presented that aid the design of S Mχ schemes with certain desirable effective Hamiltonians. They are applied to construct sequences generating trilinear effective dipolar Hamiltonians, suitable for efficient excitation of triple-quantum coherences in rotating solids. The new sequences are investigated numerically and demonstrated by 1H experiments on adamantane.

  12. Radiative symmetry breaking, fermion masses and mixing angles, and large Yukawa couplings in N - 1 SUSY-GUTS

    SciTech Connect

    Anderson, G.W.

    1992-12-01

    The effect of large third generation Yukawa couplings on radiative electroweak symmetry breaking in N = 1 SUSY-GUTS is reported. Limits on tan {beta}, and on the amount of fine tuning necessary for consistent symmetry breaking in the MSSM are derived. Predictions for fermion masses and mixing angles from GUT scale textures are also discussed. The effect of large Yukawa couplings on the running of the DHR texture is used to determine limits on the top quark valid for all values of tan {beta}.

  13. Universally coupled massive gravity, III: dRGT-Maheshwari pure spin-2, Ogievetsky-Polubarinov and arbitrary mass terms

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2016-02-01

    Einstein's equations were derived for a free massless spin-2 field using universal coupling in the 1950-1970s by various authors; total stress-energy including gravity's served as a source for linear free field equations. A massive variant was likewise derived in the late 1960s by Freund, Maheshwari and Schonberg, and thought to be unique. How broad is universal coupling? In the last decade four 1-parameter families of massive spin-2 theories (contravariant, covariant, tetrad, and cotetrad of almost any density weights) have been derived using universal coupling. The (co)tetrad derivations included 2 of the 3 pure spin-2 theories due to de Rham, Gabadadze, and Tolley; those two theories first appeared in the 2-parameter Ogievetsky-Polubarinov family (1965), which developed the symmetric square root of the metric as a nonlinear group realization. One of the two theories was identified as pure spin-2 by Maheshwari in 1971-1972, thus evading the Boulware-Deser-Tyutin-Fradkin ghost by the time it was announced. Unlike the previous 4 families, this paper permits nonlinear field redefinitions to build the effective metric. By not insisting in advance on knowing the observable significance of the graviton potential to all orders, one finds that an arbitrary graviton mass term can be derived using universal coupling. The arbitrariness of a universally coupled mass/self-interaction term contrasts sharply with the uniqueness of the Einstein kinetic term. One might have hoped to use universal coupling as a tie-breaking criterion for choosing among theories that are equally satisfactory on more crucial grounds (such as lacking ghosts and having a smooth massless limit). But the ubiquity of universal coupling implies that the criterion does not favor any particular theories among those with the Einstein kinetic term.

  14. Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: a first orientation.

    PubMed

    Krystek, Petra; Favaro, Paulo; Bode, Peter; Ritsema, Rob

    2012-08-15

    For the identification of human exposure to one of the most toxic compounds, which is methyl mercury (MeHg(+)), fingernail clippings were selected as the matrix of interest. Within this pilot study, six samples from different origins and from people with different food consumption patterns were chosen. Species-analysis of MeHg(+) was performed according to the following procedure: dissolution of the sample material in tetramethylammonium hydroxide (TMAH), derivatisation of MeHg(+) with sodium tetraethylborate (NaBEt(4)), extraction into iso-octane and measurement with gas chromatography hyphenated to inductively coupled plasma mass spectrometry (GC-ICPMS) for the quantification MeHg(+). PMID:22841050

  15. MEN’S BODY MASS INDEX IN RELATION TO EMBRYO QUALITY AND CLINICAL OUTCOMES IN COUPLES UNDERGOING IN VITRO FERTILIZATION

    PubMed Central

    Colaci, Daniela S.; Afeiche, Myriam; Gaskins, Audrey J.; Wright, Diane L.; Toth, Thomas L.; Tanrikut, Cigdem; Hauser, Russ; Chavarro, Jorge E.

    2012-01-01

    Objective To evaluate the association between men’s body mass index (BMI), early embryo quality and clinical outcomes in couples undergoing in vitro fertilization. Design Prospective cohort study. Setting Fertility clinic in an academic medical center. Patients 114 couples that underwent 172 ART cycles. Interventions None Main outcome measure Fertilization rate, embryo quality, implantation rate, clinical pregnancy rate and live birth rate. Results Fertilization rate was higher among obese men than among normal weight men (p-trend=0.04) in conventional IVF cycles. No significant associations were found between men’s BMI and the proportion of poor quality embryos on day 3 (p-trend =0.67), slow embryo cleavage rate (p-trend=0.17), or accelerated embryo cleavage rate (p-trend =0.07). Men’s BMI was unrelated to positive β-hCG rate (p-trend =0.37), clinical pregnancy rate (p-trend =0.91) or live birth rate (p-trend =0.42) per embryo transfer. Among couples undergoing ICSI, the odds of live birth in couples with obese male partners was 84% (95% CI 10%–97%) lower than the odds in couples with men with normal BMI (p-trend=0.04). Conclusion Our data suggest a possible deleterious effect of male obesity on the odds of having a live birth among couples undergoing ICSI. PMID:22884013

  16. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  17. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry.

    PubMed

    Erdemir, Umran Seven; Gucer, Seref

    2014-11-01

    In this study, an analytical fractionation scheme based on water, diethyl ether, n-hexane, and methanol extractions has been developed to identify manganese-bound fractions. Additionally, in vitro simulated gastric and intestinal digestion, n-octanol extraction, and activated carbon adsorption were used to interpret the manganese-bound structures in hazelnuts in terms of bioaccessibility. The total content of manganese in the samples was determined by inductively coupled plasma-mass spectrometry after microwave-assisted digestion, and additional validation was performed using atomic absorption spectroscopy. Water fractions were further evaluated by high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry for the identification of water-soluble manganese fractions in hazelnut samples. The limits of detection and quantification were 3.6 and 12.0 μg L(-1), respectively, based on peak height. PMID:25310841

  18. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  19. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  20. A vector-dyadic development of the equations of motion for N-coupled rigid bodies and point masses

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1974-01-01

    The equations of motion are derived, in vector-dyadic format, for a topological tree of coupled rigid bodies, point masses, and symmetrical momentum wheels. These equations were programmed, and form the basis for the general-purpose digital computer program N-BOD. A complete derivation of the equations of motion is included along with a description of the methods used for kinematics, constraint elimination, and for the inclusion of nongyroscope forces and torques acting external or internal to the system.

  1. [Determination of trace elements in sika bone powder by inductively coupled plasma mass spectrometry with microwave digestion].

    PubMed

    Liu, Yan-Ming; Chen, Zhi-Yong; Han, Jin-Tu; Wang, Hui; Wang, Zhi-Wen

    2006-05-01

    Contents of trace elements in sika bone powder were determined with microwave digestion and inductively coupled plasma mass spectrometry. Under the optimum conditions, the detection limits (3sigma, n = 11) are in the range of 0. 000 6-1. 498 ng x mL(-1) with relative standard deviations of 1.7%-6.8%. The recoveries are between 91% and 109%. The analytical results of national certified reference demonstrated the applicability of the proposed method. PMID:16883876

  2. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    NASA Astrophysics Data System (ADS)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  3. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    SciTech Connect

    McIntyre, Sally M.

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  4. A two-dimensional coupled flow-mass transport model based on an improved unstructured finite volume algorithm.

    PubMed

    Zhou, Jianzhong; Song, Lixiang; Kursan, Suncana; Liu, Yi

    2015-05-01

    A two-dimensional coupled water quality model is developed for modeling the flow-mass transport in shallow water. To simulate shallow flows on complex topography with wetting and drying, an unstructured grid, well-balanced, finite volume algorithm is proposed for numerical resolution of a modified formulation of two-dimensional shallow water equations. The slope-limited linear reconstruction method is used to achieve second-order accuracy in space. The algorithm adopts a HLLC-based integrated solver to compute the flow and mass transport fluxes simultaneously, and uses Hancock's predictor-corrector scheme for efficient time stepping as well as second-order temporal accuracy. The continuity and momentum equations are updated in both wet and dry cells. A new hybrid method, which can preserve the well-balanced property of the algorithm for simulations involving flooding and recession, is proposed for bed slope terms approximation. The effectiveness and robustness of the proposed algorithm are validated by the reasonable good agreement between numerical and reference results of several benchmark test cases. Results show that the proposed coupled flow-mass transport model can simulate complex flows and mass transport in shallow water. PMID:25686488

  5. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    PubMed

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images. PMID:21355549

  6. Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.

    2016-06-01

    A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.

  7. Ion Energy Distribution Control Using Ion Mass Ratios in Inductively Coupled Plasmas With a Pulsed DC Bias on the Substrate

    NASA Astrophysics Data System (ADS)

    Logue, Michael D.; Kushner, Mark J.

    2012-10-01

    In many applications requiring energetic ion bombardment, such as plasma etching, gas mixtures containing several ion species are used. In cases where two ions have significantly different masses, it may be feasible to selectively control the ion energy distributions (IEDs) by preferentially extracting the lighter ion mass with a controllable energy. In this work, we investigate the possibility of using a pulsed DC substrate bias in an inductively coupled plasma (ICP) to obtain this control. Pulsing of the substrate bias in the afterglow of a pulsed ICP plasma should allow for shifting of the IED peak energy by an amount approximately equal to the applied bias. If short enough pulses are used it may be possible to obtain a higher flux at high energy of the lower mass ion compared to the higher mass ion. A computational investigation of IEDs in low pressure (a few to 100 mTorr) ICPs sustained in gas mixtures such as Ar/H2 or Xe/H2 (having large mass differences) was conducted as a proof of principle. The model is the Hybrid Plasma Equipment Model with which electron energy distributions (EEDs) and IEDs as a function of position and time are obtained using Monte Carlo simulations. We have found a selective ability to mass and energy discriminate ion fluxes when using sufficiently short bias pulses. Results from the model for plasmas densities, electron temperatures, EEDs and IEDs will be discussed.

  8. Upper bound on the gluino mass in supersymmetric models with extra matters

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Yanagida, Tsutomu T.; Yokozaki, Norimi

    2016-09-01

    We discuss the upper bound on the gluino mass in supersymmetric models with vector-like extra matters. In order to realize the observed Higgs mass of 125 GeV, the gluino mass is bounded from above in supersymmetric models. With the existence of the vector-like extra matters at around TeV, we show that such an upper bound on the gluino mass is significantly reduced compared to the case of minimal supersymmetric standard model. This is due to the fact that radiatively generated stop masses as well the stop trilinear coupling are enhanced in the presence of the vector-like multiplets. In a wide range of parameter space of the model with extra matters, particularly with sizable tan ⁡ β (which is the ratio of the vacuum expectation values of the two Higgs bosons), the gluino is required to be lighter than ∼ 3 TeV, which is likely to be within the reach of forthcoming LHC experiment.

  9. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  10. VACUUM DISTILLATION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR THE ANALYSIS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...

  11. Coupled effect of flow variability and mass transfer on contaminant transport and attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Fiori, Aldo; Dagan, Gedeon

    2016-04-01

    The driving mechanism of contaminant transport in aquifers is groundwater flow, which is controlled by boundary conditions and heterogeneity of hydraulic properties. In this work we show how hydrodynamics and mass transfer can be combined in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of contaminant residence time are illustrated assuming a log-normal hydraulic conductivity distribution and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity. The derived physically-based residence time distribution for solute transport in heterogeneous aquifers is particularly useful for studying natural attenuation of contaminants. We illustrate the relative impacts of high heterogeneity and a generalised (non-Fickian) multi-rate mass transfer on natural attenuation defined as contaminant mass loss from injection to a downstream compliance boundary.

  12. Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Gundlach-Graham, Alexander W.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2016-03-01

    Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector—the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups.

  13. Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source.

    PubMed

    Dennis, Elise A; Ray, Steven J; Enke, Christie G; Gundlach-Graham, Alexander W; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2016-03-01

    Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector-the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups. Graphical Abstract ᅟ. PMID:26552388

  14. Comparative analysis of steroidal saponins in four Dioscoreae herbs by high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Guo, Long; Zeng, Su-Ling; Zhang, Yu; Li, Ping; Liu, E-Hu

    2016-01-01

    Steroidal saponins, which exhibit multiple pharmacological effects, are the major bioactive constituents in herbal medicines from Dioscoreae species. In this study, a sensitive method based on high performance liquid chromatography-mass spectrometry (HPLC-MS) was established and validated for qualitative and quantitative analysis of steroidal saponins in four Dioscoreae herbs including Dioscoreae Nipponica Rhizome (DNR) and Dioscoreae Hypoglaucae Rhizome (DHR), Dioscoreae Spongiosae Rhizome (DSR) and Dioscoreae Rhizome (DR). A total of eleven steroidal saponins were identified by high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS). Furthermore, seven major steroidal saponins was simultaneous quantified using a high performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-QQQ/MS). The qualitative and quantitative analysis results indicated that the chemical composition of DNR, DHR and DSR samples exhibited a high level of global similarity, while the ingredients in DR varied greatly from the other three herbs. Moreover, principal component analysis (PCA) and hierarchical clustering analysis (HCA) were performed to compare and discriminate the Dioscoreae herbs based on the quantitative data. The results demonstrated the qualitative and quantitative analysis of steroidal saponins based on HPLC-MS is a feasible method for quality control of Dioscoreae herbs. PMID:26344383

  15. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    SciTech Connect

    Bower, K.M.

    1996-06-01

    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  16. INDUCTIVELY COUPLED ARGON PLASMA AS AN ION SOURCE FOR MASS SPECTROMETRIC DETERMINATION OF TRACE ELEMENTS

    EPA Science Inventory

    Solution aerosols are injected into an inductively coupled argon plasma (ICP) to generate a relatively high number density of positive ions derived from elemental constituents. A small fraction of these ions is extracted through a sampling orifice into a differentially pumped vac...

  17. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.

  18. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  19. Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Truscott, J B; Jones, P; Fairman, B E; Evans, E H

    2001-08-31

    High-performance chelation ion chromatography, using a neutral polystyrene substrate dynamically loaded with 0.1 mM dipicolinic acid, coupled with sector-field inductively coupled plasma mass spectrometry has been successfully used for the separation of the actinides thorium, uranium, americium, neptunium and plutonium. Using this column it was possible to separate the various actinides from each other and from a complex sample matrix. In particular, it was possible to separate plutonium and uranium to facilitate the detection of the former free of spectral interference. The column also exhibited some selectivity for different oxidation states of Np, Pu and U. Two oxidation states each for plutonium and neptunium were found, tentatively identified as Np(V) and Pu(III) eluting at the solvent front, and Np(IV) and Pu(IV) eluting much later. Detection limits were 12, 8, and 4 fg for 237Np, 239Pu, and 241Am, respectively, for a 0.5 ml injection. The system was successfully used for the determination of 239Pu in NIST 4251 Human Lung and 4353 Rocky Flats Soil, with results of 570+/-29 and 2939+/-226 fg g(-1), respectively, compared with a certified range of 227-951 fg g(-1) for the former and a value of 3307+/-248 fg g(-1) for the latter. PMID:11589474

  20. Speciation of chromium and its distribution in tea leaves and tea infusion using titanium dioxide nanotubes packed microcolumn coupled with inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Shizhong; Zhu, Shengping; He, Yuanyuan; Lu, Dengbo

    2014-05-01

    Titanium dioxide nanotubes (TDNTs) were used as a solid phase extraction adsorbent for chromium species by a packed microcolumn coupled with inductively coupled plasma mass spectrometry (ICP-MS), including total, suspended and soluble chromium as well as Cr(III) and Cr(VI) in tea leaves and tea infusion. The experimental results indicated that Cr(III) was quantitatively retained on TDNTs in the pH range of 5.0-8.0, while Cr(VI) remained in the solution. The total chromium was determined after reducing Cr(VI) to Cr(III). The concentration of Cr(VI) is calculated by the difference between total chromium and Cr(III). Under optimal conditions, the detection limits of this method were 0.0075ngmL(-1) for Cr(III). The relative standard deviation was 3.8% (n=9, c=1.0ngmL(-1)). This method was applied for the analysis of the speciation of chromium and its distribution and content in tea leaves, tea infusion and a certified reference material of tea leaves with satisfactory results. PMID:24360447

  1. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    PubMed

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l. PMID:15503930

  2. Electrothermal vaporization coupled with inductively coupled plasma array-detector mass spectrometry for the multielement analysis of Al2O3 ceramic powders

    SciTech Connect

    Peschel, Birgit U.; Andrade, Francisco J.; Wetzel, William C.; Schilling, G D.; Hieftje, Gary M.; Broekaert, Jose AC; Sperline, Roger; Denton, M BONNER.; Barinaga, Charles J.; Koppenaal, David W.

    2006-01-01

    An electrothermal vaporization (ETV) system useful for the analysis of solutions and slurries has been coupled with a sector-field inductively coupled plasma mass spectrometer (ICP-MS) equipped with an array detector. The ability of this instrument to record the transient signals produced in ETV-ICP-MS is demonstrated. Detection limits for Mn, Fe, Co, Ni, Cu, Zn and Ga are in the range of 4-60 pg ?L-1 for aqueous solutions and in the low ?g g-1 range for the analysis of 10 mg mL-1 slurries of Al2O3 powders. The dynamic ranges measured for Fe, Cu and Ga spanned 3-5 orders of magnitude when the detector was operated in the low-gain mode and appear to be limited by the ETV system. Trace amounts of Fe, Cu and Ga could be directly determined in Al2O3 powders at the 2-270 ?g g-1 level without the use of thermochemical reagents. The results well agree with literature values for Fe, whereas deviations of 30-50% at the 2-90 ?g g-1 level for Cu and Ga were found.

  3. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia

  4. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  5. Evaluation of a 512-Channel Faraday-Strip Array Detector Coupled to an Inductively Coupled Plasma Mattauch-Herzog Mass Spectrograph

    SciTech Connect

    Schilling, G. D.; Ray, Steven J.; Rubinshtein, Arnon A.; Felton, Jermey; Sperline, Roger P.; Denton, Bonner M.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2009-07-01

    A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization.

  6. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry

    PubMed Central

    Cantin, Greg T.; Shock, Teresa R.; Park, Sung Kyu; Madhani, Hiten D.; Yates, John R.

    2008-01-01

    An automated online multidimensional liquid chromatography system coupled to ESI-based tandem mass spectrometry was used to assess the effectiveness of TiO2 in the enrichment of phosphopeptides from tryptic digests of protein mixtures. By monitoring the enrichment of phosphopeptides, an optimized set of loading, wash, and elution conditions were realized for TiO2. A comparison of TiO2 with other resins used for phosphopeptide enrichment, Fe(III)-IMAC and ZrO2, was also carried out using tryptic digests of both simple and moderately complex protein mixtures; where TiO2 was shown to be superior in performance. PMID:17523591

  7. Optimization of determination of platinum group elements in airborne particulate matter by inductively coupled plasma mass spectrometry.

    PubMed

    Bujdoš, Marek; Hagarová, Ingrid; Matúš, Peter; Canecká, Lucia; Kubová, Jana

    2012-03-01

    Determination of automotive traffic-emitted platinum group metals (PGM) by inductively coupled plasma quadrupole mass spectrometry (ICP-MS) was optimized. The interferences from Sr, Cu, Pb, Y, Cd, Zr and Hf were evaluated using model solutions. Plasma radiofrequency (RF) power and nebulizer gas flow were optimized for 103Rh, 105Pd, 108Pd and 195Pt. Two standard reference materials were analyzed: SARM-7 Platinum ore and BCR-723 Road dust. The optimized procedure was used to analyze samples of airborne particulate matter collected in the urban site with heavy automotive traffic in the centre of Bratislava, Slovakia. PMID:24061181

  8. Identification of the related substances in ampicillin capsule by rapid resolution liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Zhang, Lei; Cheng, Xian Long; Liu, Yang; Liang, Miao; Dong, Honghuan; Lv, Beiran; Yang, Wenning; Luo, Zhiqiang; Tang, Mingmin

    2014-01-01

    Rapid Resolution Liquid Chromatography coupled with Electrospray Ionization Tandem Mass Spectrometry (RRLC-ESI-MS(n)) was used to separate and identify related substances in ampicillin capsule. The fragmentation behaviors of related substances were used to identify their chemical structures. Finally, a total of 13 related substances in ampicillin capsule were identified, including four identified components for the first time and three groups of isomers on the basis of the exact mass, fragmentation behaviors, retention time, and chemical structures in the literature. This study avoided time-consuming and complex chemosynthesis of related substances of ampicillin and the results could be useful for the quality control of ampicillin capsule to guarantee its safety in clinic. In the meantime, it provided a good example for the rapid identification of chemical structures of related substances of drugs. PMID:25530907

  9. Identification of the Related Substances in Ampicillin Capsule by Rapid Resolution Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry

    PubMed Central

    Cheng, Xian Long; Liu, Yang; Liang, Miao; Dong, Honghuan; Lv, Beiran; Luo, Zhiqiang; Tang, Mingmin

    2014-01-01

    Rapid Resolution Liquid Chromatography coupled with Electrospray Ionization Tandem Mass Spectrometry (RRLC-ESI-MSn) was used to separate and identify related substances in ampicillin capsule. The fragmentation behaviors of related substances were used to identify their chemical structures. Finally, a total of 13 related substances in ampicillin capsule were identified, including four identified components for the first time and three groups of isomers on the basis of the exact mass, fragmentation behaviors, retention time, and chemical structures in the literature. This study avoided time-consuming and complex chemosynthesis of related substances of ampicillin and the results could be useful for the quality control of ampicillin capsule to guarantee its safety in clinic. In the meantime, it provided a good example for the rapid identification of chemical structures of related substances of drugs. PMID:25530907

  10. Quantitative analysis of human serum corticosterone by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry.

    PubMed

    Ghulam, A; Kouach, M; Racadot, A; Boersma, A; Vantyghem, M C; Briand, G

    1999-04-30

    An original method based upon high-performance liquid chromatography coupled to electrospray ionization mass spectrometry has been developed for corticosterone (B) quantification in human serum. After extraction by diethyl ether using triamcinolone (T) as an internal standard, solutes are separated on a C18 microbore column (250 X 1.0 mm, I.D.), using acetonitrile-water-formic acid (40:59.9:0.1, v/v/v) as the mobile phase (flow-rate 40 microl/min). Detection is performed on an API 1 single quadrupole mass spectrometer equipped with a ESI interface and operated in positive ionization mode. Corticosterone quantifications were realized by computing peak area ratios (B/T) of the serum extracts analyzed in SIM mode (m/z 347 and m/z 395 for B and T. respectively), and comparing them with the calibration curve (r=0.998). PMID:10360442

  11. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    SciTech Connect

    Shadid, J.N.; Tuminaro, R.S.; Walker, H.F.

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  12. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  13. Magneto-hydrodynamics of coupled fluid-sheet interface with mass suction and blowing

    NASA Astrophysics Data System (ADS)

    Ahmad, R.

    2016-01-01

    There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid-sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses.

  14. Simultaneous Factor Analysis of Coupled Aerosol and VOC Mass Spectra in Regions of Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Chang, Rachel; Hayden, Katherine; Li, Shao-Meng; Liggio, John; Sjostedt, Steven; Vlasenko, Alexander; Leaitch, Richard; Abbatt, Jonathan

    2010-05-01

    Recent studies suggest that the traditional binary treatments of atmospheric organics as either gases or particles may be inadequate, highlighting the need for analytical techniques capable of simultaneously considering particle and gas-phase species. Organic mass spectra of particles and volatile organic compounds (VOCs) were collected using an Aerodyne time-of-flight aerosol mass spectrometer (C-ToF-AMS), and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. The particle and VOC mass spectra were combined into a single dataset, which was analyzed using the positive matrix factorization (PMF) receptor modeling technique. The relative weights of the AMS and PTR-MS data were balanced in the PMF analysis according to the criteria that the scaled residuals within a solution be independent of the measuring instrument. Instrument relative weight is controlled by the application of a scaling factor to the PTR-MS uncertainties. The AMS and PTR-MS instruments were deployed from mid-May to mid-June at two sites in Canada: (1) Egbert, ON (2007), a semirural site ~70 km north of Toronto, and (2) Whistler, BC (2008), a remote site ~120 km north of Vancouver. The Egbert site is influenced by anthropogenic emissions from Toronto and populated regions to the south, biogenic emissions from boreal forests to the north, and biomass burning emissions. The Whistler site is strongly influenced by boreal forest terpene emissions, with lesser contributions from long-range transport and anthropogenic emissions.

  15. Time-resolved inductively coupled plasma mass spectrometry measurements with individual, monodisperse drop sample introduction.

    PubMed

    Dziewatkoski, M P; Daniels, L B; Olesik, J W

    1996-04-01

    Individual ion clouds, each produced in the ICP from a single drop of sample, were monitored using time-resolved mass spectrometry and optical emission spectrometry simultaneously. The widths of the ion clouds in the plasma as a function of distance from the point of initial desolvated particle vaporization in the ICP were estimated. The Li(+) cloud width (full width at halfmaximum) varied from 85 to 272 μs at 3 and 10 mm from the apparent vaporization point, respectively. The Sr(+) cloud width varied from 97 to 142 μs at 5 and 10 mm from the apparent vaporization point, respectively. The delays between optical and mass spectrometry signals were used to measure gas velocities in the ICP. The velocity data could then be used to convert ion cloud peak widths in time to cloud sizes in the ICP. Li(+) clouds varied from 2.1 to 6.6 mm (full width at half-maximum) and Sr(+) clouds varied from 2.4 to 3.5 mm at the locations specified above. Diffusion coefficients were estimated from experimental data to be 88, 44, and 24 cm(2)/s for Li(+), Mg(+), and Sr(+), respectively. The flight time of ions from the sampling orifice of the mass spectrometer to the detector were mass dependent and varied from 13 to 21 μs for Mg(+) to 93 to 115 μs for Pb(+). PMID:21619140

  16. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XV: The spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    2015-01-01

    We construct two new Hartree-Fock-Bogoliubov mass models, labeled HFB-28, HFB-29, which in addition to the generalized Skyrme form containing t4 and t5 terms, also include now a modified spin-orbit force. This alternative spin-orbit force allows for an unconventional isospin and/or density dependence relative to the traditional form included in Skyrme functionals. The new forces underlying these models are fitted to essentially all mass data and at the same time to a realistic equation of state of neutron matter. The inclusion of the modified spin-orbit terms allows us to reduce the rms deviation with respect to all the 2353 known masses with Z, N ≥ 8 by 20 keV, leading to a final model error of 0.52 MeV. It is shown that the newly optimized spin-orbit forces do not conform with the one deduced from the relativistic mean field theory, and consequently that the relativistic spin-orbit force might not be optimum to reproduce experimental masses. The spin-orbit splittings are shown to be reduced and in better agreement with empirical values when including a density-dependent form of the spin-orbit interaction. However, the new mass models with such modified spin-orbit terms still fail to reproduce the kink seen in the isotopic shift of the K or Pb charge radii around the neutron magic numbers, despite the fact that such generalizations of the spin-orbit terms were also introduced to improve the description of the isotopic shifts. Shell effects, in particular far away from stability, are shown to remain unaffected by the new spin-orbit terms, except at the N = 184 magic number.

  17. Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment

    PubMed Central

    Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.

    2005-01-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838

  18. Microfluidic Chip-Based Online Screening Coupled to Mass Spectrometry: Identification of Inhibitors of Thrombin and Factor Xa.

    PubMed

    Iyer, Janaki Krishnamoorthy; Otvos, Reka A; Kool, Jeroen; Kini, R Manjunatha

    2016-02-01

    Thrombin and factor Xa (FXa) are critical enzymes of the blood coagulation cascade and are excellent targets of anticoagulant agents. Natural sources present an array of anticoagulants that can be developed as antithrombotic drugs. High-resolution, online screening techniques have been developed for the identification of drug leads from complex mixtures. In this study, we have developed and optimized a microfluidic online screening technique coupled to nano-liquid chromatography (LC) and in parallel with a mass spectrometer for the identification of thrombin and FXa inhibitors in mixtures. Inhibitors eluting from the nano-LC were split postcolumn in a 1:1 ratio; half was fed into a mass spectrometer (where its mass is detected), and the other half was fed into a microfluidic chip (which acts as a microreactor for the online assays). With our platform, thrombin and FXa inhibitors were detected in the assay in parallel with their mass identification. These methods are suitable for the identification of inhibitors from sample amounts as low as sub-microliter volumes. PMID:26323281

  19. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer.

    PubMed

    Roy-Lachapelle, Audrey; Solliec, Morgan; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2015-01-01

    A new innovative analytical method combining ultra-fast analysis time with high resolution/accurate mass detection was developed to eliminate the misidentification of anatoxin-a (ANA-a), a cyanobacterial toxin, from the natural amino acid phenylalanine (PHE). This was achieved by using the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to the Q-Exactive, a high resolution/accurate mass spectrometer (HRMS). This novel combination, the LDTD-APCI-HRMS, allowed for an ultra-fast analysis time (<15 s/sample). A comparison of two different acquisition modes (full scan and targeted ion fragmentation) was made to determine the most rigorous analytical method using the LDTD-APCI interface. Method development focused toward selectivity and sensitivity improvement to reduce the possibility of false positives and to lower detection limits. The Q-Exactive mass spectrometer operates with resolving powers between 17500 and 140000 FWHM (m/z 200). Nevertheless, a resolution of 17500FWHM is enough to dissociate ANA-a and PHE signals. Mass accuracy was satisfactory with values below 1 ppm reaching precision to the fourth decimal. Internal calibration with standard addition was achieved with the isotopically-labeled (D5) phenylalanine with good linearity (R(2)>0.999). Enhancement of signal to noise ratios relative to a standard triple-quadrupole method was demonstrated with lower detection and quantification limit values of 0.2 and 0.6 μg/L using the Q-Exactive. Accuracy and interday/intraday relative standard deviations were below 15%. The new method was applied to 8 different lake water samples with signs of cyanobacterial blooms. This work demonstrates the possibility of using an ultra-fast LDTD-APCI sample introduction system with an HRMS hybrid instrument for quantitative purposes with high selectivity in complex environmental matrices. PMID:25476385

  20. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates.

    PubMed

    Tan, Jiaojie; Liu, Jingyu; Li, Mingdong; El Hadri, Hind; Hackley, Vincent A; Zachariah, Michael R

    2016-09-01

    The novel hyphenation of electrospray-differential mobility analysis with single particle inductively coupled plasma mass spectrometry (ES-DMA-spICPMS) was demonstrated with the capacity for real-time size, mass, and concentration measurement of nanoparticles (NPs) on a particle-to-particle basis. In this proof-of-concept study, the feasibility of this technique was validated through both concentration and mass calibration using NIST gold NP reference materials. A detection limit of 10(5) NPs mL(-1) was determined under current experimental conditions, which is about 4 orders of magnitude lower in comparison to that of a traditional ES-DMA setup using a condensation particle counter as detector. Furthermore, independent and simultaneous quantification of both size and mass of NPs provides information regarding NP aggregation states. Two demonstrative applications include gold NP mixtures with a broad size range (30-100 nm), and aggregated gold NPs with a primary size of 40 nm. Finally, this technique was shown to be potentially useful for real-world samples with high ionic background due to its ability to remove dissolved ions yielding a cleaner background. Overall, we demonstrate the capacity of this new hyphenated technique for (1) clearly resolving NP populations from a mixture containing a broad size range; (2) accurately measuring a linear relationship, which should inherently exist between mobility size and one-third power of ICPMS mass for spherical NPs; (3) quantifying the early stage propagation of NP aggregation with well-characterized oligomers; and (4) differentiating aggregated NPs and nonaggregated states based on the "apparent density" derived from both DMA size and spICPMS mass. PMID:27479448

  1. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  2. Applications of inductively coupled plasma-mass spectrometry in environmental radiochemistry

    USGS Publications Warehouse

    Grain, J.S.

    1996-01-01

    The state of the art in ICP-MS is now such that there are few discernible differences between radiochemical and mass spectrometric determinations of longlived radionuclides. Indeed, ICP-MS may provide better (more sensitive) data for many radionuclides, depending upon how one wishes to define "long-lived." In lowlevel determinations, sample preparation remains an important part of the analytical procedure, even with ICP-MS, but the speed and isotopic selectivity of the mass spectrometer appear to offer distinct procedural advantages over radiochemical techniques. Therefore, "radioanalytical" ICP-MS applications should continue to grow, especially in the area of radiation protection, but further research (on efficient sample introduction, for example) and method development may be required to get ICP-MS "off the ground" in the geochemical research areas that have traditionally been supported by radiochemistry.

  3. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-02-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  4. Atmospheric Pressure Surface Sampling/Ionization Techniques for Direct Coupling of Planar Separations with Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-01-01

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in-situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature.

  5. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ. PMID:26914233

  6. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  7. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    Micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry was optimized for the determination and separation of a mixture of cobalt containing species. Four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) representing the various forms of vitamin B12 as well as the harmful corrinoid analogue cobinamide dicyanide were separated using reversed-phase microcapillary chromatography with columns containing C18 packing material with a 2-μm particle size. Selection of organic solvents for the separation took into consideration compatibility with the inductively coupled plasma mass spectrometer being used for element specific detection. Optimized method conditions included use of a methanol gradient and make-up solution for the nebulizer. Some issues associated with dead volume were overcome by the extension of the gradient program. The total analysis time was 52 min. The column-to-column variability was evaluated and was found to be very reasonable (9% RSD on average), confirming that this method is rugged and that the technology should be easily transferred to other laboratories.

  8. Coupling Laser Diode Thermal Desorption with Acoustic Sample Deposition to Improve Throughput of Mass Spectrometry-Based Screening.

    PubMed

    Haarhoff, Zuzana; Wagner, Andrew; Picard, Pierre; Drexler, Dieter M; Zvyaga, Tatyana; Shou, Wilson

    2016-02-01

    The move toward label-free screening in drug discovery has increased the demand for mass spectrometry (MS)-based analysis. Here we investigated the approach of coupling acoustic sample deposition (ASD) with laser diode thermal desorption (LDTD)-tandem mass spectrometry (MS/MS). We assessed its use in a cytochrome P450 (CYP) inhibition assay, where a decrease in metabolite formation signifies CYP inhibition. Metabolite levels for 3 CYP isoforms were measured as CYP3A4-1'-OH-midazolam, CYP2D6-dextrorphan, and CYP2C9-4'-OH-diclofenac. After incubation, samples (100 nL) were acoustically deposited onto a stainless steel 384-LazWell plate, then desorbed by an infrared laser directly from the plate surface into the gas phase, ionized by atmospheric pressure chemical ionization (APCI), and analyzed by MS/MS. Using this method, we achieved a sample analysis speed of 2.14 s/well, with bioanalytical performance comparable to the current online solid-phase extraction (SPE)-based MS method. An even faster readout speed was achieved when postreaction sample multiplexing was applied, where three reaction samples, one for each CYP, were transferred into the same well of the LazWell plate. In summary, LDTD coupled with acoustic sample deposition and multiplexing significantly decreased analysis time to 0.7 s/sample, making this MS-based approach feasible to support high-throughput screening (HTS) assays. PMID:26420787

  9. Determination of hexavalent chromium in traditional Chinese medicines by high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Li, Peng; Li, Li-Min; Xia, Jing; Cao, Shuai; Hu, Xin; Lian, Hong-Zhen; Ji, Shen

    2015-12-01

    An analytical method that combined high-performance liquid chromatography with inductively coupled plasma mass spectrometry has been developed for the determination of hexavalent chromium in traditional Chinese medicines. Hexavalent chromium was extracted using the alkaline solution. The parameters such as the concentration of alkaline and the extraction temperature have been optimized to minimize the interconversion between trivalent chromium and hexavalent chromium. The extracted hexavalent chromium was separated on a weak anion exchange column in isocratic mode, followed by inductively coupled plasma mass spectrometry determination. To obtain a better chromatographic resolution and sensitivity, 75 mM NH4 NO3 at pH 7 was selected as the mobile phase. The linearity of the proposed method was investigated in the range of 0.2-5.0 μg L(-1) (r(2) = 0.9999) for hexavalent chromium. The limits of detection and quantitation are 0.1 and 0.3 μg L(-1) , respectively. The developed method was successfully applied to the determination of hexavalent chromium in Chloriti lapis and Lumbricus with satisfactory recoveries of 95.8-112.8%. PMID:26541101

  10. Controlled dissolution of silicon dioxide layers for depth resolved multielement analysis by inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lorge, Susan E.; Houk, R. S.

    2009-11-01

    Dissolution procedures were developed to control the number of surface layers removed, in an attempt to achieve depth resolved analysis by inductively coupled plasma-mass spectrometry (ICP-MS). NIST 612 glass was chosen because it is a homogeneous material with many elements at interesting concentrations, ~ 50 ppm. Varying dissolution time and HF concentration resulted in the reproducible removal of SiO 2 layers as thin as 70 Å deep. Dissolved trace metals were determined after dilution by inductively coupled plasma-mass spectrometry (ICP-MS) with a magnetic sector instrument. The amount removed was determined from the concentration of a major element, Ca. With the exception of Zn, trace metal concentrations agreed reasonably well with their certified values for removal depths of 500, 300 and 150 Å. Zinc concentration was significantly high in all dissolutions indicating either a contamination problem or that Zn is removed at a faster rate than Ca. For the dissolutions that removed 70 Å of SiO 2, Cr, Mn, Co, Sr, Cd, Ce, Dy, Er, Yb and U recovery results agreed with their certified values (~ 50 ppm); Ti, As, Mo, Ba, and Th could not be determined because net intensities were below 3 σ of the blank; and measured concentrations for Cu, Pb and Zn were well above the certified values.

  11. Iodine speciation in dog foods and treats by high performance liquid chromatography with inductively coupled plasma mass spectrometry detection.

    PubMed

    Wilson, Robert A; Yanes, Enrique G; Kemppainen, Robert J

    2016-06-01

    An analytical method for determination of the iodine species 3-monoiodotyrosine (MIT), iodide, 3,5-diiodotyrosine (DIT), 3,5-diiodothyronine (3, 5-T2), 3,5,3'-triiodothyronine (T3), and thyroxine (T4) in dog foods and treats is reported. Iodine speciation was carried out using a HPLC method capable of both anion-exchange and reversed-phase retention coupled with inductively coupled plasma mass spectrometry detection (LC-ICP-MS). The method was evaluated by the analysis of the iodine species concentrations in twelve dog foods and treats following enzymatic digestion. The concentrations of MIT, iodide, DIT, T3, and T4 in the samples ranged from 0.64-59.5μg/g, 0.86-4.05μg/g, mass spectrometry (LC-MS/MS) to cross-validate the results obtained by LC-ICP-MS. Both methods were in good agreement for the concentrations of DIT, T3, and T4. PMID:27107244

  12. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

    SciTech Connect

    Keyhani, M; Miller, W A

    1999-11-14

    Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

  13. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors.

    PubMed

    Geiss, Otmar; Cascio, Claudia; Gilliland, Douglas; Franchini, Fabio; Barrero-Moreno, Josefa

    2013-12-20

    The powerful antibacterial properties of engineered silver nanoparticles (AgNPs) have, in recent years, led to a great increase in their use in consumer products such as textiles and personal care products offers. This widespread and often indiscriminate use of nano-silver is inevitably increasing the probability that such materials be accidentally or deliberately lost into the environment. Once present in the environment the normally useful antibacterial properties of the silver may instead become a potential hazard to both man and the environment. In the face of such concerns it therefore desirable to develop easy, reliable and sensitive analytical methods for the determination of nano-sized silver in various matrices. This paper describes a method for the simultaneous determination of particles-size and mass-concentration of citrate-stabilized silver nano-particles in aqueous matrices by asymmetric flow field flow fractionation coupled to an ICP-mass spectrometer and UV/vis detector. In particular, this work has evaluated the use of pre-channel injections of mono-dispersed silver nano-particles as a means of accurate size and mass-calibration. The suitability of the method as a means to generate accurate and reliable results was verified by determination of parameters such as precision under repeatability conditions, linearity, accuracy, recovery and analytical sensitivity. PMID:24238704

  14. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. PMID:26388363

  15. Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography-mass spectrometry data.

    PubMed

    Bylund, Dan; Danielsson, Rolf; Malmquist, Gunnar; Markides, Karin E

    2002-07-01

    Solutes analysed with LC-MS are characterised by their retention times and mass spectra, and quantified by the intensities measured. This highly selective information can be extracted by multiway modelling. However, for full use and interpretability it is necessary that the assumptions made for the model are valid. For PARAFAC modelling, the assumption is a trilinear data structure. With LC-MS, several factors, e.g. non-linear detector response and ionisation suppression may introduce deviations from trilinearity. The single largest problem, however, is the retention time shifts not related to the true sample variations. In this paper, a time warping algorithm for alignment of LC-MS data in the chromatographic direction has been examined. Several refinements have been implemented and the features are demonstrated for both simulated and real data. With moderate time shifts present in the data, pre-processing with this algorithm yields approximately trilinear data for which reasonable models can be made. PMID:12184621

  16. Algorithm of Coupled Normal Stress and Fluid Flow in Fractured Rock Mass by the Composite Element Method

    NASA Astrophysics Data System (ADS)

    Xue, L. L.; Chen, S. H.; Shahrour, I.

    2014-09-01

    This paper presents a composite element algorithm of coupled normal stress and fluid flow process for fractured rock mass, developed from the composite element method (CEM). The coupled relation between the fracture flow and normal stress makes use of the "filled model", which examines the asperities in the fracture as a layer of granular medium having high porosity and being clipped by the two parallel plates. The existence of fractures is not considered in the mesh generation, but it will be considered explicitly in the mapped composite element. The coupled normal stress and fluid flow process has been simulated by applying a cross iterative algorithm between the two fields. The proposed algorithm considers not only the flow through the fractures, but also the flow exchange between fractures and the surrounding rock blocks. In addition, it can be used for both the filled and non-filled fractures. The verification of the proposed algorithm has been conducted through the illustration of three examples by comparison with the conventional finite element method (FEM), from which the advantages and reliability of the proposed algorithm have been shown clearly.

  17. Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry.

    PubMed

    Mirabelli, Mario F; Wolf, Jan-Christoph; Zenobi, Renato

    2016-05-01

    We report the coupling of nano-liquid chromatography (nano-LC) with an ambient dielectric barrier discharge ionization (DBDI)-based source. Detection and quantification were carried out by high-resolution mass spectrometry (MS), using an LTQ-Orbitrap in full scan mode. Despite the fact that nano-LC systems are rarely used in food analysis, this coupling was demonstrated to deliver extremely high sensitivity in pesticide analysis, with limits of detection (LODs) as low as 10 pg/mL. In all cases, the limits of quantification (LOQs) were compliant with the current EU regulation. An excellent signal linearity over up to four orders of magnitude was also observed. Therefore, this method can easily compete with conventional GC-(EI)-MS or LC-ESI-MS/MS methods and in some cases outperform them. The method was successfully tested for food sample analysis, with apples and baby food, extracted using the QuEChERS approach. Our results demonstrate an outstanding sensitivity (at femtogram level) and reproducibility of the nano-LC-DBDI coupling, capable of improving routine pesticide analysis. To the best of our knowledge, this is the most sensitive and reproducible plasma-MS-based method for pesticide analysis reported to date. PMID:26898206

  18. Rapid identification and analysis of airborne plutonium using a combination of alpha spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Farmer, Dennis E; Steed, Amber C; Sobus, Jon; Stetzenbach, Klaus; Lindley, Kaz; Hodge, Vernon F

    2003-10-01

    Recent wildland fires near two U.S. nuclear facilities point to a need to rapidly identify the presence of airborne plutonium during incidents involving the potential release of radioactive materials. Laboratory turn-around times also need to be shortened for critical samples collected in the earliest stages of radiological emergencies. This note discusses preliminary investigations designed to address both these problems. The methods under review are same day high-resolution alpha spectroscopy to screen air filter samples for the presence of plutonium and inductively coupled plasma mass spectrometry to perform sensitive plutonium analyses. Thus far, using modified alpha spectroscopy techniques, it has been possible to reliably identify the approximately 5.2 MeV emission of 239Pu on surrogate samples (air filters artificially spiked with plutonium after collection) even though the primary alpha-particle emissions of plutonium are, as expected, superimposed against a natural alpha radiation background dominated by short-lived radon and thoron progeny (approximately 6-9 MeV). Several processing methods were tested to prepare samples for analysis and shorten laboratory turn-around time. The most promising technique was acid-leaching of air filter samples using a commercial open-vessel microwave digestion system. Samples prepared in this way were analyzed by both alpha spectroscopy (as a thin-layer iron hydroxide co-precipitate) and inductively coupled plasma mass spectrometry. The detection levels achieved for 239Pu--approximately 1 mBq m(-3) for alpha spectroscopy screening, and, < 0.1 mBq m(-3) for inductively coupled plasma mass spectrometry analysis--are consistent with derived emergency response levels based on EPA's Protective Action Guides, and samples can be evaluated in 36 to 72 h. Further, if samples can be returned to a fixed-laboratory and processed immediately, results from mass spectrometry could be available in as little as 24 h. When fully implemented

  19. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99±9% vs. 73±7%, respectively). A limit of detection of 0.9μgL(-1) CeO2 corresponding to a number concentration of 1.8×1012L(-1) for NPs of 5nm was achieved for an injection volume of 100μL. PMID:26903472

  20. Towards silicon speciation in light petroleum products using gas chromatography coupled to inductively coupled plasma mass spectrometry equipped with a dynamic reaction cell

    NASA Astrophysics Data System (ADS)

    Chainet, Fabien; Lienemann, Charles-Philippe; Ponthus, Jeremie; Pécheyran, Christophe; Castro, Joaudimir; Tessier, Emmanuel; Donard, Olivier François Xavier

    2014-07-01

    Silicon speciation has recently gained interest in the oil and gas industry due to the significant poisoning problems caused by silicon on hydrotreatment catalysts. The poisoning effect clearly depends on the structure of the silicon species which must be determined and quantified. The hyphenation of gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) allows a specific detection to determine the retention times of all silicon species. The aim of this work is to determine the retention indices of unknown silicon species to allow their characterization by a multi-technical approach in order to access to their chemical structure. The optimization of the dynamic reaction cell (DRC) of the ICP-MS using hydrogen as reactant gas successfully demonstrated the resolution of the interferences (14N14N+ and 12C16O+) initially present on 28Si. The linearity was excellent for silicon compounds and instrumental detection limits ranged from 20 to 140 μg of Si/kg depending on the response of the silicon compounds. A continuous release of silicon in the torch was observed most likely due to the use of a torch and an injector which was made of quartz. A non-universal response for silicon was observed and it was clearly necessary to use response coefficients to quantify silicon compounds. Known silicon compounds such as cyclic siloxanes (D3-D16) coming from PDMS degradation were confirmed. Furthermore, more than 10 new silicon species never characterized before in petroleum products were highlighted in polydimethylsiloxane (PDMS) degradation samples produced under thermal cracking of hydrocarbons. These silicon species mainly consisted of linear and cyclic structures containing reactive functions such as ethoxy, peroxide and hydroxy groups which can be able to react with the alumina surface and hence, poison the catalyst. This characterization will further allow the development of innovative solutions such as trapping silicon compounds or

  1. Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organically-bound selenium.

    PubMed

    Peachey, Emma; Cook, Ken; Castles, Adrian; Hopley, Christopher; Goenaga-Infante, Heidi

    2009-10-16

    This work investigates for the first time the potential of mixed-mode (anion-exchange with reversed-phase) high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous retention and selective separation of a range of inorganic and organically-bound selenium (Se) species. Baseline separation and detection of selenocystine (SeCys(2)), Se-methyl-selenocysteine (SeMC), selenomethionine (SeMet), methylseleninic acid (MSA), selenite, gamma-glutamyl-methyl-selenocysteine (gamma-glutamyl-SeMC), and selenate in a Se standard mixture by mixed-mode HPLC-ICP-MS was achieved by switching between two citrate mobile phases of different pH and ionic strength within a single chromatographic run of 20 min. Limits of detection obtained for these Se species ranged from 80 ng kg(-1) (for SeMC) to 123 ng kg(-1) (for selenate). Using this approach as developed for selenium speciation, an adequate separation of inorganic and organic As compounds was also achieved. These include arsenite, arsenate, arsenobetaine (AsB) and dimethylarsenic acid (DMA), which may coexist with Se species in biological samples. Application of the newly proposed methodology to the investigation of the elemental species distribution in watercress (used as the model sample) after enzymatic hydrolysis or leaching in water by accelerated solvent extraction (ASE) was addressed. Only SeMet, SeMC and selenate could be tentatively identified in watercress extracts by mixed-mode HPLC-ICP-MS and retention time matching with standards. Recoveries (n=3) of these Se species from samples spiked with standards averaged 102% (for SeMC), 94.9% (for SeMet) and 98.3% (for selenate). Verification of the presence of SeMet and SeMC in an enzymatic watercress extract was achieved by on-line HPLC-ESI MS/MS in selected reaction monitoring (SRM) mode. PMID:19758595

  2. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  3. Quantitative determination of DNA adducts using liquid chromatography/electrospray ionization mass spectrometry and liquid chromatography/high-resolution inductively coupled plasma mass spectrometry.

    PubMed

    Siethoff, C; Feldmann, I; Jakubowski, N; Linscheid, M

    1999-04-01

    The quantitative determination of nucleotides from DNA modified by styrene oxide is described using a combination of inductively coupled plasma high-resolution mass spectrometry (ICP-HRMS) and electrospray ionization mass spectrometry (ESI-MS), both interfaced to reversed-phase high-performance liquid chromatography (HPLC). LC/ICP-MS (resolution > 1500 to discriminate against 15N16O+ and 14N16OH+) was employed to determine quantitatively the content of modified nucleotides in standard solutions based on the signal of phosphorus; phosphoric acid served as an internal standard. By means of the standard addition technique the sensitivity of the LC/ESI-MS approach was subsequently determined. Since a comparison of UV, ICP and ESI-MS data suggested that in ESI-MS the ionization efficiency of the adducts is identical within the error limits, quantitative determination of all adducts is possible. For LC/ESI-MS with single ion monitoring, the detection limit for styrene oxide adducts of nucleotides was determined to be 20 pg absolute or 14 modified in 10(8) unmodified nucleotides in a 5 micrograms DNA sample, which comes close to the best methods available for the detection of chemical modifications in DNA. PMID:10226366

  4. Comparison of chicken and pheasant ovotransferrin N-glycoforms via electrospray ionization mass spectrometry and liquid chromatography coupled with mass spectrometry.

    PubMed

    Jiang, Kuan; Wang, Chengjian; Sun, Yujiao; Liu, Yang; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2014-07-23

    Species-specific ovotransferrin features a highly conservative protein sequence, but it varies in the structure of the attached oligosaccharides, which may contribute to the differences observed in its bioactivity and nutritional value. Herein, chicken ovotransferrin (COT) and pheasant ovotransferrin (POT) isolated by repeated ethanol precipitation of egg white were digested with peptide N-glycosidase F to release N-glycans. The obtained N-glyans were isotopically labeled with aniline and analyzed via electrospray ionization mass spectrometry and online hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS). Relative quantitation based on isotopic aniline labeling and HILIC-MS/MS analysis revealed in detail the conspicuous difference between COT and POT in the abundance of their N-glycan compositions and isomers. In total, 16 COT N-glycans were observed, including 1 core structure (3.18%), 3 hybrid type (5.42%), and 12 complex type (91.40%), whereas 21 POT N-glycans were found, including 1 truncated structure (1.88%), 1 core structure (6.26%), 3 high mannose type (5.20%), 6 hybrid type (19.14%), and 10 complex type (67.52%). To our knowledge, this study is the first qualitative and quantitative comparison of COT and POT N-glycosylation patterns. These results suggest that POT has a different glycosylation pattern compared to that of COT and thus the effect of its glycosylation pattern on its bioactivity is worthy of further exploration. PMID:24998151

  5. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  6. Separation and identification of oligomeric vinylmethoxysiloxanes by gradient elution chromatography coupled with electrospray ionization mass spectrometry.

    PubMed

    Jia, Guiying; Wan, Qian-Hong

    2015-05-22

    A high-performance liquid chromatography with online electrospray ionization mass spectrometry (HPLC-ESI-MS) has been used to separate and identify the reaction products resulting from controlled acid-catalyzed hydrolytic polycondensation of vinyltrimethoxysilane (VMS). The reaction products were prepared in the molar ratio of water to VMS (r1) ranging from 0.6 to 1.2, characterized by standard spectroscopic techniques, and subsequently analyzed by HPLC-UV absorbance detection and HPLC-ESI-MS. Linear vinylmethoxysiloxane oligomers with the number of repeat units (n) ranging from 3 to 11 are predominant species at the beginning of the reaction (for r1=0.6). Then they transform into monocyclic (for r1=1.0) and bicyclic (for r1=1.2) species with gradually increasing amount of water in the reaction mixture. The oligomer conversions suggest that structure growth of vinylmetoxysiloxanes proceeds by nonrandom cyclization reactions, which are favored over chain extension under the chosen reaction conditions. Direct ESI-MS, HPLC-ESI-MS and HPLC-UV were used to determine the molar mass distributions for the vinylmethoxysiloxane oligomers prepared in three different values of r1. The molar mass averages increase slightly with the amount of water in the reaction mixture and vary somewhat with the method used. Our results indicate that with the combined capability of separation, sensitivity and identification, HPLC-ESI-MS is especially useful to study highly complex silicon-based compounds with hyperbranched, caged or cubic structures as building blocks for hybrid materials. PMID:25890439

  7. Analysis of additives in dairy products by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry.

    PubMed

    Jia, Wei; Ling, Yun; Lin, Yuanhui; Chang, James; Chu, Xiaogang

    2014-04-01

    A new method combining QuEChERS with ultrahigh-performance liquid chromatography and electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap) was developed for the highly accurate and sensitive screening of 43 antioxidants, preservatives and synthetic sweeteners in dairy products. Response surface methodology was employed to optimize a quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation method for the determination of 42 different analytes in dairy products for the first time. After optimization, the maximum predicted recovery was 99.33% rate for aspartame under the optimized conditions of 10 mL acetionitrile, 1.52 g sodium acetate, 410 mg PSA and 404 mgC18. For the matrices studied, the recovery rates of the other 42 compounds ranged from 89.4% to 108.2%, with coefficient of variation <6.4%. UHPLC/ESI Q-Orbitrap Mass full scan mode acquired full MS data was used to identify and quantify additives, and data-dependent scan mode obtained fragment ion spectra for confirmation. The mass accuracy typically obtained is routinely better than 1.5ppm, and only need to calibrate once a week. The 43 compounds behave dynamic in the range 0.001-1000 μg kg(-1) concentration, with correlation coefficient >0.999. The limits of detection for the analytes are in the range 0.0001-3.6 μg kg(-1). This method has been successfully applied on screening of antioxidants, preservatives and synthetic sweeteners in commercial dairy product samples, and it is very useful for fast screening of different food additives. PMID:24607030

  8. Fermionic-Bosonic Couplings in a Weakly Deformed Odd-Mass Nucleus ^{93}_{41}Nb

    SciTech Connect

    Orce, J. N.; Holt, J. D.; Linnemann, A.; McKay, C. J.; Fransen, C.; Jolie, J.; Kuo, T.T.S.; Lesher, S. R.; McEllistrem, M. T.; Pietralla, N.; Warr, N.; Werner, V.; Yates, S. W.

    2010-01-01

    A comprehensive level scheme of {sup 93}Nb below 2 MeV has been constructed from information obtained with the {sup 93}Nb(n,n{prime}{gamma}) and the {sup 94}Zr(p,2n{gamma}{gamma}){sup 93}Nb reactions. Branching ratios, lifetimes, transition multipolarities, and spin assignments have been determined. From M1 and E2 strengths, fermionic-bosonic excitations of isoscalar and isovector characters have been identified from the weak couplings of the {pi}1g{sub 9/2} {circle_times} {sub 40}{sup 92}Zr and {pi}2p{sub 1/2}{sup -1} {circle_times} {sub 42}{sup 94}Mo configurations. A microscopic interpretation of such excitations is obtained from shell-model calculations, which use low-momentum effective interactions.

  9. Elastic Proton Scattering of Medium Mass Nuclei from Coupled-Cluster Theory

    SciTech Connect

    Hagen, G.; MichelN.,

    2012-01-01

    Using coupled-cluster theory and interactions from chiral effective field theory, we compute overlap functions for transfer and scattering of low-energy protons on the target nucleus 40Ca. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions. Using known asymptotic forms for one-nucleon overlap functions we derive a simple and intuitive way of computing scattering observables such as elastic scattering phase shifts and cross sections. As a first application and proof of principle, we compute phase shifts and differential interaction cross sections at energies of 9.6 and 12.44 MeV and compare with experimental data. Our computed diffraction minima are in fair agreement with experimental results, while we tend to overestimate the cross sections at large scattering angles.

  10. Precise isotopic analysis of Mo in seawater using multiple collector-inductively coupled mass spectrometry coupled with a chelating resin column preconcentration method.

    PubMed

    Nakagawa, Yusuke; Firdaus, M Lutfi; Norisuye, Kazuhiro; Sohrin, Yoshiki; Irisawa, Keita; Hirata, Takafumi

    2008-12-01

    It is widely recognized that the natural isotopic variation of Mo can provide crucial information about the geochemical circulation of Mo, and the ocean is an important reservoir of Mo. To obtain precise isotopic data on Mo in seawater samples using multiple collector-inductively coupled plasma mass spectrometry (MC-ICPMS), we have developed a preconcentration technique using 8-hydroxyquinoline bonded covalently to a vinyl polymer resin (TSK-8HQ). By optimizing the procedure, Mo in seawater could be effectively separated from matrix elements such as alkali, alkaline earth, and transition metals. With this technique, even with a 50-fold enrichment factor, the changes in the 98Mo/95Mo ratio during preconcentration were smaller than twice the standard deviation (SD) in this study. Mass discrimination of Mo isotopes during the measurement was externally corrected for by normalizing 86Sr/88Sr to 0.1194 using an exponential law. We evaluated delta98/95Mo to a precision of +/- 0.08 per thousand (+/-2 SD); this value was found to be less than one-third of previous reported values. Moreover, we were able to determine an accurate ratio for every pair of stable Mo isotopes, which was impossible with previous methods owing to the isobaric interference from the external elements (Zr and Ru). In this study, delta92/98Mo in seawater was first determined so that it had the smallest relative error. We applied the proposed method to four kinds of seawater samples. The Mo compositions were constant among them, with average delta98/95Mo and delta92/98Mo values of 2.45 +/- 0.11 and -4.94 +/- 0.09 per thousand (+/-2 SD), respectively. Our data indicate that seawater is enriched in heavy Mo isotopes than previously reported. PMID:19551942

  11. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    Bouchet, Sylvain; Björn, Erik

    2014-04-25

    The behavior of monomethylmercury (MMHg) is markedly influenced by its distribution among complexes with low molecular mass (LMM) thiols but analytical methodologies dedicated to measure such complexes are very scarce up to date. In this work, we selected 15 LMM thiols often encountered in living organisms and/or in the environment and evaluated the separation of the 15 corresponding MMHg-thiol complexes by various high performance liquid chromatography (HPLC) columns. Two C18 (Phenomenex Synergi Hydro-RP and LunaC18(2)), two phenyl (Inertsil Ph 3 and 5μm) and one mixed-mode (Restek Ultra IBD) stationary phases were tested for their retention and resolution capacities of the various complexes. The objective was to find simple separation conditions with low organic contents in the mobile phase to provide optimal conditions for detection by inductively coupled plasma mass spectrometry (ICPMS). The 15 complexes were synthesized in solution and characterized by electrospray ionization-mass spectrometry (ESI-MS). The C18 columns tested were either not resolutive enough or too retentive. The 3μm phenyl stationary phase was able to resolve 10 out of the 15 complexes in less than 25min, under isocratic conditions. The mixed-mode column was especially effective at separating the most hydrophilic complexes (6 complexes out of the 15), corresponding to the main LMM thiols found in living organisms. The detection limits (DLs) for these two columns were in the low nanomolar range and overall slightly better for the phenyl column. The possibilities offered by such methodology were exemplified by monitoring the time-course concentrations of four MMHg-thiol complexes within a phytoplankton incubation containing MMHg in the presence of an excess of four added thiols. PMID:24657146

  12. Lipidomic profiling of dried seahorses by hydrophilic interaction chromatography coupled to mass spectrometry.

    PubMed

    Shen, Qing; Dai, Zhiyuan; Huang, Yao-Wen; Cheung, Hon-Yeung

    2016-08-15

    Dried seahorse is a precious raw food material for cooking soups. In this study, a lipidomics strategy using the techniques of solid-phase extraction (SPE) and hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-QTOF/MS) was developed for extraction, visualization, and quantification of phospholipids in dried seahorses. The parameters of SPE were optimized, and 1 mL of sample and chloroform/methanol (1:2, v/v) were found to be the best loading volume and eluting solvent, respectively. Afterwards, each phospholipid class was successfully separated on a HILIC column and analyzed by mass spectrometry. A total of 50 phospholipid molecular species were identified and determined, including 15 phosphatidylcholines (PCs), 14 phosphatidylethanolamines (PEs), 12 phosphatidylinositols (PIs) and 9 phosphatidylserines (PSs). In comparison to previously methods, this strategy was robust and efficient in extraction, characterization, and determination of phospholipids. The dried seahorse was found to contain large amounts of polyunsaturated fatty acyl phospholipids which are beneficial to human health. PMID:27006218

  13. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    NASA Astrophysics Data System (ADS)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  14. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; John, Seth G.; Kavner, Abby

    2014-01-01

    The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn+2 in solution, with observed fractionations varying from Δ66/64Znmetal-aqueous = -1.0‰ to -3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects. Light isotopes are electroplated. In all cases light stable isotopes of the metals are preferentially electroplated, with mass-dependent behavior evident where three or more isotopes are measured. Fractionation is time-independent, meaning that the fractionation factor does not vary with the extent of reaction. In most of our experiments, we have controlled the extent of reaction such that only a small amount of metal is deposited from the stock solution, thus avoiding significant evolution of the reservoir composition. In such experiments, the observed isotope fractionation is constant as a

  15. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  16. Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Regelous, Marcel; Turner, Simon P; Elliott, Tim R; Rostami, Kia; Hawkesworth, Chris J

    2004-07-01

    We describe a new method for the chemical separation and analysis of Pa in silicate rock samples by isotope dilution. Our new technique has the following advantages over previous methods: (a) The initial separation of Pa from the rock matrix is carried out using anionic exchange resin and HCl-HF mixtures, avoiding the need to remove F(-) quantitatively from the sample solution prior to this step, (b) Efficient ionization of Pa is achieved using a multicollector inductively coupled plasma mass spectrometer, so that smaller sample sizes and shorter measurement times are required, compared to previous methods using thermal ionization mass spectrometry or alpha spectrometry. (c) Plasma ionization requires less efficient separation of the high field strength elements from Pa, thus reducing reagent volumes, blanks, and sample preparation times. Instrumental mass fractionation can be corrected for using admixed U of known isotopic composition. Using this method, Pa concentrations can be measured to a precision of approximately 0.5% and an accuracy of approximately 1% using only a few tens of femtograms of Pa. PMID:15228328

  17. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles

    PubMed Central

    Qu, Haiou; Mudalige, Thilak K.; Linder, Sean W.

    2016-01-01

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg−1 of silver nanoparticles and 0.03 μg kg−1 of ionic silver. Nanoparticles of varied sizes (10–110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low. PMID:26724893

  18. Magnetic immunoassay coupled with inductively coupled plasma mass spectrometry for simultaneous quantification of alpha-fetoprotein and carcinoembryonic antigen in human serum

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Chen, Beibei; He, Man; Zhang, Yiwen; Xiao, Guangyang; Hu, Bin

    2015-04-01

    The absolute quantification of glycoproteins in complex biological samples is a challenge and of great significance. Herein, 4-mercaptophenylboronic acid functionalized magnetic beads were prepared to selectively capture glycoproteins, while antibody conjugated gold and silver nanoparticles were synthesized as element tags to label two different glycoproteins. Based on that, a new approach of magnetic immunoassay-inductively coupled plasma mass spectrometry (ICP-MS) was established for simultaneous quantitative analysis of glycoproteins. Taking biomarkers of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) as two model glycoproteins, experimental parameters involved in the immunoassay procedure were carefully optimized and analytical performance of the proposed method was evaluated. The limits of detection (LODs) for AFP and CEA were 0.086 μg L- 1 and 0.054 μg L- 1 with the relative standard deviations (RSDs, n = 7, c = 5 μg L- 1) of 6.5% and 6.2% for AFP and CEA, respectively. Linear range for both AFP and CEA was 0.2-50 μg L- 1. To validate the applicability of the proposed method, human serum samples were analyzed, and the obtained results were in good agreement with that obtained by the clinical chemiluminescence immunoassay. The developed method exhibited good selectivity and sensitivity for the simultaneous determination of AFP and CEA, and extended the applicability of metal nanoparticle tags based on ICP-MS methodology in multiple glycoprotein quantifications.

  19. Polymer monolithic capillary microextraction on-line coupled with inductively coupled plasma-mass spectrometry for the determination of trace Au and Pd in biological samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolan; He, Man; Chen, Beibei; Hu, Bin

    2014-11-01

    A novel method based on on-line polymer monolithic capillary microextraction (CME)-inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace Au and Pd in biological samples. For this purpose, poly(glycidyl methacrylate-ethylene dimethacrylate) monolith was prepared and functionalized with mercapto groups. The prepared monolith exhibited good selectivity to Au and Pd, and good resistance to strong acid with a long life span. Factors affecting the extraction efficiency of CME, such as sample acidity, sample flow rate, eluent conditions and coexisting ion interference were investigated in detail. Under the optimal conditions, the limits of detection (LODs, 3σ) were 5.9 ng L- 1 for Au and 8.3 ng L- 1 for Pd, and the relative standard deviations (RSDs, c = 50 ng L -1, n = 7) were 6.5% for Au and 1.1% for Pd, respectively. The developed method was successfully applied to the determination of Au and Pd in human urine and serum samples with the recovery in the range of 84-118% for spiked samples. The developed on-line polymer monolithic CME-ICP-MS method has the advantages of rapidity, simplicity, low sample/reagent consumption, high sensitivity and is suitable for the determination of trace Au and Pd in biological samples with limited amount available and complex matrix.

  20. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles.

    PubMed

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2016-01-15

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg(-1) of silver nanoparticles and 0.03 μg kg(-1) of ionic silver. Nanoparticles of varied sizes (10-110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low. PMID:26724893

  1. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    PubMed

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. PMID:26493473

  2. Waveguide-coupled micro-ball lens array suitable for mass fabrication.

    PubMed

    Chang, Lantian; Dijkstra, Meindert; Ismail, Nur; Pollnau, Markus; de Ridder, René M; Wörhoff, Kerstin; Subramaniam, Vinod; Kanger, Johannes S

    2015-08-24

    We demonstrate a fabrication procedure for the direct integration of micro-ball lenses on planar integrated optical channel waveguide chips with the aim to reduce the divergence of light that arises from the waveguide in both horizontal and vertical directions. Fabrication of the lenses is based on photoresist reflow which is a procedure that allows for the use of photolithography for careful alignment of the lenses with respect to the waveguides and enables mass production. We present in detail the design and fabrication procedures. Optical characterization of the fabricated micro-ball lenses demonstrates a good performance in terms of beam-size reduction and beam shape. The beam half divergence angle of 1544 nm light is reduced from 12.4 ° to 1.85 °. PMID:26368211

  3. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; John, Seth G.; Kavner, Abby

    2014-01-01

    The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn+2 in solution, with observed fractionations varying from Δ66/64Znmetal-aqueous = -1.0‰ to -3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects. Light isotopes are electroplated. In all cases light stable isotopes of the metals are preferentially electroplated, with mass-dependent behavior evident where three or more isotopes are measured. Fractionation is time-independent, meaning that the fractionation factor does not vary with the extent of reaction. In most of our experiments, we have controlled the extent of reaction such that only a small amount of metal is deposited from the stock solution, thus avoiding significant evolution of the reservoir composition. In such experiments, the observed isotope fractionation is constant as a

  4. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  5. Chip-type asymmetrical flow field-flow fractionation channel coupled with mass spectrometry for top-down protein identification.

    PubMed

    Kim, Ki Hun; Moon, Myeong Hee

    2011-11-15

    A chip-type design asymmetrical flow field-flow fractionation (AF4) channel has been developed for high-speed separation of proteins and top-down proteomic analysis using online coupled electrospray ionization mass spectrometry (ESI-MS). The new miniaturized AF4 channel was assembled by stacking multilayer thin stainless steel (SS, 1.5 mm each) plates embedded with an SS frit in such a way that the total thickness of the channel assembly was about 6 mm. The efficiency of the miniaturized AF4 channel at different channel lengths was examined with the separation of protein standards by adjusting flow rates in which an identical effective channel flow rate or an identical void time can be maintained at different channels. Detection limit, overloading effect, reproducibility, and influence of channel membrane materials on separation efficiency were investigated. Desalting and purification of proteins achieved during the AF4 operation by the action of an exiting crossflow and the use of aqueous mass-spectrometry-compatible (MS-compatible) buffer were advantageous for online coupling of the chip-type AF4 with ESI-MS. The direct coupling of AF4 and ESI-MS capabilities was demonstrated for the high-speed separation and identification of carbonic anhydrase (29 kDa) and transferrin (78 kDa) by full scan MS and for the first top-down identification of proteins with AF4-ESI-MS-MS using collision-induced fragmentation (CID). The presence of intact dimers (156 kDa) of transferrin was confirmed by AF4-ESI-MS via size separation of the dimers from monomers, followed by multiply charged ion spectral analysis of the dimers and molecular mass determinations. It was also found from these experiments that AF4-ESI-MS analysis of transferrin exhibited an increased signal-to-noise ratio compared to that of direct ESI-MS analysis due to online purification of the protein sample and size separation of dimers with AF4. PMID:21981549

  6. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles.

    PubMed

    Pergantis, Spiros A; Jones-Lepp, Tammy L; Heithmar, Edward M

    2012-08-01

    Nanoparticle (NP) determination has recently gained considerable interest since a growing number of engineered NPs are being used in commercial products. As a result, their potential to enter the environment and biological systems is increasing. In this study, we report on the development of a hyphenated analytical technique for the detection and characterization of metal-containing NPs, i.e., their metal mass fraction, size, and number concentration. Hydrodynamic chromatography (HDC), suitable for sizing NPs within the range of 5 to 300 nm, was coupled online to inductively coupled plasma mass spectrometry (ICPMS), providing for an extremely selective and sensitive analytical tool for the detection of NPs. However, a serious drawback when operating the ICPMS in its conventional mode is that it does not provide data regarding NP number concentrations and, thus, any information about the metal mass fraction of individual NPs. To address this limitation, we developed single particle (SP) ICPMS coupled online to HDC as an analytical approach suitable for simultaneously determining NP size, NP number concentration, and NP metal content. Gold (Au) NPs of various sizes were used as the model system. To achieve such characterization metrics, three calibrations were required and used to convert ICPMS signal spikes into NPs injected, NP retention time on the HDC column to NP size, and ions detected per signal spike or per NP to metal content in each NP. Two calibration experiments were required in order to make all three calibrations. Also, contour plots were constructed in order to provide for a convenient and most informative viewing of this data. An example of this novel analytical approach was demonstrated for the analysis of Au NPs that had been spiked into drinking water at the ng Au L(-1) level. The described technique gave limits of detection for 60 nm Au NPs of approximately 2.2 ng Au L(-1) or expressed in terms of NP number concentrations of 600 Au NPs mL(-1

  7. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    SciTech Connect

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.; Farmer, Orville T.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samples and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.

  8. Combined use of medium mass resolution and desolvation introduction system for accurate plutonium determination in the femtogram range by inductively coupled plasma-sector-field mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pointurier, Fabien; Pottin, Anne-Claire; Hémet, Philippe; Hubert, Amélie

    2011-03-01

    Formation of a polyatomic species made of an atom of a heavy element like lead, mercury or iridium, and atoms abundant in plasma (argon, nitrogen, oxygen, and hydrogen) when using an inductively coupled plasma-sector-field mass spectrometer (ICP-SFMS) may lead to false detection of femtograms (fg) of plutonium or bias in the measured concentrations. Mathematical corrections, based on the measurement of heavy element concentrations in the sample solutions and determination of the extents of formation of the polyatomic interferences, are efficient but time-consuming and degrade detection limits. We describe and discuss a new method based on the combination of, on the one hand, medium mass resolution (MR) of the ICP-SFMS to separate plutonium isotopes physically from interfering polyatomic species, and, on the other, use of a desolvation introduction system (DIS) to enhance sensitivity, thus partly compensating for the loss of transmission due to use of a higher resolution. Plutonium peaks are perfectly separated from the major interfering species (PbO 2, HgAr, and IrO 3) with a mass resolution of ~ 4000. The resulting nine-fold transmission loss is partly compensated by a five-fold increase in sensitivity obtained with the DIS and a lower background. The instrumental detection limits for plutonium isotopes, calculated for measurements of pure synthetic solutions, of the new method (known as MR-DIS method) and of the one currently used in the laboratory (LR method), based on a low mass resolution equal to 360, a microconcentric nebulizer and two in-line cooled spray chambers, are roughly equivalent, at around 0.2 fg ml - 1 . Regarding the measurement of real-life samples, the results obtained with both methods agree and the corresponding analytical detection limits for plutonium isotopes 239Pu, 240Pu and 241Pu are of a few fg·ml - 1 of sample solution, slightly lower with the MR-DIS method than with the current LR method. Although less sensitive than other plutonium

  9. The coupling between flame surface dynamics and species mass conservation in premixed turbulent combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.

  10. Langmuir Probe and Mass Spectroscopic Measurements in Inductively Coupled CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, Surendra; Cruden, B. A.; Meyyappan, M.

    2001-01-01

    Abstract Electron and ion energy distribution functions and other plasma parameters such as plasma potential (V(sub p)) , electron temperature (T(sub e)), and electron and ion number densities (n (sub e) and n(sub i)) in low pressure CF4 plasmas have been measured. The experiments were conducted in a GEC cell using an inductively coupled plasma (ICP) device powered by a 13.56 MHz radio-frequency (rf) power source. The measurements were made at 300 W of input rf power at 10, 30 and 50 mTorr gas pressures. Langmuir probe measurements suggest that n(sub e), n(sub i) and V(sub p) remain constant over 60% of the central electrode area, beyond which they decrease. Within the limits of experimental error (+/- 0.25 eV), T(sub e) remains nearly constant over the electrode area. T(sub e) and V(sub p) increase with a decrease in pressure. n(sub e) and n(sub i) are not affected as significantly as T(sub e) or V(sub p) by variation in the gas pressure. The electron energy distribution function (EEDF) measurements indicate a highly non-Maxwellian plasma. CF3+ is the most dominant ion product of the plasma, followed by CF2+ and CF+. The concentrations of CF2+ and CF+ are much larger than that is possible from direct electron impact ionization of the parent gas. The cross-section data suggest that the direct electron impact ionization of fragment neutrals and negative ion production by electron attachment may be responsible for increase of the minor ions.

  11. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  12. Inductively Coupled Plasma/Mass Spectrometric Isotopic Determination of Nuclear Wastes Sources Associated with Hanford Tank Leaks

    SciTech Connect

    Evans, John C.; Dresel, P. Evan; Farmer, Orville T.

    2007-11-01

    The subsurface distribution of a nuclear waste tank leak on the U.S. Department of Energy’s Hanford Site was sampled by slant drilling techniques in order to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. High-sensitivity inductively coupled plasma/mass spectrometry (ICP/MS) techniques were used for determination of isotopic ratios for Cs, I, Mo. Analysis of the isotopic patterns of I and Mo combined with associated chemical data showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature.

  13. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  14. A Metabonomic Analysis of Serum from Rats Treated with Ricinine Using Ultra Performance Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Peng, Jing; Cai, Shuang; Wang, Lin; Zhao, Nan; Zhang, Ting-jian; Chen, Zai-xing; Meng, Fan-hao

    2014-01-01

    A metabonomic approach based on ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS) was used to study the hepatotoxicity of ricinine in rats. Potential biomarkers of ricinine toxicity and toxicological mechanism were analyzed by serum metabonomic method. The significant differences in the metabolic profiling of the control and treated rats were clear by using the principal components analysis (PCA) of the chromatographic data. Significant changes of metabolite biomarkers like phenylalanine, tryptophan, cholic acid, LPC and PC were detected in the serum. These biochemical changes were related to the metabolic disorders in amino acids and phospholipids. This research indicates that UPLC/MS-based metabonomic analysis of serum samples can be used to predict the hepatotoxicity and further understand the toxicological mechanism induced by ricinine. This work shows that metabonomics method is a valuable tool in drug mechanism study. PMID:24618672

  15. Identification of gunshot residues in fabric targets using sector field inductively coupled plasma mass spectrometry technique and ternary graphs.

    PubMed

    Freitas, João Carlos D; Sarkis, Jorge E Souza; Negrini Neto, Osvaldo; Viebig, Sônia Bocamino

    2012-03-01

    During criminal investigations involving firearms, the detection of gunshot residues (GSRs) is one of the most important evidences. In the present study, a new method to identify trace evidences of GSRs, deposited around the bullet entrance hole, in different types of fabrics used as targets, is described. The experiments were carried out using a 0.38-inch caliber revolver, and 9-mm and 0.40-inch caliber pistols. Testimonies of 2.25 cm(2) of the fabrics were cut around the bullet entrance and digested with 10% nitric acid. Antimony, barium, and lead were analyzed in the remaining solution using a sector field inductively coupled plasma mass spectrometer. The concentrations of the elements were detected at levels up to few microgram per square centimeter. The use of ternary graphics allowed us to identify specific patterns of distribution for blank samples and the clear distinction between the revolver and pistols used. PMID:22074259

  16. Intelligent Analysis of Samples by Semiquantitative Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Technique: A Review.

    PubMed

    Krzciuk, Karina

    2016-07-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a popular and routine analytical method that has been used for determination of trace elements since the 1980s. It provides fast quantitative analysis and allows the determination of more than 70 elements with good accuracy and very low detection limits, but requires an intricate calibration procedure. In analyses of samples for which very low detection limits are not required a semiquantitative ICP-MS analysis mode can be used. This approach is more time- and cost-effective, and it uses a simple calibration procedure. This article presents a critical review of the semiquantitative (SQ) mode of ICP-MS and describes current and future applications of SQ analysis. PMID:26517237

  17. Multiclass determination of phytochemicals in vegetables and fruits by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Alarcón-Flores, María Isabel; Romero-González, Roberto; Vidal, José Luis Martínez; Frenich, Antonia Garrido

    2013-11-15

    In this study a simultaneous determination of several classes of phytochemicals (isoflavones, glucosinolates, flavones, flavonols and phenolic acids) in tomato, broccoli, carrot, eggplant and grape has been carried out by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Solid-liquid extraction assisted by rotary agitator was utilised, using a mixture of methanol:water (80:20, v/v) as solvent. The analytical procedure was validated in all the matrices, obtaining recoveries ranging from 60% to 120% with repeatability values (expressed as relative standard deviations, RSDs) lower than 25%. Limits of quantification (LOQs) were always equal or lower than 50μg/kg, except for some glucosinolates (125μg/kg). Finally the method was applied to different matrices such as tomato, broccoli, carrot, grape and eggplant, observing that chlorogenic acid was detected in most of the samples at higher concentrations in relation to the other compounds. PMID:23790894

  18. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  19. Miniaturized Bioaffinity Assessment Coupled to Mass Spectrometry for Guided Purification of Bioactives from Toad and Cone Snail

    PubMed Central

    Heus, Ferry; Otvos, Reka A.; Aspers, Ruud L. E. G.; van Elk, Rene; Halff, Jenny I.; Ehlers, Andreas W.; Dutertre, Sébastien; Lewis, Richard J.; Wijmenga, Sybren; Smit, August B.; Niessen, Wilfried M. A.; Kool, Jeroen

    2014-01-01

    A nano-flow high-resolution screening platform, featuring a parallel chip-based microfluidic bioassay and mass spectrometry coupled to nano-liquid chromatography, was applied to screen animal venoms for nicotinic acetylcholine receptor like (nAChR) affinity by using the acetylcholine binding protein, a mimic of the nAChR. The potential of this microfluidic platform is demonstrated by profiling the Conus textile venom proteome, consisting of over 1,000 peptides. Within one analysis (<90 min, 500 ng venom injected), ligands are detected and identified. To show applicability for non-peptides, small molecular ligands such as steroidal ligands were identified in skin secretions from two toad species (Bufo alvarius and Bufo marinus). Bioactives from the toad samples were subsequently isolated by MS-guided fractionation. The fractions analyzed by NMR and a radioligand binding assay with α7-nAChR confirmed the identity and bioactivity of several new ligands. PMID:24833338

  20. Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    İzgi, Belgin; Kayar, Murat

    2015-07-01

    The polybrominated flame retardants and organotin compounds were screened in terms of bromine and tin content using laser ablation inductively coupled plasma mass spectrometry in plastics. The calibration standards were prepared using the fused-disk technique, and all samples were investigated under optimal conditions. Using a central composite experimental design, laser parameters, laser energy, pulse rate, scan rate and spot size were identified. The detection limits of the method were 1000 mgkg(-1) and 1600 mgkg(-1) for bromide and tin, whereas the relative standard deviation (%) values of the analysis were 9% and 6% (n=3) for ERM EC681k with 770 ± 70 mgkg(-1) Br and 86 ± 6 mgkg(-1) Sn respectively, and 106-115% of Br and 102-104% of Sn were observed for the tetrabromobisphenol A and butyltin trichloride spike plastics, respectively. PMID:25882416

  1. A dielectric barrier discharge ionization based interface for online coupling surface plasmon resonance with mass spectrometry.

    PubMed

    Zhang, Yiding; Xu, Shuting; Wen, Luhong; Bai, Yu; Niu, Li; Song, Daqian; Liu, Huwei

    2016-05-23

    The online combination of surface plasmon resonance (SPR) with mass spectrometry (MS) could be beneficial for accurately acquiring molecular interaction data simultaneously with their structural information at high throughputs. In this work, a novel SPR-MS interface was developed using a dielectric barrier discharge ionization (DBDI) source. The DBDI source was placed in front of the MS inlet, generating an ionization plasma jet. A spray tip was set between the DBDI source outlet and the MS inlet, nebulizing the SPR sample solution. Using this interface, samples could first be studied by SPR, then sprayed and ionized, finally analyzed by MS. By analyzing model samples containing small-molecule drugs dissolved in salt containing solutions, the practicability of this SPR-DBDI-MS interface was proved, observing the consistent change of SPR and MS signals. Compared with our previously developed direct analysis in real time (DART) based SPR-MS interface, this new interface exhibited a higher and better tolerance to non-volatile salts, and different ionization capabilities for various samples. These results indicated that the interface could find further utilization in SPR-MS studies especially when physiological conditions were needed. PMID:27116712

  2. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  3. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    PubMed

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers. PMID:26752623

  4. Electro-Focusing Liquid Extractive Surface Analysis (EF-LESA) Coupled to Mass Spectrometry

    PubMed Central

    2014-01-01

    Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical “liquid tip”, employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm2. Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe’s reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R2 = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution. PMID:24597530

  5. NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery

    PubMed Central

    2015-01-01

    Nonribosomal peptides (NRPs) such as vancomycin and daptomycin are among the most effective antibiotics. While NRPs are biomedically important, the computational techniques for sequencing these peptides are still in their infancy. The recent emergence of mass spectrometry techniques for NRP analysis (capable of sequencing an NRP from small amounts of nonpurified material) revealed an enormous diversity of NRPs. However, as many NRPs have nonlinear structure (e.g., cyclic or branched-cyclic peptides), the standard de novo sequencing tools (developed for linear peptides) are not applicable to NRP analysis. Here, we introduce the first NRP identification algorithm, NRPquest, that performs mutation-tolerant and modification-tolerant searches of spectral data sets against a database of putative NRPs. In contrast to previous studies aimed at NRP discovery (that usually report very few NRPs), NRPquest revealed nearly a hundred NRPs (including unknown variants of previously known peptides) in a single study. This result indicates that NRPquest can potentially make MS-based NRP identification as robust as the identification of linear peptides in traditional proteomics. PMID:25116163

  6. Strategies for differentiation of isobaric flavonoids using liquid chromatography coupled to electrospray ionization mass spectrometry.

    PubMed

    Fridén, Mikael E; Sjöberg, Per J R

    2014-07-01

    Flavonoids are a class of secondary plant metabolites existing in great variety in nature. Due to this variety, identification can be difficult, especially as overlapping compounds in both chromatographic separations and mass spectrometric detection are common. Methods for distinguishing isobaric flavonoids using MS(2) and MS(3) have been developed. Chromatographic separation of various plant extracts was done with RP-HPLC and detected with positive ESI-MS operated in information-dependent acquisition (IDA) mode. Two methods for the determination of flavonoid identity and substitution pattern, both featuring IDA criteria, were used together with the HPLC equipment. A third method where the collision energy was ramped utilized direct infusion. With the developed strategies, it is possible to differentiate between many isobaric flavonoids. Various classes of flavonoids were found in all of the plant extracts, in the red onion extract 45 components were detected and for 29 of them the aglycone was characterized, while the substituents were tentatively identified for 31 of them. For the strawberry extract, those numbers were 66, 30 and 60, and for the cherry extract 99, 56 and 71. The great variety of flavonoids, several of them isobaric, found in each of the extracts highlights the need for reliable methods for flavonoid characterization. Methods capable of differentiating between most of the isobars analyzed have been developed. PMID:25044850

  7. Investigation of Phycobilisome Subunit Interaction Interfaces by Coupled Cross-linking and Mass Spectrometry*

    PubMed Central

    Tal, Ofir; Trabelcy, Beny; Gerchman, Yoram; Adir, Noam

    2014-01-01

    The phycobilisome (PBS) is an extremely large light-harvesting complex, common in cyanobacteria and red algae, composed of rods and core substructures. These substructures are assembled from chromophore-bearing phycocyanin and allophycocyanin subunits, nonpigmented linker proteins and in some cases additional subunits. To date, despite the determination of crystal structures of isolated PBS components, critical questions regarding the interaction and energy flow between rods and core are still unresolved. Additionally, the arrangement of minor PBS components located inside the core cylinders is unknown. Different models of the general architecture of the PBS have been proposed, based on low resolution images from electron microscopy or high resolution crystal structures of isolated components. This work presents a model of the assembly of the rods onto the core arrangement and for the positions of inner core components, based on cross-linking and mass spectrometry analysis of isolated, functional intact Thermosynechococcus vulcanus PBS, as well as functional cross-linked adducts. The experimental results were utilized to predict potential docking interactions of different protein pairs. Combining modeling and cross-linking results, we identify specific interactions within the PBS subcomponents that enable us to suggest possible functional interactions between the chromophores of the rods and the core and improve our understanding of the assembly, structure, and function of PBS. PMID:25296757

  8. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  9. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  10. Coupling of a spark source mass spectrograph and a ND-YAG Laser

    SciTech Connect

    Bonham, R.W.; Quattlebaum, J.C.

    1988-06-15

    Spark source mass spectrograph (SSMS) has been used for many years for routine semi-quantitative analysis of metals to the ppB level. GR Neutron Devices (GEND) has added a laser to their spark source instrument, and a variety of both standard and unknown metals and insulators were analyzed to demonstrate the applicability and validity of the technique. The modifications made to the standard instrument, the necessary changes made in the operating technique, and the advantages which resulted are discussed in this report. The ability to simultaneously analyze all elements, from lithium through uranium, from 100% to the ppB range in any insulating matrix does not affect the ability of the instrument to function in the spark mode. This modification should prove useful to those interested in the analysis of insulators down to the trace level without a solution step or pretreatment. Data are given for materials ranging from National Bureau of Standards (NBS) glass standards to samples in which both the matrix and the impurities are unknown. Gold, aluminum, copper, titanium, and erbium metal, as well as several different types of glasses, silica, alumina, boron nitride, and diamond, have been analyzed.

  11. Simultaneous determination of 15 nitroimidazoles in cosmetics by HPLC coupled with electrospray ionization- tandem mass spectrometry.

    PubMed

    Meng, Xian-Shuang; Bai, Hua; Zhang, Qing; Lv, Qing; Chen, Yun-Xia; Ma, Hui-Juan; Li, Jing-Rui; Ma, Qiang

    2014-01-01

    A sensitive and reliable analytical method based on HPLC/MSIMS has been developed for the simultaneous determination of 15 nitroimidazoles in cosmetics. A diversity of cosmetic samples, including powder, lotion, shampoo, and cream were collected. The samples were ultrasonically extracted with aqueous methanol, and the extracts were then subjected to cleanup bySPE using an Oasis HLB cartridge followed by filtration with a 0.20 pm membrane filter. Afterwards, chromatographic separation was performed on an XSelect CSH C18 column (2.1 x 150 mm, 3.5 pm) maintained at 30°C within 15 min by a gradient of acetonitrile-0.1% aqueous formic acid solution at a flow rate of 0.25 mL/min. The mass spectrometric detection was carried, out using electrospray positive ionization under the multiple reaction monitoring mode. A good linearity was observed over the concentration range from 0.5 to 500 ng/mL. The intraday and interday precisions, which were investigated by determining all target compounds in cosmetics seven times/day and on 7 consecutive days, were below 5.00%. The mean recoveries at three spiked levels ranged from 80.42 to 100.83% with the RSDs from 0.45 to 9.02%. The LOQs were determined to be between 0.01 and 0.1 mg/kg. The method was sufficiently rapid, reliable, and sensitive for the determination of 15 nitroimidazoles in cosmetics. PMID:25632431

  12. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry

    PubMed Central

    Haberger, Markus; Leiss, Michael; Heidenreich, Anna-Katharina; Pester, Oxana; Hafenmair, Georg; Hook, Michaela; Bonnington, Lea; Wegele, Harald; Haindl, Markus; Reusch, Dietmar; Bulau, Patrick

    2016-01-01

    ABSTRACT High-molecular weight aggregates such as antibody dimers and other side products derived from incorrect light or heavy chain association typically represent critical product-related impurities for bispecific antibody formats. In this study, an approach employing ultra-pressure liquid chromatography size-exclusion separation combined with native electrospray ionization mass spectrometry for the simultaneous formation, identification and quantification of size variants in recombinant antibodies was developed. Samples exposed to storage and elevated temperature(s) enabled the identification of various bispecific antibody size variants. This test system hence allowed us to study the variants formed during formulation and bio-process development, and can thus be transferred to quality control units for routine in-process control and release analytics. In addition, native SEC-UV/MS not only facilitates the detailed analysis of low-abundant and non-covalent size variants during process characterization/validation studies, but is also essential for the SEC-UV method validation prior to admission to the market. PMID:26655595

  13. Simultaneous determination of dyes in wines by HPLC coupled to quadrupole orbitrap mass spectrometry.

    PubMed

    Jia, Wei; Chu, Xiaogang; Ling, Yun; Huang, Junrong; Lin, Yuanhui; Chang, James

    2014-04-01

    A new method combining the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method with ultra high performance liquid chromatography and ESI quadrupole Orbitrap high-resolution MS was developed for the highly accurate and sensitive screening of 69 dyes in wines. Response surface methodology was employed to optimize the QuEChERS sample preparation method for the determination of 69 different analytes in wines for the first time. After optimization, the maximum predicted recovery was 99.48% rate for canacert indigo carmine under the optimized conditions of 10 mL acetonitrile, 1.45 g sodium acetate, 107 mg primary secondary amine, and 96 mg C18 . For the matrices studied, the recovery rates of the other 68 compounds ranged from 87.2-107.4%, with coefficient of variation < 6.4%. The mass accuracy typically obtained is routinely better than 1.6 ppm and only needed to be calibrated once a week. The LODs for the analytes are in the range 1-1000 μg/kg. This method has been successfully applied on screening of dyes in commercial wines, and it is very useful for the fast screening of different food additives. PMID:24478185

  14. Multi-mycotoxin analysis in dairy products by liquid chromatography coupled to quadrupole orbitrap mass spectrometry.

    PubMed

    Jia, Wei; Chu, Xiaogang; Ling, Yun; Huang, Junrong; Chang, James

    2014-06-01

    A new analytical method was developed and validated for simultaneous analysis of 58 mycotoxins in dairy products. Response surface methodology was employed to optimize a quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation method. Ultrahigh-performance liquid chromatography and electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap) was used for the separation and detection of all the analytes. The method was validated by taking into consideration the guidelines specified in Commission Decision 2002/657/EC and 401/2006/EC. The extraction recoveries were in a range of 86.6-113.7%, with coefficient of variation <6.2%. The 58 compounds could be detected in the 0.001-100 μg kg(-1) concentration range, with correlation coefficient >0.99. The limits of detection for the analytes are in the range 0.001-0.92 μg kg(-1). The repeatability was lower than 6.4%. This method has been successfully applied on screening of mycotoxins in commercial dairy product samples, and it is very useful for fast screening of different food contaminants. PMID:24794937

  15. Nano Liquid Chromatography Directly Coupled to Electron Ionization Mass Spectrometry for Free Fatty Acid Elucidation in Mussel.

    PubMed

    Rigano, Francesca; Albergamo, Ambrogina; Sciarrone, Danilo; Beccaria, Marco; Purcaro, Giorgia; Mondello, Luigi

    2016-04-01

    Recently the miniaturization of liquid chromatography (LC) systems and progresses in mass spectrometry instrumentation have enabled direct introduction of the effluent coming from a nanoLC column into the high-vacuum region of an electron ionization source. In the present research, a nanoLC system was directly coupled to an electron ionization mass spectrometer (EI-MS) without any interface or modification of the ion source. The advantage with respect to atmospheric pressure ionization techniques, normally coupled with LC, is major identification power because of a more extensive and reproducible fragmentation pattern, without any matrix effect or mobile-phase interference. In particular, a nanoLC/EI-MS method was developed for elucidation of the free fatty acid profile in mussel samples, avoiding a previous derivatization step, required when gas chromatographic analysis is involved. A total of 20 fatty acids were reliably identified through the comparison with commercial libraries. A quantitative determination was also carried out by using the response factors approach along with the internal standard method, allowing for quantification of 14 fatty acids. Among them, palmitic acid resulted the most abundant, followed by ω6 arachidonic acid. The quantitative data were compared with those obtained by a well-established technique, such as gas chromatography with flame ionization detection (GC-FID). Both nanoLC/EI-MS and GC-FID methods were validated and similar results were obtained in terms of limit of detection and quantification, resulting in the picomole range, and sensitivity as well was not significantly different, as demonstrated by comparing the slope values of the calibration curves (p < 0.05, from a t-test). PMID:26937891

  16. Simplified sample preparation procedure for measuring isotope-enriched methylmercury by gas chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Avramescu, Mary-Luyza; Zhu, Joy; Yumvihoze, Emmanuel; Hintelmann, Holger; Fortin, Danielle; Lean, David R S

    2010-06-01

    Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection. The new TSE procedure bridges together two well-known methods, the acid-leaching and distillation-derivatization procedures, offering the advantages of artifact-free formation of the first, and low detection limits and the possibility of quantification of individual isotopes of mercury of the second. The modified procedure retains the derivatization, purge and trap, and gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS) detection steps from the distillation-derivatization procedure, and eliminates the distillation step, which is not only laborious but also expensive, due to the high cost of installation and time-consuming cleaning process. Major advantages of the TSE procedure proposed include the extraction and analysis of a large number of samples in a short time, excellent analyte recoveries, and the lack of artifact formation. Sediment certified reference materials (CRMs), BCR 580 and IAEA 405, were used to test the TSE procedure accuracy. Recoveries between 94 to 106% and 95 to 96% were obtained for CRMs and spiked samples (Milli-Q(R) water), respectively. Comparisons among thiosulfate extraction, distillation, and acid-leaching procedures have shown good agreement of methylmercury values. PMID:20821567

  17. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. PMID:26388365

  18. Development of an analytical method for the determination of polybrominated diphenyl ethers in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Novak, Petra; Zuliani, Tea; Milačič, Radmila; Ščančar, Janez

    2016-04-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants. As a consequence of their widespread use, they have been released into the environment. PBDEs are lipophilic organic contaminants that enter wastewater treatment plants (WWTPs) from urban, agricultural and industrial discharges. Because of their low aqueous solubility and resistance to biodegradation, up to 90% of the PBDEs are accumulated in the sewage sludge during the wastewater treatment. To assess the possibilities for sludge re-use, a reliable determination of the concentrations of these PBDEs is of crucial importance. Six PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153 and BDE 154) are listed as priority substances under the EU Water Framework Directive. In the present work a simple analytical method with minimal sample-preparation steps was developed for a sensitive and reliable determination of the six PBDEs in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). For this purpose an extraction procedure was optimised. Different extracting agents (methanol (MeOH), acetic acid (AcOH)/MeOH mixture (3:1) and 0.1 mol L(-1) hydrochloric acid (HCl) in MeOH) followed by the addition of a Tris-citrate buffer (co-extracting agent) and iso-octane were applied under different modes of extraction (mechanical shaking, microwave- and ultrasound-assisted extraction). Mechanical shaking or the microwave-assisted extraction of sewage sludge with 0.1 mol L(-1) HCl in MeOH and the subsequent addition of the Tris-citrate buffer and the iso-octane extracted the PBDEs from the complex sludge matrix most effectively. However, due to easier sample manipulation during the extraction step, mechanical shaking was used. The PBDEs in the organic phase were quantified with GC-ICP-MS by applying a standard addition calibration method. The spike recovery test (recoveries between 95 and 104%) and comparative analyses with the species-specific isotope

  19. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-01

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented. PMID:19200475

  20. Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry.

    PubMed

    Shuai, Pei-Yu; Yang, Xiao-Jun; Qiu, Zong-Qing; Wu, Xiao-Hui; Zhu, Xi; Pokhrel, Ganga Raj; Fu, Yu-Ying; Ye, Hui-Min; Lin, Wen-Xiong; Yang, Gui-Di

    2016-08-01

    A simple and highly efficient interface to couple capillary electrophoresis with inductively coupled plasma mass spectrometry by a microflow polyfluoroalkoxy nebulizer and a quadruple ion deflector was developed in this study. By using this interface, six arsenic species, including arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine, were baseline-separated and determined in a single run within 11 min under the optimized separation conditions. The instrumental detection limit was in the range of 0.02-0.06 ng/mL for the six arsenic compounds. Repeatability expressed as the relative standard deviation (n = 5) of both migration time and peak area were better than 2.5 and 4.3% for six arsenic compounds. The proposed method, combined with a closed-vessel microwave-assisted extraction procedure, was successfully applied for the determination of arsenic species in the Solanum Lyratum Thunb samples from Anhui province in China with the relative standard deviations (n = 5) ≤4%, method detection limits of 0.2-0.6 ng As/g and a recovery of 98-104%. The experimental results showed that arsenobetaine was the main speciation of arsenic in the Solanum Lyratum Thunb samples from different provinces in China, with a concentration of 0.42-1.30 μg/g. PMID:27378629

  1. A capillary electrophoresis system with dual capacitively coupled contactless conductivity detection and electrospray ionization tandem mass spectrometry.

    PubMed

    Francisco, Kelliton José Mendonça; do Lago, Claudimir Lucio

    2016-07-01

    A commercial system that is comprised of a CE coupled to an ESI triple quadrupole mass spectrometer was equipped with two capacitively coupled contactless conductivity detectors (C(4) Ds). The first C(4) D was positioned inside the original cartridge, and the second C(4) D was positioned as close as possible to the ESI probe entrance by using a 3D-printed support. The C(4) Ds electropherograms were matched to the ESI-MS electropherogram by correcting their timescales by the factor LT /LD , where LT and LD are the total capillary length and the length until the C(4) D, respectively. A general approach for method development supporting the simultaneous conductivity and MS detection is discussed, while application examples are introduced. These examples include the use of C(4) D as a simple device that dismiss the use of an EOF marker, a low-selectivity detector that continuously provide information about unexpected features of the sample, and even a detector that can be more sensitive than ESI-MS. The C(4) D used in this setup proved to have a smaller contribution to the peak broadening than ESI-MS, which allowed that a C(4) D, positioned at 12 cm from the inlet of an 80-cm-long capillary, could be used to foresee position and shape of the peaks being formed 6.8 times slower at the ESI-MS electropherogram. PMID:27027468

  2. Determination of long-lived beta emitters in nuclear waste by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Bienvenu, P.G.; Brochard, E.A.; Excoffier, E.A.

    1998-12-31

    Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) constitutes a very attractive alternative to radiochemical techniques for the determination of long-lived radionuclides considered critical for the safety of nuclear waste repositories. By measuring isotopic abundance instead of ionizing radiation, it is shown that ICP-MS should exhibit lower detection limits than liquid scintillation counting for the measurement of {beta} emitters with half-lives longer than {approximately} 10{sup 4} years. However, a specific preparative chemistry is generally required prior to measurement in order to separate the analyte from major radioactive contaminants and potentially interfering isotopes. Original methods have recently developed for the determination of three long-lived {beta} emitters: {sup 93}Zr, {sup 107}Pd and {sup 135}Cs in radioactive waste are described in this paper. The procedures involve various separative measurement strategies, such as liquid-liquid extraction, chromatographic separation as well as electrothermal vaporization coupled with ICP-MS. The performances are discussed in terms of selectivity and detection capabilities.

  3. Structural Design and Analysis for a Double-Band Cold Mass Support of the MICE Coupling Magnet

    SciTech Connect

    Green, Michael A; Wu, Hong; Liu, X. K.; Wang, Li; Li, S. Y.; Guo, XingLong; Pan, Heng; Xu, FengYu

    2009-07-01

    The cooling channel of Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils, which are magnetically hooked together. A pair ofcoupling magnets operating at 4 K is applied to produce up to .6 T magnetic field on the magnet centerline to keep muon beam within the RF cavity windows. The peak magnetic force on the coupling magnet from other magnets in the MICE channel is up to 500 kN inlongitudinal direction, and the requirements for magnet center and axis azimuthal angle at 4 K are stringent. A self-centered double-band cold mass support system with intermediatethermal interruption is applied for the coupling magnet. The physical center of the magnet does not change as it is cooled down from 300 K to 4.2 K with this support system. In this paper the design parameters of the support system are discussed. The integral analysis of the support system using FEA method was carried out to etermine the tension forces in bands when various loads are applied. The magnet centre displacement and concentricity deviation form the axis of the warm bore are obtained, and the peak tension in support bands is also determined according to the simulation results.

  4. The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery.

    PubMed

    Bednar, A J; Mirecki, J E; Inouye, L S; Winfield, L E; Larson, S L; Ringelberg, D B

    2007-07-31

    The toxic properties of tungsten compounds have recently been brought to the forefront with clusters of human cancer cases, such as in Fallon, NV. Such instances have made the determination of tungsten in natural water supplies vitally important. Tungsten exists in most environmental matrices as the soluble and mobile tungstate anion, although it can polymerize with itself and other anions, such as molybdate and phosphate. Because the geochemical and toxicological properties of these polymer species will vary from the monomeric tungstate parent, determination of tungstate speciation is as critical as determination of total dissolved tungsten concentration. Use of chromatographic separations, followed by element-specific detection is a proven technology for elemental speciation. In the present work, anion exchange chromatography has been coupled to inductively coupled plasma mass spectrometry to determine tungstate, molybdate, and phosphate species at the sub-microg l(-1) and microg l(-1) levels. The method provides quantitative determination of these species in about 10 min with the capability to simultaneously determine other oxyanion species. The method has been applied to groundwater and extracts of soils amended with tungsten powder. The water soluble tungsten in 1-h deionized water extracts after six months of soil aging was >15 mg l(-1), however, only approximately 50% of the tungsten was present as monomeric tungstate. PMID:19071839

  5. Protein stable isotope fingerprinting: multidimensional protein chromatography coupled to stable isotope-ratio mass spectrometry.

    PubMed

    Mohr, Wiebke; Tang, Tiantian; Sattin, Sarah R; Bovee, Roderick J; Pearson, Ann

    2014-09-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between taxonomic identity and metabolic function in microbial ecosystems. To accomplish this, two dimensions of chromatography are used in sequence to resolve a sample containing ca. 5-10 mg of mixed proteins into 960 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second has its ratio of (13)C/(12)C (value of δ(13)C) measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from cultured species show that bacteria have a narrow distribution of protein δ(13)C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of (13)C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ(13)C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Such resolution should be useful to determine the overall trophic breadth of mixed microbial ecosystems. Although we utilize P-SIF to measure natural isotope ratios, it also could be combined with experiments that incorporate stable isotope labeling. PMID:25121924

  6. On-line screening of matrix metalloproteinase inhibitors by capillary electrophoresis coupled to ESI mass spectrometry.

    PubMed

    Wang, Xu; Dou, Zhiying; Yuan, Yaozuo; Man, Shuli; Wolfs, Kris; Adams, Erwin; Van Schepdael, Ann

    2013-07-01

    Capillary electrophoresis (CE) with the use of mass spectrometry (MS) has been considered as a unique tool for microscale enzyme assay and inhibitor screening. In this study, matrix metalloproteinase-9 (MMP-9) was selected as target enzyme due to its important role in tumor invasion and metastasis. In order to define the optimal MS parameters, a two level half fraction factorial experimental design was performed. A background electrolyte consisting of 20mM ammonium acetate (pH 6.8) and a sheath liquid of water-methanol (50:50, v/v) containing 0.05% formic acid at a flow rate of 4μl/min were selected. This system was operated in the positive ion mode with a detection-limit of 10nM for the MMP reaction product and provided 60 folds enhancement of sensitivity by using selected reaction monitoring detection compared with MS full scan mode, which significantly increased the detectability of the system and therefore reduced the enzyme reaction time in both off-line and in-line mode. Both electrophoretically mediated microanalysis and pressure mediated microanalysis combined with MS detection were investigated for MMP inhibitor screening. Good repeatability (RSD of peak area and migration time were lower than 5.0%) and linearity (R(2)>0.996) were obtained for both in-capillary approaches. Several tetracycline antibiotics and natural products were selected to test the system. The results indicated an agreement on the ranking of inhibitory potency for both in-capillary approaches. PMID:23727866

  7. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  8. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  9. Retrospective analysis of pesticide metabolites in urine using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Dualde, Pablo; Yusà, Vicent; Coscollà, Clara

    2016-11-01

    A comprehensive retrospective analysis of pesticide metabolites in urine was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS) that includes both post-run target (suspect screening) and non-target screening. An accurate-mass database comprising 263 pesticide metabolites was built and used for the post-run screening analysis. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 49 real urine samples from pregnant women. In the post-target analysis 26 pesticide metabolites were tentatively identified, 8 of which (2-diethylamino-6-methyl-pyrimidinol; 3-ketocarbofuran; 4,6-dimethoxy-2-pyrimidinamine; 4-hydroxy-2-isporopyl-6-methylpyrimidine; diethyl malate; diethyl maleate; N-(2-Ethyl-6-methylphenyl)-2-hydroxyacetamide and propachlor oxanilic acid ) were confirmed using analytical standards. Likewise, one unknown degradation product, methyl-N-phenylcarbamate was elucidated in the non-target screening. Finally, the real urine samples were grouped according to their origin applying a metabolomic approach. PMID:27591649

  10. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemica lionization

    SciTech Connect

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-01-01

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  11. Coupled Space- and Velocity-Focusing in Time-of-Flight Mass Spectrometry—a Comprehensive Theoretical Investigation

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Hong; Lai, Yin-Hung; Wang, Yi-Sheng

    2015-07-01

    A comprehensive theoretical calculation that couples space- and velocity-focusing is developed for optimizing the design of a time-of-flight (TOF) mass spectrometer. Conventional designs for ion sources of TOF mass spectrometers deviate from the optimal condition because the velocity- and space-focusing conditions are considered separately for two ions with simplified equations. The result of a reexamination taking into account all essential ions reveals that the conventional ion source design, especially the length of the ion extraction region, results in poor resolving power. The comprehensive calculation demonstrates that the resolving power increases when the length of the extraction region is shorter than that of the conventional ion source. A numerical analysis indicates that the resolving power dramatically increases when the effective extraction potential compensates for the initial kinetic energy spread of ions. With typically used extraction potentials, the newly optimized ion source improves the resolving power by more than two orders of magnitude compared with the conventional design. This new theoretical interpretation can also be used to predict the optimal extraction potential and extraction delay in conventional ion sources to substantially improve the resolving power. This comprehensive calculation method is effective not only for designing new high-resolution instruments but also for optimizing commercial products.

  12. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system

    SciTech Connect

    Ford, Michael J; Van Berkel, Gary J

    2004-01-01

    A combined surface sampling probe/electrospray emitter coupled with an ion trap mass spectrometer was used for the direct read out of unmodified reversed-phase C18 thin-layer chromatography (TLC) plates. The operation of the surface sampling electrospray ionization interface in positive and negative ionization modes was demonstrated through the direct analysis of TLC plates on which a commercial test mix comprised of four dye compounds viz., rhodamine B, fluorescein, naphthol blue black, and fast green FCF, and an extract of the caffeine-containing plant Ilex vomitoria, were spotted and developed. Acquisition of full-scan mass spectra and automated collection of MS/MS product ion spectra while scanning a development lane along the surface of a TLC plate demonstrated the advantages of using an ion trap in this combination. Details of the sampling system, benefits of analyzing a developed lane in both positive ion and negative ion modes, levels of detection while surface scanning, surface scan speed effects, and the utility of three-dimensional data display, are also discussed.

  13. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  14. Determination of 237Np and Pu isotopes in large soil samples by inductively coupled plasma mass spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Bernard, Maureen A; Noyes, Gary W

    2010-12-01

    A new method for the determination of (237)Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of (237)Np and Pu isotopes by ICP-MS. (238)U can interfere with (239)Pu measurement by ICP-MS as (238)UH(+) mass overlap and (237)Np via (238)U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1×10(6). Alpha spectrometry can also be applied so that the shorter-lived (238)Pu isotope can be measured successfully. (239) Pu, (242)Pu and (237)Np were measured by ICP-MS, while (236)Pu and (238)Pu were measured by alpha spectrometry. PMID:21056724

  15. Investigation of pharmaceuticals in processed animal by-products by liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Boix, Clara; Bijlsma, Lubertus; Lunestad, Bjørn Tore; Hannisdal, Rita; Alm, Martin; Hernández, Félix; Berntssen, Marc H G

    2016-07-01

    There is an on-going trend for developing more sustainable salmon feed in which traditionally applied marine feed ingredients are replaced with alternatives. Processed animal products (PAPs) have been re-authorized as novel high quality protein ingredients in 2013. These PAPs may harbor undesirable substances such as pharmaceuticals and metabolites which are not previously associated with salmon farming, but might cause a potential risk for feed and food safety. To control these contaminants, an analytical strategy based on a generic extraction followed by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) using quadrupole time-of-flight mass analyzer (QTOF MS) was applied for wide scope screening. Quality control samples, consisting of PAP commodities spiked at 0.02, 0.1 and 0.2 mg/kg with 150 analytes, were injected in every sample batch to verify the overall method performance. The methodology was applied to 19 commercially available PAP samples from six different types of matrices from the EU animal rendering industry. This strategy allows assessing possible emergent risk exposition of the salmon farming industry to 1005 undesirables, including pharmaceuticals, several dyes and relevant metabolites. PMID:27058915

  16. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  17. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  18. Quantitative analysis of gold nanoparticles in single cells by laser ablation inductively coupled plasma-mass spectrometry.

    PubMed

    Wang, Meng; Zheng, Ling-Na; Wang, Bing; Chen, Han-Qing; Zhao, Yu-Liang; Chai, Zhi-Fang; Reid, Helen J; Sharp, Barry L; Feng, Wei-Yue

    2014-10-21

    Single cell analysis has become an important field of research in recent years reflecting the heterogeneity of cellular responses in biological systems. Here, we demonstrate a new method, based on laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), which can quantify in situ gold nanoparticles (Au NPs) in single cells. Dried residues of picoliter droplets ejected by a commercial inkjet printer were used to simulate matrix-matched calibration standards. The gold mass in single cells exposed to 100 nM NIST Au NPs (Reference material 8012, 30 nm) for 4 h showed a log-normal distribution, ranging from 1.7 to 72 fg Au per cell, which approximately corresponds to 9 to 370 Au NPs per cell. The average result from 70 single cells (15 ± 13 fg Au per cell) was in good agreement with the result from an aqua regia digest solution of 1.2 × 10(6) cells (18 ± 1 fg Au per cell). The limit of quantification was 1.7 fg Au. This paper demonstrates the great potential of LA-ICPMS for single cell analysis and the beneficial study of biological responses to metal drugs or NPs at the single cell level. PMID:25225851

  19. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-03-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  20. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.

    PubMed

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m(3) to 6.3 μg/m(3). Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection. Graphical Abstract ᅟ. PMID:27020924

  1. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. PMID:25440666

  2. Identification of methylene diphenyl diisocyanate thermal degradation products in a generation chamber by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Gagne, Sébastien; Cloutier, Yves

    2016-01-01

    Isocyanate thermal degradation characterization by liquid chromatography coupled with electrospray tandem mass spectrometry has been performed to elucidate the methylene diphenyl diisocyanate (MDI) thermal degradation structure emitted in a generation chamber using a temperature between 50°C and 180°C to produce MDI vapors. [M+H](+) ions containing an isocyanate functional group were studied by tandem mass spectrometry. The [M+H](+) ion analyses based on the combination of full scans and precursor ion scans were useful for identifying all structures. The compounds emitted were identified and validated as a mixture of compounds containing amine and isocyanate functions. Residual MDI, methylene diphenyl amino-isocyanate, and methylene diphenyl diamine were identified. Polymerized forms of these structures were also observed because amine and isocyanate chemical functions react rapidly to polymerize. These results must be used with special care by scientists establishing sensitization diagnostics and developing sampling devices using generation chambers as they must be related to MDI behavior in workplaces. Even if pure MDI is introduced in the generation chamber, several different compounds are generated when the MDI is heated at a high temperature. This can result in some misleading interpretations for non-specific isocyanate sampling device development and sensitization diagnostics as MDI is present in the chamber with other compounds with known adverse effects. PMID:26337647

  3. Determination of azithromycin residue in pork using a molecularly imprinted monolithic microcolumn coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Tong; Yang, Haicui; Jin, Zhen; Liu, Qingying; Song, Xuqin; He, Limin; Fang, Binghu; Meng, Chenying

    2016-04-01

    Using spiramycin as a dummy template, a molecularly imprinted polymer monolithic micro-column with high selection to azithromycin was prepared in a micropipette tip. The imprinting factor of the monolithic micro-column prepared was approximately 2.67 and the morphological structure of the polymers was characterized by scanning electron microscopy. A simple, sensitive, and reproducible method based on the imprinted monolithic micro-column coupled to liquid chromatography with tandem mass spectrometry was developed for determining the residues of azithromycin in pork. Pork samples were extracted with acetonitrile, cleaned up under the optimal monolithic micro-column conditions, and analyzed using liquid chromatography with tandem mass spectrometry in the multiple reaction monitoring mode. The assay exhibited a linear dynamic range of 0.50-50 μg/L with the correlation coefficient (r(2) ) above 0.99. In the three spiking levels of 0.50, 1.0, and 10 μg/kg, the average recoveries of azithromycin from pork samples were between 85.8 and 96.5% with a relative standard deviation below 10%. The limit of detection and limit of quantitation were 0.03 and 0.1 μg/kg, respectively. PMID:26854282

  4. DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    SciTech Connect

    Maxwell, S.

    2010-07-26

    A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

  5. First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2013-09-01

    Here we describe the first combination of a Distance-of-Flight Mass Spectrometry (DOFMS) instrument and an inductively coupled plasma (ICP) ion source. DOFMS is a velocity-based MS technique in which ions of a range of mass-to-charge (m/z) values are detected simultaneously along the length of a spatially selective detector. As a relative of time-of-flight (TOF) MS, DOFMS leverages benefits fromboth TOFMS and spatially dispersive MS. The simultaneous detection of groups of m/z values improves dynamic range by spreading ion signal across many detector elements and reduces correlated noise by signal ratioing. To ascertain the performance characteristics of the ICP-DOFMS instrument, we have employed a microchannel-plate/phosphor detection assembly with a scientific CCD to capture images of the phosphor plate. With this simple (and commercially available) detection scheme, elemental detection limits from 2–30 ng L*1 and a linear dynamic range of 5 orders of magnitude (10–106 ng L1) have been demonstrated. Additionally, a competitive isotope-ratio precision of 0.1% RSD has been achieved with only a 6 s signal integration period. In addition to first figures of merit, this paper outlines technical considerations for the design of the ICP-DOFMS.

  6. Identification of novel isomeric pectic oligosaccharides using hydrophilic interaction chromatography coupled to traveling-wave ion mobility mass spectrometry.

    PubMed

    Leijdekkers, Antonius G M; Huang, Jie-Hong; Bakx, Edwin J; Gruppen, Harry; Schols, Henk A

    2015-03-01

    Separation and characterization of complex mixtures of pectic oligosaccharides still remains challenging and often requires the use of multiple analytical techniques, especially when isomeric structures are present. In this work, it is demonstrated that the coupling of hydrophilic interaction chromatography (HILIC) to traveling-wave ion mobility mass spectrometry (TWIMMS) enabled the simultaneous separation and characterization of complex mixtures of various isomeric pectic oligosaccharides. Labeling of oligosaccharides with 3-aminoquinoline (3-AQ) improved MS-ionization efficiency of the oligosaccharides and reduced the complexity of the product ion mass spectra, without losing resolution of the HILIC separation. In addition, labeling enabled quantification of oligosaccharides on molar basis using in-line fluorescence detection. Isomeric structures were distinguished using TWIMMS. The 3-AQ-HILIC-TWIMMS method was used to characterize a series of isomeric sugar beet rhamnogalacturonan I derived oligosaccharides carrying a glucuronic acid substituent. Thereby, some novel structural features were identified for the first time: glucuronic acid was attached to O-3 or to O-2 of galacturonic acid residues and a single galacturonic acid residue within an oligomer could contain both an acetyl group and a glucuronic acid substituent. PMID:25647688

  7. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening. PMID:26838378

  8. Submicrometer Imaging by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry via Signal and Image Deconvolution Approaches.

    PubMed

    Van Malderen, Stijn J M; van Elteren, Johannes T; Vanhaecke, Frank

    2015-06-16

    In this work, pre- and postacquisition procedures for enhancing the lateral resolution of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) in two- and three-dimensional (2D, 3D) nuclide distribution mapping beyond the laser beam waist are described. 2D images were constructed by projecting a rectangular grid of discrete LA positions, arranged at interspacings smaller than the dimensions of the laser beam waist, onto the sample surface, thus oversampling the region of interest and producing a 2D image convolved in the spatial domain. The pulse response peaks of a low-dispersion LA cell were isolated via signal deconvolution of the transient mass analyzer response. A 3D stack of 2D images was deconvolved by an iterative Richardson-Lucy algorithm with Total Variance regularization, enabling submicrometer image fidelity, demonstrated in the analysis of trace level features in corroded glass. A point spread function (PSF) could be derived from topography maps of single pulse craters from atomic force microscopy. This experimental PSF allows the approach to take into account the laser beam shape, beam aberrations, and the laser-solid interaction, which in turn enhances the spatial resolution of the reconstructed volume. PMID:25975805

  9. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry.

    PubMed

    Kim, Tae-Hyun; Choi, Juhee; Kim, Hyung-Gun; Kim, Hak Rim

    2014-01-01

    A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain. PMID:25258696

  10. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  11. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples.

    PubMed

    Ma, Shishuai; He, Man; Chen, Beibei; Deng, Wenchao; Zheng, Qi; Hu, Bin

    2016-01-01

    In this work, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified Fe3O4@SiO2 magnetic nanoparticles (MNPs) was successfully prepared, and characterized by Fourier transform infrared spectrometer (FT-IR), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). The sorption performance of the prepared Fe3O4@SiO2@γ-MPTS MNPs towards methylmercury (CH3Hg(+)) and inorganic mercury (Hg(2+)) was investigated. It was found that CH3Hg(+) and Hg(2+) could be simultaneously retained on the prepared Fe3O4@SiO2@γ-MPTS MNPs, and the quantitative elution of CH3Hg(+) and total mercury (THg) was achieved by using 1.5 mol L(-1) HCl containing 0.01% and 3% thiourea (m/v), respectively. And the levels of Hg(2+) were obtained by subtracting CH3Hg(+) from THg. Based on the above facts, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of CH3Hg(+) and Hg(2+). Various experimental parameters affecting MSPE of CH3Hg(+) and Hg(2+) such as pH, eluent, sample volume, and co-existing ions have been studied. Under the optimized conditions, the limits of detection (LODs) for CH3Hg(+) and THg were 1.6 and 1.9 ng L(-1), respectively. The accuracy of the proposed method was validated by analysis of a Certified Reference Material NRCC DORM-2 dogfish muscle, and the determined values are in good agreement with the certified values. The proposed method has also been successfully applied for the speciation of CH3Hg(+) and Hg(2+) in environmental water and human hair samples. PMID:26695239

  12. Determination of methylmercury and inorganic mercury by coupling short-column ion chromatographic separation, on-line photocatalyst-assisted vapor generation, and inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Kuan-ju; Hsu, I-hsiang; Sun, Yuh-chang

    2009-12-18

    We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg(2+) and MeHg(+) species. The separation of Hg(2+) and MeHg(+) was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl(2)-based VG techniques for the vaporization of MeHg(+) was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg(2+) and MeHg(+) were also improved to 25- and 7-fold, respectively. With the use of our established HPLC-UV/nano-TiO(2)-ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits--0.1 and 0.03 ng/mL for Hg(2+) and MeHg(+), respectively. A series of validation experiments--analysis of the NIST 2672a Standard Urine Reference Material and other urine samples--confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg(2+) and MeHg(+) species in real samples. PMID:19913233

  13. Microphysics of mass-transport in coupled droplet-pairs at low Reynolds number and the role of convective dynamics

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2016-06-01

    Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre

  14. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement

    NASA Astrophysics Data System (ADS)

    Plug, L. J.; West, J. J.

    2009-03-01

    Thaw lakes, widespread in permafrost lowlands, expand their basins by conduction of heat from warm lake water into adjacent permafrost, subsidence of icy permafrost on thawing, and movement of thawed sediment from lake margins into basins by diffusive and advective mass wasting. We describe a cross-sectional numerical model with thermal processes and mass wasting. To test the model and provide an initial investigation of its utility, the model is driven using historical daily temperatures and permafrost conditions for the northern Seward Peninsula, Alaska (NSP; thick syngenetic ice, mean annual air temperature (MAAT) -6°C) and Yukon coastal plain (YCP; thin epigenetic ice, MAAT -10°C). In the model, lakes develop dynamic equilibrium profiles that are independent of initial morphology. These profiles migrate outward episodically and match the morphology of profiles from lakes that were measured at each site. Modeled NSP lakes expand more rapidly than YCP lakes (0.26 versus 0.10 m a-1) under respective modern climates. When identical climates are imposed, NSP lakes still grow more rapidly because their deeper basins and steeper bathymetric slopes move thawed insulating sediment away from the lake margin. In sensitivity tests, an increase of 3°C in MAAT causes 2.5× (NSP) and 1.6× (YCP) faster expansion of lakes. An 8°C decrease essentially halts expansion for both sites, consistent with paleostudies which attribute basins to postglacial warming. In the model, basins expand monotonically but lakes do not. The 1σ interannual variability of lake expansion is 0.51 (NSP) and 0.44 m a-1 (YCP), with single year rates of up to ±8 m occurring because of instabilities from thermal/mass movement coupling even under a stationary climate. This variability is likely a minimum estimate, compared to natural variability, and suggests that long measurement time series, of basins not lake surfaces, would best detect thermokarst acceleration resulting from a climate change.

  15. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    PubMed

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media. PMID:24218983

  16. A minimal non-supersymmetric S O(10) model: Gauge coupling unification, proton decay and fermion masses

    NASA Astrophysics Data System (ADS)

    Khan, Saki

    2016-06-01

    We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.

  17. Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Zachreson, Matthew R.

    The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the

  18. Coupled deformation and metamorphism: Strain localization facilitated by solution mass transfer

    NASA Astrophysics Data System (ADS)

    Hunter, R. A.; Andronicos, C. L.

    2011-12-01

    was facilitated by two mechanisms: initial pressure solution combined with slip along cleavage planes and grain boundaries in muscovite, followed by grain boundary slip between sillimanite fibers combined with continued pressure solution. We infer that dehydration of muscovite produced hydrous fluids that facilitated the depletion of major elements in the shear bands leaving sillimanite, quartz and oxides in the shear zones. These textures demonstrate localized ductile deformation, and suggest that deformation was an important catalyst is driving the conversion of andalusite to sillimanite. This result suggests that the andalusite persisted in metastability into the sillimanite stability field and that deformation assisted in the complete transformation of andalusite to sillimanite. Combination of the observations summarized above highlights the importance of the relationship between deformation, metamorphism and solution mass transfer during pluton emplacement in the Needle Mountains, Colorado.

  19. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    PubMed

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-01

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses. PMID:17386560

  20. Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Rattanachongkiat, S; Millward, G E; Foulkes, M E

    2004-04-01

    Suitable techniques have been developed for the extraction of arsenic species in a variety of biological and environmental samples from the Pak Pa-Nang Estuary and catchment, located in Southern Thailand, and for their determination using HPLC directly coupled with ICP-MS. The estuary catchment comprises a tin mining area and inhabitants of the region can suffer from various stages of arsenic poisoning. The important arsenic species, AsB, DMA, MMA, and inorganic arsenic (As III and V) have been determined in fish and crustacean samples to provide toxicological information on those fauna which contribute to the local diet. A Hamilton PRP-X100 anion-exchange HPLC system employing a step elution has been used successfully to achieve separation of the arsenic species. A nitric acid microwave digestion procedure, followed by carrier gas nitrogen addition- (N2)-ICP-MS analysis was used to measure total arsenic in sample digests and extracts. The arsenic speciation of the biological samples was preserved using a Trypsin enzymatic extraction procedure. Extraction efficiencies were high, with values of 82-102%(As) for fish and crustacean samples. Validation for these procedures was carried out using certified reference materials. Fish and crustacean samples from the Pak Pa-Nang Estuary showed a range for total arsenic concentration, up to 17 microg g(-1) dry mass. The major species of arsenic in all fauna samples taken was AsB, together with smaller quantities of DMA and, more importantly, inorganic As. For sediment samples, arsenic species were determined following phosphoric acid (1 M H3PO4) extraction in an open focused microwave system. A phosphate-based eluant, pH 6-7.5, with anion exchange HPLC coupled with ICP-MS was used for separation and detection of AsIII, AsV, MMA and DMA. The optimum conditions, identified using an estuarine sediment reference material (LGC), were achieved using 45 W power and a 20 minute heating period for extraction of 0.5 g sediment. The

  1. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    PubMed

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol

  2. Total zinc quantification by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography-inductively coupled plasma-mass spectrometry in human milk and commercial formulas: Importance in infant nutrition.

    PubMed

    Fernández-Menéndez, Sonia; Fernández-Sánchez, María L; Fernández-Colomer, Belén; de la Flor St Remy, Rafael R; Cotallo, Gil Daniel Coto; Freire, Aline Soares; Braz, Bernardo Ferreira; Santelli, Ricardo Erthal; Sanz-Medel, Alfredo

    2016-01-01

    This paper summarises results of zinc content and its speciation in human milk from mothers of preterm and full-term infants at different stages of lactation and from synthetic formula milks. Human milk samples (colostrum, 7th, 14th, and 28th day after delivery) from Spanish and Brazilian mothers of preterm and full-term infants (and also formula milks) were collected. After adequate treatment of the sample, total Zn was determined, while speciation analysis of the Zn was accomplished by size exclusion chromatography coupled online with the ICP-MS. It is observed that total zinc content in human milk decreases continuously during the first month of lactation, both for preterm and full term gestations. All infant formulas analysed for total Zn were within the currently legislated levels. For Zn speciation analysis, there were no differences between preterm and full term human milk samples. Moreover Zn species elute mainly associated with immunoglobulins and citrate in human milk whey. Interestingly the speciation in formula milk whey turned out to be completely different as the observed Zn(2+) was bound almost exclusively to low molecular weight ligands (citrate) and only comparatively very low amounts of the metal appeared to be associated with higher mass biomolecules (e.g. proteins). PMID:26381570

  3. Automated in situ trace element analysis of silicate materials by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Z; Canil, D; Longerich, H P

    2000-09-01

    This paper describes the automated in situ trace element analysis of solid materials by laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS). A compact computer-controlled solid state Nd:YAG Merchantek EO UV laser ablation (LA) system has been coupled with the high sensitivity VG PQII S ICP-MS. A two-directional communication was interfaced in-house between the ICP-MS and the LA via serial RS-232 port. Each LA-ICP-MS analysis at a defined point includes a 60 s pre-ablation delay, a 60 s ablation, and a 90 s flush delay. The execution of each defined time setting by LA was corresponding to the ICP-MS data acquisition allowing samples to be run in automated cycle sequences like solution auto-sampler ICP-MS analysis. Each analytical cycle consists of four standards, one control reference material, and 15 samples, and requires about 70 min. Data produced by Time Resolved Analysis (TRA) from ICP-MS were later reduced off-line by in-house written software. Twenty-two trace elements from four reference materials (NIST SRM 613, and fused glass chips of BCR-2, SY-4, and G-2) were determined by the automated LA-ICP-MS method. NIST SRM 610 or NIST SRM 613 was used as an external calibration standard, and Ca as an internal standard to correct for drift, differences in transport efficiency and sampling yield. Except for Zr and Hf in G-2, relative standard deviations for all other elements are less than 10%. Results compare well with the data reported from literature with average limits of detection from 1 ng x g(-1) to 455 ng x g(-1) and less than 100 ng x g(-1) for most trace elements. PMID:11220835

  4. Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, M. V.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S.

    2006-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to produce images of element distribution in 20 [mu]m thin tissue sections of primary human brain tumors (glioblastoma multiforme--GBM) and adjacent non-neoplastic brain tissue. The sample surface was scanned (raster area ~1 cm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 [mu]m, and laser power density 1 x 109 W cm-2). The laser ablation system was coupled to a double-focusing sector field ICP-SFMS. Ion intensities of 63Cu+, 64Zn+, 208Pb+, and 238U+ were measured by LA-ICP-MS within the tumor area and the surrounding region invaded by GBM as well as in control tissue. The quantitative determination of copper, zinc, lead and uranium distribution in brain tissues by LA-ICP-MS was performed using prepared matrix-matched laboratory standards doped with these elements of interest. The limits of detection (LODs) obtained for Cu and Zn were 0.34 and 0.14 [mu]g g-1, respectively, while LODs of 12.5 and 6.9 ng g-1 were determined for Pb and U. The concentration and distribution of selected elements are compared between the control tissues and regions affected by GBM. A correlation was found between LA-ICP-MS and receptor-autoradiographic results. As receptor-autoradiographic techniques, a labeling for A1AR and the pBR was employed. Regarding the A1AR, we used the specific A1 adenosine receptor (A1AR)-ligand, 3H-CPFPX [3H-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine], which has been shown to specifically label the invasive zone around GBMs. The peripheral benzodiazepine receptor was labeled with 3H-Pk11195 [3H-1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide].

  5. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  6. Mechanistic and Kinetic Analysis of Na2SO4-Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry.

    PubMed

    Yang, Song; Du, Wenguang; Shi, Pengzheng; Shangguan, Ju; Liu, Shoujun; Zhou, Changhai; Chen, Peng; Zhang, Qian; Fan, Huiling

    2016-01-01

    Nickel laterites cannot be effectively used in physical methods because of their poor crystallinity and fine grain size. Na2SO4 is the most efficient additive for grade enrichment and Ni recovery. However, how Na2SO4 affects the selective reduction of laterite ores has not been clearly investigated. This study investigated the decomposition of laterite with and without the addition of Na2SO4 in an argon atmosphere using thermogravimetry coupled with mass spectrometry (TG-MS). Approximately 25 mg of samples with 20 wt% Na2SO4 was pyrolyzed under a 100 ml/min Ar flow at a heating rate of 10°C/min from room temperature to 1300°C. The kinetic study was based on derivative thermogravimetric (DTG) curves. The evolution of the pyrolysis gas composition was detected by mass spectrometry, and the decomposition products were analyzed by X-ray diffraction (XRD). The decomposition behavior of laterite with the addition of Na2SO4 was similar to that of pure laterite below 800°C during the first three stages. However, in the fourth stage, the dolomite decomposed at 897°C, which is approximately 200°C lower than the decomposition of pure laterite. In the last stage, the laterite decomposed and emitted SO2 in the presence of Na2SO4 with an activation energy of 91.37 kJ/mol. The decomposition of laterite with and without the addition of Na2SO4 can be described by one first-order reaction. Moreover, the use of Na2SO4 as the modification agent can reduce the activation energy of laterite decomposition; thus, the reaction rate can be accelerated, and the reaction temperature can be markedly reduced. PMID:27333072

  7. Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave-induced combustion.

    PubMed

    Mesko, Márcia F; Mello, Paola A; Bizzi, Cezar A; Dressler, Valderi L; Knapp, Guenter; Flores, Erico M M

    2010-09-01

    Iodine determination in food samples was performed by inductively coupled plasma mass spectrometry (ICP-MS) after digestion by microwave-induced combustion (MIC). Sample masses up to 500 mg of bovine liver, corn starch, milk powder, or wheat flour were completely combusted using the MIC system. Ammonium nitrate (6 mol l(-1) solution, 50 μl) was used as an aid for ignition and vessels were charged with 15 bar of O(2). The use of H(2)O, 0.9 mmol l(-1) H(2)O(2), 10 to 50 mmol l(-1) (NH(4))(2)CO(3) and 56 mmol l(-1) tetramethylammonium hydroxide was investigated as absorbing solutions, as well as the suitability of performing a reflux step after the combustion process. Digestion of food samples by pressurized microwave-assisted acid digestion, microwave-assisted extraction and conventional extraction of iodine in alkaline solution were also evaluated. Iodine recoveries higher than 99% were obtained using MIC and 50 mmol l(-1) (NH(4))(2)CO(3) or 56 mmol l(-1) tetramethylammonium hydroxide as absorbing solution and with 5 min for the reflux step. Accuracy was evaluated using certified reference materials (bovine muscle, corn bran, and milk powder) and agreement better than 97% was obtained. The limit of quantification by MIC and further ICP-MS determination was 0.002 µg g(-1). Blanks were always low and no memory effects were observed. Digestion by MIC allowed the processing of up to eight samples by each run in 25 min with high efficiency of digestion (residual carbon content lower than 1%) providing a suitable medium for further iodine determination by ICP-MS. PMID:20464381

  8. Quantitative determination of mass-resolved ion densities in H{sub 2}-Ar inductively coupled radio frequency plasmas

    SciTech Connect

    Sode, M.; Schwarz-Selinger, T.; Jacob, W.

    2013-03-07

    Inductively coupled H{sub 2}-Ar plasmas are characterized by an energy-dispersive mass spectrometer (plasma monitor), a retarding field analyzer, optical emission spectroscopy, and a Langmuir probe. A procedure is presented that allows determining quantitatively the absolute ion densities of Ar{sup +}, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and ArH{sup +} from the plasma monitor raw signals. The calibration procedure considers the energy and mass-dependent transmission of the plasma monitor. It is shown that an additional diagnostic like a Langmuir probe or a retarding field analyzer is necessary to derive absolute fluxes with the plasma monitor. The conversion from fluxes into densities is based on a sheath and density profile model. Measurements were conducted for a total gas pressure of 1.0 Pa. For pure H{sub 2} plasmas, the dominant ion is H{sub 3}{sup +}. For mixed H{sub 2}-Ar plasmas, the ArH{sup +} molecular ion is the most dominant ion species in a wide parameter range. The electron density, n{sub e}, is around 3 Multiplication-Sign 10{sup 16} m{sup -3} and the electron temperature, T{sub e}, decreases from 5 to 3 eV with increasing Ar content. The dissociation degree was measured by actinometry. It is around 1.7% nearly independent on Ar content. The gas temperature, estimated by the rotational distribution of the Q-branch lines of the H{sub 2} Fulcher-{alpha} diagonal band (v Prime =v Double-Prime =2) is estimated to (540 {+-} 50) K.

  9. Mechanistic and Kinetic Analysis of Na2SO4-Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry

    PubMed Central

    Yang, Song; Du, Wenguang; Shi, Pengzheng; Shangguan, Ju; Liu, Shoujun; Zhou, Changhai; Chen, Peng; Zhang, Qian; Fan, Huiling

    2016-01-01

    Nickel laterites cannot be effectively used in physical methods because of their poor crystallinity and fine grain size. Na2SO4 is the most efficient additive for grade enrichment and Ni recovery. However, how Na2SO4 affects the selective reduction of laterite ores has not been clearly investigated. This study investigated the decomposition of laterite with and without the addition of Na2SO4 in an argon atmosphere using thermogravimetry coupled with mass spectrometry (TG-MS). Approximately 25 mg of samples with 20 wt% Na2SO4 was pyrolyzed under a 100 ml/min Ar flow at a heating rate of 10°C/min from room temperature to 1300°C. The kinetic study was based on derivative thermogravimetric (DTG) curves. The evolution of the pyrolysis gas composition was detected by mass spectrometry, and the decomposition products were analyzed by X-ray diffraction (XRD). The decomposition behavior of laterite with the addition of Na2SO4 was similar to that of pure laterite below 800°C during the first three stages. However, in the fourth stage, the dolomite decomposed at 897°C, which is approximately 200°C lower than the decomposition of pure laterite. In the last stage, the laterite decomposed and emitted SO2 in the presence of Na2SO4 with an activation energy of 91.37 kJ/mol. The decomposition of laterite with and without the addition of Na2SO4 can be described by one first-order reaction. Moreover, the use of Na2SO4 as the modification agent can reduce the activation energy of laterite decomposition; thus, the reaction rate can be accelerated, and the reaction temperature can be markedly reduced. PMID:27333072

  10. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. PMID:26946020

  11. Microextraction techniques coupled to liquid chromatography with mass spectrometry for the determination of organic micropollutants in environmental water samples.

    PubMed

    Padrón, Ma Esther Torres; Afonso-Olivares, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2014-01-01

    Until recently, sample preparation was carried out using traditional techniques, such as liquid-liquid extraction (LLE), that use large volumes of organic solvents. Solid-phase extraction (SPE) uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and time-of-flight mass spectrometric (TOF/MS) techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME), stir bar sorptive extraction (SBSE) and liquid-phase microextraction (LPME). Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These compounds must be

  12. High temperature liquid chromatography-inductively coupled plasma mass spectrometry for the determination of arsenosugars in biological samples.

    PubMed

    Terol, Amanda; Ardini, Francisco; Grotti, Marco; Todolí, José Luis

    2012-11-01

    The potential of high temperature liquid chromatography (HTLC) with detection by inductively coupled plasma mass spectrometry (ICP-MS) for the determination of arsenosugars in marine organisms was examined for the first time. The retention behavior of four naturally occurring dimethylarsinoylribosides was studied on a graphite column using plain water as mobile phase. An aqueous solution of pH 8, ionic strength 13.8mM and containing 2% (v/v) of methanol, along with a column temperature of 120°C and a liquid flow rate of 1.0 mL/min, were selected as the optimal conditions, as they allowed the separation of the four arsenosugars in less than 18 min, without any interferences due to other common arsenic species (arsenite, arsenate, dimethylarsinate, methylarsonate and arsenobetaine). The run time could be further decreased to 12 min by working at 1.5 mL/min, although with a 3-4 times loss of sensitivity. The procedural limits of detection were 0.03-0.04 μg As/g dry mass, and the precision of the procedure ranged from 4% for arsenosugar glycerol to 18% for arsenosugar sulfate (RSD%, n=5). The developed method was applied to a number of representative biological samples, such as algae and crustaceans, providing results consistent with previous studies. In the red algae samples, the most of extracted arsenic was as arsenosugars (81-97%), mainly arsenosugar phosphate (56-94%). On the other hand, lower concentrations of these compounds were found in the crustacean, accounting for about 15% of the extracted arsenic. PMID:22995196

  13. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times.

    PubMed

    Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco

    2016-07-01

    The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known. PMID:27086011

  14. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.

  15. Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinquan; Liu, Jinglei; Yi, Yong; Liu, Yonglin; Li, Xiang; Su, Yaqin; Lin, Ping

    2007-01-01

    A method for the determination of trace of 14 rare earth elements (REEs) as impurities in high purity samarium oxide (Sm2O3) using inductively coupled plasma mass spectrometry (ICP-MS) was described. Analytes, such as La, Ce, Pr, Nd, Eu, Gd, Tb, Lu and Y were measured without Sm matrix separation because of no interference problems occurring that could affect the analysis of these elements. On the other hand, analytes, such as Dy, Ho, Er, Tm and Yb were carried out after Sm matrix being eliminated completely by means of 2-ethylhexyl hydrogen-ethylhexy phosphonate (EHEHP) extraction chromatographic separation. The inherent problem associated with matrix-induced suppression was effectively compensated with spiking In as internal standard element and the mass spectra isobaric interferences of atomic and molecular ions arose from Sm matrix had been overcome after the removal of Sm matrix. The limits of quantitations (LOQ) for 14 REEs impurities were from 0.01 to 0.07 [mu]g g-1 together with the recoveries of spiking sample of 14 REEs were found to be in the range of 85-110% and the proposed method precision was less than 5%. A synthetic standard Sm2O3 sample with well-known 14 REEs concentrations was prepared and analysed in order to prove the accuracy and precision of the proposed method together with another high purity Sm2O3 was also measured using ICP-MS. The methodology had been found to be suitable for the determination of trace of 14 REEs in 99.999-99.9999% high purity Sm2O3.

  16. Rapid and Accurate U-Th Dating of Ancient Carbonates using Inductively Coupled Plasma-Quadrupole Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Douville, Eric; Sallé, Eline; Frank, Norbert; Eisele, Markus; Pons-Branchu, Edwige; Ayrault, Sophie

    2010-05-01

    Here, the potential for rapid and accurate U-Th dating technique of marine aragonite skeletons (deep-sea corals, Lophelia pertusa) and secondary calcite deposits (speleothems and stalagmites) has been explored using inductively-coupled plasma-quadrupole mass spectrometry (ICP-QMS). The analytical procedure includes a largely simplified chemical separation technique for uranium (U) and thorium (Th) using UTEVA resin. The developed technique permits simultaneous quantification of uranium [238U] and thorium [232Th] concentrations and their respective isotopic composition, required for U-series disequilibrium dating. Up to 50 U-Th dates per day can be achieved through ICP-QMS with 234U and 230Th reproducibility (2sigma) of 3-4 permil and 1 percent, respectively. The high sensitivity (> 300 000 cps/ppb) together with low background (<0.5 cps) on each mass between 228-236 amu allowed U-Th dating of ancient deep water corals (15-260 kyrs) and stalagmites (30-85 kyrs) at precision levels of less than 2%. Consequently, the combination of simplified chemistry using UTEVA with state-of-the-art ICP-QMS isotopic measurements that do not require a U-Th separation step now provides an extremely rapid and low-cost U-series dating technology. The level of precision is most convenient for numerous geochronological applications, such as the determination of climatic influences on ecosystem development and carbonate precipitation. As a first-example application we present ICP-QMS U-Th dates of North Atlantic deep-water coral fragments retrieved in the southeastern Porcupine Seabight (MD01-2463G, Mound Thérèse), indicating a purely interglacial growth of deep-water corals on so-called carbonate mounds over several climate cycles.

  17. Rapid dereplication of estrogenic compounds in pomegranate (Punica granatum) using on-line biochemical detection coupled to mass spectrometry.

    PubMed

    van Elswijk, Danny A; Schobel, Uwe P; Lansky, Ephraim P; Irth, Hubertus; van der Greef, Jan

    2004-01-01

    During recent years, phytoestrogens have been receiving an increasing amount of interest, as several lines of evidence suggest a possible role in preventing a range of diseases, including the hormonally dependent cancers. In this context, various parts of the pomegranate fruit (Punica granatum; Punicaceae), e.g. seed oil, juice, fermented juice and peel extract, have been shown to exert suppressive effects on human breast cancer cells in vitro. On-line biochemical detection coupled to mass spectrometry (LC-BCD-MS) was applied to rapidly profile the estrogenic activity in the pomegranate peel extract. The crude mixture was separated by HPLC, after which the presence of biologically active compounds, known or unknown, was detected by means of an on-line beta-estrogen receptor (ER) bioassay. Chemical information, such as molecular weight and MS/MS fingerprint, was obtained in real time by directing part of the HPLC effluent towards a mass spectrometer. Using this approach in total three estrogenic compounds, i.e. luteolin, quercetin and kaempferol, were detected and identified by comparing the obtained molecular weights and negative ion APCI MS/MS spectra with the data of an estrogenic compound library. Although well known in literature and widely distributed in nature, the presence of these phytoestrogenic compounds in pomegranate peel extract was not reported previously. Compared to traditional screening approaches of complex mixtures, often characterized by a repeating cycle of HPLC fractionation and biological screening, LC-BCD-MS was shown to profoundly accelerate the time required for compound description and identification. PMID:14732284

  18. Determination of phosphodiesterase type V inhibitors in wastewater by direct injection followed by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Causanilles, Ana; Emke, Erik; de Voogt, Pim

    2016-09-15

    A simple, fast and reliable analytical method for the determination of phosphodiesterase type V inhibitors in wastewater was developed and validated. The method was based on direct injection followed by liquid chromatography coupled to tandem mass spectrometry with triple quadrupole as mass analyzer. Transformation products and analogues were included in the target list besides the three active pharmaceutical ingredients (sildenafil, vardenafil and tadalafil). The method performance was thoroughly investigated, including the analyte stability in wastewater and matrix effect. All target compounds presented linear fits between their LOD and 500ng/L. The quantification limits ranged from 1.6 to 30ng/L for all compounds except for n-octylnortadalafil (LOQ: 100ng/L); precision calculated as intraday repeatability was lower than 30%; accuracy calculated as procedural recovery ranged successfully between 85 and 105% in all cases. The method was applied to samples collected during three week-long monitoring campaigns performed in 2013, 2014 and 2015 in three Dutch cities. Only sildenafil and its two metabolites, desmethyl- and desethylsildenafil, were present with normalized loads ranging from LOQ to 8.3, 11.8 and 21.6mg/day/1000 inh, respectively. Two additional week-long sets of samples were collected in Amsterdam at the time that a festival event took place, bringing around 350,000 visitors to the city. The difference in drug usage patterns was statistically studied: "weekday" versus "weekend", "normal" versus "atypical" week; and results discussed. The metabolite to parent drug concentration ratio evolution during consecutive years was discussed, leading to several possible explanations that should be further investigated. Finally, wastewater-based epidemiology approach was applied to back-calculate sildenafil consumption. PMID:27161135

  19. New method for caffeine quantification by planar chromatography coupled with electropray ionization mass spectrometry using stable isotope dilution analysis.

    PubMed

    Aranda, Mario; Morlock, Gertrud

    2007-01-01

    highly reliable method for the quantification of compounds by planar chromatography coupled online with mass spectrometry. PMID:17340560

  20. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  1. Linearization of calibration curves by aerosol carrier effect of CCl 4 vapor in electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; de Loos-Vollebregt, Margaretha T. C.

    2005-03-01

    Carbon tetrachloride vapor as gaseous phase modifier in a graphite furnace electrothermal vaporizer (GFETV) converts heavy volatile analyte forms to volatile and medium volatile chlorides and produces aerosol carrier effect, the latter being a less generally recognized benefit. However, the possible increase of polyatomic interferences in inductively coupled plasma mass spectrometry (GFETV-ICP-MS) by chlorine and carbon containing species due to CCl 4 vapor introduction has been discouraging with the use of low resolution, quadrupole type MS equipment. Being aware of this possible handicap, it was aimed at to investigate the feasibility of the use of this halogenating agent in ICP-MS with regard of possible hazards to the instrument, and also to explore the advantages under these specific conditions. With sample gas flow (inner gas flow) rate not higher than 900 ml min -1 Ar in the torch and 3 ml min -1 CCl 4 vapor flow rate in the furnace, the long-term stability of the instrument was ensured and the following benefits by the halocarbon were observed. The non-linearity error (defined in the text) of the calibration curves (signal versus mass functions) with matrix-free solution standards was 30-70% without, and 1-5% with CCl 4 vapor introduction, respectively, at 1 ng mass of Cu, Fe, Mn and Pb analytes. The sensitivity for these elements increased by 2-4-fold with chlorination, while the relative standard deviation (RSD) was essentially the same (2-5%) for the two cases in comparison. A vaporization temperature of 2650 °C was required for Cr in Ar atmosphere, while 2200 °C was sufficient in Ar + CCl 4 atmosphere to attain complete vaporization. Improvements in linear response and sensitivity were the highest for this least volatile element. The pyrolytic graphite layer inside the graphite tube was protected by the halocarbon, and tube life time was further increased by using traces of hydrocarbon vapor in the external sheath gas of the graphite furnace. Details

  2. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  3. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  4. Qualitative Profiling and Quantification of Neonicotinoid Metabolites in Human Urine by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  5. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions o