Science.gov

Sample records for massive protostar cepheus

  1. Cepheus

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (abbrev. Cep, gen. Cephei; area 588 sq. deg.) A northern constellation which lies between Draco and Cassiopeia, and culminates at midnight in late August. It is named after King Cepheus, husband of Queen Cassiopeia and father of Andromeda in Greek mythology. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  2. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  3. Massive Protostars In Young Dense Clusters: Disk Disruption And Binary Capture

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas

    2007-12-01

    Massive stars are typically found in the centers of young, dense clusters. Encounters between massive protostars and their less-massive cluster siblings are frequent enough to impact their formation processes. We present the results of numerical studies concerning the interaction of a massive-star disk system and an impacting star, which suggest that disk-assisted capture can contribute significantly to the high multiplicity of massive stars. We discuss the results of N-body simulations of this process, as well as the observational clues that point to this scenario. A potential example of a capture process in Cepheus A is presented along with modeling of this system. This work was supported by NASA grant NNA04CC11A to the CU Center for Astrobiology.

  4. METHYL CYANIDE OBSERVATIONS TOWARD MASSIVE PROTOSTARS

    SciTech Connect

    Rosero, V.; Hofner, P.; Kurtz, S.; Bieging, J.; Araya, E. D.

    2013-07-01

    We report the results of a survey in the CH{sub 3}CN J = 12 {yields} 11 transition toward a sample of massive proto-stellar candidates. The observations were carried out with the 10 m Submillimeter Telescope on Mount Graham, AZ. We detected this molecular line in 9 out of 21 observed sources. In six cases this is the first detection of this transition. We also obtained full beam sampled cross-scans for five sources which show that the lower K-components can be extended on the arcminute angular scale. The higher K-components, however, are always found to be compact with respect to our 36'' beam. A Boltzmann population diagram analysis of the central spectra indicates CH{sub 3}CN column densities of about 10{sup 14} cm{sup -2}, and rotational temperatures above 50 K, which confirms these sources as hot molecular cores. Independent fits to line velocity and width for the individual K-components resulted in the detection of an increasing blueshift with increasing line excitation for four sources. Comparison with mid-infrared (mid-IR) images from the SPITZER GLIMPSE/IRAC archive for six sources show that the CH{sub 3}CN emission is generally coincident with a bright mid-IR source. Our data clearly show that the CH{sub 3}CN J = 12 {yields} 11 transition is a good probe of the hot molecular gas near massive protostars, and provide the basis for future interferometric studies.

  5. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  6. VLA and CARMA observations of protostars in the Cepheus clouds: Sub-arcsecond proto-binaries formed via disk fragmentation

    SciTech Connect

    Tobin, John J.; Looney, Leslie W.; Chandler, Claire J.; Wilner, David J.; Bourke, Tyler L.; Loinard, Laurent; D'Alessio, Paola; Chiang, Hsin-Fang; Hartmann, Lee; Calvet, Nuria; Kwon, Woojin

    2013-12-20

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ∼0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ∼0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ∼3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ∼0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ∼20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  7. VLA and CARMA Observations of Protostars in the Cepheus Clouds: Sub-arcsecond Proto-binaries Formed via Disk Fragmentation

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Chandler, Claire J.; Wilner, David J.; Looney, Leslie W.; Loinard, Laurent; Chiang, Hsin-Fang; Hartmann, Lee; Calvet, Nuria; D'Alessio, Paola; Bourke, Tyler L.; Kwon, Woojin

    2013-12-01

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ~0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ~0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ~3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ~0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ~20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  8. Formation of massive protostars in atomic cooling haloes

    NASA Astrophysics Data System (ADS)

    Becerra, Fernando; Greif, Thomas H.; Springel, Volker; Hernquist, Lars E.

    2015-01-01

    We present the highest-resolution three-dimensional simulation to date of the collapse of an atomic cooling halo in the early Universe. We use the moving-mesh code AREPO with the primordial chemistry module introduced in Greif, which evolves the chemical and thermal rate equations for over more than 20 orders of magnitude in density. Molecular hydrogen cooling is suppressed by a strong Lyman-Werner background, which facilitates the near-isothermal collapse of the gas at a temperature of about 104 K. Once the central gas cloud becomes optically thick to continuum emission, it settles into a Keplerian disc around the primary protostar. The initial mass of the protostar is about 0.1 M⊙, which is an order of magnitude higher than in minihaloes that cool via molecular hydrogen. The high accretion rate and efficient cooling of the gas catalyse the fragmentation of the disc into a small protostellar system with 5-10 members. After about 12 yr, strong gravitational interactions disrupt the disc and temporarily eject the primary protostar from the centre of the cloud. By the end of the simulation, a secondary clump has collapsed at a distance of ≃ 150 au from the primary clump. If this clump undergoes a similar evolution as the first, the central gas cloud may evolve into a wide binary system. High accretion rates of both the primary and secondary clumps suggest that fragmentation is not a significant barrier for forming at least one massive black hole seed.

  9. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    SciTech Connect

    Kuiper, R.; Yorke, H. W. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2013-07-20

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t {<=} 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates.

  10. Near Infrared Spectroscopy of the Massive Protostar Orion-KL IRc2

    NASA Astrophysics Data System (ADS)

    Morino, J. I.; Hasegawa, T.; Yamashita, T.

    Using the multi-purpose near-infrared camera / spectrometer OASIS on the 1.9-m telescope at Okayama Astrophysical Observatory, we have done K-band spectroscopy of the diffuse continuum radiation found in the regions of the bipolar outflow of Orion-KL. The spectra show a very red continuum and clear CO band absorption at 2.3 micron, irrespective of the position in the bipolar outflow lobes. This radiation is most probably the light from the close vicinity of the protostar IRc2 scattered by the dust in the outflow. The fact that we see CO in ABSORPTION suggests that the CO features are of photospheric origin. If so, this is the first spectroscopy of a massive protostar driving an energetic outflow. Apart from the CO band, the continuum is very red and featureless. Comparison with spectra of giants and supergiants indicates that the photosphere of IRc2 has very low temperature and very large diameter; IRc2 is indeed a very young massive protostar, located close to the Hayashi's forbidden region in the HR diagram. We also measured a sample of luminous protostars driving bipolar flows. No CO absorption was detected in other sources, lending further support for the exceptional youth of IRc2.

  11. New VLA Observations of Massive Protostars: A Search for Jets

    NASA Astrophysics Data System (ADS)

    Rosero, Viviana; Hofner, Peter; Claussen, Mark

    2015-08-01

    Molecular outflows appear to be an ubiquitous phenomena among stars of all masses. However, to date only a handful of sources with disks and collimated jets have been detected in young massive objects (YMOs). It is not clear if the lack of detections are due to intrinsic properties of YMOs or due to observational disadvantages. We have performed a survey of ~60 YMOs with unprecedented sensitivity, using the Karl G. Jansky Very Large Array (VLA) to achieve ~3-10 microJy RMS in C and K-band images (about 10-100 times more sensitive than previous efforts). The sample is composed of the earliest stages of massive star formation: hot molecular cores and infrared dark cloud cores. Moreover, all the sources show signatures of massive star formation such as methanol and water masers and outflow phenomena. This study provides a sample of jet candidates which is a valuable basis for a follow up search for associated disks. In this contribution we present our observational results from the survey. We have a high detection rate of weak radio continuum emission from the YMOs in our sample, most of which were previously undetected. In addition to the jet scenario, we are analyzing which other processes could be producing the radio emission; some of the detections appear to be from non-thermal emission, and others could be associated with ultra-compact HII regions. Before the upgrade of the VLA, most of the HII regions detected were B0 type stars (or earlier). Hence, these highly sensitive sample of YSOs open a new door of results, from HII regions associated with late B-type stars to very weak, collimated ionized jets associated to very early YMOs.

  12. The formation of a massive protostar through the disk accretion of gas.

    PubMed

    Chini, Rolf; Hoffmeister, Vera; Kimeswenger, Stefan; Nielbock, Markus; Nürnberger, Dieter; Schmidtobreick, Linda; Sterzik, Michael

    2004-05-13

    The formation of low-mass stars like our Sun can be explained by the gravitational collapse of a molecular cloud fragment into a protostellar core and the subsequent accretion of gas and dust from the surrounding interstellar medium. Theoretical considerations suggest that the radiation pressure from the protostar on the in-falling material may prevent the formation of stars above ten solar masses through this mechanism, although some calculations have claimed that stars up to 40 solar masses can in principle be formed via accretion through a disk. Given this uncertainty and the fact that most massive stars are born in dense clusters, it was suggested that high-mass stars are the result of the runaway merging of intermediate-mass stars. Here we report observations that clearly show a massive star being born from a large rotating accretion disk. The protostar has already assembled about 20 solar masses, and the accretion process is still going on. The gas reservoir of the circumstellar disk contains at least 100 solar masses of additional gas, providing sufficient fuel for substantial further growth of the forming star. PMID:15141204

  13. WATER ABSORPTION FROM GAS VERY NEAR THE MASSIVE PROTOSTAR AFGL 2136 IRS 1

    SciTech Connect

    Indriolo, Nick; Neufeld, D. A.; Seifahrt, A.; Richter, M. J.

    2013-10-10

    We present ground-based observations of the ν{sub 1} and ν{sub 3} fundamental bands of H{sub 2}O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 μm and 2.561 μm. Analysis of these features indicates the absorption arises in warm (T = 506 ± 25 K), very dense (n(H{sub 2}) > 5 × 10{sup 9} cm{sup –3}) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H{sub 2}O) = (1.02 ± 0.02) × 10{sup 19} cm{sup –2}, giving a relative abundance of N(H{sub 2}O)/N(H{sub 2}) ≈ 10{sup –4}. Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters.

  14. Stellar physics. Observing the onset of outflow collimation in a massive protostar.

    PubMed

    Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F

    2015-04-01

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. PMID:25838383

  15. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ∼600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10‑5 M ⊙ yr‑1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  16. Detection of a Hot Molecular Disk Around a Massive Protostar Candidate Orion KL Source I

    NASA Astrophysics Data System (ADS)

    Hirota, T.; Kim, M.; Kurono, Y.; Honma, M.

    2015-12-01

    We report results of ALMA cycle 0 observations of the H2O lines at 321 GHz and 336 GHz around a massive protostar candidate Source I in Orion KL. The 336 GHz line is in a vibrationally excited state at the lower state energy of 2939 K. These maps show velocity gradients perpendicular to the bipolar outflow suggesting an existence of a rotating disk. The distribution of the 321 GHz line is found to be similar to that of vibrationally excited SiO masers tracing the base of the outflow emanating from the disk surface. In contrast, the 336 GHz line is emitting from the disk midplane with a diameter of 0.2″ (84 AU) as traced by radio continuum emission. The observed velocity gradient and the spectral profile of the 336 GHz H2O line can be explained by an edge-on ring-like structure with an enclosed mass of >7M⊙ and an excitation temperature of >3000 K. We also investigate the spectral energy distribution of Source I from centimeter to submillimeter wavelengths. Detailed physical and dynamical properties of Source I can be discussed with a spatial scale of smaller than 100 AU.

  17. RESOLVING THE CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR DRIVING THE HH 80-81 JET

    SciTech Connect

    Carrasco-Gonzalez, Carlos; Galvan-Madrid, Roberto; Anglada, Guillem; Osorio, Mayra; D'Alessio, Paola; Rodriguez, Luis F.; Hofner, Peter; Linz, Hendrik; Araya, Esteban D.

    2012-06-20

    We present new high angular resolution observations toward the driving source of the HH 80-81 jet (IRAS 18162-2048). Continuum emission was observed with the Very Large Array at 7 mm and 1.3 cm, and with the Submillimeter Array at 860 {mu}m, with angular resolutions of {approx}0.''1 and {approx}0.''8, respectively. Submillimeter observations of the sulfur oxide (SO) molecule are reported as well. At 1.3 cm the emission traces the well-known radio jet, while at 7 mm the continuum morphology is quadrupolar and seems to be produced by a combination of free-free and dust emission. An elongated structure perpendicular to the jet remains in the 7 mm image after subtraction of the free-free contribution. This structure is interpreted as a compact accretion disk of {approx}200 AU radius. Our interpretation is favored by the presence of rotation in our SO observations observed at larger scales. The observations presented here add to the small list of cases where the hundred-AU scale emission from a circumstellar disk around a massive protostar has been resolved.

  18. SOFIA/EXES detection of absorption by water vapor in a massive protostar

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.; Indriolo, Nick; DeWitt, Curtis N.; Richter, Matthew; Boogert, Adwin; Harper, Graham; Jaffe, Daniel T.; Kulas, Kristin; McKelvey, Mark; Ryde, Nils; Vacca, William

    2015-08-01

    Using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have detected ten absorption features of water vapor toward the massive protostar AFGL 2591. These features, detected in the 6.086 - 6.135 μm spectral region, have been observed with a resolving power λ/dλ ~ 85,000, allowing individual rovibrational transitions to be cleanly separated from each other and from telluric lines. The observations provide an unequivocal detection of the 6.116 μm ν2 111 - 000 line, Doppler-shifted out of its telluric counterpart, which probes the ground rotational state of para-H2O and demonstrates the potential of SOFIA/EXES to observe absorption by cold interstellar water toward bright 6 μm continuum sources. EXES on SOFIA provides our first opportunity to observe the 6 μm vibrational band of astrophysical water vapor since the Infrared Space Observatory (ISO) in the late-1990s, and provides a spectral resolution that is almost two orders of magnitude better than what had previously been possible with ISO. A simultaneous fit to the EXES-observed transitions toward AFGL 2591 yields an inferred H2O column density of (1.3 ± 0.3) x 1019 cm-2, a source covering factor of 0.25, and a rotational temperature of 640 ± 80 K.

  19. Evidence for a solar system-size accretion disk around the massive protostar G192.16-3.82.

    PubMed

    Shepherd, D S; Claussen, M J; Kurtz, S E

    2001-05-25

    Seven-millimeter continuum observations of a massive bipolar outflow source, G192.16-3.82, were made at a milli-arc-second resolution with a capability that links the National Radio Astronomy Observatory's Very Large Array radio interferometer with the Very Long Baseline Array antenna, located in Pie Town, New Mexico. The observations provide evidence for a true accretion disk that is about the size of our solar system and located around a massive star. A model of the radio emission suggests the presence of a binary protostellar system. The primary protostar, G192 S1, at the center of the outflow, with a protostar mass of about 8 to 10 times the solar mass, is surrounded by an accretion disk with a diameter of 130 astronomical units (AU). The mass of the disk is on the order of the protostar mass. The outflow is poorly collimated with a full opening angle of about 40 degrees; there is no indication of a more highly collimated jetlike component. The companion source, G192 S2, is located 80 AU north of the primary source. PMID:11375484

  20. A HOT MOLECULAR CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR ORION SOURCE I

    SciTech Connect

    Hirota, Tomoya; Honma, Mareki; Kim, Mi Kyoung; Kurono, Yasutaka

    2014-02-20

    We report new Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a circumstellar disk around Source I in Orion KL, an archetype of massive protostar candidates. We detected two ortho-H{sub 2}O lines at 321 GHz (10{sub 2,} {sub 9}-9{sub 3,} {sub 6}) and 336 GHz (ν{sub 2} = 1, 5{sub 2,} {sub 3}-6{sub 1,} {sub 6}) for the first time in Source I. The latter one is in a vibrationally excited state at the lower state energy of 2939 K, suggesting evidence of hot molecular gas close to Source I. The integrated intensity map of the 321 GHz line is elongated along the bipolar outflow while the 336 GHz line map is unresolved with a beam size of 0.''4. Both of these maps show velocity gradients perpendicular to the bipolar outflow. The velocity centroid map of the 321 GHz line implies a spatial and velocity structure similar to that of vibrationally excited SiO masers tracing the root of the outflow emanating from the disk surface. In contrast, the 336 GHz line is most likely emitting from the disk midplane with a diameter of 0.''2 (84 AU) as traced by radio continuum emission and a dark lane devoid of the vibrationally excited SiO maser emission. The observed velocity gradient and the spectral profile of the 336 GHz H{sub 2}O line can be reconciled with a model of an edge-on ring-like structure with an enclosed mass of >7 M{sub ☉} and an excitation temperature of >3000 K. The present results provide further evidence of a hot and neutral circumstellar disk rotating around Source I with a diameter of ∼100 AU scale.

  1. Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-05-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M ⊙. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M ⊙ simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M ⊙ simulation shows a star with a mass of 5.48 M ⊙ and a disk of mass 3.3 M ⊙, while our 100 M ⊙ simulation forms a 28.8 M ⊙ mass star with a 15.8 M ⊙ disk over the course of 41.6 kyr, and our 200 M ⊙ simulation forms a 43.7 M ⊙ star with an 18 M ⊙ disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  2. [Fe II] Emission Tracing Massive, Irradiated Jets from Intermediate-Mass Protostars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2013-07-01

    We present new spectroscopy and HST and ground-based AO imaging of five protostellar jets in the Carina nebula. Near-IR [Fe II] emission traces dense gas in the jet that is self-shielded from Lyman continuum photons from nearby O-type stars, but is excited by non-ionizing FUV photons that penetrate the ionization front within the jet. New near-IR [Fe II] images reveal a substantial mass of dense, neutral gas that is not seen in Halpha emission from these jets, leading to densities and mass-loss rate estimates an order of magnitude higher than those derived from the Halpha emission measure. Higher jet mass-loss rates require higher accretion rates, implying that these jets are driven by intermediate-mass (~2-8 Msun) protostars. For two of the sources, mid-IR luminosities of the driving sources are clearly consistent with intermediate-mass protostars, while the other two driving sources are more deeply embedded and require imaging at longer wavelengths with high spatial resolution to confirm their luminosity. Tangential velocities from new proper motion measurements exceed velocities typical for lower-luminosity sources (100-200 km/s). In addition, these outflows are highly collimated, with opening angles of only a few degrees, similar to low-mass protostars. We propose that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable. Thus, the jets in Carina constitute a new view of collimated jets from intermediate-mass protostars that exists in a feedback dominated environment, and offer strong additional evidence that stars up to ~8 Msun form by the same accretion mechanisms as low-mass stars.

  3. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    SciTech Connect

    Fernández-López, M.; Girart, J. M.; Curiel, S.; Fonfría, J. P.; Zapata, L. A.; Qiu, K. E-mail: girart@ieec.cat

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  4. Tracing Massive Protostellar Jets from Intermediate-Mass Protostars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, A.

    2014-09-01

    We present new spectroscopy and imaging of four protostellar jets in the Carina nebula. Near-IR [Fe II] emission traces dense gas in the jet that is self-shielded from Lyman continuum photons from nearby O-type stars. New near-IR [Fe II] images reveal a substantial mass of dense, neutral gas that is not seen in the Halpha emission from these jets, leading to densities and mass-loss rate estimates an order of magnitude larger than those derived from the Halpha emission measure. Higher jet mass-loss rates require higher accretion rates, implying that these jets are driven by intermediate-mass (around 2 - 8 solar masses) protostars. Velocities from new proper motion and spectroscopic measurements fall among the velocities typically measured in lower-luminosity sources (100 - 200 km/s). We propose that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable. Thus, the jets in Carina constitute a new view of collimated jets from intermediate-mass protostars that exist in a feedback-dominated environment, and offer strong additional evidence that stars up to 8 solar masses form by the same accretion mechanisms as low-mass stars.

  5. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 μm, 163.1 μm between the 2Π1/2 J = 1/2 states, and 119.2 μm, a ground transition between the 2Π3/2 J = 3/2 states), at angular resolutions of 16.̋3, 16.̋3, and 11.̋9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 μm are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 μm triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that

  6. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NASA Astrophysics Data System (ADS)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-12-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in the presence of a strong Lyman-Werner radiation background. Particularly, we investigate the impact of turbulence and rotation on the fragmentation behaviour of the gas cloud. We accomplish this goal by varying the initial turbulent and rotational velocities. Methods: We performed 3D adaptive mesh refinement simulations with a resolution of 64 cells per Jeans length using the ENZO code, simulating the formation of a protostar up to unprecedentedly high central densities of 1021 cm-3 and spatial scales of a few solar radii. To achieve this goal, we employed the KROME package to improve modelling of the chemical and thermal processes. Results: We find that the physical properties of the simulated gas clouds become similar on small scales, irrespective of the initial amount of turbulence and rotation. After the highest level of refinement was reached, the simulations have been evolved for an additional ~5 freefall times. A single bound clump with a radius of 2 × 10-2 AU and a mass of ~7 × 10-2 M⊙ is formed at the end of each simulation, marking the onset of protostar formation. No strong fragmentation is observed by the end of the simulations, regardless of the initial amount of turbulence or rotation, and high accretion rates of a few solar masses per year are found. Conclusions: Given such high accretion rates, a quasi-star of 105 M⊙ is expected to form within 105 years. Appendix A is available in electronic form at http://www.aanda.org

  7. The Census of High- and Medium-mass Protostars (CHaMP): From Molecular Clouds to Massive Young Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    2015-08-01

    I review the major science outcomes to date of the Galactic Census of High- and Medium-mass Protostars, and also report the latest observational results on this unbiased, uniform sample of massive, cluster-forming molecular clumps, based on new mm-wave and IR data. These clouds represent the vast, subthermally-excited population of clumps predicted by Narayanan et al (2008) to dominate the molecular mass of disk galaxies. Besides confirming their existence, we have presented evidence that these massive clumps probably spend a large fraction (90-95%) of their long lives (possibly up to 100 Myr) in a mostly quiescent, low star formation rate (SFR) state, which is likely ended when a density or internal pressure threshold is crossed, after which vigorous, massive cluster formation consumes the densest gas with a high SFR, dispersing the embedding envelope. New results presented in two posters at this Symposium include (1) the first analysis of HCN emission from the dense gas using a full LTE solution for the column density from the hyperfine line ratios (Schap et al), which identifies low-luminosity but high-column areas that significantly increase the clumps' mass estimates, and (2) the first deep photometry of clusters in this sample based on NIR AAT and CTIO data and MIR Warm Spitzer IRAC data (Dallilar et al), which gives basic cluster parameters such as mass and luminosity as well as the associated star formation efficiency (SFE).

  8. DISK AND ENVELOPE STRUCTURE IN CLASS 0 PROTOSTARS. I. THE RESOLVED MASSIVE DISK IN SERPENS FIRS 1

    SciTech Connect

    Enoch, Melissa L.; Duchene, Gaspard; Corder, Stuartt

    2009-12-10

    We present the first results of a program to characterize the disk and envelope structure of typical Class 0 protostars in nearby low-mass star-forming regions. We use Spitzer Infrared Spectrograph (IRS) mid-infrared spectra, high-resolution Combined Array for Research in Millimeter-wave Astronomy (CARMA) 230 GHz continuum imaging, and two-dimensional radiative transfer models to constrain the envelope structure, as well as the size and mass of the circumprotostellar disk in Serpens FIRS 1. The primary envelope parameters (centrifugal radius, outer radius, outflow opening angle, and inclination) are well constrained by the spectral energy distribution (SED), including Spitzer IRAC and MIPS photometry, IRS spectra, and 1.1 mm Bolocam photometry. These together with the excellent uv-coverage (4.5-500 klambda) of multiple antenna configurations with CARMA allow for a robust separation of the envelope and a resolved disk. The SED of Serpens FIRS 1 is best fit by an envelope with the density profile of a rotating, collapsing spheroid with an inner (centrifugal) radius of approximately 600 AU, and the millimeter data by a large resolved disk with M{sub disk} approx 1.0 M {sub sun} and R{sub disk} approx 300 AU. These results suggest that large, massive disks can be present early in the main accretion phase. Results for the larger, unbiased sample of Class 0 sources in the Perseus, Serpens, and Ophiuchus molecular clouds are needed to determine if relatively massive disks are typical in the Class 0 stage.

  9. DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA

    SciTech Connect

    Cordiner, M. A.; Charnley, S. B.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2011-04-01

    We report the detection of microwave emission lines from the hydrocarbon anion C{sub 6}H{sup -} and its parent neutral C{sub 6}H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C{sub 4}H, HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, and C{sub 3}S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC{sub 3}N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  10. Discovery of Interstellar Anions in Cepheus and Auriga

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnely, S. B.; Buckle, J. V.; Walsh, C.

    2011-01-01

    We report the detection of microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H in the star-forming region LI251 A (in Cepheus), and the pre-stellar core LI512 (in Auriga). The carbon chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for LI5l2. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  11. UNVEILING THE MAIN HEATING SOURCES IN THE CEPHEUS A HW2 REGION

    SciTech Connect

    Jimenez-Serra, I.; Caselli, P.; MartIn-Pintado, J.; Rodriguez-Franco, A.; Martin, S.; Chandler, C.; Winters, J. M. E-mail: P.Caselli@leeds.ac.u E-mail: arturo@damir.iem.csic.e E-mail: cchandle@nrao.ed

    2009-10-01

    We present high angular resolution Plateau de Bure Interferometer images (beam of approx0.''33) of the J = 27 -> 26 line from several vibrational levels (v {sub 7} = 1 and v {sub 6} = 1) of HC{sub 3}N toward Cepheus A HW2. These images reveal the two main heating sources in the cluster: one centered in the disk collimating the HW2 radio jet (the HW2 disk), and the other associated with a hot core 0.''3 northeast HW2 (the HC). This is the first time that vibrationally excited emission of HC{sub 3}N is spatially resolved in a disk. The kinematics of this emission shows that the HW2 disk rotates following a Keplerian law. We derive the temperature profiles in the two objects from the excitation of HC{sub 3}N along the HW2 disk and the HC. These profiles reveal that both objects are centrally heated and show temperature gradients. The inner and hotter regions have temperatures of 350 +- 30 K and 270 +- 20 K for the HW2 disk and the HC, respectively. In the cooler and outer regions, the temperature drops to 250 +- 30 K in the HW2 disk, and to 220 +- 15 K in the HC. The estimated luminosity of the heating source of the HW2 disk is approx2.2 x 10{sup 4} L {sub sun}, and approx3000 L {sub sun} for the HC. The most massive protostar in the HW2 region is the powering source of the HW2 radio jet. We discuss the formation of multiple systems in this cluster. The proximity of the HC to HW2 suggests that these sources likely form a binary system of B stars, explaining the observed precession of the HW2 radio jet.

  12. HST/WFC3 imaging of protostellar jets in Carina: [Fe II] emission tracing massive jets from intermediate-mass protostars

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2013-08-01

    We present narrow-band Wide Field Camera 3 (WFC3)-UVIS and WFC3-IR images of four externally irradiated protostellar jets in the Carina nebula: HH 666, HH 901, HH 902 and HH 1066. These massive jets are unusual because they are bathed in UV radiation from dozens of nearby O-type stars, but despite the strong incident ionizing radiation, portions of the jet remain neutral. Near-IR [Fe II] images reveal dense, neutral gas that was not seen in previous studies of Hα emission. We show that near-IR [Fe II] emitting gas must be self-shielded from Lyman continuum photons, regardless of its excitation mechanism (shocks, far-ultraviolet radiation or both). High densities are required for the survival of Fe+ amid the strong Lyman continuum luminosity from Tr14, raising estimates of the mass-loss rates by an order of magnitude. Higher jet mass-loss rates require higher accretion rates on to their driving protostars, implying that these jets are driven by intermediate-mass (˜2-8 M⊙) stars. Indeed, the IR driving sources of two of these outflows have luminosities that require intermediate-mass protostars (the other two are so deeply embedded that their luminosity is uncertain). All four of these HH jets are highly collimated, with opening angles of only a few degrees, similar to those observed in low-mass protostars. We propose that these jets reflect essentially the same outflow phenomenon seen in wide-angle molecular outflows associated with intermediate- and high-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable in the harsh radiative environment of the Carina nebula. In more quiescent environments, this atomic core remains invisible, and outflows traced by shock-excited molecules in the outflow cavity give the impression that these outflows have a wider opening angle. Thus, the externally irradiated jets in Carina constitute a new view of collimated jets from intermediate-mass protostars and offer strong additional evidence

  13. Multi-Wavelength Views of Protostars in IC 1396

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    NASA's Spitzer Space Telescope has captured a glowing stellar nursery within a dark globule that is opaque at visible light. These new images pierce through the obscuration to reveal the birth of new protostars, or embryonic stars, and young stars never before seen.

    The Elephant's Trunk Nebula is an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus. Located at a distance of 2,450 light-years, the globule is a condensation of dense gas that is barely surviving the strong ionizing radiation from a nearby massive star. The globule is being compressed by the surrounding ionized gas.

    The large composite image above is a product of combining data from the observatory's multiband imaging photometer and the infrared array camera. The thermal emission at 24 microns measured by the photometer (red) is combined with near-infrared emission from the camera at 3.6/4.5 microns (blue) and from 5.8/8.0 microns (green). The colors of the diffuse emission and filaments vary, and are a combination of molecular hydrogen (which tends to be green) and polycyclic aromatic hydrocarbon (brown) emissions.

    Within the globule, a half dozen newly discovered protostars, or embryonic stars, are easily discernible as the bright red-tinted objects, mostly along the southern rim of the globule. These were previously undetected at visible wavelengths due to obscuration by the thick cloud ('globule body') and by dust surrounding the newly forming stars. The newborn stars form in the dense gas because of compression by the wind and radiation from a nearby massive star (located outside the field of view to the left). The winds from this unseen star are also responsible for producing the

  14. SPATIALLY RESOLVING SUBSTRUCTURES WITHIN THE MASSIVE ENVELOPE AROUND AN INTERMEDIATE-MASS PROTOSTAR: MMS 6/OMC-3

    SciTech Connect

    Takahashi, Satoko; Ho, Paul T. P.; Saigo, Kazuya; Tomida, Kengo

    2012-06-10

    With the Submillimeter Array, the brightest (sub)millimeter continuum source in the Orion Molecular Cloud-2/3 region, MMS 6, has been observed in the 850 {mu}m continuum emission with approximately 10 times better angular resolution than previous studies ( Almost-Equal-To 0.''3, Almost-Equal-To 120 AU at Orion). The deconvolved size, the mass, and the column density of MMS 6-main are estimated to be 0.''32 Multiplication-Sign 0.''29 (132 AU Multiplication-Sign 120 AU), 0.29 M{sub Sun }, and 2.1 Multiplication-Sign 10{sup 25} cm{sup -2}, respectively. The estimated extremely high mean number density, 1.5 Multiplication-Sign 10{sup 10} cm{sup -3}, suggests that MMS 6-main is likely optically thick at 850 {mu}m. We compare our observational data with three theoretical core models: prestellar core, protostellar core + disk-like structure, and first adiabatic core. These comparisons clearly show that the observational data cannot be modeled as a simple prestellar core with a gas temperature of 20 K. A self-luminous source is necessary to explain the observed flux density in the (sub)millimeter wavelengths. Our recent detection of a very compact and energetic outflow in the CO (3-2) and HCN (4-3) lines supports the presence of a protostar. We suggest that MMS 6 is one of the first cases of an intermediate-mass protostellar core at an extremely young stage. In addition to the MMS 6-main peak, we have also spatially resolved a number of spiky structures and sub-clumps, distributed over the central 1000 AU. The masses of these sub-clumps are estimated to be 0.066-0.073 M{sub Sun }, which are on the order of brown dwarf masses. Higher angular resolution and higher sensitivity observations with ALMA and EVLA will reveal the origin and nature of these structures such as whether they are originated from fragmentations, spiral arms, or inhomogeneity within the disk-like structures/envelope.

  15. Proceedings of Protostars and Planets V

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Oral presentation sessions in this conference include: Clouds and cores; Star formation and protostars; Binaries and multiples; Newborn massive stars; jets and outflows; Clusters and associations; T Tauri stars and disks; Brown dwarfs; Planet formation and evolution; Extrasolar planets; Dust and protoplanetary disks; Early solar system and Astrobiology. Poster presentations included: Clouds and Cores. Collapse and Protostars, Binaries and Multiples, Clusters, Associations, and the IMF, Jets and Outflows, T Tauri Stars and Other Young Stars, Disks and Disk Accretion, Brown Dwarfs, Herbig Ae/Be Stars and Massive Stars, Solar System Objects, Planet Formation, Extrasolar Planets and Planet Detection, Properties of Protoplanetary Disks, Migration and Planetary Orbits and Meteoritics and Astrobiology

  16. Spectral Line Survey toward the Young Massive Protostar NGC 2264 CMM3 in the 4 mm, 3 mm, and 0.8 mm Bands

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimasa; Sakai, Nami; López-Sepulcre, Ana; Furuya, Ryuta; Sakai, Takeshi; Hirota, Tomoya; Liu, Sheng-Yuan; Su, Yu-Nung; Yamamoto, Satoshi

    2015-08-01

    Spectral line survey observations are conducted toward the high-mass protostar candidate NGC 2264 CMM3 in the 4, 3, and 0.8 mm bands with the Nobeyama 45 m telescope and the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. In total, 265 emission lines are detected in the 4 and 3 mm bands, and 74 emission lines in the 0.8 mm band. As a result, 36 molecular species and 30 isotopologues are identified. In addition to the fundamental molecular species, many emission lines of carbon-chain molecules such as HC5N, C4H, CCS, and C3S are detected in the 4 and 3 mm bands. Deuterated molecular species are also detected with relatively strong intensities. On the other hand, emission lines of complex organic molecules such as HCOOCH3 and CH3OCH3 are found to be weak. For the molecules for which multiple transitions are detected, rotation temperatures are derived to be 7-33 K except for CH3OH. Emission lines with high upper-state energies (Eu > 150 K) are detected for CH3OH, indicating the existence of a hot core. In comparison with the chemical composition of the Orion KL, carbon-chain molecules and deuterated molecules are found to be abundant in NGC 2264 CMM3, while sulfur-bearing species and complex organic molecules are deficient. These characteristics indicate the chemical youth of NGC 2264 CMM3 in spite of its location at the center of the cluster forming core, NGC 2264 C.

  17. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star. PMID:18669856

  18. PRE-MAIN-SEQUENCE STARS IN THE CEPHEUS FLARE REGION

    SciTech Connect

    Kun, Maria; Balog, Zoltan; Kenyon, Scott J.; Mamajek, Eric E.; Gutermuth, Robert A.

    2009-12-01

    We present results of optical spectroscopic and BVR {sub C} I {sub C} photometric observations of 77 pre-main-sequence (PMS) stars in the Cepheus flare region. A total of 64 of these are newly confirmed PMS stars, originally selected from various published candidate lists. We estimate effective temperatures and luminosities for the PMS stars, and comparing the results with PMS evolutionary models, we estimate stellar masses of 0.2-2.4 M {sub sun} and stellar ages of 0.1-15 Myr. Among the PMS stars, we identify 15 visual binaries with separations of 2-10 arcsec. From archival IRAS, Two Micron All Sky Survey, and Spitzer data, we construct their spectral energy distributions (SEDs) and classify 5% of the stars as Class I, 10% as Flat SED, 60% as Class II, and 3% as Class III young stellar objects. We identify 12 classical T Tauri stars and two weak-line T Tauri stars as members of NGC 7023, with a mean age of 1.6 Myr. The 13 PMS stars associated with L1228 belong to three small aggregates: RNO 129, L1228A, and L1228S. The age distribution of the 17 PMS stars associated with L1251 suggests that star formation has propagated with the expansion of the Cepheus flare shell. We detect sparse aggregates of {approx}6-7 Myr old PMS stars around the dark clouds L1177 and L1219, at a distance of {approx}400 pc. Three T Tauri stars appear to be associated with the Herbig Ae star SV Cep at a distance of 600 pc. Our results confirm that the molecular complex in the Cepheus flare region contains clouds of various distances and star-forming histories.

  19. New Hα-emission objects in the Cepheus region

    NASA Astrophysics Data System (ADS)

    Melikyan, N. D.

    1994-04-01

    Results are presented from a study of 31 new H α-emission objects in the Cepheus region. The observations were performed with the 40″ Schmidt telescope of the Byurakan Astrophysical Observatory in 1979, 1985, and 1989. Spectral plates were obtained with a 4° objective prism (˜-1100 Å/mm near H α on Kodak 103-aE, 103-aF, III-aF and ORWO ZP-3 emulsions. Type RG1 and RG2 light filters were used during the observations.

  20. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  1. Protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Barsony, M.; Ward-Thompson, D.; Andre, P.; O'Linger, J.

    1997-12-01

    We present new millimeter, submillimeter, and far-infrared images of three Class 0 protostar systems in Perseus: L1448C, the triple system L1448N, and IRAS 03282+3035. The data were acquired with a 7-element bolometer array on the IRAM 30-m, the common user bolometer, UKT14, on the 15-m James Clerk Maxwell Telescope, and via extensive HIRES processing and modelling of the IRAS data (Aumann, Fowler, & Melnyk 1990). All three sources power bipolar molecular outflows. The spectacular outflow from L1448C is seen in dust emission for the first time at 60, 100, and 1300 microns. The instantaneous outflow mechanical luminosity derived from this emission is found to be a high fraction ( 50%) of the source luminosity, a property recently found to be another distinguishing characteristic of Class 0 protostars, the earliest observable protostellar stage (Bontemps et al. 1996). Extensive HIRES point-source modelling of the 100-micron IRAS emission around IRAS 03282 shows that the emitting dust is co-extensive with the flattened dense gas core, as traced by previous ammonia observations, from which the protostar is forming (Bachiller, Martin-Pintado, & Planesas 1991; Tafalla et al. 1993). References Aumann, H.H., Fowler, J.W., & Melnyk, M. 1990, AJ 99 1674 Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A 311 858 Bachiller, R., Martin-Pintado, J., & Planesas, P. 1991, A&A 251 639 Tafalla, M, Bachiller, R., Martin-Pintado, J. & M.C.H. Wright 1993, ApJL 415 L139

  2. Waterfalls Around Protostars

    NASA Astrophysics Data System (ADS)

    Mottram, J. C.; van Dishoeck, E. F.; Schmalzl, M.; Kristensen, L. E.; Visser, R.; Hogerheijde, M. R.; Bruderer, S.

    2013-07-01

    Water is uniquely sensitive to motion of any kind within the protostellar environment due to its large Einstein A coefficient. As part of the 'Water in star-forming regions with Herschel' (WISH) survey, infall signatures were detected in the HIFI water spectra observed towards 5 Class 0/I protostars observed. The combination of observations of multiple water transitions and full 1-D non-LTE radiative transfer models of protostellar envelopes provides a self-consistent way to probe the physics and chemistry of infalling envelope material.

  3. YSOVAR: The Age of the Cepheus C Star Cluster

    NASA Astrophysics Data System (ADS)

    Luna, Jessica; Covey, K.; YSOVAR

    2014-01-01

    We constructed a spectroscopic Hertzsprung-Russell diagram for the Cepheus C (Ceph C) sub-cluster, which we use to generate the first quantitative measurement of this young cluster’s age. Using two TripleSpec spectrographs, on the 3.5m telescope at Apache Point Ob- servatory and the 200” telescope at Palomar Observatory, we obtained near infrared (NIR) spectra for 31 candidate Ceph C members. By comparing our target spectra to a large library of dwarf, sub-giant, and giant star templates, we measured spectral types for candidate Ceph C members ranging from F2 to M2.5. We converted each YSO’s ST into a Teff estimate using the ST to Teff relation recently published by Pecaut et al. (2013). Using our spectroscopically derived extinction estimates to deredden spectral energy distributions constructed from 2MASS and Spitzer photometry, we measured each YSO’s bolometric luminosity. Placing each candidate Ceph C member on an HR Dia- gram, we used Dartmouth pre-main sequence evolutionary tracks to estimate the mass and age of each YSO. We measure a median stellar age for the Ceph C cluster of ˜10 Myrs or less. We also detect a large systematic effect in our ages, however, such that cooler, low mass mem- bers have substantially smaller inferred ages than their higher mass counterparts. We are working to understand the root cause of this systematic effect, but this first estimate of Ceph C’s age will advance our understanding of the cluster’s relationship to other sub clusters in Cepheus, and place the Ceph C cluster in context among other local star forming regions. This research was funded by the NSF through grant number AST-1004107.

  4. Characterizing Dust and Ice Toward Protostars in the Orion Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Poteet, Charles Allen

    Protostars are young stars in the process of accreting infalling envelopes of gas and dust which are transported from the diffuse interstellar medium through gravitational collapse. Although the envelopes are commonly thought to be comprised of cold, pristine material from the interstellar medium, recent space-based studies suggest that protostellar envelopes of low- and high-mass protostars contain thermally processed dust and ice. Unlike the envelope material from luminous, massive protostars, where dust and ice are subject to processing by direct stellar irradiation, thermally processed materials in low-mass protostars may be the consequence of accretion-driven outbursts, shocks in protostellar outflows, or transport of materials from the inner disk to the envelope by outflows and winds. We present an analysis of mid-infrared spectra of a large sample of protostars from the Orion Molecular Cloud complex, the most active region of star formation within the nearest 500 pc. The spectra, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope , reveal strong silicate and solid molecular absorption bands. Using spectral decomposition analyses to determine the dust and ice composition toward the protostars, we find that the amorphous silicate composition is more dominated by amorphous pyroxene than dust in the Galactic diffuse interstellar medium, and that the mass fraction of amorphous pyroxene varies between protostars. Toward the perplexing protostar HOPS-68, we report the first unambiguous detection of (1) crystalline silicate absorption in a cold, infalling protostellar envelope and (2) highly processed carbon dioxide ice mantles. Moreover, we find evidence for crystalline silicate absorption towards two additional protostars. These results provide strong evidence that dust and ice delivered to planet-forming disks around low-mass stars in the protostellar phase may be processed by feedback from the central protostar.

  5. First detection of CF+ towards a high-mass protostar

    NASA Astrophysics Data System (ADS)

    Fechtenbaum, S.; Bontemps, S.; Schneider, N.; Csengeri, T.; Duarte-Cabral, A.; Herpin, F.; Lefloch, B.

    2015-02-01

    Aims: We report the first detection of the J = 1-0 (102.6 GHz) rotational lines of CF+ (fluoromethylidynium ion) towards CygX-N63, a young and massive protostar of the Cygnus X region. Methods: This detection occurred as part of an unbiased spectral survey of this object in the 0.8-3 mm range, performed with the IRAM 30 m telescope. The data were analyzed using a local thermodynamical equilibrium model (LTE model) and a population diagram in order to derive the column density. Results: The line velocity (-4 km s-1) and line width (1.6 km s-1) indicate an origin from the collapsing envelope of the protostar. We obtain a CF+ column density of 4 × 1011 cm-2. The CF+ ion is thought to be a good tracer for C+ and assuming a ratio of 10-6 for CF+/C+, we derive a total number of C+ of 1.2 × 1053 within the beam. There is no evidence of carbon ionization caused by an exterior source of UV photons suggesting that the protostar itself is the source of ionization. Ionization from the protostellar photosphere is not efficient enough. In contrast, X-ray ionization from the accretion shock(s) and UV ionization from outflow shocks could provide a large enough ionizing power to explain our CF+ detection. Conclusions: Surprisingly, CF+ has been detected towards a cold, massive protostar with no sign of an external photon dissociation region (PDR), which means that the only possibility is the existence of a significant inner source of C+. This is an important result that opens interesting perspectives to study the early development of ionized regions and to approach the issue of the evolution of the inner regions of collapsing envelopes of massive protostars. The existence of high energy radiations early in the evolution of massive protostars also has important implications for chemical evolution of dense collapsing gas and could trigger peculiar chemistry and early formation of a hot core. Appendices are available in electronic form at http://www.aanda.org

  6. Multiwavelength Spectroscopy of the Bipolar Outflow from Cepheus E

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.; Froebrich, Dirk; Eislöffel, Jochen

    2003-07-01

    Cepheus E is the site of an exceptional example of a protostellar outflow with a very young dynamical age and extremely high near-infrared luminosity. We combine molecular spectroscopic data from the submillimeter to the near-infrared in order to interpret the rotational excitation of CO and the rovibrational excitation of H2. We conclude that C-type shocks with a paraboloidal bow shock geometry can simultaneously explain all the molecular excitations. Extinction accounts for the deviation of the column densities from local thermodynamic equilibrium. A difference in the extinction between the red- and blueshifted outflow lobes may account for the measured flux difference. The outflow is deeply embedded in a clump of density 105 cm-3, yet a good fraction of atomic hydrogen, about 40%, is required to explain the excitation and statistical equilibrium. We propose that this atomic component arises, self-consistently, from the dissociated gas at the apex of the leading bow shocks and the relatively long molecule reformation time. At least 20 bow shocks are required in each lobe, although these may be subdivided into smaller bows and turbulent shocked regions. The total outflow mechanical power and cooling amounts to over 30 Lsolar, almost half the source's bolometric luminosity. Nevertheless, only about 6% of the clump mass has been set in outward motion by the outflow, allowing a collapse to continue. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  7. Constraining the disk masses of the class I binary protostar GV Tau

    SciTech Connect

    Sheehan, Patrick D.; Eisner, Josh A.

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  8. A Photoevaporating Rotating Disk in the Cepheus A HW2 Star Cluster

    NASA Astrophysics Data System (ADS)

    Jiménez-Serra, I.; Martín-Pintado, J.; Rodríguez-Franco, A.; Chandler, C.; Comito, C.; Schilke, P.

    2007-06-01

    We present VLA and PdBI subarcsecond images (~0.15"-0.6") of the radio continuum emission at 7 mm and of the SO2 J=192,18-->183,15 and J=278,20-->287,21 lines toward the Cep A HW2 region. The SO2 images reveal the presence of a hot core internally heated by an intermediate-mass protostar, and a circumstellar rotating disk around the HW2 radio jet of size 600×100 AU and mass ~1 Msolar. Keplerian rotation for the disk velocity gradient of ~5 km s-1 requires a 9 Msolar central star, which cannot explain the total luminosity observed in the region. This may indicate that the disk does not rotate with a Keplerian law due to the extreme youth of this object. Our high-sensitivity radio continuum image at 7 mm shows, in addition to the ionized jet, an extended emission to the west (and marginally to the south) of the HW2 jet, filling the southwest cavity of the HW2 disk. From the morphology and location of this free-free continuum emission at centimeter and millimeter wavelengths (spectral index ~0.4-1.5), we propose that the disk is photoevaporating due to the UV radiation from the central star. All this indicates that the Cep A HW2 region harbors a cluster of massive stars. Disk accretion seems to be the most plausible way to form massive stars in moderate density/luminosity clusters.

  9. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    NASA Technical Reports Server (NTRS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  10. Observations of feedback between protostars and their natal clouds

    NASA Astrophysics Data System (ADS)

    Green, Joel D.

    2008-06-01

    In this thesis we explore the relationship between the formation of protostars, and the influence of protostellar outflows on their environment using Infrared Spectrograph onboard the Spitzer Space Telescope. First we introduce the modern understanding of protostellar development advanced by the IRS_Disks guaranteed time program. Next we explore the FU Orionis phenomenon, an IRS_Disks dataset of flaring stars undergoing a burst accretion event. Finally we present a suite of data on Herbig Haro flows in Cepheus A to determine whether protostellar outflows can dissociate a wide angle cavity in their natal cloud. We present 5-35 mm spectra, taken with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope, of five FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, BBW 76, and V346 Nor. All but V346 Nor reveal amorphous silicate grains in emission at 10 mm and 20 mm, and show water-vapor absorption bands at 5.8 and 6.8 mm and SiO or possibly methane absorption at 8 mm. These absorption features closely match these bands in model stellar photospheres--signs of the gaseous photospheres of the inner regions of these objects' accretion disks. The continuum emission at 5-8 mm is also consistent with such disks, and, for FU Orionis and BBW 76, longer-wavelength emission may be fit by a model which includes moderate disk flaring. V1057 Cyg and V1515 Cyg have much more emission at longer wavelengths than the others, perhaps evidence of substantial remnant of their natal, infalling envelopes. This indicates that FU Orionis events can briefly raise outflow rates sufficiently high to dispel their surrounding envelopes and open swaths of the ambient medium via compression waves. Herbig Haro objects are small emission nebulae that signify the interaction between both broad and collimated outflows from young stellar objects and the ambient molecular cloud material. GGD37 is suspected to be an amalgamation of at least two superposed flows (including HH 168) traveling in

  11. Winds from Low Mass Protostars

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Lizano, Susana; Adams, Fred C.; Ruden, Steven P.

    In its last stages, star formation in molecular clouds includes the onset of a stellar wind that helps to clear away the surrounding placenta of gas and dust, thereby making the young stellar object optically visible. The authors discuss new observational evidence that the emerging wind is largely neutral and atomic in low-mass protostars. They then suggest a simple theoretical mechanism for the generation of such powerful neutral winds.

  12. Cataloging the Youngest Protostars in NGC2264

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Brown, Arianna; Terebey, Susan; CSI2264

    2016-06-01

    Protostars are young stars in their earliest stages of development. We can determine the current stage of development of a young star depending on its relative brightness at varying wavelengths. Protostars are brightest at far-infrared wavelengths, typically peaking at 70-100um. A previous catalog of young stars in NGC 2264 is based on Spitzer data with 24um being the longest available wavelength data. Herschel data at 70um was used to improve the census of protostars. We found 11 new class 0 and 1 protostar candidates that were previously not found in the Spitzer catalog and are bright at 70um. We describe the properties of these candidates.

  13. Primordial stellar evolution - The protostar phase

    NASA Technical Reports Server (NTRS)

    Stahler, S. W.; Palla, F.; Salpeter, E. E.

    1986-01-01

    The structure and evolution of a protostar forming from a cloud composed of pure hydrogen and helium gas are calculated. Using an accretion rate of 0.0044 solar mass/yr, the collapse of the cloud is followed numerically as a sequence of steady state accretion flows onto the hydrostatic core, which grows from an initial mass of 0.01 solar mass to 10.5 solar masses. The core is surrounded by an optically thick radiative precursor for most of its evolution. The core radius reaches 47 solar radii when the mass is 1 solar mass. For sufficiently massive cores, the deep interior contracts strongly, driving out a 'luminosity wave' which reaches the surface when the mass is 8 solar masses. This results in a large increase in core radius, the establishment of surface convection, and the disappearance of the radiative precursor. The dependence of core radius on the mass and accretion rate is analytically derived, and a new table or Rosseland mean opacities for metal-free gas is presented.

  14. The puzzling deuteration of methanol in low- to high-mass protostars

    NASA Astrophysics Data System (ADS)

    Ratajczak, A.; Taquet, V.; Kahane, C.; Ceccarelli, C.; Faure, A.; Quirico, E.

    2011-04-01

    Context. The current theory of methanol deuteration on interstellar grains predicts that the abundance ratio of the singly deuterated isotopologues [CH2DOH]/[CH3OD] should always be ~3. In warm regions where grain mantles have sublimated, gaseous methanol is detectable via its rotational transitions. In previous observational studies, the gas-phase [CH2DOH]/[CH3OD] ratio was measured and found to be significantly larger than 3 in low-mass protostars and close to 1 in the Orion IRc2 massive hot core. Aims: We present new measurements of the gas-phase [CH2DOH]/[CH3OD] ratio in two additional high-mass protostars, as well as in two intermediate-mass protostars, to either confirm or exclude the dependence of this ratio on the mass of the protostar. Methods: The observations were carried out using the IRAM-30 m telescope. Several rotational lines of each isotopologue were detected toward the intermediate-mass protostars, while only CH3OD lines were detected in the massive hot cores. The ratio [CH2DOH]/[CH3OD] (or its upper limit) was computed from both the averaged column densities and directly from line flux ratios. Results: Our results confirm that the [CH2DOH]/[CH3OD] ratio is substantially lower in massive hot cores than in (low-mass) hot-corinos, by typically one order of magnitude. Furthermore, they suggest that intermediate-mass protostars have similar properties to low-mass protostars. Conclusions: The measured [CH2DOH]/[CH3OD] ratios are inconsistent with the current theory of methanol deuteration, independently of the mass of the source. While the large ratios measured in low- and intermediate-mass sources can be explained qualitatively by various selective depletion mechanisms, the small ratios (<2) measured toward massive hot cores are puzzling. A revision of the deuterium chemistry in hot cores is suggested. Table A.1 is only available in electronic form at http://www.aanda.org

  15. Temperature gradients in the Cepheus B molecular cloud - a multi-line analysis

    NASA Astrophysics Data System (ADS)

    Deiss, B. M.; Beuther, H.; Kramer, C.

    The Cepheus B molecular cloud is a prime candidate to study the effect of sequential star formation on molecular clouds: it is located at the edge of an H ii region (S155) and an OB association (Cepheus OB3), and it comprises a hot-core region with an embedded compact H ii region and NIR cluster suggesting on-going star formation. The bulk of the cloud, however, appears to be in a 'calm' state where star formation has not (yet) started. We conducted on-the-fly maps of the (2-1) and (3-2) low-J transitions of the CO isotopomers 12CO, 13CO, and C18O (Beuther et al. 1999, to appear in A&A); the observations were carried out with the 3 m KOSMA submillimeter telescope at Gornergrat, Switzerland (Kramer et al. 1998, SPIE, Conf.Proc., Kona, Vol 3350). We present line ratio maps as well as spectra at selected positions, where the latter sample regions of Cepheus B each having different physical conditions. The line ratio distribution is a measure for the variation of the excitation conditions. Adopting an escape probability integration scheme the data can be fitted reasonably treating each of the CO isotopomers seperately. From that we derive differing kinetic temperatures at each of the projected positions. This strongly indicates a temperature gradient along the line-of-sight since different isotopomers trace different layers of the cloud due to their differing optical depths. The temperature difference between the cooler inner parts of the cloud and the cloud's 'surface' amounts up to 40 K. We also found a lateral west-to-east 'surface' temperature decrease from 70 K at the hot-core region down to 40 K.

  16. Into the Darkness: Interstellar Extinction Near the Cepheus OB3 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Edward L.; Jacklin, S.; Massa, D.

    2014-01-01

    We present the results of a followup investigation to a study performed by Massa and Savage (1984, ApJ, 279, 310) of the properties of UV interstellar extinction in the region of the Cepheus OB3 molecular cloud. That study was performed using UV photometry and spectro-photometry from the ANS and IUE satellites. We have extended this study into the IR, utilizing the uniform database of IR photometry available from the 2MASS project. This is a part of a larger program whose goal is to study the properties of extinction in localized regions, where we hope to find clues to dust grain growth and destruction processes through spatial correlations of extinction with distinct environmental properties. Similarly to Massa and Savage’s UV results, we find that the IR extinction properties on the Cepheus OB3 region vary systematically with the apparent proximity of the target stars to the molecular cloud. We also find that the UV extinction and the IR extinction are crudely correlated. The methodology leading to these results and their implications are discussed.

  17. Clarifying Massive Protostellar Evolution and Circumstellar Processing

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; Brogan, Crystal; Hoare, Melvin; Lumsden, Stuart; Robitaille, Thomas; Sewilo, Marta; Urquhart, James; Viti, Serena; Whitney, Barbara

    2008-03-01

    Massive stars dominate the evolution of galaxies and even as protostars, their feedback can affect their own formation and that of their host clusters. We propose a systematic study of massive protostars through the stages of their early evolution, to derive a clearer evolutionary sequence and a better link between the state of the central source and physical conditions in circumstellar material. This experiment will improve over existing work by careful source selection to systematically span evolutionary parameter space, resulting in a more uniform and comprehensive sample. Sophisticated radiative transfer, ionization, and chemical modeling will be used to extract the full riches of each IRS spectrum and find trends in how massive stars form and process their natal material: We will be able to determine the temperature, density, and chemical state (heating history) of circumstellar dust and ice in the accretion disk and envelope, and at later evolutionary stages the ionizing and soft (PAH-exciting) ultraviolet radiation emitted by the protostars and how that radiation is quenched and shadowed by circumstellar material. This investigation is the key to realizing the full potential of previous infrared imaging surveys like MSX and Spitzer's GLIMPSE and MIPSGAL to study massive star formation. These surveys have provided a basis for us to select a large relatively unbiased sample spanning evolutionary state. In return, revealing the spectroscopic signature of massive YSOs will greatly clarify the modeling and interpretation of the thousands of other protostars in these imaging survey data.

  18. Dust in regions of massive star formation

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Cassinelli, J. P.

    1989-01-01

    It is suggested that protostars increase mass by accreting the surrounding gas and dust. Grains are destroyed as they near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grains can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. General constraints were considered on the initial dust-to-gas ratio and mass accretion rates that permit inflow. These results were constrained further by constructing a numerical model, including radiative deceleration on grains and grain destruction processes. Also the constraints on dust properties were investigated which allow the formation of massive stars. The obtained results seem to suggest that massive star formation requires rather extreme preconditioning of the grain and gas environment.

  19. Protostar mass functions in young clusters

    SciTech Connect

    Myers, Philip C.

    2014-01-20

    In an improved model of protostar mass functions (PMFs), protostars gain mass from isothermal cores in turbulent clumps. Their mass accretion rate is similar to Shu accretion at low mass and to reduced Bondi accretion at high mass. Accretion durations follow a simple expression in which higher-mass protostars accrete for longer times. These times are set by ejections, stellar feedback, and gravitational competition, which terminate accretion and reduce its efficiency. The mass scale is the mass of a critically stable isothermal core. In steady state, the PMF approaches a power law at high mass because of competition between clump accretion and accretion stopping. The power law exponent is the ratio of the timescales of accretion and accretion stopping. The protostar luminosity function (PLF) peaks near 1 L {sub ☉} because of inefficient accretion of core gas. Models fit observed PLFs in four large embedded clusters. These indicate that their underlying PMFs may be top-heavy compared with the initial mass function, depending on the protostar radius model.

  20. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  1. The distribution of warm dust in the star forming region Cepheus A: Infrared constraints

    NASA Technical Reports Server (NTRS)

    Colome, Cecilia; Harvey, Paul M.

    1995-01-01

    We have obtained new, high angular resolution far-infrared (FIR) maps (at 50 and 100 microns) of the star forming region Cepheus A and polarimetric images (1.65 and 2.2 microns) of the reflection nebulosity, IRS6, associated with this young stellar object. Our results are consistent with current star formation theories: a young stellar object surrounded by an infalling envelope with a characteristic density distribution of n(sub d)(r) proportional to r(exp -1.5), a circumstellar disk, and a cavity (R(sub i) approx. 0.07 pc) in which n(sub d) is constant, created by the dispersal of the initial dust cloud by a strong stellar wind.

  2. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  3. Characterizing the Youngest Herschel-detected Protostars. I. Envelope Structure Revealed by CARMA Dust Continuum Observations

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Stutz, Amelia M.; Megeath, S. Thomas; Fischer, William J.; Henning, Thomas; Ragan, Sarah E.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-01

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ~5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ vprop R -2.5. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.

  4. CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS

    SciTech Connect

    Tobin, John J.; Stutz, Amelia M.; Henning, Thomas; Ragan, Sarah E.; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-10

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ∼5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ ∝ R {sup –2.5}. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.

  5. Protostars at Low Extinction in Orion A

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Lada, Charles J.

    2016-07-01

    In the list of young stellar objects (YSOs) compiled by Megeath et al. for the Orion A molecular cloud, only 44 out of 1208 sources found projected onto low extinction ({A}{{K}}\\lt 0.8 mag) gas are identified as protostars. These objects are puzzling because protostars are not typically expected to be associated with extended low extinction material. Here, we use high resolution extinction maps generated from Herschel data, optical/infrared and Spitzer Space Telescope photometry and spectroscopy of the low extinction protostellar candidate sources to determine if they are likely true protostellar sources or contaminants. Out of 44 candidate objects, we determine that 10 sources are likely protostars, with the rest being more evolved YSOs (18), galaxies (4), false detections of nebulosity and cloud edges (9), or real sources for which more data are required to ascertain their nature (3). We find none of the confirmed protostars to be associated with recognizable dense cores and we briefly discuss possible origins for these orphaned objects.

  6. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  7. Kinematics of powerful jets from intermediate-mass protostars in the Carina nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2014-12-01

    We present measurements of proper motions and radial velocities of four powerful Herbig-Haro (HH) jets in the Carina nebula: HH 666, HH 901, HH 902, and HH 1066. Two epochs of Hubble Space Telescope imaging separated by a time baseline of ˜4.4 yr provide proper motions that allow us to measure the transverse velocities of the jets, while ground-based spectra sample their Doppler velocities. Together these yield full three-dimensional space velocities. Aside from HH 666, their identification as outflows was previously inferred only from morphology in images. Proper motions now show decisively that these objects are indeed jets, and confirm that the intermediate-mass protostars identified as the candidate driving sources for HH 666 and HH 1066 are indeed the origin of these outflows. The appearance of two new knots in the HH 1066 jet suggests recent (˜35 yr) changes in the accretion rate, underscoring the variable nature of accretion and outflow in the formation of intermediate-mass stars. In fact, kinematics and mass-ejection histories for all the jets suggest highly episodic mass loss, and point towards pronounced accretion fluctuations. Overall, we measure velocities similar to those found for low-mass protostars. However, the HH jets in Carina have higher densities and are more massive than their low-mass counterparts. Coarse estimates suggest that the heavy jets of intermediate-mass protostars can compete with or even exceed inject ˜10 or more times the cumulative momentum injection of lower mass protostars.

  8. The Molecular Envelopes of High-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Su, Yu-Nung; Lim, Jeremy

    We report (JK) = (11)(22) and (33) ammonia observations towards luminous far-IR sources IRAS 06058+2138 made with the VLA in D-configuration. IRAS 06058+2138 has a bolometric luminosity of 2 x 104 Lsun and exhibits energetic maser activities but extremely weak cm-wave free-free emission indicating that there are very young high-mass stars perhaps massive protostars. All ammonia (11) (22) and (33) lines are detected and the emission is spatially coincident with the H13CO+ and SiO emission and 3-mm dust continuum. The centroids of the ammonia (33) condensations agree very well with those of other signposts (i.e. dust continuum and water masers) for new-born high-mass stars while the centroids of ammonia (11) and (22) emission does not. This indicates that ammonia (33) is a better tracer for high-mass star forming regions than ammonia (11) and (22). The condensations of ammonia (33) emission could mark the positions of young high-mass stars.

  9. The discovery of low-mass pre-main-sequence stars in Cepheus OB3b

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Naylor, T.; Jeffries, R. D.; Drew, J. E.

    2003-05-01

    We report the discovery of a low-mass pre-main-sequence (PMS) stellar population in the younger subgroup of the Cepheus OB3 association, Cep OB3b, using UBVI CCD photometry and follow-up spectroscopy. The optical survey covers approximately 1300 arcmin2 on the sky and gives a global photometric and astrometric catalogue for more than 7000 objects. The location of a PMS population is well defined in a V versus (V-I) colour-magnitude diagram. Multifibre spectroscopic results for optically selected PMS candidates confirm the T Tauri nature for 10 objects, with equal numbers of classical TTS (CTTS) and weak-line TTS (WTTS). There are six other objects that we classify as possible PMS stars. The newly discovered TTS stars have masses in the range ~0.9-3.0 Msolar and ages from <1 to nearly 10 Myr, based on the Siess, Dufour & Forestini isochrones. Their location close to the O and B stars of the association (especially the O7n star) demonstrates that low-mass star formation is indeed possible in such an apparently hostile environment dominated by early-type stars and that the latter must have been less effective in eroding the circumstellar discs of their lower-mass siblings compared with other OB associations (e.g. λ-Ori). We attribute this to the nature of the local environment, speculating that the bulk of molecular material, which shielded low-mass stars from the ionizing radiation of their early-type siblings, has only recently been removed.

  10. Episodic outflows from high-mass protostars

    SciTech Connect

    Mitchell, G.F.; Maillard, J.P.; Hasegawa, T.I. Canada-France-Hawaii Telescope Corp., Waimea, HI CNRS, Institut d'Astrophysique, Paris Duke University, Durham, NC )

    1991-04-01

    This paper examines the kinematics and physical properties of the outflowing gas from seven luminous deeply embedded young stellar objects or protostars: M8E-IR, GL 490, GL 2591, W3 IRS 5, NGC 7538 IRS 1, NGC 7538 IRS 9, and S140 IRS 1. The outflows are seen as blueshifted absorption features in lines of the fundamental band of CO. The CO lines seen in absorption are compared with CO lines seen in emission at mm wavelengths. New CO J = 2-1 emission-line data are presented for the first five of the sources. 60 refs.

  11. JETS AND WIDE-ANGLE OUTFLOWS IN CEPHEUS E: NEW EVIDENCE FROM SPITZER

    SciTech Connect

    Velusamy, T.; Langer, W. D.; Kumar, M. S. N.; Grave, J. M. C. E-mail: William.D.Langer@jpl.nasa.gov E-mail: jgrave@astro.up.pt

    2011-11-01

    Outflows and jets are believed to play a crucial role in determining the mass of the central protostar and its planet-forming disk by virtue of their ability to transport energy, mass, and momentum of the surrounding material, and thus terminate the infall stage in star and disk formation. In some protostellar objects both wide-angle outflows and collimated jets are seen, while in others only one is observed. Spitzer provides unprecedented sensitivity in the infrared to study both the jet and outflow features. Here, we use HiRes deconvolution to improve the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in the Infrared Array Camera (IRAC) bands) and removing the contaminating sidelobes from bright sources. We apply this approach to study the jet and outflow features in Cep E, a young, energetic Class 0 protostar. In the reprocessed images we detect (1) wide-angle outflow seen in scattered light, (2) morphological details on at least 29 jet-driven bow shocks and jet heads or knots, (3) three compact features in 24 {mu}m continuum image as atomic/ionic line emission coincident with the jet heads, and (4) a flattened {approx}35'' size protostellar envelope seen against the interstellar background polycyclic aromatic hydrocarbon emission as an absorption band across the protostar at 8 {mu}m. By separating the protostellar photospheric scattered emission in the wide-angle cavity from the jet emission we show that we can study directly the scattered light spectrum. We present the H{sub 2} emission line spectra, as observed in all IRAC bands, for 29 knots in the jets and bow shocks and use them in the IRAC color-color space as a diagnostic of the thermal gas in the shocks driven by the jets. The data presented here will enable detailed modeling of the individual shocks retracing the history of the episodic jet activity and the associated accretion on to the protostar. The Spitzer data analysis presented here shows the richness of its

  12. Feedback During Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei; Tan, Jonathan C.; Zhang, Yichen

    2016-01-01

    We present models of photoionization of massive protostellar cores, and show the impact of this ionization feedback on the efficiency of star formation and its observational features. Based on the Core Accretion scenario, we construct the collapse model of rotating massive-protostellar cloud cores together with a protostellar evolutional calculation, including feedback effects from a MHD disk wind, photoionization and radiation pressure. First, the MHD wind creates a bipolar outflow whose opening angle increases over the timescale of mass accretion. The ionizing luminosity dramatically increases after the protostar reaches ~ 5 Msun due to Kelvin-Helmholz contraction, and the MHD wind is photoionized when the protostellar mass reaches ~ 10 - 20 Msun. As the ionizing and bolometric luminosities increase, the outflow opening angle becomes wider due to radiation pressure feedback. By this combination of feedback processes, the envelope is eroded and the mass infall rate is significantly reduced to that arriving only from the disk-shielded equatorial region. At a protostellar mass of ~ 50 - 100 Msun, depending on the initial core properties, the mass accretion is halted by disk photoevaporation. In this way, feedback significantly reduces the star formation efficiency when forming massive stars from massive cloud cores, which could produce a cutoff at the high-mass end of the initial mass function. Along this evolutionary calculation, we also compute the detailed structure of the photoionized regions using a ray-tracing radiative transfer code and evaluate their emission signatures. Their free-free continuum and recombination line emissions are consistent with the variety of observed radio sources associated with massive protostars, i.e., jets and ultra/hyper-compact HII regions. The comparison between our models and such observations enables us to better define the evolutionary sequence of massive star formation.

  13. Evolution of Mass Outflow in Protostars

    NASA Astrophysics Data System (ADS)

    Watson, Dan M.; Calvet, Nuria P.; Fischer, William J.; Forrest, W. J.; Manoj, P.; Megeath, S. Thomas; Melnick, Gary J.; Najita, Joan; Neufeld, David A.; Sheehan, Patrick D.; Stutz, Amelia M.; Tobin, John J.

    2016-09-01

    We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si ii], [Fe ii], and [S i] line emission, and 11 of these in far-infrared [O i] emission. We use the results to derive their mass outflow rates, {\\dot{M}}w. Thereby we observe a strong correlation of {\\dot{M}}w with bolometric luminosity, and with the inferred mass accretion rates of the central objects, {\\dot{M}}a, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass flow rates, the different classes of young stellar objects lie in the sequence Class 0–Class I/flat-spectrum–Class II, indicating that the trend is an evolutionary sequence in which {\\dot{M}}a and {\\dot{M}}w decrease together with increasing age, while maintaining rough proportionality. The survey results include two that are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b={\\dot{M}}w/{\\dot{M}}a, and limits on the distribution of outflow speeds. Neither rules out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (31%) of the sample have a branching ratio sufficiently small that only disk winds, launched on scales as large as several au, have been demonstrated to account for them.

  14. Deuterated water in low-mass protostars

    NASA Astrophysics Data System (ADS)

    Coutens, Audrey; Vastel, Charlotte; Chess Collaboration; Wish Collaboration; Hexos Collaboration

    2013-07-01

    In addition to its dominant role in the cooling of warm gas and in the oxygen chemistry, water is a primordial species in the emergence of life, and comets may have brought a large fraction to Earth to form the oceans. Observations of deuterated water are an important complement for studies of H2O to understand how water forms and how it has evolved from cold prestellar cores to protoplanetary disks and consequently oceans for the Earth's specific, but probably not isolated, case. Several deuterated water transitions were observed with the Herschel/HIFI (Heterodyne Instrument for Far Infrared) instrument towards three low-mass protostars: IRAS 16293-2422, NGC1333 IRAS4A and NGC1333 IRAS4B. In the first source, both HDO and D2O lines are detected, thanks to the unbiased spectral survey carried out by the CHESS key program (Vastel et al. 2010, Coutens et al. 2013a). In the framework of a collaboration between the CHESS, WISH and HEXOS programs, two HDO key lines were observed towards the two other protostars. In addition, complementary observations were carried out with several ground-based single-dish telescopes (IRAM-30m, JCMT, APEX). We used the non-LTE RATRAN spherical model (Hogerheijde & van der Tak 2000) to determine the HDO abundance distribution throughout the protostellar envelope. An abundance jump at 100 K is required to reproduce the line profiles. Indeed, water molecules trapped in the icy grain mantles thermally desorb in the hot corinos, the inner warm regions of the protostellar envelopes. We also obtain that it is necessary to add a water-rich external absorbing layer to reproduce the absorbing components of the HDO and D2O fundamental transitions in all sources (Coutens et al. 2012, 2013a,b). The results derived for the different sources will be then presented and discussed.

  15. A Rotating Circumstellar Disk Around a High-Mass Protostar in IRAS 18162-2048

    NASA Astrophysics Data System (ADS)

    Fernández-López, M.; Girart, J. M.; Curiel, S.; Patel, N.; Gómez, Y.; Ho, P. T. P.

    2011-10-01

    Searching for molecular tracers of disks in massive star-formation regions is a complex task. There are molecules that show emission from the envelope and the disk simultaneously. Other molecules show optically thick emission, thus complicating the kinematic study of disks. On the other hand, S-bearing species (such as H2S, SO, SO2, CS, and OCS) could be intimately linked with the evaporation process of the disk surface becoming good tracers of the dynamics of the innermost parts of the high-mass protostars. Recently, several papers have been published on the detection of S-bearing species in disks and other warm gas structures of massive star-forming regions. In particular, SO2 transitions, ubiquitous within the (sub)millimeter range, show a very compact nature, suggesting their close association with circumstellar structures. We have carried out sub-arcsecond SMA observations towards the central region of the HH 80-81 system. The mm continuum emission shows two main sources, one of them located at the center of the extremely large (5.3 pc long) bipolar radio continuum jet observed in this region. The dust emission appears compact and coincides with a radio continuum source. Between the spectral lines detected (H2CO and SO), the SO2 line transitions show compact emission toward this source. These molecular lines clearly show a velocity gradient perpendicular to the radio jet axis. Both, the dust continuum and the molecular line emission suggest the existence of a rotating circumstellar disk around a massive protostar.

  16. Coexisting conical bipolar and equatorial outflows from a high-mass protostar.

    PubMed

    Greenhill, L J; Gwinn, C R; Schwartz, C; Moran, J M; Diamond, P J

    1998-12-17

    The BN/KL region in the Orion molecular cloud is an archetype for the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars but, like most star-forming regions, is difficult to study in detail because of the obscuring effects of dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars accrete gas from rotating equatorial disks and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I. We show that within 60 AU of the source (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU. PMID:9872312

  17. On the Role of the ΩΓ Limit in the Formation of Population III Massive Stars

    NASA Astrophysics Data System (ADS)

    Lee, Hunchul; Yoon, Sung-Chul

    2016-04-01

    We explore the role of the modified Eddington limit due to rapid rotation (the so-called ΩΓ limit) in the formation of Population III stars. We performed one-dimensional stellar evolution simulations of zero-metallicity protostars accreting mass at a very high rate (\\dot{M}˜ {10}-3\\quad {M}⊙ \\quad {{yr}}-1) and dealt with stellar rotation as a separate post-process. The protostar would reach the Keplerian rotation very soon after the onset of mass accretion, but mass accretion would continue as stellar angular momentum is transferred outward to the accretion disk by viscous stress. The envelope of the protostar expands rapidly when the stellar mass reaches ~5-7 M⊙ and the Eddington factor increases sharply. This makes the protostar rotate critically at a rate that is significantly below the Keplerian value (i.e., the ΩΓ limit). The resultant positive gradient of the angular velocity in the boundary layer between the protostar and the Keplerian disk prohibits angular momentum transport from the star to the disk, and consequently further rapid mass accretion. This would prevent the protostar from growing significantly beyond 20-40 M⊙. Another important consequence of the ΩΓ limit is that the protostar can remain fairly compact (R ≲ 50 R⊙) and avoid a fluffy structure (R ≳ 500 R⊙) that is usually found with a very high rate of mass accretion. This effect would make the protostar less prone to binary interactions during the protostar phase. Although our analysis is based on Population III protostar models, this role of the ΩΓ limit would be universal in the formation process of massive stars, regardless of metallicity.

  18. Star Formation near Berkeley 59: Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Rosvick, J. M.; Majaess, D.

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (~2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, 12CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v LSR = -15 to -17 km s-1, which agrees with the velocity adopted for Berkeley 59 (-15.7 km s-1), while spectral energy distribution models yield an average interstellar extinction AV and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  19. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied. PMID:23283175

  20. Carbon Chains and Methanol toward Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Graninger, Dawn M.; Wilkins, Olivia H.; Öberg, Karin I.

    2016-03-01

    Large interstellar organic molecules are potential precursors of prebiotic molecules. Their formation pathways and chemical relationships with one another and simpler molecules are therefore of great interest. In this paper we address the relationships between two classes of large organic molecules, carbon chains and saturated complex organic molecules at the early stages of star formation through observations of C4H and CH3OH. We surveyed these molecules with the IRAM 30 m telescope toward 16 deeply embedded low-mass protostars selected from the Spitzer c2d ice survey. We find that CH3OH and C4H are positively correlated, indicating that these two classes of molecules can coexist during the embedded protostellar stage. The C4H/CH3OH gas abundance ratio tentatively correlates with the CH4/CH3OH ice abundance ratio in the same lines of sight. This relationship supports a scenario where carbon chain formation in protostellar envelopes begins with CH4 ice desorption. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  1. Protostars, multiplicity, and disk evolution in the Corona Australis region: a Herschel Gould Belt Study

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, A.; Henning, T.; Linz, H.; André, P.; Stutz, A.; Eiroa, C.; White, G. J.

    2013-03-01

    Context. The CrA region and the Coronet cluster form a nearby (138 pc), young (1-2 Myr) star-forming region that hosts a moderate population of Class I, II, and III objects. Aims: We study the structure of the cluster and the properties of the protostars and protoplanetary disks in the region. Methods: We present Herschel PACS photometry at 100 and 160 μm, obtained as part of the Herschel Gould Belt Survey. The Herschel maps reveal the cluster members within the cloud with high sensitivity and high dynamic range. Results: Many of the cluster members are detected, including some embedded, very low-mass objects, several protostars (some of them extended), and substantial emission from the surrounding molecular cloud. Herschel also reveals some striking structures, such as bright filaments around the IRS 5 protostar complex and a bubble-shaped rim associated with the Class I object IRS 2. The disks around the Class II objects display a wide range of mid- and far-IR excesses consistent with different disk structures. We have modeled the disks with the RADMC radiative transfer code to quantify their properties. Some of them are consistent with flared, massive, relatively primordial disks (S CrA, T CrA). Others display significant evidence for inside-out evolution, consistent with the presence of inner holes/gaps (G-85, G-87). Finally, we found disks with a dramatic small dust depletion (G-1, HBC 677) that, in some cases, could be related to truncation or to the presence of large gaps in a flared disk (CrA-159). The derived masses for the disks around the low-mass stars are found to be below the typical values in Taurus, in agreement with previous Spitzer observations. Conclusions: The Coronet cluster presents itself as an interesting compact region that contains both young protostars and very evolved disks. The Herschel data provide sufficient spatial resolution to detect small-scale details, such as filamentary structures or spiral arms associated with multiple star

  2. Composition of the Silicates around Evolved Stars and Protostars

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Dartois, E.; Wiesemeyer, H.; Jones, A.; D'Hendecourt, L.; Jourdain de Muizon, M.; Heras, A. M.

    2000-11-01

    We present a study of the composition of the silicates around five evolved stars and three high-mass protostars. Around evolved stars, the oxygen-rich dust is composed of amorphous olivine, crystalline silicates (enstatite, forsterite, diopside) and some oxides (FeO, Al2O3). Using a radiative transfer code we have modelled the SED of two OH/IR stars. We estimate that the amount of crystalline silicates in these objects is of the order of 20%. Around protostars, the dust is composed of porous pyroxene and/or aluminosilicate grains containing iron oxide. We calculate that at most 1-2% of the dust mass is crystalline. The newly formed dust around evolved stars has a different structure and composition from the old dust found around protostars. This implies that some mechanism, which remains to be found, occurs during the grain lifetime and alters the chemical composition and structure of the grains.

  3. The Infrared Signature of Accretion Luminosity in Protostars

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Villarama, Ethan G.; Flores-Rivera, Lizxandra

    2016-06-01

    Mass accretion from the disk onto the star is an important mechanism by which a star increases in mass during the formation phase. If the mass accretion rate is time variable then the brightness of the star should also change with time. We use the HOCHUNK3D radiative transfer code to investigate how disk accretion rate (Mdot) affects the protostar spectral energy distribution (SED). The biggest changes in brightness occur at infrared wavelengths ranging from approximately 5 to 100 microns. The results show that the protostar luminosity doubles from 1 to 2 L⊙ when the disk accretion rate is increased to Mdot=3.0e-7 M⊙/year. We conclude that the models are a useful tool to study mass accretion rates and time variability in protostars.

  4. Rotating Bullets from A Variable Protostar

    NASA Astrophysics Data System (ADS)

    Chen, Xuepeng; Arce, Héctor G.; Zhang, Qizhou; Launhardt, Ralf; Henning, Thomas

    2016-06-01

    We present Submillimeter Array (SMA) CO (2–1) observations toward the protostellar jet driven by SVS 13 A, a variable protostar in the NGC 1333 star-forming region. The SMA CO (2–1) images show an extremely high-velocity jet composed of a series of molecular “bullets.” Based on the SMA CO observations, we discover clear and large systematic velocity gradients, perpendicular to the jet axis, in the blueshifted and redshifted bullets. After discussing several alternative interpretations, such as twin-jets, jet precession, warped disk, and internal helical shock, we suggest that the systematic velocity gradients observed in the bullets result from the rotation of the SVS 13 A jet. From the SMA CO images, the measured rotation velocities are 11.7–13.7 km s‑1 for the blueshifted bullet and 4.7 ± 0.5 km s‑1 for the redshifted bullet. The estimated specific angular momenta of the two bullets are comparable to those of dense cores, about 10 times larger than those of protostellar envelopes, and about 20 times larger than those of circumstellar disks. If the velocity gradients are due to the rotation of the SVS 13 A jet, the significant amount of specific angular momenta of the bullets indicates that the rotation of jets/outflows is a key mechanism to resolve the so-called “angular momentum problem” in the field of star formation. The kinematics of the bullets suggests that the jet launching footprint on the disk has a radius of ∼7.2–7.7 au, which appears to support the extended disk-wind model. We note that further observations are needed to comprehensively understand the kinematics of the SVS 13 A jet, in order to confirm the rotation nature of the bullets.

  5. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    SciTech Connect

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C. E-mail: npatel@cfa.harvard.edu E-mail: baezra@cab.inta-csic.es

    2011-05-10

    We present the first detection of the H40{alpha}, H34{alpha}, and H31{alpha} radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of {approx}1100 km s{sup -1}. From the line widths, we estimate a terminal velocity for the ionized gas in the jet of {>=}500 km s{sup -1}, consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40{alpha}, H34{alpha}, and H31{alpha} lines are 43, 229, and 280 km s{sup -1}, clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r {sup -2.11}, and turbulent and expanding wind velocities of 60 and 500 km s{sup -1}.

  6. Centralized pan-Middle East Survey on the undertreatment of hypercholesterolemia: results from the CEPHEUS study in Arabian Gulf countries.

    PubMed

    Arafah, Mohamed; Al-Hinai, Ali T; Al Mahmeed, Wael; Al-Rasadi, Khalid; Al Tamimi, Omer; Al Herz, Shorook; Al Anazi, Faisal; Al Nemer, Khalid; Metwally, Othman; Alkhadra, Akram; Fakhry, Mohammed; Elghetany, Hossam; Medani, Abdel Razak; Yusufali, Afzal Hussein; Al Jassim, Obaid; Al Hallaq, Omar; Baslaib, Fahad Omar Ahmed S; Alawadhi, Mahmoud; Amin, Haitham; Al-Hashmi, Khamis; Shehab, Abdullah

    2014-11-01

    The Centralized pan-Middle East Survey on the undertreatment of hypercholesterolemia (CEPHEUS) survey evaluated the attainment of low-density lipoprotein cholesterol (LDL-C) goals among patients on lipid-lowering drugs (LLDs) according to the updated National Cholesterol Education Program (NCEP)-Adult Treatment Panel (ATP-III) guideline. The survey was conducted in 6 Arabian Gulf countries. Patients aged ≥18 years on LLDs for at least ≥3 months (stable medication for ≥6 weeks) were recruited. Fasting blood samples were collected at a single visit. In this survey, 5276 (58.2% male) patients were included in the final analysis. The LDL-C goal was attained in 91.1% of low-risk, 52.7% of high-risk, and 32.0% in very-high-risk categories. Goal attainment was directly related to female gender, age<40 years, history of diabetes, and family history of cardiovascular disease. The results of this survey highlight the suboptimal management of hypercholesterolemia across Arabian Gulf countries. PMID:24301426

  7. The origin of massive clusters: from hyper-massive clouds to mini-bursts of star formation

    NASA Astrophysics Data System (ADS)

    Motte, Frederique; Louvet, Fabien; Nguyen Luong, Quang

    2015-08-01

    Herschel revealed high-density cloud filaments of several pc^3, which are forming clusters of OB-type stars. Counting Herschel protostars gives a direct measure of the mass of stars forming in a period of ~10^5 yrs, the ``instantaneous'' star formation activity. Given their activity, these so-called mini-starburst cloud ridges could be seen as "miniature and instant models" of starburst galaxies. Their characteristics could shed light on the origin of massive clusters.

  8. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  9. CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION

    SciTech Connect

    Sadavoy, S. I.; Di Francesco, J.; André, Ph.; Maury, A.; Men'shchikov, A.; Motte, F.; Hennemann, M.; Könyves, V.; Louvet, F.; Roy, A.; Bernard, J.-P.; Nguyên-Lu'o'ng, Q.; Schneider, N.; Bontemps, S.; Arzoumanian, D.; Hill, T.; Peretto, N.; and others

    2014-06-01

    We use PACS and SPIRE continuum data at 160 μm, 250 μm, 350 μm, and 500 μm from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC 348, L1448, L1455, and NGC 1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 μm as well as archival Spitzer catalogs and SCUBA 850 μm photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.

  10. FORMATION OF GIANT PLANETS BY DISK INSTABILITY ON WIDE ORBITS AROUND PROTOSTARS WITH VARIED MASSES

    SciTech Connect

    Boss, Alan P.

    2011-04-10

    Doppler surveys have shown that more massive stars have significantly higher frequencies of giant planets inside {approx}3 AU than lower mass stars, consistent with giant planet formation by core accretion. Direct imaging searches have begun to discover significant numbers of giant planet candidates around stars with masses of {approx}1 M{sub sun} to {approx}2 M{sub sun} at orbital distances of {approx}20 AU to {approx}120 AU. Given the inability of core accretion to form giant planets at such large distances, gravitational instabilities of the gas disk leading to clump formation have been suggested as the more likely formation mechanism. Here, we present five new models of the evolution of disks with inner radii of 20 AU and outer radii of 60 AU, for central protostars with masses of 0.1, 0.5, 1.0, 1.5, and 2.0 M{sub sun}, in order to assess the likelihood of planet formation on wide orbits around stars with varied masses. The disk masses range from 0.028 M{sub sun} to 0.21 M{sub sun}, with initial Toomre Q stability values ranging from 1.1 in the inner disks to {approx}1.6 in the outer disks. These five models show that disk instability is capable of forming clumps on timescales of {approx}10{sup 3} yr that, if they survive for longer times, could form giant planets initially on orbits with semimajor axes of {approx}30 AU to {approx}70 AU and eccentricities of {approx}0 to {approx}0.35, with initial masses of {approx}1 M{sub Jup} to {approx}5 M{sub Jup}, around solar-type stars, with more protoplanets forming as the mass of the protostar (and protoplanetary disk) is increased. In particular, disk instability appears to be a likely formation mechanism for the HR 8799 gas giant planetary system.

  11. The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.

    2015-09-01

    Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas

  12. Witnessing the birth of a supermassive protostar

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Hartwig, T.

    2016-05-01

    The detection of z > 6 quasars reveals the existence of supermassive black holes of a few 109 M⊙. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of 105-106 M⊙. An isothermal direct collapse mandates that haloes should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial haloes employing a detailed chemical model which includes H- cooling as well as realistic opacities for both the bound-free H- emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of ˜10-3 g cm-3 and to scales of about 10-4 au. Our results show that the gas cools down to ˜5000 K in the presence of H- cooling, and induces fragmentation at scales of about 8000 au in one of the two simulated haloes, which may lead to the formation of a binary. In addition, fragmentation also occurs on the au scale in one of the haloes but the clumps are expected to merge on short time-scales. Our results confirm that H- cooling does not prevent the formation of a supermassive star and the trapping of cooling radiation stabilizes the collapse on small scales.

  13. Water in the warm inner regions of Class 0 protostars

    NASA Astrophysics Data System (ADS)

    Coutens, Audrey; Jørgensen, Jes K.; Persson, Magnus V.; van Dishoeck, Ewine; vastel, charlotte; Taquet, Vianney; Bottinelli, Sandrine; Caux, Emmanuel; Harsono, Daniel; Lykke, Julie M.

    2015-08-01

    Water plays a key role in many astrophysical environments (star-forming regions, outflows, prestellar cores, comets, asteroids, …) as well as for the emergence of life as we know it. Its detection in the inner regions of low-mass protostars raises the question whether this is similar to the water that is incorporated into comets and asteroids that may deliver it to Earth-like planets. The water deuterium fractionation is very helpful to understand how it forms and evolves. For example, Cleeves et al. (2014) showed that a contribution of water formed in the primordial cloud is necessary to explain the HDO/H2O ratio of the terrestrial oceans. Observations of the deuterated and non-deuterated forms of water at an early stage of star formation may therefore potentially be an important tool to describe the origin of water on Earth.We here present recent interferometric measurements of the distribution and deuteration of water on Solar System scales. During the last few years, a few HDO and H218O lines were observed in the inner regions of Class 0 protostars with interferometers (Jørgensen & van Dishoeck 2010, Codella+2010, Persson+ 2012, 2013, 2014, Taquet+ 2013), which enables estimates of the HDO/H2O ratios. Our recent detection of D2O with the Plateau de Bure interferometer towards the low-mass protostar NGC1333 IRAS2A leads to a surprisingly high D2O/HDO ratio compared with the HDO/H2O ratio (Coutens+ 2014). These results contradict the predictions of current grain surface chemical models and indicate that either an ingredient is missing in our understanding of the surface deuteration process or that both sublimation of grain mantles and water formation at high temperature (T > 230K) take place in the inner regions of protostars. We also present the first results of an ALMA Cycle 2 program (PI: A. Coutens) to target several HDO, H218O and D2O lines at a spatial resolution of ~0.3" (40 AU) toward the nearby protostellar binary IRAS16293-2422. These observations

  14. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    SciTech Connect

    Van Kempen, T. A.; Longmore, S. N.; Johnstone, D.; Pillai, T.; Fuente, A.

    2012-06-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of {approx}200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M{sub Sun }, is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., <0.5 M{sub Sun }. No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  15. VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. VI. THE DISTANCE TO THE YOUNG STELLAR OBJECT HW 9 IN CEPHEUS A

    SciTech Connect

    Dzib, Sergio; Loinard, Laurent; RodrIguez, Luis F.; Mioduszewski, Amy J.; Torres, Rosa M.

    2011-05-20

    Using the Very Long Baseline Array (VLBA), we have observed the radio continuum emission from the young stellar object HW 9 in the Cepheus A star-forming region at 10 epochs between 2007 February and 2009 November. Due to its strong radio variability, the source was detected at only four of the ten epochs. From these observations, the trigonometric parallax of HW 9 was determined to be {pi} = 1.43 {+-} 0.07 mas, in excellent agreement with a recent independent determination by Moscadelli et al. of the trigonometric parallax of a methanol maser associated with the nearby young stellar source HW 2 ({pi} = 1.43 {+-} 0.08 mas). This concordance in results, obtained in one case from continuum and in the other from line observations, confirms the reliability of VLBA trigonometric parallax measurements. By combining the two results, we constrain the distance to Cepheus A to be 700{sup +31}-{sub 28} pc, an uncertainty of 3.5%.

  16. Estimating the Internal Luminosities of Protostars with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Huard, Tracy L.; Terebey, Susan

    2016-01-01

    During the last decade, the Spitzer Space Telescope and Herschel Space Telescope enabled large infrared surveys of nearby molecular clouds forming low mass stars. The 70 micron observations obtained by those facilities provide estimates of the internal luminosities of protostars that are reliable to within a factor of 2, in general. Spitzer observations at shorter wavelengths yield estimates that are much less constrained, reliable only to within an order of magnitude, at best. With the Stratospheric Observatory for Infrared Astronomy (SOFIA) routinely operating science flights, this facility may be used to further study protostellar populations. We demonstrate that mid-infrared images obtained with the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) achieve internal luminosities with reliability comparable to that achieved by 70 micron observations. With its dynamic range and greater angular resolution, FORCAST may be used to characterize protostars that were either saturated or merged with other sources in previous surveys.

  17. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  18. Bipolar Molecular Outflows from High-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Su, Yu-Nung; Zhang, Qizhou; Lim, Jeremy

    2004-03-01

    We report observations of the bipolar molecular outflows associated with the luminous (~2×104 Lsolar) far-IR sources IRAS 21519+5613 and IRAS 22506+5944, as well the dust and molecular gas condensations on which these outflows appear to be centered. The observations were made in 12CO, 13CO, C18O, and continuum at 3 mm with the BIMA array and in 12CO and 13CO with the NRAO 12 m telescope to recover extended emission filtered out by the interferometric array. We find that the outflow associated with each IRAS source shows a clear bipolar morphology in 12CO, with properties (i.e., total mass of order 10-100 Msolar, mass-outflow rate >~10-3 Msolar, dynamical timescale 104-105 yr, and energetics) comparable with those of other massive outflows associated with luminous young stellar objects. Each outflow appears to be centered on a dust and gas condensation with a mass of 200-300 Msolar, likely marking the location of the driving source. The outflow lobes of both sources are fully resolved along their major but not minor axes, and they have collimation factors that may be comparable with young low-mass stars. The mass-velocity diagrams of both outflows change in slope at a velocity of ~10 km s-1, suggesting that the high-velocity component (HVC) may drive the low-velocity component (LVC). Although the HVC of IRAS 21519+5613 shows evidence for deceleration, no such signature is seen in the HVC of IRAS 22506+5944. Neither HVC has a momentum supply rate sufficient to drive their corresponding LVCs, although it is possible that the HVC is more highly excited and hence its thrust underestimated. Like for other molecular outflows the primary driving agent cannot be ionized gas, leaving atomic gas as the other remaining candidate. Neither IRAS 21519+5613 nor IRAS 22506+5944 exhibits detectable free-free emission, which together with the observed properties of their molecular outflows and surrounding condensations make them credible candidates for high-mass protostars. The mass

  19. The Gould Belt 'MISFITS' Survey: The Real Solar Neighborhood Protostars

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda; Evans, Neal J., II

    2015-06-01

    We present an HCO+ J=3\\to 2 survey of Class 0+I and Flat SED young stellar objects (YSOs) found in the Gould Belt clouds by surveys with Spitzer. Our goal is to provide a uniform Stage 0+I source indicator for these embedded protostar candidates. We made single point HCO+ J=3\\to 2 measurements toward the source positions at the CSO and APEX of 546 YSOs (89% of the Class 0+I + Flat SED sample). Using the criteria from van Kempen et al., we classify sources as Stage 0+I or bona fide protostars and find that 84% of detected sources meet the criteria. We recommend a timescale for the evolution of Stage 0+I (embedded protostars) of 0.54 Myr. We find significant correlations of HCO+ integrated intensity with α and Tbol but not with Lbol. The detection fraction increases smoothly as a function of α and Lbol, while decreasing smoothly with Tbol. Using the Stage 0+I sources tightens the relation between protostars and high extinction regions of the cloud; 89% of Stage I sources lie in regions with AV > 8 mag. Class 0+I and Flat SED YSOs that are not detected in HCO+ have, on average, a factor of ∼2 higher Tbol and a factor of ∼5 lower Lbol than YSOs with HCO+ detections. We find less YSO contamination, defined as the number of undetected YSOs divided by the total number surveyed, for sources with Tbol ≲ 600 K and Lbol ≳ 1 L⊙. The contamination percentage is >90% at AV < 4 mag and decreases as AV increases.

  20. COMPLEX MOLECULES TOWARD LOW-MASS PROTOSTARS: THE SERPENS CORE

    SciTech Connect

    Oeberg, Karin I.; Van der Marel, Nienke; Kristensen, Lars E.; Van Dishoeck, Ewine F.

    2011-10-10

    Gas-phase complex organic molecules are commonly detected toward high-mass protostellar hot cores. Detections toward low-mass protostars and outflows are comparatively rare, and a larger sample is the key to investigate how the chemistry responds to its environment. Guided by the prediction that complex organic molecules form in CH{sub 3}OH-rich ices and thermally or non-thermally evaporate with CH{sub 3}OH, we have identified three sight lines in the Serpens core-SMM1, SMM4, and SMM4-W-which are likely to be rich in complex organics. Using the IRAM 30 m telescope, narrow lines (FWHM of 1-2 km s{sup -1}) of CH{sub 3}CHO and CH{sub 3}OCH{sub 3} are detected toward all sources, HCOOCH{sub 3} toward SMM1 and SMM4-W, and C{sub 2}H{sub 5}OH not at all. Beam-averaged abundances of individual complex organics range between 0.6% and 10% with respect to CH{sub 3}OH when the CH{sub 3}OH rotational temperature is applied. The summed complex organic abundances also vary by an order of magnitude, with the richest chemistry toward the most luminous protostar SMM1. The range of abundances compare well with other beam-averaged observations of low-mass sources. Complex organic abundances are of the same order of magnitude toward low-mass protostars and high-mass hot cores, but HCOOCH{sub 3} is relatively more important toward low-mass protostars. This is consistent with a sequential ice photochemistry, dominated by CHO-containing products at low temperatures and early times.

  1. Water D/H Ratio In Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Persson, Magnus V.; Jørgensen, Jes K.; van Dishoeck, Ewine F.; Harsono, Daniel

    2013-07-01

    Water is an important molecule for our life on Earth, but its way from formation on the surfaces of dust grains to planets and the accompanying chemical processing are not well understood. Through evaporation in the warm inner regions of protostars, water brings complex organics and other species previously locked up in the ice into the gas phase. The water deuterium fractionation (HDO/H2O abundance ratio) has traditionally been used to infer the amount of water that was brought to the Earth by comets. Deducing this ratio in the warm gas of deeply-embedded low-mass protostars allows to extend the discussion of the origin of Earth's water to earlier evolutionary stages. This poster present high-angular resolution, ground based interferometric observations of both HDO and H2(18)O water isotopologues toward several Class~0 low-mass protostars. The emission is compact, and stems from the inner few 100 AU in all sources. The derived amount of deuterium fractionation in water, obtained assuming LTE and optically thin emission, is the same within the uncertainties in all sources and shows only small enhancements compared with Earth's oceans and solar system's comets.

  2. MULTIPLE HIGH-VELOCITY SiO MASER FEATURES FROM THE HIGH-MASS PROTOSTAR W51 NORTH

    SciTech Connect

    Cho, Se-Hyung; Kim, Jaeheon; Byun, Do-Young E-mail: jhkim@kasi.re.kr

    2011-02-01

    We present the detection of multiple high-velocity silicon monoxide (SiO v = 1, 2, J = 1-0) maser features in the high-mass protostar W51 North which are distributed over an exceedingly large velocity range from 105 to 230 km s{sup -1}. The SiO v = 1, J = 1-0 maser emission shows 3-5 narrow components which span a velocity range from 154 to 230 km s{sup -1} according to observational epochs. The SiO v = 2, J = 1-0 maser also shows 3-5 narrow components that do not correspond to the SiO v = 1 maser and span a velocity range from 105 to 154 km s{sup -1}. The multiple maser components show significant changes on very short timescales (<1 month) from epoch to epoch. We suggest that the high-velocity SiO masers may be emanated from massive star-forming activity of the W51 North protostar as SiO maser jets and will be a good probe of the earliest evolutionary stages of high-mass star formation via an accretion model. Further high angular resolution observations will be required for confirmation.

  3. EXTREMELY LARGE AND HOT MULTILAYER KEPLERIAN DISK AROUND THE O-TYPE PROTOSTAR W51N: THE PRECURSORS OF THE HCH II REGIONS?

    SciTech Connect

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-12-10

    We present sensitive high angular resolution (0.''57-0.''78) SO, SO{sub 2}, CO, C{sub 2}H{sub 5}OH, HC{sub 3}N, and HCOCH{sub 2}OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.''7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH{sub 2}OH reveals the possible presence of a warm 'companion' located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO{sub 2} is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  4. The simultaneous formation of massive stars and stellar clusters

    NASA Astrophysics Data System (ADS)

    Smith, Rowan J.; Longmore, Steven; Bonnell, Ian

    2009-12-01

    We show that massive stars and stellar clusters are formed simultaneously, the global evolution of the forming cluster is what allows the central stars to become massive. We predict that massive star-forming clumps, such as those observed in Motte et al., contract and grow in mass leading to the formation of massive stars. This occurs as mass is continually channelled from large radii on to the central protostars, which can become massive through accretion. Using smoothed particle hydrodynamic simulations of massive star-forming clumps in a giant molecular cloud, we show that clumps are initially diffuse and filamentary, and become more concentrated as they collapse. Simulated interferometry observations of our data provide an explanation as to why young massive star-forming regions show more substructure than older ones. The most massive stars in our model are found within the most bound cluster. Most of the mass accreted by the massive stars was originally distributed throughout the clump at low densities and was later funnelled to the star due to global infall. Even with radiative feedback no massive pre-stellar cores are formed. The original cores are of intermediate mass and gain their additional mass in the protostellar stage. We also find that cores which form low-mass stars exist within the volume from which the high-mass stars accrete, but are largely unaffected by this process.

  5. Massive Hemoptysis.

    PubMed

    Rali, Parth; Gandhi, Viral; Tariq, Cheema

    2016-01-01

    Hemoptysis, or coughing of blood, oftentimes triggers anxiety and fear for patients. The etiology of hemoptysis will determine the clinical course, which includes watchful waiting or intensive care admission. Any amount of hemoptysis that compromises the patient's respiratory status is considered massive hemoptysis and should be considered a medical emergency. In this article, we review introduction, definition, bronchial circulation anatomy, etiology, and management of massive hemoptysis. PMID:26919675

  6. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}ȯ ≲ M * ≲ 103 {M}ȯ . The formation of very massive (≳250 {M}ȯ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}ȯ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}ȯ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  7. VizieR Online Data Catalog: Fermi sources with massive YSO associations (Munar-Adrover+, 2011)

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Romero, G. E.

    2011-09-01

    Massive protostars have associated bipolar outflows that can produce strong shocks when they interact with the surrounding medium. At these shocks, particles can be accelerated up to relativistic energies. Relativistic electrons and protons can then produce gamma-ray emission, as some theoretical models predict. To identify young galactic objects that may emit gamma rays, we crossed the Fermi First Year Catalog with some catalogs of known massive young stellar objects (MYSOs), early type stars, and OB associations, and we implemented Monte Carlo simulations to find the probability of chance coincidences. We obtained a list of massive MYSOs that are spatially coincident with Fermi sources. (4 data files).

  8. VizieR Online Data Catalog: The Red MSX Source Survey: massive protostars (Lumsden+, 2013)

    NASA Astrophysics Data System (ADS)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-10-01

    The Midcourse Space Experiment (MSX) satellite mission included an astronomy experiment (SPIRIT III) designed to acquire mid-infrared photometry of sources in the Galactic plane (b<5°). MSX had a raw resolution of 18.3", a beam size 50 times smaller than that of IRAS at 12 and 25um. MSX observed six bands between 4 and 21um, of which the four between 8 and 21um are sensitive to astronomical sources. We used v2.3 of the MSX PSC (Egan et al. 2003, Cat. V/114) as our basic input, restricting ourselves to the main Galactic plane catalog, which excludes sources seen in only a single observing pass and those seen in multiple passes but with low significance. We restricted our catalog to 10

  9. An Ordered Bipolar Outflow from a Massive Early-stage Core

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Kong, Shuo; Zhang, Yichen; Fontani, Francesco; Caselli, Paola; Butler, Michael J.

    2016-04-01

    We present ALMA follow-up observations of two massive, early-stage core candidates, C1-N and C1-S, in IRDC G028.37+00.07, that were previously identified by their {{{N}}}2{{{D}}}+(3-2) emission, and show high levels of deuteration of this species. The cores are also dark at far-infrared wavelengths up to ∼ 100 μ {{m}}. We detect 12CO(2-1) from a narrow, highly collimated bipolar outflow that is being launched from near the center of the C1-S core, which is also the location of the peak 1.3 mm dust continuum emission. This protostar, C1-Sa, has associated dense gas traced by {{{C}}}18{{O}}(2-1) and DCN(3-2), from which we estimate that it has a radial velocity that is near the center of the range exhibited by the C1-S massive core. A second outflow-driving source is also detected within the projected boundary of C1-S, but it appears to be at a different radial velocity. After considering the properties of the outflows, we conclude that C1-Sa is a promising candidate for an early-stage massive protostar and as such it shows that these early phases of massive star formation can involve highly ordered outflow, and thus accretion, processes, similar to models developed to explain low-mass protostars.

  10. THE SPITZER ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS

    SciTech Connect

    Oeberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Van den Broek, Saskia; Van Dishoeck, Ewine F.; Bottinelli, Sandrine; Blake, Geoffrey A.; Evans, Neal J.

    2011-10-20

    Ices regulate much of the chemistry during star formation and account for up to 80% of the available oxygen and carbon. In this paper, we use the Spitzer c2d Legacy ice survey, complimented with data sets on ices in cloud cores and high-mass protostars, to determine standard ice abundances and to present a coherent picture of the evolution of ices during low- and high-mass star formation. The median ice composition H{sub 2}O:CO:CO{sub 2}:CH{sub 3}OH:NH{sub 3}:CH{sub 4}:XCN is 100:29:29:3:5:5:0.3 and 100:13:13:4:5:2:0.6 toward low- and high-mass protostars, respectively, and 100:31:38:4:-:-:- in cloud cores. In the low-mass sample, the ice abundances with respect to H{sub 2}O of CH{sub 4}, NH{sub 3}, and the component of CO{sub 2} mixed with H{sub 2}O typically vary by <25%, indicative of co-formation with H{sub 2}O. In contrast, some CO and CO{sub 2} ice components, XCN, and CH{sub 3}OH vary by factors 2-10 between the lower and upper quartile. The XCN band correlates with CO, consistent with its OCN{sup -} identification. The origin(s) of the different levels of ice abundance variations are constrained by comparing ice inventories toward different types of protostars and background stars, through ice mapping, analysis of cloud-to-cloud variations, and ice (anti-)correlations. Based on the analysis, the first ice formation phase is driven by hydrogenation of atoms, which results in an H{sub 2}O-dominated ice. At later prestellar times, CO freezes out and variations in CO freezeout levels and the subsequent CO-based chemistry can explain most of the observed ice abundance variations. The last important ice evolution stage is thermal and UV processing around protostars, resulting in CO desorption, ice segregation, and the formation of complex organic molecules. The distribution of cometary ice abundances is consistent with the idea that most cometary ices have a protostellar origin.

  11. Star Formation: Chemistry as a Probe of Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Visser, R.

    2013-10-01

    The embedded phase of star formation is the crucial phase where most of the stellar mass is assembled. Velocity-resolved spectra reveal an infalling envelope, bipolar outflows, and perhaps an infant circumstellar disk - all locked together in a cosmic dance of gravitational collapse and magnetic winds. Densities and temperatures change by orders of magnitude as the protostar evolves, driving a chemistry as exotic as it is fascinating. I will review two examples of how to exploit chemistry and molecular spectroscopy to study the physics of low-mass star formation: energetic feedback and episodic accretion.

  12. High-velocity Interstellar Bullets in IRAS 05506+2414: A Very Young Protostar

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Claussen, Mark; Sanchez Contreras, Carmen; Morris, Mark; Sarkar, Geetanjali

    2008-01-01

    We have made a serendipitous discovery of an enigmatic outflow source, IRAS 05506+2414 (hereafter IRAS 05506), as part of a multiwavelength survey of pre-planetary nebulae (PPNs). The HST optical and near-infrared images show a bright compact central source with a jet-like extension, and a fan-like spray of high-velocity (with radial velocities up to 350 km/s) elongated knots which appear to emanate from it. These structures are possibly analogous to the near-IR bullets'' seen in the Orion Nebula. Interferometric observations at 2.6 mm show the presence of a continuum source and a high-velocity CO outflow, which is aligned with the optical jet structure. IRAS 05506 is most likely not a PPN. We find extended NH3 (1,1) emission toward IRAS 05506; these data, together with the combined presence of far-IR emission, H2O and OH masers, and CO and CS J=2-1 emission, strongly argue for a dense, dusty star-forming core associated with IRAS 05506. IRAS 05506 is probably an intermediate-mass or massive protostar, and the very short timescale (200 yr) of its outflows indicates that it is very young. If IRAS 05506 is a massive star, then the lack of radio continuum and the late G to early K spectral type we find from our optical spectra imply that in this object we are witnessing the earliest stages of its life, while its temperature is still too low to provide sufficient UV flux for ionization.

  13. A possible OB protostar associated with the molecular outflow in G34.4

    NASA Astrophysics Data System (ADS)

    Bronfman, L.; May, J.; Nuernberger, D.; Shepherd, D.

    1999-10-01

    The most conspicuous massive molecular outflow candidate identified in our CS(2-1) survey of UC HII regions (Bronfman et al 1996) is G34.4 (IRAS 18507+0121) in the I Galactic quadrant. At a distance of 3.8 kpc, it is near (about 11') the very bright HII region G34.3 (Carral & Welch 1992), embedded in the same GMC with a VLSR of 57 km/s. The CS velocity profile obtained with SEST shows very broad wings, about 25 km/s wide at the 0.1 K level, indicating strong outflow activity. Near infrared images of the field, 90'' in size (0.35'' per pixel), obtained with the du Pont 100'' Telescope at Las Campanas, show a remarkably reddenned source visible only in the K' filter, elongated in shape, about 15'' in extent. We have recently observed the G34.4 region, using the OVRO array, in the 3 mm continuum band and in the H13CO+ line, at a resolution of 5''. Most of the H13CO+ flux (33.64 Jy) comes from two strong cores; while one of these cores is closely associated with the ! NIR source, the other one is associated with a single, unresolved continuum source that has a total flux of 56.8 mJy. The mass of gas and dust in this second, possibly "star-less" core is estimated from the millimeter continuum to be approximately 355 MSun, consistent with the presence of a massive, embedded OB protostar. Bronfman, L., May, J., & Nyman, L. 1996, A&AS 115, 81 Carral & Welch 1992, ApJ 385, 244

  14. The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). II. Multiplicity of Protostars in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Looney, Leslie W.; Li, Zhi-Yun; Chandler, Claire J.; Dunham, Michael M.; Segura-Cox, Dominique; Sadavoy, Sarah I.; Melis, Carl; Harris, Robert J.; Kratter, Kaitlin; Perez, Laura

    2016-02-01

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L⊙ and ˜33 L⊙, with a median of 0.7 L⊙. This multiplicity study is based on the Ka-band data, having a best resolution of ˜0.″065 (15 au) and separations out to ˜43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ˜75 au and another peak at ˜3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50-400 au) structures and may be candidates for ongoing disk fragmentation.

  15. HOPS 383: AN OUTBURSTING CLASS 0 PROTOSTAR IN ORION

    SciTech Connect

    Safron, Emily J.; Megeath, S. Thomas; Booker, Joseph; Fischer, William J.; Furlan, Elise; Rebull, Luisa M.; Stutz, Amelia M.; Stanke, Thomas; Billot, Nicolas; Tobin, John J.; Ali, Babar; Allen, Lori E.; Watson, Dan M.; Wilson, T. L.

    2015-02-10

    We report the dramatic mid-infrared brightening between 2004 and 2006 of Herschel Orion Protostar Survey (HOPS) 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 μm with a brightness increase also apparent at 4.5 μm. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K{sub s} imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L{sub ⊙}. Post-outburst time-series mid- and far-infrared photometry show no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a 6 year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.

  16. Molecular Anions in Protostars, Prestellar Cores and Dark Clouds

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin; Charnley, Steven; Buckle, Jane; Wash, Catherine; Millar, Tom

    2011-01-01

    From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H have been detected in six new sources. Using HC3N = 10(exp -9) emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds Ll172A, TMC-1C and L1495B. Derived [C6H(-)]/[C6H] anion-to-neutral ratios are approximately 1-10. The greatest C6H(-) column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.

  17. Radio variability survey of very low luminosity protostars

    SciTech Connect

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  18. THE BURST MODE OF ACCRETION IN PRIMORDIAL PROTOSTARS

    SciTech Connect

    Vorobyov, Eduard I.; DeSouza, Alexander L.; Basu, Shantanu E-mail: alexander.desouza@gmail.com

    2013-05-10

    We study the formation and long-term evolution of primordial protostellar disks harbored by first stars using numerical hydrodynamics simulations in the thin-disk limit. The initial conditions are specified by pre-stellar cores with distinct mass, angular momentum, and temperature. This allows us to probe several tens of thousand years of the disk's initial evolution, during which we observe multiple episodes of fragmentation leading to the formation of gravitationally bound gaseous clumps within spiral arms. These fragments are torqued inward due to gravitational interaction with the spiral arms on timescales of 10{sup 3}-10{sup 4} yr and accreted onto the growing protostar, giving rise to accretion and luminosity bursts. The burst phenomenon is fueled by continuing accretion of material falling onto the disk from the collapsing parent core, which replenishes the mass lost by the disk due to accretion, and triggers repetitive episodes of disk fragmentation. We show that the burst phenomenon is expected to occur for a wide spectrum of initial conditions in primordial pre-stellar cores and speculate on how the intense luminosities ({approx}10{sup 7} L{sub Sun }) produced by this mechanism may have important consequences for the disk evolution and subsequent growth of the protostar.

  19. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  20. Massive Fibroid

    PubMed Central

    Weekes, Leroy R.

    1977-01-01

    This ten-year study of the massive fibroid at the Queen of Angels Hospital will reveal an average of 66 cases per year which could be classified as large and massive. Only about ten cases per year qualify as massive (four gestational months or larger). There were none considered giant size (25 lbs or more). The literature is replete with these, one of which (weighing 100.2 lbs) will be reported in detail. The mortality rate continues to be considerable in these (14.8 to 16.7 percent). In the smaller tumors, mortality is rare and morbidity is minimal. Bleeding, pain, and pressure symptoms, due to impingement on neighboring organs, are the principal symptoms. Sarcomatous change, fortunately, still remains quite rare. Treatment usually involves a pre-operative dilatation and curettage when bleeding is a problem, followed by total abdominal hysterectomy and bilateral salpingo-oophorectomy where indicated. Appendectomy is usually incidental. Anesthesia is usually spinal, if not otherwise contraindicated. Ultrasound is a new and refined diagnostic tool. PMID:833892

  1. Massive Bleeding and Massive Transfusion

    PubMed Central

    Meißner, Andreas; Schlenke, Peter

    2012-01-01

    Massive bleeding in trauma patients is a serious challenge for all clinicians, and an interdisciplinary diagnostic and therapeutic approach is warranted within a limited time frame. Massive transfusion usually is defined as the transfusion of more than 10 units of packed red blood cells (RBCs) within 24 h or a corresponding blood loss of more than 1- to 1.5-fold of the body's entire blood volume. Especially male trauma patients experience this life-threatening condition within their productive years of life. An important parameter for clinical outcome is to succeed in stopping the bleeding preferentially within the first 12 h of hospital admission. Additional coagulopathy in the initial phase is induced by trauma itself and aggravated by consumption and dilution of clotting factors. Although different aspects have to be taken into consideration when viewing at bleedings induced by trauma compared to those caused by major surgery, the basic strategy is similar. Here, we will focus on trauma-induced massive hemorrhage. Currently there are no definite, worldwide accepted algorithms for blood transfusion and strategies for optimal coagulation management. There is increasing evidence that a higher ratio of plasma and RBCs (e.g. 1:1) endorsed by platelet transfusion might result in a superior survival of patients at risk for trauma-induced coagulopathy. Several strategies have been evolved in the military environment, although not all strategies should be transferred unproven to civilian practice, e.g. the transfusion of whole blood. Several agents have been proposed to support the restoration of coagulation. Some have been used for years without any doubt on their benefit-to-risk profile, whereas great enthusiasm of other products has been discouraged by inefficacy in terms of blood transfusion requirements and mortality or significant severe side effects. This review surveys current literature on fluid resuscitation, blood transfusion, and hemostatic agents currently

  2. DETECTION OF A MAGNETIZED DISK AROUND A VERY YOUNG PROTOSTAR

    SciTech Connect

    Rao, Ramprasad; Girart, Josep M.; Lai, Shih-Ping; Marrone, Daniel P. E-mail: girart@ice.cat

    2014-01-01

    We present subarcsecond resolution polarimetric observations of the 878 μm thermal dust continuum emission obtained with the Submillimeter Array toward the IRAS 16293–2422 protostellar binary system. We report the detection of linearly polarized dust emission arising from the circumstellar disk associated with the IRAS 16293–2422 B protostar. The fractional polarization of ≅ 1.4% is only slightly lower than that expected from theoretical calculations in such disks. The magnetic field structure on the plane of the sky derived from the dust polarization suggests a complex magnetic field geometry in the disk, possibly associated with a rotating disk that is wrapping the field lines as expected from the simulations. The polarization around IRAS 16293–2422 A at subarcsecond angular resolution is only marginally detected.

  3. Probing the methanol and CO snow lines in young protostars

    NASA Astrophysics Data System (ADS)

    Anderl, S.; Maret, S.

    2016-05-01

    "Snow lines", marking regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. As part of the CALYPSO Large Program, we have obtained observations of C18O, N2H+ and CH3OH towards the nearest low-luminosity Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. We observe an anti-correlation of C18O and N2H+ in four of these sources, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This reveals the CO snow line in these protostellar envelopes with unprecedented resolution. In addition, we observe compact methanol emission towards three of the sources. We have modeled the emission using a chemical model coupled with a radiative transfer module, using the temperature and density profiles self-consistently determined by Kristensen et al. ([4]). We find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out on H2O surfaces or in mixed ices. Our observations can thereby yield clues on the widely unknown composition of interstellar ices, being the initial seeds of complex organic chemistry.

  4. Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2012-09-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with \\dot{M}_*\\sim 0.1{--}1 \\,M_\\odot \\,yr^{-1} during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper, we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 103 M ⊙. To this end, we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 10-2 M ⊙ yr-1, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates, the star always has a radius exceeding 100 R ⊙, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~100 M ⊙ follows the same track with R *vpropM 1/2 * in all cases with accretion rates >~ 10-2 M ⊙ yr-1 at a stellar mass of 103 M ⊙, the radius is ~= 7000 R ⊙ (sime 30 AU). With higher accretion rates, the onset of hydrogen burning is shifted toward higher stellar masses. In particular, for accretion rates exceeding \\dot{M}_*\\gtrsim 0.1 \\,M_\\odot \\,yr^{-1}, there is no significant hydrogen burning even after 103 M ⊙ have accreted onto the protostar. Such "supergiant" protostars have effective temperatures as low as T eff ~= 5000 K throughout their evolution and because they hardly emit ionizing photons, they do not create an H II region or significantly heat their immediate surroundings. Thus, radiative feedback is unable to hinder the growth of rapidly accreting stars to masses in excess of 103 M ⊙ as long as material is accreted at rates \\dot{M}_*\\gtrsim 10^{-2} \\,M_\\odot \\,yr^{-1}.

  5. Water and complex organic molecules in the warm inner regions of solar-type protostars

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Lykke, J. M.; Taquet, V.; van Dishoeck, E. F.; Vastel, C.; Wampfler, S. F.

    2015-12-01

    Water and complex organic molecules play an important role in the emergence of Life. They have been detected in different types of astrophysical environments (protostars, prestellar cores, outflows, protoplanetary disks, comets, etc). In particular, they show high abundances towards the warm inner regions of protostars, where the icy grain mantles thermally desorb. Can a part of the molecular content observed in these regions be preserved during the star formation process and incorporated into asteroids and comets, that can deliver it to planetary embryos through impacts? By comparison with cometary studies, interferometric observations of solar-type protostars can help to address this important question. We present recent results obtained with the Plateau de Bure interferometer about water deuteration, glycolaldehyde and ethylene glycol towards the low-mass protostar NGC 1333 IRAS2A.

  6. A Herschel and APEX Census of the Reddest Sources in Orion: Searching for the Youngest Protostars

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Tobin, John J.; Stanke, Thomas; Megeath, S. Thomas; Fischer, William J.; Robitaille, Thomas; Henning, Thomas; Ali, Babar; di Francesco, James; Furlan, Elise; Hartmann, Lee; Osorio, Mayra; Wilson, Thomas L.; Allen, Lori; Krause, Oliver; Manoj, P.

    2013-04-01

    We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 μm and 160 μm that are either too faint (m 24 > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 μm band. We find that the 11 reddest protostar candidates with log λF λ70/λF λ24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 μm fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log λF λ70/λF λ24 > 1.65; we name these sources "PACS Bright Red sources," or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T bol < 45 K) and large values of sub-millimeter fluxes (L smm/L bol > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2 M ⊙ and luminosities of 0.7-10 L ⊙. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

  7. Searching for Correlations with the HCO+ 4-3 Molecular Spectra of Protostars

    NASA Astrophysics Data System (ADS)

    Acikgoz, Ogulcan; Basturk, Seda

    The assignment is based on HCO+ J=4-3 spectral line molecular observations of protostars from the James Clerk Maxwell Telescope, which has the 15 m diameter dish and located in Mauna Kea, Hawaii, USA. Data of 20 protostars are taken from the public LOMASS database and analyzed. We looked for correlations between a few observational quantities. We thank Dr Umut Yildiz (NASA/JPL-Caltech) for providing data and his comments and support to our research project.

  8. Mass loss rates from protostars and OI(63 micron) shock luminosities

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.

    1985-01-01

    The high-velocity ejection of material from protostars results in a wind shock which may be observable in OI(63 micron) emission. It is shown that for a wide range of conditions, the OI(63 micron) luminosity is proportional to the mass loss rate from the protostar. Application is made to shock OI(63 micron) emission observed around IRc2 in the BN-KL region of Orion.

  9. A HERSCHEL AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS

    SciTech Connect

    Stutz, Amelia M.; Robitaille, Thomas; Henning, Thomas; Krause, Oliver; Tobin, John J.; Stanke, Thomas; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Furlan, Elise; Hartmann, Lee; Osorio, Mayra; Wilson, Thomas L.; Allen, Lori; Manoj, P.

    2013-04-10

    We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 {mu}m and 160 {mu}m that are either too faint (m{sub 24} > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 {mu}m band. We find that the 11 reddest protostar candidates with log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 {mu}m fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65; we name these sources 'PACS Bright Red sources', or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T{sub bol} < 45 K) and large values of sub-millimeter fluxes (L{sub smm}/L{sub bol} > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2 M{sub Sun} and luminosities of 0.7-10 L{sub Sun }. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

  10. The Herschel Orion Protostar Survey: Spectral Energy Distributions and Fits Using a Grid of Protostellar Models

    NASA Astrophysics Data System (ADS)

    Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.

    2016-05-01

    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2–870 μm and sample the peak of the protostellar envelope emission at ∼100 μm. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  11. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    SciTech Connect

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou; Li Huabai

    2012-02-15

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH{sub 3} (J,K) = (1,1), (2,2), (3,3) lines, as well as H{sub 2}O and class I CH{sub 3}OH masers. Multiple NH{sub 3} transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH{sub 3} (3,3) emission features are also found coincident with the outflows. A weak NH{sub 3} (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  12. Chemical tracers of episodic accretion in low-mass protostars

    NASA Astrophysics Data System (ADS)

    Visser, Ruud; Bergin, Edwin A.; Jørgensen, Jes K.

    2015-05-01

    Aims: Accretion rates in low-mass protostars can be highly variable in time. Each accretion burst is accompanied by a temporary increase in luminosity, heating up the circumstellar envelope and altering the chemical composition of the gas and dust. This paper aims to study such chemical effects and discusses the feasibility of using molecular spectroscopy as a tracer of episodic accretion rates and timescales. Methods: We simulate a strong accretion burst in a diverse sample of 25 spherical envelope models by increasing the luminosity to 100 times the observed value. Using a comprehensive gas-grain network, we follow the chemical evolution during the burst and for up to 105 yr after the system returns to quiescence. The resulting abundance profiles are fed into a line radiative transfer code to simulate rotational spectra of C18O, HCO+, H13CO+, and N2H+ at a series of time steps. We compare these spectra to observations taken from the literature and to previously unpublished data of HCO+ and N2H+ 6-5 from the Herschel Space Observatory. Results: The bursts are strong enough to evaporate CO throughout the envelope, which in turn enhances the abundance of HCO+ and reduces that of N2H+. After the burst, it takes 103-104 yr for CO to refreeze and for HCO+ and N2H+ to return to normal. The H2O snowline expands outwards by a factor of ~10 during the burst; afterwards, it contracts again on a timescale of 102-103 yr. The chemical effects of the burst remain visible in the rotational spectra for as long as 105 yr after the burst has ended, highlighting the importance of considering luminosity variations when analyzing molecular line observations in protostars. The spherical models are currently not accurate enough to derive robust timescales from single-dish observations. As follow-up work, we suggest that the models be calibrated against spatially resolved observations in order to identify the best tracers to be used for statistically significant source samples. Herschel

  13. Far-infrared CO and H2O emission in intermediate-mass protostars

    NASA Astrophysics Data System (ADS)

    Matuszak, M.; Karska, A.; Kristensen, L. E.; Herczeg, G. J.; Tychoniec, Ł.; van Kempen, T. A.; Fuente, A.

    2015-06-01

    Context. Intermediate-mass young stellar objects (YSOs) provide a link to understanding how feedback from shocks and UV radiation scales from low- to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H2O in deeply embedded intermediate-mass YSOs and compare it with similar studies on low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for six YSOs with bolometric luminosities of Lbol ~ 102-103L⊙. The maps cover spatial scales of ~104 AU in several CO and H2O lines located in the ~55-210 μm range. Results: Rotational diagrams of CO show two temperature components at Trot ~ 320 K and Trot ~ 700-800 K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H2O show a single component at Trot ~ 130 K, as seen in low-mass protostars, and about 100 K lower than in high-mass protostars. Since the uncertainties in Trot are on the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central 103 AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at 3 × 103 AU scales, suggesting similar shock conditions in all those sources. Appendix A is available in electronic form at http://www.aanda.org

  14. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    SciTech Connect

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C. E-mail: kbatygin@gps.caltech.edu

    2014-12-20

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function.

  15. Theoretical Developments in Understanding Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Yorke, H. W.; Bodenheimer, P.

    2008-05-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low-mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen-burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors. The evolution of accreting stars depends strongly on the accretion history. We find that for the high accretion rates considered, ˜10^{-3} M_⊙yr^{-1}, stars of ˜5-10 M_⊙ tend to bloat up to radii which may exceed 100 R_⊙. Because of the high rate of binarity among massive stars, we expect that these large radii during short phases of evolution will result in mass transfer, common envelope evolution, and a higher number of tight binaries with periods of a few days.

  16. Infrared Observations of Hot Gas and Cold Ice Toward the Low Mass Protostar Elias 29

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Tielens, A. G. G. M.; Ceccarelli, C.; Boonman, A. M. S.; vanDishoeck, E. F.; Keane, J. V.; Whittet, D. C. B.; deGraauw, T.

    2000-01-01

    We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.

  17. Massive Stellar Outflows From the Combined Action of Multiple Stellar Jets

    NASA Astrophysics Data System (ADS)

    Mac Low, Mordecai-Mark; Peters, T.; Klaassen, P.; Schrön, M.; Klessen, R.

    2014-01-01

    The formation of high-mass stars is usually accompanied by powerful protostellar outflows. Such high-mass outflows are not simply scaled-up versions of their lower-mass counterparts, since observations seem to suggest that the collimation degree degrades with stellar mass. Theoretically, the origins of massive outflows are not well understood because radiative feedback and gravitational fragmentation of the accretion flow around the high-mass star impede the driving of magnetic disk winds. We here present the first 3D simulation of massive star formation that simultaneously includes feedback by non-ionizing and ionizing radiation as well as a subgrid-scale model for protostellar outflows. We ran this model with the Flash adaptive mesh refinement hydrocode. We find that stars that form in a common accretion flow have aligned outflow axes, so that the individual jets of lower-mass companion stars combine to form a collective outflow. We compare our simulation to observations with synthetic H2 and CO observations and find that the morphology and kinematics of this collective outflow is very similar to observed massive outflows, such as Cepheus A and DR 21. The properties of high-mass outflows are therefore generally consistent with the formation of massive stars in gravitationally unstable accretion flows. We acknowledge support from SNF grant 200020 137896, U. Zurich grant FK-13-112, NSF grant AST11-09395, and DFG grant KL 1358/14-1, as well as SBB 811, and computing time at the LRZ (project h1343), the CSCS (Project 364), and the Juelich Supercomputing Center (project HHD14).

  18. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  19. Modelling water in the envelopes of low-mass protostars

    NASA Astrophysics Data System (ADS)

    van Kempen, Tim A.; Jørgensen, Jes K.; Hogerheijde, Michiel R.; van Dishoeck, Ewine F.

    Using sophisticated spherically symmetric radiative transfer models for gas and dust, we simulate the emission of H2O and its isotopes for the circumstellar envelopes around class 0 protostars, as preparatory science for the ESA cornerstone mission Herschel and its spectrometer, HIFI. L483mm is taken as an example. We probe a wide range of models in which dust, freeze-out and a large variety of abundance structures and optical depths are taken into account. A sample of water lines is selected that are observable by Herschel. Expected fluxes for these lines are derived from the models, convolved with the Herschel beam size. 1. Introduction Water has been detected by the LWS instruments aboard ISO in low-mass protostars (e.g. Ceccarelli et al. 1999, Giannini et al. 2001). The origin of the water lines is still subject of discussion, however. It has been theorized to originate in both the outflow and the quiescent infalling envelope. Ceccarelli et al. (1999) place the water in the small (200 AU), dense (> 107cm-3) and warm (> 100 K) region of the protostellar envelope. The ESA Herschel mission and in particular the HIFI instrument are particularly well suited to observe rotational far-infrared and submillimeter water lines in these environments and test the various models. 2. Approach We started with the physical structure deduced by Jørgensen (2004) for L483mm (Lbol = 9Lsol, Menv10K = 4.4Msol, D=200 pc), giving the density and temperature profiles for a typical protostellar envelope. These profiles are the result of a dust radiative transfer calculation with DUSTY (Ivezic & Elitzur, 1997). The line radiative transfer is subsequently calculated through RATRAN, developed by Hogerheijde & van der Tak (2000). The dust to gas ratio has been set at 1:100, the dust opacities are approximated by the OH5 (Ossenkopf & Henning 1994) at a density of 106cm-3. To simulate the abundance of the water molecule, we have used trial abundances with the assumption that water freezes out

  20. On the nature of the deeply embedded protostar OMC-2 FIR 4

    SciTech Connect

    Furlan, E.; Megeath, S. T.; Fischer, W. J.; Osorio, M.; Stutz, A. M.; Ali, B.; Manoj, P.; Adams, J. D.; Tobin, J. J.

    2014-05-01

    We use mid-infrared to submillimeter data from the Spitzer, Herschel, and Atacama Pathfinder Experiment telescopes to study the bright submillimeter source OMC-2 FIR 4. We find a point source at 8, 24, and 70 μm, and a compact, but extended source at 160, 350, and 870 μm. The peak of the emission from 8 to 70 μm, attributed to the protostar associated with FIR 4, is displaced relative to the peak of the extended emission; the latter represents the large molecular core the protostar is embedded within. We determine that the protostar has a bolometric luminosity of 37 L {sub ☉}, although including more extended emission surrounding the point source raises this value to 86 L {sub ☉}. Radiative transfer models of the protostellar system fit the observed spectral energy distribution well and yield a total luminosity of most likely less than 100 L {sub ☉}. Our models suggest that the bolometric luminosity of the protostar could be as low as 12-14 L {sub ☉}, while the luminosity of the colder (∼20 K) extended core could be around 100 L {sub ☉}, with a mass of about 27 M {sub ☉}. Our derived luminosities for the protostar OMC-2 FIR 4 are in direct contradiction with previous claims of a total luminosity of 1000 L {sub ☉}. Furthermore, we find evidence from far-infrared molecular spectra and 3.6 cm emission that FIR 4 drives an outflow. The final stellar mass the protostar will ultimately achieve is uncertain due to its association with the large reservoir of mass found in the cold core.

  1. Herschel-PACS imaging of protostars in the HH 1-2 outflow complex

    NASA Astrophysics Data System (ADS)

    Fischer, W. J.; Megeath, S. T.; Ali, B.; Tobin, J. J.; Osorio, M.; Allen, L. E.; Kryukova, E.; Stanke, T.; Stutz, A. M.; Bergin, E.; Calvet, N.; di Francesco, J.; Furlan, E.; Hartmann, L.; Henning, T.; Krause, O.; Manoj, P.; Maret, S.; Muzerolle, J.; Myers, P.; Neufeld, D.; Pontoppidan, K.; Poteet, C. A.; Watson, D. M.; Wilson, T.

    2010-07-01

    We present 70 and 160 μm Herschel science demonstration images of a field in the Orion A molecular cloud that contains the prototypical Herbig-Haro objects HH 1 and 2, obtained with the Photodetector Array Camera and Spectrometer (PACS). These observations demonstrate Herschel's unprecedented ability to study the rich population of protostars in the Orion molecular clouds at the wavelengths where they emit most of their luminosity. The four protostars previously identified by Spitzer 3.6-40 μm imaging and spectroscopy are detected in the 70 μm band, and three are clearly detected at 160 μm. We measure photometry of the protostars in the PACS bands and assemble their spectral energy distributions (SEDs) from 1 to 870 μm with these data, Spitzer spectra and photometry, 2MASS data, and APEX sub-mm data. The SEDs are fit to models generated with radiative transfer codes. From these fits we can constrain the fundamental properties of the protostars. We find luminosities in the range 12-84 L⊙ and envelope densities spanning over two orders of magnitude. This implies that the four protostars have a wide range of envelope infall rates and evolutionary states: two have dense, infalling envelopes, while the other two have only residual envelopes. We also show the highly irregular and filamentary structure of the cold dust and gas surrounding the protostars as traced at 160 μm. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This work includes data acquired with the Atacama Pathfinder Experiment (APEX; E-082.F-9807, E-284.C-5015). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Figures 2 and 3 are only available in electronic format at http://www.aanda.org

  2. Observations of Carbon Chain Chemistry in the Envelopes of Low-Mass Protostars

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2012-01-01

    Observational results are reported from our surveys in the Northern Hemisphere (using the Onsala 20 m telescope) and the Southern Hemisphere (using the Mopra 22 m telescope) to search for 3 mm emission lines from carbon-chain-bearing species and other complex molecules in the envelopes of low-mass protostars. Based on a sample of approximately 60 sources, we find that carbon-chain-bearing species including HC3N (and C4H) are highly abundant in the vicinity of more than half of the observed protostars. The origin and evolution of these species, including their likely incorporation into ices in protoplanetary disks will be discussed

  3. A Complex Organic Slushy Bathing Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine

    2015-08-01

    Complex organic molecules are ubiquitous companions of young forming stars. They were first observed in hot cores surrounding high-mass protostars [e.g., 1], but have since also been detected in the environs of several low-mass counterparts [e.g., 2]. Recent studies have shown that colder envelopes and positions with impinging outflows may also glow with emission from complex organic species [e.g., 3, 4]. For this meeting, I would like to present physicochemical modeling results on the synthesis of complex organics in an envelope-cavity system that is subject to non-thermal processing. This includes wavelength-dependent radiative transfer calculations with RADMC [5] and a comprehensive gas-grain chemical network [6]. The results show that the morphology of such a system delineates three distinct regions: the cavity wall layer with time-dependent and species-variant enhancements; a torus rich in complex organic ices, but not reflected in gas-phase abundances; and the remaining outer envelope abundant in simpler solid and gaseous molecules. Within the adopted paradigm, complex organic molecules are demonstrated to have unique lifetimes and be grouped into early and late species [7]. Key chemical processes for forming and destroying complex organic molecules will be discussed. In addition, the results of adding newly experimentally verified routes [8] into the existing chemical networks will be shown.[1] Blake G. A., Sutton E. C., Masson C. R., Phillips T. G., 1987, ApJ, 315, 621[2] Jørgensen J. K., Favre C., Bisschop S. E., Bourke T. L., van Dishoeck E. F., Schmalzl M., 2012, ApJ, 757, L4[3] Arce H. G., Santiago-García J., Jørgensen J. K., Tafalla M., Bachiller R., 2008, ApJ, 681, L21[4] Öberg K. I., Bottinelli S., Jørgensen J. K., van Dishoeck E. F., 2010, ApJ, 716, 825[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya

  4. Heavy water stratification in a low-mass protostar

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    2013-05-01

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims: The key program Chemical HErschel Surveys of Star forming regions (CHESS) aims at studying the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI (Heterodyne Instrument for Far-Infrared) instrument provide a unique opportunity to observe the fundamental 11,1-00,0 transition of ortho-D2O at 607 GHz and the higher energy 21,2-10,1 transition of para-D2O at 898 GHz, both of which are inaccessible from the ground. Methods: The ortho-D2O transition at 607 GHz was previously detected. We present in this paper the first tentative detection for the para-D2O transition at 898 GHz. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of D2O with the same method that was used to reproduce the HDO and H218O line profiles in IRAS 16293-2422. Results: As for HDO, the absorption component seen on the D2O lines can only be reproduced by adding an external absorbing layer, possibly created by the photodesorption of the ices at the edges of the molecular cloud. The D2O column density is found to be about 2.5 × 1012 cm-2 in this added layer, leading to a D2O/H2O ratio of about 0.5%. At a 3σ uncertainty, upper limits of 0.03% and 0.2% are obtained for this ratio in the hot corino and the colder envelope of IRAS 16293-2422, respectively. Conclusions: The deuterium fractionation derived in our study suggests that the ices present in IRAS 16293-2422 formed on warm dust grains (~15-20 K) in dense (~104-5 × 104 cm-3) translucent clouds. These results allow us to address the earliest phases of star formation and the conditions in which ices form. Based on Herschel/HIFI observations. Herschel is an ESA space observatory with

  5. Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Inutsuka, S.-I.; Machida, M.; Matsumoto, T.; Tsukamoto, Y.; Iwasaki, K.

    2016-05-01

    This review describes realistic evolution of magnetic field and rotation of the protostars, dynamics of outflows and jets, and the formation and evolution of protoplanetary disks. Recent advances in the protostellar collapse simulations cover a huge dynamic range from molecular cloud core density to stellar density in a self-consistent manner and account for all the non-ideal magnetohydrodynamical effects, such as Ohmic resistivity, ambipolar diffusion, and Hall current. We explain the emergence of the first core, i.e., the quasi-hydrostatic object that consists of molecular gas, and the second core, i.e., the protostar. Ohmic dissipation largely removes the magnetic flux from the center of a collapsing cloud core. A fast well-collimated bipolar jet along the rotation axis of the protostar is driven after the magnetic field is re-coupled with warm gas (˜103 K) around the protostar. The circumstellar disk is born in the "dead zone", a region that is de-coupled from the magnetic field, and the outer radius of the disk increases with that of the dead zone during the early accretion phase. The rapid increase of the disk size occurs after the depletion of the envelope of molecular cloud core. The effect of Hall current may create two distinct populations of protoplanetary disks.

  6. HERSCHEL FAR-INFRARED PHOTOMETRIC MONITORING OF PROTOSTARS IN THE ORION NEBULA CLUSTER

    SciTech Connect

    Billot, N.; Morales-Calderon, M.; Stauffer, J. R.; Megeath, S. T.; Whitney, B.

    2012-07-10

    We have obtained time series observations of the Orion Nebula Cluster at 70 {mu}m and 160 {mu}m from the Herschel/PACS Photometer. This represents the first wide-field far-infrared photometric monitoring of a young star-forming region. The acquired 35' Multiplication-Sign 35' maps show complex extended structures, with unprecedented detail, that trace the interaction between the molecular gas and the young hot stars. We detect 43 protostars, most of which are situated along the integral-shaped filament extending from the Orion nebula, through OMC 2 and OMC 3. We present high-reliability light curves for some of these objects using the first six epochs of our observing program spread over 6 weeks. We find amplitude variations in excess of 20% for a fraction of the detected protostars over periods as short as a few weeks. This is inconsistent with the dynamical timescales of cool far-IR emitting material that orbits at hundreds of AU from the protostar, and it suggests that the mechanism(s) responsible for the observed variability originates from the inner region of the protostars, likely driven by variable mass accretion.

  7. Herschel Far-infrared Photometric Monitoring of Protostars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Billot, N.; Morales-Calderón, M.; Stauffer, J. R.; Megeath, S. T.; Whitney, B.

    2012-07-01

    We have obtained time series observations of the Orion Nebula Cluster at 70 μm and 160 μm from the Herschel/PACS Photometer. This represents the first wide-field far-infrared photometric monitoring of a young star-forming region. The acquired 35' × 35' maps show complex extended structures, with unprecedented detail, that trace the interaction between the molecular gas and the young hot stars. We detect 43 protostars, most of which are situated along the integral-shaped filament extending from the Orion nebula, through OMC 2 and OMC 3. We present high-reliability light curves for some of these objects using the first six epochs of our observing program spread over 6 weeks. We find amplitude variations in excess of 20% for a fraction of the detected protostars over periods as short as a few weeks. This is inconsistent with the dynamical timescales of cool far-IR emitting material that orbits at hundreds of AU from the protostar, and it suggests that the mechanism(s) responsible for the observed variability originates from the inner region of the protostars, likely driven by variable mass accretion.

  8. Massive transfusion and massive transfusion protocol

    PubMed Central

    Patil, Vijaya; Shetmahajan, Madhavi

    2014-01-01

    Haemorrhage remains a major cause of potentially preventable deaths. Rapid transfusion of large volumes of blood products is required in patients with haemorrhagic shock which may lead to a unique set of complications. Recently, protocol based management of these patients using massive transfusion protocol have shown improved outcomes. This section discusses in detail both management and complications of massive blood transfusion. PMID:25535421

  9. On the Formation of Massive Stars

    NASA Astrophysics Data System (ADS)

    Yorke, Harold W.; Sonnhalter, Cordula

    2002-04-01

    We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30, 60, and 120 Msolar, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using ``gray'' dust opacities and ``gray'' radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles, silicates, and ``dirty ice''-coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object, we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Msolar originally within the computation grid), radiation acceleration limited the final masses to 31.6, 33.6, and 42.9 Msolar, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Msolar for the corresponding simulations with gray radiation transfer. Our calculations

  10. SOFIA/FORCAST AND SPITZER/IRAC IMAGING OF THE ULTRACOMPACT H II REGION W3(OH) AND ASSOCIATED PROTOSTARS IN W3

    SciTech Connect

    Hirsch, Lea; Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Hora, Joseph L.; De Buizer, James M.; Vacca, William; Megeath, S. Thomas; Keller, Luke D.

    2012-10-01

    We present infrared observations of the ultracompact H II region W3(OH) made by the FORCAST instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) and by the Spitzer/Infrared Array Camera. We contribute new wavelength data to the spectral energy distribution (SED), which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius {approx}600 AU, irradiated by a central star of type O9 and temperature {approx}31, 000 K. The total luminosity of this system is 7.1 Multiplication-Sign 10{sup 4} L{sub Sun }. An observed excess of 2.2-4.5 {mu}m emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H{sub 2}O) at 31.4 and 37.1 {mu}m using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7-37.1 {mu}m. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity ({approx}236-432 L{sub Sun }) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3 Multiplication-Sign 10{sup 3} L{sub Sun} or a less massive young star with a substantial circumstellar disk but depleted envelope; and the other (2MASS J02270743+6152281) is an intermediate-luminosity ({approx}768 L{sub Sun }) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.

  11. Radiation transfer of models of massive star formation. III. The evolutionary sequence

    SciTech Connect

    Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi E-mail: jt@astro.ufl.edu

    2014-06-20

    We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core mass M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of

  12. IRDC G030.88+00.13: A TALE OF TWO MASSIVE CLUMPS

    SciTech Connect

    Zhang Qizhou; Wang Ke

    2011-05-20

    Massive stars (M {approx}>10 M{sub sun}) form from collapse of parsec-scale molecular clumps. How molecular clumps fragment to give rise to massive stars in a cluster with a distribution of masses is unclear. We search for cold cores that may lead to future formation of massive stars in a massive (>10{sup 3} M{sub sun}), low luminosity (4.6 x 10{sup 2} L{sub sun}) infrared dark cloud (IRDC) G030.88+00.13. The NH{sub 3} data from the Very Large Array (VLA) and Green Bank Telescope reveal that the extinction feature seen in the infrared consists of two distinctive clumps along the same line of sight. The C1 clump at 97 km s{sup -1} coincides with the extinction in the Spitzer 8 and 24 {mu}m. Therefore, it is responsible for the majority of the IRDC. The C2 clump at 107 km s{sup -1} is more compact and has a peak temperature of 45 K. Compact dust cores and H{sub 2}O masers revealed in the Submillimeter Array and VLA observations are mostly associated with C2, and none are within the IRDC in C1. The luminosity indicates that neither the C1 nor C2 clump has yet to form massive protostars. But C1 might be at a precluster forming stage. The simulated observations rule out 0.1 pc cold cores with masses above 8 M{sub sun} within the IRDC. The core masses in C1 and C2 and those in high-mass protostellar objects suggest an evolutionary trend that the mass of cold cores increases over time. Based on our findings, we propose an empirical picture of massive star formation that protostellar cores and the embedded protostars undergo simultaneous mass growth during the protostellar evolution.

  13. Locally linear embedding: dimension reduction of massive protostellar spectra

    NASA Astrophysics Data System (ADS)

    Ward, J. L.; Lumsden, S. L.

    2016-09-01

    We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey data base. A brief comparison is also made with two other dimension reduction techniques; principal component analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.

  14. Probing the effects of external irradiation on low-mass protostars through unbiased line surveys

    NASA Astrophysics Data System (ADS)

    Lindberg, J. E.; Jørgensen, J. K.; Watanabe, Y.; Bisschop, S. E.; Sakai, N.; Yamamoto, S.

    2015-12-01

    Context. The envelopes of molecular gas around embedded low-mass protostars show different chemistries, which can be used to trace their formation history and physical conditions. The excitation conditions of some molecular species can also be used to trace these physical conditions, making it possible to constrain for instance sources of heating and excitation. Aims: We study the range of influence of an intermediate-mass Herbig Be protostar. We also study the effect of feedback from the environment on the chemical and physical properties of embedded protostars. Methods: We followed up on an earlier line survey of the Class 0/I source R CrA IRS7B in the 0.8 mm window with an unbiased line survey of the same source in the 1.3 mm window using the Atacama Pathfinder Experiment (APEX) telescope. We also studied the excitation of the key species H2CO, CH3OH, and c-C3H2 in a complete sample of the 18 embedded protostars in the Corona Australis star-forming region. Radiative transfer models were employed to establish abundances of the molecular species. Results: We detect line emission from 20 molecular species (32 including isotopologues) in the two surveys. The most complex species detected are CH3OH, CH3CCH, CH3CHO, and CH3CN (the latter two are only tentatively detected). CH3CN and several other complex organic molecules are significantly under-abundant in comparison with what is found towards hot corino protostars. The H2CO rotational temperatures of the sources in the region decrease with the distance to the Herbig Be star R CrA, whereas the c-C3H2 temperatures remain constant across the star-forming region. Conclusions: The high H2CO temperatures observed towards objects close to R CrA suggest that this star has a sphere of influence of several 10 000 AU in which it increases the temperature of the molecular gas to 30-50 K through irradiation. The chemistry in the IRS7B envelope differs significantly from many other embedded protostars, which could be an effect of

  15. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  16. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum

  17. Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Crapsi, Antonio; Evans, Neal J., II; Bourke, Tyler L.; Huard, Tracy L.; Myers, Philip C.; Kauffmann, Jens

    2008-11-01

    We present the results of a search for all embedded protostars with internal luminosities <=1.0 L⊙ in the full sample of nearby, low-mass star-forming regions surveyed by the Spitzer Space Telescope Legacy Project "From Molecular Cores to Planet Forming Disks" (c2d). The internal luminosity of a source, Lint, is the luminosity of the central source and excludes luminosity arising from external heating. On average, the Spitzer c2d data are sensitive to embedded protostars with Lint >= 4 × 10-3(d/140 pc)2 L⊙, a factor of 25 better than the sensitivity of the Infrared Astronomical Satellite (IRAS) to such objects. We present a set of selection criteria used to identify candidates from the Spitzer data and examine complementary data to decide whether each candidate is truly an embedded protostar. We find a tight correlation between the 70 μm flux and internal luminosity of a protostar, an empirical result based on both observations and detailed two-dimensional radiative transfer models of protostars. We identify 50 embedded protostars with Lint <= 1.0 L⊙ 15 have Lint <= 0.1 L⊙. The intrinsic distribution of source luminosities increases to lower luminosities. While we find sources down to the above sensitivity limit, indicating that the distribution may extend to luminosities lower than probed by these observations, we are able to rule out a continued rise in the distribution below Lint = 0.1 L⊙. Between 75% and 85% of cores classified as starless prior to being observed by Spitzer remain starless to our luminosity sensitivity; the remaining 15%-25% harbor low-luminosity, embedded protostars. We compile complete spectral energy distributions for all 50 objects and calculate standard evolutionary signatures (Lbol, Tbol, and Lbol/Lsmm) and argue that these objects are inconsistent with the simplest picture of star formation, wherein mass accretes from the core onto the protostar at a constant rate.

  18. The VLA Nascent Disk and Multiplicity Survey (VANDAM): Resolved Candidate Disks around Class 0 and I Protostars

    NASA Astrophysics Data System (ADS)

    Segura-Cox, Dominique; Harris, Robert J.; Tobin, John J.; Looney, Leslie; Li, Zhi-Yun; Chandler, Claire J.; Kratter, Kaitlin M.; Dunham, Michael; Sadavoy, Sarah; Perez, Laura M.; Melis, Carl

    2016-01-01

    The properties of young protostellar disks, particularly Class 0 disks, are not well studied observationally, and their expected properties are controversial. In particular, there is debate about whether or not the earliest disks are large and massive and about when and how disks form. To characterize the properties of the youngest disks and binaries we are conducting the VLA Nascent Disk and Multiplicity survey (VANDAM) toward all known protostars in the Perseus molecular cloud (d ~ 230 pc). The survey is the largest and most complete high-resolution millimeter/centimeter wavelength survey of protostellar disks and binaries. We present the dust emission results toward a sample of ~15 protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VANDAM survey with ~0.05'' or 12 AU resolution. We have begun to confirm the disk candidacy of these sources by fitting the Ka-band 8 mm dust-continuum data in the uv-plane to a simple, parametrized model based on the Shakura-Sunyaev disk model. The seven candidate disks this analysis has been performed on are well-fit by the disk shaped model, and have estimated masses from the measured flux in agreement with masses of previously known disks. The inner-disk surface densities of the VANDAM candidate disks have shallower density profiles compared to disks around more evolved Class II systems. The best-fit model radii of the seven early-result candidate disks are R > 10 AU; at 8 mm, the radii reflect lower limits on the disk size since dust continuum emission is tied to grain size and large grains radially drift inwards. These disks, if confirmed kinematically, are inconsistent with theoretical models where the disk size is limited by strong magnetic braking to < 10 AU at early times.

  19. X-Ray and Radio Observations of the Massive Star-forming Region IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V.

    2015-08-01

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17‧ × 17‧ ACIS-I field, and a total of 13 radio sources within the 9.‧2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color-color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  20. Two protostar candidates in the bright-rimmed dark cloud LDN 1206

    NASA Technical Reports Server (NTRS)

    Ressler, Michael E.; Shure, Mark

    1991-01-01

    The discovery of several near IR objects associated with two IRAS point sources in the LDN 1206 region is reported. IRAS 22272 + 6358A is probably a 'protostar' which is seen only in scattered light at near-IR wavelengths because of heavy obscuration by an almost edge-on circumstellar disk. In contrast, IRAS 22272 + 6358B is directly visible at these wavelengths and is perhaps an object which lies between protostars and T-Tauri stars in its evolution. Both direct and polarimetric K-band images of the region are presented, as well as spectral energy distributions constructed from J, H, K, L, L-prime, and M data and published far-IR and mm data.

  1. VizieR Online Data Catalog: The Herschel Orion Protostar Survey (HOPS): SEDs (Furlan+, 2016)

    NASA Astrophysics Data System (ADS)

    Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.

    2016-06-01

    To summarize, starting from a sample of 410 Herschel Orion Protostar Survey (HOPS) targets (see section 2), but excluding likely contaminants and objects not observed or detected by PACS, there are 330 remaining objects that have Spitzer and Herschel data and are considered protostars (based on their Spitzer classification from Megeath et al. 2012, J/AJ/144/192). They form the sample studied in this work. In order to construct SEDs for our sample of 330 YSOs, we combined our own Herschel/PACS observations (see Proposal KPOTtmegeath2) with data from the literature and existing catalogs (see section 3.1). To extend the SEDs into the submillimeter, most of the YSOs were also observed in the continuum at 350 and 870um with the Atacama Pathfinder Experiment (APEX) telescope (Stutz et al. 2013, J/ApJ/767/36). (5 data files).

  2. THE MAGNETIC FIELD MORPHOLOGY OF THE CLASS 0 PROTOSTAR L1157-mm

    SciTech Connect

    Stephens, Ian W.; Looney, Leslie W.; Kwon, Woojin; Crutcher, Richard M.; Hull, Charles L. H.; Plambeck, Richard L.; Chapman, Nicholas; Novak, Giles; Matthews, Tristan; Davidson, Jacqueline; Vaillancourt, John E.; Shinnaga, Hiroko

    2013-05-20

    We present the first detection of polarization around the Class 0 low-mass protostar L1157-mm at two different wavelengths. We show polarimetric maps at large scales (10'' resolution at 350 {mu}m) from the SHARC-II Polarimeter and at smaller scales (1.''2-4.''5 at 1.3 mm) from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The observations are consistent with each other and show inferred magnetic field lines aligned with the outflow. The CARMA observations suggest a full hourglass magnetic field morphology centered about the core; this is only the second well-defined hourglass detected around a low-mass protostar to date. We apply two different methods to CARMA polarimetric observations to estimate the plane-of-sky magnetic field magnitude, finding values of 1.4 and 3.4 mG.

  3. OBSERVING SIMULATED PROTOSTARS WITH OUTFLOWS: HOW ACCURATE ARE PROTOSTELLAR PROPERTIES INFERRED FROM SEDs?

    SciTech Connect

    Offner, Stella S. R.; Robitaille, Thomas P.; Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.

    2012-07-10

    The properties of unresolved protostars and their local environment are frequently inferred from spectral energy distributions (SEDs) using radiative transfer modeling. In this paper, we use synthetic observations of realistic star formation simulations to evaluate the accuracy of properties inferred from fitting model SEDs to observations. We use ORION, an adaptive mesh refinement (AMR) three-dimensional gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud including the effects of protostellar outflows. To obtain the dust temperature distribution and SEDs of the forming protostars, we post-process the simulations using HYPERION, a state-of-the-art Monte Carlo radiative transfer code. We find that the ORION and HYPERION dust temperatures typically agree within a factor of two. We compare synthetic SEDs of embedded protostars for a range of evolutionary times, simulation resolutions, aperture sizes, and viewing angles. We demonstrate that complex, asymmetric gas morphology leads to a variety of classifications for individual objects as a function of viewing angle. We derive best-fit source parameters for each SED through comparison with a pre-computed grid of radiative transfer models. While the SED models correctly identify the evolutionary stage of the synthetic sources as embedded protostars, we show that the disk and stellar parameters can be very discrepant from the simulated values, which is expected since the disk and central source are obscured by the protostellar envelope. Parameters such as the stellar accretion rate, stellar mass, and disk mass show better agreement, but can still deviate significantly, and the agreement may in some cases be artificially good due to the limited range of parameters in the set of model SEDs. Lack of correlation between the model and simulation properties in many individual instances cautions against overinterpreting properties inferred from SEDs for unresolved protostellar

  4. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-type Protostars

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; López-Sepulcre, Ana; Ceccarelli, Cecilia; Neri, Roberto; Kahane, Claudine; Charnley, Steven B.

    2015-05-01

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  5. WATER DEUTERIUM FRACTIONATION IN THE INNER REGIONS OF TWO SOLAR-TYPE PROTOSTARS

    SciTech Connect

    Taquet, V.; Lopez-Sepulcre, A.; Ceccarelli, C.; Kahane, C.; Coutens, A.; Vastel, C.

    2013-05-10

    The [HDO]/[H{sub 2}O] ratio is a crucial parameter for probing the history of water formation. So far, it has been measured for only three solar-type protostars and yielded different results, possibly pointing to a substantially different history in their formation. In the present work, we report new interferometric observations of the HDO 4{sub 2,2}-4{sub 2,3} line for two solar-type protostars, IRAS2A and IRAS4A, located in the NGC 1333 region. In both sources, the detected HDO emission originates from a central compact unresolved region. A comparison with previously published interferometric observations of the H{sub 2}{sup 18}O 3{sub 1,3}-2{sub 2,0} line shows that the HDO and H{sub 2}O lines mostly come from the same region. A non-LTE large velocity gradient analysis of the HDO and H{sub 2}{sup 18}O line emissions, combined with published observations, provides an [HDO]/[H{sub 2}O] ratio of 0.3%-8% in IRAS2A and 0.5%-3% in IRAS4A. First, the water fractionation is lower than that of other molecules such as formaldehyde and methanol in the same sources. Second, it is similar to that measured in the solar-type protostar prototype, IRAS16293-2422, and, surprisingly enough, larger than that measured in NGC 1333 IRAS4B. The comparison of the measured values toward IRAS2A and IRAS4A with the predictions of our gas-grain model GRAINOBLE gives similar conclusions to those for IRAS 16293, arguing that these protostars share a similar chemical history, although they are located in different clouds.

  6. Higher dimensional massive bigravity

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2016-08-01

    We study higher-dimensional scenarios of massive bigravity, which is a very interesting extension of nonlinear massive gravity since its reference metric is assumed to be fully dynamical. In particular, the Einstein field equations along with the following constraint equations for both physical and reference metrics of a five-dimensional massive bigravity will be addressed. Then, we study some well-known cosmological spacetimes such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini metrics for the five-dimensional massive bigravity. As a result, we find that massive graviton terms will serve as effective cosmological constants in both physical and reference sectors if a special scenario, in which reference metrics are chosen to be proportional to physical ones, is considered for all mentioned metrics. Thanks to the constancy property of massive graviton terms, consistent cosmological solutions will be figured out accordingly.

  7. Tracing Protostellar Envelope Evolution with HOPS, the Herschel Orion Protostar Survey

    NASA Astrophysics Data System (ADS)

    Fischer, Will; Megeath, Tom; Furlan, Elise; Ali, Babar; Stutz, Amy; Booker, Joseph; Tobin, John; Stanke, Thomas; Osorio, Mayra

    2013-07-01

    HOPS, the Herschel Orion Protostar Survey, is an unprecedented program of large surveys with the Herschel, Spitzer, Hubble, and APEX observatories, as well as near-IR observations from the IRTF and other telescopes. Together these are providing a comprehensive observational assessment of protostellar evolution, from the earliest phases (see poster by A. Stutz) through the dissipation of the protostellar envelope. The BLT (bolometric luminosity and temperature) diagram for the ˜300 HOPS protostars resembles those constructed for other nearby star-forming regions. We fit the 1-870 um SEDs of the protostars with our grid of radiative transfer models to determine their luminosities, envelope densities, cavity angles, and inclinations (see poster by E. Furlan). High-resolution HST images of the scattered light nebulae provide additional constraints on envelope density, disk geometry, cavity geometry, and inclination angle (see poster by J. Booker). Finally, near-IR atomic hydrogen lines provide independent estimates of reddening and accretion luminosity in the less embedded sources. This multi-pronged modeling approach provides a more reliable assessment of envelope evolution than raw observational diagnostics like the bolometric temperature. We will compare the distributions of envelope densities and protostellar luminosities to the predictions of star-formation models.

  8. Water in embedded low-mass protostars: cold envelopes and warm outflows

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud

    2015-08-01

    As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.

  9. Study of deuterated water in the low-mass protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Caux, E.; Ceccarelli, C.; Herschel Chess Team

    2011-05-01

    Observations of deuterated water are an important complement for studies of H2O, since they give strong constraints on the formation processes: grain surfaces versus gas-phase chemistry through energetic process as shocks. The CHESS (Chemical HErschel Surveys of Star forming regions) Key Program has allowed to detect a lot of transitions of HDO (8) and H2O (16) as well as its isotopes H_218O and H_217O towards the low-mass protostar IRAS16293-2422 thanks to the unbiaised spectral survey carried out with the HIFI instrument on board the Herschel Space Observatory. Complementary data of HDO from the ground-based telescopes IRAM and JCMT are also available, allowing a precise determination of the abundance of deuterated water through the protostar envelope. In order to reproduce the observed line profiles, we have performed a modeling of HDO from the hot corino through the envelope using the physical structure of the protostar (Crimier et al. 2010) and the spherical Monte Carlo radiative transfer code RATRAN, which takes also into account radiative pumping by continuum emission from dust. We have used new HDO collision rates with H_2, recently computed by Wiesenfeld, Scribano and Faure (2011, PCCP). The same method has been applied to model H_2O and its isotopes H_218O and H_217O. We will present the results of this analysis and discuss the determined abundances.

  10. Octonic Massive Field Equations

    NASA Astrophysics Data System (ADS)

    Demir, Süleyman; Kekeç, Seray

    2016-07-01

    In the present paper we propose the octonic form of massive field equations based on the analogy with electromagnetism and linear gravity. Using the advantages of octon algebra the Maxwell-Dirac-Proca equations have been reformulated in compact and elegant way. The energy-momentum relations for massive field are discussed.

  11. Octonic Massive Field Equations

    NASA Astrophysics Data System (ADS)

    Demir, Süleyman; Kekeç, Seray

    2016-03-01

    In the present paper we propose the octonic form of massive field equations based on the analogy with electromagnetism and linear gravity. Using the advantages of octon algebra the Maxwell-Dirac-Proca equations have been reformulated in compact and elegant way. The energy-momentum relations for massive field are discussed.

  12. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  13. Waterfalls around protostars. Infall motions towards Class 0/I envelopes as probed by water

    NASA Astrophysics Data System (ADS)

    Mottram, J. C.; van Dishoeck, E. F.; Schmalzl, M.; Kristensen, L. E.; Visser, R.; Hogerheijde, M. R.; Bruderer, S.

    2013-10-01

    Context. For stars to form, material must fall inwards from core scales through the envelope towards the central protostar. While theories of how this takes place have been around for some time, the velocity profile around protostars is poorly constrained. The combination of observations in multiple transitions of a tracer which is sensitive to kinematics and radiative transfer modelling of those lines has the potential to break this deadlock. Aims: Seven protostars observed with the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory as part of the "Water in star-forming regions with Herschel" (WISH) survey show infall signatures in water line observations. We aim to constrain the infall velocity and the radii over which infall is taking place within the protostellar envelopes of these sources. We will also use these data to constrain the chemistry of cold water. Methods: We use 1-D non-LTE ratran radiative transfer models of the observed water lines to constrain the infall velocity and chemistry in the protostellar envelopes of six Class 0 protostars and one Class I source. We assume a free-fall velocity profile and, having found the best fit, vary the radii over which infall takes place. Results: In the well-studied Class 0 protostar NGC 1333-IRAS4A we find that our observations probe infall over the whole envelope to which our observations are sensitive (r ≳ 1000 AU). For L1527, L1157, BHR71 and IRAS 15398 infall takes place on core to envelope scales (i.e. ~10 000-3000 AU). In Serpens-SMM4 and GSS30 the inverse P-Cygni profiles seen in the ground-state lines are more likely due to larger-scale motions or foreground clouds. Models including a simple consideration of the chemistry are consistent with the observations, while using step abundance profiles are not. The non-detection of excited water in the inner envelope in six out of seven protostars is further evidence that water must be heavily depleted from the gas

  14. Submillimeter-Wave Observations toward the Low-Mass Protostar IRAS 15398-3359 at Subarcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Oya, Y.; Sakai, N.; Watanabe, Y.; Yamamoto, S.; Sakai, T.; Hirota, T.; Lindberg, J. E.; Bisschop, S. E.; Jørgensen, J. K.; van Dishoeck, E. F.

    2015-12-01

    Subarcsecond 0."5 images of H2CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398-3359 in the Lupus 1 cloud with ALMA. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be almost edge-on (20°) based on the kinematic structure of the outflow cavity. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle, and the mass of the protostar is estimated to be less than 0.09 ⊙.

  15. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221

    SciTech Connect

    Young, Chadwick H.; Young, Kaisa E.; Popa, Victor; Bourke, Tyler L.; Dunham, Michael M.; Evans, Neal J.; Joergensen, Jes K.; Shirley, Yancy L.; De Vries, Christopher; Claussen, Mark J.

    2009-09-01

    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars toward L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modeling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and a larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.

  16. Powerful jets driven by intermediate-mass protostars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, N.

    2014-01-01

    The Carina nebula hosts the largest known population of powerful HH jets driven by intermediate-mass stars in a single region. These jets are externally irradiated by dozens of O-type stars in Carina that illuminate unshocked material in the jet, allowing for a more complete census of the mass-loss. Despite the strong incident ionizing radiation, portions of these jets remain neutral. Near-IR [Fe II] images reveal dense, neutral gas that was not seen in previous studies of Hα emission. We show that near-IR [Fe II] emitting gas must be self-shielded from Lyman continuum photons, regardless of its excitation mechanism (shocks, FUV radiation, or both). High densities are required for the survival of Fe+ amid the strong Lyman continuum luminosity from Tr14, raising estimates of the mass-loss rates by an order of magnitude. New proper motion measurements using Halpha images with a ~4.25 year baseline reveal tangential velocities of >200 km/s, in some cases exceeding velocities typical for jets from low-mass stars. In addition, these outflows are highly collimated, with opening angles of only a few degrees, similar to low-mass protostars. We propose that these jets reflect essentially the same outflow phenomenon seen in low-mass protostars, but that the collimated atomic jet core is irradiated and rendered observable. Thus, the irradiated jets in Carina constitute a new view of jets from intermediate-mass protostars that demonstrate that they are as collimated as their low-mass counterparts, but support higher densities and velocities, leading to higher mass-loss rates. This scaling of phenomena seen in low-mass star formation offers strong additional evidence that stars up to ~8 Msun form by the same accretion mechanism as low-mass stars.

  17. From nearby low-mass protostars to high redshift starbursts: protostellar outflows tracing the IMF

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; Bergin, Edwin

    2015-08-01

    Embedded low-mass protostars are notoriously difficult to observe even in the nearest Galactic high-mass clusters where they outnumber the high-mass protostars by orders of magnitude. Thus, without a good tracer of the low-mass population, we do not have a good handle on the shape of the initial (core) mass function, leaving little hope for extrapolating to extragalactic regions where we will never have neither the sensitivity nor the resolution to directly observe this population. A good tracer of the low-mass population is needed.One such physical tracer is outflows. Outflow emission is directly proportional to envelope mass, and outflows are predominantly active during the deeply embedded phases of star formation. What is required for this method to work is species and transitions tracing outflows uniquely such that any signal is not diluted by the surrounding cloud, such as certain methanol transitions, water, high-J CO (J > 10).I will present a statistical model of a forming high-mass cluster. The model includes what we currently know about Galactic high-mass clusters and incorporates outflow emission from low-mass protostars. The latter component is obtained from observations of tens of nearby embedded low-mass protostellar outflows in the above-mentioned tracers. The model is benchmarked against ALMA and Herschel-HIFI observations of Galactic clusters proving the concept, and preliminary extrapolations to the extragalactic regime are presented. With this new probe, and traditional probes of the distant star formation which predominantly trace high mass stars, we will be able to explore the IMF in starburst galaxies from low to high redshift.

  18. Microwave Spectroscopy of Complex Molecules Around the Young Protostar Chamaeleon MMS1

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Charnley, Steven B.; Wirstrom, Eva S.; Smith, Robert G.

    2011-01-01

    Observations are presented of emission lines from organic molecules at frequencies 30-100 GHz in the vicinity of the extremely young, chemically rich, very low-luminosity protostar and candidate first hydrostatic core Chamaeleon MMS1. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon-chains and methanol. Emission from the carbon-chain-bearing species peaks very near to the protostar; methanol peaks about 0.1 pc further away. The mean molecular hydrogen number density is calculated to be 10(exp 6) per cc. and the gas kinetic temperature is in the range 4-7 K. The abundances of long carbon chains (including C6H and HC7N) are very large -- similar to those found in the most carbon-chain-rich regions of the Galaxy, and indicative of a non-equilibrium carbon chemistry. The observed methanol and acetaldehyde abundances indicate active grain-surface chemistry and desorption processes. The carbon-chain anions C4H- and C6H- were not detected and the upper limit on the anion-to-neutral ratio for C4H- is less than 0.02% and for C6H-, less than 10%. These values are consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC3N and c-C3H2 were detected, with fractionation ratios of about 4%, and 22%, respectively. A low c-C3H2 ortho-to-para ratio was measured, which is consistent with a molecular hydrogen ortho-to-para ratio of close to zero and implies a relatively young chemical age (less than about 10(exp 5) yr) for the matter surrounding Cha-MMS1. These observations show that a high level of chemical complexity can be present in star-forming gas.

  19. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Persson, M. V.; Jørgensen, J. K.; Wampfler, S. F.; Lykke, J. M.

    2015-04-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde), and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 - higher than in the Class 0 source IRAS 16293-2422 (~1), but similar to the lower limits derived in comets (≥3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars might be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios might consequently be inherited from earlier stages of star formation if the young Sun experienced conditions similar to NGC 1333 IRAS2A. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Figures 3-4 and Table 1 are available in electronic form at http://www.aanda.org

  20. MAGNETIC FIELD IN THE ISOLATED MASSIVE DENSE CLUMP IRAS 20126+4104

    SciTech Connect

    Shinnaga, Hiroko; Phillips, Thomas G.; Novak, Giles; Vaillancourt, John E.; Machida, Masahiro N.; Kataoka, Akimasa; Tomisaka, Kohji; Davidson, Jacqueline; Houde, Martin; Dowell, C. Darren; Leeuw, Lerothodi

    2012-05-10

    We measured polarized dust emission at 350 {mu}m toward the high-mass star-forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto)star rotates in an almost opposite sense to the clump's envelope. The observed magnetic field morphology and the counterrotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high-mass star formation.

  1. Massive Oral Decoding.

    ERIC Educational Resources Information Center

    Janicke, Eugene M.

    1981-01-01

    An intensive reading clinic used the Massive Oral Decoding (MOD) technique to help 10 reading disabled students (grades 7 and 8) increase independent reading skills. MOD stresses large amounts of reading practice at the student's independent level. (CL)

  2. Supersymmetrizing massive gravity

    NASA Astrophysics Data System (ADS)

    Malaeb, O.

    2013-07-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.

  3. Protostellar accretion traced with chemistry. Comparing synthetic C18O maps of embedded protostars to real observations

    NASA Astrophysics Data System (ADS)

    Frimann, S.; Jørgensen, J. K.; Padoan, P.; Haugbølle, T.

    2016-02-01

    Context. Understanding how protostars accrete their mass is a central question of star formation. One aspect of this is trying to understand whether the time evolution of accretion rates in deeply embedded objects is best characterised by a smooth decline from early to late stages or by intermittent bursts of high accretion. Aims: We create synthetic observations of deeply embedded protostars in a large numerical simulation of a molecular cloud, which are compared directly to real observations. The goal is to compare episodic accretion events in the simulation to observations and to test the methodology used for analysing the observations. Methods: Simple freeze-out and sublimation chemistry is added to the simulation, and synthetic C18O line cubes are created for a large number of simulated protostars. The spatial extent of C18O is measured for the simulated protostars and compared directly to a sample of 16 deeply embedded protostars observed with the Submillimeter Array. If CO is distributed over a larger area than predicted based on the protostellar luminosity, it may indicate that the luminosity has been higher in the past and that CO is still in the process of refreezing. Results: Approximately 1% of the protostars in the simulation show extended C18O emission, as opposed to approximately 50% in the observations, indicating that the magnitude and frequency of episodic accretion events in the simulation is too low relative to observations. The protostellar accretion rates in the simulation are primarily modulated by infall from the larger scales of the molecular cloud, and do not include any disk physics. The discrepancy between simulation and observations is taken as support for the necessity of disks, even in deeply embedded objects, to produce episodic accretion events of sufficient frequency and amplitude.

  4. Slingshot mechanism in Orion: Kinematic evidence for ejection of protostars by filaments

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Gould, Andrew

    2016-05-01

    By comparing three constituents of Orion A (gas, protostars, and pre-main-sequence stars), both morphologically and kinematically, we derive the following conclusions. The gas surface density near the integral-shaped filament (ISF) is very well represented by a power law, Σ(b) = 37 M⊙ pc-2(b/pc)-5/8, for the entire range to which we are sensitive, 0.05 pc < b < 8.5 pc, of projected separation from the filament ridge. Essentially all Class 0 and Class I protostars lie superposed on the ISF or on identifiable filament ridges farther south, while almost all pre-main-sequence (Class II) stars do not. Combined with the fact that protostars are moving ≲ 1 km s-1 relative to the filaments, while stars are moving several times faster, this implies that protostellar accretion is terminated by a slingshot-like "ejection" from the filaments. The ISF is the third in a series of identifiable star bursts that are progressively moving south, with separations of several Myr in time and 2-3 pc in space. This, combined with the observed undulations in the filament (both spatial and velocity), suggest that repeated propagation of transverse waves through the filament is progressively digesting the material that formerly connected Orion A and B into stars in discrete episodes. We construct a simple, circularly symmetric gas density profile ρ(r) = 17 M⊙ pc-3(r/pc)-13/8 consistent with the two-dimensional data. The model implies that the observed magnetic fields in this region are subcritical on spatial scales of the observed undulations, suggesting that the transverse waves propagating through the filament are magnetically induced. Because the magnetic fields are supercritical on scales of the filament as a whole (as traced by the power law), the system as a whole is relatively stable and long lived. Protostellar "ejection" (i.e., the slingshot) occurs because the gas accelerates away from the protostars, not the other way around. The model also implies that the ISF is

  5. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and

  6. Reconnection X-winds: spin-down of low-mass protostars

    NASA Astrophysics Data System (ADS)

    Ferreira, Jonathan; Pelletier, Guy; Appl, Stefan

    2000-02-01

    We investigate the interaction of a protostellar magnetosphere with a large-scale magnetic field threading the surrounding accretion disc. It is assumed that a stellar dynamo generates a dipolar-type field with its magnetic moment aligned with the disc magnetic field. This leads to a magnetic neutral line at the disc mid-plane and gives rise to magnetic reconnection, converting closed protostellar magnetic flux into open field lines. These are simultaneously loaded with disc material, which is then ejected in a powerful wind. This process efficiently brakes down the protostar to 10-20per cent of the break-up velocity during the embedded phase.

  7. OT2_cceccare_4: Searching for the onset of energetic particle irradiation in Class 0 protostars

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.

    2011-09-01

    Several evidences tell us that the first stages of low mass star formation are very violent, characterized by, among other phenomena, an intense irradiation of energetic (MeV) particles. The goal of this proposal is to search for signs of MeV particle irradiation in a sample of low to intermediate mass Class 0 protostars. At this end, we propose to observe a selected list of high J HCO+ and N2H+ lines in a selected sample of sources. Based on the observations obtained within the KP CHESS, we estimate a total observing time of 20.5 hours.

  8. The V1647 Orionis (IRAS 05436-0007) Protostar and Its Environment

    NASA Astrophysics Data System (ADS)

    McGehee, Peregrine M.; Smith, J. Allyn; Henden, Arne A.; Richmond, Michael W.; Knapp, Gillian R.; Finkbeiner, Douglas P.; Ivezić, Željko; Brinkmann, J.

    2004-12-01

    We present Sloan Digital Sky Survey (SDSS) and United States Naval Observatory (USNO) observations of the V1647 Ori protostar and its surrounding field near NGC 2068. V1647 Ori, the likely driving source for HH 23, brightened significantly in 2003 November. Analysis of SDSS imaging acquired in 1998 November and 2002 February during the quiescent state, recent USNO photometry, and published Two Micron All Sky Survey (2MASS) and Gemini data show that the color changes associated with brightening suggest an EX Lupi type (EXor) outburst rather than a simple dust-clearing event.

  9. Quantum massive conformal gravity

    NASA Astrophysics Data System (ADS)

    Faria, F. F.

    2016-04-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  10. The Evolution of Matter in the Embedded Stages of Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jes; Lommen, D.; Bourke, T. L.; van Dishoeck, E. F.; Wilner, D.; PROSAC Team

    2008-03-01

    One of the most important questions about low-mass star formation is how circumstellar disks form and evolve through the embedded protostellar stages. We present the results of high angular resolution (1-2"; 200-400 AU) observations from a large program, PROSAC, studying embedded low-mass protostars (Class 0 and I objects) with the Submillimeter Array. In total 17 sources have been observed in a variety of lines of common molecular species together with continuum at (sub)millimeter wavelengths. The continuum observations reveal the presence of compact emission on the smallest scales in all sources which can best be attributed to thermal emission from dust in the circumstellar disks. The inferred masses of the central disks are comparable for both Class 0 and I objects suggesting that disks are formed and rapidly grow in size early in the evolution of the protostars. Line observations of the more evolved Class I systems reveal rotational signatures which in turn constrain the central stellar masses. Together with single-dish continuum data, these observations for the first time allow us to trace evolution of the mass of the stars, disks and envelopes through these pivotal stages.

  11. An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Offner, Stella S. R.; Pineda, Jaime E.; Bourke, Tyler L.; Tobin, John J.; Arce, Héctor G.; Chen, Xuepeng; Di Francesco, James; Johnstone, Doug; Lee, Katherine I.; Myers, Philip C.; Price, Daniel; Sadavoy, Sarah I.; Schnee, Scott

    2016-06-01

    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or <2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ∼108 cm‑3, with the exact density dependent on the viewing geometry. Bonnor–Ebert spheres, on the other hand, remain undetected to central densities at least as high as 1010 cm‑3. Our starless core non-detections are used to infer that either the star-formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor–Ebert spheres. We outline future work necessary to distinguish between these two possibilities.

  12. THE EXTRAORDINARY FAR-INFRARED VARIATION OF A PROTOSTAR: HERSCHEL/PACS OBSERVATIONS OF LRLL54361

    SciTech Connect

    Balog, Zoltan; Detre, Örs H.; Bouwmann, Jeroen; Nielbock, Markus; Klaas, Ulrich; Krause, Oliver; Henning, Thomas; Muzerolle, James; Flaherty, Kevin; Furlan, Elise; Gutermuth, Rob; Juhasz, Attila; Bally, John; Marton, Gabor

    2014-07-10

    We report Herschel/Photodetector Array Camera and Spectrometer (PACS) photometric observations at 70 μm and 160 μm of LRLL54361—a suspected binary protostar that exhibits periodic (P = 25.34 days) flux variations at shorter wavelengths (3.6 μm and 4.5 μm) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well correlated with the variations at shorter wavelengths. At 70 μm the object increases its flux by a factor of six while at 160 μm the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 μm with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation, indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and envelope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.

  13. A Census of Diverse Environments in Infrared Dark Clouds: Where Do Massive Stars Form?

    NASA Astrophysics Data System (ADS)

    Dirienzo, William J.; Brogan, C. L.; Indebetouw, R.; Chandler, C. J.; Devine, K. E.

    2014-01-01

    Infrared Dark Clouds (IRDCs) harbor the earliest phases of massive star formation and complex astrochemistry. IRDCs are extraordinarily dense and cold objects of dust and molecular gas arranged in filamentary or globule structures with compact cores. Many of the compact molecular and millimeter cores are known to host massive protostars from a variety of star formation indicators. We have used the GBT and the VLA to map ammonia and CCS in nine IRDCs to reveal the temperature, density, and velocity structures and explore chemical evolution in the dense cores. Ammonia is an ideal molecular tracer for these environments as its critical density is appropriate for IRDCs, and nitrogen-bearing species are not prone to dust-grain freeze-out even in these cold regions. The hyperfine structure allows unambiguous determination of the optical depth and thus the column density, and using two rotational transitions allows determination of the temperature. By imaging ammonia and CCS in these regions, we can use their abundance ratios as “chemical clocks” to determine whether the starless cores are indeed less evolved. With this data we will begin to address the questions of how these two classes of cores are alike and different and whether the quiescent cores are likely to eventually form stars or not. We further investigate the structure and kinematics of the IRDCs, revealing gradients and colliding sub-clouds that elucidate the formation process of these structures and their protostars. A comprehensive study of IRDCs in molecular gas tracers with both total power and high resolution is necessary to truly understand the relationship between IRDCs and massive star formation.

  14. A distance-limited sample of massive molecular outflows

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.

    2015-10-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

  15. Effects of Ionization Feedback in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Banerjee, R.; Klessen, R. S.; Mac Low, M.

    2009-01-01

    We present 3D high-resolution radiation-hydrodynamical simulations of massive star formation. We model the collapse of a massive molecular cloud core forming a high-mass star in its center. We use a version of the FLASH code that has been extended by including sink particles which are a source of both ionizing and non-ionizing radiation. The sink particles evolve according to a prestellar model which determines the stellar and accretion luminosities. Radiation transfer is done using the hybrid characteristics raytracing approach on the adaptive mesh developed by Rijkhorst et al. (2006). The radiative transfer module has been augmented to allow simulations with arbitrarily high resolution. Our highest resolution models resolve the disk scale height by at least 16 zones. Opacities for non-ionizing radiation have been added to account for the accretion heating, which is expected to be strong at the initial stage of star formation and believed to prevent fragmentation. Studies of collapsing massive cores show the formation of a gravitationally highly unstable disk. The accretion heating is not strong enough to suppress this instability. The ionizing radiation builds up an H II region around the protostar, which destroys the accretion disk close to it. We describe preliminary results, with a focus on how long the H II region remains confined by the accretion flow, and whether it can ever cut off accretion entirely. Thomas Peters acknowledges support from a Kade Fellowship for his visit to the American Museum of Natural History. He is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg and the Heidelberg Graduate School of Fundamental Physics. We also thank the DFG for support via the Emmy Noether Grant BA 3607/1 and the individual grant KL1358/5.

  16. Introduction to Massive Gravity

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia

    We review recent progress on massive gravity. We first show how extra dimensions prove to be a useful tool in building theories of modified gravity, including Galileon theories and their DBI extensions. DGP arises from an infinite size extra dimension, and we show how massive gravity arises from `deconstructing' the extra dimension in the vielbein formalism. We then explain how the ghost issue is resolved in that special theory of massive gravity. The viability of such models relies on the Vainshtein mechanism which is best described in terms of Galileons. While its implementation is successful in most of these models it also comes hand in hand with superluminalities and strong coupling which are reviewed and their real consequences are discussed.

  17. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2

    SciTech Connect

    Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Stacey, Gordon; Osorio, Mayra; Macias, Enrique; Thomas Megeath, S.; Fischer, William J.; Ali, Babar; D'Alessio, Paola; De Buizer, James M.; Shuping, Ralph Y.; Keller, Luke D.; Morris, Mark R.; Remming, Ian S.; Stanke, Thomas; Stutz, Amelia; and others

    2012-04-20

    We examine eight young stellar objects in the OMC-2 star-forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, Two Micron All Sky Survey, Atacama Pathfinder Experiment, and other results in the literature. We show the spectral energy distributions (SED) of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modeled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 Multiplication-Sign 0.25 pc region; these sources have luminosities ranging from 300 L{sub Sun} to 20 L{sub Sun }. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of {approx}50 L{sub Sun} and mass infall rate of {approx}10{sup -4} M{sub Sun} yr{sup -1}.

  18. Subarcsecond Analysis of the Infalling-Rotating Envelope around the Class I Protostar IRAS 04365+2535

    NASA Astrophysics Data System (ADS)

    Sakai, Nami; Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Sakai, Takeshi; Hirota, Tomoya; Aikawa, Yuri; Ceccarelli, Cecilia; Lefloch, Bertrand; Caux, Emmanuel; Vastel, Charlotte; Kahane, Claudine; Yamamoto, Satoshi

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling-rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling-rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  19. Resummation of Massive Gravity

    SciTech Connect

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2011-06-10

    We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

  20. RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. II. EFFECTS OF THE OUTFLOW

    SciTech Connect

    Zhang, Yichen; Tan, Jonathan C.; McKee, Christopher F. E-mail: jt@astro.ufl.edu

    2013-04-01

    We present radiation transfer simulations of a massive (8 M{sub Sun }) protostar forming from a massive (M{sub c} = 60 M{sub Sun }) protostellar core, extending the model developed by Zhang and Tan. The two principal improvements are (1) developing a model for the density and velocity structure of a disk wind that fills the bipolar outflow cavities, based in part on the disk-wind model of Blandford and Payne; and (2) solving for the radially varying accretion rate in the disk due to a supply of mass and angular momentum from the infall envelope and their loss to the disk wind. One consequence of the launching of the disk wind is a reduction in the amount of accretion power that is radiated by the disk. We also include a non-Keplerian potential appropriate for a growing, massive disk. For the transition from dusty to dust-free conditions where gas opacities dominate, we now implement a gradual change as a more realistic approximation of dust destruction. We study how the above effects, especially the outflow, influence the spectral energy distributions (SEDs) and the synthetic images of the protostar. Dust in the outflow cavity significantly affects the SEDs at most viewing angles. It further attenuates the short-wavelength flux from the protostar, controlling how the accretion disk may be viewed, and contributes a significant part of the near- and mid-IR fluxes. These fluxes warm the disk, boosting the mid- and far-IR emission. We find that for near face-on views, i.e., looking down the outflow cavity (although not too close to the axis), the SED from the near-IR to about 60 {mu}m is very flat, which may be used to identify such systems. We show that the near-facing outflow cavity and its walls are still the most significant features in images up to 70 {mu}m, dominating the mid-IR emission and determining its morphology. The thermal emission from the dusty outflow itself dominates the flux at {approx}20 {mu}m. The detailed distribution of the dust in the outflow

  1. Supertwistors and massive particles

    SciTech Connect

    Mezincescu, Luca; Routh, Alasdair J.; Townsend, Paul K.

    2014-07-15

    In the (super)twistor formulation of massless (super)particle mechanics, the mass-shell constraint is replaced by a “spin-shell” constraint from which the spin content can be read off. We extend this formalism to massive (super)particles (with N-extended space–time supersymmetry) in three and four space–time dimensions, explaining how the spin-shell constraints are related to spin, and we use it to prove equivalence of the massive N=1 and BPS-saturated N=2 superparticle actions. We also find the supertwistor form of the action for “spinning particles” with N-extended worldline supersymmetry, massless in four dimensions and massive in three dimensions, and we show how this simplifies special features of the N=2 case. -- Highlights: •Spin-shell constraints are related to Poincaré Casimirs. •Twistor form of 4D spinning particle for spin N/2. •Twistor proof of scalar/antisymmetric tensor equivalence for 4D spin 0. •Twistor form of 3D particle with arbitrary spin. •Proof of equivalence of N=1 and N=2 BPS massive 4D superparticles.

  2. New massive supergravity multiplets

    NASA Astrophysics Data System (ADS)

    Gates, S. James, Jr.; Kuzenko, Sergei M.; Tartaglino-Mazzucchelli, Gabriele

    2007-02-01

    We present new off-shell formulations for the massive superspin-3/2 multiplet. In the massless limit, they reduce respectively to the old minimal (n = -1/3) and non-minimal (n≠-1/3,0) linearized formulations for 4D Script N = 1 supergravity. Duality transformations, which relate the models constructed, are derived.

  3. Massive Stars: Stellar Populations

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana

    2007-07-01

    Massive stars dominate the chemical and dynamical evolution of the ISM, and ultimately of their parent galaxy and the universe, because of their fast evolution and intense supersonic winds. Four decades ago, the first rocket UV spectra of massive stars revealed the importance of mass loss and began to change our understanding of their evolution. Recently, advances in stellar modeling, and the observation of crucial ions in the far-UV spectral range, led to the resolution of long-standing issues in our understanding of massive star atmospheres. A revised (downwards) calibration of Teff for early spectral types is emerging as a result. Meanwhile, HST imaging, and large ground-based telescopes with multislit spectroscopic capabilities, had opened the possibility of resolved studies of stellar populations in Local Group galaxies, which sample a variety of metallicity and environment conditions. More recently, GALEX is providing a global, deep view of the young stellar populations for hundreds of nearby galaxies, revealing their recent star-formation history and modalities. The wide-field coverage and sensitivity of the GALEX UV imaging, easily detecting extremely low levels of star formation, is again changing some of our views on massive star formation in galaxies.

  4. Massive and Open

    ERIC Educational Resources Information Center

    Fasimpaur, Karen

    2013-01-01

    MOOCs--massive open online courses--are all the rage these days, with hundreds of thousands of participants signing up and investors plunking down millions to get a piece of the pie. Why is there so much excitement about this new disruptive form of online learning, and how does this model apply to professional learning for teachers? Traditional…

  5. The structure of NGC 7538 IRS9: A massive star forming region with spatially constrained warm gas

    NASA Astrophysics Data System (ADS)

    Doty, Steven; Bowers, Brant

    2015-08-01

    An important question in the study of massive protostars is the physical structure of the star forming region. An extension of the Shu infall model to high masses would suggest the existence of a spherical envelope surrounding a central, massive disk. On the other hand, turbulence, outflows, instabilities, or other forces might disrupt such a disk or prevent one from forming in the first place. Observations of acetylene in ro-vibrational absorption on GEMINI provide spatially constrained observations of high-lying transitions. We model the absorption and compare the model predictions with the observations, in order to constrain the models. The implications for the physical structure are discussed, and future observations to test the results are suggested.

  6. Subarcsecond resolution observations of warm water toward three deeply embedded low-mass protostars

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; van Dishoeck, E. F.

    2012-05-01

    Context. Water is present during all stages of star formation: as ice in the cold outer parts of protostellar envelopes and dense inner regions of circumstellar disks, and as gas in the envelopes close to the protostars, in the upper layers of circumstellar disks and in regions of powerful outflows and shocks. Because of its key importance in the understanding of its origin in our own solar system, following the evolution of water all the way to the planet-forming disk is a fundamental task in research in star formation and astrochemistry. Aims: In this paper we probe the mechanism regulating the warm gas-phase water abundance in the innermost hundred AU of deeply embedded (Class 0) low-mass protostars, and investigate its chemical relationship to other molecular species during these stages. Methods: Millimeter wavelength thermal emission from the para-H218O 31,3 - 22,0 (Eu = 203.7 K) line was imaged at high angular resolution (0.75 arcsec; 190 AU) with the IRAM Plateau de Bure Interferometer toward the deeply embedded low-mass protostars NGC 1333-IRAS2A and NGC 1333-IRAS4A. Results: Compact H218O emission is detected toward IRAS2A and one of the components in the IRAS4A binary; in addition CH3OCH3, C2H5CN, and SO2 are detected. Extended water emission is seen toward IRAS2A, possibly associated with the outflow. Conclusions: The results complement a previous detection of the same transition toward NGC 1333-IRAS4B. The detections in all systems suggests that the presence of water on ≲ 100 AU scales is a common phenomenon in embedded protostars and that the non-detections of hot water with Spitzer toward the two systems studied in this paper are likely due to geometry and high extinction at mid-infrared wavelengths. We present a scenario in which the origin of the emission from warm water is in a flattened disk-like structure dominated by inward motions rather than rotation. The gas-phase water abundance varies between the sources, but is generally much lower than

  7. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.

    2015-12-01

    We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.

  8. MASSES: An SMA Survey of Protostars Aimed at Understanding How Stars Gain Their Mass

    NASA Astrophysics Data System (ADS)

    Dunham, Michael; MASSES Team

    2016-01-01

    Low-mass stars form from the gravitational collapse of dense molecular cloud cores. While a general consensus picture of this collapse process has emerged, many details on how mass is transferred from cores to stars remain poorly understood. MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA), an SMA large-scale project, is surveying the complete population of Class 0 and Class I protostars in the nearby Perseus Molecular Cloud in order to reveal the interplay between fragmentation, conservation of angular momentum, and mass outflows in accreting mass and setting the final masses of stars. In this presentation I will highlight key science results from the first 1.5 years of observations.

  9. The protostar OMC-2 FIR 4: Results from the CHESS Herschel/HIFI spectral survey

    NASA Astrophysics Data System (ADS)

    Kama, Mihkel; Lopez-Sepulcre, Ana; Ceccarelli, Cecilia; Dominik, Carsten; Caux, Emmanuel; Fuente, Asuncion

    2013-07-01

    The intermediate-mass protostar OMC-2 FIR 4 in Orion is the focus of several ongoing studies, including a CHESS key programme Herschel/HIFI spectral survey. In this poster, we review recent CHESS results on this source, including the properties of the central hot core, the presence of a compact outflow, the spatial variation of the chemical composition, and the discovery of a tenuous foreground cloud. The HIFI spectrum of FIR 4 contains 719 lines from 40 species and isotopologs. Cooling by lines detectable with our sensitivity contributes 2% of the total in the 480 to 1900 GHz range. The total line flux is dominated by CO, followed by H2O and CH3OH. Initial comparisons with spectral surveys of other sources will also be presented.

  10. The first Galaxy scale hunt for the youngest high-mass protostars

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Bontemps, S.; Wyrowski, F.; Menten, K. M.; Leurini, S.; Urquhart, J. S.; Motte, F.; Schuller, F.; Testi, L.; Bronfman, L.; Beuther, H.; Longmore, S.; Commerçon, B.; Henning, Th.; Palau, A.; Tan, J. C.; Fuller, G.; Peretto, N.; Duarte-Cabral, A.; Traficante, A.

    2016-05-01

    The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M⊙ on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Our first results using the intermediate scales revealed by the ALMA ACA array providing 3-5'' angular resolution, corresponding to ˜0.05 - 0.1 pc size-scales, reveals a sample of compact objects. These massive, dense cores are on average two-times more massive than previous studies of similar types of objects. We expect that once the full survey is completed, it will provide a comprehensive view on the origin of the most massive stars.

  11. DETECTION OF FORMAMIDE, THE SIMPLEST BUT CRUCIAL AMIDE, IN A SOLAR-TYPE PROTOSTAR

    SciTech Connect

    Kahane, C.; Ceccarelli, C.; Faure, A.

    2013-02-01

    Formamide (NH{sub 2}CHO), the simplest possible amide, has recently been suggested to be a central species in the synthesis of metabolic and genetic molecules, the chemical basis of life. In this Letter, we report the first detection of formamide in a protostar, IRAS 16293-2422, which may be similar to the Sun and solar system progenitor. The data combine spectra from the millimeter and submillimeter TIMASSS survey with recent, more sensitive observations at the IRAM 30 m telescope. With an abundance relative to H{sub 2} of {approx}10{sup -10}, formamide appears as abundant in this solar-type protostar as in the two high-mass star-forming regions, Orion-KL and SgrB2, where this species has previously been detected. Given the largely different UV-illuminated environments of the three sources, the relevance of UV photolysis of interstellar ices in the synthesis of formamide is therefore questionable. Assuming that this species is formed in the gas phase via the neutral-neutral reaction between the radical NH{sub 2} and H{sub 2}CO, we predict an abundance in good agreement with the value derived from our observations. The comparison of the relative abundance [NH{sub 2}CHO]/[H{sub 2}O] in IRAS 16293-2422 and in the coma of the comet Hale-Bopp supports the similarity between interstellar and cometary chemistry. Our results thus suggest that the abundance of some cometary organic volatiles could reflect gas phase rather than grain-surface interstellar chemistry.

  12. HOPS 136: An edge-on orion protostar near the end of envelope infall

    SciTech Connect

    Fischer, William J.; Megeath, S. Thomas; Tobin, John J.; Hartmann, Lee; Kounkel, Marina; Stutz, Amelia M.; Poteet, Charles A.; Ali, Babar; Manoj, P.; Remming, Ian; Stanke, Thomas; Watson, Dan M.

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  13. Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission

    NASA Astrophysics Data System (ADS)

    Imai, Hiroshi; Iwata, Takahiro; Miyoshi, Makoto

    1999-08-01

    We made VLBI observations of the water maser emission associated with a protostar, IRAS 16293-2422, using the Kashima-Nobeyama Interferometer (KNIFE) and the Japanese domestic VLBI network (J-Net).\\footnote[2]. These distributions of water maser features showed the blue-shifted and red-shifted components separated in the north-south direction among three epochs spanning three years. The direction of the separation was perpendicular to the molecular outflow and parallel to the elongation of the molecular disk. These steady distributions were successfully modeled by a rotating-infalling disk with an outer radius of 100 AU around a central object with a mass of 0.3 MO . The local specific angular momentum of the disk was calculated to be 0.2-1.0times 10-3 km s-1 pc at a radius of 20-100 AU. This value is roughly equal to that of the disk of IRAS 00338+6312 in L1287 and those of the molecular disks around the protostars in the Taurus molecular cloud. The relatively large disk radius of about 100 AU traced by water maser emission suggests that impinging clumps onto the disk should be hotter than 200 K to excite the water maser emission. Mizusawa, Nobeyama, and Kagoshima stations are operated by staff members of National Astronomical Observatory of the Ministry of Education, Science, Sports and Culture. Kashima station is operated by staff members of Communications Research Laboratory of the Ministry of Posts and Telecomunications. The recent status of J-Net is seen in the WWW home page: http://www.nro.nao.ac.jp/\\ \\ miyaji/Jnet.

  14. MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527

    SciTech Connect

    Tobin, John J.; Hartmann, Lee; Calvet, Nuria; Chiang, Hsin-Fang; Looney, Leslie W.; Wilner, David J.; Loinard, Laurent; D'Alessio, Paola

    2013-07-01

    We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at {lambda} = 870 {mu}m and 3.4 mm from the Submillimeter Array and Combined Array for Research in Millimeter Astronomy. We detect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M{sub Sun }, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed: {alpha} {approx} 2, implying a dust opacity spectral index {beta} {approx} 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved L' image, spectral energy distribution, and mid-infrared spectrum. The best-fitting model has a disk radius of R = 125 AU, is highly flared (H{proportional_to}R {sup 1.3}), has a radial density profile {rho}{proportional_to}R {sup -2.5}, and has a mass of 0.0075 M{sub Sun }. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 are comparable to disks around pre-main-sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of {approx}1 {mu}m-sized dust grains.

  15. Skyrmions with massive pions

    SciTech Connect

    Battye, Richard A.; Sutcliffe, Paul M.

    2006-05-15

    In the Skyrme model with massless pions, the minimal energy multi-Skyrmions are shell-like, with the baryon density localized on the edges of a polyhedron that is approximately spherical and generically of the fullerene-type. In this paper we show that in the Skyrme model with massive pions these configurations are unstable for sufficiently large baryon number. Using numerical simulations of the full nonlinear field theory, we show that these structures collapse to form qualitatively different stable Skyrmion solutions. These new Skyrmions have a flat structure and display a clustering phenomenon into lower charge components, particularly components of baryon numbers three and four. These new qualitative features of Skyrmions with massive pions are encouraging in comparison with the expectations based on real nuclei.

  16. Massive cold cloud clusters

    NASA Astrophysics Data System (ADS)

    Toth, L. Viktor; Marton, Gabor; Zahorecz, Sarolta

    2015-08-01

    The all-sky Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015) allows an almost unbiased study of the early phases of star-formation in our Galaxy. Several thousand of the clumps have also distance estimates allowing a mass, and density determination. The nature of Planck clumps varies from IRDCs to tiny nearby cold clouds with masses ranging from one to several tens of thousands solar masses. Some of the clumps are embedded in GMCs, others are isolated. Some are close or even very close to OB associations, while others lay far from any UV luminous objects.The small scale clustering of these objects was studied with the improved Minimum Spanning Tree method of Cartwright & Whitworth identifying groups in 3D space. As a result also massive cold cloud clusters were identified. We analyse the MST structures, and discuss their relation to ongoing and future massive star formation.

  17. Quasi-stars: accreting black holes inside massive envelopes

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Rossi, Elena M.; Armitage, Philip J.

    2008-07-01

    We study the structure and evolution of `quasi-stars', accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate on to the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass, M* + MBH ~ M*. This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasi-stars. We show that the photospheric temperature of the envelope scales as Tph ~ M-2/5BHM7/20*, and decreases with time while the black hole mass increases. Once Tph < 104 K, the photospheric opacity drops precipitously and Tph hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hydrostatic solution for the convective envelope exists. For metal-free (Population III) opacities, this limiting temperature is approximately 4000 K. After a quasi-star reaches this limiting temperature, it is rapidly dispersed by radiation pressure. We find that black hole seeds with masses between 103 and 104Msolar could form via this mechanism in less than a few Myr.

  18. New improved massive gravity

    NASA Astrophysics Data System (ADS)

    Dereli, T.; Yetişmişoğlu, C.

    2016-06-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.

  19. Young Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gieles, Mark

    2010-09-01

    Young massive clusters (YMCs) are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few YMCs that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. YMCs are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in YMCs, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review, we focus on star clusters younger than ˜100 Myr, more than a few current crossing times old, and more massive than ˜104M⊙; the size of the cluster and its environment are considered less relevant as distinguishing parameters. We describe the global properties of the currently known young massive star clusters in the Local Group and beyond, and discuss the state of the art in observations and dynamical modeling of these systems. In order to make this review readable by observers, theorists, and computational astrophysicists, we also review the cross-disciplinary terminology.

  20. HOW MASSIVE ARE MASSIVE COMPACT GALAXIES?

    SciTech Connect

    Muzzin, Adam; Van Dokkum, Pieter; Marchesini, Danilo; Franx, Marijn; Kriek, Mariska; Labbe, Ivo

    2009-11-20

    Using a sample of nine massive compact galaxies at zapprox 2.3 with rest-frame optical spectroscopy and comprehensive U -> 8 mum photometry, we investigate how assumptions in spectral energy distribution (SED) modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fitted to tau-models with a range of metallicities, dust laws, and different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than, our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual and Charlot; however, when using models with updated treatment of TP-AGB stars, the fits are poorer. The two-component models predict masses that are 0.08-0.22 dex larger than the tau-models. We also test the effect of a bottom-light initial mass function (IMF) and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.

  1. The Formation of Massive Primordial Stars in the Presence of Moderate UV Backgrounds

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S.; Grassi, T.; Spaans, M.

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H-. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 107 M ⊙. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J 21 assuming a blackbody radiation spectrum with a characteristic temperature of T rad = 104 K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 102-104 solar mass protostars are formed when halos are irradiated by J 21 = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M ⊙ yr-1 are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  2. The formation of massive primordial stars in the presence of moderate UV backgrounds

    SciTech Connect

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S.; Grassi, T.; Spaans, M.

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  3. Outflow-confined HII Regions. I. First Signposts of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei E. I.; Tan, Jonathan C.; Zhang, Yichen

    2016-02-01

    We present an evolutionary sequence of models of the photoionized disk-wind outflow around forming massive stars based on the Core Accretion model. The outflow is expected to be the first structure to be ionized by the protostar and can confine the expansion of the H ii region, especially in lateral directions in the plane of the accretion disk. The ionizing luminosity increases as Kelvin-Helmholz contraction proceeds, and the H ii region is formed when the stellar mass reaches ˜10-20{M}⊙ depending on the initial cloud core properties. Although some part of the outer disk surface remains neutral due to shielding by the inner disk and the disk wind, almost the whole of the outflow is ionized in 103-{10}4 {{y}}{{r}} after initial H ii region formation. Having calculated the extent and temperature structure of the H ii region within the immediate protostellar environment, we then make predictions for the strength of its free-free continuum and recombination line emission. The free-free radio emission from the ionized outflow has a flux density of ˜(20-200) × \\quad {(ν /10{{GHz}})}p {{mJy}} for a source at a distance of 1 kpc with a spectral index p ≃ 0.4-0.7, and the apparent size is typically ˜500 AU at 10 GHz. The {{H}}40α line profile has a width of about 100 {km} {{{s}}}-1. These properties of our model are consistent with observed radio winds and jets around forming massive protostars.

  4. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  5. H II REGIONS: WITNESSES TO MASSIVE STAR FORMATION

    SciTech Connect

    Peters, Thomas; Banerjee, Robi; Klessen, Ralf S.; Low, Mordecai-Mark Mac; Galvan-Madrid, Roberto; Keto, Eric R.

    2010-03-10

    We describe the first three-dimensional simulation of the gravitational collapse of a massive, rotating molecular cloud that includes heating by both non-ionizing and ionizing radiation. These models were performed with the FLASH code, incorporating a hybrid, long characteristic, ray-tracing technique. We find that as the first protostars gain sufficient mass to ionize the accretion flow, their H II regions are initially gravitationally trapped, but soon begin to rapidly fluctuate between trapped and extended states, in agreement with observations. Over time, the same ultracompact H II region can expand anisotropically, contract again, and take on any of the observed morphological classes. In their extended phases, expanding H II regions drive bipolar neutral outflows characteristic of high-mass star formation. The total lifetime of H II regions is given by the global accretion timescale, rather than their short internal sound-crossing time. This explains the observed number statistics. The pressure of the hot, ionized gas does not terminate accretion. Instead, the final stellar mass is set by fragmentation-induced starvation. Local gravitational instabilities in the accretion flow lead to the build-up of a small cluster of stars, all with relatively high masses due to heating from accretion radiation. These companions subsequently compete with the initial high-mass star for the same common gas reservoir and limit its mass growth. This is in contrast to the classical competitive accretion model, where the massive stars are never hindered in growth by the low-mass stars in the cluster. Our findings show that the most significant differences between the formation of low-mass and high-mass stars are all explained as the result of rapid accretion within a dense, gravitationally unstable, ionized flow.

  6. A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY

    SciTech Connect

    Jørgensen, Jes K.; Brinch, Christian; Lindberg, Johan E.; Bisschop, Suzanne E.; Visser, Ruud; Bergin, Edwin A.; Sakai, Nami; Yamamoto, Satoshi; Harsono, Daniel; Van Dishoeck, Ewine F.; Persson, Magnus V.

    2013-12-20

    Low-mass protostars have been suggested to show highly variable accretion rates throughout their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C{sup 17}O, H{sup 13}CO{sup +}, CH{sub 3}OH, C{sup 34}S and C{sub 2}H toward the low-mass protostar IRAS 15398-3359 on 0.''5 (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array at 340 GHz. The resolved images show that the emission from H{sup 13}CO{sup +} is only present in a ring-like structure with a radius of about 1-1.''5 (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO{sup +} is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 yr increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH{sub 3}OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars.

  7. ALMA Observations of the Transition from Infall Motion to Keplerian Rotation around the Late-phase Protostar TMC-1A

    NASA Astrophysics Data System (ADS)

    Aso, Yusuke; Ohashi, Nagayoshi; Saigo, Kazuya; Koyamatsu, Shin; Aikawa, Yuri; Hayashi, Masahiko; Machida, Masahiro N.; Saito, Masao; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei

    2015-10-01

    We have observed the Class I protostar TMC-1A with the Atacama Millimeter/submillimeter Array (ALMA) in the emissions of 12CO and C18O (J = 2–1) and 1.3 mm dust continuum. Continuum emission with a deconvolved size of 0.″50 × 0.″37, perpendicular to the 12CO outflow, is detected. It most likely traces a circumstellar disk around TMC-1A, as previously reported. In contrast, a more extended structure is detected in C18O, although it is still elongated with a deconvolved size of 3.″3 × 2.″2, indicating that C18O traces mainly a flattened envelope surrounding the disk and the central protostar. C18O shows a clear velocity gradient perpendicular to the outflow at higher velocities, indicative of rotation, while an additional velocity gradient along the outflow is found at lower velocities. The radial profile of the rotational velocity is analyzed in detail, finding that it is given as a power law ∝r‑a with an index of ∼0.5 at higher velocities. This indicates that the rotation at higher velocities can be explained as Keplerian rotation orbiting a protostar with a dynamical mass of 0.68 {M}ȯ (inclination corrected). The additional velocity gradient of C18O along the outflow is considered to be mainly infall motions in the envelope. Position–velocity diagrams made from models consisting of an infalling envelope and a Keplerian disk are compared with the observations, revealing that the observed infall velocity is ∼0.3 times smaller than the free-fall velocity yielded by the dynamical mass of the protostar. Magnetic fields could be responsible for the slow infall velocity. A possible scenario of Keplerian disk formation is discussed.

  8. Connecting low- and high-mass star formation: the intermediate-mass protostar IRAS 05373+2349 VLA 2

    NASA Astrophysics Data System (ADS)

    Brown, G. M.; Johnston, K. G.; Hoare, M. G.; Lumsden, S. L.

    2016-08-01

    Until recently, there have been few studies of the protostellar evolution of intermediate-mass (IM) stars, which may bridge the low-and high-mass regimes. This paper aims to investigate whether the properties of an IM protostar within the IRAS 05373+2349 embedded cluster are similar to that of low- and/or high-mass protostars. We carried out Very Large Array as well as Combined Array for Research in Millimeter Astronomy continuum and 12CO(J=1-0) observations, which uncover seven radio continuum sources (VLA 1-7). The spectral index of VLA 2, associated with the IM protostar is consistent with an ionised stellar wind or jet. The source VLA 3 is coincident with previously observed H2 emission line objects aligned in the north-south direction (P.A. -20 to -12°), which may be either an ionised jet emanating from VLA 2 or (shock-)ionised cavity walls in the large-scale outflow from VLA 2. The position angle between VLA 2 and 3 is slightly misaligned with the large-scale outflow we map at ˜5-arcsec resolution in 12CO (P.A. ˜30°), which in the case of a jet suggests precession. The emission from the mm core associated with VLA 2 is also detected; we estimate its mass to be 12-23 M⊙, depending on the contribution from ionised gas. Furthermore, the large-scale outflow has properties intermediate between outflows from low- and high-mass young stars. Therefore, we conclude that the IM protostar within IRAS 05373+2349 is phenomenologically as well as quantitatively intermediate between the low- and high-mass domains.

  9. DISK AND ENVELOPE STRUCTURE IN CLASS 0 PROTOSTARS. II. HIGH-RESOLUTION MILLIMETER MAPPING OF THE SERPENS SAMPLE

    SciTech Connect

    Enoch, Melissa L.; Duchene, Gaspard; Wright, Melvyn C. H.; Corder, Stuartt; Bolatto, Alberto D.; Teuben, Peter J.; Zauderer, B. Ashley; Culverhouse, Thomas L.; Lamb, James W.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L.; Kwon, Woojin; Marrone, Daniel P.; Perez, Laura M.

    2011-08-01

    We present high-resolution CARMA 230 GHz continuum imaging of nine deeply embedded protostars in the Serpens Molecular Cloud, including six of the nine known Class 0 protostars in Serpens. This work is part of a program to characterize disk and envelope properties for a complete sample of Class 0 protostars in nearby low-mass star-forming regions. Here, we present CARMA maps and visibility amplitudes as a function of uv-distance for the Serpens sample. Observations are made in the B, C, D, and E antenna configurations, with B configuration observations utilizing the CARMA Paired Antenna Calibration System. Combining data from multiple configurations provides excellent uv-coverage (4-500 k{lambda}), allowing us to trace spatial scales from 10{sup 2} to 10{sup 4} AU. We find evidence for compact disk components in all of the observed Class 0 protostars, suggesting that disks form at very early times (t < 0.2 Myr) in Serpens. We make a first estimate of disk masses using the flux at 50 k{lambda}, where the contribution from the envelope should be negligible, assuming an unresolved disk. The resulting disk masses range from 0.04 M{sub sun} to 1.7 M{sub sun}, with a mean of approximately 0.2 M{sub sun}. Our high-resolution maps are also sensitive to binary or multiple sources with separations {approx}> 250 AU, but significant evidence of multiplicity on scales <2000 AU is seen in only one source.

  10. EARLY-STAGE MASSIVE STAR FORMATION NEAR THE GALACTIC CENTER: Sgr C

    SciTech Connect

    Kendrew, S.; Johnston, K.; Beuther, H.; Ginsburg, A.; Bally, J.; Battersby, C.; Cyganowski, C. J.

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ∼10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H{sub 2} and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ∼10{sup 3} M {sub ☉}, with column densities of 1-2 × 10{sup 24} cm{sup –2}. We show the host molecular cloud to hold ∼10{sup 5} M {sub ☉} of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  11. A distance-limited sample of massive star-forming cores from the RMS

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Lumsden, S. L.; Moore, T. J. T.; Mottram, J. C.; Urquhart, J. S.; Cicchini, A.

    2015-09-01

    We analyse C18O (J = 3-2) data from a sample of 99 infrared (IR)-bright massive young stellar objects (MYSOs) and compact H II regions that were identified as potential molecular-outflow sources in the Red MSX Source survey. We extract a distance-limited (D < 6 kpc) sample shown to be representative of star formation covering the transition between the source types. At the spatial resolution probed, Larson-like relationships are found for these cores, though the alternative explanation, that Larson's relations arise where surface-density-limited samples are considered, is also consistent with our data. There are no significant differences found between source properties for the MYSOs and H II regions, suggesting that the core properties are established prior to the formation of massive stars, which subsequently have little impact at the later evolutionary stages investigated. There is a strong correlation between dust-continuum and C18O-gas masses, supporting the interpretation that both trace the same material in these IR-bright sources. A clear linear relationship is seen between the independently established core masses and luminosities. The position of MYSOs and compact H II regions in the mass-luminosity plane is consistent with the luminosity expected from the most massive protostar in the cluster when using an ˜40 per cent star formation efficiency and indicates that they are at a similar evolutionary stage, near the end of the accretion phase.

  12. Properties of Protostars in the Elephant Trunk in the Globule IC 1396A

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Faied, Dohy; Rho, Jeonghee; Boogert, Adwin; Tappe, Achim; Jarrett, Thomas H.; Morris, Patrick; Cambrésy, Laurent; Palla, Francesco; Valdettaro, Riccardo

    2009-01-01

    Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, epsilon, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10-6 M sun yr-1 and present stellar masses 0.1-2 M sun. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γ b , has luminosity less than 0.1 L sun, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γ b . The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and

  13. Water deuterium fractionation in the low-mass protostar NGC1333-IRAS2A

    NASA Astrophysics Data System (ADS)

    Liu, F.-C.; Parise, B.; Kristensen, L.; Visser, R.; van Dishoeck, E. F.; Güsten, R.

    2011-03-01

    Context. Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star forming regions. Previous studies of the molecular deuteration toward the solar-type class 0 protostar, IRAS 16293-2422, have shown that the D/H ratio of water is significantly lower than other grain-surface-formed molecules. It is not clear if this property is general or particular to this source. Aims: In order to see if the results toward IRAS 16293-2422 are particular, we aimed at studying water deuterium fractionation in a second low-mass solar-type protostar, NGC1333-IRAS2A. Methods: Using the 1-D radiative transfer code RATRAN, we analyzed five HDO transitions observed with the IRAM 30 m, JCMT, and APEX telescopes. We assumed that the abundance profile of HDO in the envelope is a step function, with two different values in the inner warm (T > 100 K) and outer cold (T < 100 K) regions of the protostellar envelope. Results: The inner and outer abundance of HDO is found to be well constrained at the 3σ level. The obtained HDO inner and outer fractional abundances are xHDO_in = 6.6 × 10-8-1.0 × 10-7(3σ) and x^{HDO}out=9×10-11= 9 × 10-11-1.0-1.8 × 10-9(3σ). These values are close to those in IRAS 16293-2422, which suggests that HDO may be formed by the same mechanisms in these two solar-type protostars. Taking into account the (rather poorly onstrained) H2O abundance profile deduced from Herschel observations, the derived HDO/H2O in the inner envelope is ≥1% and in the outer envelope it is 0.9%-18%. These values are more than one order of magnitude higher than what is measured in comets. If the same ratios apply to the protosolar nebula, this would imply that there is some efficient reprocessing of the material between the protostellar and cometary phases. Conclusions: The H2O inner fractional

  14. Observations of water with Herschel/HIFI toward the high-mass protostar AFGL 2591

    NASA Astrophysics Data System (ADS)

    Choi, Y.; van der Tak, F. F. S.; van Dishoeck, E. F.; Herpin, F.; Wyrowski, F.

    2015-04-01

    Context. Water is an important chemical species in the process of star formation, and a sensitive tracer of physical conditions in star-forming regions because of its rich line spectrum and large abundance variations between hot and cold regions. Aims: We use spectrally resolved observations of rotational lines of H2O and its isotopologs to constrain the physical conditions of the water emitting region toward the high-mass protostar AFGL 2591. Methods: Herschel/HIFI spectra from 552 up to 1669 GHz show emission and absorption in 14 lines of H 2 O, H218O, and H217O. We decompose the line profiles into contributions from the protostellar envelope, the bipolar outflow, and a foreground cloud. We use analytical estimates and rotation diagrams to estimate excitation temperatures and column densities of H2O in these components. Furthermore, we use the non-local thermodynamic equilibrium (LTE) radiative transfer code RADEX to estimate the temperature and volume density of the H2O emitting gas. Results: Assuming LTE, we estimate an excitation temperature of ~42 K and a column density of ~2 × 1014 cm-2 for the envelope and ~45 K and 4 × 1013 cm-2 for the outflow, in beams of 4″ and 30″, respectively. Non-LTE models indicate a kinetic temperature of ~60-230 K and a volume density of 7 × 106-108 cm-3 for the envelope, and a kinetic temperature of ~70-90 K and a gas density of ~107-108 cm-3 for the outflow. The ortho/para ratio of the narrow cold foreground absorption is lower than three (~1.9 ± 0.4), suggesting a low temperature. In contrast, the ortho/para ratio seen in absorption by the outflow is about 3.5 ± 1.0, as expected for warm gas. Conclusions: The water abundance in the outer envelope of AFGL 2591 is ~10-9 for a source size of 4″, similar to the low values found for other high-mass and low-mass protostars, suggesting that this abundance is constant during the embedded phase of high-mass star formation. The water abundance in the outflow is ~10-10 for a

  15. Massively Parallel QCD

    SciTech Connect

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-04-11

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.

  16. The Angular Momentum Content and Evolution of Class I and Flat-Spectrum Protostars

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Greene, Thomas P.; Doppmann, Greg W.; Lada, Charles J.

    2005-06-01

    We report on the angular momentum content of heavily embedded protostars on the basis of our analysis of the projected rotation velocities (vsini) of 38 Class I/flat-spectrum young stellar objects recently presented by Doppmann and others. After correcting for projection effects, we find that infrared-selected Class I/flat-spectrum objects rotate significantly more quickly (median equatorial rotation velocity ~38 km s-1) than classical T Tauri stars (CTTSs; median equatorial rotation velocity ~18 km s-1) in the ρ Ophiuchi and Taurus-Aurigae regions. Projected rotation velocity (vsini) is weakly correlated with Teff in our sample but does not seem to correlate with Brγ emission (a common accretion tracer), the amount of excess continuum veiling (rk), or the slope of the spectral energy distribution between the near- and mid-IR (α). The detected difference in rotation speeds between Class I/flat-spectrum sources and CTTSs proves difficult to explain without some mechanism that transfers angular momentum out of the protostar between the two phases. Assuming that Class I/flat-spectrum sources possess physical characteristics (M*, R*, and B*) typical of pre-main-sequence stars, fully disk-locked Class I objects should have corotation radii within their protostellar disks that match well (within 30%) with predicted magnetic coupling radii. The factor of 2 difference in rotation rates between Class I/flat-spectrum and CTTS sources when interpreted in the context of disk-locking models also implies a factor of 5 or greater difference in mass accretion rate between the two phases. A lower limit of M˙~10-8 Msolar yr-1 for objects transitioning from the Class I/flat-spectrum stage to CTTSs is required to account for the difference in rotation rates of the two classes by angular momentum extraction through a viscous disk via magnetic coupling. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the

  17. Molecular line study of the very young protostar IRAM 04191 in Taurus: infall, rotation, and outflow

    NASA Astrophysics Data System (ADS)

    Belloche, A.; André, P.; Despois, D.; Blinder, S.

    2002-10-01

    We present a detailed millimeter spectroscopic study of the circumstellar environment of the low-luminosity Class 0 protostar IRAM 04191+1522 in the Taurus molecular cloud. Molecular line observations with the IRAM 30 m telescope demonstrate that the ~ 14 000 AU radius protostellar envelope is undergoing both extended infall and fast, differential rotation. Radiative transfer modeling of multitransition CS and C34S maps indicate an infall velocity vinf ~0.15 km s-1 at r ~ 1500 AU and v_inf ~ 0.1 km s-1 up to r ~ 11 000 AU, as well as a rotational angular velocity Omega ~ 3.9 x 10-13 rad s-1, strongly decreasing with radius beyond 3500 AU down to a value Omega ~ 1.5-3x 10-14 rad s-1 at ~ 11 000 AU. Two distinct regions, which differ in both their infall and their rotation properties, therefore seem to stand out: the inner part of the envelope (r lower .5ex<~ a 2000-4000 AU) is rapidly collapsing and rotating, while the outer part undergoes only moderate infall/contraction and slower rotation. These contrasted features suggest that angular momentum is conserved in the collapsing inner region but efficiently dissipated due to magnetic braking in the slowly contracting outer region. We propose that the inner envelope is in the process of decoupling from the ambient cloud and corresponds to the effective mass reservoir ( ~ 0.5 Msun) from which the central star is being built. Comparison with the rotational properties of other objects in Taurus suggests that IRAM 04191 is at a pivotal stage between a prestellar regime of constant angular velocity enforced by magnetic braking and a dynamical, protostellar regime of nearly conserved angular momentum. The rotation velocity profile we derive for the inner IRAM 04191 envelope should thus set some constraints on the distribution of angular momentum on the scale of the outer Solar system at the onset of protostar/disk formation.

  18. Probing the water and CO snow lines in the young protostar NGC 1333-IRAS4B

    NASA Astrophysics Data System (ADS)

    Anderl, Sibylle; Maret, Sébastien; André, Philippe; Maury, Anaëlle; Belloche, Arnaud; Cabrit, Sylvie; Codella, Claudio; Lefloch, Bertrand

    2015-08-01

    Today, we believe that the onset of life requires free energy, water, and complex, probably carbon-based chemistry. In the interstellar medium, complex organic molecules seem to mostly form in reactions happening on the icy surface of dust grains, such that they are released into the gas phase when the dust is heated. The resulting “snow lines”, marking regions where ices start to sublimate, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. Accordingly, it is a crucial piece of information in order to get the full picture of how organic chemistry evolves already at the earliest stages of the formation of sun-like stars. As part of the CALYPSO Large Program (http://irfu.cea.fr/Projets/Calypso/), we have obtained observations of C18O, N2H+ and CH3OH towards the Class 0 protostar NGC 1333-IRAS4B with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. Of these we use the methanol observations as a proxy for the water snow line, assuming methanol is trapped in water ice. The observed anti-correlation of C18O and N2H+, with N2H+ forming a ring around the centrally peaked C18O emission, reveals for the first time the CO snow line in this protostellar envelope, with a radius of ~300 AU. The methanol emission is much more compact than that of C18O, and traces the water snow line with a radius of ~40 AU. We have modeled the emission using a chemical model coupled with a radiative transfer module. We find that the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out

  19. First detection of ND in the solar-mass protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Caux, E.; Hily-Blant, P.; Parise, B.; Pagani, L.; Bottinelli, S.; Maret, S.; Vastel, C.; Ceccarelli, C.; Cernicharo, J.; Henning, T.; Castets, A.; Coutens, A.; Bergin, E. A.; Blake, G. A.; Crimier, N.; Demyk, K.; Dominik, C.; Gerin, M.; Hennebelle, P.; Kahane, C.; Klotz, A.; Melnick, G.; Schilke, P.; Wakelam, V.; Walters, A.; Baudry, A.; Bell, T.; Benedettini, M.; Boogert, A.; Cabrit, S.; Caselli, P.; Codella, C.; Comito, C.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Goldsmith, P. F.; Helmich, F.; Herbst, E.; Jacq, T.; Kama, M.; Langer, W.; Lefloch, B.; Lis, D.; Lord, S.; Lorenzani, A.; Neufeld, D.; Nisini, B.; Pacheco, S.; Pearson, J.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Tak, F. F. S.; van der Wiel, M. H. D.; Viti, S.; Wyrowski, F.; Yorke, H.; Faure, A.; Benz, A.; Coeur-Joly, O.; Cros, A.; Güsten, R.; Ravera, L.

    2010-10-01

    Context. In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Very high molecular D/H ratios have been found for saturated molecules and ions. However, little is known about the deuterium fractionation in radicals, even though simple radicals often represent an intermediate stage in the formation of more complex, saturated molecules. The imidogen radical NH is such an intermediate species for the ammonia synthesis in the gas phase. Many of these light molecules however have their fundamental transitions in the submillimetre domain and their detection is hampered by the opacity of the atmosphere at these wavelengths. Herschel/HIFI represents a unique opportunity to study the deuteration and formation mechanisms of species not observable from the ground. Aims: We searched here for the deuterated radical ND in order to determine the deuterium fractionation of imidogen and constrain the deuteration mechanism of this species. Methods: We observed the solar-mass Class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI in Bands 1a (480-560 GHz), 3b (858-961 GHz), and 4a (949-1061 GHz) as part of the Herschel key programme CHESS (Chemical HErschel Survey of Star forming regions). Results: The deuterated form of the imidogen radical ND was detected and securely identified with 2 hyperfine component groups of its fundamental transition (N = 0-1) at 522.1 and 546.2 GHz, in absorption against the continuum background emitted from the nascent protostar. The 3 groups of hyperfine components of its hydrogenated counterpart NH were also detected in absorption. The absorption arises from the cold envelope, where many deuterated species have been shown to be abundant. The estimated column densities are ~2 × 1014 cm-2 for NH and ~ 1.3 × 1014 cm-2 for ND. We derive a very high

  20. A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS

    SciTech Connect

    Bans, Alissa; Koenigl, Arieh E-mail: akonigl@uchicago.edu

    2012-10-20

    Protostellar systems, ranging from low-luminosity classical T Tauri and Herbig Ae stars to high-luminosity Herbig Be stars, exhibit a near-infrared (NIR) excess in their spectra that is dominated by a bump in the monochromatic luminosity with a peak near 3 {mu}m. The bump can be approximated by a thermal emission component of temperature {approx}1500 K that is of the order of the sublimation temperature of interstellar dust grains. In the currently popular 'puffed-up rim' scenario, the bump represents stellar radiation that propagates through the optically thin inner region of the surrounding accretion disk and is absorbed and reemitted by the dust that resides just beyond the dust sublimation radius r {sub sub}. However, this model cannot account for the strongest bumps measured in these sources, and it predicts a pronounced secondary bounce in the interferometric visibility curve that is not observed. In this paper we present an alternative interpretation, which attributes the bump to reemission of stellar radiation by dust that is uplifted from the disk by a centrifugally driven wind. Winds of this type are a leading candidate for the origin of the strong outflows associated with protostars, and there is observational evidence for disk winds originating on scales {approx}r {sub sub}. Using a newly constructed Monte Carlo radiative transfer code and focusing on low-luminosity sources, we show that this model can account for the NIR excess emission even in bright Herbig Ae stars such as AB Auriga and MWC 275, and that it successfully reproduces the basic features of the visibilities measured in these protostars. We argue that a robust dusty outflow in these sources could be self-limiting-through shielding of the stellar FUV photons-to a relatively narrow launching region between r {sub sub} and {approx}2 r {sub sub}. We also suggest that the NIR and scattered-light variability exhibited by a source like MWC 275 can be attributed in this picture to the uplifting of

  1. Near-IR Spectroscopic Monitoring of Class I Protostars: Variability of Accretion and Wind Indicators

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Greene, Thomas P.

    2014-06-01

    We present the results of a program that monitored the near-IR spectroscopic variability of a sample of 19 embedded protostars. Spectra were taken on time intervals from 2 days to 3 yr, over a wavelength range from 0.85 μm to 2.45 μm, for 4-9 epochs of observations per target. We found that the spectra of all targets are variable and that every emission feature observed is also variable (although not for all targets). With one exception, there were no drastic changes in the continua of the spectra, nor did any line completely disappear, nor did any line appear that was not previously apparent. This analysis focuses on understanding the connection between accretion (traced by H Br γ and CO) and the wind (traced by He I, [Fe II], and sometimes H2). For both accretion and wind tracers, the median variability was constant versus the time interval between observations; however, the maximum variability that we observed increased with the time interval between observations. Extinction is observed to vary within the minimum sampling time of 2 days, suggesting extinguishing material within a few stellar radii at high disk latitudes. The variability of [Fe II] and H2 were correlated for most (but not all) of the 7 young stellar objects showing both features, and the amplitude of the variability depends on the veiling. Although the occurrence of CO and Br γ emission are connected, their variability is uncorrelated, suggesting that these emissions originate in separate regions near the protostar (e.g., disk and wind). The variability of Br γ and wind tracers were found to be positively correlated, negatively correlated, or uncorrelated, depending on the target. The variability of Br γ, [Fe II], and H2 always lies on a plane, although the orientation of the plane in three dimensions depends on the target. While we do not understand all interactions behind the variability that we observed, we have shown that spectroscopic variability is a powerful tool toward understanding

  2. No Keplerian Disk >10 AU Around the Protostar B335: Magnetic Braking or Young Age?

    NASA Astrophysics Data System (ADS)

    Yen, Hsi-Wei; Takakuwa, Shigehisa; Koch, Patrick M.; Aso, Yusuke; Koyamatsu, Shin; Krasnopolsky, Ruben; Ohashi, Nagayoshi

    2015-10-01

    We have conducted Atacama Large Millimeter/Submillimeter Array (ALMA) cycle 2 observations in the 1.3 mm continuum and in the C18O (2-1) and SO (56-45) lines at a resolution of ˜0.″3 toward the Class 0 protostar B335. The 1.3 mm continuum, C18O, and SO emission all show central compact components with sizes of ˜40-180 AU within more extended components. The C18O component shows signs of infalling and rotational motion. By fitting simple kinematic models to the C18O data, the protostellar mass is estimated to be 0.05 {M}⊙ . The specific angular momentum, on a 100 AU scale, is (4.3 ± 0.5) × 10-5 km s-1 pc. A similar specific angular momentum, (3-5) × 10-5 km s-1 pc, is measured on a 10 AU scale from the velocity gradient observed in the central SO component, and there is no clear sign of an infalling motion in the SO emission. By comparing the infalling and rotational motion, our ALMA results suggest that the observed rotational motion has not yet reached Keplerian velocity neither on a 100 AU nor even on a 10 AU scale. Consequently, the radius of the Keplerian disk in B335 (if present) is expected to be 1-3 AU. The expected disk radius in B335 is one to two orders of magnitude smaller than those of observed Keplerian disks around other Class 0 protostars. Based on the observed infalling and rotational motion from 0.1 pc to inner 100 AU scales, there are two possible scenarios to explain the presence of such a small Keplerian disk in B335: magnetic braking and young age. If our finding is the consequence of magnetic braking, ˜50% of the angular momentum of the infalling material within a 1000 AU scale might have been removed, and the magnetic field strength on a 1000 AU scale is estimated to be ˜200 μG. If it is young age, the infalling radius in B335 is estimated to be ˜2700 AU, corresponding to a collapsing timescale of ˜5 × 104 years.

  3. Protostar L1455 IRS1: A Rotating Disk Connecting to a Filamentary Network

    NASA Astrophysics Data System (ADS)

    Chou, Hsuan-Gu; Yen, Hsi-Wei; Koch, Patrick M.; Guilloteau, Stéphane

    2016-06-01

    We conducted IRAM-30 m C18O (2–1) and SMA 1.3 mm continuum 12CO (2–1) and C18O (2–1) observations toward the Class 0/I protostar L1455 IRS1 in Perseus. The IRAM-30 m C18O results show IRS1 in a dense 0.05 pc core with a mass of 0.54 M ⊙, connecting to a filamentary structure. Inside the dense core, compact components of 350 au and 1500 au are detected in the SMA 1.3 mm continuum and C18O, with a velocity gradient in the latter one perpendicular to a bipolar outflow in 12CO, likely tracing a rotational motion. We measure a rotational velocity profile \\propto {r}-0.75 that becomes shallower at a turning radius of ˜200 au, which is approximately the radius of the 1.3 mm continuum component. These results hint at the presence of a Keplerian disk with a radius <200 au around L1455 IRS1 with a protostellar mass of about 0.28 M ⊙. We derive a core rotation that is about one order of magnitude faster than expected. A significant velocity gradient along a filament toward IRS1 indicates that this filament is dynamically important, providing a gas reservoir and possibly responsible for the faster-than-average core rotation. Previous polarimetric observations show a magnetic field aligned with the outflow axis and perpendicular to the associated filament on a 0.1 pc scale, while on the inner 1000 au scale, the field becomes perpendicular to the outflow axis. This change in magnetic field orientations is consistent with our estimated increase in rotational energy from large to small scales that overcomes the magnetic field energy, wrapping the field lines and aligning them with the disk velocity gradient. These results are discussed in the context of the interplay between filament, magnetic field, and gas kinematics from large to small scales. Possible emerging trends are explored with a sample of 8 Class 0/I protostars.

  4. Imaging chemical differentiation around the low-mass protostar L483-mm

    NASA Astrophysics Data System (ADS)

    Jørgensen, J. K.

    2004-09-01

    This paper presents a millimeter wavelength aperture-synthesis study of the spatial variations of the chemistry in the envelope around the deeply embedded low-mass protostar L483-mm on ˜1000 AU (5 arcsec) scales. Lines of 8 molecular species including CN, C18O, CS, C34S, HCN, H13CN, HCO+ and N2H+ have been observed using the Owens Valley Radio Observatory Millimeter Array. Continuum emission at 2.7-3.4 mm is well-fit by an envelope model based on previously reported submillimeter continuum images down to the sensitivity of the interferometer without introducing a disk/compact source, in contrast to what is seen for other protostellar objects. A velocity gradient in dense material close to the central protostar is traced by HCN, CS and N2H+, and is perpendicular to the large-scale CO outflow, with a pattern consistent with rotation around a ˜1 M⊙ central object. Velocity gradients in the propagation direction of the outflow suggest a clear interaction between the outflowing material and ``quiescent'' core. Significant differences are observed between the emission morphologies of various molecular species. The C18O interferometer observations are fit with a ``drop'' abundance profile where CO is frozen-out in a region of the envelope with temperatures lower than 40 K and densities higher than 1.5 × 105 cm-3, which is also required to reproduce previously reported single-dish observations. The N2H+ emission strongly resembles that of NH3 and is found to be absent toward the central continuum source. This is a direct consequence of the high CO abundances in the inner region as illustrated by a chemical model for the L483 envelope. The observed CN emission forms a spatial borderline between the outflowing and quiescent material probed by, respectively, HCO+ and N2H+, and also shows intermediate velocities compared to these two species. A scenario is suggested in which CN is enhanced in the walls of an outflow cavity due to the impact of UV irradiation either from

  5. HERSCHEL/PACS SPECTROSCOPIC SURVEY OF PROTOSTARS IN ORION: THE ORIGIN OF FAR-INFRARED CO EMISSION

    SciTech Connect

    Manoj, P.; Watson, D. M.; Yu, Vincent; Neufeld, D. A.; Megeath, S. T.; Fischer, W. J.; Poteet, C. A.; Vavrek, R.; Tobin, J. J.; Stutz, A. M.; Ali, B.; Di Francesco, J.; Osorio, M.; Maret, S.

    2013-02-15

    We present far-infrared (57-196 {mu}m) spectra of 21 protostars in the Orion molecular clouds. These were obtained with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel Space observatory as part of the Herschel Orion Protostar Survey program. We analyzed the emission lines from rotational transitions of CO, involving rotational quantum numbers in the range J {sub up} = 14-46, using PACS spectra extracted within a projected distance of {approx}<2000 AU centered on the protostar. The total luminosity of the CO lines observed with PACS (L {sub CO}) is found to increase with increasing protostellar luminosity (L {sub bol}). However, no significant correlation is found between L {sub CO} and evolutionary indicators or envelope properties of the protostars such as bolometric temperature, T {sub bol}, or envelope density. The CO rotational (excitation) temperature implied by the line ratios increases with increasing rotational quantum number J, and at least 3-4 rotational temperature components are required to fit the observed rotational diagram in the PACS wavelength range. The rotational temperature components are remarkably invariant between protostars and show no dependence on L {sub bol}, T {sub bol}, or envelope density, implying that if the emitting gas is in local thermodynamic equilibrium, the CO emission must arise in multiple temperature components that remain independent of L {sub bol} over two orders of magnitudes. The observed CO emission can also be modeled as arising from a single-temperature gas component or from a medium with a power-law temperature distribution; both of these require sub-thermally excited molecular gas at low densities (n(H{sub 2}) {approx}< 10{sup 6} cm{sup -3}) and high temperatures (T {approx}> 2000 K). Our results suggest that the contribution from photodissociation regions, produced along the envelope cavity walls from UV-heating, is unlikely to be the dominant component of the CO emission observed with

  6. Observational evidence for dissociative shocks in the inner 100 AU of low-mass protostars using Herschel-HIFI

    NASA Astrophysics Data System (ADS)

    Kristensen, L. E.; van Dishoeck, E. F.; Benz, A. O.; Bruderer, S.; Visser, R.; Wampfler, S. F.

    2013-09-01

    Aims: Herschel-HIFI spectra of H2O towards low-mass protostars show a distinct velocity component not seen in observations from the ground of CO or other species. The aim is to characterise this component in terms of excitation conditions and physical origin. Methods: A velocity component with an offset of ~10 km s-1 detected in spectra of the H2O 110-101 557 GHz transition towards six low-mass protostars in the "Water in star-forming regions with Herschel" (WISH) programme is also seen in higher-excited H2O lines. The emission from this component is quantified and local excitation conditions are inferred using 1D slab models. Data are compared to observations of hydrides (high-J CO, OH+, CH+, C+, OH) where the same component is uniquely detected. Results: The velocity component is detected in all six targeted H2O transitions (Eup ~ 50-250 K), as well as in CO 16-15 towards one source, Ser SMM1. Inferred excitation conditions imply that the emission arises in dense (n ~ 5 × 106-108 cm-3) and hot (T ~ 750 K) gas. The H2O and CO column densities are ≳1016 and 1018 cm-2, respectively, implying a low H2O abundance of ~10-2 with respect to CO. The high column densities of ions such as OH+ and CH+ (both ≳1013 cm-2) indicate an origin close to the protostar where the UV field is strong enough that these species are abundant. The estimated radius of the emitting region is 100 AU. This component likely arises in dissociative shocks close to the protostar, an interpretation corroborated by a comparison with models of such shocks. Furthermore, one of the sources, IRAS 4A, shows temporal variability in the offset component over a period of two years which is expected from shocks in dense media. High-J CO gas detected with Herschel-PACS with Trot ~ 700 K is identified as arising in the same component and traces the part of the shock where H2 reforms. Thus, H2O reveals new dynamical components, even on small spatial scales in low-mass protostars. Herschel is an ESA space

  7. Inconsistency of topologically massive hypergravity

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Deser, S.

    1985-01-01

    The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.

  8. Higher dimensional nonlinear massive gravity

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2016-05-01

    Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.

  9. ISO Detection of CO(+) toward the protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.; Caux, E.; Wolfire, M.; Rudolph, A.; Nisini, B.; Saraceno, P.; White, G. J.

    1998-03-01

    In this letter we report the detection of eight high-N rotational transitions of CO(+) towards a low mass protostar, IRAS 16293-2422. The source was observed with the Long Wavelength Spectrometer on board the Infrared Space Observatory. This is the first time that CO(+) has been detected in a low luminosity source and the first time that high-N lines have been detected in any source. The detection of these lines was not predicted by models and consequently, their interpretation is a challenge. We discuss the possibility that the observed CO(+) emission originates in the dense inner regions illuminated by the UV field created in the accretion shock (formed by infalling material), and conclude that this is an improbable explanation. We have also considered the possibility that a strong, dissociative J-shock at ~ 500 AU from the star is the origin of the CO(+) emission. This model predicts CO(+) column densities in rough agreement with the observations if the magnetic field is ~ 1 mG and the shock velocity is 100 km s(-1) . Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) with the participation of ISAS and NASA.

  10. ISO Detection of CO(+) toward the Protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Rudolph, A.; Ceccarelli, C.; Caux, E.; Wolfire, M.; Nisini, B.; Saraceno, P.; White, G. J.

    1997-12-01

    We report the detection of eight high-N rotational transitions of CO(+) towards a low mass protostar, IRAS 16293-2422. The source was observed with the Long Wavelength Spectrometer on board the Infrared Space Observatory. This is the first time that CO(+) has been detected in a low luminosity source and the first time that high-N lines have been detected in any source. The detection of these lines is totally unpredicted by models and, consequently, their interpretation is a challenge. We discuss the possibility that the observed CO(+) emission originates in the dense inner regions illuminated by the UV field created in the accretion shock (formed by the infalling material), and conclude that this is an improbable explanation. We have also considered the possibility that a strong, dissociative J-shock at ~ 500 AU from the star is the origin of the CO(+) emission. This model predicts CO(+) column densities in rough agreement with the observations if the magnetic field is ~ 1 mG and the shock velocity is 100 km s(-1) .